1 /* 2 * POSIX message queues filesystem for Linux. 3 * 4 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl) 5 * Michal Wronski (michal.wronski@gmail.com) 6 * 7 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com) 8 * Lockless receive & send, fd based notify: 9 * Manfred Spraul (manfred@colorfullife.com) 10 * 11 * Audit: George Wilson (ltcgcw@us.ibm.com) 12 * 13 * This file is released under the GPL. 14 */ 15 16 #include <linux/capability.h> 17 #include <linux/init.h> 18 #include <linux/pagemap.h> 19 #include <linux/file.h> 20 #include <linux/mount.h> 21 #include <linux/fs_context.h> 22 #include <linux/namei.h> 23 #include <linux/sysctl.h> 24 #include <linux/poll.h> 25 #include <linux/mqueue.h> 26 #include <linux/msg.h> 27 #include <linux/skbuff.h> 28 #include <linux/vmalloc.h> 29 #include <linux/netlink.h> 30 #include <linux/syscalls.h> 31 #include <linux/audit.h> 32 #include <linux/signal.h> 33 #include <linux/mutex.h> 34 #include <linux/nsproxy.h> 35 #include <linux/pid.h> 36 #include <linux/ipc_namespace.h> 37 #include <linux/user_namespace.h> 38 #include <linux/slab.h> 39 #include <linux/sched/wake_q.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/user.h> 42 43 #include <net/sock.h> 44 #include "util.h" 45 46 struct mqueue_fs_context { 47 struct ipc_namespace *ipc_ns; 48 }; 49 50 #define MQUEUE_MAGIC 0x19800202 51 #define DIRENT_SIZE 20 52 #define FILENT_SIZE 80 53 54 #define SEND 0 55 #define RECV 1 56 57 #define STATE_NONE 0 58 #define STATE_READY 1 59 60 struct posix_msg_tree_node { 61 struct rb_node rb_node; 62 struct list_head msg_list; 63 int priority; 64 }; 65 66 struct ext_wait_queue { /* queue of sleeping tasks */ 67 struct task_struct *task; 68 struct list_head list; 69 struct msg_msg *msg; /* ptr of loaded message */ 70 int state; /* one of STATE_* values */ 71 }; 72 73 struct mqueue_inode_info { 74 spinlock_t lock; 75 struct inode vfs_inode; 76 wait_queue_head_t wait_q; 77 78 struct rb_root msg_tree; 79 struct posix_msg_tree_node *node_cache; 80 struct mq_attr attr; 81 82 struct sigevent notify; 83 struct pid *notify_owner; 84 struct user_namespace *notify_user_ns; 85 struct user_struct *user; /* user who created, for accounting */ 86 struct sock *notify_sock; 87 struct sk_buff *notify_cookie; 88 89 /* for tasks waiting for free space and messages, respectively */ 90 struct ext_wait_queue e_wait_q[2]; 91 92 unsigned long qsize; /* size of queue in memory (sum of all msgs) */ 93 }; 94 95 static struct file_system_type mqueue_fs_type; 96 static const struct inode_operations mqueue_dir_inode_operations; 97 static const struct file_operations mqueue_file_operations; 98 static const struct super_operations mqueue_super_ops; 99 static const struct fs_context_operations mqueue_fs_context_ops; 100 static void remove_notification(struct mqueue_inode_info *info); 101 102 static struct kmem_cache *mqueue_inode_cachep; 103 104 static struct ctl_table_header *mq_sysctl_table; 105 106 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode) 107 { 108 return container_of(inode, struct mqueue_inode_info, vfs_inode); 109 } 110 111 /* 112 * This routine should be called with the mq_lock held. 113 */ 114 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode) 115 { 116 return get_ipc_ns(inode->i_sb->s_fs_info); 117 } 118 119 static struct ipc_namespace *get_ns_from_inode(struct inode *inode) 120 { 121 struct ipc_namespace *ns; 122 123 spin_lock(&mq_lock); 124 ns = __get_ns_from_inode(inode); 125 spin_unlock(&mq_lock); 126 return ns; 127 } 128 129 /* Auxiliary functions to manipulate messages' list */ 130 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info) 131 { 132 struct rb_node **p, *parent = NULL; 133 struct posix_msg_tree_node *leaf; 134 135 p = &info->msg_tree.rb_node; 136 while (*p) { 137 parent = *p; 138 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node); 139 140 if (likely(leaf->priority == msg->m_type)) 141 goto insert_msg; 142 else if (msg->m_type < leaf->priority) 143 p = &(*p)->rb_left; 144 else 145 p = &(*p)->rb_right; 146 } 147 if (info->node_cache) { 148 leaf = info->node_cache; 149 info->node_cache = NULL; 150 } else { 151 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC); 152 if (!leaf) 153 return -ENOMEM; 154 INIT_LIST_HEAD(&leaf->msg_list); 155 } 156 leaf->priority = msg->m_type; 157 rb_link_node(&leaf->rb_node, parent, p); 158 rb_insert_color(&leaf->rb_node, &info->msg_tree); 159 insert_msg: 160 info->attr.mq_curmsgs++; 161 info->qsize += msg->m_ts; 162 list_add_tail(&msg->m_list, &leaf->msg_list); 163 return 0; 164 } 165 166 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info) 167 { 168 struct rb_node **p, *parent = NULL; 169 struct posix_msg_tree_node *leaf; 170 struct msg_msg *msg; 171 172 try_again: 173 p = &info->msg_tree.rb_node; 174 while (*p) { 175 parent = *p; 176 /* 177 * During insert, low priorities go to the left and high to the 178 * right. On receive, we want the highest priorities first, so 179 * walk all the way to the right. 180 */ 181 p = &(*p)->rb_right; 182 } 183 if (!parent) { 184 if (info->attr.mq_curmsgs) { 185 pr_warn_once("Inconsistency in POSIX message queue, " 186 "no tree element, but supposedly messages " 187 "should exist!\n"); 188 info->attr.mq_curmsgs = 0; 189 } 190 return NULL; 191 } 192 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node); 193 if (unlikely(list_empty(&leaf->msg_list))) { 194 pr_warn_once("Inconsistency in POSIX message queue, " 195 "empty leaf node but we haven't implemented " 196 "lazy leaf delete!