xref: /openbmc/linux/ipc/mqueue.c (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 /*
2  * POSIX message queues filesystem for Linux.
3  *
4  * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
5  *                          Michal Wronski          (michal.wronski@gmail.com)
6  *
7  * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
8  * Lockless receive & send, fd based notify:
9  *			    Manfred Spraul	    (manfred@colorfullife.com)
10  *
11  * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
12  *
13  * This file is released under the GPL.
14  */
15 
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/fs_context.h>
22 #include <linux/namei.h>
23 #include <linux/sysctl.h>
24 #include <linux/poll.h>
25 #include <linux/mqueue.h>
26 #include <linux/msg.h>
27 #include <linux/skbuff.h>
28 #include <linux/vmalloc.h>
29 #include <linux/netlink.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 #include <linux/signal.h>
33 #include <linux/mutex.h>
34 #include <linux/nsproxy.h>
35 #include <linux/pid.h>
36 #include <linux/ipc_namespace.h>
37 #include <linux/user_namespace.h>
38 #include <linux/slab.h>
39 #include <linux/sched/wake_q.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/user.h>
42 
43 #include <net/sock.h>
44 #include "util.h"
45 
46 struct mqueue_fs_context {
47 	struct ipc_namespace	*ipc_ns;
48 };
49 
50 #define MQUEUE_MAGIC	0x19800202
51 #define DIRENT_SIZE	20
52 #define FILENT_SIZE	80
53 
54 #define SEND		0
55 #define RECV		1
56 
57 #define STATE_NONE	0
58 #define STATE_READY	1
59 
60 struct posix_msg_tree_node {
61 	struct rb_node		rb_node;
62 	struct list_head	msg_list;
63 	int			priority;
64 };
65 
66 struct ext_wait_queue {		/* queue of sleeping tasks */
67 	struct task_struct *task;
68 	struct list_head list;
69 	struct msg_msg *msg;	/* ptr of loaded message */
70 	int state;		/* one of STATE_* values */
71 };
72 
73 struct mqueue_inode_info {
74 	spinlock_t lock;
75 	struct inode vfs_inode;
76 	wait_queue_head_t wait_q;
77 
78 	struct rb_root msg_tree;
79 	struct rb_node *msg_tree_rightmost;
80 	struct posix_msg_tree_node *node_cache;
81 	struct mq_attr attr;
82 
83 	struct sigevent notify;
84 	struct pid *notify_owner;
85 	struct user_namespace *notify_user_ns;
86 	struct user_struct *user;	/* user who created, for accounting */
87 	struct sock *notify_sock;
88 	struct sk_buff *notify_cookie;
89 
90 	/* for tasks waiting for free space and messages, respectively */
91 	struct ext_wait_queue e_wait_q[2];
92 
93 	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
94 };
95 
96 static struct file_system_type mqueue_fs_type;
97 static const struct inode_operations mqueue_dir_inode_operations;
98 static const struct file_operations mqueue_file_operations;
99 static const struct super_operations mqueue_super_ops;
100 static const struct fs_context_operations mqueue_fs_context_ops;
101 static void remove_notification(struct mqueue_inode_info *info);
102 
103 static struct kmem_cache *mqueue_inode_cachep;
104 
105 static struct ctl_table_header *mq_sysctl_table;
106 
107 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
108 {
109 	return container_of(inode, struct mqueue_inode_info, vfs_inode);
110 }
111 
112 /*
113  * This routine should be called with the mq_lock held.
114  */
115 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
116 {
117 	return get_ipc_ns(inode->i_sb->s_fs_info);
118 }
119 
120 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
121 {
122 	struct ipc_namespace *ns;
123 
124 	spin_lock(&mq_lock);
125 	ns = __get_ns_from_inode(inode);
126 	spin_unlock(&mq_lock);
127 	return ns;
128 }
129 
130 /* Auxiliary functions to manipulate messages' list */
131 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
132 {
133 	struct rb_node **p, *parent = NULL;
134 	struct posix_msg_tree_node *leaf;
135 	bool rightmost = true;
136 
137 	p = &info->msg_tree.rb_node;
138 	while (*p) {
139 		parent = *p;
140 		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
141 
142 		if (likely(leaf->priority == msg->m_type))
143 			goto insert_msg;
144 		else if (msg->m_type < leaf->priority) {
145 			p = &(*p)->rb_left;
146 			rightmost = false;
147 		} else
148 			p = &(*p)->rb_right;
149 	}
150 	if (info->node_cache) {
151 		leaf = info->node_cache;
152 		info->node_cache = NULL;
153 	} else {
154 		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
155 		if (!leaf)
156 			return -ENOMEM;
157 		INIT_LIST_HEAD(&leaf->msg_list);
158 	}
159 	leaf->priority = msg->m_type;
160 
161 	if (rightmost)
162 		info->msg_tree_rightmost = &leaf->rb_node;
163 
164 	rb_link_node(&leaf->rb_node, parent, p);
165 	rb_insert_color(&leaf->rb_node, &info->msg_tree);
166 insert_msg:
167 	info->attr.mq_curmsgs++;
168 	info->qsize += msg->m_ts;
169 	list_add_tail(&msg->m_list, &leaf->msg_list);
170 	return 0;
171 }
172 
173 static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
174 				  struct mqueue_inode_info *info)
175 {
176 	struct rb_node *node = &leaf->rb_node;
177 
178 	if (info->msg_tree_rightmost == node)
179 		info->msg_tree_rightmost = rb_prev(node);
180 
181 	rb_erase(node, &info->msg_tree);
182 	if (info->node_cache) {
183 		kfree(leaf);
184 	} else {
185 		info->node_cache = leaf;
186 	}
187 }
188 
189 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
190 {
191 	struct rb_node *parent = NULL;
192 	struct posix_msg_tree_node *leaf;
193 	struct msg_msg *msg;
194 
195 try_again:
196 	/*
197 	 * During insert, low priorities go to the left and high to the
198 	 * right.  On receive, we want the highest priorities first, so
199 	 * walk all the way to the right.
