xref: /openbmc/linux/io_uring/io_uring.c (revision f432b76b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 #include <asm/shmparam.h>
76 
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/io_uring.h>
79 
80 #include <uapi/linux/io_uring.h>
81 
82 #include "io-wq.h"
83 
84 #include "io_uring.h"
85 #include "opdef.h"
86 #include "refs.h"
87 #include "tctx.h"
88 #include "sqpoll.h"
89 #include "fdinfo.h"
90 #include "kbuf.h"
91 #include "rsrc.h"
92 #include "cancel.h"
93 #include "net.h"
94 #include "notif.h"
95 
96 #include "timeout.h"
97 #include "poll.h"
98 #include "rw.h"
99 #include "alloc_cache.h"
100 
101 #define IORING_MAX_ENTRIES	32768
102 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
103 
104 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
105 				 IORING_REGISTER_LAST + IORING_OP_LAST)
106 
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109 
110 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112 
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 				REQ_F_ASYNC_DATA)
116 
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 				 IO_REQ_CLEAN_FLAGS)
119 
120 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
121 
122 #define IO_COMPL_BATCH			32
123 #define IO_REQ_ALLOC_BATCH		8
124 
125 enum {
126 	IO_CHECK_CQ_OVERFLOW_BIT,
127 	IO_CHECK_CQ_DROPPED_BIT,
128 };
129 
130 enum {
131 	IO_EVENTFD_OP_SIGNAL_BIT,
132 	IO_EVENTFD_OP_FREE_BIT,
133 };
134 
135 struct io_defer_entry {
136 	struct list_head	list;
137 	struct io_kiocb		*req;
138 	u32			seq;
139 };
140 
141 /* requests with any of those set should undergo io_disarm_next() */
142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
144 
145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
146 					 struct task_struct *task,
147 					 bool cancel_all);
148 
149 static void io_queue_sqe(struct io_kiocb *req);
150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx);
151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
152 static __cold void io_fallback_tw(struct io_uring_task *tctx);
153 
154 struct kmem_cache *req_cachep;
155 
156 struct sock *io_uring_get_socket(struct file *file)
157 {
158 #if defined(CONFIG_UNIX)
159 	if (io_is_uring_fops(file)) {
160 		struct io_ring_ctx *ctx = file->private_data;
161 
162 		return ctx->ring_sock->sk;
163 	}
164 #endif
165 	return NULL;
166 }
167 EXPORT_SYMBOL(io_uring_get_socket);
168 
169 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
170 {
171 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
172 	    ctx->submit_state.cqes_count)
173 		__io_submit_flush_completions(ctx);
174 }
175 
176 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
177 {
178 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
179 }
180 
181 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
182 {
183 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
184 }
185 
186 static bool io_match_linked(struct io_kiocb *head)
187 {
188 	struct io_kiocb *req;
189 
190 	io_for_each_link(req, head) {
191 		if (req->flags & REQ_F_INFLIGHT)
192 			return true;
193 	}
194 	return false;
195 }
196 
197 /*
198  * As io_match_task() but protected against racing with linked timeouts.
199  * User must not hold timeout_lock.
