1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/fs.h> 5 #include <linux/file.h> 6 #include <linux/mm.h> 7 #include <linux/slab.h> 8 #include <linux/namei.h> 9 #include <linux/poll.h> 10 #include <linux/io_uring.h> 11 12 #include <uapi/linux/io_uring.h> 13 14 #include "io_uring.h" 15 #include "opdef.h" 16 #include "kbuf.h" 17 18 #define IO_BUFFER_LIST_BUF_PER_PAGE (PAGE_SIZE / sizeof(struct io_uring_buf)) 19 20 /* BIDs are addressed by a 16-bit field in a CQE */ 21 #define MAX_BIDS_PER_BGID (1 << 16) 22 23 struct io_provide_buf { 24 struct file *file; 25 __u64 addr; 26 __u32 len; 27 __u32 bgid; 28 __u32 nbufs; 29 __u16 bid; 30 }; 31 32 static inline struct io_buffer_list *__io_buffer_get_list(struct io_ring_ctx *ctx, 33 unsigned int bgid) 34 { 35 return xa_load(&ctx->io_bl_xa, bgid); 36 } 37 38 struct io_buf_free { 39 struct hlist_node list; 40 void *mem; 41 size_t size; 42 int inuse; 43 }; 44 45 static inline struct io_buffer_list *io_buffer_get_list(struct io_ring_ctx *ctx, 46 unsigned int bgid) 47 { 48 lockdep_assert_held(&ctx->uring_lock); 49 50 return __io_buffer_get_list(ctx, bgid); 51 } 52 53 static int io_buffer_add_list(struct io_ring_ctx *ctx, 54 struct io_buffer_list *bl, unsigned int bgid) 55 { 56 /* 57 * Store buffer group ID and finally mark the list as visible. 58 * The normal lookup doesn't care about the visibility as we're 59 * always under the ->uring_lock, but the RCU lookup from mmap does. 60 */ 61 bl->bgid = bgid; 62 atomic_set(&bl->refs, 1); 63 return xa_err(xa_store(&ctx->io_bl_xa, bgid, bl, GFP_KERNEL)); 64 } 65 66 void io_kbuf_recycle_legacy(struct io_kiocb *req, unsigned issue_flags) 67 { 68 struct io_ring_ctx *ctx = req->ctx; 69 struct io_buffer_list *bl; 70 struct io_buffer *buf; 71 72 /* 73 * For legacy provided buffer mode, don't recycle if we already did 74 * IO to this buffer. For ring-mapped provided buffer mode, we should 75 * increment ring->head to explicitly monopolize the buffer to avoid 76 * multiple use. 77 */ 78 if (req->flags & REQ_F_PARTIAL_IO) 79 return; 80 81 io_ring_submit_lock(ctx, issue_flags); 82 83 buf = req->kbuf; 84 bl = io_buffer_get_list(ctx, buf->bgid); 85 list_add(&buf->list, &bl->buf_list); 86 req->flags &= ~REQ_F_BUFFER_SELECTED; 87 req->buf_index = buf->bgid; 88 89 io_ring_submit_unlock(ctx, issue_flags); 90 return; 91 } 92 93 unsigned int __io_put_kbuf(struct io_kiocb *req, unsigned issue_flags) 94 { 95 unsigned int cflags; 96 97 /* 98 * We can add this buffer back to two lists: 99 * 100 * 1) The io_buffers_cache list. This one is protected by the 101 * ctx->uring_lock. If we already hold this lock, add back to this 102 * list as we can grab it from issue as well. 103 * 2) The io_buffers_comp list. This one is protected by the 104 * ctx->completion_lock. 105 * 106 * We migrate buffers from the comp_list to the issue cache list 107 * when we need one. 108 */ 109 if (req->flags & REQ_F_BUFFER_RING) { 110 /* no buffers to recycle for this case */ 111 cflags = __io_put_kbuf_list(req, NULL); 112 } else if (issue_flags & IO_URING_F_UNLOCKED) { 113 struct io_ring_ctx *ctx = req->ctx; 114 115 spin_lock(&ctx->completion_lock); 116 cflags = __io_put_kbuf_list(req, &ctx->io_buffers_comp); 117 spin_unlock(&ctx->completion_lock); 118 } else { 119 lockdep_assert_held(&req->ctx->uring_lock); 120 121 cflags = __io_put_kbuf_list(req, &req->ctx->io_buffers_cache); 