1 /* 2 * POSIX message queues filesystem for Linux. 3 * 4 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl) 5 * Michal Wronski (michal.wronski@gmail.com) 6 * 7 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com) 8 * Lockless receive & send, fd based notify: 9 * Manfred Spraul (manfred@colorfullife.com) 10 * 11 * Audit: George Wilson (ltcgcw@us.ibm.com) 12 * 13 * This file is released under the GPL. 14 */ 15 16 #include <linux/capability.h> 17 #include <linux/init.h> 18 #include <linux/pagemap.h> 19 #include <linux/file.h> 20 #include <linux/mount.h> 21 #include <linux/fs_context.h> 22 #include <linux/namei.h> 23 #include <linux/sysctl.h> 24 #include <linux/poll.h> 25 #include <linux/mqueue.h> 26 #include <linux/msg.h> 27 #include <linux/skbuff.h> 28 #include <linux/vmalloc.h> 29 #include <linux/netlink.h> 30 #include <linux/syscalls.h> 31 #include <linux/audit.h> 32 #include <linux/signal.h> 33 #include <linux/mutex.h> 34 #include <linux/nsproxy.h> 35 #include <linux/pid.h> 36 #include <linux/ipc_namespace.h> 37 #include <linux/user_namespace.h> 38 #include <linux/slab.h> 39 #include <linux/sched/wake_q.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/user.h> 42 43 #include <net/sock.h> 44 #include "util.h" 45 46 struct mqueue_fs_context { 47 struct ipc_namespace *ipc_ns; 48 }; 49 50 #define MQUEUE_MAGIC 0x19800202 51 #define DIRENT_SIZE 20 52 #define FILENT_SIZE 80 53 54 #define SEND 0 55 #define RECV 1 56 57 #define STATE_NONE 0 58 #define STATE_READY 1 59 60 struct posix_msg_tree_node { 61 struct rb_node rb_node; 62 struct list_head msg_list; 63 int priority; 64 }; 65 66 struct ext_wait_queue { /* queue of sleeping tasks */ 67 struct task_struct *task; 68 struct list_head list; 69 struct msg_msg *msg; /* ptr of loaded message */ 70 int state; /* one of STATE_* values */ 71 }; 72 73 struct mqueue_inode_info { 74 spinlock_t lock; 75 struct inode vfs_inode; 76 wait_queue_head_t wait_q; 77 78 struct rb_root msg_tree; 79 struct rb_node *msg_tree_rightmost; 80 struct posix_msg_tree_node *node_cache; 81 struct mq_attr attr; 82 83 struct sigevent notify; 84 struct pid *notify_owner; 85 struct user_namespace *notify_user_ns; 86 struct user_struct *user; /* user who created, for accounting */ 87 struct sock *notify_sock; 88 struct sk_buff *notify_cookie; 89 90 /* for tasks waiting for free space and messages, respectively */ 91 struct ext_wait_queue e_wait_q[2]; 92 93 unsigned long qsize; /* size of queue in memory (sum of all msgs) */ 94 }; 95 96 static struct file_system_type mqueue_fs_type; 97 static const struct inode_operations mqueue_dir_inode_operations; 98 static const struct file_operations mqueue_file_operations; 99 static const struct super_operations mqueue_super_ops; 100 static const struct fs_context_operations mqueue_fs_context_ops; 101 static void remove_notification(struct mqueue_inode_info *info); 102 103 static struct kmem_cache *mqueue_inode_cachep; 104 105 static struct ctl_table_header *mq_sysctl_table; 106 107 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode) 108 { 109 return container_of(inode, struct mqueue_inode_info, vfs_inode); 110 } 111 112 /* 113 * This routine should be called with the mq_lock held. 114 */ 115 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode) 116 { 117 return get_ipc_ns(inode->i_sb->s_fs_info); 118 } 119 120 static struct ipc_namespace *get_ns_from_inode(struct inode *inode) 121 { 122 struct ipc_namespace *ns; 123 124 spin_lock(&mq_lock); 125 ns = __get_ns_from_inode(inode); 126 spin_unlock(&mq_lock); 127 return ns; 128 } 129 130 /* Auxiliary functions to manipulate messages' list */ 131 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info) 132 { 133 struct rb_node **p, *parent = NULL; 134 struct posix_msg_tree_node *leaf; 135 bool rightmost = true; 136 137 p = &info->msg_tree.rb_node; 138 while (*p) { 139 parent = *p; 140 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node); 141 142 if (likely(leaf->priority == msg->m_type)) 143 goto insert_msg; 144 else if (msg->m_type < leaf->priority) { 145 p = &(*p)->rb_left; 146 rightmost = false; 147 } else 148 p = &(*p)->rb_right; 149 } 150 if (info->node_cache) { 151 leaf = info->node_cache; 152 info->node_cache = NULL; 153 } else { 154 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC); 155 if (!leaf) 156 return -ENOMEM; 157 INIT_LIST_HEAD(&leaf->msg_list); 158 } 159 leaf->priority = msg->m_type; 160 161 if (rightmost) 162 info->msg_tree_rightmost = &leaf->rb_node; 163 164 rb_link_node(&leaf->rb_node, parent, p); 165 rb_insert_color(&leaf->rb_node, &info->msg_tree); 166 insert_msg: 167 info->attr.mq_curmsgs++; 168 info->qsize += msg->m_ts; 169 list_add_tail(&msg->m_list, &leaf->msg_list); 170 return 0; 171 } 172 173 static inline void msg_tree_erase(struct posix_msg_tree_node *leaf, 174 struct mqueue_inode_info *info) 175 { 176 struct rb_node *node = &leaf->rb_node; 177 178 if (info->msg_tree_rightmost == node) 179 info->msg_tree_rightmost = rb_prev(node); 180 181 rb_erase(node, &info->msg_tree); 182 if (info->node_cache) { 183 kfree(leaf); 184 } else { 185 info->node_cache = leaf; 186 } 187 } 188 189 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info) 190 { 191 struct rb_node *parent = NULL; 192 struct posix_msg_tree_node *leaf; 193 struct msg_msg *msg; 194 195 try_again: 196 /* 197 * During insert, low priorities go to the left and high to the 198 * right. On receive, we want the highest priorities first, so 199 * walk all the way to the right. 200 */ 201 parent = info->msg_tree_rightmost; 202 if (!parent) { 203 if (info->attr.mq_curmsgs) { 204 pr_warn_once("Inconsistency in POSIX message queue, " 205 "no tree element, but supposedly messages " 206 "should exist!