xref: /openbmc/linux/ipc/mqueue.c (revision 814137768b5a9504f758aa760e7b1ac355539783)
1 /*
2  * POSIX message queues filesystem for Linux.
3  *
4  * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
5  *                          Michal Wronski          (michal.wronski@gmail.com)
6  *
7  * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
8  * Lockless receive & send, fd based notify:
9  *			    Manfred Spraul	    (manfred@colorfullife.com)
10  *
11  * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
12  *
13  * This file is released under the GPL.
14  */
15 
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/fs_context.h>
22 #include <linux/namei.h>
23 #include <linux/sysctl.h>
24 #include <linux/poll.h>
25 #include <linux/mqueue.h>
26 #include <linux/msg.h>
27 #include <linux/skbuff.h>
28 #include <linux/vmalloc.h>
29 #include <linux/netlink.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 #include <linux/signal.h>
33 #include <linux/mutex.h>
34 #include <linux/nsproxy.h>
35 #include <linux/pid.h>
36 #include <linux/ipc_namespace.h>
37 #include <linux/user_namespace.h>
38 #include <linux/slab.h>
39 #include <linux/sched/wake_q.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/user.h>
42 
43 #include <net/sock.h>
44 #include "util.h"
45 
46 struct mqueue_fs_context {
47 	struct ipc_namespace	*ipc_ns;
48 };
49 
50 #define MQUEUE_MAGIC	0x19800202
51 #define DIRENT_SIZE	20
52 #define FILENT_SIZE	80
53 
54 #define SEND		0
55 #define RECV		1
56 
57 #define STATE_NONE	0
58 #define STATE_READY	1
59 
60 struct posix_msg_tree_node {
61 	struct rb_node		rb_node;
62 	struct list_head	msg_list;
63 	int			priority;
64 };
65 
66 struct ext_wait_queue {		/* queue of sleeping tasks */
67 	struct task_struct *task;
68 	struct list_head list;
69 	struct msg_msg *msg;	/* ptr of loaded message */
70 	int state;		/* one of STATE_* values */
71 };
72 
73 struct mqueue_inode_info {
74 	spinlock_t lock;
75 	struct inode vfs_inode;
76 	wait_queue_head_t wait_q;
77 
78 	struct rb_root msg_tree;
79 	struct posix_msg_tree_node *node_cache;
80 	struct mq_attr attr;
81 
82 	struct sigevent notify;
83 	struct pid *notify_owner;
84 	struct user_namespace *notify_user_ns;
85 	struct user_struct *user;	/* user who created, for accounting */
86 	struct sock *notify_sock;
87 	struct sk_buff *notify_cookie;
88 
89 	/* for tasks waiting for free space and messages, respectively */
90 	struct ext_wait_queue e_wait_q[2];
91 
92 	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
93 };
94 
95 static struct file_system_type mqueue_fs_type;
96 static const struct inode_operations mqueue_dir_inode_operations;
97 static const struct file_operations mqueue_file_operations;
98 static const struct super_operations mqueue_super_ops;
99 static const struct fs_context_operations mqueue_fs_context_ops;
100 static void remove_notification(struct mqueue_inode_info *info);
101 
102 static struct kmem_cache *mqueue_inode_cachep;
103 
104 static struct ctl_table_header *mq_sysctl_table;
105 
106 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
107 {
108 	return container_of(inode, struct mqueue_inode_info, vfs_inode);
109 }
110 
111 /*
112  * This routine should be called with the mq_lock held.
113  */
114 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
115 {
116 	return get_ipc_ns(inode->i_sb->s_fs_info);
117 }
118 
119 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
120 {
121 	struct ipc_namespace *ns;
122 
123 	spin_lock(&mq_lock);
124 	ns = __get_ns_from_inode(inode);
125 	spin_unlock(&mq_lock);
126 	return ns;
127 }
128 
129 /* Auxiliary functions to manipulate messages' list */
130 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
131 {
132 	struct rb_node **p, *parent = NULL;
133 	struct posix_msg_tree_node *leaf;
134 
135 	p = &info->msg_tree.rb_node;
136 	while (*p) {
137 		parent = *p;
138 		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
139 
140 		if (likely(leaf->priority == msg->m_type))
141 			goto insert_msg;
142 		else if (msg->m_type < leaf->priority)
143 			p = &(*p)->rb_left;
144 		else
145 			p = &(*p)->rb_right;
146 	}
147 	if (info->node_cache) {
148 		leaf = info->node_cache;
149 		info->node_cache = NULL;
150 	} else {
151 		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
152 		if (!leaf)
153 			return -ENOMEM;
154 		INIT_LIST_HEAD(&leaf->msg_list);
155 	}
156 	leaf->priority = msg->m_type;
157 	rb_link_node(&leaf->rb_node, parent, p);
158 	rb_insert_color(&leaf->rb_node, &info->msg_tree);
159 insert_msg:
160 	info->attr.mq_curmsgs++;
161 	info->qsize += msg->m_ts;
162 	list_add_tail(&msg->m_list, &leaf->msg_list);
163 	return 0;
164 }
165 
166 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
167 {
168 	struct rb_node **p, *parent = NULL;
169 	struct posix_msg_tree_node *leaf;
170 	struct msg_msg *msg;
171 
172 try_again:
173 	p = &info->msg_tree.rb_node;
174 	while (*p) {
175 		parent = *p;
176 		/*
177 		 * During insert, low priorities go to the left and high to the
178 		 * right.  On receive, we want the highest priorities first, so
179 		 * walk all the way to the right.
