xref: /openbmc/linux/io_uring/io_uring.h (revision a34a9f1a)
1 #ifndef IOU_CORE_H
2 #define IOU_CORE_H
3 
4 #include <linux/errno.h>
5 #include <linux/lockdep.h>
6 #include <linux/resume_user_mode.h>
7 #include <linux/kasan.h>
8 #include <linux/io_uring_types.h>
9 #include <uapi/linux/eventpoll.h>
10 #include "io-wq.h"
11 #include "slist.h"
12 #include "filetable.h"
13 
14 #ifndef CREATE_TRACE_POINTS
15 #include <trace/events/io_uring.h>
16 #endif
17 
18 enum {
19 	/*
20 	 * A hint to not wake right away but delay until there are enough of
21 	 * tw's queued to match the number of CQEs the task is waiting for.
22 	 *
23 	 * Must not be used wirh requests generating more than one CQE.
24 	 * It's also ignored unless IORING_SETUP_DEFER_TASKRUN is set.
25 	 */
26 	IOU_F_TWQ_LAZY_WAKE			= 1,
27 };
28 
29 enum {
30 	IOU_OK			= 0,
31 	IOU_ISSUE_SKIP_COMPLETE	= -EIOCBQUEUED,
32 
33 	/*
34 	 * Intended only when both IO_URING_F_MULTISHOT is passed
35 	 * to indicate to the poll runner that multishot should be
36 	 * removed and the result is set on req->cqe.res.
37 	 */
38 	IOU_STOP_MULTISHOT	= -ECANCELED,
39 };
40 
41 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow);
42 void io_req_cqe_overflow(struct io_kiocb *req);
43 int io_run_task_work_sig(struct io_ring_ctx *ctx);
44 void io_req_defer_failed(struct io_kiocb *req, s32 res);
45 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags);
46 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
47 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags);
48 void __io_commit_cqring_flush(struct io_ring_ctx *ctx);
49 
50 struct page **io_pin_pages(unsigned long ubuf, unsigned long len, int *npages);
51 
52 struct file *io_file_get_normal(struct io_kiocb *req, int fd);
53 struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
54 			       unsigned issue_flags);
55 
56 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags);
57 bool io_is_uring_fops(struct file *file);
58 bool io_alloc_async_data(struct io_kiocb *req);
59 void io_req_task_queue(struct io_kiocb *req);
60 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use);
61 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts);
62 void io_req_task_queue_fail(struct io_kiocb *req, int ret);
63 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts);
64 void tctx_task_work(struct callback_head *cb);
65 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
66 int io_uring_alloc_task_context(struct task_struct *task,
67 				struct io_ring_ctx *ctx);
68 
69 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file,
70 				     int start, int end);
71 
72 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts);
73 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr);
74 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin);
75 void __io_submit_flush_completions(struct io_ring_ctx *ctx);
76 int io_req_prep_async(struct io_kiocb *req);
77 
78 struct io_wq_work *io_wq_free_work(struct io_wq_work *work);
79 void io_wq_submit_work(struct io_wq_work *work);
80 
81 void io_free_req(struct io_kiocb *req);
82 void io_queue_next(struct io_kiocb *req);
83 void io_task_refs_refill(struct io_uring_task *tctx);
84 bool __io_alloc_req_refill(struct io_ring_ctx *ctx);
85 
86 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
87 			bool cancel_all);
88 
89 #define io_lockdep_assert_cq_locked(ctx)				\
90 	do {								\
91 		lockdep_assert(in_task());				\
92 									\
93 		if (ctx->flags & IORING_SETUP_IOPOLL) {			\
94 			lockdep_assert_held(&ctx->uring_lock);		\
95 		} else if (!ctx->task_complete) {			\
96 			lockdep_assert_held(&ctx->completion_lock);	\
97 		} else if (ctx->submitter_task->flags & PF_EXITING) {	\
98 			lockdep_assert(current_work());			\
99 		} else {						\
100 			lockdep_assert(current == ctx->submitter_task);	\
101 		}							\
102 	} while (0)
103 
104 static inline void io_req_task_work_add(struct io_kiocb *req)
105 {
106 	__io_req_task_work_add(req, 0);
107 }
108 
109 #define io_for_each_link(pos, head) \
110 	for (pos = (head); pos; pos = pos->link)
111 
112 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx,
113 					struct io_uring_cqe **ret,
114 					bool overflow)
115 {
116 	io_lockdep_assert_cq_locked(ctx);
117 
118 	if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) {
119 		if (unlikely(!io_cqe_cache_refill(ctx, overflow)))
120 			return false;
121 	}
122 	*ret = ctx->cqe_cached;
123 	ctx->cached_cq_tail++;
124 	ctx->cqe_cached++;
125 	if (ctx->flags & IORING_SETUP_CQE32)
126 		ctx->cqe_cached++;
127 	return true;
128 }
129 
130 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret)
131 {
132 	return io_get_cqe_overflow(ctx, ret, false);
133 }
134 
135 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx,
136 					    struct io_kiocb *req)
137 {
138 	struct io_uring_cqe *cqe;
139 
140 	/*
141 	 * If we can't get a cq entry, userspace overflowed the
142 	 * submission (by quite a lot). Increment the overflow count in
143 	 * the ring.
