1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/fs.h> 5 #include <linux/file.h> 6 #include <linux/mm.h> 7 #include <linux/slab.h> 8 #include <linux/namei.h> 9 #include <linux/poll.h> 10 #include <linux/io_uring.h> 11 12 #include <uapi/linux/io_uring.h> 13 14 #include "io_uring.h" 15 #include "opdef.h" 16 #include "kbuf.h" 17 18 #define IO_BUFFER_LIST_BUF_PER_PAGE (PAGE_SIZE / sizeof(struct io_uring_buf)) 19 20 /* BIDs are addressed by a 16-bit field in a CQE */ 21 #define MAX_BIDS_PER_BGID (1 << 16) 22 23 struct io_provide_buf { 24 struct file *file; 25 __u64 addr; 26 __u32 len; 27 __u32 bgid; 28 __u32 nbufs; 29 __u16 bid; 30 }; 31 32 static inline struct io_buffer_list *__io_buffer_get_list(struct io_ring_ctx *ctx, 33 unsigned int bgid) 34 { 35 return xa_load(&ctx->io_bl_xa, bgid); 36 } 37 38 struct io_buf_free { 39 struct hlist_node list; 40 void *mem; 41 size_t size; 42 int inuse; 43 }; 44 45 static inline struct io_buffer_list *io_buffer_get_list(struct io_ring_ctx *ctx, 46 unsigned int bgid) 47 { 48 lockdep_assert_held(&ctx->uring_lock); 49 50 return __io_buffer_get_list(ctx, bgid); 51 } 52 53 static int io_buffer_add_list(struct io_ring_ctx *ctx, 54 struct io_buffer_list *bl, unsigned int bgid) 55 { 56 /* 57 * Store buffer group ID and finally mark the list as visible. 58 * The normal lookup doesn't care about the visibility as we're 59 * always under the ->uring_lock, but the RCU lookup from mmap does. 60 */ 61 bl->bgid = bgid; 62 atomic_set(&bl->refs, 1); 63 return xa_err(xa_store(&ctx->io_bl_xa, bgid, bl, GFP_KERNEL)); 64 } 65 66 void io_kbuf_recycle_legacy(struct io_kiocb *req, unsigned issue_flags) 67 { 68 struct io_ring_ctx *ctx = req->ctx; 69 struct io_buffer_list *bl; 70 struct io_buffer *buf; 71 72 /* 73 * For legacy provided buffer mode, don't recycle if we already did 74 * IO to this buffer. For ring-mapped provided buffer mode, we should 75 * increment ring->head to explicitly monopolize the buffer to avoid 76 * multiple use. 77 */ 78 if (req->flags & REQ_F_PARTIAL_IO) 79 return; 80 81 io_ring_submit_lock(ctx, issue_flags); 82 83 buf = req->kbuf; 84 bl = io_buffer_get_list(ctx, buf->bgid); 85 list_add(&buf->list, &bl->buf_list); 86 req->flags &= ~REQ_F_BUFFER_SELECTED; 87 req->buf_index = buf->bgid; 88 89 io_ring_submit_unlock(ctx, issue_flags); 90 return; 91 } 92 93 unsigned int __io_put_kbuf(struct io_kiocb *req, unsigned issue_flags) 94 { 95 unsigned int cflags; 96 97 /* 98 * We can add this buffer back to two lists: 99 * 100 * 1) The io_buffers_cache list. This one is protected by the 101 * ctx->uring_lock. If we already hold this lock, add back to this 102 * list as we can grab it from issue as well. 103 * 2) The io_buffers_comp list. This one is protected by the 104 * ctx->completion_lock. 105 * 106 * We migrate buffers from the comp_list to the issue cache list 107 * when we need one. 108 */ 109 if (req->flags & REQ_F_BUFFER_RING) { 110 /* no buffers to recycle for this case */ 111 cflags = __io_put_kbuf_list(req, NULL); 112 } else if (issue_flags & IO_URING_F_UNLOCKED) { 113 struct io_ring_ctx *ctx = req->ctx; 114 115 spin_lock(&ctx->completion_lock); 116 cflags = __io_put_kbuf_list(req, &ctx->io_buffers_comp); 117 spin_unlock(&ctx->completion_lock); 118 } else { 119 lockdep_assert_held(&req->ctx->uring_lock); 120 121 cflags = __io_put_kbuf_list(req, &req->ctx->io_buffers_cache); 