122 } 123 return cflags; 124 } 125 126 static void __user *io_provided_buffer_select(struct io_kiocb *req, size_t *len, 127 struct io_buffer_list *bl) 128 { 129 if (!list_empty(&bl->buf_list)) { 130 struct io_buffer *kbuf; 131 132 kbuf = list_first_entry(&bl->buf_list, struct io_buffer, list); 133 list_del(&kbuf->list); 134 if (*len == 0 || *len > kbuf->len) 135 *len = kbuf->len; 136 req->flags |= REQ_F_BUFFER_SELECTED; 137 req->kbuf = kbuf; 138 req->buf_index = kbuf->bid; 139 return u64_to_user_ptr(kbuf->addr); 140 } 141 return NULL; 142 } 143 144 static void __user *io_ring_buffer_select(struct io_kiocb *req, size_t *len, 145 struct io_buffer_list *bl, 146 unsigned int issue_flags) 147 { 148 struct io_uring_buf_ring *br = bl->buf_ring; 149 struct io_uring_buf *buf; 150 __u16 head = bl->head; 151 152 if (unlikely(smp_load_acquire(&br->tail) == head)) 153 return NULL; 154 155 head &= bl->mask; 156 /* mmaped buffers are always contig */ 157 if (bl->is_mmap || head < IO_BUFFER_LIST_BUF_PER_PAGE) { 158 buf = &br->bufs[head]; 159 } else { 160 int off = head & (IO_BUFFER_LIST_BUF_PER_PAGE - 1); 161 int index = head / IO_BUFFER_LIST_BUF_PER_PAGE; 162 buf = page_address(bl->buf_pages[index]); 163 buf += off; 164 } 165 if (*len == 0 || *len > buf->len) 166 *len = buf->len; 167 req->flags |= REQ_F_BUFFER_RING; 168 req->buf_list = bl; 169 req->buf_index = buf->bid; 170 171 if (issue_flags & IO_URING_F_UNLOCKED || 172 (req->file && !file_can_poll(req->file))) { 173 /* 174 * If we came in unlocked, we have no choice but to consume the 175 * buffer here, otherwise nothing ensures that the buffer won't 176 * get used by others. This does mean it'll be pinned until the 177 * IO completes, coming in unlocked means we're being called from 178 * io-wq context and there may be further retries in async hybrid 179 * mode. For the locked case, the caller must call commit when 180 * the transfer completes (or if we get -EAGAIN and must poll of 181 * retry). 182 */ 183 req->buf_list = NULL; 184 bl->head++; 185 } 186 return u64_to_user_ptr(buf->addr); 187 } 188 189 void __user *io_buffer_select(struct io_kiocb *req, size_t *len, 190 unsigned int issue_flags) 191 { 192 struct io_ring_ctx *ctx = req->ctx; 193 struct io_buffer_list *bl; 194 void __user *ret = NULL; 195 196 io_ring_submit_lock(req->ctx, issue_flags); 197 198 bl = io_buffer_get_list(ctx, req->buf_index); 199 if (likely(bl)) { 200 if (bl->is_mapped) 201 ret = io_ring_buffer_select(req, len, bl, issue_flags); 202 else 203 ret = io_provided_buffer_select(req, len, bl); 204 } 205 io_ring_submit_unlock(req->ctx, issue_flags); 206 return ret; 207 } 208 209 /* 210 * Mark the given mapped range as free for reuse 211 */ 212 static void io_kbuf_mark_free(struct io_ring_ctx *ctx, struct io_buffer_list *bl) 213 { 214 struct io_buf_free *ibf; 215 216 hlist_for_each_entry(ibf, &ctx->io_buf_list, list) { 217 if (bl->buf_ring == ibf->mem) { 218 ibf->inuse = 0; 219 return; 220 } 221 } 222 223 /* can't happen... */ 224 WARN_ON_ONCE(1); 225 } 226 227 static int __io_remove_buffers(struct io_ring_ctx *ctx, 228 struct io_buffer_list *bl, unsigned nbufs) 229 { 230 unsigned i = 0; 231 232 /* shouldn't happen */ 233 if (!nbufs) 234 return 0; 235 236 if (bl->is_mapped) { 237 i = bl->buf_ring->tail - bl->head; 238 if (bl->is_mmap) { 239 /* 240 * io_kbuf_list_free() will