\n"); 207 info->attr.mq_curmsgs = 0; 208 } 209 return NULL; 210 } 211 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node); 212 if (unlikely(list_empty(&leaf->msg_list))) { 213 pr_warn_once("Inconsistency in POSIX message queue, " 214 "empty leaf node but we haven't implemented " 215 "lazy leaf delete!\n"); 216 msg_tree_erase(leaf, info); 217 goto try_again; 218 } else { 219 msg = list_first_entry(&leaf->msg_list, 220 struct msg_msg, m_list); 221 list_del(&msg->m_list); 222 if (list_empty(&leaf->msg_list)) { 223 msg_tree_erase(leaf, info); 224 } 225 } 226 info->attr.mq_curmsgs--; 227 info->qsize -= msg->m_ts; 228 return msg; 229 } 230 231 static struct inode *mqueue_get_inode(struct super_block *sb, 232 struct ipc_namespace *ipc_ns, umode_t mode, 233 struct mq_attr *attr) 234 { 235 struct user_struct *u = current_user(); 236 struct inode *inode; 237 int ret = -ENOMEM; 238 239 inode = new_inode(sb); 240 if (!inode) 241 goto err; 242 243 inode->i_ino = get_next_ino(); 244 inode->i_mode = mode; 245 inode->i_uid = current_fsuid(); 246 inode->i_gid = current_fsgid(); 247 inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode); 248 249 if (S_ISREG(mode)) { 250 struct mqueue_inode_info *info; 251 unsigned long mq_bytes, mq_treesize; 252 253 inode->i_fop = &mqueue_file_operations; 254 inode->i_size = FILENT_SIZE; 255 /* mqueue specific info */ 256 info = MQUEUE_I(inode); 257 spin_lock_init(&info->lock); 258 init_waitqueue_head(&info->wait_q); 259 INIT_LIST_HEAD(&info->e_wait_q[0].list); 260 INIT_LIST_HEAD(&info->e_wait_q[1].list); 261 info->notify_owner = NULL; 262 info->notify_user_ns = NULL; 263 info->qsize = 0; 264 info->user = NULL; /* set when all is ok */ 265 info->msg_tree = RB_ROOT; 266 info->msg_tree_rightmost = NULL; 267 info->node_cache = NULL; 268 memset(&info->attr, 0, sizeof(info->attr)); 269 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max, 270 ipc_ns->mq_msg_default); 271 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max, 272 ipc_ns->mq_msgsize_default); 273 if (attr) { 274 info->attr.mq_maxmsg = attr->mq_maxmsg; 275 info->attr.mq_msgsize = attr->mq_msgsize; 276 } 277 /* 278 * We used to allocate a static array of pointers and account 279 * the size of that array as well as one msg_msg struct per 280 * possible message into the queue size. That's no longer 281 * accurate as the queue is now an rbtree and will grow and 282 * shrink depending on usage patterns. We can, however, still 283 * account one msg_msg struct per message, but the nodes are 284 * allocated depending on priority usage, and most programs 285 * only use one, or a handful, of priorities. However, since 286 * this is pinned memory, we need to assume worst case, so 287 * that means the min(mq_maxmsg, max_priorities) * struct 288 * posix_msg_tree_node. 289 */ 290 291 ret = -EINVAL; 292 if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0) 293 goto out_inode; 294 if (capable(CAP_SYS_RESOURCE)) { 295 if (info->attr.mq_maxmsg > HARD_MSGMAX || 296 info->attr.mq_msgsize > HARD_MSGSIZEMAX) 297 goto out_inode; 298 } else { 299 if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max || 300 info->attr.mq_msgsize > ipc_ns->mq_msgsize_max) 301 goto out_inode; 302 } 303 ret = -EOVERFLOW; 304 /* check for overflow */ 305 if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg) 306 goto out_inode; 307 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) + 308 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) * 309 sizeof(struct posix_msg_tree_node); 310 mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize; 311 if (mq_bytes + mq_treesize < mq_bytes) 312 goto out_inode; 313 mq_bytes += mq_treesize; 314 spin_lock(&mq_lock); 315 if (u->mq_bytes + mq_bytes < u->mq_bytes || 316 u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) { 317 spin_unlock(&mq_lock); 318 /* mqueue_evict_inode() releases info->messages */ 319 ret = -EMFILE; 320 goto out_inode; 321 } 322 u->mq_bytes += mq_bytes; 323 spin_unlock(&mq_lock); 324 325 /* all is ok */ 326 info->user = get_uid(u); 327 } else if (S_ISDIR(mode)) { 328 inc_nlink(inode); 329 /* Some things misbehave if size == 0 on a directory */ 330 inode->i_size = 2 * DIRENT_SIZE; 331 inode->i_op = &mqueue_dir_inode_operations; 332 inode->i_fop = &simple_dir_operations; 333 } 334 335 return inode; 336 out_inode: 337 iput(inode); 338 err: 339 return ERR_PTR(ret); 340 } 341 342 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc) 343 { 344 struct inode *inode; 345 struct ipc_namespace *ns = sb->s_fs_info; 346 347 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV; 348 sb->s_blocksize = PAGE_SIZE; 349 sb->s_blocksize_bits = PAGE_SHIFT; 350 sb->s_magic = MQUEUE_MAGIC; 351 sb->s_op = &mqueue_super_ops; 352 353 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL); 354 if (IS_ERR(inode)) 355 return PTR_ERR(inode); 356 357 sb->s_root = d_make_root(inode); 358 if (!sb->s_root) 359 return -ENOMEM; 360 return 0; 361 } 362 363 static int mqueue_get_tree(struct fs_context *fc) 364 { 365 struct mqueue_fs_context *ctx = fc->fs_private; 366 367 put_user_ns(fc->user_ns); 368 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns); 369 fc->s_fs_info = ctx->ipc_ns; 370 return vfs_get_super(fc, vfs_get_keyed_super, mqueue_fill_super); 371 } 372 373 static void mqueue_fs_context_free(struct fs_context *fc) 374 { 375 struct mqueue_fs_context *ctx = fc->fs_private; 376 377 if (ctx->ipc_ns) 378 put_ipc_ns(ctx->ipc_ns); 379 kfree(ctx); 380 } 381 382 static int mqueue_init_fs_context(struct fs_context *fc) 383 { 384 struct mqueue_fs_context *ctx; 385 386 ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL); 387 if (!ctx) 388 return -ENOMEM; 389 390 ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns); 391 fc->fs_private = ctx; 392 fc->ops = &mqueue_fs_context_ops; 393 return 0; 394 } 395 396 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns) 397 { 398 struct mqueue_fs_context *ctx; 399 struct fs_context *fc; 400 struct vfsmount *mnt; 401 402 fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT); 403 if (IS_ERR(fc)) 404 return ERR_CAST(fc); 405 406 ctx = fc->fs_private; 407 put_ipc_ns(ctx->ipc_ns); 408 ctx->ipc_ns = get_ipc_ns(ns); 409 410 mnt = fc_mount(fc); 411 put_fs_context(fc); 412 return mnt; 413 } 414 415 static void init_once(void *foo) 416 { 417 struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo; 418 419 inode_init_once(&p->vfs_inode); 420 } 421 422 static struct inode *mqueue_alloc_inode(struct super_block *sb) 423 { 424 struct mqueue_inode_info *ei; 425 426 ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL); 427 if (!ei) 428 return NULL; 429 return &ei->vfs_inode; 430 } 431 432 static void mqueue_free_inode(struct inode *inode) 433 { 434 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode)); 435 } 436 437 static void mqueue_evict_inode(struct inode *inode) 438 { 439 struct mqueue_inode_info *info; 440 struct user_struct *user; 441 unsigned long mq_bytes, mq_treesize; 442 struct ipc_namespace *ipc_ns; 443 struct msg_msg *msg, *nmsg; 444 LIST_HEAD(tmp_msg); 445 446 clear_inode(inode); 447 448 if (S_ISDIR(inode->i_mode)) 449 return; 450 451 ipc_ns = get_ns_from_inode(inode); 452 info = MQUEUE_I(inode); 453 spin_lock(&info->lock); 454 while ((msg = msg_get(info)) != NULL) 455 list_add_tail(&msg->m_list, &tmp_msg); 456 kfree(info->node_cache); 457 spin_unlock(&info->lock); 458 459 list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) { 460 list_del(&msg->m_list); 461 free_msg(msg); 462 } 463 464 /* Total amount of bytes accounted for the mqueue */ 465 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) + 466 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) * 467 sizeof(struct posix_msg_tree_node); 468 469 mq_bytes = mq_treesize + (info->attr.mq_maxmsg * 470 info->attr.mq_msgsize); 471 472 user = info->user; 473 if (user) { 474 spin_lock(&mq_lock); 475 user->mq_bytes -= mq_bytes; 476 /* 477 * get_ns_from_inode() ensures that the 478 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns 479 * to which we now hold a reference, or it is NULL. 480 * We can't put it here under mq_lock, though. 481 */ 482 if (ipc_ns) 483 ipc_ns->mq_queues_count--; 484 spin_unlock(&mq_lock); 485 free_uid(user); 486 } 487 if (ipc_ns) 488 put_ipc_ns(ipc_ns); 489 } 490 491 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg) 492 { 493 struct inode *dir = dentry->d_parent->d_inode; 494 struct inode *inode; 495 struct mq_attr *attr = arg; 496 int error; 497 struct ipc_namespace *ipc_ns; 498 499 spin_lock(&mq_lock); 500 ipc_ns = __get_ns_from_inode(dir); 501 if (!ipc_ns) { 502 error = -EACCES; 503 goto out_unlock; 504 } 505 506 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max && 507 !capable(CAP_SYS_RESOURCE)) { 508 error = -ENOSPC; 509 goto out_unlock; 510 } 511 ipc_ns->mq_queues_count++; 512 spin_unlock(&mq_lock); 513 514 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr); 515 if (IS_ERR(inode)) { 516 error = PTR_ERR(inode); 517 spin_lock(&mq_lock); 518 ipc_ns->mq_queues_count--; 519 goto out_unlock; 520 } 521 522 put_ipc_ns(ipc_ns); 523 dir->i_size += DIRENT_SIZE; 524 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir); 525 526 d_instantiate(dentry, inode); 527 dget(dentry); 528 return 0; 529 out_unlock: 530 spin_unlock(&mq_lock); 531 if (ipc_ns) 532 put_ipc_ns(ipc_ns); 533 return error; 534 } 535 536 static int mqueue_create(struct inode *dir, struct dentry *dentry, 537 umode_t mode, bool excl) 538 { 539 return mqueue_create_attr(dentry, mode, NULL); 540 } 541 542 static int mqueue_unlink(struct inode *dir, struct dentry *dentry) 543 { 544 struct inode *inode = d_inode(dentry); 545 546 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir); 547 dir->i_size -= DIRENT_SIZE; 548 drop_nlink(inode); 549 dput(dentry); 550 return 0; 551 } 552 553 /* 554 * This is routine for system read from queue file. 555 * To avoid mess with doing here some sort of mq_receive we allow 556 * to read only queue size & notification info (the only values 557 * that are interesting from user point of view and aren't accessible 558 * through std routines) 559 */ 560 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data, 561 size_t count, loff_t *off) 562 { 563 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 564 char buffer[FILENT_SIZE]; 565 ssize_t ret; 566 567 spin_lock(&info->lock); 568 snprintf(buffer, sizeof(buffer), 569 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n", 570 info->qsize, 571 info->notify_owner ? info->notify.sigev_notify : 0, 572 (info->notify_owner && 573 info->notify.sigev_notify == SIGEV_SIGNAL) ? 