122 } 123 return cflags; 124 } 125 126 static void __user *io_provided_buffer_select(struct io_kiocb *req, size_t *len, 127 struct io_buffer_list *bl) 128 { 129 if (!list_empty(&bl->buf_list)) { 130 struct io_buffer *kbuf; 131 132 kbuf = list_first_entry(&bl->buf_list, struct io_buffer, list); 133 list_del(&kbuf->list); 134 if (*len == 0 || *len > kbuf->len) 135 *len = kbuf->len; 136 req->flags |= REQ_F_BUFFER_SELECTED; 137 req->kbuf = kbuf; 138 req->buf_index = kbuf->bid; 139 return u64_to_user_ptr(kbuf->addr); 140 } 141 return NULL; 142 } 143 144 static void __user *io_ring_buffer_select(struct io_kiocb *req, size_t *len, 145 struct io_buffer_list *bl, 146 unsigned int issue_flags) 147 { 148 struct io_uring_buf_ring *br = bl->buf_ring; 149 struct io_uring_buf *buf; 150 __u16 head = bl->head; 151 152 if (unlikely(smp_load_acquire(&br->tail) == head)) 153 return NULL; 154 155 head &= bl->mask; 156 /* mmaped buffers are always contig */ 157 if (bl->is_mmap || head < IO_BUFFER_LIST_BUF_PER_PAGE) { 158 buf = &br->bufs[head]; 159 } else { 160 int off = head & (IO_BUFFER_LIST_BUF_PER_PAGE - 1); 161 int index = head / IO_BUFFER_LIST_BUF_PER_PAGE; 162 buf = page_address(bl->buf_pages[index]); 163 buf += off; 164 } 165 if (*len == 0 || *len > buf->len) 166 *len = buf->len; 167 req->flags |= REQ_F_BUFFER_RING; 168 req->buf_list = bl; 169 req->buf_index = buf->bid; 170 171 if (issue_flags & IO_URING_F_UNLOCKED || !file_can_poll(req->file)) { 172 /* 173 * If we came in unlocked, we have no choice but to consume the 174 * buffer here, otherwise nothing ensures that the buffer won't 175 * get used by others. This does mean it'll be pinned until the 176 * IO completes, coming in unlocked means we're being called from 177 * io-wq context and there may be further retries in async hybrid 178 * mode. For the locked case, the caller must call commit when 179 * the transfer completes (or if we get -EAGAIN and must poll of 180 * retry). 181 */ 182 req->buf_list = NULL; 183 bl->head++; 184 } 185 return u64_to_user_ptr(buf->addr); 186 } 187 188 void __user *io_buffer_select(struct io_kiocb *req, size_t *len, 189 unsigned int issue_flags) 190 { 191 struct io_ring_ctx *ctx = req->ctx; 192 struct io_buffer_list *bl; 193 void __user *ret = NULL; 194 195 io_ring_submit_lock(req->ctx, issue_flags); 196 197 bl = io_buffer_get_list(ctx, req->buf_index); 198 if (likely(bl)) { 199 if (bl->is_mapped) 200 ret = io_ring_buffer_select(req, len, bl, issue_flags); 201 else 202 ret = io_provided_buffer_select(req, len, bl); 203 } 204 io_ring_submit_unlock(req->ctx, issue_flags); 205 return ret; 206 } 207 208 /* 209 * Mark the given mapped range as free for reuse 210 */ 211 static void io_kbuf_mark_free(struct io_ring_ctx *ctx, struct io_buffer_list *bl) 212 { 213 struct io_buf_free *ibf; 214 215 hlist_for_each_entry(ibf, &ctx->io_buf_list, list) { 216 if (bl->buf_ring == ibf->mem) { 217 ibf->inuse = 0; 218 return; 219 } 220 } 221 222 /* can't happen... */ 223 WARN_ON_ONCE(1); 224 } 225 226 static int __io_remove_buffers(struct io_ring_ctx *ctx, 227 struct io_buffer_list *bl, unsigned nbufs) 228 { 229 unsigned i = 0; 230 231 /* shouldn't happen */ 232 if (!nbufs) 233 return 0; 234 235 if (bl->is_mapped) { 236 i = bl->buf_ring->tail - bl->head; 237 if (bl->is_mmap) { 238 /* 239 * io_kbuf_list_free() will free