200  */
201 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
202 			bool cancel_all)
203 {
204 	bool matched;
205 
206 	if (task && head->task != task)
207 		return false;
208 	if (cancel_all)
209 		return true;
210 
211 	if (head->flags & REQ_F_LINK_TIMEOUT) {
212 		struct io_ring_ctx *ctx = head->ctx;
213 
214 		/* protect against races with linked timeouts */
215 		spin_lock_irq(&ctx->timeout_lock);
216 		matched = io_match_linked(head);
217 		spin_unlock_irq(&ctx->timeout_lock);
218 	} else {
219 		matched = io_match_linked(head);
220 	}
221 	return matched;
222 }
223 
224 static inline void req_fail_link_node(struct io_kiocb *req, int res)
225 {
226 	req_set_fail(req);
227 	io_req_set_res(req, res, 0);
228 }
229 
230 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
231 {
232 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
233 	kasan_poison_object_data(req_cachep, req);
234 }
235 
236 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
237 {
238 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
239 
240 	complete(&ctx->ref_comp);
241 }
242 
243 static __cold void io_fallback_req_func(struct work_struct *work)
244 {
245 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
246 						fallback_work.work);
247 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
248 	struct io_kiocb *req, *tmp;
249 	struct io_tw_state ts = { .locked = true, };
250 
251 	mutex_lock(&ctx->uring_lock);
252 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
253 		req->io_task_work.func(req, &ts);
254 	if (WARN_ON_ONCE(!ts.locked))
255 		return;
256 	io_submit_flush_completions(ctx);
257 	mutex_unlock(&ctx->uring_lock);
258 }
259 
260 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
261 {
262 	unsigned hash_buckets = 1U << bits;
263 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
264 
265 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
266 	if (!table->hbs)
267 		return -ENOMEM;
268 
269 	table->hash_bits = bits;
270 	init_hash_table(table, hash_buckets);
271 	return 0;
272 }
273 
274 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
275 {
276 	struct io_ring_ctx *ctx;
277 	int hash_bits;
278 
279 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
280 	if (!ctx)
281 		return NULL;
282 
283 	xa_init(&ctx->io_bl_xa);
284 
285 	/*
286 	 * Use 5 bits less than the max cq entries, that should give us around
287 	 * 32 entries per hash list if totally full and uniformly spread, but
288 	 * don't keep too many buckets to not overconsume memory.
289 	 */
290 	hash_bits = ilog2(p->cq_entries) - 5;
291 	hash_bits = clamp(hash_bits, 1, 8);
292 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
293 		goto err;
294 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
295 		goto err;
296 
297 	ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
298 	if (!ctx->dummy_ubuf)
299 		goto err;
300 	/* set invalid range, so io_import_fixed() fails meeting it */
301 	ctx->dummy_ubuf->ubuf = -1UL;
302 
303 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
304 			    0, GFP_KERNEL))
305 		goto err;
306 
307 	ctx->flags = p->flags;
308 	init_waitqueue_head(&ctx->sqo_sq_wait);
309 	INIT_LIST_HEAD(&ctx->sqd_list);
310 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
311 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
312 	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
313 			    sizeof(struct io_rsrc_node));
314 	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
315 			    sizeof(struct async_poll));
316 	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
317 			    sizeof(struct io_async_msghdr));
318 	init_completion(&ctx->ref_comp);
319 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
320 	mutex_init(&ctx->uring_lock);
321 	init_waitqueue_head(&ctx->cq_wait);
322 	init_waitqueue_head(&ctx->poll_wq);
323 	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
324 	spin_lock_init(&ctx->completion_lock);
325 	spin_lock_init(&ctx->timeout_lock);
326 	INIT_WQ_LIST(&ctx->iopoll_list);
327 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
328 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
329 	INIT_LIST_HEAD(&ctx->defer_list);
330 	INIT_LIST_HEAD(&ctx->timeout_list);
331 	INIT_LIST_HEAD(&ctx->ltimeout_list);
332 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
333 	init_llist_head(&ctx->work_llist);
334 	INIT_LIST_HEAD(&ctx->tctx_list);
335 	ctx->submit_state.free_list.next = NULL;
336 	INIT_WQ_LIST(&ctx->locked_free_list);
337 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
338 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
339 	return ctx;
340 err:
341 	kfree(ctx->dummy_ubuf);
342 	kfree(ctx->cancel_table.hbs);
343 	kfree(ctx->cancel_table_locked.hbs);
344 	kfree(ctx->io_bl);
345 	xa_destroy(&ctx->io_bl_xa);
346 	kfree(ctx);
347 	return NULL;
348 }
349 
