xref: /openbmc/linux/ipc/mqueue.c (revision a1b2f04ea527397fcacacd09e0d690927feef429)
1 /*
2  * POSIX message queues filesystem for Linux.
3  *
4  * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
5  *                          Michal Wronski          (michal.wronski@gmail.com)
6  *
7  * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
8  * Lockless receive & send, fd based notify:
9  *			    Manfred Spraul	    (manfred@colorfullife.com)
10  *
11  * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
12  *
13  * This file is released under the GPL.
14  */
15 
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/fs_context.h>
22 #include <linux/namei.h>
23 #include <linux/sysctl.h>
24 #include <linux/poll.h>
25 #include <linux/mqueue.h>
26 #include <linux/msg.h>
27 #include <linux/skbuff.h>
28 #include <linux/vmalloc.h>
29 #include <linux/netlink.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 #include <linux/signal.h>
33 #include <linux/mutex.h>
34 #include <linux/nsproxy.h>
35 #include <linux/pid.h>
36 #include <linux/ipc_namespace.h>
37 #include <linux/user_namespace.h>
38 #include <linux/slab.h>
39 #include <linux/sched/wake_q.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/user.h>
42 
43 #include <net/sock.h>
44 #include "util.h"
45 
46 struct mqueue_fs_context {
47 	struct ipc_namespace	*ipc_ns;
48 };
49 
50 #define MQUEUE_MAGIC	0x19800202
51 #define DIRENT_SIZE	20
52 #define FILENT_SIZE	80
53 
54 #define SEND		0
55 #define RECV		1
56 
57 #define STATE_NONE	0
58 #define STATE_READY	1
59 
60 struct posix_msg_tree_node {
61 	struct rb_node		rb_node;
62 	struct list_head	msg_list;
63 	int			priority;
64 };
65 
66 struct ext_wait_queue {		/* queue of sleeping tasks */
67 	struct task_struct *task;
68 	struct list_head list;
69 	struct msg_msg *msg;	/* ptr of loaded message */
70 	int state;		/* one of STATE_* values */
71 };
72 
73 struct mqueue_inode_info {
74 	spinlock_t lock;
75 	struct inode vfs_inode;
76 	wait_queue_head_t wait_q;
77 
78 	struct rb_root msg_tree;
79 	struct rb_node *msg_tree_rightmost;
80 	struct posix_msg_tree_node *node_cache;
81 	struct mq_attr attr;
82 
83 	struct sigevent notify;
84 	struct pid *notify_owner;
85 	struct user_namespace *notify_user_ns;
86 	struct user_struct *user;	/* user who created, for accounting */
87 	struct sock *notify_sock;
88 	struct sk_buff *notify_cookie;
89 
90 	/* for tasks waiting for free space and messages, respectively */
91 	struct ext_wait_queue e_wait_q[2];
92 
93 	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
94 };
95 
96 static struct file_system_type mqueue_fs_type;
97 static const struct inode_operations mqueue_dir_inode_operations;
98 static const struct file_operations mqueue_file_operations;
99 static const struct super_operations mqueue_super_ops;
100 static const struct fs_context_operations mqueue_fs_context_ops;
101 static void remove_notification(struct mqueue_inode_info *info);
102 
103 static struct kmem_cache *mqueue_inode_cachep;
104 
105 static struct ctl_table_header *mq_sysctl_table;
106 
107 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
108 {
109 	return container_of(inode, struct mqueue_inode_info, vfs_inode);
110 }
111 
112 /*
113  * This routine should be called with the mq_lock held.
114  */
115 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
116 {
117 	return get_ipc_ns(inode->i_sb->s_fs_info);
118 }
119 
120 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
121 {
122 	struct ipc_namespace *ns;
123 
124 	spin_lock(&mq_lock);
125 	ns = __get_ns_from_inode(inode);
126 	spin_unlock(&mq_lock);
127 	return ns;
128 }
129 
130 /* Auxiliary functions to manipulate messages' list */
131 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
132 {
133 	struct rb_node **p, *parent = NULL;
134 	struct posix_msg_tree_node *leaf;
135 	bool rightmost = true;
136 
137 	p = &info->msg_tree.rb_node;
138 	while (*p) {
139 		parent = *p;
140 		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
141 
142 		if (likely(leaf->priority == msg->m_type))
143 			goto insert_msg;
144 		else if (msg->m_type < leaf->priority) {
145 			p = &(*p)->rb_left;
146 			rightmost = false;
147 		} else
148 			p = &(*p)->rb_right;
149 	}
150 	if (info->node_cache) {
151 		leaf = info->node_cache;
152 		info->node_cache = NULL;
153 	} else {
154 		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
155 		if (!leaf)
156 			return -ENOMEM;
157 		INIT_LIST_HEAD(&leaf->msg_list);
158 	}
159 	leaf->priority = msg->m_type;
160 
161 	if (rightmost)
162 		info->msg_tree_rightmost = &leaf->rb_node;
163 
164 	rb_link_node(&leaf->rb_node, parent, p);
165 	rb_insert_color(&leaf->rb_node, &info->msg_tree);
166 insert_msg:
167 	info->attr.mq_curmsgs++;
168 	info->qsize += msg->m_ts;
169 	list_add_tail(&msg->m_list, &leaf->msg_list);
170 	return 0;
171 }
172 
173 static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
174 				  struct mqueue_inode_info *info)
175 {
176 	struct rb_node *node = &leaf->rb_node;
177 
178 	if (info->msg_tree_rightmost == node)
179 		info->msg_tree_rightmost = rb_prev(node);
180 
181 	rb_erase(node, &info->msg_tree);
182 	if (info->node_cache) {
183 		kfree(leaf);
184 	} else {
185 		info->node_cache = leaf;
186 	}
187 }
188 
189 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
190 {
191 	struct rb_node *parent = NULL;
192 	struct posix_msg_tree_node *leaf;
193 	struct msg_msg *msg;
194 
195 try_again:
196 	/*
197 	 * During insert, low priorities go to the left and high to the
198 	 * right.  On receive, we want the highest priorities first, so
199 	 * walk all the way to the right.
