xref: /openbmc/linux/ipc/mqueue.c (revision b78412b8)
1 /*
2  * POSIX message queues filesystem for Linux.
3  *
4  * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
5  *                          Michal Wronski          (michal.wronski@gmail.com)
6  *
7  * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
8  * Lockless receive & send, fd based notify:
9  *			    Manfred Spraul	    (manfred@colorfullife.com)
10  *
11  * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
12  *
13  * This file is released under the GPL.
14  */
15 
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/namei.h>
22 #include <linux/sysctl.h>
23 #include <linux/poll.h>
24 #include <linux/mqueue.h>
25 #include <linux/msg.h>
26 #include <linux/skbuff.h>
27 #include <linux/vmalloc.h>
28 #include <linux/netlink.h>
29 #include <linux/syscalls.h>
30 #include <linux/audit.h>
31 #include <linux/signal.h>
32 #include <linux/mutex.h>
33 #include <linux/nsproxy.h>
34 #include <linux/pid.h>
35 #include <linux/ipc_namespace.h>
36 #include <linux/user_namespace.h>
37 #include <linux/slab.h>
38 #include <linux/sched/wake_q.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/user.h>
41 
42 #include <net/sock.h>
43 #include "util.h"
44 
45 #define MQUEUE_MAGIC	0x19800202
46 #define DIRENT_SIZE	20
47 #define FILENT_SIZE	80
48 
49 #define SEND		0
50 #define RECV		1
51 
52 #define STATE_NONE	0
53 #define STATE_READY	1
54 
55 struct posix_msg_tree_node {
56 	struct rb_node		rb_node;
57 	struct list_head	msg_list;
58 	int			priority;
59 };
60 
61 struct ext_wait_queue {		/* queue of sleeping tasks */
62 	struct task_struct *task;
63 	struct list_head list;
64 	struct msg_msg *msg;	/* ptr of loaded message */
65 	int state;		/* one of STATE_* values */
66 };
67 
68 struct mqueue_inode_info {
69 	spinlock_t lock;
70 	struct inode vfs_inode;
71 	wait_queue_head_t wait_q;
72 
73 	struct rb_root msg_tree;
74 	struct posix_msg_tree_node *node_cache;
75 	struct mq_attr attr;
76 
77 	struct sigevent notify;
78 	struct pid *notify_owner;
79 	struct user_namespace *notify_user_ns;
80 	struct user_struct *user;	/* user who created, for accounting */
81 	struct sock *notify_sock;
82 	struct sk_buff *notify_cookie;
83 
84 	/* for tasks waiting for free space and messages, respectively */
85 	struct ext_wait_queue e_wait_q[2];
86 
87 	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
88 };
89 
90 static const struct inode_operations mqueue_dir_inode_operations;
91 static const struct file_operations mqueue_file_operations;
92 static const struct super_operations mqueue_super_ops;
93 static void remove_notification(struct mqueue_inode_info *info);
94 
95 static struct kmem_cache *mqueue_inode_cachep;
96 
97 static struct ctl_table_header *mq_sysctl_table;
98 
99 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
100 {
101 	return container_of(inode, struct mqueue_inode_info, vfs_inode);
102 }
103 
104 /*
105  * This routine should be called with the mq_lock held.
106  */
107 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
108 {
109 	return get_ipc_ns(inode->i_sb->s_fs_info);
110 }
111 
112 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
113 {
114 	struct ipc_namespace *ns;
115 
116 	spin_lock(&mq_lock);
117 	ns = __get_ns_from_inode(inode);
118 	spin_unlock(&mq_lock);
119 	return ns;
120 }
121 
122 /* Auxiliary functions to manipulate messages' list */
123 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
124 {
125 	struct rb_node **p, *parent = NULL;
126 	struct posix_msg_tree_node *leaf;
127 
128 	p = &info->msg_tree.rb_node;
129 	while (*p) {
130 		parent = *p;
131 		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
132 
133 		if (likely(leaf->priority == msg->m_type))
134 			goto insert_msg;
135 		else if (msg->m_type < leaf->priority)
136 			p = &(*p)->rb_left;
137 		else
138 			p = &(*p)->rb_right;
139 	}
140 	if (info->node_cache) {
141 		leaf = info->node_cache;
142 		info->node_cache = NULL;
143 	} else {
144 		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
145 		if (!leaf)
146 			return -ENOMEM;
147 		INIT_LIST_HEAD(&leaf->msg_list);
148 	}
149 	leaf->priority = msg->m_type;
150 	rb_link_node(&leaf->rb_node, parent, p);
151 	rb_insert_color(&leaf->rb_node, &info->msg_tree);
152 insert_msg:
153 	info->attr.mq_curmsgs++;
154 	info->qsize += msg->m_ts;
155 	list_add_tail(&msg->m_list, &leaf->msg_list);
156 	return 0;
157 }
158 
159 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
160 {
161 	struct rb_node **p, *parent = NULL;
162 	struct posix_msg_tree_node *leaf;
163 	struct msg_msg *msg;
164 
165 try_again:
166 	p = &info->msg_tree.rb_node;
167 	while (*p) {
168 		parent = *p;
169 		/*
170 		 * During insert, low priorities go to the left and high to the
171 		 * right.  On receive, we want the highest priorities first, so
172 		 * walk all the way to the right.