574 info->notify.sigev_signo : 0, 575 pid_vnr(info->notify_owner)); 576 spin_unlock(&info->lock); 577 buffer[sizeof(buffer)-1] = '\0'; 578 579 ret = simple_read_from_buffer(u_data, count, off, buffer, 580 strlen(buffer)); 581 if (ret <= 0) 582 return ret; 583 584 file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp)); 585 return ret; 586 } 587 588 static int mqueue_flush_file(struct file *filp, fl_owner_t id) 589 { 590 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 591 592 spin_lock(&info->lock); 593 if (task_tgid(current) == info->notify_owner) 594 remove_notification(info); 595 596 spin_unlock(&info->lock); 597 return 0; 598 } 599 600 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab) 601 { 602 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp)); 603 __poll_t retval = 0; 604 605 poll_wait(filp, &info->wait_q, poll_tab); 606 607 spin_lock(&info->lock); 608 if (info->attr.mq_curmsgs) 609 retval = EPOLLIN | EPOLLRDNORM; 610 611 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg) 612 retval |= EPOLLOUT | EPOLLWRNORM; 613 spin_unlock(&info->lock); 614 615 return retval; 616 } 617 618 /* Adds current to info->e_wait_q[sr] before element with smaller prio */ 619 static void wq_add(struct mqueue_inode_info *info, int sr, 620 struct ext_wait_queue *ewp) 621 { 622 struct ext_wait_queue *walk; 623 624 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) { 625 if (walk->task->prio <= current->prio) { 626 list_add_tail(&ewp->list, &walk->list); 627 return; 628 } 629 } 630 list_add_tail(&ewp->list, &info->e_wait_q[sr].list); 631 } 632 633 /* 634 * Puts current task to sleep. Caller must hold queue lock. After return 635 * lock isn't held. 636 * sr: SEND or RECV 637 */ 638 static int wq_sleep(struct mqueue_inode_info *info, int sr, 639 ktime_t *timeout, struct ext_wait_queue *ewp) 640 __releases(&info->lock) 641 { 642 int retval; 643 signed long time; 644 645 wq_add(info, sr, ewp); 646 647 for (;;) { 648 __set_current_state(TASK_INTERRUPTIBLE); 649 650 spin_unlock(&info->lock); 651 time = schedule_hrtimeout_range_clock(timeout, 0, 652 HRTIMER_MODE_ABS, CLOCK_REALTIME); 653 654 if (ewp->state == STATE_READY) { 655 retval = 0; 656 goto out; 657 } 658 spin_lock(&info->lock); 659 if (ewp->state == STATE_READY) { 660 retval = 0; 661 goto out_unlock; 662 } 663 if (signal_pending(current)) { 664 retval = -ERESTARTSYS; 665 break; 666 } 667 if (time == 0) { 668 retval = -ETIMEDOUT; 669 break; 670 } 671 } 672 list_del(&ewp->list); 673 out_unlock: 674 spin_unlock(&info->lock); 675 out: 676 return retval; 677 } 678 679 /* 680 * Returns waiting task that should be serviced first or NULL if none exists 681 */ 682 static struct ext_wait_queue *wq_get_first_waiter( 683 struct mqueue_inode_info *info, int sr) 684 { 685 struct list_head *ptr; 686 687 ptr = info->e_wait_q[sr].list.prev; 688 if (ptr == &info->e_wait_q[sr].list) 689 return NULL; 690 return list_entry(ptr, struct ext_wait_queue, list); 691 } 692 693 694 static inline void set_cookie(struct sk_buff *skb, char code) 695 { 696 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code; 697 } 698 699 /* 700 * The next function is only to split too long sys_mq_timedsend 701 */ 702 static void __do_notify(struct mqueue_inode_info *info) 703 { 704 /* notification 705 * invoked when there is registered process and there isn't process 706 * waiting synchronously for message AND state of queue changed from 707 * empty to not empty. Here we are sure that no one is waiting 708 * synchronously. */ 709 if (info->notify_owner && 710 info->attr.mq_curmsgs == 1) { 711 struct kernel_siginfo sig_i; 712 switch (info->notify.sigev_notify) { 713 case SIGEV_NONE: 714 break; 715 case SIGEV_SIGNAL: 716 /* sends signal */ 717 718 clear_siginfo(&sig_i); 719 sig_i.si_signo = info->notify.sigev_signo; 720 sig_i.si_errno = 0; 721 sig_i.si_code = SI_MESGQ; 722 sig_i.si_value = info->notify.sigev_value; 723 /* map current pid/uid into info->owner's namespaces */ 724 rcu_read_lock(); 725 sig_i.si_pid = task_tgid_nr_ns(current, 726 ns_of_pid(info->notify_owner)); 727 sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid()); 728 rcu_read_unlock(); 729 730 kill_pid_info(info->notify.sigev_signo, 731 &sig_i, info->notify_owner); 732 break; 733 case SIGEV_THREAD: 734 set_cookie(info->notify_cookie, NOTIFY_WOKENUP); 735 netlink_sendskb(info->notify_sock, info->notify_cookie); 736 break; 737 } 738 /* after notification unregisters process */ 739 put_pid(info->notify_owner); 740 put_user_ns(info->notify_user_ns); 741 info->notify_owner = NULL; 742 info->notify_user_ns = NULL; 743 } 744 wake_up(&info->wait_q); 745 } 746 747 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout, 748 struct timespec64 *ts) 749 { 750 if (get_timespec64(ts, u_abs_timeout)) 751 return -EFAULT; 752 if (!timespec64_valid(ts)) 753 return -EINVAL; 754 return 0; 755 } 756 757 static void remove_notification(struct mqueue_inode_info *info) 758 { 759 if (info->notify_owner != NULL && 760 info->notify.sigev_notify == SIGEV_THREAD) { 761 set_cookie(info->notify_cookie, NOTIFY_REMOVED); 762 netlink_sendskb(info->notify_sock, info->notify_cookie); 763 } 764 put_pid(info->notify_owner); 765 put_user_ns(info->notify_user_ns); 766 info->notify_owner = NULL; 767 info->notify_user_ns = NULL; 768 } 769 770 static int prepare_open(struct dentry *dentry, int oflag, int ro, 771 umode_t mode, struct filename *name, 772 struct mq_attr *attr) 773 { 774 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE, 775 MAY_READ | MAY_WRITE }; 776 int acc; 777 778 if (d_really_is_negative(dentry)) { 779 if (!(oflag & O_CREAT)) 780 return -ENOENT; 781 if (ro) 782 return ro; 783 audit_inode_parent_hidden(name, dentry->d_parent); 784 return vfs_mkobj(dentry, mode & ~current_umask(), 785 mqueue_create_attr, attr); 786 } 787 /* it already existed */ 788 audit_inode(name, dentry, 0); 789 if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) 790 return -EEXIST; 791 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY)) 792 return -EINVAL; 793 acc = oflag2acc[oflag & O_ACCMODE]; 794 return inode_permission(d_inode(dentry), acc); 795 } 796 797 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode, 798 struct mq_attr *attr) 799 { 800 struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt; 801 struct dentry *root = mnt->mnt_root; 802 struct filename *name; 803 struct path path; 804 int fd, error; 805 int ro; 806 807 audit_mq_open(oflag, mode, attr); 808 809 if (IS_ERR(name = getname(u_name))) 810 return PTR_ERR(name); 811 812 