free the page(s) at 241 * ->release() time. 242 */ 243 io_kbuf_mark_free(ctx, bl); 244 bl->buf_ring = NULL; 245 bl->is_mmap = 0; 246 } else if (bl->buf_nr_pages) { 247 int j; 248 249 for (j = 0; j < bl->buf_nr_pages; j++) 250 unpin_user_page(bl->buf_pages[j]); 251 kvfree(bl->buf_pages); 252 bl->buf_pages = NULL; 253 bl->buf_nr_pages = 0; 254 } 255 /* make sure it's seen as empty */ 256 INIT_LIST_HEAD(&bl->buf_list); 257 bl->is_mapped = 0; 258 return i; 259 } 260 261 /* protects io_buffers_cache */ 262 lockdep_assert_held(&ctx->uring_lock); 263 264 while (!list_empty(&bl->buf_list)) { 265 struct io_buffer *nxt; 266 267 nxt = list_first_entry(&bl->buf_list, struct io_buffer, list); 268 list_move(&nxt->list, &ctx->io_buffers_cache); 269 if (++i == nbufs) 270 return i; 271 cond_resched(); 272 } 273 274 return i; 275 } 276 277 void io_put_bl(struct io_ring_ctx *ctx, struct io_buffer_list *bl) 278 { 279 if (atomic_dec_and_test(&bl->refs)) { 280 __io_remove_buffers(ctx, bl, -1U); 281 kfree_rcu(bl, rcu); 282 } 283 } 284 285 void io_destroy_buffers(struct io_ring_ctx *ctx) 286 { 287 struct io_buffer_list *bl; 288 unsigned long index; 289 290 xa_for_each(&ctx->io_bl_xa, index, bl) { 291 xa_erase(&ctx->io_bl_xa, bl->bgid); 292 io_put_bl(ctx, bl); 293 } 294 295 while (!list_empty(&ctx->io_buffers_pages)) { 296 struct page *page; 297 298 page = list_first_entry(&ctx->io_buffers_pages, struct page, lru); 299 list_del_init(&page->lru); 300 __free_page(page); 301 } 302 } 303 304 int io_remove_buffers_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) 305 { 306 struct io_provide_buf *p = io_kiocb_to_cmd(req, struct io_provide_buf); 307 u64 tmp; 308 309 if (sqe->rw_flags || sqe->addr || sqe->len || sqe->off || 310 sqe->splice_fd_in) 311 return -EINVAL; 312 313 tmp = READ_ONCE(sqe->fd); 314 if (!tmp || tmp > MAX_BIDS_PER_BGID) 315 return -EINVAL; 316 317 memset(p, 0, sizeof(*p)); 318 p->nbufs = tmp; 319 p->bgid = READ_ONCE(sqe->buf_group); 320 return 0; 321 } 322 323 int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags) 324 { 325 struct io_provide_buf *p = io_kiocb_to_cmd(req, struct io_provide_buf); 326 struct io_ring_ctx *ctx = req->ctx; 327 struct io_buffer_list *bl; 328 int ret = 0; 329 330 io_ring_submit_lock(ctx, issue_flags); 331 332 ret = -ENOENT; 333 bl = io_buffer_get_list(ctx, p->bgid); 334 if (bl) { 335 ret = -EINVAL; 336 /* can't use provide/remove buffers command on mapped buffers */ 337 if (!bl->is_mapped) 338 ret = __io_remove_buffers(ctx, bl, p->nbufs); 339 } 340 io_ring_submit_unlock(ctx, issue_flags); 341 if (ret < 0) 342 req_set_fail(req); 343 io_req_set_res(req, ret, 0); 344 return IOU_OK; 345 } 346 347 int io_provide_buffers_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) 348 { 349 unsigned long size, tmp_check; 350 struct io_provide_buf *p = io_kiocb_to_cmd(req, struct io_provide_buf); 351 u64 tmp; 352 353 if (sqe->rw_flags || sqe->splice_fd_in) 354 return -EINVAL; 355 356 tmp = READ_ONCE(sqe->fd); 357 if (!tmp || tmp > MAX_BIDS_PER_BGID) 358 return -E2BIG; 359 p->nbufs = tmp; 360 p->addr = READ_ONCE(sqe->addr); 361 p->len = READ_ONCE(sqe->len); 362 363 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs, 364 &size)) 365 return -EOVERFLOW; 366 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check)) 367 return -EOVERFLOW; 368 369 size = (unsigned long)p->len * p->nbufs; 370 if (!access_ok(u64_to_user_ptr(p->addr), size)) 371 return -EFAULT; 372 373 p->bgid = READ_ONCE(sqe->buf_group); 374 tmp = READ_ONCE(sqe->off); 375 if (tmp > USHRT_MAX) 376 return -E2BIG; 377 if (tmp + p->nbufs > MAX_BIDS_PER_BGID) 378 return -EINVAL; 379 p->bid = tmp; 380 return 0; 381 } 382 383 static int io_refill_buffer_cache(struct io_ring_ctx *ctx) 384 { 385 struct io_buffer *buf; 386 struct page *page; 387 int bufs_in_page; 388 389 /* 390 * Completions that don't happen inline (eg not under uring_lock) will 391 * add to ->io_buffers_comp. If we don't have any free buffers, check 392 * the completion list and splice those entries first. 393 */ 394 if (!list_empty_careful(&ctx->io_buffers_comp)) { 395 spin_lock(&ctx->completion_lock); 396 if (!list_empty(&ctx->io_buffers_comp)) { 397 list_splice_init(&ctx->io_buffers_comp, 398 &ctx->io_buffers_cache); 399 spin_unlock(&ctx->completion_lock); 400 return 0; 401 } 402 spin_unlock(&ctx->completion_lock); 403 } 404 405 /* 406 * No free buffers and no completion entries either. Allocate a new 407 * page worth of buffer entries and add those to our freelist. 408 */ 409 page = alloc_page(GFP_KERNEL_ACCOUNT); 410 if (!page) 411 return -ENOMEM; 412 413 list_add(&page->lru, &ctx->io_buffers_pages); 414 415 buf = page_address(page); 416 bufs_in_page = PAGE_SIZE / sizeof(*buf); 417 while (bufs_in_page) { 418 list_add_tail(&buf->list, &ctx->io_buffers_cache); 419 buf++; 420 bufs_in_page--; 421 } 422 423 return 0; 424 } 425 426 static int io_add_buffers(struct io_ring_ctx *ctx, struct io_provide_buf *pbuf, 427 struct io_buffer_list *bl) 428 { 429 struct io_buffer *buf; 430 u64 addr = pbuf->addr; 431 int i, bid = pbuf->bid; 432 433 for (i = 0; i < pbuf->nbufs; i++) { 434 if (list_empty(&ctx->io_buffers_cache) && 435 io_refill_buffer_cache(ctx)) 436 break; 437 buf = list_first_entry(&ctx->io_buffers_cache, struct io_buffer, 438 list); 439 list_move_tail(&buf->list, &bl->buf_list); 440 buf->addr = addr; 441 buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT); 442 buf->bid = bid; 443 buf->bgid = pbuf->bgid; 444 addr += pbuf->len; 445 bid++; 446 cond_resched(); 447 } 448 449 return i ? 0 : -ENOMEM; 450 } 451 452 int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags) 453 { 454 struct io_provide_buf *p = io_kiocb_to_cmd(req, struct io_provide_buf); 455 struct io_ring_ctx *ctx = req->ctx; 456 struct io_buffer_list *bl; 457 int ret = 0; 458 459 io_ring_submit_lock(ctx, issue_flags); 460 461 bl = io_buffer_get_list(ctx, p->bgid); 462 if (unlikely(!bl)) { 463 bl = kzalloc(sizeof(*bl), GFP_KERNEL_ACCOUNT); 464 if (!bl) { 465 ret = -ENOMEM; 466 goto err; 467 } 468 INIT_LIST_HEAD(&bl->buf_list); 469 ret = io_buffer_add_list(ctx, bl, p->bgid); 470 if (ret) { 471 /* 472 * Doesn't need rcu free as it was never visible, but 473 * let's keep it consistent throughout. 