\n"); 197 rb_erase(&leaf->rb_node, &info->msg_tree); 198 if (info->node_cache) { 199 kfree(leaf); 200 } else { 201 info->node_cache = leaf; 202 } 203 goto try_again; 204 } else { 205 msg = list_first_entry(&leaf->msg_list, 206 struct msg_msg, m_list); 207 list_del(&msg->m_list); 208 if (list_empty(&leaf->msg_list)) { 209 rb_erase(&leaf->rb_node, &info->msg_tree); 210 if (info->node_cache) { 211 kfree(leaf); 212 } else { 213 info->node_cache = leaf; 214 } 215 } 216 } 217 info->attr.mq_curmsgs--; 218 info->qsize -= msg->m_ts; 219 return msg; 220 } 221 222 static struct inode *mqueue_get_inode(struct super_block *sb, 223 struct ipc_namespace *ipc_ns, umode_t mode, 224 struct mq_attr *attr) 225 { 226 struct user_struct *u = current_user(); 227 struct inode *inode; 228 int ret = -ENOMEM; 229 230 inode = new_inode(sb); 231 if (!inode) 232 goto err; 233 234 inode->i_ino = get_next_ino(); 235 inode->i_mode = mode; 236 inode->i_uid = current_fsuid(); 237 inode->i_gid = current_fsgid(); 238 inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode); 239 240 if (S_ISREG(mode)) { 241 struct mqueue_inode_info *info; 242 unsigned long mq_bytes, mq_treesize; 243 244 inode->i_fop = &mqueue_file_operations; 245 inode->i_size = FILENT_SIZE; 246 /* mqueue specific info */ 247 info = MQUEUE_I(inode); 248 spin_lock_init(&info->lock); 249 init_waitqueue_head(&info->wait_q); 250 INIT_LIST_HEAD(&info->e_wait_q[0].list); 251 INIT_LIST_HEAD(&info->e_wait_q[1].list); 252 info->notify_owner = NULL; 253 info->notify_user_ns = NULL; 254 info->qsize = 0; 255 info->user = NULL; /* set when all is ok */ 256 info->msg_tree = RB_ROOT; 257 info->node_cache = NULL; 258 memset(&info->attr, 0, sizeof(info->attr)); 259 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max, 260 ipc_ns->mq_msg_default); 261 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max, 262 ipc_ns->mq_msgsize_default); 263 if (attr) { 264 info->attr.mq_maxmsg = attr->mq_maxmsg; 265 info->attr.mq_msgsize = attr->mq_msgsize; 266 } 267 /* 268 * We used to allocate a static array of pointers and account 269 * the size of that array as well as one msg_msg struct per 270 * possible message into the queue size. That's no longer 271 * accurate as the queue is now an rbtree and will grow and 272 * shrink depending on usage patterns. We can, however, still 273 * account one msg_msg struct per message, but the nodes are 274 * allocated depending on priority usage, and most programs 275 * only use one, or a handful, of priorities. However, since 276 * this is pinned memory, we need to assume worst case, so 277 * that means the min(mq_maxmsg, max_priorities) * struct 278 * posix_msg_tree_node. 279 */ 280 281 ret = -EINVAL; 282 if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0) 283 goto out_inode; 284 if (capable(CAP_SYS_RESOURCE)) { 285 if (info->attr.mq_maxmsg > HARD_MSGMAX || 286 info->attr.mq_msgsize > HARD_MSGSIZEMAX) 287 goto out_inode; 288 } else { 289 if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max || 290 info->attr.mq_msgsize > ipc_ns->mq_msgsize_max) 291 goto out_inode; 292 } 293 ret = -EOVERFLOW; 294 /* check for overflow */ 295 if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg) 296 goto out_inode; 297 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) + 298 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) * 299 sizeof(struct posix_msg_tree_node); 300 mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize; 301 if (mq_bytes + mq_treesize < mq_bytes) 302 goto out_inode; 303 mq_bytes += mq_treesize; 304 spin_lock(&mq_lock); 305 if (u->mq_bytes + mq_bytes < u->mq_bytes || 306 u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) { 307 spin_unlock(&mq_lock); 308 /* mqueue_evict_inode() releases info->messages */ 309 ret = -EMFILE; 310 goto out_inode; 311 } 312 u->mq_bytes += mq_bytes; 313 spin_unlock(&mq_lock); 314 315 /* all is ok */ 316 info->user = get_uid(u); 317 } else if (S_ISDIR(mode)) { 318 inc_nlink(inode); 319 /* Some things misbehave if size == 0 on a directory */ 320 inode->i_size = 2 * DIRENT_SIZE; 321 inode->i_op = &mqueue_dir_inode_operations; 322 inode->i_fop = &simple_dir_operations; 323 } 324 325 return inode; 326 out_inode: 327 iput(inode); 328 err: 329 return ERR_PTR(ret); 330 } 331 332 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc) 333 { 334 struct inode *inode; 335 struct ipc_namespace *ns = sb->s_fs_info; 336 337 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV; 338 sb->s_blocksize = PAGE_SIZE; 339 sb->s_blocksize_bits = PAGE_SHIFT; 340 sb->s_magic = MQUEUE_MAGIC; 341 sb->s_op = &mqueue_super_ops; 342 343 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL); 344 if (IS_ERR(inode)) 345 return PTR_ERR(inode); 346 347 sb->s_root = d_make_root(inode); 348 if (!sb->s_root) 349 return -ENOMEM; 350 return 0; 351 } 352 353 static int mqueue_get_tree(struct fs_context *fc) 354 { 355 struct mqueue_fs_context *ctx = fc->fs_private; 356 357 put_user_ns(fc->user_ns); 358 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns); 359 fc->s_fs_info = ctx->ipc_ns; 360 return vfs_get_super(fc, vfs_get_keyed_super, mqueue_fill_super); 361 } 362 363 static void mqueue_fs_context_free(struct fs_context *fc) 364 { 365 struct mqueue_fs_context *ctx = fc->fs_private; 366 367 if (ctx->ipc_ns) 368 put_ipc_ns(ctx->ipc_ns); 369 kfree(ctx); 370 } 371 372 static int mqueue_init_fs_context(struct fs_context *fc) 373 { 374 struct mqueue_fs_context *ctx; 375 376 ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL); 377 if (!ctx) 378 return -ENOMEM; 379 380 ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns); 381 fc->fs_private = ctx; 382 fc->ops = &mqueue_fs_context_ops; 383 return 0; 384 } 385 386 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns) 387 { 388 