fd = get_unused_fd_flags(O_CLOEXEC); 813 if (fd < 0) 814 goto out_putname; 815 816 ro = mnt_want_write(mnt); /* we'll drop it in any case */ 817 inode_lock(d_inode(root)); 818 path.dentry = lookup_one_len(name->name, root, strlen(name->name)); 819 if (IS_ERR(path.dentry)) { 820 error = PTR_ERR(path.dentry); 821 goto out_putfd; 822 } 823 path.mnt = mntget(mnt); 824 error = prepare_open(path.dentry, oflag, ro, mode, name, attr); 825 if (!error) { 826 struct file *file = dentry_open(&path, oflag, current_cred()); 827 if (!IS_ERR(file)) 828 fd_install(fd, file); 829 else 830 error = PTR_ERR(file); 831 } 832 path_put(&path); 833 out_putfd: 834 if (error) { 835 put_unused_fd(fd); 836 fd = error; 837 } 838 inode_unlock(d_inode(root)); 839 if (!ro) 840 mnt_drop_write(mnt); 841 out_putname: 842 putname(name); 843 return fd; 844 } 845 846 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode, 847 struct mq_attr __user *, u_attr) 848 { 849 struct mq_attr attr; 850 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr))) 851 return -EFAULT; 852 853 return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL); 854 } 855 856 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name) 857 { 858 int err; 859 struct filename *name; 860 struct dentry *dentry; 861 struct inode *inode = NULL; 862 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns; 863 struct vfsmount *mnt = ipc_ns->mq_mnt; 864 865 name = getname(u_name); 866 if (IS_ERR(name)) 867 return PTR_ERR(name); 868 869 audit_inode_parent_hidden(name, mnt->mnt_root); 870 err = mnt_want_write(mnt); 871 if (err) 872 goto out_name; 873 inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT); 874 dentry = lookup_one_len(name->name, mnt->mnt_root, 875 strlen(name->name)); 876 if (IS_ERR(dentry)) { 877 err = PTR_ERR(dentry); 878 goto out_unlock; 879 } 880 881 inode = d_inode(dentry); 882 if (!inode) { 883 err = -ENOENT; 884 } else { 885 ihold(inode); 886 err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL); 887 } 888 dput(dentry); 889 890 out_unlock: 891 inode_unlock(d_inode(mnt->mnt_root)); 892 if (inode) 893 iput(inode); 894 mnt_drop_write(mnt); 895 out_name: 896 putname(name); 897 898 return err; 899 } 900 901 /* Pipelined send and receive functions. 902 * 903 * If a receiver finds no waiting message, then it registers itself in the 904 * list of waiting receivers. A sender checks that list before adding the new 905 * message into the message array. If there is a waiting receiver, then it 906 * bypasses the message array and directly hands the message over to the 907 * receiver. The receiver accepts the message and returns without grabbing the 908 * queue spinlock: 909 * 910 * - Set pointer to message. 911 * - Queue the receiver task for later wakeup (without the info->lock). 912 * - Update its state to STATE_READY. Now the receiver can continue. 913 * - Wake up the process after the lock is dropped. Should the process wake up 914 * before this wakeup (due to a timeout or a signal) it will either see 915 * STATE_READY and continue or acquire the lock to check the state again. 916 * 917 * The same algorithm is used for senders. 918 */ 919 920 /* pipelined_send() - send a message directly to the task waiting in 921 * sys_mq_timedreceive() (without inserting message into a queue). 922 */ 923 static inline void pipelined_send(struct wake_q_head *wake_q, 924 struct mqueue_inode_info *info, 925 struct msg_msg *message, 926 struct ext_wait_queue *receiver) 927 { 928 receiver->msg = message; 929 list_del(&receiver->list); 930 wake_q_add(wake_q, receiver->task); 931 /* 932 * Rely on the implicit cmpxchg barrier from wake_q_add such 933 * that we can ensure that updating receiver->state is the last 934 * write operation: As once set, the receiver can continue, 935 * and if we don't have the reference count from the wake_q, 936 * yet, at that point we can later have a use-after-free 937 * condition and bogus wakeup. 938 */ 939 receiver->state = STATE_READY; 940 } 941 942 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend() 943 * gets its message and put to the queue (we have one free place for sure). */ 944 static inline void pipelined_receive(struct wake_q_head *wake_q, 945 struct mqueue_inode_info *info) 946 { 947 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND); 948 949 if (!sender) { 950 /* for poll */ 951 wake_up_interruptible(&info->wait_q); 952 return; 953 } 954 if (msg_insert(sender->msg, info)) 955 return; 956 957 list_del(&sender->list); 958 wake_q_add(wake_q, sender->task); 959 sender->state = STATE_READY; 960 } 961 962 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr, 963 size_t msg_len, unsigned int msg_prio, 964 struct timespec64 *ts) 965 { 966 struct fd f; 967 struct inode *inode; 968 struct ext_wait_queue wait; 969 struct ext_wait_queue *receiver; 970 struct msg_msg *msg_ptr; 971 struct mqueue_inode_info *info; 972 ktime_t expires, *timeout = NULL; 973 struct posix_msg_tree_node *new_leaf = NULL; 974 int ret = 0; 975 DEFINE_WAKE_Q(wake_q); 976 977 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX)) 978 return -EINVAL; 979 980 if (ts) { 981 expires = timespec64_to_ktime(*ts); 982 timeout = &expires; 983 } 984 985 audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts); 986 987 f = fdget(mqdes); 988 if (unlikely(!f.file)) { 989 ret = -EBADF; 990 goto out; 991 } 992 993 inode = file_inode(f.file); 994 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 995 ret = -EBADF; 996 goto out_fput; 997 } 998 info = MQUEUE_I(inode); 999 audit_file(f.file); 1000 1001 if (unlikely(!