xref: /openbmc/linux/io_uring/io_uring.h (revision 20d6b633)
1 #ifndef IOU_CORE_H
2 #define IOU_CORE_H
3 
4 #include <linux/errno.h>
5 #include <linux/lockdep.h>
6 #include <linux/resume_user_mode.h>
7 #include <linux/kasan.h>
8 #include <linux/io_uring_types.h>
9 #include <uapi/linux/eventpoll.h>
10 #include "io-wq.h"
11 #include "slist.h"
12 #include "filetable.h"
13 
14 #ifndef CREATE_TRACE_POINTS
15 #include <trace/events/io_uring.h>
16 #endif
17 
18 enum {
19 	/*
20 	 * A hint to not wake right away but delay until there are enough of
21 	 * tw's queued to match the number of CQEs the task is waiting for.
22 	 *
23 	 * Must not be used wirh requests generating more than one CQE.
24 	 * It's also ignored unless IORING_SETUP_DEFER_TASKRUN is set.
25 	 */
26 	IOU_F_TWQ_LAZY_WAKE			= 1,
27 };
28 
29 enum {
30 	IOU_OK			= 0,
31 	IOU_ISSUE_SKIP_COMPLETE	= -EIOCBQUEUED,
32 
33 	/*
34 	 * Intended only when both IO_URING_F_MULTISHOT is passed
35 	 * to indicate to the poll runner that multishot should be
36 	 * removed and the result is set on req->cqe.res.
37 	 */
38 	IOU_STOP_MULTISHOT	= -ECANCELED,
39 };
40 
41 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow);
42 void io_req_cqe_overflow(struct io_kiocb *req);
43 int io_run_task_work_sig(struct io_ring_ctx *ctx);
44 void io_req_defer_failed(struct io_kiocb *req, s32 res);
45 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags);
46 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
47 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags);
48 void __io_commit_cqring_flush(struct io_ring_ctx *ctx);
49 
50 struct page **io_pin_pages(unsigned long ubuf, unsigned long len, int *npages);
51 
52 struct file *io_file_get_normal(struct io_kiocb *req, int fd);
53 struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
54 			       unsigned issue_flags);
55 
56 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags);
57 bool io_is_uring_fops(struct file *file);
58 bool io_alloc_async_data(struct io_kiocb *req);
59 void io_req_task_queue(struct io_kiocb *req);
60 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use);
61 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts);
62 void io_req_task_queue_fail(struct io_kiocb *req, int ret);
63 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts);
64 void tctx_task_work(struct callback_head *cb);
65 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
66 int io_uring_alloc_task_context(struct task_struct *task,
67 				struct io_ring_ctx *ctx);
68 
69 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file,
70 				     int start, int end);
71 
72 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts);
73 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr);
74 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin);
75 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node);
76 int io_req_prep_async(struct io_kiocb *req);
77 
78 struct io_wq_work *io_wq_free_work(struct io_wq_work *work);
79 void io_wq_submit_work(struct io_wq_work *work);
80 
81 void io_free_req(struct io_kiocb *req);
82 void io_queue_next(struct io_kiocb *req);
83 void io_task_refs_refill(struct io_uring_task *tctx);
84 bool __io_alloc_req_refill(struct io_ring_ctx *ctx);
85 
86 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
87 			bool cancel_all);
88 
89 #define io_lockdep_assert_cq_locked(ctx)				\
90 	do {								\
91 		lockdep_assert(in_task());				\
92 									\
93 		if (ctx->flags & IORING_SETUP_IOPOLL) {			\
94 			lockdep_assert_held(&ctx->uring_lock);		\
95 		} else if (!ctx->task_complete) {			\
96 			lockdep_assert_held(&ctx->completion_lock);	\
97 		} else if (ctx->submitter_task->flags & PF_EXITING) {	\
98 			lockdep_assert(current_work());			\
99 		} else {						\
100 			lockdep_assert(current == ctx->submitter_task);	\
101 		}							\
102 	} while (0)
103 
104 static inline void io_req_task_work_add(struct io_kiocb *req)
105 {
106 	__io_req_task_work_add(req, 0);
107 }
108 
109 #define io_for_each_link(pos, head) \
110 	for (pos = (head); pos; pos = pos->link)
111 
112 static inline struct io_uring_cqe *io_get_cqe_overflow(struct io_ring_ctx *ctx,
113 						       bool overflow)
114 {
115 	struct io_uring_cqe *cqe;
116 
117 	io_lockdep_assert_cq_locked(ctx);
118 
119 	if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) {
120 		if (unlikely(!io_cqe_cache_refill(ctx, overflow)))
121 			return NULL;
122 	}
123 	cqe = ctx->cqe_cached;
124 	ctx->cached_cq_tail++;
125 	ctx->cqe_cached++;
126 	if (ctx->flags & IORING_SETUP_CQE32)
127 		ctx->cqe_cached++;
128 	return cqe;
129 }
130 
131 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
132 {
133 	return io_get_cqe_overflow(ctx, false);
134 }
135 
136 static inline bool io_fill_cqe_req(struct io_ring_ctx *ctx, struct io_kiocb *req)
137 {
138 	struct io_uring_cqe *cqe;
139 
140 	/*
141 	 * If we can't get a cq entry, userspace overflowed the
142 	 * submission (by quite a lot). Increment the overflow count in
143 	 * the ring.