144 	 */
145 	if (unlikely(!io_get_cqe(ctx, &cqe)))
146 		return false;
147 
148 	if (trace_io_uring_complete_enabled())
149 		trace_io_uring_complete(req->ctx, req, req->cqe.user_data,
150 					req->cqe.res, req->cqe.flags,
151 					req->big_cqe.extra1, req->big_cqe.extra2);
152 
153 	memcpy(cqe, &req->cqe, sizeof(*cqe));
154 	if (ctx->flags & IORING_SETUP_CQE32) {
155 		memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe));
156 		memset(&req->big_cqe, 0, sizeof(req->big_cqe));
157 	}
158 	return true;
159 }
160 
161 static inline void req_set_fail(struct io_kiocb *req)
162 {
163 	req->flags |= REQ_F_FAIL;
164 	if (req->flags & REQ_F_CQE_SKIP) {
165 		req->flags &= ~REQ_F_CQE_SKIP;
166 		req->flags |= REQ_F_SKIP_LINK_CQES;
167 	}
168 }
169 
170 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags)
171 {
172 	req->cqe.res = res;
173 	req->cqe.flags = cflags;
174 }
175 
176 static inline bool req_has_async_data(struct io_kiocb *req)
177 {
178 	return req->flags & REQ_F_ASYNC_DATA;
179 }
180 
181 static inline void io_put_file(struct io_kiocb *req)
182 {
183 	if (!(req->flags & REQ_F_FIXED_FILE) && req->file)
184 		fput(req->file);
185 }
186 
187 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx,
188 					 unsigned issue_flags)
189 {
190 	lockdep_assert_held(&ctx->uring_lock);
191 	if (issue_flags & IO_URING_F_UNLOCKED)
192 		mutex_unlock(&ctx->uring_lock);
193 }
194 
195 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx,
196 				       unsigned issue_flags)
197 {
198 	/*
199 	 * "Normal" inline submissions always hold the uring_lock, since we
200 	 * grab it from the system call. Same is true for the SQPOLL offload.
201 	 * The only exception is when we've detached the request and issue it
202 	 * from an async worker thread, grab the lock for that case.
203 	 */
204 	if (issue_flags & IO_URING_F_UNLOCKED)
205 		mutex_lock(&ctx->uring_lock);
206 	lockdep_assert_held(&ctx->uring_lock);
207 }
208 
209 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
210 {
211 	/* order cqe stores with ring update */
212 	smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
213 }
214 
215 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx)
216 {
217 	if (wq_has_sleeper(&ctx->poll_wq))
218 		__wake_up(&ctx->poll_wq, TASK_NORMAL, 0,
219 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
220 }
221 
222 static inline void io_cqring_wake(struct io_ring_ctx *ctx)
223 {
224 	/*
225 	 * Trigger waitqueue handler on all waiters on our waitqueue. This
226 	 * won't necessarily wake up all the tasks, io_should_wake() will make
227 	 * that decision.
228 	 *
229 	 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter
230 	 * set in the mask so that if we recurse back into our own poll
231 	 * waitqueue handlers, we know we have a dependency between eventfd or
232 	 * epoll and should terminate multishot poll at that point.
