1 #ifndef IOU_CORE_H 2 #define IOU_CORE_H 3 4 #include <linux/errno.h> 5 #include <linux/lockdep.h> 6 #include <linux/resume_user_mode.h> 7 #include <linux/kasan.h> 8 #include <linux/io_uring_types.h> 9 #include <uapi/linux/eventpoll.h> 10 #include "io-wq.h" 11 #include "slist.h" 12 #include "filetable.h" 13 14 #ifndef CREATE_TRACE_POINTS 15 #include <trace/events/io_uring.h> 16 #endif 17 18 enum { 19 /* 20 * A hint to not wake right away but delay until there are enough of 21 * tw's queued to match the number of CQEs the task is waiting for. 22 * 23 * Must not be used wirh requests generating more than one CQE. 24 * It's also ignored unless IORING_SETUP_DEFER_TASKRUN is set. 25 */ 26 IOU_F_TWQ_LAZY_WAKE = 1, 27 }; 28 29 enum { 30 IOU_OK = 0, 31 IOU_ISSUE_SKIP_COMPLETE = -EIOCBQUEUED, 32 33 /* 34 * Intended only when both IO_URING_F_MULTISHOT is passed 35 * to indicate to the poll runner that multishot should be 36 * removed and the result is set on req->cqe.res. 37 */ 38 IOU_STOP_MULTISHOT = -ECANCELED, 39 }; 40 41 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow); 42 void io_req_cqe_overflow(struct io_kiocb *req); 43 int io_run_task_work_sig(struct io_ring_ctx *ctx); 44 void io_req_defer_failed(struct io_kiocb *req, s32 res); 45 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags); 46 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 47 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags); 48 void __io_commit_cqring_flush(struct io_ring_ctx *ctx); 49 50 struct page **io_pin_pages(unsigned long ubuf, unsigned long len, int *npages); 51 52 struct file *io_file_get_normal(struct io_kiocb *req, int fd); 53 struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 54 unsigned issue_flags); 55 56 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags); 57 bool io_is_uring_fops(struct file *file); 58 bool io_alloc_async_data(struct io_kiocb *req); 59 void io_req_task_queue(struct io_kiocb *req); 60 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use); 61 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts); 62 void io_req_task_queue_fail(struct io_kiocb *req, int ret); 63 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts); 64 void tctx_task_work(struct callback_head *cb); 65 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd); 66 int io_uring_alloc_task_context(struct task_struct *task, 67 struct io_ring_ctx *ctx); 68 69 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file, 70 int start, int end); 71 72 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts); 73 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr); 74 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin); 75 void __io_submit_flush_completions(struct io_ring_ctx *ctx); 76 int io_req_prep_async(struct io_kiocb *req); 77 78 struct io_wq_work *io_wq_free_work(struct io_wq_work *work); 79 void io_wq_submit_work(struct io_wq_work *work); 80 81 void io_free_req(struct io_kiocb *req); 82 void io_queue_next(struct io_kiocb *req); 83 void io_task_refs_refill(struct io_uring_task *tctx); 84 bool __io_alloc_req_refill(struct io_ring_ctx *ctx); 85 86 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 87 bool cancel_all); 88 89 #define io_lockdep_assert_cq_locked(ctx) \ 90 do { \ 91 lockdep_assert(in_task()); \ 92 \ 93 if (ctx->flags & IORING_SETUP_IOPOLL) { \ 94 lockdep_assert_held(&ctx->uring_lock); \ 95 } else if (!ctx->task_complete) { \ 96 lockdep_assert_held(&ctx->completion_lock); \ 97 } else if (ctx->submitter_task->flags & PF_EXITING) { \ 98 lockdep_assert(current_work()); \ 99 } else { \ 100 lockdep_assert(current == ctx->submitter_task); \ 101 } \ 102 } while (0) 103 104 static inline void io_req_task_work_add(struct io_kiocb *req) 105 { 106 __io_req_task_work_add(req, 0); 107 } 108 109 #define io_for_each_link(pos, head) \ 110 for (pos = (head); pos; pos = pos->link) 111 112 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx, 