144 	 */
145 	cqe = io_get_cqe(ctx);
146 	if (unlikely(!cqe))
147 		return false;
148 
149 	if (trace_io_uring_complete_enabled())
150 		trace_io_uring_complete(req->ctx, req, req->cqe.user_data,
151 					req->cqe.res, req->cqe.flags,
152 					req->big_cqe.extra1, req->big_cqe.extra2);
153 
154 	memcpy(cqe, &req->cqe, sizeof(*cqe));
155 	if (ctx->flags & IORING_SETUP_CQE32) {
156 		memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe));
157 		memset(&req->big_cqe, 0, sizeof(req->big_cqe));
158 	}
159 	return true;
160 }
161 
162 static inline void req_set_fail(struct io_kiocb *req)
163 {
164 	req->flags |= REQ_F_FAIL;
165 	if (req->flags & REQ_F_CQE_SKIP) {
166 		req->flags &= ~REQ_F_CQE_SKIP;
167 		req->flags |= REQ_F_SKIP_LINK_CQES;
168 	}
169 }
170 
171 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags)
172 {
173 	req->cqe.res = res;
174 	req->cqe.flags = cflags;
175 }
176 
177 static inline bool req_has_async_data(struct io_kiocb *req)
178 {
179 	return req->flags & REQ_F_ASYNC_DATA;
180 }
181 
182 static inline void io_put_file(struct io_kiocb *req)
183 {
184 	if (!(req->flags & REQ_F_FIXED_FILE) && req->file)
185 		fput(req->file);
186 }
187 
188 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx,
189 					 unsigned issue_flags)
190 {
191 	lockdep_assert_held(&ctx->uring_lock);
192 	if (issue_flags & IO_URING_F_UNLOCKED)
193 		mutex_unlock(&ctx->uring_lock);
194 }
195 
196 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx,
197 				       unsigned issue_flags)
198 {
199 	/*
200 	 * "Normal" inline submissions always hold the uring_lock, since we
201 	 * grab it from the system call. Same is true for the SQPOLL offload.
202 	 * The only exception is when we've detached the request and issue it
203 	 * from an async worker thread, grab the lock for that case.
204 	 */
205 	if (issue_flags & IO_URING_F_UNLOCKED)
206 		mutex_lock(&ctx->uring_lock);
207 	lockdep_assert_held(&ctx->uring_lock);
208 }
209 
210 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
211 {
212 	/* order cqe stores with ring update */
213 	smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
214 }
215 
216 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx)
217 {
218 	if (wq_has_sleeper(&ctx->poll_wq))
219 		__wake_up(&ctx->poll_wq, TASK_NORMAL, 0,
220 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
221 }
222 
223 static inline void io_cqring_wake(struct io_ring_ctx *ctx)
224 {
225 	/*
226 	 * Trigger waitqueue handler on all waiters on our waitqueue. This
227 	 * won't necessarily wake up all the tasks, io_should_wake() will make
228 	 * that decision.
229 	 *
230 	 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter
231 	 * set in the mask so that if we recurse back into our own poll
232 	 * waitqueue handlers, we know we have a dependency between eventfd or
233 	 * epoll and should terminate multishot poll at that point.
