xref: /openbmc/linux/ipc/mqueue.c (revision 5927145e)
1 /*
2  * POSIX message queues filesystem for Linux.
3  *
4  * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
5  *                          Michal Wronski          (michal.wronski@gmail.com)
6  *
7  * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
8  * Lockless receive & send, fd based notify:
9  *			    Manfred Spraul	    (manfred@colorfullife.com)
10  *
11  * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
12  *
13  * This file is released under the GPL.
14  */
15 
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/namei.h>
22 #include <linux/sysctl.h>
23 #include <linux/poll.h>
24 #include <linux/mqueue.h>
25 #include <linux/msg.h>
26 #include <linux/skbuff.h>
27 #include <linux/vmalloc.h>
28 #include <linux/netlink.h>
29 #include <linux/syscalls.h>
30 #include <linux/audit.h>
31 #include <linux/signal.h>
32 #include <linux/mutex.h>
33 #include <linux/nsproxy.h>
34 #include <linux/pid.h>
35 #include <linux/ipc_namespace.h>
36 #include <linux/user_namespace.h>
37 #include <linux/slab.h>
38 #include <linux/sched/wake_q.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/user.h>
41 
42 #include <net/sock.h>
43 #include "util.h"
44 
45 #define MQUEUE_MAGIC	0x19800202
46 #define DIRENT_SIZE	20
47 #define FILENT_SIZE	80
48 
49 #define SEND		0
50 #define RECV		1
51 
52 #define STATE_NONE	0
53 #define STATE_READY	1
54 
55 struct posix_msg_tree_node {
56 	struct rb_node		rb_node;
57 	struct list_head	msg_list;
58 	int			priority;
59 };
60 
61 struct ext_wait_queue {		/* queue of sleeping tasks */
62 	struct task_struct *task;
63 	struct list_head list;
64 	struct msg_msg *msg;	/* ptr of loaded message */
65 	int state;		/* one of STATE_* values */
66 };
67 
68 struct mqueue_inode_info {
69 	spinlock_t lock;
70 	struct inode vfs_inode;
71 	wait_queue_head_t wait_q;
72 
73 	struct rb_root msg_tree;
74 	struct posix_msg_tree_node *node_cache;
75 	struct mq_attr attr;
76 
77 	struct sigevent notify;
78 	struct pid *notify_owner;
79 	struct user_namespace *notify_user_ns;
80 	struct user_struct *user;	/* user who created, for accounting */
81 	struct sock *notify_sock;
82 	struct sk_buff *notify_cookie;
83 
84 	/* for tasks waiting for free space and messages, respectively */
85 	struct ext_wait_queue e_wait_q[2];
86 
87 	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
88 };
89 
90 static const struct inode_operations mqueue_dir_inode_operations;
91 static const struct file_operations mqueue_file_operations;
92 static const struct super_operations mqueue_super_ops;
93 static void remove_notification(struct mqueue_inode_info *info);
94 
95 static struct kmem_cache *mqueue_inode_cachep;
96 
97 static struct ctl_table_header *mq_sysctl_table;
98 
99 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
100 {
101 	return container_of(inode, struct mqueue_inode_info, vfs_inode);
102 }
103 
104 /*
105  * This routine should be called with the mq_lock held.
106  */
107 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
108 {
109 	return get_ipc_ns(inode->i_sb->s_fs_info);
110 }
111 
112 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
113 {
114 	struct ipc_namespace *ns;
115 
116 	spin_lock(&mq_lock);
117 	ns = __get_ns_from_inode(inode);
118 	spin_unlock(&mq_lock);
119 	return ns;
120 }
121 
122 /* Auxiliary functions to manipulate messages' list */
123 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
124 {
125 	struct rb_node **p, *parent = NULL;
126 	struct posix_msg_tree_node *leaf;
127 
128 	p = &info->msg_tree.rb_node;
129 	while (*p) {
130 		parent = *p;
131 		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
132 
133 		if (likely(leaf->priority == msg->m_type))
134 			goto insert_msg;
135 		else if (msg->m_type < leaf->priority)
136 			p = &(*p)->rb_left;
137 		else
138 			p = &(*p)->rb_right;
139 	}
140 	if (info->node_cache) {
141 		leaf = info->node_cache;
142 		info->node_cache = NULL;
143 	} else {
144 		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
145 		if (!leaf)
146 			return -ENOMEM;
147 		INIT_LIST_HEAD(&leaf->msg_list);
148 	}
149 	leaf->priority = msg->m_type;
150 	rb_link_node(&leaf->rb_node, parent, p);
151 	rb_insert_color(&leaf->rb_node, &info->msg_tree);
152 insert_msg:
153 	info->attr.mq_curmsgs++;
154 	info->qsize += msg->m_ts;
155 	list_add_tail(&msg->m_list, &leaf->msg_list);
156 	return 0;
157 }
158 
159 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
160 {
161 	struct rb_node **p, *parent = NULL;
162 	struct posix_msg_tree_node *leaf;
163 	struct msg_msg *msg;
164 
165 try_again:
166 	p = &info->msg_tree.rb_node;
167 	while (*p) {
168 		parent = *p;
169 		/*
170 		 * During insert, low priorities go to the left and high to the
171 		 * right.  On receive, we want the highest priorities first, so
172 		 * walk all the way to the right.