180 		 */
181 		p = &(*p)->rb_right;
182 	}
183 	if (!parent) {
184 		if (info->attr.mq_curmsgs) {
185 			pr_warn_once("Inconsistency in POSIX message queue, "
186 				     "no tree element, but supposedly messages "
187 				     "should exist!\n");
188 			info->attr.mq_curmsgs = 0;
189 		}
190 		return NULL;
191 	}
192 	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
193 	if (unlikely(list_empty(&leaf->msg_list))) {
194 		pr_warn_once("Inconsistency in POSIX message queue, "
195 			     "empty leaf node but we haven't implemented "
196 			     "lazy leaf delete!\n");
197 		rb_erase(&leaf->rb_node, &info->msg_tree);
198 		if (info->node_cache) {
199 			kfree(leaf);
200 		} else {
201 			info->node_cache = leaf;
202 		}
203 		goto try_again;
204 	} else {
205 		msg = list_first_entry(&leaf->msg_list,
206 				       struct msg_msg, m_list);
207 		list_del(&msg->m_list);
208 		if (list_empty(&leaf->msg_list)) {
209 			rb_erase(&leaf->rb_node, &info->msg_tree);
210 			if (info->node_cache) {
211 				kfree(leaf);
212 			} else {
213 				info->node_cache = leaf;
214 			}
215 		}
216 	}
217 	info->attr.mq_curmsgs--;
218 	info->qsize -= msg->m_ts;
219 	return msg;
220 }
221 
222 static struct inode *mqueue_get_inode(struct super_block *sb,
223 		struct ipc_namespace *ipc_ns, umode_t mode,
224 		struct mq_attr *attr)
225 {
226 	struct user_struct *u = current_user();
227 	struct inode *inode;
228 	int ret = -ENOMEM;
229 
230 	inode = new_inode(sb);
231 	if (!inode)
232 		goto err;
233 
234 	inode->i_ino = get_next_ino();
235 	inode->i_mode = mode;
236 	inode->i_uid = current_fsuid();
237 	inode->i_gid = current_fsgid();
238 	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
239 
240 	if (S_ISREG(mode)) {
241 		struct mqueue_inode_info *info;
242 		unsigned long mq_bytes, mq_treesize;
243 
244 		inode->i_fop = &mqueue_file_operations;
245 		inode->i_size = FILENT_SIZE;
246 		/* mqueue specific info */
247 		info = MQUEUE_I(inode);
248 		spin_lock_init(&info->lock);
249 		init_waitqueue_head(&info->wait_q);
250 		INIT_LIST_HEAD(&info->e_wait_q[0].list);
251 		INIT_LIST_HEAD(&info->e_wait_q[1].list);
252 		info->notify_owner = NULL;
253 		info->notify_user_ns = NULL;
254 		info->qsize = 0;
255 		info->user = NULL;	/* set when all is ok */
256 		info->msg_tree = RB_ROOT;
257 		info->node_cache = NULL;
258 		memset(&info->attr, 0, sizeof(info->attr));
259 		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
260 					   ipc_ns->mq_msg_default);
261 		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
262 					    ipc_ns->mq_msgsize_default);
263 		if (attr) {
264 			info->attr.mq_maxmsg = attr->mq_maxmsg;
265 			info->attr.mq_msgsize = attr->mq_msgsize;
266 		}
267 		/*
268 		 * We used to allocate a static array of pointers and account
269 		 * the size of that array as well as one msg_msg struct per
270 		 * possible message into the queue size. That's no longer
271 		 * accurate as the queue is now an rbtree and will grow and
272 		 * shrink depending on usage patterns.  We can, however, still
273 		 * account one msg_msg struct per message, but the nodes are
274 		 * allocated depending on priority usage, and most programs
275 		 * only use one, or a handful, of priorities.  However, since
276 		 * this is pinned memory, we need to assume worst case, so
277 		 * that means the min(mq_maxmsg, max_priorities) * struct
278 		 * posix_msg_tree_node.
279 		 */
280 
281 		ret = -EINVAL;
282 		if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
283 			goto out_inode;
284 		if (capable(CAP_SYS_RESOURCE)) {
285 			if (info->attr.mq_maxmsg > HARD_MSGMAX ||
286 			    info->attr.mq_msgsize > HARD_MSGSIZEMAX)
287 				goto out_inode;
288 		} else {
289 			if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
290 					info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
291 				goto out_inode;
292 		}
293 		ret = -EOVERFLOW;
294 		/* check for overflow */
295 		if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
296 			goto out_inode;
297 		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
298 			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
299 			sizeof(struct posix_msg_tree_node);
300 		mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
301 		if (mq_bytes + mq_treesize < mq_bytes)
302 			goto out_inode;
303 		mq_bytes += mq_treesize;
304 		spin_lock(&mq_lock);
305 		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
306 		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
307 			spin_unlock(&mq_lock);
308 			/* mqueue_evict_inode() releases info->messages */
309 			ret = -EMFILE;
310 			goto out_inode;
311 		}
312 		u->mq_bytes += mq_bytes;
313 		spin_unlock(&mq_lock);
314 
315 		/* all is ok */
316 		info->user = get_uid(u);
317 	} else if (S_ISDIR(mode)) {
318 		inc_nlink(inode);
319 		/* Some things misbehave if size == 0 on a directory */
320 		inode->i_size = 2 * DIRENT_SIZE;
321 		inode->i_op = &mqueue_dir_inode_operations;
322 		inode->i_fop = &simple_dir_operations;
323 	}
324 
325 	return inode;
326 out_inode:
327 	iput(inode);
328 err:
329 	return ERR_PTR(ret);
330 }
331 
332 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
333 {
334 	struct inode *inode;
335 	struct ipc_namespace *ns = sb->s_fs_info;
336 
337 	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
338 	sb->s_blocksize = PAGE_SIZE;
339 	sb->s_blocksize_bits = PAGE_SHIFT;
340 	sb->s_magic = MQUEUE_MAGIC;
341 	sb->s_op = &mqueue_super_ops;
342 
343 	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
344 	if (IS_ERR(inode))
345 		return PTR_ERR(inode);
346 
347 	sb->s_root = d_make_root(inode);
348 	if (!sb->s_root)
349 		return -ENOMEM;
350 	return 0;
351 }
352 
353 static int mqueue_get_tree(struct fs_context *fc)
354 {
355 	struct mqueue_fs_context *ctx = fc->fs_private;
356 
357 	put_user_ns(fc->user_ns);
358 	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
359 	fc->s_fs_info = ctx->ipc_ns;
360 	return vfs_get_super(fc, vfs_get_keyed_super, mqueue_fill_super);
361 }
362 
363 static void mqueue_fs_context_free(struct fs_context *fc)
364 {
365 	struct mqueue_fs_context *ctx = fc->fs_private;
366 
367 	if (ctx->ipc_ns)
368 		put_ipc_ns(ctx->ipc_ns);
369 	kfree(ctx);
370 }
371 
372 static int mqueue_init_fs_context(struct fs_context *fc)
373 {
374 	struct mqueue_fs_context *ctx;
375 
376 	ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
377 	if (!ctx)
378 		return -ENOMEM;
379 
380 	ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
381 	fc->fs_private = ctx;
382 	fc->ops = &mqueue_fs_context_ops;
383 	return 0;
384 }
385 
386 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
387 {
388 	struct mqueue_fs_context *ctx;
389 	struct fs_context *fc;
390 	struct vfsmount *mnt;
391 
392 	fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
393 	if (IS_ERR(fc))
394 		return ERR_CAST(fc);
395 
396 	ctx = fc->fs_private;
397 	put_ipc_ns(ctx->ipc_ns);
398 	ctx->ipc_ns = get_ipc_ns(ns);
399 
400 	mnt = fc_mount(fc);
401 	put_fs_context(fc);
402 	return mnt;
403 }
404 
405 static void init_once(void *foo)
406 {
407 	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
408 
409 	inode_init_once(&p->vfs_inode);
410 }
411 
412 static struct inode *mqueue_alloc_inode(struct super_block *sb)
413 {
414 	struct mqueue_inode_info *ei;
415 
416 	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
417 	if (!ei)
418 		return NULL;
419 	return &ei->vfs_inode;
420 }
421 
422 static void mqueue_free_inode(struct inode *inode)
423 {
424 	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
425 }
426 
427 static void mqueue_evict_inode(struct inode *inode)
428 {
429 	struct mqueue_inode_info *info;
430 	struct user_struct *user;
431 	unsigned long mq_bytes, mq_treesize;
432 	struct ipc_namespace *ipc_ns;
433 	struct msg_msg *msg;
434 
435 	clear_inode(inode);
436 
437 	if (S_ISDIR(inode->i_mode))
438 		return;
439 
440 	ipc_ns = get_ns_from_inode(inode);
441 	info = MQUEUE_I(inode);
442 	spin_lock(&info->lock);
443 	while ((msg = msg_get(info)) != NULL)
444 		free_msg(msg);
445 	kfree(info->node_cache);
446 	spin_unlock(&info->lock);
447 
448 	/* Total amount of bytes accounted for the mqueue */
449 	mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
450 		min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
451 		sizeof(struct posix_msg_tree_node);
452 
453 	mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
454 				  info->attr.mq_msgsize);
455 
456 	user = info->user;
457 	if (user) {
458 		spin_lock(&mq_lock);
459 		user->mq_bytes -= mq_bytes;
460 		/*
461 		 * get_ns_from_inode() ensures that the
462 		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
463 		 * to which we now hold a reference, or it is NULL.