173 		 */
174 		p = &(*p)->rb_right;
175 	}
176 	if (!parent) {
177 		if (info->attr.mq_curmsgs) {
178 			pr_warn_once("Inconsistency in POSIX message queue, "
179 				     "no tree element, but supposedly messages "
180 				     "should exist!\n");
181 			info->attr.mq_curmsgs = 0;
182 		}
183 		return NULL;
184 	}
185 	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
186 	if (unlikely(list_empty(&leaf->msg_list))) {
187 		pr_warn_once("Inconsistency in POSIX message queue, "
188 			     "empty leaf node but we haven't implemented "
189 			     "lazy leaf delete!\n");
190 		rb_erase(&leaf->rb_node, &info->msg_tree);
191 		if (info->node_cache) {
192 			kfree(leaf);
193 		} else {
194 			info->node_cache = leaf;
195 		}
196 		goto try_again;
197 	} else {
198 		msg = list_first_entry(&leaf->msg_list,
199 				       struct msg_msg, m_list);
200 		list_del(&msg->m_list);
201 		if (list_empty(&leaf->msg_list)) {
202 			rb_erase(&leaf->rb_node, &info->msg_tree);
203 			if (info->node_cache) {
204 				kfree(leaf);
205 			} else {
206 				info->node_cache = leaf;
207 			}
208 		}
209 	}
210 	info->attr.mq_curmsgs--;
211 	info->qsize -= msg->m_ts;
212 	return msg;
213 }
214 
215 static struct inode *mqueue_get_inode(struct super_block *sb,
216 		struct ipc_namespace *ipc_ns, umode_t mode,
217 		struct mq_attr *attr)
218 {
219 	struct user_struct *u = current_user();
220 	struct inode *inode;
221 	int ret = -ENOMEM;
222 
223 	inode = new_inode(sb);
224 	if (!inode)
225 		goto err;
226 
227 	inode->i_ino = get_next_ino();
228 	inode->i_mode = mode;
229 	inode->i_uid = current_fsuid();
230 	inode->i_gid = current_fsgid();
231 	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
232 
233 	if (S_ISREG(mode)) {
234 		struct mqueue_inode_info *info;
235 		unsigned long mq_bytes, mq_treesize;
236 
237 		inode->i_fop = &mqueue_file_operations;
238 		inode->i_size = FILENT_SIZE;
239 		/* mqueue specific info */
240 		info = MQUEUE_I(inode);
241 		spin_lock_init(&info->lock);
242 		init_waitqueue_head(&info->wait_q);
243 		INIT_LIST_HEAD(&info->e_wait_q[0].list);
244 		INIT_LIST_HEAD(&info->e_wait_q[1].list);
245 		info->notify_owner = NULL;
246 		info->notify_user_ns = NULL;
247 		info->qsize = 0;
248 		info->user = NULL;	/* set when all is ok */
249 		info->msg_tree = RB_ROOT;
250 		info->node_cache = NULL;
251 		memset(&info->attr, 0, sizeof(info->attr));
252 		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
253 					   ipc_ns->mq_msg_default);
254 		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
255 					    ipc_ns->mq_msgsize_default);
256 		if (attr) {
257 			info->attr.mq_maxmsg = attr->mq_maxmsg;
258 			info->attr.mq_msgsize = attr->mq_msgsize;
259 		}
260 		/*
261 		 * We used to allocate a static array of pointers and account
262 		 * the size of that array as well as one msg_msg struct per
263 		 * possible message into the queue size. That's no longer
264 		 * accurate as the queue is now an rbtree and will grow and
265 		 * shrink depending on usage patterns.  We can, however, still
266 		 * account one msg_msg struct per message, but the nodes are
267 		 * allocated depending on priority usage, and most programs
268 		 * only use one, or a handful, of priorities.  However, since
269 		 * this is pinned memory, we need to assume worst case, so
270 		 * that means the min(mq_maxmsg, max_priorities) * struct
271 		 * posix_msg_tree_node.
272 		 */
273 		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
274 			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
275 			sizeof(struct posix_msg_tree_node);
276 
277 		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
278 					  info->attr.mq_msgsize);
279 
280 		spin_lock(&mq_lock);
281 		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
282 		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
283 			spin_unlock(&mq_lock);
284 			/* mqueue_evict_inode() releases info->messages */
285 			ret = -EMFILE;
286 			goto out_inode;
287 		}
288 		u->mq_bytes += mq_bytes;
289 		spin_unlock(&mq_lock);
290 
291 		/* all is ok */
292 		info->user = get_uid(u);
293 	} else if (S_ISDIR(mode)) {
294 		inc_nlink(inode);
295 		/* Some things misbehave if size == 0 on a directory */
296 		inode->i_size = 2 * DIRENT_SIZE;
297 		inode->i_op = &mqueue_dir_inode_operations;
298 		inode->i_fop = &simple_dir_operations;
299 	}
300 
301 	return inode;
302 out_inode:
303 	iput(inode);
304 err:
305 	return ERR_PTR(ret);
306 }
307 
308 static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
309 {
310 	struct inode *inode;
311 	struct ipc_namespace *ns = sb->s_fs_info;
312 
313 	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
314 	sb->s_blocksize = PAGE_SIZE;
315 	sb->s_blocksize_bits = PAGE_SHIFT;
316 	sb->s_magic = MQUEUE_MAGIC;
317 	sb->s_op = &mqueue_super_ops;
318 
319 	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
320 	if (IS_ERR(inode))
321 		return PTR_ERR(inode);
322 
323 	sb->s_root = d_make_root(inode);
324 	if (!sb->s_root)
325 		return -ENOMEM;
326 	return 0;
327 }
328 
329 static struct dentry *mqueue_mount(struct file_system_type *fs_type,
330 			 int flags, const char *dev_name,
331 			 void *data)
332 {
333 	struct ipc_namespace *ns;
334 	if (flags & MS_KERNMOUNT) {
335 		ns = data;
336 		data = NULL;
337 	} else {
338 		ns = current->nsproxy->ipc_ns;
339 	}
340 	return mount_ns(fs_type, flags, data, ns, ns->user_ns, mqueue_fill_super);
341 }
342 
343 static void init_once(void *foo)
344 {
345 	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
346 
347 	inode_init_once(&p->vfs_inode);
348 }
349 
350 static struct inode *mqueue_alloc_inode(struct super_block *sb)
351 {
352 	struct mqueue_inode_info *ei;
353 
354 	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
355 	if (!ei)
356 		return NULL;
357 	return &ei->vfs_inode;
358 }
359 
360 static void mqueue_i_callback(struct rcu_head *head)
361 {
362 	struct inode *inode = container_of(head, struct inode, i_rcu);
363 	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
364 }
365 
366 static void mqueue_destroy_inode(struct inode *inode)
367 {
368 	call_rcu(&inode->i_rcu, mqueue_i_callback);
369 }
370 
371 static void mqueue_evict_inode(struct inode *inode)
372 {
373 	struct mqueue_inode_info *info;
374 	struct user_struct *user;
375 	unsigned long mq_bytes, mq_treesize;
376 	struct ipc_namespace *ipc_ns;
377 	struct msg_msg *msg;
378 
379 	clear_inode(inode);
380 
381 	if (S_ISDIR(inode->i_mode))
382 		return;
383 
384 	ipc_ns = get_ns_from_inode(inode);
385 	info = MQUEUE_I(inode);
386 	spin_lock(&info->lock);
387 	while ((msg = msg_get(info)) != NULL)
388 		free_msg(msg);
389 	kfree(info->node_cache);
390 	spin_unlock(&info->lock);
391 
392 	/* Total amount of bytes accounted for the mqueue */
393 	mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
394 		min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
395 		sizeof(struct posix_msg_tree_node);
396 
397 	mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
398 				  info->attr.mq_msgsize);
399 
400 	user = info->user;
401 	if (user) {
402 		spin_lock(&mq_lock);
403 		user->mq_bytes -= mq_bytes;
404 		/*
405 		 * get_ns_from_inode() ensures that the
406 		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
407 		 * to which we now hold a reference, or it is NULL.