struct mqueue_fs_context *ctx; 389 struct fs_context *fc; 390 struct vfsmount *mnt; 391 392 fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT); 393 if (IS_ERR(fc)) 394 return ERR_CAST(fc); 395 396 ctx = fc->fs_private; 397 put_ipc_ns(ctx->ipc_ns); 398 ctx->ipc_ns = get_ipc_ns(ns); 399 400 mnt = fc_mount(fc); 401 put_fs_context(fc); 402 return mnt; 403 } 404 405 static void init_once(void *foo) 406 { 407 struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo; 408 409 inode_init_once(&p->vfs_inode); 410 } 411 412 static struct inode *mqueue_alloc_inode(struct super_block *sb) 413 { 414 struct mqueue_inode_info *ei; 415 416 ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL); 417 if (!ei) 418 return NULL; 419 return &ei->vfs_inode; 420 } 421 422 static void mqueue_free_inode(struct inode *inode) 423 { 424 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode)); 425 } 426 427 static void mqueue_evict_inode(struct inode *inode) 428 { 429 struct mqueue_inode_info *info; 430 struct user_struct *user; 431 unsigned long mq_bytes, mq_treesize; 432 struct ipc_namespace *ipc_ns; 433 struct msg_msg *msg; 434 435 clear_inode(inode); 436 437 if (S_ISDIR(inode->i_mode)) 438 return; 439 440 ipc_ns = get_ns_from_inode(inode); 441 info = MQUEUE_I(inode); 442 spin_lock(&info->lock); 443 while ((msg = msg_get(info)) != NULL) 444 free_msg(msg); 445 kfree(info->node_cache); 446 spin_unlock(&info->lock); 447 448 /* Total amount of bytes accounted for the mqueue */ 449 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) + 450 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) * 451 sizeof(struct posix_msg_tree_node); 452 453 mq_bytes = mq_treesize + (info->attr.mq_maxmsg * 454 info->attr.mq_msgsize); 455 456 user = info->user; 457 if (user) { 458 spin_lock(&mq_lock); 459 user->mq_bytes -= mq_bytes; 460 /* 461 * get_ns_from_inode() ensures that the 462 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns 463 * to which we now hold a reference, or it is NULL. 464 * We can't put it here under mq_lock, though. 465 */ 466 if (ipc_ns) 467 ipc_ns->mq_queues_count--; 468 spin_unlock(&mq_lock); 469 free_uid(user); 470 } 471 if (ipc_ns) 472 put_ipc_ns(ipc_ns); 473 } 474 475 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg) 476 { 477 struct inode *dir = dentry->d_parent->d_inode; 478 struct inode *inode; 479 struct mq_attr *attr = arg; 480 int error; 481 struct ipc_namespace *ipc_ns; 482 483 spin_lock(&mq_lock); 484 ipc_ns = __get_ns_from_inode(dir); 485 if (!ipc_ns) { 486 error = -EACCES; 487 goto out_unlock; 488 } 489 490 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max && 491 !capable(CAP_SYS_RESOURCE)) { 492 error = -ENOSPC; 493 goto out_unlock; 494 } 495 ipc_ns->mq_queues_count++; 496 spin_unlock(&mq_lock); 497 498 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr); 499 if (IS_ERR(inode)) { 500 error = PTR_ERR(inode); 501 spin_lock(&mq_lock); 502 ipc_ns->mq_queues_count--; 503 goto out_unlock; 504 } 505 506 put_ipc_ns(ipc_ns); 507 dir->i_size += DIRENT_SIZE; 508 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir); 509 510 d_instantiate(dentry, inode); 511 dget(dentry); 512 return 0; 513 out_unlock: 514 spin_unlock(&mq_lock); 515 if (ipc_ns) 516 put_ipc_ns(ipc_ns); 517 return error; 518 } 519 520 static int mqueue_create(struct inode *dir, struct dentry *dentry, 521 umode_t mode, bool excl) 522 { 523 return mqueue_create_attr(dentry, mode, NULL); 524 } 525 526 static int mqueue_unlink(struct inode *dir, struct dentry *dentry) 527 { 528 struct inode *inode = d_inode(dentry); 529 530 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir); 531 dir->i_size -= DIRENT_SIZE; 532 drop_nlink(inode); 533 dput(dentry); 534 return 0; 535 } 536 537 /* 538 * This is routine for system read from queue file. 539 * To avoid mess with doing here some sort of mq_receive we allow 540 * to read only queue size & notification info (the only values 541 * that are interesting from user point of view and aren't accessible 542 * through std routines) 543 */ 544 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data, 545 size_t count, loff_t *off) 546 { 547 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 548 char buffer[FILENT_SIZE]; 549 ssize_t ret; 550 551 spin_lock(&info->lock); 552 snprintf(buffer, sizeof(buffer), 553 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n", 554 info->qsize, 555 info->notify_owner ? info->notify.sigev_notify : 0, 556 (info->notify_owner && 557 info->notify.sigev_notify == SIGEV_SIGNAL) ? 558 info->notify.sigev_signo : 0, 559 pid_vnr(info->notify_owner)); 560 spin_unlock(&info->lock); 561 buffer[sizeof(buffer)-1] = '\0'; 562 563 ret = simple_read_from_buffer(u_data, count, off, buffer, 564 strlen(buffer)); 565 if (ret <= 0) 566 return ret; 567 568 file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp)); 569 return ret; 570 } 571 572 static int mqueue_flush_file(struct file *filp, fl_owner_t id) 573 { 574 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 575 576 spin_lock(&info->lock); 577 if (task_tgid(current) == info->notify_owner) 578 remove_notification(info); 579 580 spin_unlock(&info->lock); 581 return 0; 582 } 583 584 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab) 585 { 586 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 587 __poll_t retval = 0; 588 589 poll_wait(filp, &info->wait_q, poll_tab); 590 591 spin_lock(&info->lock); 592 if (info->attr.mq_curmsgs) 593 retval = EPOLLIN | EPOLLRDNORM; 594 595 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg) 596 retval |= EPOLLOUT | EPOLLWRNORM; 597 spin_unlock(&info->lock); 598 599 return retval; 600 } 601 602 /* Adds