200 	 */
201 	parent = info->msg_tree_rightmost;
202 	if (!parent) {
203 		if (info->attr.mq_curmsgs) {
204 			pr_warn_once("Inconsistency in POSIX message queue, "
205 				     "no tree element, but supposedly messages "
206 				     "should exist!\n");
207 			info->attr.mq_curmsgs = 0;
208 		}
209 		return NULL;
210 	}
211 	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
212 	if (unlikely(list_empty(&leaf->msg_list))) {
213 		pr_warn_once("Inconsistency in POSIX message queue, "
214 			     "empty leaf node but we haven't implemented "
215 			     "lazy leaf delete!\n");
216 		msg_tree_erase(leaf, info);
217 		goto try_again;
218 	} else {
219 		msg = list_first_entry(&leaf->msg_list,
220 				       struct msg_msg, m_list);
221 		list_del(&msg->m_list);
222 		if (list_empty(&leaf->msg_list)) {
223 			msg_tree_erase(leaf, info);
224 		}
225 	}
226 	info->attr.mq_curmsgs--;
227 	info->qsize -= msg->m_ts;
228 	return msg;
229 }
230 
231 static struct inode *mqueue_get_inode(struct super_block *sb,
232 		struct ipc_namespace *ipc_ns, umode_t mode,
233 		struct mq_attr *attr)
234 {
235 	struct user_struct *u = current_user();
236 	struct inode *inode;
237 	int ret = -ENOMEM;
238 
239 	inode = new_inode(sb);
240 	if (!inode)
241 		goto err;
242 
243 	inode->i_ino = get_next_ino();
244 	inode->i_mode = mode;
245 	inode->i_uid = current_fsuid();
246 	inode->i_gid = current_fsgid();
247 	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
248 
249 	if (S_ISREG(mode)) {
250 		struct mqueue_inode_info *info;
251 		unsigned long mq_bytes, mq_treesize;
252 
253 		inode->i_fop = &mqueue_file_operations;
254 		inode->i_size = FILENT_SIZE;
255 		/* mqueue specific info */
256 		info = MQUEUE_I(inode);
257 		spin_lock_init(&info->lock);
258 		init_waitqueue_head(&info->wait_q);
259 		INIT_LIST_HEAD(&info->e_wait_q[0].list);
260 		INIT_LIST_HEAD(&info->e_wait_q[1].list);
261 		info->notify_owner = NULL;
262 		info->notify_user_ns = NULL;
263 		info->qsize = 0;
264 		info->user = NULL;	/* set when all is ok */
265 		info->msg_tree = RB_ROOT;
266 		info->msg_tree_rightmost = NULL;
267 		info->node_cache = NULL;
268 		memset(&info->attr, 0, sizeof(info->attr));
269 		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
270 					   ipc_ns->mq_msg_default);
271 		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
272 					    ipc_ns->mq_msgsize_default);
273 		if (attr) {
274 			info->attr.mq_maxmsg = attr->mq_maxmsg;
275 			info->attr.mq_msgsize = attr->mq_msgsize;
276 		}
277 		/*
278 		 * We used to allocate a static array of pointers and account
279 		 * the size of that array as well as one msg_msg struct per
280 		 * possible message into the queue size. That's no longer
281 		 * accurate as the queue is now an rbtree and will grow and
282 		 * shrink depending on usage patterns.  We can, however, still
283 		 * account one msg_msg struct per message, but the nodes are
284 		 * allocated depending on priority usage, and most programs
285 		 * only use one, or a handful, of priorities.  However, since
286 		 * this is pinned memory, we need to assume worst case, so
287 		 * that means the min(mq_maxmsg, max_priorities) * struct
288 		 * posix_msg_tree_node.
289 		 */
290 
291 		ret = -EINVAL;
292 		if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
293 			goto out_inode;
294 		if (capable(CAP_SYS_RESOURCE)) {
295 			if (info->attr.mq_maxmsg > HARD_MSGMAX ||
296 			    info->attr.mq_msgsize > HARD_MSGSIZEMAX)
297 				goto out_inode;
298 		} else {
299 			if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
300 					info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
301 				goto out_inode;
302 		}
303 		ret = -EOVERFLOW;
304 		/* check for overflow */
305 		if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
306 			goto out_inode;
307 		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
308 			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
309 			sizeof(struct posix_msg_tree_node);
310 		mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
311 		if (mq_bytes + mq_treesize < mq_bytes)
312 			goto out_inode;
313 		mq_bytes += mq_treesize;
314 		spin_lock(&mq_lock);
315 		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
316 		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
317 			spin_unlock(&mq_lock);
318 			/* mqueue_evict_inode() releases info->messages */
319 			ret = -EMFILE;
320 			goto out_inode;
321 		}
322 		u->mq_bytes += mq_bytes;
323 		spin_unlock(&mq_lock);
324 
325 		/* all is ok */
326 		info->user = get_uid(u);
327 	} else if (S_ISDIR(mode)) {
328 		inc_nlink(inode);
329 		/* Some things misbehave if size == 0 on a directory */
330 		inode->i_size = 2 * DIRENT_SIZE;
331 		inode->i_op = &mqueue_dir_inode_operations;
332 		inode->i_fop = &simple_dir_operations;
333 	}
334 
335 	return inode;
336 out_inode:
337 	iput(inode);
338 err:
339 	return ERR_PTR(ret);
340 }
341 
342 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
343 {
344 	struct inode *inode;
345 	struct ipc_namespace *ns = sb->s_fs_info;
346 
347 	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
348 	sb->s_blocksize = PAGE_SIZE;
349 	sb->s_blocksize_bits = PAGE_SHIFT;
350 	sb->s_magic = MQUEUE_MAGIC;
351 	sb->s_op = &mqueue_super_ops;
352 
353 	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
354 	if (IS_ERR(inode))
355 		return PTR_ERR(inode);
356 
357 	sb->s_root = d_make_root(inode);
358 	if (!sb->s_root)
359 		return -ENOMEM;
360 	return 0;
361 }
362 
363 static int mqueue_get_tree(struct fs_context *fc)
364 {
365 	struct mqueue_fs_context *ctx = fc->fs_private;
366 
367 	put_user_ns(fc->user_ns);
368 	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
369 	fc->s_fs_info = ctx->ipc_ns;
370 	return vfs_get_super(fc, vfs_get_keyed_super, mqueue_fill_super);
371 }
372 
373 static void mqueue_fs_context_free(struct fs_context *fc)
374 {
375 	struct mqueue_fs_context *ctx = fc->fs_private;
376 
377 	if (ctx->ipc_ns)
378 		put_ipc_ns(ctx->ipc_ns);
379 	kfree(ctx);
380 }
381 
382 static int mqueue_init_fs_context(struct fs_context *fc)
383 {
384 	struct mqueue_fs_context *ctx;
385 
386 	ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
387 	if (!ctx)
388 		return -ENOMEM;
389 
390 	ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
391 	fc->fs_private = ctx;
392 	fc->ops = &mqueue_fs_context_ops;
393 	return 0;
394 }
395 
396 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
397 {
398 	struct mqueue_fs_context *ctx;
399 	struct fs_context *fc;