464 		 * We can't put it here under mq_lock, though.
465 		 */
466 		if (ipc_ns)
467 			ipc_ns->mq_queues_count--;
468 		spin_unlock(&mq_lock);
469 		free_uid(user);
470 	}
471 	if (ipc_ns)
472 		put_ipc_ns(ipc_ns);
473 }
474 
475 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
476 {
477 	struct inode *dir = dentry->d_parent->d_inode;
478 	struct inode *inode;
479 	struct mq_attr *attr = arg;
480 	int error;
481 	struct ipc_namespace *ipc_ns;
482 
483 	spin_lock(&mq_lock);
484 	ipc_ns = __get_ns_from_inode(dir);
485 	if (!ipc_ns) {
486 		error = -EACCES;
487 		goto out_unlock;
488 	}
489 
490 	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
491 	    !capable(CAP_SYS_RESOURCE)) {
492 		error = -ENOSPC;
493 		goto out_unlock;
494 	}
495 	ipc_ns->mq_queues_count++;
496 	spin_unlock(&mq_lock);
497 
498 	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
499 	if (IS_ERR(inode)) {
500 		error = PTR_ERR(inode);
501 		spin_lock(&mq_lock);
502 		ipc_ns->mq_queues_count--;
503 		goto out_unlock;
504 	}
505 
506 	put_ipc_ns(ipc_ns);
507 	dir->i_size += DIRENT_SIZE;
508 	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
509 
510 	d_instantiate(dentry, inode);
511 	dget(dentry);
512 	return 0;
513 out_unlock:
514 	spin_unlock(&mq_lock);
515 	if (ipc_ns)
516 		put_ipc_ns(ipc_ns);
517 	return error;
518 }
519 
520 static int mqueue_create(struct inode *dir, struct dentry *dentry,
521 				umode_t mode, bool excl)
522 {
523 	return mqueue_create_attr(dentry, mode, NULL);
524 }
525 
526 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
527 {
528 	struct inode *inode = d_inode(dentry);
529 
530 	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
531 	dir->i_size -= DIRENT_SIZE;
532 	drop_nlink(inode);
533 	dput(dentry);
534 	return 0;
535 }
536 
537 /*
538 *	This is routine for system read from queue file.
539 *	To avoid mess with doing here some sort of mq_receive we allow
540 *	to read only queue size & notification info (the only values
541 *	that are interesting from user point of view and aren't accessible
542 *	through std routines)
543 */
544 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
545 				size_t count, loff_t *off)
546 {
547 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
548 	char buffer[FILENT_SIZE];
549 	ssize_t ret;
550 
551 	spin_lock(&info->lock);
552 	snprintf(buffer, sizeof(buffer),
553 			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
554 			info->qsize,
555 			info->notify_owner ? info->notify.sigev_notify : 0,
556 			(info->notify_owner &&
557 			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
558 				info->notify.sigev_signo : 0,
559 			pid_vnr(info->notify_owner));
560 	spin_unlock(&info->lock);
561 	buffer[sizeof(buffer)-1] = '\0';
562 
563 	ret = simple_read_from_buffer(u_data, count, off, buffer,
564 				strlen(buffer));
565 	if (ret <= 0)
566 		return ret;
567 
568 	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
569 	return ret;
570 }
571 
572 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
573 {
574 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
575 
576 	spin_lock(&info->lock);
577 	if (task_tgid(current) == info->notify_owner)
578 		remove_notification(info);
579 
580 	spin_unlock(&info->lock);
581 	return 0;
582 }
583 
584 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
585 {
586 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
587 	__poll_t retval = 0;
588 
589 	poll_wait(filp, &info->wait_q, poll_tab);
590 
591 	spin_lock(&info->lock);
592 	if (info->attr.mq_curmsgs)
593 		retval = EPOLLIN | EPOLLRDNORM;
594 
595 	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
596 		retval |= EPOLLOUT | EPOLLWRNORM;
597 	spin_unlock(&info->lock);
598 
599 	return retval;
600 }
601 
602 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
603 static void wq_add(struct mqueue_inode_info *info, int sr,
604 			struct ext_wait_queue *ewp)
605 {
606 	struct ext_wait_queue *walk;
607 
608 	ewp->task = current;
609 
610 	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
611 		if (walk->task->prio <= current->prio) {
612 			list_add_tail(&ewp->list, &walk->list);
613 			return;
614 		}
615 	}
616 	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
617 }
618 
619 /*
620  * Puts current task to sleep. Caller must hold queue lock. After return
621  * lock isn't held.