current to info->e_wait_q[sr] before element with smaller prio */ 603 static void wq_add(struct mqueue_inode_info *info, int sr, 604 struct ext_wait_queue *ewp) 605 { 606 struct ext_wait_queue *walk; 607 608 ewp->task = current; 609 610 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) { 611 if (walk->task->prio <= current->prio) { 612 list_add_tail(&ewp->list, &walk->list); 613 return; 614 } 615 } 616 list_add_tail(&ewp->list, &info->e_wait_q[sr].list); 617 } 618 619 /* 620 * Puts current task to sleep. Caller must hold queue lock. After return 621 * lock isn't held. 622 * sr: SEND or RECV 623 */ 624 static int wq_sleep(struct mqueue_inode_info *info, int sr, 625 ktime_t *timeout, struct ext_wait_queue *ewp) 626 __releases(&info->lock) 627 { 628 int retval; 629 signed long time; 630 631 wq_add(info, sr, ewp); 632 633 for (;;) { 634 __set_current_state(TASK_INTERRUPTIBLE); 635 636 spin_unlock(&info->lock); 637 time = schedule_hrtimeout_range_clock(timeout, 0, 638 HRTIMER_MODE_ABS, CLOCK_REALTIME); 639 640 if (ewp->state == STATE_READY) { 641 retval = 0; 642 goto out; 643 } 644 spin_lock(&info->lock); 645 if (ewp->state == STATE_READY) { 646 retval = 0; 647 goto out_unlock; 648 } 649 if (signal_pending(current)) { 650 retval = -ERESTARTSYS; 651 break; 652 } 653 if (time == 0) { 654 retval = -ETIMEDOUT; 655 break; 656 } 657 } 658 list_del(&ewp->list); 659 out_unlock: 660 spin_unlock(&info->lock); 661 out: 662 return retval; 663 } 664 665 /* 666 * Returns waiting task that should be serviced first or NULL if none exists 667 */ 668 static struct ext_wait_queue *wq_get_first_waiter( 669 struct mqueue_inode_info *info, int sr) 670 { 671 struct list_head *ptr; 672 673 ptr = info->e_wait_q[sr].list.prev; 674 if (ptr == &info->e_wait_q[sr].list) 675 return NULL; 676 return list_entry(ptr, struct ext_wait_queue, list); 677 } 678 679 680 static inline void set_cookie(struct sk_buff *skb, char code) 681 { 682 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code; 683 } 684 685 /* 686 * The next function is only to split too long sys_mq_timedsend 687 */ 688 static void __do_notify(struct mqueue_inode_info *info) 689 { 690 /* notification 691 * invoked when there is registered process and there isn't process 692 * waiting synchronously for message AND state of queue changed from 693 * empty to not empty. Here we are sure that no one is waiting 694 * synchronously. */ 695 if (info->notify_owner && 696 info->attr.mq_curmsgs == 1) { 697 struct kernel_siginfo sig_i; 698 switch (info->notify.sigev_notify) { 699 case SIGEV_NONE: 700 break; 701 case SIGEV_SIGNAL: 702 /* sends signal */ 703 704 clear_siginfo(&sig_i); 705 sig_i.si_signo = info->notify.sigev_signo; 706 sig_i.si_errno = 0; 707 sig_i.si_code = SI_MESGQ; 708 sig_i.si_value = info->notify.sigev_value; 709 /* map current pid/uid into info->owner's namespaces */ 710 rcu_read_lock(); 711 sig_i.si_pid = task_tgid_nr_ns(current, 712 ns_of_pid(info->notify_owner)); 713 sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid()); 714 rcu_read_unlock(); 715 716 kill_pid_info(info->notify.sigev_signo, 717 &sig_i, info->notify_owner); 718 break; 719 case SIGEV_THREAD: 720 set_cookie(info->notify_cookie, NOTIFY_WOKENUP); 721 netlink_sendskb(info->notify_sock, info->notify_cookie); 722 break; 723 } 724 /* after notification unregisters process */ 725 put_pid(info->notify_owner); 726 put_user_ns(info->notify_user_ns); 727 info->notify_owner = NULL; 728 info->notify_user_ns = NULL; 729 } 730 wake_up(&info->wait_q); 731 } 732 733 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout, 734 struct timespec64 *ts) 735 { 736 if (get_timespec64(ts, u_abs_timeout)) 737 return -EFAULT; 738 if (!timespec64_valid(ts)) 739 return -EINVAL; 740 return 0; 741 } 742 743 static void remove_notification(struct mqueue_inode_info *info) 744 { 745 if (info->notify_owner != NULL && 746 info->notify.sigev_notify == SIGEV_THREAD) { 747 set_cookie(info->notify_cookie, NOTIFY_REMOVED); 748 netlink_sendskb(info->notify_sock, info->notify_cookie); 749 } 750 put_pid(info->notify_owner); 751 put_user_ns(info->notify_user_ns); 752 info->notify_owner = NULL; 753 info->notify_user_ns = NULL; 754 } 755 756 static int prepare_open(struct dentry *dentry, int oflag, int ro, 757 umode_t mode, struct filename *name, 758 struct mq_attr *attr) 759 { 760 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE, 761 MAY_READ | MAY_WRITE }; 762 int acc; 763 764 if (d_really_is_negative(dentry)) { 765 if (!(oflag & O_CREAT)) 766 return -ENOENT; 767 if (ro) 768 return ro; 769 audit_inode_parent_hidden(name, dentry->d_parent); 770 return vfs_mkobj(dentry, mode & ~current_umask(), 771 mqueue_create_attr, attr); 772 } 773 /* it already existed */ 774 audit_inode(name, dentry, 0); 775 if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) 776 return -EEXIST; 777 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY)) 778 return -EINVAL; 779 acc = oflag2acc[oflag & O_ACCMODE]; 780 return inode_permission(d_inode(dentry), acc); 781 } 782 783 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode, 784 struct mq_attr *attr) 785 { 786 struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt; 787 struct dentry *root = mnt->mnt_root; 788 struct filename *name; 789 struct path path; 790 int fd, error; 791 int ro; 792 793 audit_mq_open(oflag, mode, attr); 794 795 if (IS_ERR(name = getname(u_name))) 796 return PTR_ERR(name); 797 798 fd = get_unused_fd_flags(O_CLOEXEC); 799 if (fd < 0) 800 goto out_putname; 801 802 ro = mnt_want_write(mnt); /* we'll drop it in any case */ 803 inode_lock(d_inode(root)); 804 path.dentry = lookup_one_len(name->name, root, strlen(name->name)); 