the page(s) at 240 * ->release() time. 241 */ 242 io_kbuf_mark_free(ctx, bl); 243 bl->buf_ring = NULL; 244 bl->is_mmap = 0; 245 } else if (bl->buf_nr_pages) { 246 int j; 247 248 for (j = 0; j < bl->buf_nr_pages; j++) 249 unpin_user_page(bl->buf_pages[j]); 250 kvfree(bl->buf_pages); 251 bl->buf_pages = NULL; 252 bl->buf_nr_pages = 0; 253 } 254 /* make sure it's seen as empty */ 255 INIT_LIST_HEAD(&bl->buf_list); 256 bl->is_mapped = 0; 257 return i; 258 } 259 260 /* protects io_buffers_cache */ 261 lockdep_assert_held(&ctx->uring_lock); 262 263 while (!list_empty(&bl->buf_list)) { 264 struct io_buffer *nxt; 265 266 nxt = list_first_entry(&bl->buf_list, struct io_buffer, list); 267 list_move(&nxt->list, &ctx->io_buffers_cache); 268 if (++i == nbufs) 269 return i; 270 cond_resched(); 271 } 272 273 return i; 274 } 275 276 void io_put_bl(struct io_ring_ctx *ctx, struct io_buffer_list *bl) 277 { 278 if (atomic_dec_and_test(&bl->refs)) { 279 __io_remove_buffers(ctx, bl, -1U); 280 kfree_rcu(bl, rcu); 281 } 282 } 283 284 void io_destroy_buffers(struct io_ring_ctx *ctx) 285 { 286 struct io_buffer_list *bl; 287 unsigned long index; 288 289 xa_for_each(&ctx->io_bl_xa, index, bl) { 290 xa_erase(&ctx->io_bl_xa, bl->bgid); 291 io_put_bl(ctx, bl); 292 } 293 294 while (!list_empty(&ctx->io_buffers_pages)) { 295 struct page *page; 296 297 page = list_first_entry(&ctx->io_buffers_pages, struct page, lru); 298 list_del_init(&page->lru); 299 __free_page(page); 300 } 301 } 302 303 int io_remove_buffers_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) 304 { 305 struct io_provide_buf *p = io_kiocb_to_cmd(req, struct io_provide_buf); 306 u64 tmp; 307 308 if (sqe->rw_flags || sqe->addr || sqe->len || sqe->off || 309 sqe->splice_fd_in) 310 return -EINVAL; 311 312 tmp = READ_ONCE(sqe->fd); 313 if (!tmp || tmp > MAX_BIDS_PER_BGID) 314 return -EINVAL; 315 316 memset(p, 0, sizeof(*p)); 317 p->nbufs = tmp; 318 p->bgid = READ_ONCE(sqe->buf_group); 319 return 0; 320 } 321 322 int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags) 323 { 324 struct io_provide_buf *p = io_kiocb_to_cmd(req, struct io_provide_buf); 325 struct io_ring_ctx *ctx = req->ctx; 326 struct io_buffer_list *bl; 327 int ret = 0; 328 329 io_ring_submit_lock(ctx, issue_flags); 330 331 ret = -ENOENT; 332 bl = io_buffer_get_list(ctx, p->bgid); 333 if (bl) { 334 ret = -EINVAL; 335 /* can't use provide/remove buffers command on mapped buffers */ 336 if (!bl->is_mapped) 337 ret = __io_remove_buffers(ctx, bl, p->nbufs); 338 } 339 io_ring_submit_unlock(ctx, issue_flags); 340 if (ret < 0) 341 req_set_fail(req); 342 io_req_set_res(req, ret, 0); 343 return IOU_OK; 344 } 345 346 int io_provide_buffers_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) 347 { 348 unsigned long size, tmp_check; 349 struct io_provide_buf *p = io_kiocb_to_cmd(req, struct io_provide_buf); 350 u64 tmp; 351 352 if (sqe->rw_flags || sqe->splice_fd_in) 353 return -EINVAL; 354 355 tmp = READ_ONCE(sqe->fd); 356 if (!tmp || tmp > MAX_BIDS_PER_BGID) 357 return -E2BIG; 358 p->nbufs = tmp; 359 p->addr = READ_ONCE(sqe->addr); 360 p->len = READ_ONCE(sqe->len); 361 362 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs, 363 &size)) 364 return -EOVERFLOW; 365 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check)) 366 return -EOVERFLOW; 367 368 size = (unsigned long)p->len * p->nbufs; 