622  * sr: SEND or RECV
623  */
624 static int wq_sleep(struct mqueue_inode_info *info, int sr,
625 		    ktime_t *timeout, struct ext_wait_queue *ewp)
626 	__releases(&info->lock)
627 {
628 	int retval;
629 	signed long time;
630 
631 	wq_add(info, sr, ewp);
632 
633 	for (;;) {
634 		__set_current_state(TASK_INTERRUPTIBLE);
635 
636 		spin_unlock(&info->lock);
637 		time = schedule_hrtimeout_range_clock(timeout, 0,
638 			HRTIMER_MODE_ABS, CLOCK_REALTIME);
639 
640 		if (ewp->state == STATE_READY) {
641 			retval = 0;
642 			goto out;
643 		}
644 		spin_lock(&info->lock);
645 		if (ewp->state == STATE_READY) {
646 			retval = 0;
647 			goto out_unlock;
648 		}
649 		if (signal_pending(current)) {
650 			retval = -ERESTARTSYS;
651 			break;
652 		}
653 		if (time == 0) {
654 			retval = -ETIMEDOUT;
655 			break;
656 		}
657 	}
658 	list_del(&ewp->list);
659 out_unlock:
660 	spin_unlock(&info->lock);
661 out:
662 	return retval;
663 }
664 
665 /*
666  * Returns waiting task that should be serviced first or NULL if none exists
667  */
668 static struct ext_wait_queue *wq_get_first_waiter(
669 		struct mqueue_inode_info *info, int sr)
670 {
671 	struct list_head *ptr;
672 
673 	ptr = info->e_wait_q[sr].list.prev;
674 	if (ptr == &info->e_wait_q[sr].list)
675 		return NULL;
676 	return list_entry(ptr, struct ext_wait_queue, list);
677 }
678 
679 
680 static inline void set_cookie(struct sk_buff *skb, char code)
681 {
682 	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
683 }
684 
685 /*
686  * The next function is only to split too long sys_mq_timedsend
687  */
688 static void __do_notify(struct mqueue_inode_info *info)
689 {
690 	/* notification
691 	 * invoked when there is registered process and there isn't process
692 	 * waiting synchronously for message AND state of queue changed from
693 	 * empty to not empty. Here we are sure that no one is waiting
694 	 * synchronously. */
695 	if (info->notify_owner &&
696 	    info->attr.mq_curmsgs == 1) {
697 		struct kernel_siginfo sig_i;
698 		switch (info->notify.sigev_notify) {
699 		case SIGEV_NONE:
700 			break;
701 		case SIGEV_SIGNAL:
702 			/* sends signal */
703 
704 			clear_siginfo(&sig_i);
705 			sig_i.si_signo = info->notify.sigev_signo;
706 			sig_i.si_errno = 0;
707 			sig_i.si_code = SI_MESGQ;
708 			sig_i.si_value = info->notify.sigev_value;
709 			/* map current pid/uid into info->owner's namespaces */
710 			rcu_read_lock();
711 			sig_i.si_pid = task_tgid_nr_ns(current,
712 						ns_of_pid(info->notify_owner));
713 			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
714 			rcu_read_unlock();
715 
716 			kill_pid_info(info->notify.sigev_signo,
717 				      &sig_i, info->notify_owner);
718 			break;
719 		case SIGEV_THREAD:
720 			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
721 			netlink_sendskb(info->notify_sock, info->notify_cookie);
722 			break;
723 		}
724 		/* after notification unregisters process */
725 		put_pid(info->notify_owner);
726 		put_user_ns(info->notify_user_ns);
727 		info->notify_owner = NULL;
728 		info->notify_user_ns = NULL;
729 	}
730 	wake_up(&info->wait_q);
731 }
732 
733 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
734 			   struct timespec64 *ts)
735 {
736 	if (get_timespec64(ts, u_abs_timeout))
737 		return -EFAULT;
738 	if (!timespec64_valid(ts))
739 		return -EINVAL;
740 	return 0;
741 }
742 
743 static void remove_notification(struct mqueue_inode_info *info)
744 {
745 	if (info->notify_owner != NULL &&
746 	    info->notify.sigev_notify == SIGEV_THREAD) {
747 		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
748 		netlink_sendskb(info->notify_sock, info->notify_cookie);
749 	}
750 	put_pid(info->notify_owner);
751 	put_user_ns(info->notify_user_ns);
752 	info->notify_owner = NULL;
753 	info->notify_user_ns = NULL;
754 }
755 
756 static int prepare_open(struct dentry *dentry, int oflag, int ro,
757 			umode_t mode, struct filename *name,
758 			struct mq_attr *attr)
759 {
760 	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
761 						  MAY_READ | MAY_WRITE };
762 	int acc;
763 
764 	if (d_really_is_negative(dentry)) {
765 		if (!(oflag & O_CREAT))
766 			return -ENOENT;
767 		if (ro)
768 			return ro;
769 		audit_inode_parent_hidden(name, dentry->d_parent);
770 		return vfs_mkobj(dentry, mode & ~current_umask(),
771 				  mqueue_create_attr, attr);
772 	}
773 	/* it already existed */
774 	audit_inode(name, dentry, 0);
775 	if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
776 		return -EEXIST;
777 	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
778 		return -EINVAL;
779 	acc = oflag2acc[oflag & O_ACCMODE];
780 	return inode_permission(d_inode(dentry), acc);
781 }
782 
783 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
784 		      struct mq_attr *attr)
785 {
786 	struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
787 	struct dentry *root = mnt->mnt_root;
788 	struct filename *name;
789 	struct path path;
790 	int fd, error;
791 	int ro;
792 
793 	audit_mq_open(oflag, mode, attr);
794 
795 	if (IS_ERR(name = getname(u_name)))
796 		return PTR_ERR(name);
797 
798 	fd = get_unused_fd_flags(O_CLOEXEC);
799 	if (fd < 0)
800 		goto out_putname;
801 
802 	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
803 	inode_lock(d_inode(root));
804 	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
805 	if (IS_ERR(path.dentry)) {
806 		error = PTR_ERR(path.dentry);
807 		goto out_putfd;
808 	}
809 	path.mnt = mntget(mnt);
810 	error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
811 	if (!error) {
812 		struct file *file = dentry_open(&path, oflag, current_cred());
813 		if (!IS_ERR(file))
814 			fd_install(fd, file);
815 		else
816 			error = PTR_ERR(file);
817 	}
818 	path_put(&path);
819 out_putfd:
820 	if (error) {
821 		put_unused_fd(fd);
822 		fd = error;
823 	}
824 	inode_unlock(d_inode(root));
825 	if (!ro)
826 		mnt_drop_write(mnt);
827 out_putname:
828 	putname(name);
829 	return fd;
830 }
831 
832 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
833 		struct mq_attr __user *, u_attr)
834 {
835 	struct mq_attr attr;
836 	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
837 		return -EFAULT;
838 
839 	return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
840 }
841 
842 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
843 {
844 	int err;
845 	struct filename *name;
846 	struct dentry *dentry;
847 	struct inode *inode = NULL;
848 	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
849 	struct vfsmount *mnt = ipc_ns->mq_mnt;
850 
851 	name = getname(u_name);
852 	if (IS_ERR(name))
853 		return PTR_ERR(name);
854 
855 	audit_inode_parent_hidden(name, mnt->mnt_root);
856 	err = mnt_want_write(mnt);
857 	if (err)
858 		goto out_name;
859 	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
860 	dentry = lookup_one_len(name->name, mnt->mnt_root,
861 				strlen(name->name));
862 	if (IS_ERR(dentry)) {
863 		err = PTR_ERR(dentry);
864 		goto out_unlock;
865 	}
866 
867 	inode = d_inode(dentry);
868 	if (!inode) {
869 		err = -ENOENT;
870 	} else {
871 		ihold(inode);
872 		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
873 	}
874 	dput(dentry);
875 
876 out_unlock:
877 	inode_unlock(d_inode(mnt->mnt_root));
878 	if (inode)
879 		iput(inode);
880 	mnt_drop_write(mnt);
881 out_name:
882 	putname(name);
883 
884 	return err;
885 }
886 
887 /* Pipelined send and receive functions.