805 if (IS_ERR(path.dentry)) { 806 error = PTR_ERR(path.dentry); 807 goto out_putfd; 808 } 809 path.mnt = mntget(mnt); 810 error = prepare_open(path.dentry, oflag, ro, mode, name, attr); 811 if (!error) { 812 struct file *file = dentry_open(&path, oflag, current_cred()); 813 if (!IS_ERR(file)) 814 fd_install(fd, file); 815 else 816 error = PTR_ERR(file); 817 } 818 path_put(&path); 819 out_putfd: 820 if (error) { 821 put_unused_fd(fd); 822 fd = error; 823 } 824 inode_unlock(d_inode(root)); 825 if (!ro) 826 mnt_drop_write(mnt); 827 out_putname: 828 putname(name); 829 return fd; 830 } 831 832 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode, 833 struct mq_attr __user *, u_attr) 834 { 835 struct mq_attr attr; 836 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr))) 837 return -EFAULT; 838 839 return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL); 840 } 841 842 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name) 843 { 844 int err; 845 struct filename *name; 846 struct dentry *dentry; 847 struct inode *inode = NULL; 848 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns; 849 struct vfsmount *mnt = ipc_ns->mq_mnt; 850 851 name = getname(u_name); 852 if (IS_ERR(name)) 853 return PTR_ERR(name); 854 855 audit_inode_parent_hidden(name, mnt->mnt_root); 856 err = mnt_want_write(mnt); 857 if (err) 858 goto out_name; 859 inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT); 860 dentry = lookup_one_len(name->name, mnt->mnt_root, 861 strlen(name->name)); 862 if (IS_ERR(dentry)) { 863 err = PTR_ERR(dentry); 864 goto out_unlock; 865 } 866 867 inode = d_inode(dentry); 868 if (!inode) { 869 err = -ENOENT; 870 } else { 871 ihold(inode); 872 err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL); 873 } 874 dput(dentry); 875 876 out_unlock: 877 inode_unlock(d_inode(mnt->mnt_root)); 878 if (inode) 879 iput(inode); 880 mnt_drop_write(mnt); 881 out_name: 882 putname(name); 883 884 return err; 885 } 886 887 /* Pipelined send and receive functions. 888 * 889 * If a receiver finds no waiting message, then it registers itself in the 890 * list of waiting receivers. A sender checks that list before adding the new 891 * message into the message array. If there is a waiting receiver, then it 892 * bypasses the message array and directly hands the message over to the 893 * receiver. The receiver accepts the message and returns without grabbing the 894 * queue spinlock: 895 * 896 * - Set pointer to message. 897 * - Queue the receiver task for later wakeup (without the info->lock). 898 * - Update its state to STATE_READY. Now the receiver can continue. 899 * - Wake up the process after the lock is dropped. Should the process wake up 900 * before this wakeup (due to a timeout or a signal) it will either see 901 * STATE_READY and continue or acquire the lock to check the state again. 902 * 903 * The same algorithm is used for senders. 904 */ 905 906 /* pipelined_send() - send a message directly to the task waiting in 907 * sys_mq_timedreceive() (without inserting message into a queue). 908 */ 909 static inline void pipelined_send(struct wake_q_head *wake_q, 910 struct mqueue_inode_info *info, 911 struct msg_msg *message, 912 struct ext_wait_queue *receiver) 913 { 914 receiver->msg = message; 915 list_del(&receiver->list); 916 wake_q_add(wake_q, receiver->task); 917 /* 918 * Rely on the implicit cmpxchg barrier from wake_q_add such 919 * that we can ensure that updating receiver->state is the last 920 * write operation: As once set, the receiver can continue, 921 * and if we don't have the reference count from the wake_q, 922 * yet, at that point we can later have a use-after-free 923 * condition and bogus wakeup. 924 */ 925 receiver->state = STATE_READY; 926 } 927 928 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend() 929 * gets its message and put to the queue (we have one free place for sure). */ 930 static inline void pipelined_receive(struct wake_q_head *wake_q, 931 struct mqueue_inode_info *info) 932 { 933 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND); 934 935 if (!sender) { 936 /* for poll */ 937 wake_up_interruptible(&info->wait_q); 938 return; 939 } 940 if (msg_insert(sender->msg, info)) 941 return; 942 943 list_del(&sender->list); 944 wake_q_add(wake_q, sender->task); 945 sender->state = STATE_READY; 946 } 947 948 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr, 949 size_t msg_len, unsigned int msg_prio, 950 struct timespec64 *ts) 951 { 952 struct fd f; 953 struct inode *inode; 954 struct ext_wait_queue wait; 955 struct ext_wait_queue *receiver; 956 struct msg_msg *msg_ptr; 957 struct mqueue_inode_info *info; 958 ktime_t expires, *timeout = NULL; 959 struct posix_msg_tree_node *new_leaf = NULL; 960 int ret = 0; 961 DEFINE_WAKE_Q(wake_q); 962 963 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX)) 964 return -EINVAL; 965 966 if (ts) { 967 expires = timespec64_to_ktime(*ts); 968 timeout = &expires; 969 } 970 971 audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts); 972 973 f = fdget(mqdes); 974 if (unlikely(!f.file)) { 975 ret = -EBADF; 976 goto out; 977 } 978 979 inode = file_inode(f.file); 980 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 981 ret = -EBADF; 982 goto out_fput; 983 } 984 info = MQUEUE_I(inode); 985 audit_file(f.file); 986 987 if (unlikely(!