234 	 */
235 	if (wq_has_sleeper(&ctx->cq_wait))
236 		__wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
237 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
238 }
239 
240 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
241 {
242 	struct io_rings *r = ctx->rings;
243 
244 	return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
245 }
246 
247 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
248 {
249 	struct io_rings *rings = ctx->rings;
250 	unsigned int entries;
251 
252 	/* make sure SQ entry isn't read before tail */
253 	entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
254 	return min(entries, ctx->sq_entries);
255 }
256 
257 static inline int io_run_task_work(void)
258 {
259 	/*
260 	 * Always check-and-clear the task_work notification signal. With how
261 	 * signaling works for task_work, we can find it set with nothing to
262 	 * run. We need to clear it for that case, like get_signal() does.
263 	 */
264 	if (test_thread_flag(TIF_NOTIFY_SIGNAL))
265 		clear_notify_signal();
266 	/*
267 	 * PF_IO_WORKER never returns to userspace, so check here if we have
268 	 * notify work that needs processing.
269 	 */
270 	if (current->flags & PF_IO_WORKER &&
271 	    test_thread_flag(TIF_NOTIFY_RESUME)) {
272 		__set_current_state(TASK_RUNNING);
273 		resume_user_mode_work(NULL);
274 	}
275 	if (task_work_pending(current)) {
276 		__set_current_state(TASK_RUNNING);
277 		task_work_run();
278 		return 1;
279 	}
280 
281 	return 0;
282 }
283 
284 static inline bool io_task_work_pending(struct io_ring_ctx *ctx)
285 {
286 	return task_work_pending(current) || !wq_list_empty(&ctx->work_llist);
287 }
288 
289 static inline void io_tw_lock(struct io_ring_ctx *ctx, struct io_tw_state *ts)
290 {
291 	if (!ts->locked) {
292 		mutex_lock(&ctx->uring_lock);
293 		ts->locked = true;
294 	}
295 }
296 
297 /*
298  * Don't complete immediately but use deferred completion infrastructure.
299  * Protected by ->uring_lock and can only be used either with
300  * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex.
301  */
302 static inline void io_req_complete_defer(struct io_kiocb *req)
303 	__must_hold(&req->ctx->uring_lock)
304 {
305 	struct io_submit_state *state = &req->ctx->submit_state;
306 
307 	lockdep_assert_held(&req->ctx->uring_lock);
308 
309 	wq_list_add_tail(&req->comp_list, &state->compl_reqs);
310 }
311 
312 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx)
313 {
314 	if (unlikely(ctx->off_timeout_used || ctx->drain_active ||
315 		     ctx->has_evfd || ctx->poll_activated))
316 		__io_commit_cqring_flush(ctx);
317 }
318 
319 static inline void io_get_task_refs(int nr)
320 {
321 	struct io_uring_task *tctx = current->io_uring;
322 
323 	tctx->cached_refs -= nr;
324 	if (unlikely(tctx->cached_refs < 0))
325 		io_task_refs_refill(tctx);
326 }
327 
328 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
329 {
330 	return !ctx->submit_state.free_list.next;
331 }
332 
333 extern struct kmem_cache *req_cachep;
334 
335 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx)
336 {
337 	struct io_kiocb *req;
338 
339 	req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list);
340 	wq_stack_extract(&ctx->submit_state.free_list);
341 	return req;
342 }
343 
344 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req)
345 {
346 	if (unlikely(io_req_cache_empty(ctx))) {
347 		if (!__io_alloc_req_refill(ctx))
348 			return false;
349 	}
350 	*req = io_extract_req(ctx);
351 	return true;
352 }
353 
354 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx)
355 {
356 	return likely(ctx->submitter_task == current);
357 }
358 
359 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx)
360 {
361 	return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) ||
362 		      ctx->submitter_task == current);
363 }
364 
365 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res)
366 {
367 	io_req_set_res(req, res, 0);
368 	req->io_task_work.func = io_req_task_complete;
369 	io_req_task_work_add(req);
370 }
371 
372 /*
373  * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each
374  * slot.
375  */
376 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx)
377 {
378 	if (ctx->flags & IORING_SETUP_SQE128)
379 		return 2 * sizeof(struct io_uring_sqe);
380 	return sizeof(struct io_uring_sqe);
381 }
382 #endif
383