888  *
889  * If a receiver finds no waiting message, then it registers itself in the
890  * list of waiting receivers. A sender checks that list before adding the new
891  * message into the message array. If there is a waiting receiver, then it
892  * bypasses the message array and directly hands the message over to the
893  * receiver. The receiver accepts the message and returns without grabbing the
894  * queue spinlock:
895  *
896  * - Set pointer to message.
897  * - Queue the receiver task for later wakeup (without the info->lock).
898  * - Update its state to STATE_READY. Now the receiver can continue.
899  * - Wake up the process after the lock is dropped. Should the process wake up
900  *   before this wakeup (due to a timeout or a signal) it will either see
901  *   STATE_READY and continue or acquire the lock to check the state again.
902  *
903  * The same algorithm is used for senders.
904  */
905 
906 /* pipelined_send() - send a message directly to the task waiting in
907  * sys_mq_timedreceive() (without inserting message into a queue).
908  */
909 static inline void pipelined_send(struct wake_q_head *wake_q,
910 				  struct mqueue_inode_info *info,
911 				  struct msg_msg *message,
912 				  struct ext_wait_queue *receiver)
913 {
914 	receiver->msg = message;
915 	list_del(&receiver->list);
916 	wake_q_add(wake_q, receiver->task);
917 	/*
918 	 * Rely on the implicit cmpxchg barrier from wake_q_add such
919 	 * that we can ensure that updating receiver->state is the last
920 	 * write operation: As once set, the receiver can continue,
921 	 * and if we don't have the reference count from the wake_q,
922 	 * yet, at that point we can later have a use-after-free
923 	 * condition and bogus wakeup.
924 	 */
925 	receiver->state = STATE_READY;
926 }
927 
928 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
929  * gets its message and put to the queue (we have one free place for sure). */
930 static inline void pipelined_receive(struct wake_q_head *wake_q,
931 				     struct mqueue_inode_info *info)
932 {
933 	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
934 
935 	if (!sender) {
936 		/* for poll */
937 		wake_up_interruptible(&info->wait_q);
938 		return;
939 	}
940 	if (msg_insert(sender->msg, info))
941 		return;
942 
943 	list_del(&sender->list);
944 	wake_q_add(wake_q, sender->task);
945 	sender->state = STATE_READY;
946 }
947 
948 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
949 		size_t msg_len, unsigned int msg_prio,
950 		struct timespec64 *ts)
951 {
952 	struct fd f;
953 	struct inode *inode;
954 	struct ext_wait_queue wait;
955 	struct ext_wait_queue *receiver;
956 	struct msg_msg *msg_ptr;
957 	struct mqueue_inode_info *info;
958 	ktime_t expires, *timeout = NULL;
959 	struct posix_msg_tree_node *new_leaf = NULL;
960 	int ret = 0;
961 	DEFINE_WAKE_Q(wake_q);
962 
963 	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
964 		return -EINVAL;
965 
966 	if (ts) {
967 		expires = timespec64_to_ktime(*ts);
968 		timeout = &expires;
969 	}
970 
971 	audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
972 
973 	f = fdget(mqdes);
974 	if (unlikely(!f.file)) {
975 		ret = -EBADF;
976 		goto out;
977 	}
978 
979 	inode = file_inode(f.file);
980 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
981 		ret = -EBADF;
982 		goto out_fput;
983 	}
984 	info = MQUEUE_I(inode);
985 	audit_file(f.file);
986 
987 	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
988 		ret = -EBADF;
989 		goto out_fput;
990 	}
991 
992 	if (unlikely(msg_len > info->attr.mq_msgsize)) {
993 		ret = -EMSGSIZE;
994 		goto out_fput;
995 	}
996 
997 	/* First try to allocate memory, before doing anything with
998 	 * existing queues. */
999 	msg_ptr = load_msg(u_msg_ptr, msg_len);
1000 	if (IS_ERR(msg_ptr)) {
1001 		ret = PTR_ERR(msg_ptr);
1002 		goto out_fput;
1003 	}
1004 	msg_ptr->m_ts = msg_len;
1005 	msg_ptr->m_type = msg_prio;
1006 
1007 	/*
1008 	 * msg_insert really wants us to have a valid, spare node struct so
1009 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1010 	 * fall back to that if necessary.