173 		 */
174 		p = &(*p)->rb_right;
175 	}
176 	if (!parent) {
177 		if (info->attr.mq_curmsgs) {
178 			pr_warn_once("Inconsistency in POSIX message queue, "
179 				     "no tree element, but supposedly messages "
180 				     "should exist!\n");
181 			info->attr.mq_curmsgs = 0;
182 		}
183 		return NULL;
184 	}
185 	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
186 	if (unlikely(list_empty(&leaf->msg_list))) {
187 		pr_warn_once("Inconsistency in POSIX message queue, "
188 			     "empty leaf node but we haven't implemented "
189 			     "lazy leaf delete!\n");
190 		rb_erase(&leaf->rb_node, &info->msg_tree);
191 		if (info->node_cache) {
192 			kfree(leaf);
193 		} else {
194 			info->node_cache = leaf;
195 		}
196 		goto try_again;
197 	} else {
198 		msg = list_first_entry(&leaf->msg_list,
199 				       struct msg_msg, m_list);
200 		list_del(&msg->m_list);
201 		if (list_empty(&leaf->msg_list)) {
202 			rb_erase(&leaf->rb_node, &info->msg_tree);
203 			if (info->node_cache) {
204 				kfree(leaf);
205 			} else {
206 				info->node_cache = leaf;
207 			}
208 		}
209 	}
210 	info->attr.mq_curmsgs--;
211 	info->qsize -= msg->m_ts;
212 	return msg;
213 }
214 
215 static struct inode *mqueue_get_inode(struct super_block *sb,
216 		struct ipc_namespace *ipc_ns, umode_t mode,
217 		struct mq_attr *attr)
218 {
219 	struct user_struct *u = current_user();
220 	struct inode *inode;
221 	int ret = -ENOMEM;
222 
223 	inode = new_inode(sb);
224 	if (!inode)
225 		goto err;
226 
227 	inode->i_ino = get_next_ino();
228 	inode->i_mode = mode;
229 	inode->i_uid = current_fsuid();
230 	inode->i_gid = current_fsgid();
231 	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
232 
233 	if (S_ISREG(mode)) {
234 		struct mqueue_inode_info *info;
235 		unsigned long mq_bytes, mq_treesize;
236 
237 		inode->i_fop = &mqueue_file_operations;
238 		inode->i_size = FILENT_SIZE;
239 		/* mqueue specific info */
240 		info = MQUEUE_I(inode);
241 		spin_lock_init(&info->lock);
242 		init_waitqueue_head(&info->wait_q);
243 		INIT_LIST_HEAD(&info->e_wait_q[0].list);
244 		INIT_LIST_HEAD(&info->e_wait_q[1].list);
245 		info->notify_owner = NULL;
246 		info->notify_user_ns = NULL;
247 		info->qsize = 0;
248 		info->user = NULL;	/* set when all is ok */
249 		info->msg_tree = RB_ROOT;
250 		info->node_cache = NULL;
251 		memset(&info->attr, 0, sizeof(info->attr));
252 		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
253 					   ipc_ns->mq_msg_default);
254 		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
255 					    ipc_ns->mq_msgsize_default);
256 		if (attr) {
257 			info->attr.mq_maxmsg = attr->mq_maxmsg;
258 			info->attr.mq_msgsize = attr->mq_msgsize;
259 		}
260 		/*
261 		 * We used to allocate a static array of pointers and account
262 		 * the size of that array as well as one msg_msg struct per
263 		 * possible message into the queue size. That's no longer
264 		 * accurate as the queue is now an rbtree and will grow and
265 		 * shrink depending on usage patterns.  We can, however, still
266 		 * account one msg_msg struct per message, but the nodes are
267 		 * allocated depending on priority usage, and most programs
268 		 * only use one, or a handful, of priorities.  However, since
269 		 * this is pinned memory, we need to assume worst case, so
270 		 * that means the min(mq_maxmsg, max_priorities) * struct
271 		 * posix_msg_tree_node.
272 		 */
273 
274 		ret = -EINVAL;
275 		if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
276 			goto out_inode;
277 		if (capable(CAP_SYS_RESOURCE)) {
278 			if (info->attr.mq_maxmsg > HARD_MSGMAX ||
279 			    info->attr.mq_msgsize > HARD_MSGSIZEMAX)
280 				goto out_inode;
281 		} else {
282 			if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
283 					info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
284 				goto out_inode;
285 		}
286 		ret = -EOVERFLOW;
287 		/* check for overflow */
288 		if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
289 			goto out_inode;
290 		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
291 			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
292 			sizeof(struct posix_msg_tree_node);
293 		mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
294 		if (mq_bytes + mq_treesize < mq_bytes)
295 			goto out_inode;
296 		mq_bytes += mq_treesize;
297 		spin_lock(&mq_lock);
298 		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
299 		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
300 			spin_unlock(&mq_lock);
301 			/* mqueue_evict_inode() releases info->messages */
302 			ret = -EMFILE;
303 			goto out_inode;
304 		}
305 		u->mq_bytes += mq_bytes;
306 		spin_unlock(&mq_lock);
307 
308 		/* all is ok */
309 		info->user = get_uid(u);
310 	} else if (S_ISDIR(mode)) {
311 		inc_nlink(inode);
312 		/* Some things misbehave if size == 0 on a directory */
313 		inode->i_size = 2 * DIRENT_SIZE;
314 		inode->i_op = &mqueue_dir_inode_operations;
315 		inode->i_fop = &simple_dir_operations;
316 	}
317 
318 	return inode;
319 out_inode:
320 	iput(inode);
321 err:
322 	return ERR_PTR(ret);
323 }
324 
325 static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
326 {
327 	struct inode *inode;
328 	struct ipc_namespace *ns = data;
329 
330 	sb->s_fs_info = ns;
331 	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
332 	sb->s_blocksize = PAGE_SIZE;
333 	sb->s_blocksize_bits = PAGE_SHIFT;
334 	sb->s_magic = MQUEUE_MAGIC;
335 	sb->s_op = &mqueue_super_ops;
336 
337 	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
338 	if (IS_ERR(inode))
339 		return PTR_ERR(inode);
340 
341 	sb->s_root = d_make_root(inode);
342 	if (!sb->s_root)
343 		return -ENOMEM;
344 	return 0;
345 }
346 
347 static struct file_system_type mqueue_fs_type;
348 /*
349  * Return value is pinned only by reference in ->mq_mnt; it will
350  * live until ipcns dies.  Caller does not need to drop it.