400 	struct vfsmount *mnt;
401 
402 	fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
403 	if (IS_ERR(fc))
404 		return ERR_CAST(fc);
405 
406 	ctx = fc->fs_private;
407 	put_ipc_ns(ctx->ipc_ns);
408 	ctx->ipc_ns = get_ipc_ns(ns);
409 
410 	mnt = fc_mount(fc);
411 	put_fs_context(fc);
412 	return mnt;
413 }
414 
415 static void init_once(void *foo)
416 {
417 	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
418 
419 	inode_init_once(&p->vfs_inode);
420 }
421 
422 static struct inode *mqueue_alloc_inode(struct super_block *sb)
423 {
424 	struct mqueue_inode_info *ei;
425 
426 	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
427 	if (!ei)
428 		return NULL;
429 	return &ei->vfs_inode;
430 }
431 
432 static void mqueue_free_inode(struct inode *inode)
433 {
434 	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
435 }
436 
437 static void mqueue_evict_inode(struct inode *inode)
438 {
439 	struct mqueue_inode_info *info;
440 	struct user_struct *user;
441 	unsigned long mq_bytes, mq_treesize;
442 	struct ipc_namespace *ipc_ns;
443 	struct msg_msg *msg, *nmsg;
444 	LIST_HEAD(tmp_msg);
445 
446 	clear_inode(inode);
447 
448 	if (S_ISDIR(inode->i_mode))
449 		return;
450 
451 	ipc_ns = get_ns_from_inode(inode);
452 	info = MQUEUE_I(inode);
453 	spin_lock(&info->lock);
454 	while ((msg = msg_get(info)) != NULL)
455 		list_add_tail(&msg->m_list, &tmp_msg);
456 	kfree(info->node_cache);
457 	spin_unlock(&info->lock);
458 
459 	list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
460 		list_del(&msg->m_list);
461 		free_msg(msg);
462 	}
463 
464 	/* Total amount of bytes accounted for the mqueue */
465 	mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
466 		min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
467 		sizeof(struct posix_msg_tree_node);
468 
469 	mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
470 				  info->attr.mq_msgsize);
471 
472 	user = info->user;
473 	if (user) {
474 		spin_lock(&mq_lock);
475 		user->mq_bytes -= mq_bytes;
476 		/*
477 		 * get_ns_from_inode() ensures that the
478 		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
479 		 * to which we now hold a reference, or it is NULL.
480 		 * We can't put it here under mq_lock, though.
481 		 */
482 		if (ipc_ns)
483 			ipc_ns->mq_queues_count--;
484 		spin_unlock(&mq_lock);
485 		free_uid(user);
486 	}
487 	if (ipc_ns)
488 		put_ipc_ns(ipc_ns);
489 }
490 
491 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
492 {
493 	struct inode *dir = dentry->d_parent->d_inode;
494 	struct inode *inode;
495 	struct mq_attr *attr = arg;
496 	int error;
497 	struct ipc_namespace *ipc_ns;
498 
499 	spin_lock(&mq_lock);
500 	ipc_ns = __get_ns_from_inode(dir);
501 	if (!ipc_ns) {
502 		error = -EACCES;
503 		goto out_unlock;
504 	}
505 
506 	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
507 	    !capable(CAP_SYS_RESOURCE)) {
508 		error = -ENOSPC;
509 		goto out_unlock;
510 	}
511 	ipc_ns->mq_queues_count++;
512 	spin_unlock(&mq_lock);
513 
514 	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
515 	if (IS_ERR(inode)) {
516 		error = PTR_ERR(inode);
517 		spin_lock(&mq_lock);
518 		ipc_ns->mq_queues_count--;
519 		goto out_unlock;
520 	}
521 
522 	put_ipc_ns(ipc_ns);
523 	dir->i_size += DIRENT_SIZE;
524 	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
525 
526 	d_instantiate(dentry, inode);
527 	dget(dentry);
528 	return 0;
529 out_unlock:
530 	spin_unlock(&mq_lock);
531 	if (ipc_ns)
532 		put_ipc_ns(ipc_ns);
533 	return error;
534 }
535 
536 static int mqueue_create(struct inode *dir, struct dentry *dentry,
537 				umode_t mode, bool excl)
538 {
539 	return mqueue_create_attr(dentry, mode, NULL);
540 }
541 
542 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
543 {
544 	struct inode *inode = d_inode(dentry);
545 
546 	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
547 	dir->i_size -= DIRENT_SIZE;
548 	drop_nlink(inode);
549 	dput(dentry);
550 	return 0;
551 }
552 
553 /*
554 *	This is routine for system read from queue file.
555 *	To avoid mess with doing here some sort of mq_receive we allow
556 *	to read only queue size & notification info (the only values
557 *	that are interesting from user point of view and aren't accessible
558 *	through std routines)
559 */
560 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
561 				size_t count, loff_t *off)
562 {
563 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
564 	char buffer[FILENT_SIZE];
565 	ssize_t ret;
566 
567 	spin_lock(&info->lock);
568 	snprintf(buffer, sizeof(buffer),
569 			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
570 			info->qsize,
571 			info->notify_owner ? info->notify.sigev_notify : 0,
572 			(info->notify_owner &&
573 			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
574 				info->notify.sigev_signo : 0,
575 			pid_vnr(info->notify_owner));
576 	spin_unlock(&info->lock);
577 	buffer[sizeof(buffer)-1] = '\0';
578 
579 	ret = simple_read_from_buffer(u_data, count, off, buffer,
580 				strlen(buffer));
581 	if (ret <= 0)
582 		return ret;
583 
584 	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
585 	return ret;
586 }
587 
588 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
589 {
590 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
591 
592 	spin_lock(&info->lock);
593 	if (task_tgid(current) == info->notify_owner)
594 		remove_notification(info);
595 
596 	spin_unlock(&info->lock);
597 	return 0;
598 }
599 
600 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
601 {
602 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
603 	__poll_t retval = 0;
604 
605 	poll_wait(filp, &info->wait_q, poll_tab);
606 
607 	spin_lock(&info->lock);
608 	if (info->attr.mq_curmsgs)
609 		retval = EPOLLIN | EPOLLRDNORM;
610 
611 	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
612 		retval |= EPOLLOUT | EPOLLWRNORM;
613 	spin_unlock(&info->lock);
614 
615 	return retval;
616 }
617 
618 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
619 static void wq_add(struct mqueue_inode_info *info, int sr,
620 			struct ext_wait_queue *ewp)
621 {
622 	struct ext_wait_queue *walk;
623 
624 	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
625 		if (walk->task->prio <= current->prio) {
626 			list_add_tail(&ewp->list, &walk->list);
627 			return;
628 		}
629 	}
630 	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
631 }
632 
633 /*
634  * Puts current task to sleep. Caller must hold queue lock. After return
635  * lock isn't held.