1011 	 */
1012 	if (!info->node_cache)
1013 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1014 
1015 	spin_lock(&info->lock);
1016 
1017 	if (!info->node_cache && new_leaf) {
1018 		/* Save our speculative allocation into the cache */
1019 		INIT_LIST_HEAD(&new_leaf->msg_list);
1020 		info->node_cache = new_leaf;
1021 		new_leaf = NULL;
1022 	} else {
1023 		kfree(new_leaf);
1024 	}
1025 
1026 	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1027 		if (f.file->f_flags & O_NONBLOCK) {
1028 			ret = -EAGAIN;
1029 		} else {
1030 			wait.task = current;
1031 			wait.msg = (void *) msg_ptr;
1032 			wait.state = STATE_NONE;
1033 			ret = wq_sleep(info, SEND, timeout, &wait);
1034 			/*
1035 			 * wq_sleep must be called with info->lock held, and
1036 			 * returns with the lock released
1037 			 */
1038 			goto out_free;
1039 		}
1040 	} else {
1041 		receiver = wq_get_first_waiter(info, RECV);
1042 		if (receiver) {
1043 			pipelined_send(&wake_q, info, msg_ptr, receiver);
1044 		} else {
1045 			/* adds message to the queue */
1046 			ret = msg_insert(msg_ptr, info);
1047 			if (ret)
1048 				goto out_unlock;
1049 			__do_notify(info);
1050 		}
1051 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1052 				current_time(inode);
1053 	}
1054 out_unlock:
1055 	spin_unlock(&info->lock);
1056 	wake_up_q(&wake_q);
1057 out_free:
1058 	if (ret)
1059 		free_msg(msg_ptr);
1060 out_fput:
1061 	fdput(f);
1062 out:
1063 	return ret;
1064 }
1065 
1066 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1067 		size_t msg_len, unsigned int __user *u_msg_prio,
1068 		struct timespec64 *ts)
1069 {
1070 	ssize_t ret;
1071 	struct msg_msg *msg_ptr;
1072 	struct fd f;
1073 	struct inode *inode;
1074 	struct mqueue_inode_info *info;
1075 	struct ext_wait_queue wait;
1076 	ktime_t expires, *timeout = NULL;
1077 	struct posix_msg_tree_node *new_leaf = NULL;
1078 
1079 	if (ts) {
1080 		expires = timespec64_to_ktime(*ts);
1081 		timeout = &expires;
1082 	}
1083 
1084 	audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1085 
1086 	f = fdget(mqdes);
1087 	if (unlikely(!f.file)) {
1088 		ret = -EBADF;
1089 		goto out;
1090 	}
1091 
1092 	inode = file_inode(f.file);
1093 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1094 		ret = -EBADF;
1095 		goto out_fput;
1096 	}
1097 	info = MQUEUE_I(inode);
1098 	audit_file(f.file);
1099 
1100 	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1101 		ret = -EBADF;
1102 		goto out_fput;
1103 	}
1104 
1105 	/* checks if buffer is big enough */
1106 	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1107 		ret = -EMSGSIZE;
1108 		goto out_fput;
1109 	}
1110 
1111 	/*
1112 	 * msg_insert really wants us to have a valid, spare node struct so
1113 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1114 	 * fall back to that if necessary.
1115 	 */
1116 	if (!info->node_cache)
1117 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1118 
1119 	spin_lock(&info->lock);
1120 
1121 	if (!info->node_cache && new_leaf) {
1122 		/* Save our speculative allocation into the cache */
1123 		INIT_LIST_HEAD(&new_leaf->msg_list);
1124 		info->node_cache = new_leaf;
1125 	} else {
1126 		kfree(new_leaf);
1127 	}
1128 
1129 	if (info->attr.mq_curmsgs == 0) {
1130 		if (f.file->f_flags & O_NONBLOCK) {
1131 			spin_unlock(&info->lock);
1132 			ret = -EAGAIN;
1133 		} else {
1134 			wait.task = current;
1135 			wait.state = STATE_NONE;
1136 			ret = wq_sleep(info, RECV, timeout, &wait);
1137 			msg_ptr = wait.msg;
1138 		}
1139 	} else {
1140 		DEFINE_WAKE_Q(wake_q);
1141 
1142 		msg_ptr = msg_get(info);
1143 
1144 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1145 				current_time(inode);
1146 
1147 		/* There is now free space in queue. */
1148 		pipelined_receive(&wake_q, info);
1149 		spin_unlock(&info->lock);
1150 		wake_up_q(&wake_q);
1151 		ret = 0;
1152 	}
1153 	if (ret == 0) {
1154 		ret = msg_ptr->m_ts;
1155 
1156 		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1157 			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1158 			ret = -EFAULT;
1159 		}
1160 		free_msg(msg_ptr);
1161 	}
1162 out_fput:
1163 	fdput(f);
1164 out:
1165 	return ret;
1166 }
1167 
1168 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1169 		size_t, msg_len, unsigned int, msg_prio,
1170 		const struct __kernel_timespec __user *, u_abs_timeout)
1171 {
1172 	struct timespec64 ts, *p = NULL;
1173 	if (u_abs_timeout) {
1174 		int res = prepare_timeout(u_abs_timeout, &ts);
1175 		if (res)
1176 			return res;
1177 		p = &ts;
1178 	}
1179 	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1180 }
1181 
1182 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1183 		size_t, msg_len, unsigned int __user *, u_msg_prio,
1184 		const struct __kernel_timespec __user *, u_abs_timeout)
1185 {
1186 	struct timespec64 ts, *p = NULL;
1187 	if (u_abs_timeout) {
1188 		int res = prepare_timeout(u_abs_timeout, &ts);
1189 		if (res)
1190 			return res;
1191 		p = &ts;
1192 	}
1193 	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1194 }
1195 
1196 /*
1197  * Notes: the case when user wants us to deregister (with NULL as pointer)
1198  * and he isn't currently owner of notification, will be silently discarded.
1199  * It isn't explicitly defined in the POSIX.