351  */
352 static struct vfsmount *mq_internal_mount(void)
353 {
354 	struct ipc_namespace *ns = current->nsproxy->ipc_ns;
355 	struct vfsmount *m = ns->mq_mnt;
356 	if (m)
357 		return m;
358 	m = kern_mount_data(&mqueue_fs_type, ns);
359 	spin_lock(&mq_lock);
360 	if (unlikely(ns->mq_mnt)) {
361 		spin_unlock(&mq_lock);
362 		if (!IS_ERR(m))
363 			kern_unmount(m);
364 		return ns->mq_mnt;
365 	}
366 	if (!IS_ERR(m))
367 		ns->mq_mnt = m;
368 	spin_unlock(&mq_lock);
369 	return m;
370 }
371 
372 static struct dentry *mqueue_mount(struct file_system_type *fs_type,
373 			 int flags, const char *dev_name,
374 			 void *data)
375 {
376 	struct vfsmount *m;
377 	if (flags & SB_KERNMOUNT)
378 		return mount_nodev(fs_type, flags, data, mqueue_fill_super);
379 	m = mq_internal_mount();
380 	if (IS_ERR(m))
381 		return ERR_CAST(m);
382 	atomic_inc(&m->mnt_sb->s_active);
383 	down_write(&m->mnt_sb->s_umount);
384 	return dget(m->mnt_root);
385 }
386 
387 static void init_once(void *foo)
388 {
389 	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
390 
391 	inode_init_once(&p->vfs_inode);
392 }
393 
394 static struct inode *mqueue_alloc_inode(struct super_block *sb)
395 {
396 	struct mqueue_inode_info *ei;
397 
398 	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
399 	if (!ei)
400 		return NULL;
401 	return &ei->vfs_inode;
402 }
403 
404 static void mqueue_i_callback(struct rcu_head *head)
405 {
406 	struct inode *inode = container_of(head, struct inode, i_rcu);
407 	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
408 }
409 
410 static void mqueue_destroy_inode(struct inode *inode)
411 {
412 	call_rcu(&inode->i_rcu, mqueue_i_callback);
413 }
414 
415 static void mqueue_evict_inode(struct inode *inode)
416 {
417 	struct mqueue_inode_info *info;
418 	struct user_struct *user;
419 	unsigned long mq_bytes, mq_treesize;
420 	struct ipc_namespace *ipc_ns;
421 	struct msg_msg *msg;
422 
423 	clear_inode(inode);
424 
425 	if (S_ISDIR(inode->i_mode))
426 		return;
427 
428 	ipc_ns = get_ns_from_inode(inode);
429 	info = MQUEUE_I(inode);
430 	spin_lock(&info->lock);
431 	while ((msg = msg_get(info)) != NULL)
432 		free_msg(msg);
433 	kfree(info->node_cache);
434 	spin_unlock(&info->lock);
435 
436 	/* Total amount of bytes accounted for the mqueue */
437 	mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
438 		min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
439 		sizeof(struct posix_msg_tree_node);
440 
441 	mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
442 				  info->attr.mq_msgsize);
443 
444 	user = info->user;
445 	if (user) {
446 		spin_lock(&mq_lock);
447 		user->mq_bytes -= mq_bytes;
448 		/*
449 		 * get_ns_from_inode() ensures that the
450 		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
451 		 * to which we now hold a reference, or it is NULL.
452 		 * We can't put it here under mq_lock, though.
453 		 */
454 		if (ipc_ns)
455 			ipc_ns->mq_queues_count--;
456 		spin_unlock(&mq_lock);
457 		free_uid(user);
458 	}
459 	if (ipc_ns)
460 		put_ipc_ns(ipc_ns);
461 }
462 
463 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
464 {
465 	struct inode *dir = dentry->d_parent->d_inode;
466 	struct inode *inode;
467 	struct mq_attr *attr = arg;
468 	int error;
469 	struct ipc_namespace *ipc_ns;
470 
471 	spin_lock(&mq_lock);
472 	ipc_ns = __get_ns_from_inode(dir);
473 	if (!ipc_ns) {
474 		error = -EACCES;
475 		goto out_unlock;
476 	}
477 
478 	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
479 	    !capable(CAP_SYS_RESOURCE)) {
480 		error = -ENOSPC;
481 		goto out_unlock;
482 	}
483 	ipc_ns->mq_queues_count++;
484 	spin_unlock(&mq_lock);
485 
486 	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
487 	if (IS_ERR(inode)) {
488 		error = PTR_ERR(inode);
489 		spin_lock(&mq_lock);
490 		ipc_ns->mq_queues_count--;
491 		goto out_unlock;
492 	}
493 
494 	put_ipc_ns(ipc_ns);
495 	dir->i_size += DIRENT_SIZE;
496 	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
497 
498 	d_instantiate(dentry, inode);
499 	dget(dentry);
500 	return 0;
501 out_unlock:
502 	spin_unlock(&mq_lock);
503 	if (ipc_ns)
504 		put_ipc_ns(ipc_ns);
505 	return error;
506 }
507 
508 static int mqueue_create(struct inode *dir, struct dentry *dentry,
509 				umode_t mode, bool excl)
510 {
511 	return mqueue_create_attr(dentry, mode, NULL);
512 }
513 
514 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
515 {
516 	struct inode *inode = d_inode(dentry);
517 
518 	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
519 	dir->i_size -= DIRENT_SIZE;
520 	drop_nlink(inode);
521 	dput(dentry);
522 	return 0;
523 }
524 
525 /*
526 *	This is routine for system read from queue file.
527 *	To avoid mess with doing here some sort of mq_receive we allow
528 *	to read only queue size & notification info (the only values
529 *	that are interesting from user point of view and aren't accessible
530 *	through std routines)
531 */
532 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
533 				size_t count, loff_t *off)
534 {
535 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
536 	char buffer[FILENT_SIZE];
537 	ssize_t ret;
538 
539 	spin_lock(&info->lock);
540 	snprintf(buffer, sizeof(buffer),
541 			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
542 			info->qsize,
543 			info->notify_owner ? info->notify.sigev_notify : 0,
544 			(info->notify_owner &&
545 			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
546 				info->notify.sigev_signo : 0,
547 			pid_vnr(info->notify_owner));
548 	spin_unlock(&info->lock);
549 	buffer[sizeof(buffer)-1] = '\0';
550 
551 	ret = simple_read_from_buffer(u_data, count, off, buffer,
552 				strlen(buffer));
553 	if (ret <= 0)
554 		return ret;
555 
556 	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
557 	return ret;
558 }
559 
560 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
561 {
562 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
563 
564 	spin_lock(&info->lock);
565 	if (task_tgid(current) == info->notify_owner)
566 		remove_notification(info);
567 
568 	spin_unlock(&info->lock);
569 	return 0;
570 }
571 
572 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
573 {
574 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
575 	__poll_t retval = 0;
576 
577 	poll_wait(filp, &info->wait_q, poll_tab);
578 
579 	spin_lock(&info->lock);
580 	if (info->attr.mq_curmsgs)
581 		retval = EPOLLIN | EPOLLRDNORM;
582 
583 	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
584 		retval |= EPOLLOUT | EPOLLWRNORM;
585 	spin_unlock(&info->lock);
586 
587 	return retval;
588 }
589 
590 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
591 static void wq_add(struct mqueue_inode_info *info, int sr,
592 			struct ext_wait_queue *ewp)
593 {
594 	struct ext_wait_queue *walk;
595 
596 	ewp->task = current;
597 
598 	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
599 		if (walk->task->prio <= current->prio) {
600 			list_add_tail(&ewp->list, &walk->list);
601 			return;
602 		}
603 	}
604 	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
605 }
606 
607 /*
608  * Puts current task to sleep. Caller must hold queue lock. After return
609  * lock isn't held.