369 if (!access_ok(u64_to_user_ptr(p->addr), size)) 370 return -EFAULT; 371 372 p->bgid = READ_ONCE(sqe->buf_group); 373 tmp = READ_ONCE(sqe->off); 374 if (tmp > USHRT_MAX) 375 return -E2BIG; 376 if (tmp + p->nbufs > MAX_BIDS_PER_BGID) 377 return -EINVAL; 378 p->bid = tmp; 379 return 0; 380 } 381 382 static int io_refill_buffer_cache(struct io_ring_ctx *ctx) 383 { 384 struct io_buffer *buf; 385 struct page *page; 386 int bufs_in_page; 387 388 /* 389 * Completions that don't happen inline (eg not under uring_lock) will 390 * add to ->io_buffers_comp. If we don't have any free buffers, check 391 * the completion list and splice those entries first. 392 */ 393 if (!list_empty_careful(&ctx->io_buffers_comp)) { 394 spin_lock(&ctx->completion_lock); 395 if (!list_empty(&ctx->io_buffers_comp)) { 396 list_splice_init(&ctx->io_buffers_comp, 397 &ctx->io_buffers_cache); 398 spin_unlock(&ctx->completion_lock); 399 return 0; 400 } 401 spin_unlock(&ctx->completion_lock); 402 } 403 404 /* 405 * No free buffers and no completion entries either. Allocate a new 406 * page worth of buffer entries and add those to our freelist. 407 */ 408 page = alloc_page(GFP_KERNEL_ACCOUNT); 409 if (!page) 410 return -ENOMEM; 411 412 list_add(&page->lru, &ctx->io_buffers_pages); 413 414 buf = page_address(page); 415 bufs_in_page = PAGE_SIZE / sizeof(*buf); 416 while (bufs_in_page) { 417 list_add_tail(&buf->list, &ctx->io_buffers_cache); 418 buf++; 419 bufs_in_page--; 420 } 421 422 return 0; 423 } 424 425 static int io_add_buffers(struct io_ring_ctx *ctx, struct io_provide_buf *pbuf, 426 struct io_buffer_list *bl) 427 { 428 struct io_buffer *buf; 429 u64 addr = pbuf->addr; 430 int i, bid = pbuf->bid; 431 432 for (i = 0; i < pbuf->nbufs; i++) { 433 if (list_empty(&ctx->io_buffers_cache) && 434 io_refill_buffer_cache(ctx)) 435 break; 436 buf = list_first_entry(&ctx->io_buffers_cache, struct io_buffer, 437 list); 438 list_move_tail(&buf->list, &bl->buf_list); 439 buf->addr = addr; 440 buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT); 441 buf->bid = bid; 442 buf->bgid = pbuf->bgid; 443 addr += pbuf->len; 444 bid++; 445 cond_resched(); 446 } 447 448 return i ? 0 : -ENOMEM; 449 } 450 451 int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags) 452 { 453 struct io_provide_buf *p = io_kiocb_to_cmd(req, struct io_provide_buf); 454 struct io_ring_ctx *ctx = req->ctx; 455 struct io_buffer_list *bl; 456 int ret = 0; 457 458 io_ring_submit_lock(ctx, issue_flags); 459 460 bl = io_buffer_get_list(ctx, p->bgid); 461 if (unlikely(!bl)) { 462 bl = kzalloc(sizeof(*bl), GFP_KERNEL_ACCOUNT); 463 if (!bl) { 464 ret = -ENOMEM; 465 goto err; 466 } 467 INIT_LIST_HEAD(&bl->buf_list); 468 ret = io_buffer_add_list(ctx, bl, p->bgid); 469 if (ret) { 470 /* 471 * Doesn't need rcu free as it was never visible, but 472 * let's keep it consistent throughout. 