408 		 * We can't put it here under mq_lock, though.
409 		 */
410 		if (ipc_ns)
411 			ipc_ns->mq_queues_count--;
412 		spin_unlock(&mq_lock);
413 		free_uid(user);
414 	}
415 	if (ipc_ns)
416 		put_ipc_ns(ipc_ns);
417 }
418 
419 static int mqueue_create(struct inode *dir, struct dentry *dentry,
420 				umode_t mode, bool excl)
421 {
422 	struct inode *inode;
423 	struct mq_attr *attr = dentry->d_fsdata;
424 	int error;
425 	struct ipc_namespace *ipc_ns;
426 
427 	spin_lock(&mq_lock);
428 	ipc_ns = __get_ns_from_inode(dir);
429 	if (!ipc_ns) {
430 		error = -EACCES;
431 		goto out_unlock;
432 	}
433 
434 	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
435 	    !capable(CAP_SYS_RESOURCE)) {
436 		error = -ENOSPC;
437 		goto out_unlock;
438 	}
439 	ipc_ns->mq_queues_count++;
440 	spin_unlock(&mq_lock);
441 
442 	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
443 	if (IS_ERR(inode)) {
444 		error = PTR_ERR(inode);
445 		spin_lock(&mq_lock);
446 		ipc_ns->mq_queues_count--;
447 		goto out_unlock;
448 	}
449 
450 	put_ipc_ns(ipc_ns);
451 	dir->i_size += DIRENT_SIZE;
452 	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
453 
454 	d_instantiate(dentry, inode);
455 	dget(dentry);
456 	return 0;
457 out_unlock:
458 	spin_unlock(&mq_lock);
459 	if (ipc_ns)
460 		put_ipc_ns(ipc_ns);
461 	return error;
462 }
463 
464 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
465 {
466 	struct inode *inode = d_inode(dentry);
467 
468 	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
469 	dir->i_size -= DIRENT_SIZE;
470 	drop_nlink(inode);
471 	dput(dentry);
472 	return 0;
473 }
474 
475 /*
476 *	This is routine for system read from queue file.
477 *	To avoid mess with doing here some sort of mq_receive we allow
478 *	to read only queue size & notification info (the only values
479 *	that are interesting from user point of view and aren't accessible
480 *	through std routines)
481 */
482 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
483 				size_t count, loff_t *off)
484 {
485 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
486 	char buffer[FILENT_SIZE];
487 	ssize_t ret;
488 
489 	spin_lock(&info->lock);
490 	snprintf(buffer, sizeof(buffer),
491 			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
492 			info->qsize,
493 			info->notify_owner ? info->notify.sigev_notify : 0,
494 			(info->notify_owner &&
495 			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
496 				info->notify.sigev_signo : 0,
497 			pid_vnr(info->notify_owner));
498 	spin_unlock(&info->lock);
499 	buffer[sizeof(buffer)-1] = '\0';
500 
501 	ret = simple_read_from_buffer(u_data, count, off, buffer,
502 				strlen(buffer));
503 	if (ret <= 0)
504 		return ret;
505 
506 	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
507 	return ret;
508 }
509 
510 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
511 {
512 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
513 
514 	spin_lock(&info->lock);
515 	if (task_tgid(current) == info->notify_owner)
516 		remove_notification(info);
517 
518 	spin_unlock(&info->lock);
519 	return 0;
520 }
521 
522 static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
523 {
524 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
525 	int retval = 0;
526 
527 	poll_wait(filp, &info->wait_q, poll_tab);
528 
529 	spin_lock(&info->lock);
530 	if (info->attr.mq_curmsgs)
531 		retval = POLLIN | POLLRDNORM;
532 
533 	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
534 		retval |= POLLOUT | POLLWRNORM;
535 	spin_unlock(&info->lock);
536 
537 	return retval;
538 }
539 
540 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
541 static void wq_add(struct mqueue_inode_info *info, int sr,
542 			struct ext_wait_queue *ewp)
543 {
544 	struct ext_wait_queue *walk;
545 
546 	ewp->task = current;
547 
548 	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
549 		if (walk->task->static_prio <= current->static_prio) {
550 			list_add_tail(&ewp->list, &walk->list);
551 			return;
552 		}
553 	}
554 	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
555 }
556 
557 /*
558  * Puts current task to sleep. Caller must hold queue lock. After return
559  * lock isn't held.
560  * sr: SEND or RECV
561  */
562 static int wq_sleep(struct mqueue_inode_info *info, int sr,
563 		    ktime_t *timeout, struct ext_wait_queue *ewp)
564 	__releases(&info->lock)
565 {
566 	int retval;
567 	signed long time;
568 
569 	wq_add(info, sr, ewp);
570 
571 	for (;;) {
572 		__set_current_state(TASK_INTERRUPTIBLE);
573 
574 		spin_unlock(&info->lock);
575 		time = schedule_hrtimeout_range_clock(timeout, 0,
576 			HRTIMER_MODE_ABS, CLOCK_REALTIME);
577 
578 		if (ewp->state == STATE_READY) {
579 			retval = 0;
580 			goto out;
581 		}
582 		spin_lock(&info->lock);
583 		if (ewp->state == STATE_READY) {
584 			retval = 0;
585 			goto out_unlock;
586 		}
587 		if (signal_pending(current)) {
588 			retval = -ERESTARTSYS;
589 			break;
590 		}
591 		if (time == 0) {
592 			retval = -ETIMEDOUT;
593 			break;
594 		}
595 	}
596 	list_del(&ewp->list);
597 out_unlock:
598 	spin_unlock(&info->lock);
599 out:
600 	return retval;
601 }
602 
603 /*
604  * Returns waiting task that should be serviced first or NULL if none exists
605  */
606 static struct ext_wait_queue *wq_get_first_waiter(
607 		struct mqueue_inode_info *info, int sr)
608 {
609 	struct list_head *ptr;
610 
611 	ptr = info->e_wait_q[sr].list.prev;
612 	if (ptr == &info->e_wait_q[sr].list)
613 		return NULL;
614 	return list_entry(ptr, struct ext_wait_queue, list);
615 }
616 
617 
618 static inline void set_cookie(struct sk_buff *skb, char code)
619 {
620 	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
621 }
622 
623 /*
624  * The next function is only to split too long sys_mq_timedsend
625  */
626 static void __do_notify(struct mqueue_inode_info *info)
627 {
628 	/* notification
629 	 * invoked when there is registered process and there isn't process
630 	 * waiting synchronously for message AND state of queue changed from
631 	 * empty to not empty. Here we are sure that no one is waiting
632 	 * synchronously. */
633 	if (info->notify_owner &&
634 	    info->attr.mq_curmsgs == 1) {
635 		struct siginfo sig_i;
636 		switch (info->notify.sigev_notify) {
637 		case SIGEV_NONE:
638 			break;
639 		case SIGEV_SIGNAL:
640 			/* sends signal */
641 
642 			sig_i.si_signo = info->notify.sigev_signo;
643 			sig_i.si_errno = 0;
644 			sig_i.si_code = SI_MESGQ;
645 			sig_i.si_value = info->notify.sigev_value;
646 			/* map current pid/uid into info->owner's namespaces */
647 			rcu_read_lock();
648 			sig_i.si_pid = task_tgid_nr_ns(current,
649 						ns_of_pid(info->notify_owner));
650 			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
651 			rcu_read_unlock();
652 
653 			kill_pid_info(info->notify.sigev_signo,
654 				      &sig_i, info->notify_owner);
655 			break;
656 		case SIGEV_THREAD:
657 			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
658 			netlink_sendskb(info->notify_sock, info->notify_cookie);
659 			break;
660 		}
661 		/* after notification unregisters process */
662 		put_pid(info->notify_owner);
663 		put_user_ns(info->notify_user_ns);
664 		info->notify_owner = NULL;
665 		info->notify_user_ns = NULL;
666 	}
667 	wake_up(&info->wait_q);
668 }
669 
670 static int prepare_timeout(const struct timespec __user *u_abs_timeout,
671 			   struct timespec64 *ts)
672 {
673 	if (get_timespec64(ts, u_abs_timeout))
674 		return -EFAULT;
675 	if (!timespec64_valid(ts))
676 		return -EINVAL;
677 	return 0;
678 }
679 
680 static void remove_notification(struct mqueue_inode_info *info)
681 {
682 	if (info->notify_owner != NULL &&
683 	    info->notify.sigev_notify == SIGEV_THREAD) {
684 		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
685 		netlink_sendskb(info->notify_sock, info->notify_cookie);
686 	}
687 	put_pid(info->notify_owner);
688 	put_user_ns(info->notify_user_ns);
689 	info->notify_owner = NULL;
690 	info->notify_user_ns = NULL;
691 }
692 
693 static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
694 {
695 	int mq_treesize;
696 	unsigned long total_size;
697 
698 	if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
699 		return -EINVAL;
700 	if (capable(CAP_SYS_RESOURCE)) {
701 		if (attr->mq_maxmsg > HARD_MSGMAX ||
702 		    attr->mq_msgsize > HARD_MSGSIZEMAX)
703 			return -EINVAL;
704 	} else {
705 		if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
706 				attr->mq_msgsize > ipc_ns->mq_msgsize_max)
707 			return -EINVAL;
708 	}
709 	/* check for overflow */
710 	if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
711 		return -EOVERFLOW;
712 	mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
713 		min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
714 		sizeof(struct posix_msg_tree_node);
715 	total_size = attr->mq_maxmsg * attr->mq_msgsize;
716 	if (total_size + mq_treesize < total_size)
717 		return -EOVERFLOW;
718 	return 0;
719 }
720 
721 /*
722  * Invoked when creating a new queue via sys_mq_open
723  */
724 static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
725 			struct path *path, int oflag, umode_t mode,
726 			struct mq_attr *attr)
727 {
728 	const struct cred *cred = current_cred();
729 	int ret;
730 
731 	if (attr) {
732 		ret = mq_attr_ok(ipc_ns, attr);
733 		if (ret)
734 			return ERR_PTR(ret);
735 		/* store for use during create */
736 		path->dentry->d_fsdata = attr;
737 	} else {
738 		struct mq_attr def_attr;
739 
740 		def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
741 					 ipc_ns->mq_msg_default);
742 		def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
743 					  ipc_ns->mq_msgsize_default);
744 		ret = mq_attr_ok(ipc_ns, &def_attr);
745 		if (ret)
746 			return ERR_PTR(ret);
747 	}
748 
749 	mode &= ~current_umask();
750 	ret = vfs_create(dir, path->dentry, mode, true);
751 	path->dentry->d_fsdata = NULL;
752 	if (ret)
753 		return ERR_PTR(ret);
754 	return dentry_open(path, oflag, cred);
755 }
756 
757 /* Opens existing queue */
758 static struct file *do_open(struct path *path, int oflag)
759 {
760 	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
761 						  MAY_READ | MAY_WRITE };
762 	int acc;
763 	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
764 		return ERR_PTR(-EINVAL);
765 	acc = oflag2acc[oflag & O_ACCMODE];
766 	if (inode_permission(d_inode(path->dentry), acc))
767 		return ERR_PTR(-EACCES);
768 	return dentry_open(path, oflag, current_cred());
769 }
770 
771 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
772 		      struct mq_attr *attr)
773 {
774 	struct path path;
775 	struct file *filp;
776 	struct filename *name;
777 	int fd, error;
778 	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
779 	struct vfsmount *mnt = ipc_ns->mq_mnt;
780 	struct dentry *root = mnt->mnt_root;
781 	int ro;
782 
783 	audit_mq_open(oflag, mode, attr);
784 
785 	if (IS_ERR(name = getname(u_name)))
786 		return PTR_ERR(name);
787 
788 	fd = get_unused_fd_flags(O_CLOEXEC);
789 	if (fd < 0)
790 		goto out_putname;
791 
792 	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
793 	error = 0;
794 	inode_lock(d_inode(root));
795 	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
796 	if (IS_ERR(path.dentry)) {
797 		error = PTR_ERR(path.dentry);
798 		goto out_putfd;
799 	}
800 	path.mnt = mntget(mnt);
801 
802 	if (oflag & O_CREAT) {
803 		if (d_really_is_positive(path.dentry)) {	/* entry already exists */
804 			audit_inode(name, path.dentry, 0);
805 			if (oflag & O_EXCL) {
806 				error = -EEXIST;
807 				goto out;
808 			}
809 			filp = do_open(&path, oflag);
810 		} else {
811 			if (ro) {
812 				error = ro;
813 				goto out;
814 			}
815 			audit_inode_parent_hidden(name, root);
816 			filp = do_create(ipc_ns, d_inode(root), &path,
817 					 oflag, mode, attr);
818 		}
819 	} else {
820 		if (d_really_is_negative(path.dentry)) {
821 			error = -ENOENT;
822 			goto out;
823 		}
824 		audit_inode(name, path.dentry, 0);
825 		filp = do_open(&path, oflag);
826 	}
827 
828 	if (!IS_ERR(filp))
829 		fd_install(fd, filp);
830 	else
831 		error = PTR_ERR(filp);
832 out:
833 	path_put(&path);
834 out_putfd:
835 	if (error) {
836 		put_unused_fd(fd);
837 		fd = error;
838 	}
839 	inode_unlock(d_inode(root));
840 	if (!ro)
841 		mnt_drop_write(mnt);
842 out_putname:
843 	putname(name);
844 	return fd;
845 }
846 
847 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
848 		struct mq_attr __user *, u_attr)
849 {
850 	struct mq_attr attr;
851 	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
852 		return -EFAULT;
853 
854 	return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
855 }
856 
857 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
858 {
859 	int err;
860 	struct filename *name;
861 	struct dentry *dentry;
862 	struct inode *inode = NULL;
863 	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
864 	struct vfsmount *mnt = ipc_ns->mq_mnt;
865 
866 	name = getname(u_name);
867 	if (IS_ERR(name))
868 		return PTR_ERR(name);
869 
870 	audit_inode_parent_hidden(name, mnt->mnt_root);
871 	err = mnt_want_write(mnt);
872 	if (err)
873 		goto out_name;
874 	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
875 	dentry = lookup_one_len(name->name, mnt->mnt_root,
876 				strlen(name->name));
877 	if (IS_ERR(dentry)) {
878 		err = PTR_ERR(dentry);
879 		goto out_unlock;
880 	}
881 
882 	inode = d_inode(dentry);
883 	if (!inode) {
884 		err = -ENOENT;
885 	} else {
886 		ihold(inode);
887 		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
888 	}
889 	dput(dentry);
890 
891 out_unlock:
892 	inode_unlock(d_inode(mnt->mnt_root));
893 	if (inode)
894 		iput(inode);
895 	mnt_drop_write(mnt);
896 out_name:
897 	putname(name);
898 
899 	return err;
900 }
901 
902 /* Pipelined send and receive functions.