350 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
351 {
352 	struct io_rings *r = ctx->rings;
353 
354 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
355 	ctx->cq_extra--;
356 }
357 
358 static bool req_need_defer(struct io_kiocb *req, u32 seq)
359 {
360 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
361 		struct io_ring_ctx *ctx = req->ctx;
362 
363 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
364 	}
365 
366 	return false;
367 }
368 
369 static void io_clean_op(struct io_kiocb *req)
370 {
371 	if (req->flags & REQ_F_BUFFER_SELECTED) {
372 		spin_lock(&req->ctx->completion_lock);
373 		io_put_kbuf_comp(req);
374 		spin_unlock(&req->ctx->completion_lock);
375 	}
376 
377 	if (req->flags & REQ_F_NEED_CLEANUP) {
378 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
379 
380 		if (def->cleanup)
381 			def->cleanup(req);
382 	}
383 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
384 		kfree(req->apoll->double_poll);
385 		kfree(req->apoll);
386 		req->apoll = NULL;
387 	}
388 	if (req->flags & REQ_F_INFLIGHT) {
389 		struct io_uring_task *tctx = req->task->io_uring;
390 
391 		atomic_dec(&tctx->inflight_tracked);
392 	}
393 	if (req->flags & REQ_F_CREDS)
394 		put_cred(req->creds);
395 	if (req->flags & REQ_F_ASYNC_DATA) {
396 		kfree(req->async_data);
397 		req->async_data = NULL;
398 	}
399 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
400 }
401 
402 static inline void io_req_track_inflight(struct io_kiocb *req)
403 {
404 	if (!(req->flags & REQ_F_INFLIGHT)) {
405 		req->flags |= REQ_F_INFLIGHT;
406 		atomic_inc(&req->task->io_uring->inflight_tracked);
407 	}
408 }
409 
410 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
411 {
412 	if (WARN_ON_ONCE(!req->link))
413 		return NULL;
414 
415 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
416 	req->flags |= REQ_F_LINK_TIMEOUT;
417 
418 	/* linked timeouts should have two refs once prep'ed */
419 	io_req_set_refcount(req);
420 	__io_req_set_refcount(req->link, 2);
421 	return req->link;
422 }
423 
424 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
425 {
426 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
427 		return NULL;
428 	return __io_prep_linked_timeout(req);
429 }
430 
431 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
432 {
433 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
434 }
435 
436 static inline void io_arm_ltimeout(struct io_kiocb *req)
437 {
438 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
439 		__io_arm_ltimeout(req);
440 }
441 
442 static void io_prep_async_work(struct io_kiocb *req)
443 {
444 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
445 	struct io_ring_ctx *ctx = req->ctx;
446 
447 	if (!(req->flags & REQ_F_CREDS)) {
448 		req->flags |= REQ_F_CREDS;
449 		req->creds = get_current_cred();
450 	}
451 
452 	req->work.list.next = NULL;
453 	req->work.flags = 0;
454 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
455 	if (req->flags & REQ_F_FORCE_ASYNC)
456 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
457 
458 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
459 		req->flags |= io_file_get_flags(req->file);
460 
461 	if (req->file && (req->flags & REQ_F_ISREG)) {
462 		bool should_hash = def->hash_reg_file;
463 
464 		/* don't serialize this request if the fs doesn't need it */
465 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
466 		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
467 			should_hash = false;
468 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
469 			io_wq_hash_work(&req->work, file_inode(req->file));
470 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
471 		if (def->unbound_nonreg_file)
472 			req->work.flags |= IO_WQ_WORK_UNBOUND;
473 	}
474 }
475 
476 static void io_prep_async_link(struct io_kiocb *req)
477 {
478 	struct io_kiocb *cur;
479 
480 	if (req->flags & REQ_F_LINK_TIMEOUT) {
481 		struct io_ring_ctx *ctx = req->ctx;
482 
483 		spin_lock_irq(&ctx->timeout_lock);
484 		io_for_each_link(cur, req)
485 			io_prep_async_work(cur);
486 		spin_unlock_irq(&ctx->timeout_lock);
487 	} else {
488 		io_for_each_link(cur, req)
489 			io_prep_async_work(cur);
490 	}
491 }
492 
493 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
494 {
495 	struct io_kiocb *link = io_prep_linked_timeout(req);
496 	struct io_uring_task *tctx = req->task->io_uring;
497 
498 	BUG_ON(!tctx);
499 	BUG_ON(!tctx->io_wq);
500 
501 	/* init ->work of the whole link before punting */
502 	io_prep_async_link(req);
503 
504 	/*
505 	 * Not expected to happen, but if we do have a bug where this _can_
506 	 * happen, catch it here and ensure the request is marked as
507 	 * canceled. That will make io-wq go through the usual work cancel
508 	 * procedure rather than attempt to run this request (or create a new
509 	 * worker for it).