200 	 */
201 	parent = info->msg_tree_rightmost;
202 	if (!parent) {
203 		if (info->attr.mq_curmsgs) {
204 			pr_warn_once("Inconsistency in POSIX message queue, "
205 				     "no tree element, but supposedly messages "
206 				     "should exist!\n");
207 			info->attr.mq_curmsgs = 0;
208 		}
209 		return NULL;
210 	}
211 	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
212 	if (unlikely(list_empty(&leaf->msg_list))) {
213 		pr_warn_once("Inconsistency in POSIX message queue, "
214 			     "empty leaf node but we haven't implemented "
215 			     "lazy leaf delete!\n");
216 		msg_tree_erase(leaf, info);
217 		goto try_again;
218 	} else {
219 		msg = list_first_entry(&leaf->msg_list,
220 				       struct msg_msg, m_list);
221 		list_del(&msg->m_list);
222 		if (list_empty(&leaf->msg_list)) {
223 			msg_tree_erase(leaf, info);
224 		}
225 	}
226 	info->attr.mq_curmsgs--;
227 	info->qsize -= msg->m_ts;
228 	return msg;
229 }
230 
231 static struct inode *mqueue_get_inode(struct super_block *sb,
232 		struct ipc_namespace *ipc_ns, umode_t mode,
233 		struct mq_attr *attr)
234 {
235 	struct user_struct *u = current_user();
236 	struct inode *inode;
237 	int ret = -ENOMEM;
238 
239 	inode = new_inode(sb);
240 	if (!inode)
241 		goto err;
242 
243 	inode->i_ino = get_next_ino();
244 	inode->i_mode = mode;
245 	inode->i_uid = current_fsuid();
246 	inode->i_gid = current_fsgid();
247 	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
248 
249 	if (S_ISREG(mode)) {
250 		struct mqueue_inode_info *info;
251 		unsigned long mq_bytes, mq_treesize;
252 
253 		inode->i_fop = &mqueue_file_operations;
254 		inode->i_size = FILENT_SIZE;
255 		/* mqueue specific info */
256 		info = MQUEUE_I(inode);
257 		spin_lock_init(&info->lock);
258 		init_waitqueue_head(&info->wait_q);
259 		INIT_LIST_HEAD(&info->e_wait_q[0].list);
260 		INIT_LIST_HEAD(&info->e_wait_q[1].list);
261 		info->notify_owner = NULL;
262 		info->notify_user_ns = NULL;
263 		info->qsize = 0;
264 		info->user = NULL;	/* set when all is ok */
265 		info->msg_tree = RB_ROOT;
266 		info->msg_tree_rightmost = NULL;
267 		info->node_cache = NULL;
268 		memset(&info->attr, 0, sizeof(info->attr));
269 		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
270 					   ipc_ns->mq_msg_default);
271 		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
272 					    ipc_ns->mq_msgsize_default);
273 		if (attr) {
274 			info->attr.mq_maxmsg = attr->mq_maxmsg;
275 			info->attr.mq_msgsize = attr->mq_msgsize;
276 		}
277 		/*
278 		 * We used to allocate a static array of pointers and account
279 		 * the size of that array as well as one msg_msg struct per
280 		 * possible message into the queue size. That's no longer
281 		 * accurate as the queue is now an rbtree and will grow and
282 		 * shrink depending on usage patterns.  We can, however, still
283 		 * account one msg_msg struct per message, but the nodes are
284 		 * allocated depending on priority usage, and most programs
285 		 * only use one, or a handful, of priorities.  However, since
286 		 * this is pinned memory, we need to assume worst case, so
287 		 * that means the min(mq_maxmsg, max_priorities) * struct
288 		 * posix_msg_tree_node.
289 		 */
290 
291 		ret = -EINVAL;
292 		if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
293 			goto out_inode;
294 		if (capable(CAP_SYS_RESOURCE)) {
295 			if (info->attr.mq_maxmsg > HARD_MSGMAX ||
296 			    info->attr.mq_msgsize > HARD_MSGSIZEMAX)
297 				goto out_inode;
298 		} else {
299 			if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
300 					info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
301 				goto out_inode;
302 		}
303 		ret = -EOVERFLOW;
304 		/* check for overflow */
305 		if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
306 			goto out_inode;
307 		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
308 			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
309 			sizeof(struct posix_msg_tree_node);
310 		mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
311 		if (mq_bytes + mq_treesize < mq_bytes)
312 			goto out_inode;
313 		mq_bytes += mq_treesize;
314 		spin_lock(&mq_lock);
315 		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
316 		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
317 			spin_unlock(&mq_lock);
318 			/* mqueue_evict_inode() releases info->messages */
319 			ret = -EMFILE;
320 			goto out_inode;
321 		}
322 		u->mq_bytes += mq_bytes;
323 		spin_unlock(&mq_lock);
324 
325 		/* all is ok */
326 		info->user = get_uid(u);
327 	} else if (S_ISDIR(mode)) {
328 		inc_nlink(inode);
329 		/* Some things misbehave if size == 0 on a directory */
330 		inode->i_size = 2 * DIRENT_SIZE;
331 		inode->i_op = &mqueue_dir_inode_operations;
332 		inode->i_fop = &simple_dir_operations;
333 	}
334 
335 	return inode;
336 out_inode:
337 	iput(inode);
338 err:
339 	return ERR_PTR(ret);
340 }
341 
342 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
343 {
344 	struct inode *inode;
345 	struct ipc_namespace *ns = sb->s_fs_info;
346 
347 	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
348 	sb->s_blocksize = PAGE_SIZE;
349 	sb->s_blocksize_bits = PAGE_SHIFT;
350 	sb->s_magic = MQUEUE_MAGIC;
351 	sb->s_op = &mqueue_super_ops;
352 
353 	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
354 	if (IS_ERR(inode))
355 		return PTR_ERR(inode);
356 
357 	sb->s_root = d_make_root(inode);
358 	if (!sb->s_root)
359 		return -ENOMEM;
360 	return 0;
361 }
362 
363 static int mqueue_get_tree(struct fs_context *fc)
364 {
365 	struct mqueue_fs_context *ctx = fc->fs_private;
366 
367 	fc->s_fs_info = ctx->ipc_ns;
368 	return vfs_get_super(fc, vfs_get_keyed_super, mqueue_fill_super);
369 }
370 
371 static void mqueue_fs_context_free(struct fs_context *fc)
372 {
373 	struct mqueue_fs_context *ctx = fc->fs_private;
374 
375 	put_ipc_ns(ctx->ipc_ns);
376 	kfree(ctx);
377 }
378 
379 static int mqueue_init_fs_context(struct fs_context *fc)
380 {
381 	struct mqueue_fs_context *ctx;
382 
383 	ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
384 	if (!ctx)
385 		return -ENOMEM;
386 
387 	ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
388 	put_user_ns(fc->user_ns);
389 	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
390 	fc->fs_private = ctx;
391 	fc->ops = &mqueue_fs_context_ops;
392 	return 0;
393 }
394 
395 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
396 {
397 	struct mqueue_fs_context *ctx;
398 	struct fs_context *fc;
399 	struct vfsmount *mnt;
400 