903  *
904  * If a receiver finds no waiting message, then it registers itself in the
905  * list of waiting receivers. A sender checks that list before adding the new
906  * message into the message array. If there is a waiting receiver, then it
907  * bypasses the message array and directly hands the message over to the
908  * receiver. The receiver accepts the message and returns without grabbing the
909  * queue spinlock:
910  *
911  * - Set pointer to message.
912  * - Queue the receiver task for later wakeup (without the info->lock).
913  * - Update its state to STATE_READY. Now the receiver can continue.
914  * - Wake up the process after the lock is dropped. Should the process wake up
915  *   before this wakeup (due to a timeout or a signal) it will either see
916  *   STATE_READY and continue or acquire the lock to check the state again.
917  *
918  * The same algorithm is used for senders.
919  */
920 
921 /* pipelined_send() - send a message directly to the task waiting in
922  * sys_mq_timedreceive() (without inserting message into a queue).
923  */
924 static inline void pipelined_send(struct wake_q_head *wake_q,
925 				  struct mqueue_inode_info *info,
926 				  struct msg_msg *message,
927 				  struct ext_wait_queue *receiver)
928 {
929 	receiver->msg = message;
930 	list_del(&receiver->list);
931 	wake_q_add(wake_q, receiver->task);
932 	/*
933 	 * Rely on the implicit cmpxchg barrier from wake_q_add such
934 	 * that we can ensure that updating receiver->state is the last
935 	 * write operation: As once set, the receiver can continue,
936 	 * and if we don't have the reference count from the wake_q,
937 	 * yet, at that point we can later have a use-after-free
938 	 * condition and bogus wakeup.
939 	 */
940 	receiver->state = STATE_READY;
941 }
942 
943 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
944  * gets its message and put to the queue (we have one free place for sure). */
945 static inline void pipelined_receive(struct wake_q_head *wake_q,
946 				     struct mqueue_inode_info *info)
947 {
948 	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
949 
950 	if (!sender) {
951 		/* for poll */
952 		wake_up_interruptible(&info->wait_q);
953 		return;
954 	}
955 	if (msg_insert(sender->msg, info))
956 		return;
957 
958 	list_del(&sender->list);
959 	wake_q_add(wake_q, sender->task);
960 	sender->state = STATE_READY;
961 }
962 
963 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
964 		size_t msg_len, unsigned int msg_prio,
965 		struct timespec64 *ts)
966 {
967 	struct fd f;
968 	struct inode *inode;
969 	struct ext_wait_queue wait;
970 	struct ext_wait_queue *receiver;
971 	struct msg_msg *msg_ptr;
972 	struct mqueue_inode_info *info;
973 	ktime_t expires, *timeout = NULL;
974 	struct posix_msg_tree_node *new_leaf = NULL;
975 	int ret = 0;
976 	DEFINE_WAKE_Q(wake_q);
977 
978 	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
979 		return -EINVAL;
980 
981 	if (ts) {
982 		expires = timespec64_to_ktime(*ts);
983 		timeout = &expires;
984 	}
985 
986 	audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
987 
988 	f = fdget(mqdes);
989 	if (unlikely(!f.file)) {
990 		ret = -EBADF;
991 		goto out;
992 	}
993 
994 	inode = file_inode(f.file);
995 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
996 		ret = -EBADF;
997 		goto out_fput;
998 	}
999 	info = MQUEUE_I(inode);
1000 	audit_file(f.file);
1001 
1002 	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1003 		ret = -EBADF;
1004 		goto out_fput;
1005 	}
1006 
1007 	if (unlikely(msg_len > info->attr.mq_msgsize)) {
1008 		ret = -EMSGSIZE;
1009 		goto out_fput;
1010 	}
1011 
1012 	/* First try to allocate memory, before doing anything with
1013 	 * existing queues. */
1014 	msg_ptr = load_msg(u_msg_ptr, msg_len);
1015 	if (IS_ERR(msg_ptr)) {
1016 		ret = PTR_ERR(msg_ptr);
1017 		goto out_fput;
1018 	}
1019 	msg_ptr->m_ts = msg_len;
1020 	msg_ptr->m_type = msg_prio;
1021 
1022 	/*
1023 	 * msg_insert really wants us to have a valid, spare node struct so
1024 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1025 	 * fall back to that if necessary.