113 struct io_uring_cqe **ret, 114 bool overflow) 115 { 116 io_lockdep_assert_cq_locked(ctx); 117 118 if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) { 119 if (unlikely(!io_cqe_cache_refill(ctx, overflow))) 120 return false; 121 } 122 *ret = ctx->cqe_cached; 123 ctx->cached_cq_tail++; 124 ctx->cqe_cached++; 125 if (ctx->flags & IORING_SETUP_CQE32) 126 ctx->cqe_cached++; 127 return true; 128 } 129 130 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret) 131 { 132 return io_get_cqe_overflow(ctx, ret, false); 133 } 134 135 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx, 136 struct io_kiocb *req) 137 { 138 struct io_uring_cqe *cqe; 139 140 /* 141 * If we can't get a cq entry, userspace overflowed the 142 * submission (by quite a lot). Increment the overflow count in 143 * the ring. 144 */ 145 if (unlikely(!io_get_cqe(ctx, &cqe))) 146 return false; 147 148 if (trace_io_uring_complete_enabled()) 149 trace_io_uring_complete(req->ctx, req, req->cqe.user_data, 150 req->cqe.res, req->cqe.flags, 151 req->big_cqe.extra1, req->big_cqe.extra2); 152 153 memcpy(cqe, &req->cqe, sizeof(*cqe)); 154 if (ctx->flags & IORING_SETUP_CQE32) { 155 memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe)); 156 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 157 } 158 return true; 159 } 160 161 static inline void req_set_fail(struct io_kiocb *req) 162 { 163 req->flags |= REQ_F_FAIL; 164 if (req->flags & REQ_F_CQE_SKIP) { 165 req->flags &= ~REQ_F_CQE_SKIP; 166 req->flags |= REQ_F_SKIP_LINK_CQES; 167 } 168 } 169 170 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags) 171 { 172 req->cqe.res = res; 173 req->cqe.flags = cflags; 174 } 175 176 static inline bool req_has_async_data(struct io_kiocb *req) 177 { 178 return req->flags & REQ_F_ASYNC_DATA; 179 } 180 181 static inline void io_put_file(struct io_kiocb *req) 182 { 183 if (!(req->flags & REQ_F_FIXED_FILE) && req->file) 184 fput(req->file); 185 } 186 187 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx, 188 unsigned issue_flags) 189 { 190 lockdep_assert_held(&ctx->uring_lock); 191 if (issue_flags & IO_URING_F_UNLOCKED) 192 mutex_unlock(&ctx->uring_lock); 193 } 194 195 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx, 196 unsigned issue_flags) 197 { 198 /* 199 * "Normal" inline submissions always hold the uring_lock, since we 200 * grab it from the system call. Same is true for the SQPOLL offload. 201 * The only exception is when we've detached the request and issue it 202 * from an async worker thread, grab the lock for that case. 203 */ 204 if (issue_flags & IO_URING_F_UNLOCKED) 205 mutex_lock(&ctx->uring_lock); 206 lockdep_assert_held(&ctx->uring_lock); 207 } 208 209 static inline void io_commit_cqring(struct io_ring_ctx *ctx) 210 { 211 /* order cqe stores with ring update */ 212 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail); 213 } 214 215 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx) 216 { 217 if (wq_has_sleeper(&ctx->poll_wq)) 218 __wake_up(&ctx->poll_wq, TASK_NORMAL, 0, 219 poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 220 } 221 222 static inline void io_cqring_wake(struct io_ring_ctx *ctx) 223 { 224 /* 225 * Trigger waitqueue handler on all waiters on our waitqueue. This 226 * won't necessarily wake up all the tasks, io_should_wake() will make 227 * that decision. 228 * 229 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter 230 * set in the mask so that if we recurse back into our own poll 231 * waitqueue handlers, we know we have a dependency between eventfd or 232 * epoll and should terminate multishot poll at that point. 