510 	 */
511 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
512 		req->work.flags |= IO_WQ_WORK_CANCEL;
513 
514 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
515 	io_wq_enqueue(tctx->io_wq, &req->work);
516 	if (link)
517 		io_queue_linked_timeout(link);
518 }
519 
520 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
521 {
522 	while (!list_empty(&ctx->defer_list)) {
523 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
524 						struct io_defer_entry, list);
525 
526 		if (req_need_defer(de->req, de->seq))
527 			break;
528 		list_del_init(&de->list);
529 		io_req_task_queue(de->req);
530 		kfree(de);
531 	}
532 }
533 
534 
535 static void io_eventfd_ops(struct rcu_head *rcu)
536 {
537 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
538 	int ops = atomic_xchg(&ev_fd->ops, 0);
539 
540 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
541 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
542 
543 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
544 	 * ordering in a race but if references are 0 we know we have to free
545 	 * it regardless.
546 	 */
547 	if (atomic_dec_and_test(&ev_fd->refs)) {
548 		eventfd_ctx_put(ev_fd->cq_ev_fd);
549 		kfree(ev_fd);
550 	}
551 }
552 
553 static void io_eventfd_signal(struct io_ring_ctx *ctx)
554 {
555 	struct io_ev_fd *ev_fd = NULL;
556 
557 	rcu_read_lock();
558 	/*
559 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
560 	 * and eventfd_signal
561 	 */
562 	ev_fd = rcu_dereference(ctx->io_ev_fd);
563 
564 	/*
565 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
566 	 * completed between the NULL check of ctx->io_ev_fd at the start of
567 	 * the function and rcu_read_lock.
568 	 */
569 	if (unlikely(!ev_fd))
570 		goto out;
571 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
572 		goto out;
573 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
574 		goto out;
575 
576 	if (likely(eventfd_signal_allowed())) {
577 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
578 	} else {
579 		atomic_inc(&ev_fd->refs);
580 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
581 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
582 		else
583 			atomic_dec(&ev_fd->refs);
584 	}
585 
586 out:
587 	rcu_read_unlock();
588 }
589 
590 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
591 {
592 	bool skip;
593 
594 	spin_lock(&ctx->completion_lock);
595 
596 	/*
597 	 * Eventfd should only get triggered when at least one event has been
598 	 * posted. Some applications rely on the eventfd notification count
599 	 * only changing IFF a new CQE has been added to the CQ ring. There's
600 	 * no depedency on 1:1 relationship between how many times this
601 	 * function is called (and hence the eventfd count) and number of CQEs
602 	 * posted to the CQ ring.