610  * sr: SEND or RECV
611  */
612 static int wq_sleep(struct mqueue_inode_info *info, int sr,
613 		    ktime_t *timeout, struct ext_wait_queue *ewp)
614 	__releases(&info->lock)
615 {
616 	int retval;
617 	signed long time;
618 
619 	wq_add(info, sr, ewp);
620 
621 	for (;;) {
622 		__set_current_state(TASK_INTERRUPTIBLE);
623 
624 		spin_unlock(&info->lock);
625 		time = schedule_hrtimeout_range_clock(timeout, 0,
626 			HRTIMER_MODE_ABS, CLOCK_REALTIME);
627 
628 		if (ewp->state == STATE_READY) {
629 			retval = 0;
630 			goto out;
631 		}
632 		spin_lock(&info->lock);
633 		if (ewp->state == STATE_READY) {
634 			retval = 0;
635 			goto out_unlock;
636 		}
637 		if (signal_pending(current)) {
638 			retval = -ERESTARTSYS;
639 			break;
640 		}
641 		if (time == 0) {
642 			retval = -ETIMEDOUT;
643 			break;
644 		}
645 	}
646 	list_del(&ewp->list);
647 out_unlock:
648 	spin_unlock(&info->lock);
649 out:
650 	return retval;
651 }
652 
653 /*
654  * Returns waiting task that should be serviced first or NULL if none exists
655  */
656 static struct ext_wait_queue *wq_get_first_waiter(
657 		struct mqueue_inode_info *info, int sr)
658 {
659 	struct list_head *ptr;
660 
661 	ptr = info->e_wait_q[sr].list.prev;
662 	if (ptr == &info->e_wait_q[sr].list)
663 		return NULL;
664 	return list_entry(ptr, struct ext_wait_queue, list);
665 }
666 
667 
668 static inline void set_cookie(struct sk_buff *skb, char code)
669 {
670 	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
671 }
672 
673 /*
674  * The next function is only to split too long sys_mq_timedsend
675  */
676 static void __do_notify(struct mqueue_inode_info *info)
677 {
678 	/* notification
679 	 * invoked when there is registered process and there isn't process
680 	 * waiting synchronously for message AND state of queue changed from
681 	 * empty to not empty. Here we are sure that no one is waiting
682 	 * synchronously. */
683 	if (info->notify_owner &&
684 	    info->attr.mq_curmsgs == 1) {
685 		struct siginfo sig_i;
686 		switch (info->notify.sigev_notify) {
687 		case SIGEV_NONE:
688 			break;
689 		case SIGEV_SIGNAL:
690 			/* sends signal */
691 
692 			clear_siginfo(&sig_i);
693 			sig_i.si_signo = info->notify.sigev_signo;
694 			sig_i.si_errno = 0;
695 			sig_i.si_code = SI_MESGQ;
696 			sig_i.si_value = info->notify.sigev_value;
697 			/* map current pid/uid into info->owner's namespaces */
698 			rcu_read_lock();
699 			sig_i.si_pid = task_tgid_nr_ns(current,
700 						ns_of_pid(info->notify_owner));
701 			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
702 			rcu_read_unlock();
703 
704 			kill_pid_info(info->notify.sigev_signo,
705 				      &sig_i, info->notify_owner);
706 			break;
707 		case SIGEV_THREAD:
708 			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
709 			netlink_sendskb(info->notify_sock, info->notify_cookie);
710 			break;
711 		}
712 		/* after notification unregisters process */
713 		put_pid(info->notify_owner);
714 		put_user_ns(info->notify_user_ns);
715 		info->notify_owner = NULL;
716 		info->notify_user_ns = NULL;
717 	}
718 	wake_up(&info->wait_q);
719 }
720 
721 static int prepare_timeout(const struct timespec __user *u_abs_timeout,
722 			   struct timespec64 *ts)
723 {
724 	if (get_timespec64(ts, u_abs_timeout))
725 		return -EFAULT;
726 	if (!timespec64_valid(ts))
727 		return -EINVAL;
728 	return 0;
729 }
730 
731 static void remove_notification(struct mqueue_inode_info *info)
732 {
733 	if (info->notify_owner != NULL &&
734 	    info->notify.sigev_notify == SIGEV_THREAD) {
735 		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
736 		netlink_sendskb(info->notify_sock, info->notify_cookie);
737 	}
738 	put_pid(info->notify_owner);
739 	put_user_ns(info->notify_user_ns);
740 	info->notify_owner = NULL;
741 	info->notify_user_ns = NULL;
742 }
743 
744 static int prepare_open(struct dentry *dentry, int oflag, int ro,
745 			umode_t mode, struct filename *name,
746 			struct mq_attr *attr)
747 {
748 	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
749 						  MAY_READ | MAY_WRITE };
750 	int acc;
751 
752 	if (d_really_is_negative(dentry)) {
753 		if (!(oflag & O_CREAT))
754 			return -ENOENT;
755 		if (ro)
756 			return ro;
757 		audit_inode_parent_hidden(name, dentry->d_parent);
758 		return vfs_mkobj(dentry, mode & ~current_umask(),
759 				  mqueue_create_attr, attr);
760 	}
761 	/* it already existed */
762 	audit_inode(name, dentry, 0);
763 	if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
764 		return -EEXIST;
765 	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
766 		return -EINVAL;
767 	acc = oflag2acc[oflag & O_ACCMODE];
768 	return inode_permission(d_inode(dentry), acc);
769 }
770 
771 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
772 		      struct mq_attr *attr)
773 {
774 	struct vfsmount *mnt = mq_internal_mount();
775 	struct dentry *root;
776 	struct filename *name;
777 	struct path path;
778 	int fd, error;
779 	int ro;
780 
781 	if (IS_ERR(mnt))
782 		return PTR_ERR(mnt);
783 
784 	audit_mq_open(oflag, mode, attr);
785 
786 	if (IS_ERR(name = getname(u_name)))
787 		return PTR_ERR(name);
788 
789 	fd = get_unused_fd_flags(O_CLOEXEC);
790 	if (fd < 0)
791 		goto out_putname;
792 
793 	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
794 	root = mnt->mnt_root;
795 	inode_lock(d_inode(root));
796 	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
797 	if (IS_ERR(path.dentry)) {
798 		error = PTR_ERR(path.dentry);
799 		goto out_putfd;
800 	}
801 	path.mnt = mntget(mnt);
802 	error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
803 	if (!error) {
804 		struct file *file = dentry_open(&path, oflag, current_cred());
805 		if (!IS_ERR(file))
806 			fd_install(fd, file);
807 		else
808 			error = PTR_ERR(file);
809 	}
810 	path_put(&path);
811 out_putfd:
812 	if (error) {
813 		put_unused_fd(fd);
814 		fd = error;
815 	}
816 	inode_unlock(d_inode(root));
817 	if (!ro)
818 		mnt_drop_write(mnt);
819 out_putname:
820 	putname(name);
821 	return fd;
822 }
823 
824 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
825 		struct mq_attr __user *, u_attr)
826 {
827 	struct mq_attr attr;
828 	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
829 		return -EFAULT;
830 
831 	return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
832 }
833 
834 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
835 {
836 	int err;
837 	struct filename *name;
838 	struct dentry *dentry;
839 	struct inode *inode = NULL;
840 	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
841 	struct vfsmount *mnt = ipc_ns->mq_mnt;
842 
843 	if (!mnt)
844 		return -ENOENT;
845 
846 	name = getname(u_name);
847 	if (IS_ERR(name))
848 		return PTR_ERR(name);
849 
850 	audit_inode_parent_hidden(name, mnt->mnt_root);
851 	err = mnt_want_write(mnt);
852 	if (err)
853 		goto out_name;
854 	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
855 	dentry = lookup_one_len(name->name, mnt->mnt_root,
856 				strlen(name->name));
857 	if (IS_ERR(dentry)) {
858 		err = PTR_ERR(dentry);
859 		goto out_unlock;
860 	}
861 
862 	inode = d_inode(dentry);
863 	if (!inode) {
864 		err = -ENOENT;
865 	} else {
866 		ihold(inode);
867 		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
868 	}
869 	dput(dentry);
870 
871 out_unlock:
872 	inode_unlock(d_inode(mnt->mnt_root));
873 	if (inode)
874 		iput(inode);
875 	mnt_drop_write(mnt);
876 out_name:
877 	putname(name);
878 
879 	return err;
880 }
881 
882 /* Pipelined send and receive functions.