401 	fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
402 	if (IS_ERR(fc))
403 		return ERR_CAST(fc);
404 
405 	ctx = fc->fs_private;
406 	put_ipc_ns(ctx->ipc_ns);
407 	ctx->ipc_ns = get_ipc_ns(ns);
408 	put_user_ns(fc->user_ns);
409 	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
410 
411 	mnt = fc_mount(fc);
412 	put_fs_context(fc);
413 	return mnt;
414 }
415 
416 static void init_once(void *foo)
417 {
418 	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
419 
420 	inode_init_once(&p->vfs_inode);
421 }
422 
423 static struct inode *mqueue_alloc_inode(struct super_block *sb)
424 {
425 	struct mqueue_inode_info *ei;
426 
427 	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
428 	if (!ei)
429 		return NULL;
430 	return &ei->vfs_inode;
431 }
432 
433 static void mqueue_free_inode(struct inode *inode)
434 {
435 	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
436 }
437 
438 static void mqueue_evict_inode(struct inode *inode)
439 {
440 	struct mqueue_inode_info *info;
441 	struct user_struct *user;
442 	struct ipc_namespace *ipc_ns;
443 	struct msg_msg *msg, *nmsg;
444 	LIST_HEAD(tmp_msg);
445 
446 	clear_inode(inode);
447 
448 	if (S_ISDIR(inode->i_mode))
449 		return;
450 
451 	ipc_ns = get_ns_from_inode(inode);
452 	info = MQUEUE_I(inode);
453 	spin_lock(&info->lock);
454 	while ((msg = msg_get(info)) != NULL)
455 		list_add_tail(&msg->m_list, &tmp_msg);
456 	kfree(info->node_cache);
457 	spin_unlock(&info->lock);
458 
459 	list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
460 		list_del(&msg->m_list);
461 		free_msg(msg);
462 	}
463 
464 	user = info->user;
465 	if (user) {
466 		unsigned long mq_bytes, mq_treesize;
467 
468 		/* Total amount of bytes accounted for the mqueue */
469 		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
470 			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
471 			sizeof(struct posix_msg_tree_node);
472 
473 		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
474 					  info->attr.mq_msgsize);
475 
476 		spin_lock(&mq_lock);
477 		user->mq_bytes -= mq_bytes;
478 		/*
479 		 * get_ns_from_inode() ensures that the
480 		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
481 		 * to which we now hold a reference, or it is NULL.
482 		 * We can't put it here under mq_lock, though.
483 		 */
484 		if (ipc_ns)
485 			ipc_ns->mq_queues_count--;
486 		spin_unlock(&mq_lock);
487 		free_uid(user);
488 	}
489 	if (ipc_ns)
490 		put_ipc_ns(ipc_ns);
491 }
492 
493 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
494 {
495 	struct inode *dir = dentry->d_parent->d_inode;
496 	struct inode *inode;
497 	struct mq_attr *attr = arg;
498 	int error;
499 	struct ipc_namespace *ipc_ns;
500 
501 	spin_lock(&mq_lock);
502 	ipc_ns = __get_ns_from_inode(dir);
503 	if (!ipc_ns) {
504 		error = -EACCES;
505 		goto out_unlock;
506 	}
507 
508 	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
509 	    !capable(CAP_SYS_RESOURCE)) {
510 		error = -ENOSPC;
511 		goto out_unlock;
512 	}
513 	ipc_ns->mq_queues_count++;
514 	spin_unlock(&mq_lock);
515 
516 	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
517 	if (IS_ERR(inode)) {
518 		error = PTR_ERR(inode);
519 		spin_lock(&mq_lock);
520 		ipc_ns->mq_queues_count--;
521 		goto out_unlock;
522 	}
523 
524 	put_ipc_ns(ipc_ns);
525 	dir->i_size += DIRENT_SIZE;
526 	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
527 
528 	d_instantiate(dentry, inode);
529 	dget(dentry);
530 	return 0;
531 out_unlock:
532 	spin_unlock(&mq_lock);
533 	if (ipc_ns)
534 		put_ipc_ns(ipc_ns);
535 	return error;
536 }
537 
538 static int mqueue_create(struct inode *dir, struct dentry *dentry,
539 				umode_t mode, bool excl)
540 {
541 	return mqueue_create_attr(dentry, mode, NULL);
542 }
543 
544 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
545 {
546 	struct inode *inode = d_inode(dentry);
547 
548 	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
549 	dir->i_size -= DIRENT_SIZE;
550 	drop_nlink(inode);
551 	dput(dentry);
552 	return 0;
553 }
554 
555 /*
556 *	This is routine for system read from queue file.
557 *	To avoid mess with doing here some sort of mq_receive we allow
558 *	to read only queue size & notification info (the only values
559 *	that are interesting from user point of view and aren't accessible
560 *	through std routines)
561 */
562 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
563 				size_t count, loff_t *off)
564 {
565 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
566 	char buffer[FILENT_SIZE];
567 	ssize_t ret;
568 
569 	spin_lock(&info->lock);
570 	snprintf(buffer, sizeof(buffer),
571 			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
572 			info->qsize,
573 			info->notify_owner ? info->notify.sigev_notify : 0,
574 			(info->notify_owner &&
575 			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
576 				info->notify.sigev_signo : 0,
577 			pid_vnr(info->notify_owner));
578 	spin_unlock(&info->lock);
579 	buffer[sizeof(buffer)-1] = '\0';
580 
581 	ret = simple_read_from_buffer(u_data, count, off, buffer,
582 				strlen(buffer));
583 	if (ret <= 0)
584 		return ret;
585 
586 	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
587 	return ret;
588 }
589 
590 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
591 {
592 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
593 
594 	spin_lock(&info->lock);
595 	if (task_tgid(current) == info->notify_owner)
596 		remove_notification(info);
597 
598 	spin_unlock(&info->lock);
599 	return 0;
600 }
601 
602 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
603 {
604 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
605 	__poll_t retval = 0;
606 
607 	poll_wait(filp, &info->wait_q, poll_tab);
608 
609 	spin_lock(&info->lock);
610 	if (info->attr.mq_curmsgs)
611 		retval = EPOLLIN | EPOLLRDNORM;
612 
613 	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
614 		retval |= EPOLLOUT | EPOLLWRNORM;
615 	spin_unlock(&info->lock);
616 
617 	return retval;
618 }
619 
620 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
621 static void wq_add(struct mqueue_inode_info *info, int sr,
622 			struct ext_wait_queue *ewp)
623 {
624 	struct ext_wait_queue *walk;
625 
626 	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
627 		if (walk->task->prio <= current->prio) {
628 			list_add_tail(&ewp->list, &walk->list);
629 			return;
630 		}
631 	}
632 	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
633 }
634 
635 /*
636  * Puts current task to sleep. Caller must hold queue lock. After return
637  * lock isn't held.