1026 	 */
1027 	if (!info->node_cache)
1028 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1029 
1030 	spin_lock(&info->lock);
1031 
1032 	if (!info->node_cache && new_leaf) {
1033 		/* Save our speculative allocation into the cache */
1034 		INIT_LIST_HEAD(&new_leaf->msg_list);
1035 		info->node_cache = new_leaf;
1036 		new_leaf = NULL;
1037 	} else {
1038 		kfree(new_leaf);
1039 	}
1040 
1041 	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1042 		if (f.file->f_flags & O_NONBLOCK) {
1043 			ret = -EAGAIN;
1044 		} else {
1045 			wait.task = current;
1046 			wait.msg = (void *) msg_ptr;
1047 			wait.state = STATE_NONE;
1048 			ret = wq_sleep(info, SEND, timeout, &wait);
1049 			/*
1050 			 * wq_sleep must be called with info->lock held, and
1051 			 * returns with the lock released
1052 			 */
1053 			goto out_free;
1054 		}
1055 	} else {
1056 		receiver = wq_get_first_waiter(info, RECV);
1057 		if (receiver) {
1058 			pipelined_send(&wake_q, info, msg_ptr, receiver);
1059 		} else {
1060 			/* adds message to the queue */
1061 			ret = msg_insert(msg_ptr, info);
1062 			if (ret)
1063 				goto out_unlock;
1064 			__do_notify(info);
1065 		}
1066 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1067 				current_time(inode);
1068 	}
1069 out_unlock:
1070 	spin_unlock(&info->lock);
1071 	wake_up_q(&wake_q);
1072 out_free:
1073 	if (ret)
1074 		free_msg(msg_ptr);
1075 out_fput:
1076 	fdput(f);
1077 out:
1078 	return ret;
1079 }
1080 
1081 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1082 		size_t msg_len, unsigned int __user *u_msg_prio,
1083 		struct timespec64 *ts)
1084 {
1085 	ssize_t ret;
1086 	struct msg_msg *msg_ptr;
1087 	struct fd f;
1088 	struct inode *inode;
1089 	struct mqueue_inode_info *info;
1090 	struct ext_wait_queue wait;
1091 	ktime_t expires, *timeout = NULL;
1092 	struct posix_msg_tree_node *new_leaf = NULL;
1093 
1094 	if (ts) {
1095 		expires = timespec64_to_ktime(*ts);
1096 		timeout = &expires;
1097 	}
1098 
1099 	audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1100 
1101 	f = fdget(mqdes);
1102 	if (unlikely(!f.file)) {
1103 		ret = -EBADF;
1104 		goto out;
1105 	}
1106 
1107 	inode = file_inode(f.file);
1108 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1109 		ret = -EBADF;
1110 		goto out_fput;
1111 	}
1112 	info = MQUEUE_I(inode);
1113 	audit_file(f.file);
1114 
1115 	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1116 		ret = -EBADF;
1117 		goto out_fput;
1118 	}
1119 
1120 	/* checks if buffer is big enough */
1121 	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1122 		ret = -EMSGSIZE;
1123 		goto out_fput;
1124 	}
1125 
1126 	/*
1127 	 * msg_insert really wants us to have a valid, spare node struct so
1128 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1129 	 * fall back to that if necessary.
1130 	 */
1131 	if (!info->node_cache)
1132 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1133 
1134 	spin_lock(&info->lock);
1135 
1136 	if (!info->node_cache && new_leaf) {
1137 		/* Save our speculative allocation into the cache */
1138 		INIT_LIST_HEAD(&new_leaf->msg_list);
1139 		info->node_cache = new_leaf;
1140 	} else {
1141 		kfree(new_leaf);
1142 	}
1143 
1144 	if (info->attr.mq_curmsgs == 0) {
1145 		if (f.file->f_flags & O_NONBLOCK) {
1146 			spin_unlock(&info->lock);
1147 			ret = -EAGAIN;
1148 		} else {
1149 			wait.task = current;
1150 			wait.state = STATE_NONE;
1151 			ret = wq_sleep(info, RECV, timeout, &wait);
1152 			msg_ptr = wait.msg;
1153 		}
1154 	} else {
1155 		DEFINE_WAKE_Q(wake_q);
1156 
1157 		msg_ptr = msg_get(info);
1158 
1159 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1160 				current_time(inode);
1161 
1162 		/* There is now free space in queue. */
1163 		pipelined_receive(&wake_q, info);
1164 		spin_unlock(&info->lock);
1165 		wake_up_q(&wake_q);
1166 		ret = 0;
1167 	}
1168 	if (ret == 0) {
1169 		ret = msg_ptr->m_ts;
1170 
1171 		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1172 			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1173 			ret = -EFAULT;
1174 		}
1175 		free_msg(msg_ptr);
1176 	}
1177 out_fput:
1178 	fdput(f);
1179 out:
1180 	return ret;
1181 }
1182 
1183 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1184 		size_t, msg_len, unsigned int, msg_prio,
1185 		const struct timespec __user *, u_abs_timeout)
1186 {
1187 	struct timespec64 ts, *p = NULL;
1188 	if (u_abs_timeout) {
1189 		int res = prepare_timeout(u_abs_timeout, &ts);
1190 		if (res)
1191 			return res;
1192 		p = &ts;
1193 	}
1194 	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1195 }
1196 
1197 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1198 		size_t, msg_len, unsigned int __user *, u_msg_prio,
1199 		const struct timespec __user *, u_abs_timeout)
1200 {
1201 	struct timespec64 ts, *p = NULL;
1202 	if (u_abs_timeout) {
1203 		int res = prepare_timeout(u_abs_timeout, &ts);
1204 		if (res)
1205 			return res;
1206 		p = &ts;
1207 	}
1208 	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1209 }
1210 
1211 /*
1212  * Notes: the case when user wants us to deregister (with NULL as pointer)
1213  * and he isn't currently owner of notification, will be silently discarded.
1214  * It isn't explicitly defined in the POSIX.