883  *
884  * If a receiver finds no waiting message, then it registers itself in the
885  * list of waiting receivers. A sender checks that list before adding the new
886  * message into the message array. If there is a waiting receiver, then it
887  * bypasses the message array and directly hands the message over to the
888  * receiver. The receiver accepts the message and returns without grabbing the
889  * queue spinlock:
890  *
891  * - Set pointer to message.
892  * - Queue the receiver task for later wakeup (without the info->lock).
893  * - Update its state to STATE_READY. Now the receiver can continue.
894  * - Wake up the process after the lock is dropped. Should the process wake up
895  *   before this wakeup (due to a timeout or a signal) it will either see
896  *   STATE_READY and continue or acquire the lock to check the state again.
897  *
898  * The same algorithm is used for senders.
899  */
900 
901 /* pipelined_send() - send a message directly to the task waiting in
902  * sys_mq_timedreceive() (without inserting message into a queue).
903  */
904 static inline void pipelined_send(struct wake_q_head *wake_q,
905 				  struct mqueue_inode_info *info,
906 				  struct msg_msg *message,
907 				  struct ext_wait_queue *receiver)
908 {
909 	receiver->msg = message;
910 	list_del(&receiver->list);
911 	wake_q_add(wake_q, receiver->task);
912 	/*
913 	 * Rely on the implicit cmpxchg barrier from wake_q_add such
914 	 * that we can ensure that updating receiver->state is the last
915 	 * write operation: As once set, the receiver can continue,
916 	 * and if we don't have the reference count from the wake_q,
917 	 * yet, at that point we can later have a use-after-free
918 	 * condition and bogus wakeup.
919 	 */
920 	receiver->state = STATE_READY;
921 }
922 
923 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
924  * gets its message and put to the queue (we have one free place for sure). */
925 static inline void pipelined_receive(struct wake_q_head *wake_q,
926 				     struct mqueue_inode_info *info)
927 {
928 	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
929 
930 	if (!sender) {
931 		/* for poll */
932 		wake_up_interruptible(&info->wait_q);
933 		return;
934 	}
935 	if (msg_insert(sender->msg, info))
936 		return;
937 
938 	list_del(&sender->list);
939 	wake_q_add(wake_q, sender->task);
940 	sender->state = STATE_READY;
941 }
942 
943 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
944 		size_t msg_len, unsigned int msg_prio,
945 		struct timespec64 *ts)
946 {
947 	struct fd f;
948 	struct inode *inode;
949 	struct ext_wait_queue wait;
950 	struct ext_wait_queue *receiver;
951 	struct msg_msg *msg_ptr;
952 	struct mqueue_inode_info *info;
953 	ktime_t expires, *timeout = NULL;
954 	struct posix_msg_tree_node *new_leaf = NULL;
955 	int ret = 0;
956 	DEFINE_WAKE_Q(wake_q);
957 
958 	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
959 		return -EINVAL;
960 
961 	if (ts) {
962 		expires = timespec64_to_ktime(*ts);
963 		timeout = &expires;
964 	}
965 
966 	audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
967 
968 	f = fdget(mqdes);
969 	if (unlikely(!f.file)) {
970 		ret = -EBADF;
971 		goto out;
972 	}
973 
974 	inode = file_inode(f.file);
975 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
976 		ret = -EBADF;
977 		goto out_fput;
978 	}
979 	info = MQUEUE_I(inode);
980 	audit_file(f.file);
981 
982 	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
983 		ret = -EBADF;
984 		goto out_fput;
985 	}
986 
987 	if (unlikely(msg_len > info->attr.mq_msgsize)) {
988 		ret = -EMSGSIZE;
989 		goto out_fput;
990 	}
991 
992 	/* First try to allocate memory, before doing anything with
993 	 * existing queues. */
994 	msg_ptr = load_msg(u_msg_ptr, msg_len);
995 	if (IS_ERR(msg_ptr)) {
996 		ret = PTR_ERR(msg_ptr);
997 		goto out_fput;
998 	}
999 	msg_ptr->m_ts = msg_len;
1000 	msg_ptr->m_type = msg_prio;
1001 
1002 	/*
1003 	 * msg_insert really wants us to have a valid, spare node struct so
1004 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1005 	 * fall back to that if necessary.