233 */ 234 if (wq_has_sleeper(&ctx->cq_wait)) 235 __wake_up(&ctx->cq_wait, TASK_NORMAL, 0, 236 poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 237 } 238 239 static inline bool io_sqring_full(struct io_ring_ctx *ctx) 240 { 241 struct io_rings *r = ctx->rings; 242 243 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries; 244 } 245 246 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx) 247 { 248 struct io_rings *rings = ctx->rings; 249 unsigned int entries; 250 251 /* make sure SQ entry isn't read before tail */ 252 entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head; 253 return min(entries, ctx->sq_entries); 254 } 255 256 static inline int io_run_task_work(void) 257 { 258 /* 259 * Always check-and-clear the task_work notification signal. With how 260 * signaling works for task_work, we can find it set with nothing to 261 * run. We need to clear it for that case, like get_signal() does. 262 */ 263 if (test_thread_flag(TIF_NOTIFY_SIGNAL)) 264 clear_notify_signal(); 265 /* 266 * PF_IO_WORKER never returns to userspace, so check here if we have 267 * notify work that needs processing. 268 */ 269 if (current->flags & PF_IO_WORKER && 270 test_thread_flag(TIF_NOTIFY_RESUME)) { 271 __set_current_state(TASK_RUNNING); 272 resume_user_mode_work(NULL); 273 } 274 if (task_work_pending(current)) { 275 __set_current_state(TASK_RUNNING); 276 task_work_run(); 277 return 1; 278 } 279 280 return 0; 281 } 282 283 static inline bool io_task_work_pending(struct io_ring_ctx *ctx) 284 { 285 return task_work_pending(current) || !wq_list_empty(&ctx->work_llist); 286 } 287 288 static inline void io_tw_lock(struct io_ring_ctx *ctx, struct io_tw_state *ts) 289 { 290 if (!ts->locked) { 291 mutex_lock(&ctx->uring_lock); 292 ts->locked = true; 293 } 294 } 295 296 /* 297 * Don't complete immediately but use deferred completion infrastructure. 298 * Protected by ->uring_lock and can only be used either with 299 * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex. 300 */ 301 static inline void io_req_complete_defer(struct io_kiocb *req) 302 __must_hold(&req->ctx->uring_lock) 303 { 304 struct io_submit_state *state = &req->ctx->submit_state; 305 306 lockdep_assert_held(&req->ctx->uring_lock); 307 308 wq_list_add_tail(&req->comp_list, &state->compl_reqs); 309 } 310 311 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx) 312 { 313 if (unlikely(ctx->off_timeout_used || ctx->drain_active || 314 ctx->has_evfd || ctx->poll_activated)) 315 __io_commit_cqring_flush(ctx); 316 } 317 318 static inline void io_get_task_refs(int nr) 319 { 320 struct io_uring_task *tctx = current->io_uring; 321 322 tctx->cached_refs -= nr; 323 if (unlikely(tctx->cached_refs < 0)) 324 io_task_refs_refill(tctx); 325 } 326 327 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx) 328 { 329 return !ctx->submit_state.free_list.next; 330 } 331 332 extern struct kmem_cache *req_cachep; 333 334 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx) 335 { 336 struct io_kiocb *req; 337 338 req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list); 339 wq_stack_extract(&ctx->submit_state.free_list); 340 return req; 341 } 342 343 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req) 344 { 345 if (unlikely(io_req_cache_empty(ctx))) { 346 if (!__io_alloc_req_refill(ctx)) 347 return false; 348 } 349 *req = io_extract_req(ctx); 350 return true; 351 } 352 353 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx) 354 { 355 return likely(ctx->submitter_task == current); 356 } 357 358 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx) 359 { 360 return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) || 361 ctx->submitter_task == current); 362 } 363 364 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res) 365 { 366 io_req_set_res(req, res, 0); 367 req->io_task_work.func = io_req_task_complete; 368 io_req_task_work_add(req); 369 } 370 371 /* 372 * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each 373 * slot. 374 */ 375 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx) 376 { 377 if (ctx->flags & IORING_SETUP_SQE128) 378 return 2 * sizeof(struct io_uring_sqe); 379 return sizeof(struct io_uring_sqe); 380 } 381 #endif 382