(f.file->f_mode & FMODE_WRITE))) { 988 ret = -EBADF; 989 goto out_fput; 990 } 991 992 if (unlikely(msg_len > info->attr.mq_msgsize)) { 993 ret = -EMSGSIZE; 994 goto out_fput; 995 } 996 997 /* First try to allocate memory, before doing anything with 998 * existing queues. */ 999 msg_ptr = load_msg(u_msg_ptr, msg_len); 1000 if (IS_ERR(msg_ptr)) { 1001 ret = PTR_ERR(msg_ptr); 1002 goto out_fput; 1003 } 1004 msg_ptr->m_ts = msg_len; 1005 msg_ptr->m_type = msg_prio; 1006 1007 /* 1008 * msg_insert really wants us to have a valid, spare node struct so 1009 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will 1010 * fall back to that if necessary. 1011 */ 1012 if (!info->node_cache) 1013 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL); 1014 1015 spin_lock(&info->lock); 1016 1017 if (!info->node_cache && new_leaf) { 1018 /* Save our speculative allocation into the cache */ 1019 INIT_LIST_HEAD(&new_leaf->msg_list); 1020 info->node_cache = new_leaf; 1021 new_leaf = NULL; 1022 } else { 1023 kfree(new_leaf); 1024 } 1025 1026 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) { 1027 if (f.file->f_flags & O_NONBLOCK) { 1028 ret = -EAGAIN; 1029 } else { 1030 wait.task = current; 1031 wait.msg = (void *) msg_ptr; 1032 wait.state = STATE_NONE; 1033 ret = wq_sleep(info, SEND, timeout, &wait); 1034 /* 1035 * wq_sleep must be called with info->lock held, and 1036 * returns with the lock released 1037 */ 1038 goto out_free; 1039 } 1040 } else { 1041 receiver = wq_get_first_waiter(info, RECV); 1042 if (receiver) { 1043 pipelined_send(&wake_q, info, msg_ptr, receiver); 1044 } else { 1045 /* adds message to the queue */ 1046 ret = msg_insert(msg_ptr, info); 1047 if (ret) 1048 goto out_unlock; 1049 __do_notify(info); 1050 } 1051 inode->i_atime = inode->i_mtime = inode->i_ctime = 1052 current_time(inode); 1053 } 1054 out_unlock: 1055 spin_unlock(&info->lock); 1056 wake_up_q(&wake_q); 1057 out_free: 1058 if (ret) 1059 free_msg(msg_ptr); 1060 out_fput: 1061 fdput(f); 1062 out: 1063 return ret; 1064 } 1065 1066 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr, 1067 size_t msg_len, unsigned int __user *u_msg_prio, 1068 struct timespec64 *ts) 1069 { 1070 ssize_t ret; 1071 struct msg_msg *msg_ptr; 1072 struct fd f; 1073 struct inode *inode; 1074 struct mqueue_inode_info *info; 1075 struct ext_wait_queue wait; 1076 ktime_t expires, *timeout = NULL; 1077 struct posix_msg_tree_node *new_leaf = NULL; 1078 1079 if (ts) { 1080 expires = timespec64_to_ktime(*ts); 1081 timeout = &expires; 1082 } 1083 1084 audit_mq_sendrecv(mqdes, msg_len, 0, ts); 1085 1086 f = fdget(mqdes); 1087 if (unlikely(!f.file)) { 1088 ret = -EBADF; 1089 goto out; 1090 } 1091 1092 inode = file_inode(f.file); 1093 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1094 ret = -EBADF; 1095 goto out_fput; 1096 } 1097 info = MQUEUE_I(inode); 1098 audit_file(f.file); 1099 1100 if (unlikely(!(f.file->f_mode & FMODE_READ))) { 1101 ret = -EBADF; 1102 goto out_fput; 1103 } 1104 1105 /* checks if buffer is big enough */ 1106 if (unlikely(msg_len < info->attr.mq_msgsize)) { 1107 ret = -EMSGSIZE; 1108 goto out_fput; 1109 } 1110 1111 /* 1112 * msg_insert really wants us to have a valid, spare node struct so 1113 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will 1114 * fall back to that if necessary. 1115 */ 1116 if (!info->node_cache) 1117 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL); 1118 1119 spin_lock(&info->lock); 1120 1121 if (!info->node_cache && new_leaf) { 1122 /* Save our speculative allocation into the cache */ 1123 INIT_LIST_HEAD(&new_leaf->msg_list); 1124 info->node_cache = new_leaf; 1125 } else { 1126 kfree(new_leaf); 1127 } 1128 1129 if (info->attr.mq_curmsgs == 0) { 1130 if (f.file->f_flags & O_NONBLOCK) { 1131 spin_unlock(&info->lock); 1132 ret = -EAGAIN; 1133 } else { 1134 wait.task = current; 1135 wait.state = STATE_NONE; 1136 ret = wq_sleep(info, RECV, timeout, &wait); 1137 msg_ptr = wait.msg; 1138 } 1139 } else { 1140 DEFINE_WAKE_Q(wake_q); 1141 1142 msg_ptr = msg_get(info); 1143 1144 inode->i_atime = inode->i_mtime = inode->i_ctime = 1145 current_time(inode); 1146 1147 /* There is now free space in queue. */ 1148 pipelined_receive(&wake_q, info); 1149 spin_unlock(&info->lock); 1150 wake_up_q(&wake_q); 1151 ret = 0; 1152 } 1153 if (ret == 0) { 1154 ret = msg_ptr->m_ts; 1155 1156 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) || 1157 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) { 1158 ret = -EFAULT; 1159 } 1160 free_msg(msg_ptr); 1161 } 1162 out_fput: 1163 fdput(f); 1164 out: 1165 return ret; 1166 } 1167 1168 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr, 1169 size_t, msg_len, unsigned int, msg_prio, 1170 const struct __kernel_timespec __user *, u_abs_timeout) 1171 { 1172 struct timespec64 ts, *p = NULL; 1173 if (u_abs_timeout) { 1174 int res = prepare_timeout(u_abs_timeout, &ts); 1175 if (res) 1176 return res; 1177 p = &ts; 1178 } 1179 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p); 1180 } 1181 1182 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr, 1183 size_t, msg_len, unsigned int __user *, u_msg_prio, 1184 const struct __kernel_timespec __user *, u_abs_timeout) 1185 { 1186 struct timespec64 ts, *p = NULL; 1187 if (u_abs_timeout) { 1188 int res = prepare_timeout(u_abs_timeout, &ts); 1189 if (res) 1190 return res; 1191 p = &ts; 1192 } 1193 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p); 1194 } 1195 1196 /* 1197 * Notes: the case when user wants us to deregister (with NULL as pointer) 1198 * and he isn't currently owner of notification, will be silently discarded. 1199 * It isn't explicitly defined in the POSIX. 