638  * sr: SEND or RECV
639  */
640 static int wq_sleep(struct mqueue_inode_info *info, int sr,
641 		    ktime_t *timeout, struct ext_wait_queue *ewp)
642 	__releases(&info->lock)
643 {
644 	int retval;
645 	signed long time;
646 
647 	wq_add(info, sr, ewp);
648 
649 	for (;;) {
650 		__set_current_state(TASK_INTERRUPTIBLE);
651 
652 		spin_unlock(&info->lock);
653 		time = schedule_hrtimeout_range_clock(timeout, 0,
654 			HRTIMER_MODE_ABS, CLOCK_REALTIME);
655 
656 		if (ewp->state == STATE_READY) {
657 			retval = 0;
658 			goto out;
659 		}
660 		spin_lock(&info->lock);
661 		if (ewp->state == STATE_READY) {
662 			retval = 0;
663 			goto out_unlock;
664 		}
665 		if (signal_pending(current)) {
666 			retval = -ERESTARTSYS;
667 			break;
668 		}
669 		if (time == 0) {
670 			retval = -ETIMEDOUT;
671 			break;
672 		}
673 	}
674 	list_del(&ewp->list);
675 out_unlock:
676 	spin_unlock(&info->lock);
677 out:
678 	return retval;
679 }
680 
681 /*
682  * Returns waiting task that should be serviced first or NULL if none exists
683  */
684 static struct ext_wait_queue *wq_get_first_waiter(
685 		struct mqueue_inode_info *info, int sr)
686 {
687 	struct list_head *ptr;
688 
689 	ptr = info->e_wait_q[sr].list.prev;
690 	if (ptr == &info->e_wait_q[sr].list)
691 		return NULL;
692 	return list_entry(ptr, struct ext_wait_queue, list);
693 }
694 
695 
696 static inline void set_cookie(struct sk_buff *skb, char code)
697 {
698 	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
699 }
700 
701 /*
702  * The next function is only to split too long sys_mq_timedsend
703  */
704 static void __do_notify(struct mqueue_inode_info *info)
705 {
706 	/* notification
707 	 * invoked when there is registered process and there isn't process
708 	 * waiting synchronously for message AND state of queue changed from
709 	 * empty to not empty. Here we are sure that no one is waiting
710 	 * synchronously. */
711 	if (info->notify_owner &&
712 	    info->attr.mq_curmsgs == 1) {
713 		struct kernel_siginfo sig_i;
714 		switch (info->notify.sigev_notify) {
715 		case SIGEV_NONE:
716 			break;
717 		case SIGEV_SIGNAL:
718 			/* sends signal */
719 
720 			clear_siginfo(&sig_i);
721 			sig_i.si_signo = info->notify.sigev_signo;
722 			sig_i.si_errno = 0;
723 			sig_i.si_code = SI_MESGQ;
724 			sig_i.si_value = info->notify.sigev_value;
725 			/* map current pid/uid into info->owner's namespaces */
726 			rcu_read_lock();
727 			sig_i.si_pid = task_tgid_nr_ns(current,
728 						ns_of_pid(info->notify_owner));
729 			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
730 			rcu_read_unlock();
731 
732 			kill_pid_info(info->notify.sigev_signo,
733 				      &sig_i, info->notify_owner);
734 			break;
735 		case SIGEV_THREAD:
736 			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
737 			netlink_sendskb(info->notify_sock, info->notify_cookie);
738 			break;
739 		}
740 		/* after notification unregisters process */
741 		put_pid(info->notify_owner);
742 		put_user_ns(info->notify_user_ns);
743 		info->notify_owner = NULL;
744 		info->notify_user_ns = NULL;
745 	}
746 	wake_up(&info->wait_q);
747 }
748 
749 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
750 			   struct timespec64 *ts)
751 {
752 	if (get_timespec64(ts, u_abs_timeout))
753 		return -EFAULT;
754 	if (!timespec64_valid(ts))
755 		return -EINVAL;
756 	return 0;
757 }
758 
759 static void remove_notification(struct mqueue_inode_info *info)
760 {
761 	if (info->notify_owner != NULL &&
762 	    info->notify.sigev_notify == SIGEV_THREAD) {
763 		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
764 		netlink_sendskb(info->notify_sock, info->notify_cookie);
765 	}
766 	put_pid(info->notify_owner);
767 	put_user_ns(info->notify_user_ns);
768 	info->notify_owner = NULL;
769 	info->notify_user_ns = NULL;
770 }
771 
772 static int prepare_open(struct dentry *dentry, int oflag, int ro,
773 			umode_t mode, struct filename *name,
774 			struct mq_attr *attr)
775 {
776 	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
777 						  MAY_READ | MAY_WRITE };
778 	int acc;
779 
780 	if (d_really_is_negative(dentry)) {
781 		if (!(oflag & O_CREAT))
782 			return -ENOENT;
783 		if (ro)
784 			return ro;
785 		audit_inode_parent_hidden(name, dentry->d_parent);
786 		return vfs_mkobj(dentry, mode & ~current_umask(),
787 				  mqueue_create_attr, attr);
788 	}
789 	/* it already existed */
790 	audit_inode(name, dentry, 0);
791 	if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
792 		return -EEXIST;
793 	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
794 		return -EINVAL;
795 	acc = oflag2acc[oflag & O_ACCMODE];
796 	return inode_permission(d_inode(dentry), acc);
797 }
798 
799 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
800 		      struct mq_attr *attr)
801 {
802 	struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
803 	struct dentry *root = mnt->mnt_root;
804 	struct filename *name;
805 	struct path path;
806 	int fd, error;
807 	int ro;
808 
809 	audit_mq_open(oflag, mode, attr);
810 
811 	if (IS_ERR(name = getname(u_name)))
812 		return PTR_ERR(name);
813 
814 	fd = get_unused_fd_flags(O_CLOEXEC);
815 	if (fd < 0)
816 		goto out_putname;
817 
818 	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
819 	inode_lock(d_inode(root));
820 	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
821 	if (IS_ERR(path.dentry)) {
822 		error = PTR_ERR(path.dentry);
823 		goto out_putfd;
824 	}
825 	path.mnt = mntget(mnt);
826 	error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
827 	if (!error) {
828 		struct file *file = dentry_open(&path, oflag, current_cred());
829 		if (!IS_ERR(file))
830 			fd_install(fd, file);
831 		else
832 			error = PTR_ERR(file);
833 	}
834 	path_put(&path);
835 out_putfd:
836 	if (error) {
837 		put_unused_fd(fd);
838 		fd = error;
839 	}
840 	inode_unlock(d_inode(root));
841 	if (!ro)
842 		mnt_drop_write(mnt);
843 out_putname:
844 	putname(name);
845 	return fd;
846 }
847 
848 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
849 		struct mq_attr __user *, u_attr)
850 {
851 	struct mq_attr attr;
852 	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
853 		return -EFAULT;
854 
855 	return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
856 }
857 
858 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
859 {
860 	int err;
861 	struct filename *name;
862 	struct dentry *dentry;
863 	struct inode *inode = NULL;
864 	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
865 	struct vfsmount *mnt = ipc_ns->mq_mnt;
866 
867 	name = getname(u_name);
868 	if (IS_ERR(name))
869 		return PTR_ERR(name);
870 
871 	audit_inode_parent_hidden(name, mnt->mnt_root);
872 	err = mnt_want_write(mnt);
873 	if (err)
874 		goto out_name;
875 	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
876 	dentry = lookup_one_len(name->name, mnt->mnt_root,
877 				strlen(name->name));
878 	if (IS_ERR(dentry)) {
879 		err = PTR_ERR(dentry);
880 		goto out_unlock;
881 	}
882 
883 	inode = d_inode(dentry);
884 	if (!inode) {
885 		err = -ENOENT;
886 	} else {
887 		ihold(inode);
888 		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
889 	}
890 	dput(dentry);
891 
892 out_unlock:
893 	inode_unlock(d_inode(mnt->mnt_root));
894 	if (inode)
895 		iput(inode);
896 	mnt_drop_write(mnt);
897 out_name:
898 	putname(name);
899 
900 	return err;
901 }
902 
903 /* Pipelined send and receive functions.