474 */ 475 kfree_rcu(bl, rcu); 476 goto err; 477 } 478 } 479 /* can't add buffers via this command for a mapped buffer ring */ 480 if (bl->is_mapped) { 481 ret = -EINVAL; 482 goto err; 483 } 484 485 ret = io_add_buffers(ctx, p, bl); 486 err: 487 io_ring_submit_unlock(ctx, issue_flags); 488 489 if (ret < 0) 490 req_set_fail(req); 491 io_req_set_res(req, ret, 0); 492 return IOU_OK; 493 } 494 495 static int io_pin_pbuf_ring(struct io_uring_buf_reg *reg, 496 struct io_buffer_list *bl) 497 { 498 struct io_uring_buf_ring *br; 499 struct page **pages; 500 int i, nr_pages; 501 502 pages = io_pin_pages(reg->ring_addr, 503 flex_array_size(br, bufs, reg->ring_entries), 504 &nr_pages); 505 if (IS_ERR(pages)) 506 return PTR_ERR(pages); 507 508 /* 509 * Apparently some 32-bit boxes (ARM) will return highmem pages, 510 * which then need to be mapped. We could support that, but it'd 511 * complicate the code and slowdown the common cases quite a bit. 512 * So just error out, returning -EINVAL just like we did on kernels 513 * that didn't support mapped buffer rings. 514 */ 515 for (i = 0; i < nr_pages; i++) 516 if (PageHighMem(pages[i])) 517 goto error_unpin; 518 519 br = page_address(pages[0]); 520 #ifdef SHM_COLOUR 521 /* 522 * On platforms that have specific aliasing requirements, SHM_COLOUR 523 * is set and we must guarantee that the kernel and user side align 524 * nicely. We cannot do that if IOU_PBUF_RING_MMAP isn't set and 525 * the application mmap's the provided ring buffer. Fail the request 526 * if we, by chance, don't end up with aligned addresses. The app 527 * should use IOU_PBUF_RING_MMAP instead, and liburing will handle 528 * this transparently. 529 */ 530 if ((reg->ring_addr | (unsigned long) br) & (SHM_COLOUR - 1)) 531 goto error_unpin; 532 #endif 533 bl->buf_pages = pages; 534 bl->buf_nr_pages = nr_pages; 535 bl->buf_ring = br; 536 bl->is_mapped = 1; 537 bl->is_mmap = 0; 538 return 0; 539 error_unpin: 540 for (i = 0; i < nr_pages; i++) 541 unpin_user_page(pages[i]); 542 kvfree(pages); 543 return -EINVAL; 544 } 545 546 /* 547 * See if we have a suitable region that we can reuse, rather than allocate 548 * both a new io_buf_free and mem region again. We leave it on the list as 549 * even a reused entry will need freeing at ring release. 550 */ 551 static struct io_buf_free *io_lookup_buf_free_entry(struct io_ring_ctx *ctx, 552 size_t ring_size) 553 { 554 struct io_buf_free *ibf, *best = NULL; 555 size_t best_dist; 556 557 hlist_for_each_entry(ibf, &ctx->io_buf_list, list) { 558 size_t dist; 559 560 if (ibf->inuse || ibf->size < ring_size) 561 continue; 562 dist = ibf->size - ring_size; 563 if (!best || dist < best_dist) { 564 best = ibf; 565 if (!dist) 566 break; 567 best_dist = dist; 568 } 569 } 570 571 return best; 572 } 573 574 static int io_alloc_pbuf_ring(struct io_ring_ctx *ctx, 575 struct io_uring_buf_reg *reg, 576 struct io_buffer_list *bl) 577 { 578 struct io_buf_free *ibf; 579 size_t ring_size; 580 void *ptr; 581 582 ring_size = reg->ring_entries * sizeof(struct io_uring_buf_ring); 583 584 /* Reuse existing entry, if we can */ 585 ibf = io_lookup_buf_free_entry(ctx, ring_size); 586 if (!ibf) { 587 ptr = io_mem_alloc(ring_size); 588 if (IS_ERR(ptr)) 589 return PTR_ERR(ptr); 590 591 /* Allocate and store deferred free entry */ 592 ibf = kmalloc(sizeof(*ibf), GFP_KERNEL_ACCOUNT); 593 if (!ibf) { 594 io_mem_free(ptr); 595 return -ENOMEM; 596 } 597 ibf->mem = ptr; 598 ibf->size = ring_size; 599 hlist_add_head(&ibf->list, &ctx->io_buf_list); 600 } 601 ibf->inuse = 1; 602 bl->buf_ring = ibf->mem; 603 bl->is_mapped = 1; 604 bl->is_mmap = 1; 605 return 0; 606 } 607 608 int io_register_pbuf_ring(struct io_ring_ctx *ctx, void __user *arg) 609 { 610 struct io_uring_buf_reg reg; 611 struct io_buffer_list *bl, *free_bl = NULL; 612 int ret; 613 614 lockdep_assert_held(&ctx->uring_lock); 615 616 if (copy_from_user(®, arg, sizeof(reg))) 617 return -EFAULT; 618 619 if (reg.resv[0] || reg.resv[1] || reg.resv[2]) 620 return -EINVAL; 621 if (reg.flags & ~IOU_PBUF_RING_MMAP) 622 return -EINVAL; 623 if (!