603 	 */
604 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
605 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
606 	spin_unlock(&ctx->completion_lock);
607 	if (skip)
608 		return;
609 
610 	io_eventfd_signal(ctx);
611 }
612 
613 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
614 {
615 	if (ctx->poll_activated)
616 		io_poll_wq_wake(ctx);
617 	if (ctx->off_timeout_used)
618 		io_flush_timeouts(ctx);
619 	if (ctx->drain_active) {
620 		spin_lock(&ctx->completion_lock);
621 		io_queue_deferred(ctx);
622 		spin_unlock(&ctx->completion_lock);
623 	}
624 	if (ctx->has_evfd)
625 		io_eventfd_flush_signal(ctx);
626 }
627 
628 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
629 	__acquires(ctx->completion_lock)
630 {
631 	if (!ctx->task_complete)
632 		spin_lock(&ctx->completion_lock);
633 }
634 
635 static inline void __io_cq_unlock(struct io_ring_ctx *ctx)
636 {
637 	if (!ctx->task_complete)
638 		spin_unlock(&ctx->completion_lock);
639 }
640 
641 static inline void io_cq_lock(struct io_ring_ctx *ctx)
642 	__acquires(ctx->completion_lock)
643 {
644 	spin_lock(&ctx->completion_lock);
645 }
646 
647 /* keep it inlined for io_submit_flush_completions() */
648 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
649 	__releases(ctx->completion_lock)
650 {
651 	io_commit_cqring(ctx);
652 	__io_cq_unlock(ctx);
653 	io_commit_cqring_flush(ctx);
654 	io_cqring_wake(ctx);
655 }
656 
657 static void __io_cq_unlock_post_flush(struct io_ring_ctx *ctx)
658 	__releases(ctx->completion_lock)
659 {
660 	io_commit_cqring(ctx);
661 
662 	if (ctx->task_complete) {
663 		/*
664 		 * ->task_complete implies that only current might be waiting
665 		 * for CQEs, and obviously, we currently don't. No one is
666 		 * waiting, wakeups are futile, skip them.
667 		 */
668 		io_commit_cqring_flush(ctx);
669 	} else {
670 		__io_cq_unlock(ctx);
671 		io_commit_cqring_flush(ctx);
672 		io_cqring_wake(ctx);
673 	}
674 }
675 
676 void io_cq_unlock_post(struct io_ring_ctx *ctx)
677 	__releases(ctx->completion_lock)
678 {
679 	io_commit_cqring(ctx);
680 	spin_unlock(&ctx->completion_lock);
681 	io_commit_cqring_flush(ctx);
682 	io_cqring_wake(ctx);
683 }
684 
685 /* Returns true if there are no backlogged entries after the flush */
686 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
687 {
688 	struct io_overflow_cqe *ocqe;
689 	LIST_HEAD(list);
690 
691 	spin_lock(&ctx->completion_lock);
692 	list_splice_init(&ctx->cq_overflow_list, &list);
693 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
694 	spin_unlock(&ctx->completion_lock);
695 
696 	while (!list_empty(&list)) {
697 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
698 		list_del(&ocqe->list);
699 		kfree(ocqe);
700 	}
701 }
702 
703 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
704 {
705 	size_t cqe_size = sizeof(struct io_uring_cqe);
706 
707 	if (__io_cqring_events(ctx) == ctx->cq_entries)
708 		return;
709 
710 	if (ctx->flags & IORING_SETUP_CQE32)
711 		cqe_size <<= 1;
712 
713 	io_cq_lock(ctx);
714 	while (!list_empty(&ctx->cq_overflow_list)) {
715 		struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true);
716 		struct io_overflow_cqe *ocqe;
717 
718 		if (!cqe)
719 			break;
720 		ocqe = list_first_entry(&ctx->cq_overflow_list,
721 					struct io_overflow_cqe, list);
722 		memcpy(cqe, &ocqe->cqe, cqe_size);
723 		list_del(&ocqe->list);
724 		kfree(ocqe);
725 	}
726 
727 	if (list_empty(&ctx->cq_overflow_list)) {
728 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
729 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
730 	}
731 	io_cq_unlock_post(ctx);
732 }
733 
734 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
735 {
736 	/* iopoll syncs against uring_lock, not completion_lock */
737 	if (ctx->flags & IORING_SETUP_IOPOLL)
738 		mutex_lock(&ctx->uring_lock);
739 	__io_cqring_overflow_flush(ctx);
740 	if (ctx->flags & IORING_SETUP_IOPOLL)
741 		mutex_unlock(&ctx->uring_lock);
742 }
743 
744 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
745 {
746 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