904  *
905  * If a receiver finds no waiting message, then it registers itself in the
906  * list of waiting receivers. A sender checks that list before adding the new
907  * message into the message array. If there is a waiting receiver, then it
908  * bypasses the message array and directly hands the message over to the
909  * receiver. The receiver accepts the message and returns without grabbing the
910  * queue spinlock:
911  *
912  * - Set pointer to message.
913  * - Queue the receiver task for later wakeup (without the info->lock).
914  * - Update its state to STATE_READY. Now the receiver can continue.
915  * - Wake up the process after the lock is dropped. Should the process wake up
916  *   before this wakeup (due to a timeout or a signal) it will either see
917  *   STATE_READY and continue or acquire the lock to check the state again.
918  *
919  * The same algorithm is used for senders.
920  */
921 
922 /* pipelined_send() - send a message directly to the task waiting in
923  * sys_mq_timedreceive() (without inserting message into a queue).
924  */
925 static inline void pipelined_send(struct wake_q_head *wake_q,
926 				  struct mqueue_inode_info *info,
927 				  struct msg_msg *message,
928 				  struct ext_wait_queue *receiver)
929 {
930 	receiver->msg = message;
931 	list_del(&receiver->list);
932 	wake_q_add(wake_q, receiver->task);
933 	/*
934 	 * Rely on the implicit cmpxchg barrier from wake_q_add such
935 	 * that we can ensure that updating receiver->state is the last
936 	 * write operation: As once set, the receiver can continue,
937 	 * and if we don't have the reference count from the wake_q,
938 	 * yet, at that point we can later have a use-after-free
939 	 * condition and bogus wakeup.
940 	 */
941 	receiver->state = STATE_READY;
942 }
943 
944 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
945  * gets its message and put to the queue (we have one free place for sure). */
946 static inline void pipelined_receive(struct wake_q_head *wake_q,
947 				     struct mqueue_inode_info *info)
948 {
949 	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
950 
951 	if (!sender) {
952 		/* for poll */
953 		wake_up_interruptible(&info->wait_q);
954 		return;
955 	}
956 	if (msg_insert(sender->msg, info))
957 		return;
958 
959 	list_del(&sender->list);
960 	wake_q_add(wake_q, sender->task);
961 	sender->state = STATE_READY;
962 }
963 
964 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
965 		size_t msg_len, unsigned int msg_prio,
966 		struct timespec64 *ts)
967 {
968 	struct fd f;
969 	struct inode *inode;
970 	struct ext_wait_queue wait;
971 	struct ext_wait_queue *receiver;
972 	struct msg_msg *msg_ptr;
973 	struct mqueue_inode_info *info;
974 	ktime_t expires, *timeout = NULL;
975 	struct posix_msg_tree_node *new_leaf = NULL;
976 	int ret = 0;
977 	DEFINE_WAKE_Q(wake_q);
978 
979 	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
980 		return -EINVAL;
981 
982 	if (ts) {
983 		expires = timespec64_to_ktime(*ts);
984 		timeout = &expires;
985 	}
986 
987 	audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
988 
989 	f = fdget(mqdes);
990 	if (unlikely(!f.file)) {
991 		ret = -EBADF;
992 		goto out;
993 	}
994 
995 	inode = file_inode(f.file);
996 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
997 		ret = -EBADF;
998 		goto out_fput;
999 	}
1000 	info = MQUEUE_I(inode);
1001 	audit_file(f.file);
1002 
1003 	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1004 		ret = -EBADF;
1005 		goto out_fput;
1006 	}
1007 
1008 	if (unlikely(msg_len > info->attr.mq_msgsize)) {
1009 		ret = -EMSGSIZE;
1010 		goto out_fput;
1011 	}
1012 
1013 	/* First try to allocate memory, before doing anything with
1014 	 * existing queues. */
1015 	msg_ptr = load_msg(u_msg_ptr, msg_len);
1016 	if (IS_ERR(msg_ptr)) {
1017 		ret = PTR_ERR(msg_ptr);
1018 		goto out_fput;
1019 	}
1020 	msg_ptr->m_ts = msg_len;
1021 	msg_ptr->m_type = msg_prio;
1022 
1023 	/*
1024 	 * msg_insert really wants us to have a valid, spare node struct so
1025 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1026 	 * fall back to that if necessary.