1215  */
1216 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1217 {
1218 	int ret;
1219 	struct fd f;
1220 	struct sock *sock;
1221 	struct inode *inode;
1222 	struct mqueue_inode_info *info;
1223 	struct sk_buff *nc;
1224 
1225 	audit_mq_notify(mqdes, notification);
1226 
1227 	nc = NULL;
1228 	sock = NULL;
1229 	if (notification != NULL) {
1230 		if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1231 			     notification->sigev_notify != SIGEV_SIGNAL &&
1232 			     notification->sigev_notify != SIGEV_THREAD))
1233 			return -EINVAL;
1234 		if (notification->sigev_notify == SIGEV_SIGNAL &&
1235 			!valid_signal(notification->sigev_signo)) {
1236 			return -EINVAL;
1237 		}
1238 		if (notification->sigev_notify == SIGEV_THREAD) {
1239 			long timeo;
1240 
1241 			/* create the notify skb */
1242 			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1243 			if (!nc) {
1244 				ret = -ENOMEM;
1245 				goto out;
1246 			}
1247 			if (copy_from_user(nc->data,
1248 					notification->sigev_value.sival_ptr,
1249 					NOTIFY_COOKIE_LEN)) {
1250 				ret = -EFAULT;
1251 				goto out;
1252 			}
1253 
1254 			/* TODO: add a header? */
1255 			skb_put(nc, NOTIFY_COOKIE_LEN);
1256 			/* and attach it to the socket */
1257 retry:
1258 			f = fdget(notification->sigev_signo);
1259 			if (!f.file) {
1260 				ret = -EBADF;
1261 				goto out;
1262 			}
1263 			sock = netlink_getsockbyfilp(f.file);
1264 			fdput(f);
1265 			if (IS_ERR(sock)) {
1266 				ret = PTR_ERR(sock);
1267 				sock = NULL;
1268 				goto out;
1269 			}
1270 
1271 			timeo = MAX_SCHEDULE_TIMEOUT;
1272 			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1273 			if (ret == 1) {
1274 				sock = NULL;
1275 				goto retry;
1276 			}
1277 			if (ret) {
1278 				sock = NULL;
1279 				nc = NULL;
1280 				goto out;
1281 			}
1282 		}
1283 	}
1284 
1285 	f = fdget(mqdes);
1286 	if (!f.file) {
1287 		ret = -EBADF;
1288 		goto out;
1289 	}
1290 
1291 	inode = file_inode(f.file);
1292 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1293 		ret = -EBADF;
1294 		goto out_fput;
1295 	}
1296 	info = MQUEUE_I(inode);
1297 
1298 	ret = 0;
1299 	spin_lock(&info->lock);
1300 	if (notification == NULL) {
1301 		if (info->notify_owner == task_tgid(current)) {
1302 			remove_notification(info);
1303 			inode->i_atime = inode->i_ctime = current_time(inode);
1304 		}
1305 	} else if (info->notify_owner != NULL) {
1306 		ret = -EBUSY;
1307 	} else {
1308 		switch (notification->sigev_notify) {
1309 		case SIGEV_NONE:
1310 			info->notify.sigev_notify = SIGEV_NONE;
1311 			break;
1312 		case SIGEV_THREAD:
1313 			info->notify_sock = sock;
1314 			info->notify_cookie = nc;
1315 			sock = NULL;
1316 			nc = NULL;
1317 			info->notify.sigev_notify = SIGEV_THREAD;
1318 			break;
1319 		case SIGEV_SIGNAL:
1320 			info->notify.sigev_signo = notification->sigev_signo;
1321 			info->notify.sigev_value = notification->sigev_value;
1322 			info->notify.sigev_notify = SIGEV_SIGNAL;
1323 			break;
1324 		}
1325 
1326 		info->notify_owner = get_pid(task_tgid(current));
1327 		info->notify_user_ns = get_user_ns(current_user_ns());
1328 		inode->i_atime = inode->i_ctime = current_time(inode);
1329 	}
1330 	spin_unlock(&info->lock);
1331 out_fput:
1332 	fdput(f);
1333 out:
1334 	if (sock)
1335 		netlink_detachskb(sock, nc);
1336 	else if (nc)
1337 		dev_kfree_skb(nc);
1338 
1339 	return ret;
1340 }
1341 
1342 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1343 		const struct sigevent __user *, u_notification)
1344 {
1345 	struct sigevent n, *p = NULL;
1346 	if (u_notification) {
1347 		if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1348 			return -EFAULT;
1349 		p = &n;
1350 	}
1351 	return do_mq_notify(mqdes, p);
1352 }
1353 
1354 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1355 {
1356 	struct fd f;
1357 	struct inode *inode;
1358 	struct mqueue_inode_info *info;
1359 
1360 	if (new && (new->mq_flags & (~O_NONBLOCK)))
1361 		return -EINVAL;
1362 
1363 	f = fdget(mqdes);
1364 	if (!f.file)
1365 		return -EBADF;
1366 
1367 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1368 		fdput(f);
1369 		return -EBADF;
1370 	}
1371 
1372 	inode = file_inode(f.file);
1373 	info = MQUEUE_I(inode);
1374 
1375 	spin_lock(&info->lock);
1376 
1377 	if (old) {
1378 		*old = info->attr;
1379 		old->mq_flags = f.file->f_flags & O_NONBLOCK;
1380 	}
1381 	if (new) {
1382 		audit_mq_getsetattr(mqdes, new);
1383 		spin_lock(&f.file->f_lock);
1384 		if (new->mq_flags & O_NONBLOCK)
1385 			f.file->f_flags |= O_NONBLOCK;
1386 		else
1387 			f.file->f_flags &= ~O_NONBLOCK;
1388 		spin_unlock(&f.file->f_lock);
1389 
1390 		inode->i_atime = inode->i_ctime = current_time(inode);
1391 	}
1392 
1393 	spin_unlock(&info->lock);
1394 	fdput(f);
1395 	return 0;
1396 }
1397 
1398 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1399 		const struct mq_attr __user *, u_mqstat,
1400 		struct mq_attr __user *, u_omqstat)
1401 {
1402 	int ret;
1403 	struct mq_attr mqstat, omqstat;
1404 	struct mq_attr *new = NULL, *old = NULL;
1405 
1406 	if (u_mqstat) {
1407 		new = &mqstat;
1408 		if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1409 			return -EFAULT;
1410 	}
1411 	if (u_omqstat)
1412 		old = &omqstat;
1413 
1414 	ret = do_mq_getsetattr(mqdes, new, old);
1415 	if (ret || !old)
1416 		return ret;
1417 
1418 	if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1419 		return -EFAULT;
1420 	return 0;
1421 }
1422 
1423 #ifdef CONFIG_COMPAT
1424 
1425 struct compat_mq_attr {
1426 	compat_long_t mq_flags;      /* message queue flags		     */
1427 	compat_long_t mq_maxmsg;     /* maximum number of messages	     */
1428 	compat_long_t mq_msgsize;    /* maximum message size		     */
1429 	compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1430 	compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1431 };
1432 
1433 static inline int get_compat_mq_attr(struct mq_attr *attr,
1434 			const struct compat_mq_attr __user *uattr)
1435 {
1436 	struct compat_mq_attr v;
1437 
1438 	if (copy_from_user(&v, uattr, sizeof(*uattr)))