473 */ 474 kfree_rcu(bl, rcu); 475 goto err; 476 } 477 } 478 /* can't add buffers via this command for a mapped buffer ring */ 479 if (bl->is_mapped) { 480 ret = -EINVAL; 481 goto err; 482 } 483 484 ret = io_add_buffers(ctx, p, bl); 485 err: 486 io_ring_submit_unlock(ctx, issue_flags); 487 488 if (ret < 0) 489 req_set_fail(req); 490 io_req_set_res(req, ret, 0); 491 return IOU_OK; 492 } 493 494 static int io_pin_pbuf_ring(struct io_uring_buf_reg *reg, 495 struct io_buffer_list *bl) 496 { 497 struct io_uring_buf_ring *br; 498 struct page **pages; 499 int i, nr_pages; 500 501 pages = io_pin_pages(reg->ring_addr, 502 flex_array_size(br, bufs, reg->ring_entries), 503 &nr_pages); 504 if (IS_ERR(pages)) 505 return PTR_ERR(pages); 506 507 /* 508 * Apparently some 32-bit boxes (ARM) will return highmem pages, 509 * which then need to be mapped. We could support that, but it'd 510 * complicate the code and slowdown the common cases quite a bit. 511 * So just error out, returning -EINVAL just like we did on kernels 512 * that didn't support mapped buffer rings. 513 */ 514 for (i = 0; i < nr_pages; i++) 515 if (PageHighMem(pages[i])) 516 goto error_unpin; 517 518 br = page_address(pages[0]); 519 #ifdef SHM_COLOUR 520 /* 521 * On platforms that have specific aliasing requirements, SHM_COLOUR 522 * is set and we must guarantee that the kernel and user side align 523 * nicely. We cannot do that if IOU_PBUF_RING_MMAP isn't set and 524 * the application mmap's the provided ring buffer. Fail the request 525 * if we, by chance, don't end up with aligned addresses. The app 526 * should use IOU_PBUF_RING_MMAP instead, and liburing will handle 527 * this transparently. 528 */ 529 if ((reg->ring_addr | (unsigned long) br) & (SHM_COLOUR - 1)) 530 goto error_unpin; 531 #endif 532 bl->buf_pages = pages; 533 bl->buf_nr_pages = nr_pages; 534 bl->buf_ring = br; 535 bl->is_mapped = 1; 536 bl->is_mmap = 0; 537 return 0; 538 error_unpin: 539 for (i = 0; i < nr_pages; i++) 540 unpin_user_page(pages[i]); 541 kvfree(pages); 542 return -EINVAL; 543 } 544 545 /* 546 * See if we have a suitable region that we can reuse, rather than allocate 547 * both a new io_buf_free and mem region again. We leave it on the list as 548 * even a reused entry will need freeing at ring release. 549 */ 550 static struct io_buf_free *io_lookup_buf_free_entry(struct io_ring_ctx *ctx, 551 size_t ring_size) 552 { 553 struct io_buf_free *ibf, *best = NULL; 554 size_t best_dist; 555 556 hlist_for_each_entry(ibf, &ctx->io_buf_list, list) { 557 size_t dist; 558 559 if (ibf->inuse || ibf->size < ring_size) 560 continue; 561 dist = ibf->size - ring_size; 562 if (!best || dist < best_dist) { 563 best = ibf; 564 if (!dist) 565 break; 566 best_dist = dist; 567 } 568 } 569 570 return best; 571 } 572 573 static int io_alloc_pbuf_ring(struct io_ring_ctx *ctx, 574 struct io_uring_buf_reg *reg, 575 struct io_buffer_list *bl) 576 { 577 struct io_buf_free *ibf; 578 size_t ring_size; 579 void *ptr; 580 581 ring_size = reg->ring_entries * sizeof(struct io_uring_buf_ring); 582 583 /* Reuse existing entry, if we can */ 584 ibf = io_lookup_buf_free_entry(ctx, ring_size); 585 if (!ibf) { 586 ptr = io_mem_alloc(ring_size); 587 if (IS_ERR(ptr)) 588 return PTR_ERR(ptr); 589 590 /* Allocate and store deferred free entry */ 591 ibf = kmalloc(sizeof(*ibf), GFP_KERNEL_ACCOUNT); 592 if (!ibf) { 593 io_mem_free(ptr); 594 return -ENOMEM; 595 } 596 ibf->mem = ptr; 597 ibf->size = ring_size; 598 hlist_add_head(&ibf->list, &ctx->io_buf_list); 599 } 600 ibf->inuse = 1; 601 bl->buf_ring = ibf->mem; 602 bl->is_mapped = 1; 603 bl->is_mmap = 1; 604 return 0; 605 } 606 607 int io_register_pbuf_ring(struct io_ring_ctx *ctx, void __user *arg) 608 { 609 struct io_uring_buf_reg reg; 610 struct io_buffer_list *bl, *free_bl = NULL; 611 int ret; 612 613 lockdep_assert_held(&ctx->uring_lock); 614 615 if (copy_from_user(®, arg, sizeof(reg))) 616 return -EFAULT; 617 618 if (reg.resv[0] || reg.resv[1] || reg.resv[2]) 619 return -EINVAL; 620 if (reg.flags & ~IOU_PBUF_RING_MMAP) 621 return -EINVAL; 622 if (!