1006 	 */
1007 	if (!info->node_cache)
1008 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1009 
1010 	spin_lock(&info->lock);
1011 
1012 	if (!info->node_cache && new_leaf) {
1013 		/* Save our speculative allocation into the cache */
1014 		INIT_LIST_HEAD(&new_leaf->msg_list);
1015 		info->node_cache = new_leaf;
1016 		new_leaf = NULL;
1017 	} else {
1018 		kfree(new_leaf);
1019 	}
1020 
1021 	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1022 		if (f.file->f_flags & O_NONBLOCK) {
1023 			ret = -EAGAIN;
1024 		} else {
1025 			wait.task = current;
1026 			wait.msg = (void *) msg_ptr;
1027 			wait.state = STATE_NONE;
1028 			ret = wq_sleep(info, SEND, timeout, &wait);
1029 			/*
1030 			 * wq_sleep must be called with info->lock held, and
1031 			 * returns with the lock released
1032 			 */
1033 			goto out_free;
1034 		}
1035 	} else {
1036 		receiver = wq_get_first_waiter(info, RECV);
1037 		if (receiver) {
1038 			pipelined_send(&wake_q, info, msg_ptr, receiver);
1039 		} else {
1040 			/* adds message to the queue */
1041 			ret = msg_insert(msg_ptr, info);
1042 			if (ret)
1043 				goto out_unlock;
1044 			__do_notify(info);
1045 		}
1046 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1047 				current_time(inode);
1048 	}
1049 out_unlock:
1050 	spin_unlock(&info->lock);
1051 	wake_up_q(&wake_q);
1052 out_free:
1053 	if (ret)
1054 		free_msg(msg_ptr);
1055 out_fput:
1056 	fdput(f);
1057 out:
1058 	return ret;
1059 }
1060 
1061 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1062 		size_t msg_len, unsigned int __user *u_msg_prio,
1063 		struct timespec64 *ts)
1064 {
1065 	ssize_t ret;
1066 	struct msg_msg *msg_ptr;
1067 	struct fd f;
1068 	struct inode *inode;
1069 	struct mqueue_inode_info *info;
1070 	struct ext_wait_queue wait;
1071 	ktime_t expires, *timeout = NULL;
1072 	struct posix_msg_tree_node *new_leaf = NULL;
1073 
1074 	if (ts) {
1075 		expires = timespec64_to_ktime(*ts);
1076 		timeout = &expires;
1077 	}
1078 
1079 	audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1080 
1081 	f = fdget(mqdes);
1082 	if (unlikely(!f.file)) {
1083 		ret = -EBADF;
1084 		goto out;
1085 	}
1086 
1087 	inode = file_inode(f.file);
1088 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1089 		ret = -EBADF;
1090 		goto out_fput;
1091 	}
1092 	info = MQUEUE_I(inode);
1093 	audit_file(f.file);
1094 
1095 	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1096 		ret = -EBADF;
1097 		goto out_fput;
1098 	}
1099 
1100 	/* checks if buffer is big enough */
1101 	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1102 		ret = -EMSGSIZE;
1103 		goto out_fput;
1104 	}
1105 
1106 	/*
1107 	 * msg_insert really wants us to have a valid, spare node struct so
1108 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1109 	 * fall back to that if necessary.
1110 	 */
1111 	if (!info->node_cache)
1112 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1113 
1114 	spin_lock(&info->lock);
1115 
1116 	if (!info->node_cache && new_leaf) {
1117 		/* Save our speculative allocation into the cache */
1118 		INIT_LIST_HEAD(&new_leaf->msg_list);
1119 		info->node_cache = new_leaf;
1120 	} else {
1121 		kfree(new_leaf);
1122 	}
1123 
1124 	if (info->attr.mq_curmsgs == 0) {
1125 		if (f.file->f_flags & O_NONBLOCK) {
1126 			spin_unlock(&info->lock);
1127 			ret = -EAGAIN;
1128 		} else {
1129 			wait.task = current;
1130 			wait.state = STATE_NONE;
1131 			ret = wq_sleep(info, RECV, timeout, &wait);
1132 			msg_ptr = wait.msg;
1133 		}
1134 	} else {
1135 		DEFINE_WAKE_Q(wake_q);
1136 
1137 		msg_ptr = msg_get(info);
1138 
1139 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1140 				current_time(inode);
1141 
1142 		/* There is now free space in queue. */
1143 		pipelined_receive(&wake_q, info);
1144 		spin_unlock(&info->lock);
1145 		wake_up_q(&wake_q);
1146 		ret = 0;
1147 	}
1148 	if (ret == 0) {
1149 		ret = msg_ptr->m_ts;
1150 
1151 		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1152 			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1153 			ret = -EFAULT;
1154 		}
1155 		free_msg(msg_ptr);
1156 	}
1157 out_fput:
1158 	fdput(f);
1159 out:
1160 	return ret;
1161 }
1162 
1163 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1164 		size_t, msg_len, unsigned int, msg_prio,
1165 		const struct timespec __user *, u_abs_timeout)
1166 {
1167 	struct timespec64 ts, *p = NULL;
1168 	if (u_abs_timeout) {
1169 		int res = prepare_timeout(u_abs_timeout, &ts);
1170 		if (res)
1171 			return res;
1172 		p = &ts;
1173 	}
1174 	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1175 }
1176 
1177 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1178 		size_t, msg_len, unsigned int __user *, u_msg_prio,
1179 		const struct timespec __user *, u_abs_timeout)
1180 {
1181 	struct timespec64 ts, *p = NULL;
1182 	if (u_abs_timeout) {
1183 		int res = prepare_timeout(u_abs_timeout, &ts);
1184 		if (res)
1185 			return res;
1186 		p = &ts;
1187 	}
1188 	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1189 }
1190 
1191 /*
1192  * Notes: the case when user wants us to deregister (with NULL as pointer)
1193  * and he isn't currently owner of notification, will be silently discarded.
1194  * It isn't explicitly defined in the POSIX.