1027 	 */
1028 	if (!info->node_cache)
1029 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1030 
1031 	spin_lock(&info->lock);
1032 
1033 	if (!info->node_cache && new_leaf) {
1034 		/* Save our speculative allocation into the cache */
1035 		INIT_LIST_HEAD(&new_leaf->msg_list);
1036 		info->node_cache = new_leaf;
1037 		new_leaf = NULL;
1038 	} else {
1039 		kfree(new_leaf);
1040 	}
1041 
1042 	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1043 		if (f.file->f_flags & O_NONBLOCK) {
1044 			ret = -EAGAIN;
1045 		} else {
1046 			wait.task = current;
1047 			wait.msg = (void *) msg_ptr;
1048 			wait.state = STATE_NONE;
1049 			ret = wq_sleep(info, SEND, timeout, &wait);
1050 			/*
1051 			 * wq_sleep must be called with info->lock held, and
1052 			 * returns with the lock released
1053 			 */
1054 			goto out_free;
1055 		}
1056 	} else {
1057 		receiver = wq_get_first_waiter(info, RECV);
1058 		if (receiver) {
1059 			pipelined_send(&wake_q, info, msg_ptr, receiver);
1060 		} else {
1061 			/* adds message to the queue */
1062 			ret = msg_insert(msg_ptr, info);
1063 			if (ret)
1064 				goto out_unlock;
1065 			__do_notify(info);
1066 		}
1067 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1068 				current_time(inode);
1069 	}
1070 out_unlock:
1071 	spin_unlock(&info->lock);
1072 	wake_up_q(&wake_q);
1073 out_free:
1074 	if (ret)
1075 		free_msg(msg_ptr);
1076 out_fput:
1077 	fdput(f);
1078 out:
1079 	return ret;
1080 }
1081 
1082 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1083 		size_t msg_len, unsigned int __user *u_msg_prio,
1084 		struct timespec64 *ts)
1085 {
1086 	ssize_t ret;
1087 	struct msg_msg *msg_ptr;
1088 	struct fd f;
1089 	struct inode *inode;
1090 	struct mqueue_inode_info *info;
1091 	struct ext_wait_queue wait;
1092 	ktime_t expires, *timeout = NULL;
1093 	struct posix_msg_tree_node *new_leaf = NULL;
1094 
1095 	if (ts) {
1096 		expires = timespec64_to_ktime(*ts);
1097 		timeout = &expires;
1098 	}
1099 
1100 	audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1101 
1102 	f = fdget(mqdes);
1103 	if (unlikely(!f.file)) {
1104 		ret = -EBADF;
1105 		goto out;
1106 	}
1107 
1108 	inode = file_inode(f.file);
1109 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1110 		ret = -EBADF;
1111 		goto out_fput;
1112 	}
1113 	info = MQUEUE_I(inode);
1114 	audit_file(f.file);
1115 
1116 	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1117 		ret = -EBADF;
1118 		goto out_fput;
1119 	}
1120 
1121 	/* checks if buffer is big enough */
1122 	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1123 		ret = -EMSGSIZE;
1124 		goto out_fput;
1125 	}
1126 
1127 	/*
1128 	 * msg_insert really wants us to have a valid, spare node struct so
1129 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1130 	 * fall back to that if necessary.
1131 	 */
1132 	if (!info->node_cache)
1133 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1134 
1135 	spin_lock(&info->lock);
1136 
1137 	if (!info->node_cache && new_leaf) {
1138 		/* Save our speculative allocation into the cache */
1139 		INIT_LIST_HEAD(&new_leaf->msg_list);
1140 		info->node_cache = new_leaf;
1141 	} else {
1142 		kfree(new_leaf);
1143 	}
1144 
1145 	if (info->attr.mq_curmsgs == 0) {
1146 		if (f.file->f_flags & O_NONBLOCK) {
1147 			spin_unlock(&info->lock);
1148 			ret = -EAGAIN;
1149 		} else {
1150 			wait.task = current;
1151 			wait.state = STATE_NONE;
1152 			ret = wq_sleep(info, RECV, timeout, &wait);
1153 			msg_ptr = wait.msg;
1154 		}
1155 	} else {
1156 		DEFINE_WAKE_Q(wake_q);
1157 
1158 		msg_ptr = msg_get(info);
1159 
1160 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1161 				current_time(inode);
1162 
1163 		/* There is now free space in queue. */
1164 		pipelined_receive(&wake_q, info);
1165 		spin_unlock(&info->lock);
1166 		wake_up_q(&wake_q);
1167 		ret = 0;
1168 	}
1169 	if (ret == 0) {
1170 		ret = msg_ptr->m_ts;
1171 
1172 		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1173 			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1174 			ret = -EFAULT;
1175 		}
1176 		free_msg(msg_ptr);
1177 	}
1178 out_fput:
1179 	fdput(f);
1180 out:
1181 	return ret;
1182 }
1183 
1184 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1185 		size_t, msg_len, unsigned int, msg_prio,
1186 		const struct __kernel_timespec __user *, u_abs_timeout)
1187 {
1188 	struct timespec64 ts, *p = NULL;
1189 	if (u_abs_timeout) {
1190 		int res = prepare_timeout(u_abs_timeout, &ts);
1191 		if (res)
1192 			return res;
1193 		p = &ts;
1194 	}
1195 	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1196 }
1197 
1198 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1199 		size_t, msg_len, unsigned int __user *, u_msg_prio,
1200 		const struct __kernel_timespec __user *, u_abs_timeout)
1201 {
1202 	struct timespec64 ts, *p = NULL;
1203 	if (u_abs_timeout) {
1204 		int res = prepare_timeout(u_abs_timeout, &ts);
1205 		if (res)
1206 			return res;
1207 		p = &ts;
1208 	}
1209 	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1210 }
1211 
1212 /*
1213  * Notes: the case when user wants us to deregister (with NULL as pointer)
1214  * and he isn't currently owner of notification, will be silently discarded.
1215  * It isn't explicitly defined in the POSIX.