(f.file->f_mode & FMODE_WRITE))) { 1002 ret = -EBADF; 1003 goto out_fput; 1004 } 1005 1006 if (unlikely(msg_len > info->attr.mq_msgsize)) { 1007 ret = -EMSGSIZE; 1008 goto out_fput; 1009 } 1010 1011 /* First try to allocate memory, before doing anything with 1012 * existing queues. */ 1013 msg_ptr = load_msg(u_msg_ptr, msg_len); 1014 if (IS_ERR(msg_ptr)) { 1015 ret = PTR_ERR(msg_ptr); 1016 goto out_fput; 1017 } 1018 msg_ptr->m_ts = msg_len; 1019 msg_ptr->m_type = msg_prio; 1020 1021 /* 1022 * msg_insert really wants us to have a valid, spare node struct so 1023 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will 1024 * fall back to that if necessary. 1025 */ 1026 if (!info->node_cache) 1027 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL); 1028 1029 spin_lock(&info->lock); 1030 1031 if (!info->node_cache && new_leaf) { 1032 /* Save our speculative allocation into the cache */ 1033 INIT_LIST_HEAD(&new_leaf->msg_list); 1034 info->node_cache = new_leaf; 1035 new_leaf = NULL; 1036 } else { 1037 kfree(new_leaf); 1038 } 1039 1040 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) { 1041 if (f.file->f_flags & O_NONBLOCK) { 1042 ret = -EAGAIN; 1043 } else { 1044 wait.task = current; 1045 wait.msg = (void *) msg_ptr; 1046 wait.state = STATE_NONE; 1047 ret = wq_sleep(info, SEND, timeout, &wait); 1048 /* 1049 * wq_sleep must be called with info->lock held, and 1050 * returns with the lock released 1051 */ 1052 goto out_free; 1053 } 1054 } else { 1055 receiver = wq_get_first_waiter(info, RECV); 1056 if (receiver) { 1057 pipelined_send(&wake_q, info, msg_ptr, receiver); 1058 } else { 1059 /* adds message to the queue */ 1060 ret = msg_insert(msg_ptr, info); 1061 if (ret) 1062 goto out_unlock; 1063 __do_notify(info); 1064 } 1065 inode->i_atime = inode->i_mtime = inode->i_ctime = 1066 current_time(inode); 1067 } 1068 out_unlock: 1069 spin_unlock(&info->lock); 1070 wake_up_q(&wake_q); 1071 out_free: 1072 if (ret) 1073 free_msg(msg_ptr); 1074 out_fput: 1075 fdput(f); 1076 out: 1077 return ret; 1078 } 1079 1080 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr, 1081 size_t msg_len, unsigned int __user *u_msg_prio, 1082 struct timespec64 *ts) 1083 { 1084 ssize_t ret; 1085 struct msg_msg *msg_ptr; 1086 struct fd f; 1087 struct inode *inode; 1088 struct mqueue_inode_info *info; 1089 struct ext_wait_queue wait; 1090 ktime_t expires, *timeout = NULL; 1091 struct posix_msg_tree_node *new_leaf = NULL; 1092 1093 if (ts) { 1094 expires = timespec64_to_ktime(*ts); 1095 timeout = &expires; 1096 } 1097 1098 audit_mq_sendrecv(mqdes, msg_len, 0, ts); 1099 1100 f = fdget(mqdes); 1101 if (unlikely(!f.file)) { 1102 ret = -EBADF; 1103 goto out; 1104 } 1105 1106 inode = file_inode(f.file); 1107 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1108 ret = -EBADF; 1109 goto out_fput; 1110 } 1111 info = MQUEUE_I(inode); 1112 audit_file(f.file); 1113 1114 if (unlikely(!(f.file->f_mode & FMODE_READ))) { 1115 ret = -EBADF; 1116 goto out_fput; 1117 } 1118 1119 /* checks if buffer is big enough */ 1120 if (unlikely(msg_len < info->attr.mq_msgsize)) { 1121 ret = -EMSGSIZE; 1122 goto out_fput; 1123 } 1124 1125 /* 1126 * msg_insert really wants us to have a valid, spare node struct so 1127 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will 1128 * fall back to that if necessary. 1129 */ 1130 if (!info->node_cache) 1131 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL); 1132 1133 spin_lock(&info->lock); 1134 1135 if (!info->node_cache && new_leaf) { 1136 /* Save our speculative allocation into the cache */ 1137 INIT_LIST_HEAD(&new_leaf->msg_list); 1138 info->node_cache = new_leaf; 1139 } else { 1140 kfree(new_leaf); 1141 } 1142 1143 if (info->attr.mq_curmsgs == 0) { 1144 if (f.file->f_flags & O_NONBLOCK) { 1145 spin_unlock(&info->lock); 1146 ret = -EAGAIN; 1147 } else { 1148 wait.task = current; 1149 wait.state = STATE_NONE; 1150 ret = wq_sleep(info, RECV, timeout, &wait); 1151 msg_ptr = wait.msg; 1152 } 1153 } else { 1154 DEFINE_WAKE_Q(wake_q); 1155 1156 msg_ptr = msg_get(info); 1157 1158 inode->i_atime = inode->i_mtime = inode->i_ctime = 1159 current_time(inode); 1160 1161 /* There is now free space in queue. */ 1162 pipelined_receive(&wake_q, info); 1163 spin_unlock(&info->lock); 1164 wake_up_q(&wake_q); 1165 ret = 0; 1166 } 1167 if (ret == 0) { 1168 ret = msg_ptr->m_ts; 1169 1170 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) || 1171 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) { 1172 ret = -EFAULT; 1173 } 1174 free_msg(msg_ptr); 1175 } 1176 out_fput: 1177 fdput(f); 1178 out: 1179 return ret; 1180 } 1181 1182 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr, 1183 size_t, msg_len, unsigned int, msg_prio, 1184 const struct __kernel_timespec __user *, u_abs_timeout) 1185 { 1186 struct timespec64 ts, *p = NULL; 1187 if (u_abs_timeout) { 1188 int res = prepare_timeout(u_abs_timeout, &ts); 1189 if (res) 1190 return res; 1191 p = &ts; 1192 } 1193 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p); 1194 } 1195 1196 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr, 1197 size_t, msg_len, unsigned int __user *, u_msg_prio, 1198 const struct __kernel_timespec __user *, u_abs_timeout) 1199 { 1200 struct timespec64 ts, *p = NULL; 1201 if (u_abs_timeout) { 1202 int res = prepare_timeout(u_abs_timeout, &ts); 1203 if (res) 1204 return res; 1205 p = &ts; 1206 } 1207 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p); 1208 } 1209 1210 /* 1211 * Notes: the case when user wants us to deregister (with NULL as pointer) 1212 * and he isn't currently owner of notification, will be silently discarded. 1213 * It isn't explicitly defined in the POSIX. 