636  * sr: SEND or RECV
637  */
638 static int wq_sleep(struct mqueue_inode_info *info, int sr,
639 		    ktime_t *timeout, struct ext_wait_queue *ewp)
640 	__releases(&info->lock)
641 {
642 	int retval;
643 	signed long time;
644 
645 	wq_add(info, sr, ewp);
646 
647 	for (;;) {
648 		__set_current_state(TASK_INTERRUPTIBLE);
649 
650 		spin_unlock(&info->lock);
651 		time = schedule_hrtimeout_range_clock(timeout, 0,
652 			HRTIMER_MODE_ABS, CLOCK_REALTIME);
653 
654 		if (ewp->state == STATE_READY) {
655 			retval = 0;
656 			goto out;
657 		}
658 		spin_lock(&info->lock);
659 		if (ewp->state == STATE_READY) {
660 			retval = 0;
661 			goto out_unlock;
662 		}
663 		if (signal_pending(current)) {
664 			retval = -ERESTARTSYS;
665 			break;
666 		}
667 		if (time == 0) {
668 			retval = -ETIMEDOUT;
669 			break;
670 		}
671 	}
672 	list_del(&ewp->list);
673 out_unlock:
674 	spin_unlock(&info->lock);
675 out:
676 	return retval;
677 }
678 
679 /*
680  * Returns waiting task that should be serviced first or NULL if none exists
681  */
682 static struct ext_wait_queue *wq_get_first_waiter(
683 		struct mqueue_inode_info *info, int sr)
684 {
685 	struct list_head *ptr;
686 
687 	ptr = info->e_wait_q[sr].list.prev;
688 	if (ptr == &info->e_wait_q[sr].list)
689 		return NULL;
690 	return list_entry(ptr, struct ext_wait_queue, list);
691 }
692 
693 
694 static inline void set_cookie(struct sk_buff *skb, char code)
695 {
696 	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
697 }
698 
699 /*
700  * The next function is only to split too long sys_mq_timedsend
701  */
702 static void __do_notify(struct mqueue_inode_info *info)
703 {
704 	/* notification
705 	 * invoked when there is registered process and there isn't process
706 	 * waiting synchronously for message AND state of queue changed from
707 	 * empty to not empty. Here we are sure that no one is waiting
708 	 * synchronously. */
709 	if (info->notify_owner &&
710 	    info->attr.mq_curmsgs == 1) {
711 		struct kernel_siginfo sig_i;
712 		switch (info->notify.sigev_notify) {
713 		case SIGEV_NONE:
714 			break;
715 		case SIGEV_SIGNAL:
716 			/* sends signal */
717 
718 			clear_siginfo(&sig_i);
719 			sig_i.si_signo = info->notify.sigev_signo;
720 			sig_i.si_errno = 0;
721 			sig_i.si_code = SI_MESGQ;
722 			sig_i.si_value = info->notify.sigev_value;
723 			/* map current pid/uid into info->owner's namespaces */
724 			rcu_read_lock();
725 			sig_i.si_pid = task_tgid_nr_ns(current,
726 						ns_of_pid(info->notify_owner));
727 			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
728 			rcu_read_unlock();
729 
730 			kill_pid_info(info->notify.sigev_signo,
731 				      &sig_i, info->notify_owner);
732 			break;
733 		case SIGEV_THREAD:
734 			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
735 			netlink_sendskb(info->notify_sock, info->notify_cookie);
736 			break;
737 		}
738 		/* after notification unregisters process */
739 		put_pid(info->notify_owner);
740 		put_user_ns(info->notify_user_ns);
741 		info->notify_owner = NULL;
742 		info->notify_user_ns = NULL;
743 	}
744 	wake_up(&info->wait_q);
745 }
746 
747 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
748 			   struct timespec64 *ts)
749 {
750 	if (get_timespec64(ts, u_abs_timeout))
751 		return -EFAULT;
752 	if (!timespec64_valid(ts))
753 		return -EINVAL;
754 	return 0;
755 }
756 
757 static void remove_notification(struct mqueue_inode_info *info)
758 {
759 	if (info->notify_owner != NULL &&
760 	    info->notify.sigev_notify == SIGEV_THREAD) {
761 		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
762 		netlink_sendskb(info->notify_sock, info->notify_cookie);
763 	}
764 	put_pid(info->notify_owner);
765 	put_user_ns(info->notify_user_ns);
766 	info->notify_owner = NULL;
767 	info->notify_user_ns = NULL;
768 }
769 
770 static int prepare_open(struct dentry *dentry, int oflag, int ro,
771 			umode_t mode, struct filename *name,
772 			struct mq_attr *attr)
773 {
774 	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
775 						  MAY_READ | MAY_WRITE };
776 	int acc;
777 
778 	if (d_really_is_negative(dentry)) {
779 		if (!(oflag & O_CREAT))
780 			return -ENOENT;
781 		if (ro)
782 			return ro;
783 		audit_inode_parent_hidden(name, dentry->d_parent);
784 		return vfs_mkobj(dentry, mode & ~current_umask(),
785 				  mqueue_create_attr, attr);
786 	}
787 	/* it already existed */
788 	audit_inode(name, dentry, 0);
789 	if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
790 		return -EEXIST;
791 	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
792 		return -EINVAL;
793 	acc = oflag2acc[oflag & O_ACCMODE];
794 	return inode_permission(d_inode(dentry), acc);
795 }
796 
797 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
798 		      struct mq_attr *attr)
799 {
800 	struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
801 	struct dentry *root = mnt->mnt_root;
802 	struct filename *name;
803 	struct path path;
804 	int fd, error;
805 	int ro;
806 
807 	audit_mq_open(oflag, mode, attr);
808 
809 	if (IS_ERR(name = getname(u_name)))
810 		return PTR_ERR(name);
811 
812 	fd = get_unused_fd_flags(O_CLOEXEC);
813 	if (fd < 0)
814 		goto out_putname;
815 
816 	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
817 	inode_lock(d_inode(root));
818 	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
819 	if (IS_ERR(path.dentry)) {
820 		error = PTR_ERR(path.dentry);
821 		goto out_putfd;
822 	}
823 	path.mnt = mntget(mnt);
824 	error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
825 	if (!error) {
826 		struct file *file = dentry_open(&path, oflag, current_cred());
827 		if (!IS_ERR(file))
828 			fd_install(fd, file);
829 		else
830 			error = PTR_ERR(file);
831 	}
832 	path_put(&path);
833 out_putfd:
834 	if (error) {
835 		put_unused_fd(fd);
836 		fd = error;
837 	}
838 	inode_unlock(d_inode(root));
839 	if (!ro)
840 		mnt_drop_write(mnt);
841 out_putname:
842 	putname(name);
843 	return fd;
844 }
845 
846 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
847 		struct mq_attr __user *, u_attr)
848 {
849 	struct mq_attr attr;
850 	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
851 		return -EFAULT;
852 
853 	return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
854 }
855 
856 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
857 {
858 	int err;
859 	struct filename *name;
860 	struct dentry *dentry;
861 	struct inode *inode = NULL;
862 	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
863 	struct vfsmount *mnt = ipc_ns->mq_mnt;
864 
865 	name = getname(u_name);
866 	if (IS_ERR(name))
867 		return PTR_ERR(name);
868 
869 	audit_inode_parent_hidden(name, mnt->mnt_root);
870 	err = mnt_want_write(mnt);
871 	if (err)
872 		goto out_name;
873 	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
874 	dentry = lookup_one_len(name->name, mnt->mnt_root,
875 				strlen(name->name));
876 	if (IS_ERR(dentry)) {
877 		err = PTR_ERR(dentry);
878 		goto out_unlock;
879 	}
880 
881 	inode = d_inode(dentry);
882 	if (!inode) {
883 		err = -ENOENT;
884 	} else {
885 		ihold(inode);
886 		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
887 	}
888 	dput(dentry);
889 
890 out_unlock:
891 	inode_unlock(d_inode(mnt->mnt_root));
892 	if (inode)
893 		iput(inode);
894 	mnt_drop_write(mnt);
895 out_name:
896 	putname(name);
897 
898 	return err;
899 }
900 
901 /* Pipelined send and receive functions.