(reg.flags & IOU_PBUF_RING_MMAP)) { 624 if (!reg.ring_addr) 625 return -EFAULT; 626 if (reg.ring_addr & ~PAGE_MASK) 627 return -EINVAL; 628 } else { 629 if (reg.ring_addr) 630 return -EINVAL; 631 } 632 633 if (!is_power_of_2(reg.ring_entries)) 634 return -EINVAL; 635 636 /* cannot disambiguate full vs empty due to head/tail size */ 637 if (reg.ring_entries >= 65536) 638 return -EINVAL; 639 640 bl = io_buffer_get_list(ctx, reg.bgid); 641 if (bl) { 642 /* if mapped buffer ring OR classic exists, don't allow */ 643 if (bl->is_mapped || !list_empty(&bl->buf_list)) 644 return -EEXIST; 645 } else { 646 free_bl = bl = kzalloc(sizeof(*bl), GFP_KERNEL); 647 if (!bl) 648 return -ENOMEM; 649 } 650 651 if (!(reg.flags & IOU_PBUF_RING_MMAP)) 652 ret = io_pin_pbuf_ring(®, bl); 653 else 654 ret = io_alloc_pbuf_ring(ctx, ®, bl); 655 656 if (!ret) { 657 bl->nr_entries = reg.ring_entries; 658 bl->mask = reg.ring_entries - 1; 659 660 io_buffer_add_list(ctx, bl, reg.bgid); 661 return 0; 662 } 663 664 kfree_rcu(free_bl, rcu); 665 return ret; 666 } 667 668 int io_unregister_pbuf_ring(struct io_ring_ctx *ctx, void __user *arg) 669 { 670 struct io_uring_buf_reg reg; 671 struct io_buffer_list *bl; 672 673 lockdep_assert_held(&ctx->uring_lock); 674 675 if (copy_from_user(®, arg, sizeof(reg))) 676 return -EFAULT; 677 if (reg.resv[0] || reg.resv[1] || reg.resv[2]) 678 return -EINVAL; 679 if (reg.flags) 680 return -EINVAL; 681 682 bl = io_buffer_get_list(ctx, reg.bgid); 683 if (!bl) 684 return -ENOENT; 685 if (!bl->is_mapped) 686 return -EINVAL; 687 688 xa_erase(&ctx->io_bl_xa, bl->bgid); 689 io_put_bl(ctx, bl); 690 return 0; 691 } 692 693 struct io_buffer_list *io_pbuf_get_bl(struct io_ring_ctx *ctx, 694 unsigned long bgid) 695 { 696 struct io_buffer_list *bl; 697 bool ret; 698 699 /* 700 * We have to be a bit careful here - we're inside mmap and cannot grab 701 * the uring_lock. This means the buffer_list could be simultaneously 702 * going away, if someone is trying to be sneaky. Look it up under rcu 703 * so we know it's not going away, and attempt to grab a reference to 704 * it. If the ref is already zero, then fail the mapping. If successful, 705 * the caller will call io_put_bl() to drop the the reference at at the 706 * end. This may then safely free the buffer_list (and drop the pages) 707 * at that point, vm_insert_pages() would've already grabbed the 708 * necessary vma references. 709 */ 710 rcu_read_lock(); 711 bl = xa_load(&ctx->io_bl_xa, bgid); 712 /* must be a mmap'able buffer ring and have pages */ 713 ret = false; 714 if (bl && bl->is_mmap) 715 ret = atomic_inc_not_zero(&bl->refs); 716 rcu_read_unlock(); 717 718 if (ret) 719 return bl; 720 721 return ERR_PTR(-EINVAL); 722 } 723 724 /* 725 * Called at or after ->release(), free the mmap'ed buffers that we used 726 * for memory mapped provided buffer rings. 727 */ 728 void io_kbuf_mmap_list_free(struct io_ring_ctx *ctx) 729 { 730 struct io_buf_free *ibf; 731 struct hlist_node *tmp; 732 733 hlist_for_each_entry_safe(ibf, tmp, &ctx->io_buf_list, list) { 734 hlist_del(&ibf->list); 735 io_mem_free(ibf->mem); 736 kfree(ibf); 737 } 738 } 739