1200  */
1201 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1202 {
1203 	int ret;
1204 	struct fd f;
1205 	struct sock *sock;
1206 	struct inode *inode;
1207 	struct mqueue_inode_info *info;
1208 	struct sk_buff *nc;
1209 
1210 	audit_mq_notify(mqdes, notification);
1211 
1212 	nc = NULL;
1213 	sock = NULL;
1214 	if (notification != NULL) {
1215 		if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1216 			     notification->sigev_notify != SIGEV_SIGNAL &&
1217 			     notification->sigev_notify != SIGEV_THREAD))
1218 			return -EINVAL;
1219 		if (notification->sigev_notify == SIGEV_SIGNAL &&
1220 			!valid_signal(notification->sigev_signo)) {
1221 			return -EINVAL;
1222 		}
1223 		if (notification->sigev_notify == SIGEV_THREAD) {
1224 			long timeo;
1225 
1226 			/* create the notify skb */
1227 			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1228 			if (!nc) {
1229 				ret = -ENOMEM;
1230 				goto out;
1231 			}
1232 			if (copy_from_user(nc->data,
1233 					notification->sigev_value.sival_ptr,
1234 					NOTIFY_COOKIE_LEN)) {
1235 				ret = -EFAULT;
1236 				goto out;
1237 			}
1238 
1239 			/* TODO: add a header? */
1240 			skb_put(nc, NOTIFY_COOKIE_LEN);
1241 			/* and attach it to the socket */
1242 retry:
1243 			f = fdget(notification->sigev_signo);
1244 			if (!f.file) {
1245 				ret = -EBADF;
1246 				goto out;
1247 			}
1248 			sock = netlink_getsockbyfilp(f.file);
1249 			fdput(f);
1250 			if (IS_ERR(sock)) {
1251 				ret = PTR_ERR(sock);
1252 				sock = NULL;
1253 				goto out;
1254 			}
1255 
1256 			timeo = MAX_SCHEDULE_TIMEOUT;
1257 			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1258 			if (ret == 1) {
1259 				sock = NULL;
1260 				goto retry;
1261 			}
1262 			if (ret) {
1263 				sock = NULL;
1264 				nc = NULL;
1265 				goto out;
1266 			}
1267 		}
1268 	}
1269 
1270 	f = fdget(mqdes);
1271 	if (!f.file) {
1272 		ret = -EBADF;
1273 		goto out;
1274 	}
1275 
1276 	inode = file_inode(f.file);
1277 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1278 		ret = -EBADF;
1279 		goto out_fput;
1280 	}
1281 	info = MQUEUE_I(inode);
1282 
1283 	ret = 0;
1284 	spin_lock(&info->lock);
1285 	if (notification == NULL) {
1286 		if (info->notify_owner == task_tgid(current)) {
1287 			remove_notification(info);
1288 			inode->i_atime = inode->i_ctime = current_time(inode);
1289 		}
1290 	} else if (info->notify_owner != NULL) {
1291 		ret = -EBUSY;
1292 	} else {
1293 		switch (notification->sigev_notify) {
1294 		case SIGEV_NONE:
1295 			info->notify.sigev_notify = SIGEV_NONE;
1296 			break;
1297 		case SIGEV_THREAD:
1298 			info->notify_sock = sock;
1299 			info->notify_cookie = nc;
1300 			sock = NULL;
1301 			nc = NULL;
1302 			info->notify.sigev_notify = SIGEV_THREAD;
1303 			break;
1304 		case SIGEV_SIGNAL:
1305 			info->notify.sigev_signo = notification->sigev_signo;
1306 			info->notify.sigev_value = notification->sigev_value;
1307 			info->notify.sigev_notify = SIGEV_SIGNAL;
1308 			break;
1309 		}
1310 
1311 		info->notify_owner = get_pid(task_tgid(current));
1312 		info->notify_user_ns = get_user_ns(current_user_ns());
1313 		inode->i_atime = inode->i_ctime = current_time(inode);
1314 	}
1315 	spin_unlock(&info->lock);
1316 out_fput:
1317 	fdput(f);
1318 out:
1319 	if (sock)
1320 		netlink_detachskb(sock, nc);
1321 	else if (nc)
1322 		dev_kfree_skb(nc);
1323 
1324 	return ret;
1325 }
1326 
1327 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1328 		const struct sigevent __user *, u_notification)
1329 {
1330 	struct sigevent n, *p = NULL;
1331 	if (u_notification) {
1332 		if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1333 			return -EFAULT;
1334 		p = &n;
1335 	}
1336 	return do_mq_notify(mqdes, p);
1337 }
1338 
1339 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1340 {
1341 	struct fd f;
1342 	struct inode *inode;
1343 	struct mqueue_inode_info *info;
1344 
1345 	if (new && (new->mq_flags & (~O_NONBLOCK)))
1346 		return -EINVAL;
1347 
1348 	f = fdget(mqdes);
1349 	if (!f.file)
1350 		return -EBADF;
1351 
1352 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1353 		fdput(f);
1354 		return -EBADF;
1355 	}
1356 
1357 	inode = file_inode(f.file);
1358 	info = MQUEUE_I(inode);
1359 
1360 	spin_lock(&info->lock);
1361 
1362 	if (old) {
1363 		*old = info->attr;
1364 		old->mq_flags = f.file->f_flags & O_NONBLOCK;
1365 	}
1366 	if (new) {
1367 		audit_mq_getsetattr(mqdes, new);
1368 		spin_lock(&f.file->f_lock);
1369 		if (new->mq_flags & O_NONBLOCK)
1370 			f.file->f_flags |= O_NONBLOCK;
1371 		else
1372 			f.file->f_flags &= ~O_NONBLOCK;
1373 		spin_unlock(&f.file->f_lock);
1374 
1375 		inode->i_atime = inode->i_ctime = current_time(inode);
1376 	}
1377 
1378 	spin_unlock(&info->lock);
1379 	fdput(f);
1380 	return 0;
1381 }
1382 
1383 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1384 		const struct mq_attr __user *, u_mqstat,
1385 		struct mq_attr __user *, u_omqstat)
1386 {
1387 	int ret;
1388 	struct mq_attr mqstat, omqstat;
1389 	struct mq_attr *new = NULL, *old = NULL;
1390 
1391 	if (u_mqstat) {
1392 		new = &mqstat;
1393 		if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1394 			return -EFAULT;
1395 	}
1396 	if (u_omqstat)
1397 		old = &omqstat;
1398 
1399 	ret = do_mq_getsetattr(mqdes, new, old);
1400 	if (ret || !old)
1401 		return ret;
1402 
1403 	if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1404 		return -EFAULT;
1405 	return 0;
1406 }
1407 
1408 #ifdef CONFIG_COMPAT
1409 
1410 struct compat_mq_attr {
1411 	compat_long_t mq_flags;      /* message queue flags		     */
1412 	compat_long_t mq_maxmsg;     /* maximum number of messages	     */
1413 	compat_long_t mq_msgsize;    /* maximum message size		     */
1414 	compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1415 	compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1416 };
1417 
1418 static inline int get_compat_mq_attr(struct mq_attr *attr,
1419 			const struct compat_mq_attr __user *uattr)
1420 {
1421 	struct compat_mq_attr v;
1422 
1423 	if (copy_from_user(&v, uattr, sizeof(*uattr)))
1424 		return -EFAULT;
1425 