1439 		return -EFAULT;
1440 
1441 	memset(attr, 0, sizeof(*attr));
1442 	attr->mq_flags = v.mq_flags;
1443 	attr->mq_maxmsg = v.mq_maxmsg;
1444 	attr->mq_msgsize = v.mq_msgsize;
1445 	attr->mq_curmsgs = v.mq_curmsgs;
1446 	return 0;
1447 }
1448 
1449 static inline int put_compat_mq_attr(const struct mq_attr *attr,
1450 			struct compat_mq_attr __user *uattr)
1451 {
1452 	struct compat_mq_attr v;
1453 
1454 	memset(&v, 0, sizeof(v));
1455 	v.mq_flags = attr->mq_flags;
1456 	v.mq_maxmsg = attr->mq_maxmsg;
1457 	v.mq_msgsize = attr->mq_msgsize;
1458 	v.mq_curmsgs = attr->mq_curmsgs;
1459 	if (copy_to_user(uattr, &v, sizeof(*uattr)))
1460 		return -EFAULT;
1461 	return 0;
1462 }
1463 
1464 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1465 		       int, oflag, compat_mode_t, mode,
1466 		       struct compat_mq_attr __user *, u_attr)
1467 {
1468 	struct mq_attr attr, *p = NULL;
1469 	if (u_attr && oflag & O_CREAT) {
1470 		p = &attr;
1471 		if (get_compat_mq_attr(&attr, u_attr))
1472 			return -EFAULT;
1473 	}
1474 	return do_mq_open(u_name, oflag, mode, p);
1475 }
1476 
1477 static int compat_prepare_timeout(const struct compat_timespec __user *p,
1478 				   struct timespec64 *ts)
1479 {
1480 	if (compat_get_timespec64(ts, p))
1481 		return -EFAULT;
1482 	if (!timespec64_valid(ts))
1483 		return -EINVAL;
1484 	return 0;
1485 }
1486 
1487 COMPAT_SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes,
1488 		       const char __user *, u_msg_ptr,
1489 		       compat_size_t, msg_len, unsigned int, msg_prio,
1490 		       const struct compat_timespec __user *, u_abs_timeout)
1491 {
1492 	struct timespec64 ts, *p = NULL;
1493 	if (u_abs_timeout) {
1494 		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1495 		if (res)
1496 			return res;
1497 		p = &ts;
1498 	}
1499 	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1500 }
1501 
1502 COMPAT_SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes,
1503 		       char __user *, u_msg_ptr,
1504 		       compat_size_t, msg_len, unsigned int __user *, u_msg_prio,
1505 		       const struct compat_timespec __user *, u_abs_timeout)
1506 {
1507 	struct timespec64 ts, *p = NULL;
1508 	if (u_abs_timeout) {
1509 		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1510 		if (res)
1511 			return res;
1512 		p = &ts;
1513 	}
1514 	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1515 }
1516 
1517 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1518 		       const struct compat_sigevent __user *, u_notification)
1519 {
1520 	struct sigevent n, *p = NULL;
1521 	if (u_notification) {
1522 		if (get_compat_sigevent(&n, u_notification))
1523 			return -EFAULT;
1524 		if (n.sigev_notify == SIGEV_THREAD)
1525 			n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1526 		p = &n;
1527 	}
1528 	return do_mq_notify(mqdes, p);
1529 }
1530 
1531 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1532 		       const struct compat_mq_attr __user *, u_mqstat,
1533 		       struct compat_mq_attr __user *, u_omqstat)
1534 {
1535 	int ret;
1536 	struct mq_attr mqstat, omqstat;
1537 	struct mq_attr *new = NULL, *old = NULL;
1538 
1539 	if (u_mqstat) {
1540 		new = &mqstat;
1541 		if (get_compat_mq_attr(new, u_mqstat))
1542 			return -EFAULT;
1543 	}
1544 	if (u_omqstat)
1545 		old = &omqstat;
1546 
1547 	ret = do_mq_getsetattr(mqdes, new, old);
1548 	if (ret || !old)
1549 		return ret;
1550 
1551 	if (put_compat_mq_attr(old, u_omqstat))
1552 		return -EFAULT;
1553 	return 0;
1554 }
1555 #endif
1556 
1557 static const struct inode_operations mqueue_dir_inode_operations = {
1558 	.lookup = simple_lookup,
1559 	.create = mqueue_create,
1560 	.unlink = mqueue_unlink,
1561 };
1562 
1563 static const struct file_operations mqueue_file_operations = {
1564 	.flush = mqueue_flush_file,
1565 	.poll = mqueue_poll_file,
1566 	.read = mqueue_read_file,
1567 	.llseek = default_llseek,
1568 };
1569 
1570 static const struct super_operations mqueue_super_ops = {
1571 	.alloc_inode = mqueue_alloc_inode,
1572 	.destroy_inode = mqueue_destroy_inode,
1573 	.evict_inode = mqueue_evict_inode,
1574 	.statfs = simple_statfs,
1575 };
1576 
1577 static struct file_system_type mqueue_fs_type = {
1578 	.name = "mqueue",
1579 	.mount = mqueue_mount,
1580 	.kill_sb = kill_litter_super,
1581 	.fs_flags = FS_USERNS_MOUNT,
1582 };
1583 
1584 int mq_init_ns(struct ipc_namespace *ns)
1585 {
1586 	ns->mq_queues_count  = 0;
1587 	ns->mq_queues_max    = DFLT_QUEUESMAX;
1588 	ns->mq_msg_max       = DFLT_MSGMAX;
1589 	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1590 	ns->mq_msg_default   = DFLT_MSG;
1591 	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1592 
1593 	ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1594 	if (IS_ERR(ns->mq_mnt)) {
1595 		int err = PTR_ERR(ns->mq_mnt);
1596 		ns->mq_mnt = NULL;
1597 		return err;
1598 	}
1599 	return 0;
1600 }
1601 
1602 void mq_clear_sbinfo(struct ipc_namespace *ns)
1603 {
1604 	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1605 }
1606 
1607 void mq_put_mnt(struct ipc_namespace *ns)
1608 {
1609 	kern_unmount(ns->mq_mnt);
1610 }
1611 
1612 static int __init init_mqueue_fs(void)
1613 {
1614 	int error;
1615 
1616 	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1617 				sizeof(struct mqueue_inode_info), 0,
1618 				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1619 	if (mqueue_inode_cachep == NULL)
1620 		return -ENOMEM;
1621 
1622 	/* ignore failures - they are not fatal */
1623 	mq_sysctl_table = mq_register_sysctl_table();
1624 
1625 	error = register_filesystem(&mqueue_fs_type);
1626 	if (error)
1627 		goto out_sysctl;
1628 
1629 	spin_lock_init(&mq_lock);
1630 
1631 	error = mq_init_ns(&init_ipc_ns);
1632 	if (error)
1633 		goto out_filesystem;
1634 
1635 	return 0;
1636 
1637 out_filesystem:
1638 	unregister_filesystem(&mqueue_fs_type);
1639 out_sysctl:
1640 	if (mq_sysctl_table)
1641 		unregister_sysctl_table(mq_sysctl_table);
1642 	kmem_cache_destroy(mqueue_inode_cachep);
1643 	return error;
1644 }
1645 
1646 device_initcall(init_mqueue_fs);
1647