902  *
903  * If a receiver finds no waiting message, then it registers itself in the
904  * list of waiting receivers. A sender checks that list before adding the new
905  * message into the message array. If there is a waiting receiver, then it
906  * bypasses the message array and directly hands the message over to the
907  * receiver. The receiver accepts the message and returns without grabbing the
908  * queue spinlock:
909  *
910  * - Set pointer to message.
911  * - Queue the receiver task for later wakeup (without the info->lock).
912  * - Update its state to STATE_READY. Now the receiver can continue.
913  * - Wake up the process after the lock is dropped. Should the process wake up
914  *   before this wakeup (due to a timeout or a signal) it will either see
915  *   STATE_READY and continue or acquire the lock to check the state again.
916  *
917  * The same algorithm is used for senders.
918  */
919 
920 /* pipelined_send() - send a message directly to the task waiting in
921  * sys_mq_timedreceive() (without inserting message into a queue).
922  */
923 static inline void pipelined_send(struct wake_q_head *wake_q,
924 				  struct mqueue_inode_info *info,
925 				  struct msg_msg *message,
926 				  struct ext_wait_queue *receiver)
927 {
928 	receiver->msg = message;
929 	list_del(&receiver->list);
930 	wake_q_add(wake_q, receiver->task);
931 	/*
932 	 * Rely on the implicit cmpxchg barrier from wake_q_add such
933 	 * that we can ensure that updating receiver->state is the last
934 	 * write operation: As once set, the receiver can continue,
935 	 * and if we don't have the reference count from the wake_q,
936 	 * yet, at that point we can later have a use-after-free
937 	 * condition and bogus wakeup.
938 	 */
939 	receiver->state = STATE_READY;
940 }
941 
942 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
943  * gets its message and put to the queue (we have one free place for sure). */
944 static inline void pipelined_receive(struct wake_q_head *wake_q,
945 				     struct mqueue_inode_info *info)
946 {
947 	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
948 
949 	if (!sender) {
950 		/* for poll */
951 		wake_up_interruptible(&info->wait_q);
952 		return;
953 	}
954 	if (msg_insert(sender->msg, info))
955 		return;
956 
957 	list_del(&sender->list);
958 	wake_q_add(wake_q, sender->task);
959 	sender->state = STATE_READY;
960 }
961 
962 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
963 		size_t msg_len, unsigned int msg_prio,
964 		struct timespec64 *ts)
965 {
966 	struct fd f;
967 	struct inode *inode;
968 	struct ext_wait_queue wait;
969 	struct ext_wait_queue *receiver;
970 	struct msg_msg *msg_ptr;
971 	struct mqueue_inode_info *info;
972 	ktime_t expires, *timeout = NULL;
973 	struct posix_msg_tree_node *new_leaf = NULL;
974 	int ret = 0;
975 	DEFINE_WAKE_Q(wake_q);
976 
977 	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
978 		return -EINVAL;
979 
980 	if (ts) {
981 		expires = timespec64_to_ktime(*ts);
982 		timeout = &expires;
983 	}
984 
985 	audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
986 
987 	f = fdget(mqdes);
988 	if (unlikely(!f.file)) {
989 		ret = -EBADF;
990 		goto out;
991 	}
992 
993 	inode = file_inode(f.file);
994 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
995 		ret = -EBADF;
996 		goto out_fput;
997 	}
998 	info = MQUEUE_I(inode);
999 	audit_file(f.file);
1000 
1001 	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1002 		ret = -EBADF;
1003 		goto out_fput;
1004 	}
1005 
1006 	if (unlikely(msg_len > info->attr.mq_msgsize)) {
1007 		ret = -EMSGSIZE;
1008 		goto out_fput;
1009 	}
1010 
1011 	/* First try to allocate memory, before doing anything with
1012 	 * existing queues. */
1013 	msg_ptr = load_msg(u_msg_ptr, msg_len);
1014 	if (IS_ERR(msg_ptr)) {
1015 		ret = PTR_ERR(msg_ptr);
1016 		goto out_fput;
1017 	}
1018 	msg_ptr->m_ts = msg_len;
1019 	msg_ptr->m_type = msg_prio;
1020 
1021 	/*
1022 	 * msg_insert really wants us to have a valid, spare node struct so
1023 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1024 	 * fall back to that if necessary.