1214 */ 1215 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification) 1216 { 1217 int ret; 1218 struct fd f; 1219 struct sock *sock; 1220 struct inode *inode; 1221 struct mqueue_inode_info *info; 1222 struct sk_buff *nc; 1223 1224 audit_mq_notify(mqdes, notification); 1225 1226 nc = NULL; 1227 sock = NULL; 1228 if (notification != NULL) { 1229 if (unlikely(notification->sigev_notify != SIGEV_NONE && 1230 notification->sigev_notify != SIGEV_SIGNAL && 1231 notification->sigev_notify != SIGEV_THREAD)) 1232 return -EINVAL; 1233 if (notification->sigev_notify == SIGEV_SIGNAL && 1234 !valid_signal(notification->sigev_signo)) { 1235 return -EINVAL; 1236 } 1237 if (notification->sigev_notify == SIGEV_THREAD) { 1238 long timeo; 1239 1240 /* create the notify skb */ 1241 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL); 1242 if (!nc) { 1243 ret = -ENOMEM; 1244 goto out; 1245 } 1246 if (copy_from_user(nc->data, 1247 notification->sigev_value.sival_ptr, 1248 NOTIFY_COOKIE_LEN)) { 1249 ret = -EFAULT; 1250 goto out; 1251 } 1252 1253 /* TODO: add a header? */ 1254 skb_put(nc, NOTIFY_COOKIE_LEN); 1255 /* and attach it to the socket */ 1256 retry: 1257 f = fdget(notification->sigev_signo); 1258 if (!f.file) { 1259 ret = -EBADF; 1260 goto out; 1261 } 1262 sock = netlink_getsockbyfilp(f.file); 1263 fdput(f); 1264 if (IS_ERR(sock)) { 1265 ret = PTR_ERR(sock); 1266 sock = NULL; 1267 goto out; 1268 } 1269 1270 timeo = MAX_SCHEDULE_TIMEOUT; 1271 ret = netlink_attachskb(sock, nc, &timeo, NULL); 1272 if (ret == 1) { 1273 sock = NULL; 1274 goto retry; 1275 } 1276 if (ret) { 1277 sock = NULL; 1278 nc = NULL; 1279 goto out; 1280 } 1281 } 1282 } 1283 1284 f = fdget(mqdes); 1285 if (!f.file) { 1286 ret = -EBADF; 1287 goto out; 1288 } 1289 1290 inode = file_inode(f.file); 1291 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1292 ret = -EBADF; 1293 goto out_fput; 1294 } 1295 info = MQUEUE_I(inode); 1296 1297 ret = 0; 1298 spin_lock(&info->lock); 1299 if (notification == NULL) { 1300 if (info->notify_owner == task_tgid(current)) { 1301 remove_notification(info); 1302 inode->i_atime = inode->i_ctime = current_time(inode); 1303 } 1304 } else if (info->notify_owner != NULL) { 1305 ret = -EBUSY; 1306 } else { 1307 switch (notification->sigev_notify) { 1308 case SIGEV_NONE: 1309 info->notify.sigev_notify = SIGEV_NONE; 1310 break; 1311 case SIGEV_THREAD: 1312 info->notify_sock = sock; 1313 info->notify_cookie = nc; 1314 sock = NULL; 1315 nc = NULL; 1316 info->notify.sigev_notify = SIGEV_THREAD; 1317 break; 1318 case SIGEV_SIGNAL: 1319 info->notify.sigev_signo = notification->sigev_signo; 1320 info->notify.sigev_value = notification->sigev_value; 1321 info->notify.sigev_notify = SIGEV_SIGNAL; 1322 break; 1323 } 1324 1325 info->notify_owner = get_pid(task_tgid(current)); 1326 info->notify_user_ns = get_user_ns(current_user_ns()); 1327 inode->i_atime = inode->i_ctime = current_time(inode); 1328 } 1329 spin_unlock(&info->lock); 1330 out_fput: 1331 fdput(f); 1332 out: 1333 if (sock) 1334 netlink_detachskb(sock, nc); 1335 else if (nc) 1336 dev_kfree_skb(nc); 1337 1338 return ret; 1339 } 1340 1341 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes, 1342 const struct sigevent __user *, u_notification) 1343 { 1344 struct sigevent n, *p = NULL; 1345 if (u_notification) { 1346 if (copy_from_user(&n, u_notification, sizeof(struct sigevent))) 1347 return -EFAULT; 1348 p = &n; 1349 } 1350 return do_mq_notify(mqdes, p); 1351 } 1352 1353 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old) 1354 { 1355 struct fd f; 1356 struct inode *inode; 1357 struct mqueue_inode_info *info; 1358 1359 if (new && (new->mq_flags & (~O_NONBLOCK))) 1360 return -EINVAL; 1361 1362 f = fdget(mqdes); 1363 if (!f.file) 1364 return -EBADF; 1365 1366 if (unlikely(f.file->f_op != &mqueue_file_operations)) { 1367 fdput(f); 1368 return -EBADF; 1369 } 1370 1371 inode = file_inode(f.file); 1372 info = MQUEUE_I(inode); 1373 1374 spin_lock(&info->lock); 1375 1376 if (old) { 1377 *old = info->attr; 1378 old->mq_flags = f.file->f_flags & O_NONBLOCK; 1379 } 1380 if (new) { 1381 audit_mq_getsetattr(mqdes, new); 1382 spin_lock(&f.file->f_lock); 1383 if (new->mq_flags & O_NONBLOCK) 1384 f.file->f_flags |= O_NONBLOCK; 1385 else 1386 f.file->f_flags &= ~O_NONBLOCK; 1387 spin_unlock(&f.file->f_lock); 1388 1389 inode->i_atime = inode->i_ctime = current_time(inode); 1390 } 1391 1392 spin_unlock(&info->lock); 1393 fdput(f); 1394 return 0; 1395 } 1396 1397 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes, 1398 const struct mq_attr __user *, u_mqstat, 1399 struct mq_attr __user *, u_omqstat) 1400 { 1401 int ret; 1402 struct mq_attr mqstat, omqstat; 1403 struct mq_attr *new = NULL, *old = NULL; 1404 1405 if (u_mqstat) { 1406 new = &mqstat; 1407 if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr))) 1408 return -EFAULT; 1409 } 1410 if (u_omqstat) 1411 old = &omqstat; 1412 1413 ret = do_mq_getsetattr(mqdes, new, old); 1414 if (ret || !old) 1415 return ret; 1416 1417 if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr))) 1418 return -EFAULT; 1419 return 0; 1420 } 1421 1422 #ifdef CONFIG_COMPAT 1423 1424 struct compat_mq_attr { 1425 compat_long_t mq_flags; /* message queue flags */ 1426 compat_long_t mq_maxmsg; /* maximum number of messages */ 1427 compat_long_t mq_msgsize; /* maximum message size */ 1428 compat_long_t mq_curmsgs; /* number of messages currently queued */ 1429 compat_long_t __reserved[4]; /* ignored for input, zeroed for output */ 1430 }; 1431 1432 static inline int get_compat_mq_attr(struct mq_attr *attr, 1433 const struct compat_mq_attr __user *uattr) 1434 { 1435 struct compat_mq_attr v; 1436 1437 if (copy_from_user(&v, uattr, sizeof(*uattr))) 1438 return -EFAULT; 1439 1440 memset(attr, 0, sizeof(*attr)); 1441 attr->mq_flags = v.mq_flags; 1442 attr->mq_maxmsg = v.mq_maxmsg; 1443 attr->mq_msgsize = v.mq_msgsize; 1444 