233 	 */
234 	if (wq_has_sleeper(&ctx->cq_wait))
235 		__wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
236 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
237 }
238 
239 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
240 {
241 	struct io_rings *r = ctx->rings;
242 
243 	return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
244 }
245 
246 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
247 {
248 	struct io_rings *rings = ctx->rings;
249 	unsigned int entries;
250 
251 	/* make sure SQ entry isn't read before tail */
252 	entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
253 	return min(entries, ctx->sq_entries);
254 }
255 
256 static inline int io_run_task_work(void)
257 {
258 	/*
259 	 * Always check-and-clear the task_work notification signal. With how
260 	 * signaling works for task_work, we can find it set with nothing to
261 	 * run. We need to clear it for that case, like get_signal() does.
262 	 */
263 	if (test_thread_flag(TIF_NOTIFY_SIGNAL))
264 		clear_notify_signal();
265 	/*
266 	 * PF_IO_WORKER never returns to userspace, so check here if we have
267 	 * notify work that needs processing.
268 	 */
269 	if (current->flags & PF_IO_WORKER &&
270 	    test_thread_flag(TIF_NOTIFY_RESUME)) {
271 		__set_current_state(TASK_RUNNING);
272 		resume_user_mode_work(NULL);
273 	}
274 	if (task_work_pending(current)) {
275 		__set_current_state(TASK_RUNNING);
276 		task_work_run();
277 		return 1;
278 	}
279 
280 	return 0;
281 }
282 
283 static inline bool io_task_work_pending(struct io_ring_ctx *ctx)
284 {
285 	return task_work_pending(current) || !wq_list_empty(&ctx->work_llist);
286 }
287 
288 static inline void io_tw_lock(struct io_ring_ctx *ctx, struct io_tw_state *ts)
289 {
290 	if (!ts->locked) {
291 		mutex_lock(&ctx->uring_lock);
292 		ts->locked = true;
293 	}
294 }
295 
296 /*
297  * Don't complete immediately but use deferred completion infrastructure.
298  * Protected by ->uring_lock and can only be used either with
299  * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex.
300  */
301 static inline void io_req_complete_defer(struct io_kiocb *req)
302 	__must_hold(&req->ctx->uring_lock)
303 {
304 	struct io_submit_state *state = &req->ctx->submit_state;
305 
306 	lockdep_assert_held(&req->ctx->uring_lock);
307 
308 	wq_list_add_tail(&req->comp_list, &state->compl_reqs);
309 }
310 
311 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx)
312 {
313 	if (unlikely(ctx->off_timeout_used || ctx->drain_active ||
314 		     ctx->has_evfd || ctx->poll_activated))
315 		__io_commit_cqring_flush(ctx);
316 }
317 
318 static inline void io_get_task_refs(int nr)
319 {
320 	struct io_uring_task *tctx = current->io_uring;
321 
322 	tctx->cached_refs -= nr;
323 	if (unlikely(tctx->cached_refs < 0))
324 		io_task_refs_refill(tctx);
325 }
326 
327 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
328 {
329 	return !ctx->submit_state.free_list.next;
330 }
331 
332 extern struct kmem_cache *req_cachep;
333 
334 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx)
335 {
336 	struct io_kiocb *req;
337 
338 	req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list);
339 	wq_stack_extract(&ctx->submit_state.free_list);
340 	return req;
341 }
342 
343 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req)
344 {
345 	if (unlikely(io_req_cache_empty(ctx))) {
346 		if (!__io_alloc_req_refill(ctx))
347 			return false;
348 	}
349 	*req = io_extract_req(ctx);
350 	return true;
351 }
352 
353 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx)
354 {
355 	return likely(ctx->submitter_task == current);
356 }
357 
358 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx)
359 {
360 	return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) ||
361 		      ctx->submitter_task == current);
362 }
363 
364 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res)
365 {
366 	io_req_set_res(req, res, 0);
367 	req->io_task_work.func = io_req_task_complete;
368 	io_req_task_work_add(req);
369 }
370 
371 /*
372  * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each
373  * slot.
374  */
375 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx)
376 {
377 	if (ctx->flags & IORING_SETUP_SQE128)
378 		return 2 * sizeof(struct io_uring_sqe);
379 	return sizeof(struct io_uring_sqe);
380 }
381 #endif
382