1025 	 */
1026 	if (!info->node_cache)
1027 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1028 
1029 	spin_lock(&info->lock);
1030 
1031 	if (!info->node_cache && new_leaf) {
1032 		/* Save our speculative allocation into the cache */
1033 		INIT_LIST_HEAD(&new_leaf->msg_list);
1034 		info->node_cache = new_leaf;
1035 		new_leaf = NULL;
1036 	} else {
1037 		kfree(new_leaf);
1038 	}
1039 
1040 	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1041 		if (f.file->f_flags & O_NONBLOCK) {
1042 			ret = -EAGAIN;
1043 		} else {
1044 			wait.task = current;
1045 			wait.msg = (void *) msg_ptr;
1046 			wait.state = STATE_NONE;
1047 			ret = wq_sleep(info, SEND, timeout, &wait);
1048 			/*
1049 			 * wq_sleep must be called with info->lock held, and
1050 			 * returns with the lock released
1051 			 */
1052 			goto out_free;
1053 		}
1054 	} else {
1055 		receiver = wq_get_first_waiter(info, RECV);
1056 		if (receiver) {
1057 			pipelined_send(&wake_q, info, msg_ptr, receiver);
1058 		} else {
1059 			/* adds message to the queue */
1060 			ret = msg_insert(msg_ptr, info);
1061 			if (ret)
1062 				goto out_unlock;
1063 			__do_notify(info);
1064 		}
1065 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1066 				current_time(inode);
1067 	}
1068 out_unlock:
1069 	spin_unlock(&info->lock);
1070 	wake_up_q(&wake_q);
1071 out_free:
1072 	if (ret)
1073 		free_msg(msg_ptr);
1074 out_fput:
1075 	fdput(f);
1076 out:
1077 	return ret;
1078 }
1079 
1080 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1081 		size_t msg_len, unsigned int __user *u_msg_prio,
1082 		struct timespec64 *ts)
1083 {
1084 	ssize_t ret;
1085 	struct msg_msg *msg_ptr;
1086 	struct fd f;
1087 	struct inode *inode;
1088 	struct mqueue_inode_info *info;
1089 	struct ext_wait_queue wait;
1090 	ktime_t expires, *timeout = NULL;
1091 	struct posix_msg_tree_node *new_leaf = NULL;
1092 
1093 	if (ts) {
1094 		expires = timespec64_to_ktime(*ts);
1095 		timeout = &expires;
1096 	}
1097 
1098 	audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1099 
1100 	f = fdget(mqdes);
1101 	if (unlikely(!f.file)) {
1102 		ret = -EBADF;
1103 		goto out;
1104 	}
1105 
1106 	inode = file_inode(f.file);
1107 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1108 		ret = -EBADF;
1109 		goto out_fput;
1110 	}
1111 	info = MQUEUE_I(inode);
1112 	audit_file(f.file);
1113 
1114 	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1115 		ret = -EBADF;
1116 		goto out_fput;
1117 	}
1118 
1119 	/* checks if buffer is big enough */
1120 	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1121 		ret = -EMSGSIZE;
1122 		goto out_fput;
1123 	}
1124 
1125 	/*
1126 	 * msg_insert really wants us to have a valid, spare node struct so
1127 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1128 	 * fall back to that if necessary.
1129 	 */
1130 	if (!info->node_cache)
1131 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1132 
1133 	spin_lock(&info->lock);
1134 
1135 	if (!info->node_cache && new_leaf) {
1136 		/* Save our speculative allocation into the cache */
1137 		INIT_LIST_HEAD(&new_leaf->msg_list);
1138 		info->node_cache = new_leaf;
1139 	} else {
1140 		kfree(new_leaf);
1141 	}
1142 
1143 	if (info->attr.mq_curmsgs == 0) {
1144 		if (f.file->f_flags & O_NONBLOCK) {
1145 			spin_unlock(&info->lock);
1146 			ret = -EAGAIN;
1147 		} else {
1148 			wait.task = current;
1149 			wait.state = STATE_NONE;
1150 			ret = wq_sleep(info, RECV, timeout, &wait);
1151 			msg_ptr = wait.msg;
1152 		}
1153 	} else {
1154 		DEFINE_WAKE_Q(wake_q);
1155 
1156 		msg_ptr = msg_get(info);
1157 
1158 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1159 				current_time(inode);
1160 
1161 		/* There is now free space in queue. */
1162 		pipelined_receive(&wake_q, info);
1163 		spin_unlock(&info->lock);
1164 		wake_up_q(&wake_q);
1165 		ret = 0;
1166 	}
1167 	if (ret == 0) {
1168 		ret = msg_ptr->m_ts;
1169 
1170 		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1171 			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1172 			ret = -EFAULT;
1173 		}
1174 		free_msg(msg_ptr);
1175 	}
1176 out_fput:
1177 	fdput(f);
1178 out:
1179 	return ret;
1180 }
1181 
1182 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1183 		size_t, msg_len, unsigned int, msg_prio,
1184 		const struct __kernel_timespec __user *, u_abs_timeout)
1185 {
1186 	struct timespec64 ts, *p = NULL;
1187 	if (u_abs_timeout) {
1188 		int res = prepare_timeout(u_abs_timeout, &ts);
1189 		if (res)
1190 			return res;
1191 		p = &ts;
1192 	}
1193 	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1194 }
1195 
1196 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1197 		size_t, msg_len, unsigned int __user *, u_msg_prio,
1198 		const struct __kernel_timespec __user *, u_abs_timeout)
1199 {
1200 	struct timespec64 ts, *p = NULL;
1201 	if (u_abs_timeout) {
1202 		int res = prepare_timeout(u_abs_timeout, &ts);
1203 		if (res)
1204 			return res;
1205 		p = &ts;
1206 	}
1207 	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1208 }
1209 
1210 /*
1211  * Notes: the case when user wants us to deregister (with NULL as pointer)
1212  * and he isn't currently owner of notification, will be silently discarded.
1213  * It isn't explicitly defined in the POSIX.