1216  */
1217 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1218 {
1219 	int ret;
1220 	struct fd f;
1221 	struct sock *sock;
1222 	struct inode *inode;
1223 	struct mqueue_inode_info *info;
1224 	struct sk_buff *nc;
1225 
1226 	audit_mq_notify(mqdes, notification);
1227 
1228 	nc = NULL;
1229 	sock = NULL;
1230 	if (notification != NULL) {
1231 		if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1232 			     notification->sigev_notify != SIGEV_SIGNAL &&
1233 			     notification->sigev_notify != SIGEV_THREAD))
1234 			return -EINVAL;
1235 		if (notification->sigev_notify == SIGEV_SIGNAL &&
1236 			!valid_signal(notification->sigev_signo)) {
1237 			return -EINVAL;
1238 		}
1239 		if (notification->sigev_notify == SIGEV_THREAD) {
1240 			long timeo;
1241 
1242 			/* create the notify skb */
1243 			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1244 			if (!nc) {
1245 				ret = -ENOMEM;
1246 				goto out;
1247 			}
1248 			if (copy_from_user(nc->data,
1249 					notification->sigev_value.sival_ptr,
1250 					NOTIFY_COOKIE_LEN)) {
1251 				ret = -EFAULT;
1252 				goto out;
1253 			}
1254 
1255 			/* TODO: add a header? */
1256 			skb_put(nc, NOTIFY_COOKIE_LEN);
1257 			/* and attach it to the socket */
1258 retry:
1259 			f = fdget(notification->sigev_signo);
1260 			if (!f.file) {
1261 				ret = -EBADF;
1262 				goto out;
1263 			}
1264 			sock = netlink_getsockbyfilp(f.file);
1265 			fdput(f);
1266 			if (IS_ERR(sock)) {
1267 				ret = PTR_ERR(sock);
1268 				sock = NULL;
1269 				goto out;
1270 			}
1271 
1272 			timeo = MAX_SCHEDULE_TIMEOUT;
1273 			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1274 			if (ret == 1) {
1275 				sock = NULL;
1276 				goto retry;
1277 			}
1278 			if (ret) {
1279 				sock = NULL;
1280 				nc = NULL;
1281 				goto out;
1282 			}
1283 		}
1284 	}
1285 
1286 	f = fdget(mqdes);
1287 	if (!f.file) {
1288 		ret = -EBADF;
1289 		goto out;
1290 	}
1291 
1292 	inode = file_inode(f.file);
1293 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1294 		ret = -EBADF;
1295 		goto out_fput;
1296 	}
1297 	info = MQUEUE_I(inode);
1298 
1299 	ret = 0;
1300 	spin_lock(&info->lock);
1301 	if (notification == NULL) {
1302 		if (info->notify_owner == task_tgid(current)) {
1303 			remove_notification(info);
1304 			inode->i_atime = inode->i_ctime = current_time(inode);
1305 		}
1306 	} else if (info->notify_owner != NULL) {
1307 		ret = -EBUSY;
1308 	} else {
1309 		switch (notification->sigev_notify) {
1310 		case SIGEV_NONE:
1311 			info->notify.sigev_notify = SIGEV_NONE;
1312 			break;
1313 		case SIGEV_THREAD:
1314 			info->notify_sock = sock;
1315 			info->notify_cookie = nc;
1316 			sock = NULL;
1317 			nc = NULL;
1318 			info->notify.sigev_notify = SIGEV_THREAD;
1319 			break;
1320 		case SIGEV_SIGNAL:
1321 			info->notify.sigev_signo = notification->sigev_signo;
1322 			info->notify.sigev_value = notification->sigev_value;
1323 			info->notify.sigev_notify = SIGEV_SIGNAL;
1324 			break;
1325 		}
1326 
1327 		info->notify_owner = get_pid(task_tgid(current));
1328 		info->notify_user_ns = get_user_ns(current_user_ns());
1329 		inode->i_atime = inode->i_ctime = current_time(inode);
1330 	}
1331 	spin_unlock(&info->lock);
1332 out_fput:
1333 	fdput(f);
1334 out:
1335 	if (sock)
1336 		netlink_detachskb(sock, nc);
1337 	else if (nc)
1338 		dev_kfree_skb(nc);
1339 
1340 	return ret;
1341 }
1342 
1343 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1344 		const struct sigevent __user *, u_notification)
1345 {
1346 	struct sigevent n, *p = NULL;
1347 	if (u_notification) {
1348 		if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1349 			return -EFAULT;
1350 		p = &n;
1351 	}
1352 	return do_mq_notify(mqdes, p);
1353 }
1354 
1355 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1356 {
1357 	struct fd f;
1358 	struct inode *inode;
1359 	struct mqueue_inode_info *info;
1360 
1361 	if (new && (new->mq_flags & (~O_NONBLOCK)))
1362 		return -EINVAL;
1363 
1364 	f = fdget(mqdes);
1365 	if (!f.file)
1366 		return -EBADF;
1367 
1368 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1369 		fdput(f);
1370 		return -EBADF;
1371 	}
1372 
1373 	inode = file_inode(f.file);
1374 	info = MQUEUE_I(inode);
1375 
1376 	spin_lock(&info->lock);
1377 
1378 	if (old) {
1379 		*old = info->attr;
1380 		old->mq_flags = f.file->f_flags & O_NONBLOCK;
1381 	}
1382 	if (new) {
1383 		audit_mq_getsetattr(mqdes, new);
1384 		spin_lock(&f.file->f_lock);
1385 		if (new->mq_flags & O_NONBLOCK)
1386 			f.file->f_flags |= O_NONBLOCK;
1387 		else
1388 			f.file->f_flags &= ~O_NONBLOCK;
1389 		spin_unlock(&f.file->f_lock);
1390 
1391 		inode->i_atime = inode->i_ctime = current_time(inode);
1392 	}
1393 
1394 	spin_unlock(&info->lock);
1395 	fdput(f);
1396 	return 0;
1397 }
1398 
1399 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1400 		const struct mq_attr __user *, u_mqstat,
1401 		struct mq_attr __user *, u_omqstat)
1402 {
1403 	int ret;
1404 	struct mq_attr mqstat, omqstat;
1405 	struct mq_attr *new = NULL, *old = NULL;
1406 
1407 	if (u_mqstat) {
1408 		new = &mqstat;
1409 		if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1410 			return -EFAULT;
1411 	}
1412 	if (u_omqstat)
1413 		old = &omqstat;
1414 
1415 	ret = do_mq_getsetattr(mqdes, new, old);
1416 	if (ret || !old)
1417 		return ret;
1418 
1419 	if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1420 		return -EFAULT;
1421 	return 0;
1422 }
1423 
1424 #ifdef CONFIG_COMPAT
1425 
1426 struct compat_mq_attr {
1427 	compat_long_t mq_flags;      /* message queue flags		     */
1428 	compat_long_t mq_maxmsg;     /* maximum number of messages	     */
1429 	compat_long_t mq_msgsize;    /* maximum message size		     */
1430 	compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1431 	compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1432 };
1433 
1434 static inline int get_compat_mq_attr(struct mq_attr *attr,
1435 			const struct compat_mq_attr __user *uattr)
1436 {
1437 	struct compat_mq_attr v;
1438 
1439 	if (copy_from_user(&v, uattr, sizeof(*uattr)))
1440 		return -EFAULT;
1441 