1200 */ 1201 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification) 1202 { 1203 int ret; 1204 struct fd f; 1205 struct sock *sock; 1206 struct inode *inode; 1207 struct mqueue_inode_info *info; 1208 struct sk_buff *nc; 1209 1210 audit_mq_notify(mqdes, notification); 1211 1212 nc = NULL; 1213 sock = NULL; 1214 if (notification != NULL) { 1215 if (unlikely(notification->sigev_notify != SIGEV_NONE && 1216 notification->sigev_notify != SIGEV_SIGNAL && 1217 notification->sigev_notify != SIGEV_THREAD)) 1218 return -EINVAL; 1219 if (notification->sigev_notify == SIGEV_SIGNAL && 1220 !valid_signal(notification->sigev_signo)) { 1221 return -EINVAL; 1222 } 1223 if (notification->sigev_notify == SIGEV_THREAD) { 1224 long timeo; 1225 1226 /* create the notify skb */ 1227 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL); 1228 if (!nc) { 1229 ret = -ENOMEM; 1230 goto out; 1231 } 1232 if (copy_from_user(nc->data, 1233 notification->sigev_value.sival_ptr, 1234 NOTIFY_COOKIE_LEN)) { 1235 ret = -EFAULT; 1236 goto out; 1237 } 1238 1239 /* TODO: add a header? */ 1240 skb_put(nc, NOTIFY_COOKIE_LEN); 1241 /* and attach it to the socket */ 1242 retry: 1243 f = fdget(notification->sigev_signo); 1244 if (!f.file) { 1245 ret = -EBADF; 1246 goto out; 1247 } 1248 sock = netlink_getsockbyfilp(f.file); 1249 fdput(f); 1250 if (IS_ERR(sock)) { 1251 ret = PTR_ERR(sock); 1252 sock = NULL; 1253 goto out; 1254 } 1255 1256 timeo = MAX_SCHEDULE_TIMEOUT; 1257 ret = netlink_attachskb(sock, nc, &timeo, NULL); 1258 if (ret == 1) { 1259 sock = NULL; 1260 goto retry; 1261 } 1262 if (ret) { 1263 sock = NULL; 1264 nc = NULL; 1265 goto out; 1266 } 1267 } 1268 } 1269 1270 f = fdget(mqdes); 1271 if (!f.file) { 1272 ret = -EBADF; 1273 goto out; 1274 } 1275 1276 inode = file_inode(f.file); 1277 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1278 ret = -EBADF; 1279 goto out_fput; 1280 } 1281 info = MQUEUE_I(inode); 1282 1283 ret = 0; 1284 spin_lock(&info->lock); 1285 if (notification == NULL) { 1286 if (info->notify_owner == task_tgid(current)) { 1287 remove_notification(info); 1288 inode->i_atime = inode->i_ctime = current_time(inode); 1289 } 1290 } else if (info->notify_owner != NULL) { 1291 ret = -EBUSY; 1292 } else { 1293 switch (notification->sigev_notify) { 1294 case SIGEV_NONE: 1295 info->notify.sigev_notify = SIGEV_NONE; 1296 break; 1297 case SIGEV_THREAD: 1298 info->notify_sock = sock; 1299 info->notify_cookie = nc; 1300 sock = NULL; 1301 nc = NULL; 1302 info->notify.sigev_notify = SIGEV_THREAD; 1303 break; 1304 case SIGEV_SIGNAL: 1305 info->notify.sigev_signo = notification->sigev_signo; 1306 info->notify.sigev_value = notification->sigev_value; 1307 info->notify.sigev_notify = SIGEV_SIGNAL; 1308 break; 1309 } 1310 1311 info->notify_owner = get_pid(task_tgid(current)); 1312 info->notify_user_ns = get_user_ns(current_user_ns()); 1313 inode->i_atime = inode->i_ctime = current_time(inode); 1314 } 1315 spin_unlock(&info->lock); 1316 out_fput: 1317 fdput(f); 1318 out: 1319 if (sock) 1320 netlink_detachskb(sock, nc); 1321 else if (nc) 1322 dev_kfree_skb(nc); 1323 1324 return ret; 1325 } 1326 1327 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes, 1328 const struct sigevent __user *, u_notification) 1329 { 1330 struct sigevent n, *p = NULL; 1331 if (u_notification) { 1332 if (copy_from_user(&n, u_notification, sizeof(struct sigevent))) 1333 return -EFAULT; 1334 p = &n; 1335 } 1336 return do_mq_notify(mqdes, p); 1337 } 1338 1339 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old) 1340 { 1341 struct fd f; 1342 struct inode *inode; 1343 struct mqueue_inode_info *info; 1344 1345 if (new && (new->mq_flags & (~O_NONBLOCK))) 1346 return -EINVAL; 1347 1348 f = fdget(mqdes); 1349 if (!f.file) 1350 return -EBADF; 1351 1352 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1353 fdput(f); 1354 return -EBADF; 1355 } 1356 1357 inode = file_inode(f.file); 1358 info = MQUEUE_I(inode); 1359 1360 spin_lock(&info->lock); 1361 1362 if (old) { 1363 *old = info->attr; 1364 old->mq_flags = f.file->f_flags & O_NONBLOCK; 1365 } 1366 if (new) { 1367 audit_mq_getsetattr(mqdes, new); 1368 spin_lock(&f.file->f_lock); 1369 if (new->mq_flags & O_NONBLOCK) 1370 f.file->f_flags |= O_NONBLOCK; 1371 else 1372 f.file->f_flags &= ~O_NONBLOCK; 1373 spin_unlock(&f.file->f_lock); 1374 1375 inode->i_atime = inode->i_ctime = current_time(inode); 1376 } 1377 1378 spin_unlock(&info->lock); 1379 fdput(f); 1380 return 0; 1381 } 1382 1383 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes, 1384 const struct mq_attr __user *, u_mqstat, 1385 struct mq_attr __user *, u_omqstat) 1386 { 1387 int ret; 1388 struct mq_attr mqstat, omqstat; 1389 struct mq_attr *new = NULL, *old = NULL; 1390 1391 if (u_mqstat) { 1392 new = &mqstat; 1393 if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr))) 1394 return -EFAULT; 1395 } 1396 if (u_omqstat) 1397 old = &omqstat; 1398 1399 ret = do_mq_getsetattr(mqdes, new, old); 1400 if (ret || !old) 1401 return ret; 1402 1403 if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr))) 1404 return -EFAULT; 1405 return 0; 1406 } 1407 1408 #ifdef CONFIG_COMPAT 1409 1410 struct compat_mq_attr { 1411 compat_long_t mq_flags; /* message queue flags */ 1412 compat_long_t mq_maxmsg; /* maximum number of messages */ 1413 compat_long_t mq_msgsize; /* maximum message size */ 1414 compat_long_t mq_curmsgs; /* number of messages currently queued */ 1415 compat_long_t __reserved[4]; /* ignored for input, zeroed for output */ 1416 }; 1417 1418 static inline int get_compat_mq_attr(struct mq_attr *attr, 1419 const struct compat_mq_attr __user *uattr) 1420 { 1421 struct compat_mq_attr v; 1422 1423 if (copy_from_user(&v, uattr, sizeof(*uattr))) 1424 return -EFAULT; 1425 1426 memset(attr, 0, sizeof(*attr)); 1427 attr->mq_flags = v.mq_flags; 1428 attr->mq_maxmsg = v.mq_maxmsg; 1429 attr->mq_msgsize = v.mq_msgsize; 1430 attr->mq_curmsgs = v.mq_curmsgs; 1431 return 0; 1432 } 1433 1434 