1214  */
1215 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1216 {
1217 	int ret;
1218 	struct fd f;
1219 	struct sock *sock;
1220 	struct inode *inode;
1221 	struct mqueue_inode_info *info;
1222 	struct sk_buff *nc;
1223 
1224 	audit_mq_notify(mqdes, notification);
1225 
1226 	nc = NULL;
1227 	sock = NULL;
1228 	if (notification != NULL) {
1229 		if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1230 			     notification->sigev_notify != SIGEV_SIGNAL &&
1231 			     notification->sigev_notify != SIGEV_THREAD))
1232 			return -EINVAL;
1233 		if (notification->sigev_notify == SIGEV_SIGNAL &&
1234 			!valid_signal(notification->sigev_signo)) {
1235 			return -EINVAL;
1236 		}
1237 		if (notification->sigev_notify == SIGEV_THREAD) {
1238 			long timeo;
1239 
1240 			/* create the notify skb */
1241 			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1242 			if (!nc) {
1243 				ret = -ENOMEM;
1244 				goto out;
1245 			}
1246 			if (copy_from_user(nc->data,
1247 					notification->sigev_value.sival_ptr,
1248 					NOTIFY_COOKIE_LEN)) {
1249 				ret = -EFAULT;
1250 				goto out;
1251 			}
1252 
1253 			/* TODO: add a header? */
1254 			skb_put(nc, NOTIFY_COOKIE_LEN);
1255 			/* and attach it to the socket */
1256 retry:
1257 			f = fdget(notification->sigev_signo);
1258 			if (!f.file) {
1259 				ret = -EBADF;
1260 				goto out;
1261 			}
1262 			sock = netlink_getsockbyfilp(f.file);
1263 			fdput(f);
1264 			if (IS_ERR(sock)) {
1265 				ret = PTR_ERR(sock);
1266 				sock = NULL;
1267 				goto out;
1268 			}
1269 
1270 			timeo = MAX_SCHEDULE_TIMEOUT;
1271 			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1272 			if (ret == 1) {
1273 				sock = NULL;
1274 				goto retry;
1275 			}
1276 			if (ret) {
1277 				sock = NULL;
1278 				nc = NULL;
1279 				goto out;
1280 			}
1281 		}
1282 	}
1283 
1284 	f = fdget(mqdes);
1285 	if (!f.file) {
1286 		ret = -EBADF;
1287 		goto out;
1288 	}
1289 
1290 	inode = file_inode(f.file);
1291 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1292 		ret = -EBADF;
1293 		goto out_fput;
1294 	}
1295 	info = MQUEUE_I(inode);
1296 
1297 	ret = 0;
1298 	spin_lock(&info->lock);
1299 	if (notification == NULL) {
1300 		if (info->notify_owner == task_tgid(current)) {
1301 			remove_notification(info);
1302 			inode->i_atime = inode->i_ctime = current_time(inode);
1303 		}
1304 	} else if (info->notify_owner != NULL) {
1305 		ret = -EBUSY;
1306 	} else {
1307 		switch (notification->sigev_notify) {
1308 		case SIGEV_NONE:
1309 			info->notify.sigev_notify = SIGEV_NONE;
1310 			break;
1311 		case SIGEV_THREAD:
1312 			info->notify_sock = sock;
1313 			info->notify_cookie = nc;
1314 			sock = NULL;
1315 			nc = NULL;
1316 			info->notify.sigev_notify = SIGEV_THREAD;
1317 			break;
1318 		case SIGEV_SIGNAL:
1319 			info->notify.sigev_signo = notification->sigev_signo;
1320 			info->notify.sigev_value = notification->sigev_value;
1321 			info->notify.sigev_notify = SIGEV_SIGNAL;
1322 			break;
1323 		}
1324 
1325 		info->notify_owner = get_pid(task_tgid(current));
1326 		info->notify_user_ns = get_user_ns(current_user_ns());
1327 		inode->i_atime = inode->i_ctime = current_time(inode);
1328 	}
1329 	spin_unlock(&info->lock);
1330 out_fput:
1331 	fdput(f);
1332 out:
1333 	if (sock)
1334 		netlink_detachskb(sock, nc);
1335 	else if (nc)
1336 		dev_kfree_skb(nc);
1337 
1338 	return ret;
1339 }
1340 
1341 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1342 		const struct sigevent __user *, u_notification)
1343 {
1344 	struct sigevent n, *p = NULL;
1345 	if (u_notification) {
1346 		if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1347 			return -EFAULT;
1348 		p = &n;
1349 	}
1350 	return do_mq_notify(mqdes, p);
1351 }
1352 
1353 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1354 {
1355 	struct fd f;
1356 	struct inode *inode;
1357 	struct mqueue_inode_info *info;
1358 
1359 	if (new && (new->mq_flags & (~O_NONBLOCK)))
1360 		return -EINVAL;
1361 
1362 	f = fdget(mqdes);
1363 	if (!f.file)
1364 		return -EBADF;
1365 
1366 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1367 		fdput(f);
1368 		return -EBADF;
1369 	}
1370 
1371 	inode = file_inode(f.file);
1372 	info = MQUEUE_I(inode);
1373 
1374 	spin_lock(&info->lock);
1375 
1376 	if (old) {
1377 		*old = info->attr;
1378 		old->mq_flags = f.file->f_flags & O_NONBLOCK;
1379 	}
1380 	if (new) {
1381 		audit_mq_getsetattr(mqdes, new);
1382 		spin_lock(&f.file->f_lock);
1383 		if (new->mq_flags & O_NONBLOCK)
1384 			f.file->f_flags |= O_NONBLOCK;
1385 		else
1386 			f.file->f_flags &= ~O_NONBLOCK;
1387 		spin_unlock(&f.file->f_lock);
1388 
1389 		inode->i_atime = inode->i_ctime = current_time(inode);
1390 	}
1391 
1392 	spin_unlock(&info->lock);
1393 	fdput(f);
1394 	return 0;
1395 }
1396 
1397 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1398 		const struct mq_attr __user *, u_mqstat,
1399 		struct mq_attr __user *, u_omqstat)
1400 {
1401 	int ret;
1402 	struct mq_attr mqstat, omqstat;
1403 	struct mq_attr *new = NULL, *old = NULL;
1404 
1405 	if (u_mqstat) {
1406 		new = &mqstat;
1407 		if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1408 			return -EFAULT;
1409 	}
1410 	if (u_omqstat)
1411 		old = &omqstat;
1412 
1413 	ret = do_mq_getsetattr(mqdes, new, old);
1414 	if (ret || !old)
1415 		return ret;
1416 
1417 	if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1418 		return -EFAULT;
1419 	return 0;
1420 }
1421 
1422 #ifdef CONFIG_COMPAT
1423 
1424 struct compat_mq_attr {
1425 	compat_long_t mq_flags;      /* message queue flags		     */
1426 	compat_long_t mq_maxmsg;     /* maximum number of messages	     */
1427 	compat_long_t mq_msgsize;    /* maximum message size		     */
1428 	compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1429 	compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1430 };
1431 
1432 static inline int get_compat_mq_attr(struct mq_attr *attr,
1433 			const struct compat_mq_attr __user *uattr)
1434 {
1435 	struct compat_mq_attr v;
1436 
1437 	if (copy_from_user(&v, uattr, sizeof(*uattr)))
1438 		return -EFAULT;
1439 