1195  */
1196 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1197 {
1198 	int ret;
1199 	struct fd f;
1200 	struct sock *sock;
1201 	struct inode *inode;
1202 	struct mqueue_inode_info *info;
1203 	struct sk_buff *nc;
1204 
1205 	audit_mq_notify(mqdes, notification);
1206 
1207 	nc = NULL;
1208 	sock = NULL;
1209 	if (notification != NULL) {
1210 		if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1211 			     notification->sigev_notify != SIGEV_SIGNAL &&
1212 			     notification->sigev_notify != SIGEV_THREAD))
1213 			return -EINVAL;
1214 		if (notification->sigev_notify == SIGEV_SIGNAL &&
1215 			!valid_signal(notification->sigev_signo)) {
1216 			return -EINVAL;
1217 		}
1218 		if (notification->sigev_notify == SIGEV_THREAD) {
1219 			long timeo;
1220 
1221 			/* create the notify skb */
1222 			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1223 			if (!nc) {
1224 				ret = -ENOMEM;
1225 				goto out;
1226 			}
1227 			if (copy_from_user(nc->data,
1228 					notification->sigev_value.sival_ptr,
1229 					NOTIFY_COOKIE_LEN)) {
1230 				ret = -EFAULT;
1231 				goto out;
1232 			}
1233 
1234 			/* TODO: add a header? */
1235 			skb_put(nc, NOTIFY_COOKIE_LEN);
1236 			/* and attach it to the socket */
1237 retry:
1238 			f = fdget(notification->sigev_signo);
1239 			if (!f.file) {
1240 				ret = -EBADF;
1241 				goto out;
1242 			}
1243 			sock = netlink_getsockbyfilp(f.file);
1244 			fdput(f);
1245 			if (IS_ERR(sock)) {
1246 				ret = PTR_ERR(sock);
1247 				sock = NULL;
1248 				goto out;
1249 			}
1250 
1251 			timeo = MAX_SCHEDULE_TIMEOUT;
1252 			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1253 			if (ret == 1) {
1254 				sock = NULL;
1255 				goto retry;
1256 			}
1257 			if (ret) {
1258 				sock = NULL;
1259 				nc = NULL;
1260 				goto out;
1261 			}
1262 		}
1263 	}
1264 
1265 	f = fdget(mqdes);
1266 	if (!f.file) {
1267 		ret = -EBADF;
1268 		goto out;
1269 	}
1270 
1271 	inode = file_inode(f.file);
1272 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1273 		ret = -EBADF;
1274 		goto out_fput;
1275 	}
1276 	info = MQUEUE_I(inode);
1277 
1278 	ret = 0;
1279 	spin_lock(&info->lock);
1280 	if (notification == NULL) {
1281 		if (info->notify_owner == task_tgid(current)) {
1282 			remove_notification(info);
1283 			inode->i_atime = inode->i_ctime = current_time(inode);
1284 		}
1285 	} else if (info->notify_owner != NULL) {
1286 		ret = -EBUSY;
1287 	} else {
1288 		switch (notification->sigev_notify) {
1289 		case SIGEV_NONE:
1290 			info->notify.sigev_notify = SIGEV_NONE;
1291 			break;
1292 		case SIGEV_THREAD:
1293 			info->notify_sock = sock;
1294 			info->notify_cookie = nc;
1295 			sock = NULL;
1296 			nc = NULL;
1297 			info->notify.sigev_notify = SIGEV_THREAD;
1298 			break;
1299 		case SIGEV_SIGNAL:
1300 			info->notify.sigev_signo = notification->sigev_signo;
1301 			info->notify.sigev_value = notification->sigev_value;
1302 			info->notify.sigev_notify = SIGEV_SIGNAL;
1303 			break;
1304 		}
1305 
1306 		info->notify_owner = get_pid(task_tgid(current));
1307 		info->notify_user_ns = get_user_ns(current_user_ns());
1308 		inode->i_atime = inode->i_ctime = current_time(inode);
1309 	}
1310 	spin_unlock(&info->lock);
1311 out_fput:
1312 	fdput(f);
1313 out:
1314 	if (sock)
1315 		netlink_detachskb(sock, nc);
1316 	else if (nc)
1317 		dev_kfree_skb(nc);
1318 
1319 	return ret;
1320 }
1321 
1322 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1323 		const struct sigevent __user *, u_notification)
1324 {
1325 	struct sigevent n, *p = NULL;
1326 	if (u_notification) {
1327 		if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1328 			return -EFAULT;
1329 		p = &n;
1330 	}
1331 	return do_mq_notify(mqdes, p);
1332 }
1333 
1334 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1335 {
1336 	struct fd f;
1337 	struct inode *inode;
1338 	struct mqueue_inode_info *info;
1339 
1340 	if (new && (new->mq_flags & (~O_NONBLOCK)))
1341 		return -EINVAL;
1342 
1343 	f = fdget(mqdes);
1344 	if (!f.file)
1345 		return -EBADF;
1346 
1347 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1348 		fdput(f);
1349 		return -EBADF;
1350 	}
1351 
1352 	inode = file_inode(f.file);
1353 	info = MQUEUE_I(inode);
1354 
1355 	spin_lock(&info->lock);
1356 
1357 	if (old) {
1358 		*old = info->attr;
1359 		old->mq_flags = f.file->f_flags & O_NONBLOCK;
1360 	}
1361 	if (new) {
1362 		audit_mq_getsetattr(mqdes, new);
1363 		spin_lock(&f.file->f_lock);
1364 		if (new->mq_flags & O_NONBLOCK)
1365 			f.file->f_flags |= O_NONBLOCK;
1366 		else
1367 			f.file->f_flags &= ~O_NONBLOCK;
1368 		spin_unlock(&f.file->f_lock);
1369 
1370 		inode->i_atime = inode->i_ctime = current_time(inode);
1371 	}
1372 
1373 	spin_unlock(&info->lock);
1374 	fdput(f);
1375 	return 0;
1376 }
1377 
1378 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1379 		const struct mq_attr __user *, u_mqstat,
1380 		struct mq_attr __user *, u_omqstat)
1381 {
1382 	int ret;
1383 	struct mq_attr mqstat, omqstat;
1384 	struct mq_attr *new = NULL, *old = NULL;
1385 
1386 	if (u_mqstat) {
1387 		new = &mqstat;
1388 		if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1389 			return -EFAULT;
1390 	}
1391 	if (u_omqstat)
1392 		old = &omqstat;
1393 
1394 	ret = do_mq_getsetattr(mqdes, new, old);
1395 	if (ret || !old)
1396 		return ret;
1397 
1398 	if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1399 		return -EFAULT;
1400 	return 0;
1401 }
1402 
1403 #ifdef CONFIG_COMPAT
1404 
1405 struct compat_mq_attr {
1406 	compat_long_t mq_flags;      /* message queue flags		     */
1407 	compat_long_t mq_maxmsg;     /* maximum number of messages	     */
1408 	compat_long_t mq_msgsize;    /* maximum message size		     */
1409 	compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1410 	compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1411 };
1412 
1413 static inline int get_compat_mq_attr(struct mq_attr *attr,
1414 			const struct compat_mq_attr __user *uattr)
1415 {
1416 	struct compat_mq_attr v;
1417 
1418 	if (copy_from_user(&v, uattr, sizeof(*uattr)))
1419 		return -EFAULT;