static inline int put_compat_mq_attr(const struct mq_attr *attr, 1435 struct compat_mq_attr __user *uattr) 1436 { 1437 struct compat_mq_attr v; 1438 1439 memset(&v, 0, sizeof(v)); 1440 v.mq_flags = attr->mq_flags; 1441 v.mq_maxmsg = attr->mq_maxmsg; 1442 v.mq_msgsize = attr->mq_msgsize; 1443 v.mq_curmsgs = attr->mq_curmsgs; 1444 if (copy_to_user(uattr, &v, sizeof(*uattr))) 1445 return -EFAULT; 1446 return 0; 1447 } 1448 1449 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name, 1450 int, oflag, compat_mode_t, mode, 1451 struct compat_mq_attr __user *, u_attr) 1452 { 1453 struct mq_attr attr, *p = NULL; 1454 if (u_attr && oflag & O_CREAT) { 1455 p = &attr; 1456 if (get_compat_mq_attr(&attr, u_attr)) 1457 return -EFAULT; 1458 } 1459 return do_mq_open(u_name, oflag, mode, p); 1460 } 1461 1462 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes, 1463 const struct compat_sigevent __user *, u_notification) 1464 { 1465 struct sigevent n, *p = NULL; 1466 if (u_notification) { 1467 if (get_compat_sigevent(&n, u_notification)) 1468 return -EFAULT; 1469 if (n.sigev_notify == SIGEV_THREAD) 1470 n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int); 1471 p = &n; 1472 } 1473 return do_mq_notify(mqdes, p); 1474 } 1475 1476 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes, 1477 const struct compat_mq_attr __user *, u_mqstat, 1478 struct compat_mq_attr __user *, u_omqstat) 1479 { 1480 int ret; 1481 struct mq_attr mqstat, omqstat; 1482 struct mq_attr *new = NULL, *old = NULL; 1483 1484 if (u_mqstat) { 1485 new = &mqstat; 1486 if (get_compat_mq_attr(new, u_mqstat)) 1487 return -EFAULT; 1488 } 1489 if (u_omqstat) 1490 old = &omqstat; 1491 1492 ret = do_mq_getsetattr(mqdes, new, old); 1493 if (ret || !old) 1494 return ret; 1495 1496 if (put_compat_mq_attr(old, u_omqstat)) 1497 return -EFAULT; 1498 return 0; 1499 } 1500 #endif 1501 1502 #ifdef CONFIG_COMPAT_32BIT_TIME 1503 static int compat_prepare_timeout(const struct old_timespec32 __user *p, 1504 struct timespec64 *ts) 1505 { 1506 if (get_old_timespec32(ts, p)) 1507 return -EFAULT; 1508 if (!timespec64_valid(ts)) 1509 return -EINVAL; 1510 return 0; 1511 } 1512 1513 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes, 1514 const char __user *, u_msg_ptr, 1515 unsigned int, msg_len, unsigned int, msg_prio, 1516 const struct old_timespec32 __user *, u_abs_timeout) 1517 { 1518 struct timespec64 ts, *p = NULL; 1519 if (u_abs_timeout) { 1520 int res = compat_prepare_timeout(u_abs_timeout, &ts); 1521 if (res) 1522 return res; 1523 p = &ts; 1524 } 1525 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p); 1526 } 1527 1528 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes, 1529 char __user *, u_msg_ptr, 1530 unsigned int, msg_len, unsigned int __user *, u_msg_prio, 1531 const struct old_timespec32 __user *, u_abs_timeout) 1532 { 1533 struct timespec64 ts, *p = NULL; 1534 if (u_abs_timeout) { 1535 int res = compat_prepare_timeout(u_abs_timeout, &ts); 1536 if (res) 1537 return res; 1538 p = &ts; 1539 } 1540 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p); 1541 } 1542 #endif 1543 1544 static const struct inode_operations mqueue_dir_inode_operations = { 1545 .lookup = simple_lookup, 1546 .create = mqueue_create, 1547 .unlink = mqueue_unlink, 1548 }; 1549 1550 static const struct file_operations mqueue_file_operations = { 1551 .flush = mqueue_flush_file, 1552 .poll = mqueue_poll_file, 1553 .read = mqueue_read_file, 1554 .llseek = default_llseek, 1555 }; 1556 1557 static const struct super_operations mqueue_super_ops = { 1558 .alloc_inode = mqueue_alloc_inode, 1559 .free_inode = mqueue_free_inode, 1560 .evict_inode = mqueue_evict_inode, 1561 .statfs = simple_statfs, 1562 }; 1563 1564 static const struct fs_context_operations mqueue_fs_context_ops = { 1565 .free = mqueue_fs_context_free, 1566 .get_tree = mqueue_get_tree, 1567 }; 1568 1569 static struct file_system_type mqueue_fs_type = { 1570 .name = "mqueue", 1571 .init_fs_context = mqueue_init_fs_context, 1572 .kill_sb = kill_litter_super, 1573 .fs_flags = FS_USERNS_MOUNT, 1574 }; 1575 1576 int mq_init_ns(struct ipc_namespace *ns) 1577 { 1578 struct vfsmount *m; 1579 1580 ns->mq_queues_count = 0; 1581 ns->mq_queues_max = DFLT_QUEUESMAX; 1582 ns->mq_msg_max = DFLT_MSGMAX; 1583 ns->mq_msgsize_max = DFLT_MSGSIZEMAX; 1584 ns->mq_msg_default = DFLT_MSG; 1585 ns->mq_msgsize_default = DFLT_MSGSIZE; 1586 1587 m = mq_create_mount(ns); 1588 if (IS_ERR(m)) 1589 return PTR_ERR(m); 1590 ns->mq_mnt = m; 1591 return 0; 1592 } 1593 1594 void mq_clear_sbinfo(struct ipc_namespace *ns) 1595 { 1596 ns->mq_mnt->mnt_sb->s_fs_info = NULL; 1597 } 1598 1599 void mq_put_mnt(struct ipc_namespace *ns) 1600 { 1601 kern_unmount(ns->mq_mnt); 1602 } 1603 1604 static int __init init_mqueue_fs(void) 1605 { 1606 int error; 1607 1608 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache", 1609 sizeof(struct mqueue_inode_info), 0, 1610 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once); 1611 if (mqueue_inode_cachep == NULL) 1612 return -ENOMEM; 1613 1614 /* ignore failures - they are not fatal */ 1615 mq_sysctl_table = mq_register_sysctl_table(); 1616 1617 error = register_filesystem(&mqueue_fs_type); 1618 if (error) 1619 goto out_sysctl; 1620 1621 spin_lock_init(&mq_lock); 1622 1623 error = mq_init_ns(&init_ipc_ns); 1624 if (error) 1625 goto out_filesystem; 1626 1627 return 0; 1628 1629 out_filesystem: 1630 unregister_filesystem(&mqueue_fs_type); 1631 out_sysctl: 1632 if (mq_sysctl_table) 1633 unregister_sysctl_table(mq_sysctl_table); 1634 kmem_cache_destroy(mqueue_inode_cachep); 1635 return error; 1636 } 1637 1638 device_initcall(init_mqueue_fs); 1639