attr->mq_curmsgs = v.mq_curmsgs; 1445 return 0; 1446 } 1447 1448 static inline int put_compat_mq_attr(const struct mq_attr *attr, 1449 struct compat_mq_attr __user *uattr) 1450 { 1451 struct compat_mq_attr v; 1452 1453 memset(&v, 0, sizeof(v)); 1454 v.mq_flags = attr->mq_flags; 1455 v.mq_maxmsg = attr->mq_maxmsg; 1456 v.mq_msgsize = attr->mq_msgsize; 1457 v.mq_curmsgs = attr->mq_curmsgs; 1458 if (copy_to_user(uattr, &v, sizeof(*uattr))) 1459 return -EFAULT; 1460 return 0; 1461 } 1462 1463 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name, 1464 int, oflag, compat_mode_t, mode, 1465 struct compat_mq_attr __user *, u_attr) 1466 { 1467 struct mq_attr attr, *p = NULL; 1468 if (u_attr && oflag & O_CREAT) { 1469 p = &attr; 1470 if (get_compat_mq_attr(&attr, u_attr)) 1471 return -EFAULT; 1472 } 1473 return do_mq_open(u_name, oflag, mode, p); 1474 } 1475 1476 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes, 1477 const struct compat_sigevent __user *, u_notification) 1478 { 1479 struct sigevent n, *p = NULL; 1480 if (u_notification) { 1481 if (get_compat_sigevent(&n, u_notification)) 1482 return -EFAULT; 1483 if (n.sigev_notify == SIGEV_THREAD) 1484 n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int); 1485 p = &n; 1486 } 1487 return do_mq_notify(mqdes, p); 1488 } 1489 1490 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes, 1491 const struct compat_mq_attr __user *, u_mqstat, 1492 struct compat_mq_attr __user *, u_omqstat) 1493 { 1494 int ret; 1495 struct mq_attr mqstat, omqstat; 1496 struct mq_attr *new = NULL, *old = NULL; 1497 1498 if (u_mqstat) { 1499 new = &mqstat; 1500 if (get_compat_mq_attr(new, u_mqstat)) 1501 return -EFAULT; 1502 } 1503 if (u_omqstat) 1504 old = &omqstat; 1505 1506 ret = do_mq_getsetattr(mqdes, new, old); 1507 if (ret || !old) 1508 return ret; 1509 1510 if (put_compat_mq_attr(old, u_omqstat)) 1511 return -EFAULT; 1512 return 0; 1513 } 1514 #endif 1515 1516 #ifdef CONFIG_COMPAT_32BIT_TIME 1517 static int compat_prepare_timeout(const struct old_timespec32 __user *p, 1518 struct timespec64 *ts) 1519 { 1520 if (get_old_timespec32(ts, p)) 1521 return -EFAULT; 1522 if (!timespec64_valid(ts)) 1523 return -EINVAL; 1524 return 0; 1525 } 1526 1527 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes, 1528 const char __user *, u_msg_ptr, 1529 unsigned int, msg_len, unsigned int, msg_prio, 1530 const struct old_timespec32 __user *, u_abs_timeout) 1531 { 1532 struct timespec64 ts, *p = NULL; 1533 if (u_abs_timeout) { 1534 int res = compat_prepare_timeout(u_abs_timeout, &ts); 1535 if (res) 1536 return res; 1537 p = &ts; 1538 } 1539 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p); 1540 } 1541 1542 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes, 1543 char __user *, u_msg_ptr, 1544 unsigned int, msg_len, unsigned int __user *, u_msg_prio, 1545 const struct old_timespec32 __user *, u_abs_timeout) 1546 { 1547 struct timespec64 ts, *p = NULL; 1548 if (u_abs_timeout) { 1549 int res = compat_prepare_timeout(u_abs_timeout, &ts); 1550 if (res) 1551 return res; 1552 p = &ts; 1553 } 1554 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p); 1555 } 1556 #endif 1557 1558 static const struct inode_operations mqueue_dir_inode_operations = { 1559 .lookup = simple_lookup, 1560 .create = mqueue_create, 1561 .unlink = mqueue_unlink, 1562 }; 1563 1564 static const struct file_operations mqueue_file_operations = { 1565 .flush = mqueue_flush_file, 1566 .poll = mqueue_poll_file, 1567 .read = mqueue_read_file, 1568 .llseek = default_llseek, 1569 }; 1570 1571 static const struct super_operations mqueue_super_ops = { 1572 .alloc_inode = mqueue_alloc_inode, 1573 .free_inode = mqueue_free_inode, 1574 .evict_inode = mqueue_evict_inode, 1575 .statfs = simple_statfs, 1576 }; 1577 1578 static const struct fs_context_operations mqueue_fs_context_ops = { 1579 .free = mqueue_fs_context_free, 1580 .get_tree = mqueue_get_tree, 1581 }; 1582 1583 static struct file_system_type mqueue_fs_type = { 1584 .name = "mqueue", 1585 .init_fs_context = mqueue_init_fs_context, 1586 .kill_sb = kill_litter_super, 1587 .fs_flags = FS_USERNS_MOUNT, 1588 }; 1589 1590 int mq_init_ns(struct ipc_namespace *ns) 1591 { 1592 struct vfsmount *m; 1593 1594 ns->mq_queues_count = 0; 1595 ns->mq_queues_max = DFLT_QUEUESMAX; 1596 ns->mq_msg_max = DFLT_MSGMAX; 1597 ns->mq_msgsize_max = DFLT_MSGSIZEMAX; 1598 ns->mq_msg_default = DFLT_MSG; 1599 ns->mq_msgsize_default = DFLT_MSGSIZE; 1600 1601 m = mq_create_mount(ns); 1602 if (IS_ERR(m)) 1603 return PTR_ERR(m); 1604 ns->mq_mnt = m; 1605 return 0; 1606 } 1607 1608 void mq_clear_sbinfo(struct ipc_namespace *ns) 1609 { 1610 ns->mq_mnt->mnt_sb->s_fs_info = NULL; 1611 } 1612 1613 void mq_put_mnt(struct ipc_namespace *ns) 1614 { 1615 kern_unmount(ns->mq_mnt); 1616 } 1617 1618 static int __init init_mqueue_fs(void) 1619 { 1620 int error; 1621 1622 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache", 1623 sizeof(struct mqueue_inode_info), 0, 1624 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once); 1625 if (mqueue_inode_cachep == NULL) 1626 return -ENOMEM; 1627 1628 /* ignore failures - they are not fatal */ 1629 mq_sysctl_table = mq_register_sysctl_table(); 1630 1631 error = register_filesystem(&mqueue_fs_type); 1632 if (error) 1633 goto out_sysctl; 1634 1635 spin_lock_init(&mq_lock); 1636 1637 error = mq_init_ns(&init_ipc_ns); 1638 if (error) 1639 goto out_filesystem; 1640 1641 return 0; 1642 1643 out_filesystem: 1644 unregister_filesystem(&mqueue_fs_type); 1645 out_sysctl: 1646 if (mq_sysctl_table) 1647 unregister_sysctl_table(mq_sysctl_table); 1648 kmem_cache_destroy(mqueue_inode_cachep); 1649 return error; 1650 } 1651 1652 device_initcall(init_mqueue_fs); 1653