1420 
1421 	memset(attr, 0, sizeof(*attr));
1422 	attr->mq_flags = v.mq_flags;
1423 	attr->mq_maxmsg = v.mq_maxmsg;
1424 	attr->mq_msgsize = v.mq_msgsize;
1425 	attr->mq_curmsgs = v.mq_curmsgs;
1426 	return 0;
1427 }
1428 
1429 static inline int put_compat_mq_attr(const struct mq_attr *attr,
1430 			struct compat_mq_attr __user *uattr)
1431 {
1432 	struct compat_mq_attr v;
1433 
1434 	memset(&v, 0, sizeof(v));
1435 	v.mq_flags = attr->mq_flags;
1436 	v.mq_maxmsg = attr->mq_maxmsg;
1437 	v.mq_msgsize = attr->mq_msgsize;
1438 	v.mq_curmsgs = attr->mq_curmsgs;
1439 	if (copy_to_user(uattr, &v, sizeof(*uattr)))
1440 		return -EFAULT;
1441 	return 0;
1442 }
1443 
1444 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1445 		       int, oflag, compat_mode_t, mode,
1446 		       struct compat_mq_attr __user *, u_attr)
1447 {
1448 	struct mq_attr attr, *p = NULL;
1449 	if (u_attr && oflag & O_CREAT) {
1450 		p = &attr;
1451 		if (get_compat_mq_attr(&attr, u_attr))
1452 			return -EFAULT;
1453 	}
1454 	return do_mq_open(u_name, oflag, mode, p);
1455 }
1456 
1457 static int compat_prepare_timeout(const struct compat_timespec __user *p,
1458 				   struct timespec64 *ts)
1459 {
1460 	if (compat_get_timespec64(ts, p))
1461 		return -EFAULT;
1462 	if (!timespec64_valid(ts))
1463 		return -EINVAL;
1464 	return 0;
1465 }
1466 
1467 COMPAT_SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes,
1468 		       const char __user *, u_msg_ptr,
1469 		       compat_size_t, msg_len, unsigned int, msg_prio,
1470 		       const struct compat_timespec __user *, u_abs_timeout)
1471 {
1472 	struct timespec64 ts, *p = NULL;
1473 	if (u_abs_timeout) {
1474 		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1475 		if (res)
1476 			return res;
1477 		p = &ts;
1478 	}
1479 	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1480 }
1481 
1482 COMPAT_SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes,
1483 		       char __user *, u_msg_ptr,
1484 		       compat_size_t, msg_len, unsigned int __user *, u_msg_prio,
1485 		       const struct compat_timespec __user *, u_abs_timeout)
1486 {
1487 	struct timespec64 ts, *p = NULL;
1488 	if (u_abs_timeout) {
1489 		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1490 		if (res)
1491 			return res;
1492 		p = &ts;
1493 	}
1494 	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1495 }
1496 
1497 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1498 		       const struct compat_sigevent __user *, u_notification)
1499 {
1500 	struct sigevent n, *p = NULL;
1501 	if (u_notification) {
1502 		if (get_compat_sigevent(&n, u_notification))
1503 			return -EFAULT;
1504 		if (n.sigev_notify == SIGEV_THREAD)
1505 			n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1506 		p = &n;
1507 	}
1508 	return do_mq_notify(mqdes, p);
1509 }
1510 
1511 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1512 		       const struct compat_mq_attr __user *, u_mqstat,
1513 		       struct compat_mq_attr __user *, u_omqstat)
1514 {
1515 	int ret;
1516 	struct mq_attr mqstat, omqstat;
1517 	struct mq_attr *new = NULL, *old = NULL;
1518 
1519 	if (u_mqstat) {
1520 		new = &mqstat;
1521 		if (get_compat_mq_attr(new, u_mqstat))
1522 			return -EFAULT;
1523 	}
1524 	if (u_omqstat)
1525 		old = &omqstat;
1526 
1527 	ret = do_mq_getsetattr(mqdes, new, old);
1528 	if (ret || !old)
1529 		return ret;
1530 
1531 	if (put_compat_mq_attr(old, u_omqstat))
1532 		return -EFAULT;
1533 	return 0;
1534 }
1535 #endif
1536 
1537 static const struct inode_operations mqueue_dir_inode_operations = {
1538 	.lookup = simple_lookup,
1539 	.create = mqueue_create,
1540 	.unlink = mqueue_unlink,
1541 };
1542 
1543 static const struct file_operations mqueue_file_operations = {
1544 	.flush = mqueue_flush_file,
1545 	.poll = mqueue_poll_file,
1546 	.read = mqueue_read_file,
1547 	.llseek = default_llseek,
1548 };
1549 
1550 static const struct super_operations mqueue_super_ops = {
1551 	.alloc_inode = mqueue_alloc_inode,
1552 	.destroy_inode = mqueue_destroy_inode,
1553 	.evict_inode = mqueue_evict_inode,
1554 	.statfs = simple_statfs,
1555 };
1556 
1557 static struct file_system_type mqueue_fs_type = {
1558 	.name = "mqueue",
1559 	.mount = mqueue_mount,
1560 	.kill_sb = kill_litter_super,
1561 	.fs_flags = FS_USERNS_MOUNT,
1562 };
1563 
1564 int mq_init_ns(struct ipc_namespace *ns)
1565 {
1566 	ns->mq_queues_count  = 0;
1567 	ns->mq_queues_max    = DFLT_QUEUESMAX;
1568 	ns->mq_msg_max       = DFLT_MSGMAX;
1569 	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1570 	ns->mq_msg_default   = DFLT_MSG;
1571 	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1572 	ns->mq_mnt = NULL;
1573 
1574 	return 0;
1575 }
1576 
1577 void mq_clear_sbinfo(struct ipc_namespace *ns)
1578 {
1579 	if (ns->mq_mnt)
1580 		ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1581 }
1582 
1583 void mq_put_mnt(struct ipc_namespace *ns)
1584 {
1585 	if (ns->mq_mnt)
1586 		kern_unmount(ns->mq_mnt);
1587 }
1588 
1589 static int __init init_mqueue_fs(void)
1590 {
1591 	struct vfsmount *m;
1592 	int error;
1593 
1594 	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1595 				sizeof(struct mqueue_inode_info), 0,
1596 				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1597 	if (mqueue_inode_cachep == NULL)
1598 		return -ENOMEM;
1599 
1600 	/* ignore failures - they are not fatal */
1601 	mq_sysctl_table = mq_register_sysctl_table();
1602 
1603 	error = register_filesystem(&mqueue_fs_type);
1604 	if (error)
1605 		goto out_sysctl;
1606 
1607 	spin_lock_init(&mq_lock);
1608 
1609 	error = mq_init_ns(&init_ipc_ns);
1610 	if (error)
1611 		goto out_filesystem;
1612 
1613 	m = kern_mount_data(&mqueue_fs_type, &init_ipc_ns);
1614 	if (IS_ERR(m))
1615 		goto out_filesystem;
1616 	init_ipc_ns.mq_mnt = m;
1617 	return 0;
1618 
1619 out_filesystem:
1620 	unregister_filesystem(&mqueue_fs_type);
1621 out_sysctl:
1622 	if (mq_sysctl_table)
1623 		unregister_sysctl_table(mq_sysctl_table);
1624 	kmem_cache_destroy(mqueue_inode_cachep);
1625 	return error;
1626 }
1627 
1628 device_initcall(init_mqueue_fs);
1629