(reg.flags & IOU_PBUF_RING_MMAP)) { 623 if (!reg.ring_addr) 624 return -EFAULT; 625 if (reg.ring_addr & ~PAGE_MASK) 626 return -EINVAL; 627 } else { 628 if (reg.ring_addr) 629 return -EINVAL; 630 } 631 632 if (!is_power_of_2(reg.ring_entries)) 633 return -EINVAL; 634 635 /* cannot disambiguate full vs empty due to head/tail size */ 636 if (reg.ring_entries >= 65536) 637 return -EINVAL; 638 639 bl = io_buffer_get_list(ctx, reg.bgid); 640 if (bl) { 641 /* if mapped buffer ring OR classic exists, don't allow */ 642 if (bl->is_mapped || !list_empty(&bl->buf_list)) 643 return -EEXIST; 644 } else { 645 free_bl = bl = kzalloc(sizeof(*bl), GFP_KERNEL); 646 if (!bl) 647 return -ENOMEM; 648 } 649 650 if (!(reg.flags & IOU_PBUF_RING_MMAP)) 651 ret = io_pin_pbuf_ring(®, bl); 652 else 653 ret = io_alloc_pbuf_ring(ctx, ®, bl); 654 655 if (!ret) { 656 bl->nr_entries = reg.ring_entries; 657 bl->mask = reg.ring_entries - 1; 658 659 io_buffer_add_list(ctx, bl, reg.bgid); 660 return 0; 661 } 662 663 kfree_rcu(free_bl, rcu); 664 return ret; 665 } 666 667 int io_unregister_pbuf_ring(struct io_ring_ctx *ctx, void __user *arg) 668 { 669 struct io_uring_buf_reg reg; 670 struct io_buffer_list *bl; 671 672 lockdep_assert_held(&ctx->uring_lock); 673 674 if (copy_from_user(®, arg, sizeof(reg))) 675 return -EFAULT; 676 if (reg.resv[0] || reg.resv[1] || reg.resv[2]) 677 return -EINVAL; 678 if (reg.flags) 679 return -EINVAL; 680 681 bl = io_buffer_get_list(ctx, reg.bgid); 682 if (!bl) 683 return -ENOENT; 684 if (!bl->is_mapped) 685 return -EINVAL; 686 687 xa_erase(&ctx->io_bl_xa, bl->bgid); 688 io_put_bl(ctx, bl); 689 return 0; 690 } 691 692 struct io_buffer_list *io_pbuf_get_bl(struct io_ring_ctx *ctx, 693 unsigned long bgid) 694 { 695 struct io_buffer_list *bl; 696 bool ret; 697 698 /* 699 * We have to be a bit careful here - we're inside mmap and cannot grab 700 * the uring_lock. This means the buffer_list could be simultaneously 701 * going away, if someone is trying to be sneaky. Look it up under rcu 702 * so we know it's not going away, and attempt to grab a reference to 703 * it. If the ref is already zero, then fail the mapping. If successful, 704 * the caller will call io_put_bl() to drop the the reference at at the 705 * end. This may then safely free the buffer_list (and drop the pages) 706 * at that point, vm_insert_pages() would've already grabbed the 707 * necessary vma references. 708 */ 709 rcu_read_lock(); 710 bl = xa_load(&ctx->io_bl_xa, bgid); 711 /* must be a mmap'able buffer ring and have pages */ 712 ret = false; 713 if (bl && bl->is_mmap) 714 ret = atomic_inc_not_zero(&bl->refs); 715 rcu_read_unlock(); 716 717 if (ret) 718 return bl; 719 720 return ERR_PTR(-EINVAL); 721 } 722 723 /* 724 * Called at or after ->release(), free the mmap'ed buffers that we used 725 * for memory mapped provided buffer rings. 726 */ 727 void io_kbuf_mmap_list_free(struct io_ring_ctx *ctx) 728 { 729 struct io_buf_free *ibf; 730 struct hlist_node *tmp; 731 732 hlist_for_each_entry_safe(ibf, tmp, &ctx->io_buf_list, list) { 733 hlist_del(&ibf->list); 734 io_mem_free(ibf->mem); 735 kfree(ibf); 736 } 737 } 738