1426 	memset(attr, 0, sizeof(*attr));
1427 	attr->mq_flags = v.mq_flags;
1428 	attr->mq_maxmsg = v.mq_maxmsg;
1429 	attr->mq_msgsize = v.mq_msgsize;
1430 	attr->mq_curmsgs = v.mq_curmsgs;
1431 	return 0;
1432 }
1433 
1434 static inline int put_compat_mq_attr(const struct mq_attr *attr,
1435 			struct compat_mq_attr __user *uattr)
1436 {
1437 	struct compat_mq_attr v;
1438 
1439 	memset(&v, 0, sizeof(v));
1440 	v.mq_flags = attr->mq_flags;
1441 	v.mq_maxmsg = attr->mq_maxmsg;
1442 	v.mq_msgsize = attr->mq_msgsize;
1443 	v.mq_curmsgs = attr->mq_curmsgs;
1444 	if (copy_to_user(uattr, &v, sizeof(*uattr)))
1445 		return -EFAULT;
1446 	return 0;
1447 }
1448 
1449 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1450 		       int, oflag, compat_mode_t, mode,
1451 		       struct compat_mq_attr __user *, u_attr)
1452 {
1453 	struct mq_attr attr, *p = NULL;
1454 	if (u_attr && oflag & O_CREAT) {
1455 		p = &attr;
1456 		if (get_compat_mq_attr(&attr, u_attr))
1457 			return -EFAULT;
1458 	}
1459 	return do_mq_open(u_name, oflag, mode, p);
1460 }
1461 
1462 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1463 		       const struct compat_sigevent __user *, u_notification)
1464 {
1465 	struct sigevent n, *p = NULL;
1466 	if (u_notification) {
1467 		if (get_compat_sigevent(&n, u_notification))
1468 			return -EFAULT;
1469 		if (n.sigev_notify == SIGEV_THREAD)
1470 			n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1471 		p = &n;
1472 	}
1473 	return do_mq_notify(mqdes, p);
1474 }
1475 
1476 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1477 		       const struct compat_mq_attr __user *, u_mqstat,
1478 		       struct compat_mq_attr __user *, u_omqstat)
1479 {
1480 	int ret;
1481 	struct mq_attr mqstat, omqstat;
1482 	struct mq_attr *new = NULL, *old = NULL;
1483 
1484 	if (u_mqstat) {
1485 		new = &mqstat;
1486 		if (get_compat_mq_attr(new, u_mqstat))
1487 			return -EFAULT;
1488 	}
1489 	if (u_omqstat)
1490 		old = &omqstat;
1491 
1492 	ret = do_mq_getsetattr(mqdes, new, old);
1493 	if (ret || !old)
1494 		return ret;
1495 
1496 	if (put_compat_mq_attr(old, u_omqstat))
1497 		return -EFAULT;
1498 	return 0;
1499 }
1500 #endif
1501 
1502 #ifdef CONFIG_COMPAT_32BIT_TIME
1503 static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1504 				   struct timespec64 *ts)
1505 {
1506 	if (get_old_timespec32(ts, p))
1507 		return -EFAULT;
1508 	if (!timespec64_valid(ts))
1509 		return -EINVAL;
1510 	return 0;
1511 }
1512 
1513 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1514 		const char __user *, u_msg_ptr,
1515 		unsigned int, msg_len, unsigned int, msg_prio,
1516 		const struct old_timespec32 __user *, u_abs_timeout)
1517 {
1518 	struct timespec64 ts, *p = NULL;
1519 	if (u_abs_timeout) {
1520 		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1521 		if (res)
1522 			return res;
1523 		p = &ts;
1524 	}
1525 	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1526 }
1527 
1528 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1529 		char __user *, u_msg_ptr,
1530 		unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1531 		const struct old_timespec32 __user *, u_abs_timeout)
1532 {
1533 	struct timespec64 ts, *p = NULL;
1534 	if (u_abs_timeout) {
1535 		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1536 		if (res)
1537 			return res;
1538 		p = &ts;
1539 	}
1540 	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1541 }
1542 #endif
1543 
1544 static const struct inode_operations mqueue_dir_inode_operations = {
1545 	.lookup = simple_lookup,
1546 	.create = mqueue_create,
1547 	.unlink = mqueue_unlink,
1548 };
1549 
1550 static const struct file_operations mqueue_file_operations = {
1551 	.flush = mqueue_flush_file,
1552 	.poll = mqueue_poll_file,
1553 	.read = mqueue_read_file,
1554 	.llseek = default_llseek,
1555 };
1556 
1557 static const struct super_operations mqueue_super_ops = {
1558 	.alloc_inode = mqueue_alloc_inode,
1559 	.free_inode = mqueue_free_inode,
1560 	.evict_inode = mqueue_evict_inode,
1561 	.statfs = simple_statfs,
1562 };
1563 
1564 static const struct fs_context_operations mqueue_fs_context_ops = {
1565 	.free		= mqueue_fs_context_free,
1566 	.get_tree	= mqueue_get_tree,
1567 };
1568 
1569 static struct file_system_type mqueue_fs_type = {
1570 	.name			= "mqueue",
1571 	.init_fs_context	= mqueue_init_fs_context,
1572 	.kill_sb		= kill_litter_super,
1573 	.fs_flags		= FS_USERNS_MOUNT,
1574 };
1575 
1576 int mq_init_ns(struct ipc_namespace *ns)
1577 {
1578 	struct vfsmount *m;
1579 
1580 	ns->mq_queues_count  = 0;
1581 	ns->mq_queues_max    = DFLT_QUEUESMAX;
1582 	ns->mq_msg_max       = DFLT_MSGMAX;
1583 	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1584 	ns->mq_msg_default   = DFLT_MSG;
1585 	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1586 
1587 	m = mq_create_mount(ns);
1588 	if (IS_ERR(m))
1589 		return PTR_ERR(m);
1590 	ns->mq_mnt = m;
1591 	return 0;
1592 }
1593 
1594 void mq_clear_sbinfo(struct ipc_namespace *ns)
1595 {
1596 	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1597 }
1598 
1599 void mq_put_mnt(struct ipc_namespace *ns)
1600 {
1601 	kern_unmount(ns->mq_mnt);
1602 }
1603 
1604 static int __init init_mqueue_fs(void)
1605 {
1606 	int error;
1607 
1608 	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1609 				sizeof(struct mqueue_inode_info), 0,
1610 				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1611 	if (mqueue_inode_cachep == NULL)
1612 		return -ENOMEM;
1613 
1614 	/* ignore failures - they are not fatal */
1615 	mq_sysctl_table = mq_register_sysctl_table();
1616 
1617 	error = register_filesystem(&mqueue_fs_type);
1618 	if (error)
1619 		goto out_sysctl;
1620 
1621 	spin_lock_init(&mq_lock);
1622 
1623 	error = mq_init_ns(&init_ipc_ns);
1624 	if (error)
1625 		goto out_filesystem;
1626 
1627 	return 0;
1628 
1629 out_filesystem:
1630 	unregister_filesystem(&mqueue_fs_type);
1631 out_sysctl:
1632 	if (mq_sysctl_table)
1633 		unregister_sysctl_table(mq_sysctl_table);
1634 	kmem_cache_destroy(mqueue_inode_cachep);
1635 	return error;
1636 }
1637 
1638 device_initcall(init_mqueue_fs);
1639