1442 	memset(attr, 0, sizeof(*attr));
1443 	attr->mq_flags = v.mq_flags;
1444 	attr->mq_maxmsg = v.mq_maxmsg;
1445 	attr->mq_msgsize = v.mq_msgsize;
1446 	attr->mq_curmsgs = v.mq_curmsgs;
1447 	return 0;
1448 }
1449 
1450 static inline int put_compat_mq_attr(const struct mq_attr *attr,
1451 			struct compat_mq_attr __user *uattr)
1452 {
1453 	struct compat_mq_attr v;
1454 
1455 	memset(&v, 0, sizeof(v));
1456 	v.mq_flags = attr->mq_flags;
1457 	v.mq_maxmsg = attr->mq_maxmsg;
1458 	v.mq_msgsize = attr->mq_msgsize;
1459 	v.mq_curmsgs = attr->mq_curmsgs;
1460 	if (copy_to_user(uattr, &v, sizeof(*uattr)))
1461 		return -EFAULT;
1462 	return 0;
1463 }
1464 
1465 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1466 		       int, oflag, compat_mode_t, mode,
1467 		       struct compat_mq_attr __user *, u_attr)
1468 {
1469 	struct mq_attr attr, *p = NULL;
1470 	if (u_attr && oflag & O_CREAT) {
1471 		p = &attr;
1472 		if (get_compat_mq_attr(&attr, u_attr))
1473 			return -EFAULT;
1474 	}
1475 	return do_mq_open(u_name, oflag, mode, p);
1476 }
1477 
1478 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1479 		       const struct compat_sigevent __user *, u_notification)
1480 {
1481 	struct sigevent n, *p = NULL;
1482 	if (u_notification) {
1483 		if (get_compat_sigevent(&n, u_notification))
1484 			return -EFAULT;
1485 		if (n.sigev_notify == SIGEV_THREAD)
1486 			n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1487 		p = &n;
1488 	}
1489 	return do_mq_notify(mqdes, p);
1490 }
1491 
1492 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1493 		       const struct compat_mq_attr __user *, u_mqstat,
1494 		       struct compat_mq_attr __user *, u_omqstat)
1495 {
1496 	int ret;
1497 	struct mq_attr mqstat, omqstat;
1498 	struct mq_attr *new = NULL, *old = NULL;
1499 
1500 	if (u_mqstat) {
1501 		new = &mqstat;
1502 		if (get_compat_mq_attr(new, u_mqstat))
1503 			return -EFAULT;
1504 	}
1505 	if (u_omqstat)
1506 		old = &omqstat;
1507 
1508 	ret = do_mq_getsetattr(mqdes, new, old);
1509 	if (ret || !old)
1510 		return ret;
1511 
1512 	if (put_compat_mq_attr(old, u_omqstat))
1513 		return -EFAULT;
1514 	return 0;
1515 }
1516 #endif
1517 
1518 #ifdef CONFIG_COMPAT_32BIT_TIME
1519 static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1520 				   struct timespec64 *ts)
1521 {
1522 	if (get_old_timespec32(ts, p))
1523 		return -EFAULT;
1524 	if (!timespec64_valid(ts))
1525 		return -EINVAL;
1526 	return 0;
1527 }
1528 
1529 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1530 		const char __user *, u_msg_ptr,
1531 		unsigned int, msg_len, unsigned int, msg_prio,
1532 		const struct old_timespec32 __user *, u_abs_timeout)
1533 {
1534 	struct timespec64 ts, *p = NULL;
1535 	if (u_abs_timeout) {
1536 		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1537 		if (res)
1538 			return res;
1539 		p = &ts;
1540 	}
1541 	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1542 }
1543 
1544 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1545 		char __user *, u_msg_ptr,
1546 		unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1547 		const struct old_timespec32 __user *, u_abs_timeout)
1548 {
1549 	struct timespec64 ts, *p = NULL;
1550 	if (u_abs_timeout) {
1551 		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1552 		if (res)
1553 			return res;
1554 		p = &ts;
1555 	}
1556 	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1557 }
1558 #endif
1559 
1560 static const struct inode_operations mqueue_dir_inode_operations = {
1561 	.lookup = simple_lookup,
1562 	.create = mqueue_create,
1563 	.unlink = mqueue_unlink,
1564 };
1565 
1566 static const struct file_operations mqueue_file_operations = {
1567 	.flush = mqueue_flush_file,
1568 	.poll = mqueue_poll_file,
1569 	.read = mqueue_read_file,
1570 	.llseek = default_llseek,
1571 };
1572 
1573 static const struct super_operations mqueue_super_ops = {
1574 	.alloc_inode = mqueue_alloc_inode,
1575 	.free_inode = mqueue_free_inode,
1576 	.evict_inode = mqueue_evict_inode,
1577 	.statfs = simple_statfs,
1578 };
1579 
1580 static const struct fs_context_operations mqueue_fs_context_ops = {
1581 	.free		= mqueue_fs_context_free,
1582 	.get_tree	= mqueue_get_tree,
1583 };
1584 
1585 static struct file_system_type mqueue_fs_type = {
1586 	.name			= "mqueue",
1587 	.init_fs_context	= mqueue_init_fs_context,
1588 	.kill_sb		= kill_litter_super,
1589 	.fs_flags		= FS_USERNS_MOUNT,
1590 };
1591 
1592 int mq_init_ns(struct ipc_namespace *ns)
1593 {
1594 	struct vfsmount *m;
1595 
1596 	ns->mq_queues_count  = 0;
1597 	ns->mq_queues_max    = DFLT_QUEUESMAX;
1598 	ns->mq_msg_max       = DFLT_MSGMAX;
1599 	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1600 	ns->mq_msg_default   = DFLT_MSG;
1601 	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1602 
1603 	m = mq_create_mount(ns);
1604 	if (IS_ERR(m))
1605 		return PTR_ERR(m);
1606 	ns->mq_mnt = m;
1607 	return 0;
1608 }
1609 
1610 void mq_clear_sbinfo(struct ipc_namespace *ns)
1611 {
1612 	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1613 }
1614 
1615 void mq_put_mnt(struct ipc_namespace *ns)
1616 {
1617 	kern_unmount(ns->mq_mnt);
1618 }
1619 
1620 static int __init init_mqueue_fs(void)
1621 {
1622 	int error;
1623 
1624 	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1625 				sizeof(struct mqueue_inode_info), 0,
1626 				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1627 	if (mqueue_inode_cachep == NULL)
1628 		return -ENOMEM;
1629 
1630 	/* ignore failures - they are not fatal */
1631 	mq_sysctl_table = mq_register_sysctl_table();
1632 
1633 	error = register_filesystem(&mqueue_fs_type);
1634 	if (error)
1635 		goto out_sysctl;
1636 
1637 	spin_lock_init(&mq_lock);
1638 
1639 	error = mq_init_ns(&init_ipc_ns);
1640 	if (error)
1641 		goto out_filesystem;
1642 
1643 	return 0;
1644 
1645 out_filesystem:
1646 	unregister_filesystem(&mqueue_fs_type);
1647 out_sysctl:
1648 	if (mq_sysctl_table)
1649 		unregister_sysctl_table(mq_sysctl_table);
1650 	kmem_cache_destroy(mqueue_inode_cachep);
1651 	return error;
1652 }
1653 
1654 device_initcall(init_mqueue_fs);
1655