1440 	memset(attr, 0, sizeof(*attr));
1441 	attr->mq_flags = v.mq_flags;
1442 	attr->mq_maxmsg = v.mq_maxmsg;
1443 	attr->mq_msgsize = v.mq_msgsize;
1444 	attr->mq_curmsgs = v.mq_curmsgs;
1445 	return 0;
1446 }
1447 
1448 static inline int put_compat_mq_attr(const struct mq_attr *attr,
1449 			struct compat_mq_attr __user *uattr)
1450 {
1451 	struct compat_mq_attr v;
1452 
1453 	memset(&v, 0, sizeof(v));
1454 	v.mq_flags = attr->mq_flags;
1455 	v.mq_maxmsg = attr->mq_maxmsg;
1456 	v.mq_msgsize = attr->mq_msgsize;
1457 	v.mq_curmsgs = attr->mq_curmsgs;
1458 	if (copy_to_user(uattr, &v, sizeof(*uattr)))
1459 		return -EFAULT;
1460 	return 0;
1461 }
1462 
1463 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1464 		       int, oflag, compat_mode_t, mode,
1465 		       struct compat_mq_attr __user *, u_attr)
1466 {
1467 	struct mq_attr attr, *p = NULL;
1468 	if (u_attr && oflag & O_CREAT) {
1469 		p = &attr;
1470 		if (get_compat_mq_attr(&attr, u_attr))
1471 			return -EFAULT;
1472 	}
1473 	return do_mq_open(u_name, oflag, mode, p);
1474 }
1475 
1476 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1477 		       const struct compat_sigevent __user *, u_notification)
1478 {
1479 	struct sigevent n, *p = NULL;
1480 	if (u_notification) {
1481 		if (get_compat_sigevent(&n, u_notification))
1482 			return -EFAULT;
1483 		if (n.sigev_notify == SIGEV_THREAD)
1484 			n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1485 		p = &n;
1486 	}
1487 	return do_mq_notify(mqdes, p);
1488 }
1489 
1490 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1491 		       const struct compat_mq_attr __user *, u_mqstat,
1492 		       struct compat_mq_attr __user *, u_omqstat)
1493 {
1494 	int ret;
1495 	struct mq_attr mqstat, omqstat;
1496 	struct mq_attr *new = NULL, *old = NULL;
1497 
1498 	if (u_mqstat) {
1499 		new = &mqstat;
1500 		if (get_compat_mq_attr(new, u_mqstat))
1501 			return -EFAULT;
1502 	}
1503 	if (u_omqstat)
1504 		old = &omqstat;
1505 
1506 	ret = do_mq_getsetattr(mqdes, new, old);
1507 	if (ret || !old)
1508 		return ret;
1509 
1510 	if (put_compat_mq_attr(old, u_omqstat))
1511 		return -EFAULT;
1512 	return 0;
1513 }
1514 #endif
1515 
1516 #ifdef CONFIG_COMPAT_32BIT_TIME
1517 static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1518 				   struct timespec64 *ts)
1519 {
1520 	if (get_old_timespec32(ts, p))
1521 		return -EFAULT;
1522 	if (!timespec64_valid(ts))
1523 		return -EINVAL;
1524 	return 0;
1525 }
1526 
1527 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1528 		const char __user *, u_msg_ptr,
1529 		unsigned int, msg_len, unsigned int, msg_prio,
1530 		const struct old_timespec32 __user *, u_abs_timeout)
1531 {
1532 	struct timespec64 ts, *p = NULL;
1533 	if (u_abs_timeout) {
1534 		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1535 		if (res)
1536 			return res;
1537 		p = &ts;
1538 	}
1539 	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1540 }
1541 
1542 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1543 		char __user *, u_msg_ptr,
1544 		unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1545 		const struct old_timespec32 __user *, u_abs_timeout)
1546 {
1547 	struct timespec64 ts, *p = NULL;
1548 	if (u_abs_timeout) {
1549 		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1550 		if (res)
1551 			return res;
1552 		p = &ts;
1553 	}
1554 	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1555 }
1556 #endif
1557 
1558 static const struct inode_operations mqueue_dir_inode_operations = {
1559 	.lookup = simple_lookup,
1560 	.create = mqueue_create,
1561 	.unlink = mqueue_unlink,
1562 };
1563 
1564 static const struct file_operations mqueue_file_operations = {
1565 	.flush = mqueue_flush_file,
1566 	.poll = mqueue_poll_file,
1567 	.read = mqueue_read_file,
1568 	.llseek = default_llseek,
1569 };
1570 
1571 static const struct super_operations mqueue_super_ops = {
1572 	.alloc_inode = mqueue_alloc_inode,
1573 	.free_inode = mqueue_free_inode,
1574 	.evict_inode = mqueue_evict_inode,
1575 	.statfs = simple_statfs,
1576 };
1577 
1578 static const struct fs_context_operations mqueue_fs_context_ops = {
1579 	.free		= mqueue_fs_context_free,
1580 	.get_tree	= mqueue_get_tree,
1581 };
1582 
1583 static struct file_system_type mqueue_fs_type = {
1584 	.name			= "mqueue",
1585 	.init_fs_context	= mqueue_init_fs_context,
1586 	.kill_sb		= kill_litter_super,
1587 	.fs_flags		= FS_USERNS_MOUNT,
1588 };
1589 
1590 int mq_init_ns(struct ipc_namespace *ns)
1591 {
1592 	struct vfsmount *m;
1593 
1594 	ns->mq_queues_count  = 0;
1595 	ns->mq_queues_max    = DFLT_QUEUESMAX;
1596 	ns->mq_msg_max       = DFLT_MSGMAX;
1597 	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1598 	ns->mq_msg_default   = DFLT_MSG;
1599 	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1600 
1601 	m = mq_create_mount(ns);
1602 	if (IS_ERR(m))
1603 		return PTR_ERR(m);
1604 	ns->mq_mnt = m;
1605 	return 0;
1606 }
1607 
1608 void mq_clear_sbinfo(struct ipc_namespace *ns)
1609 {
1610 	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1611 }
1612 
1613 void mq_put_mnt(struct ipc_namespace *ns)
1614 {
1615 	kern_unmount(ns->mq_mnt);
1616 }
1617 
1618 static int __init init_mqueue_fs(void)
1619 {
1620 	int error;
1621 
1622 	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1623 				sizeof(struct mqueue_inode_info), 0,
1624 				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1625 	if (mqueue_inode_cachep == NULL)
1626 		return -ENOMEM;
1627 
1628 	/* ignore failures - they are not fatal */
1629 	mq_sysctl_table = mq_register_sysctl_table();
1630 
1631 	error = register_filesystem(&mqueue_fs_type);
1632 	if (error)
1633 		goto out_sysctl;
1634 
1635 	spin_lock_init(&mq_lock);
1636 
1637 	error = mq_init_ns(&init_ipc_ns);
1638 	if (error)
1639 		goto out_filesystem;
1640 
1641 	return 0;
1642 
1643 out_filesystem:
1644 	unregister_filesystem(&mqueue_fs_type);
1645 out_sysctl:
1646 	if (mq_sysctl_table)
1647 		unregister_sysctl_table(mq_sysctl_table);
1648 	kmem_cache_destroy(mqueue_inode_cachep);
1649 	return error;
1650 }
1651 
1652 device_initcall(init_mqueue_fs);
1653