747 		io_cqring_do_overflow_flush(ctx);
748 }
749 
750 /* can be called by any task */
751 static void io_put_task_remote(struct task_struct *task)
752 {
753 	struct io_uring_task *tctx = task->io_uring;
754 
755 	percpu_counter_sub(&tctx->inflight, 1);
756 	if (unlikely(atomic_read(&tctx->in_cancel)))
757 		wake_up(&tctx->wait);
758 	put_task_struct(task);
759 }
760 
761 /* used by a task to put its own references */
762 static void io_put_task_local(struct task_struct *task)
763 {
764 	task->io_uring->cached_refs++;
765 }
766 
767 /* must to be called somewhat shortly after putting a request */
768 static inline void io_put_task(struct task_struct *task)
769 {
770 	if (likely(task == current))
771 		io_put_task_local(task);
772 	else
773 		io_put_task_remote(task);
774 }
775 
776 void io_task_refs_refill(struct io_uring_task *tctx)
777 {
778 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
779 
780 	percpu_counter_add(&tctx->inflight, refill);
781 	refcount_add(refill, &current->usage);
782 	tctx->cached_refs += refill;
783 }
784 
785 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
786 {
787 	struct io_uring_task *tctx = task->io_uring;
788 	unsigned int refs = tctx->cached_refs;
789 
790 	if (refs) {
791 		tctx->cached_refs = 0;
792 		percpu_counter_sub(&tctx->inflight, refs);
793 		put_task_struct_many(task, refs);
794 	}
795 }
796 
797 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
798 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
799 {
800 	struct io_overflow_cqe *ocqe;
801 	size_t ocq_size = sizeof(struct io_overflow_cqe);
802 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
803 
804 	lockdep_assert_held(&ctx->completion_lock);
805 
806 	if (is_cqe32)
807 		ocq_size += sizeof(struct io_uring_cqe);
808 
809 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
810 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
811 	if (!ocqe) {
812 		/*
813 		 * If we're in ring overflow flush mode, or in task cancel mode,
814 		 * or cannot allocate an overflow entry, then we need to drop it
815 		 * on the floor.
816 		 */
817 		io_account_cq_overflow(ctx);
818 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
819 		return false;
820 	}
821 	if (list_empty(&ctx->cq_overflow_list)) {
822 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
823 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
824 
825 	}
826 	ocqe->cqe.user_data = user_data;
827 	ocqe->cqe.res = res;
828 	ocqe->cqe.flags = cflags;
829 	if (is_cqe32) {
830 		ocqe->cqe.big_cqe[0] = extra1;
831 		ocqe->cqe.big_cqe[1] = extra2;
832 	}
833 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
834 	return true;
835 }
836 
837 bool io_req_cqe_overflow(struct io_kiocb *req)
838 {
839 	if (!(req->flags & REQ_F_CQE32_INIT)) {
840 		req->extra1 = 0;
841 		req->extra2 = 0;
842 	}
843 	return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
844 					req->cqe.res, req->cqe.flags,
845 					req->extra1, req->extra2);
846 }
847 
848 /*
849  * writes to the cq entry need to come after reading head; the
850  * control dependency is enough as we're using WRITE_ONCE to
851  * fill the cq entry
852  */
853 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow)
854 {
855 	struct io_rings *rings = ctx->rings;
856 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
857 	unsigned int free, queued, len;
858 
859 	/*
860 	 * Posting into the CQ when there are pending overflowed CQEs may break
861 	 * ordering guarantees, which will affect links, F_MORE users and more.
862 	 * Force overflow the completion.
863 	 */
864 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
865 		return NULL;
866 
867 	/* userspace may cheat modifying the tail, be safe and do min */
868 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
869 	free = ctx->cq_entries - queued;
870 	/* we need a contiguous range, limit based on the current array offset */
871 	len = min(free, ctx->cq_entries - off);
872 	if (!len)
873 		return NULL;
874 
875 	if (ctx->flags & IORING_SETUP_CQE32) {
876 		off <<= 1;
877 		len <<= 1;
878 	}
879 
880 	ctx->cqe_cached = &rings->cqes[off];
881 	ctx->cqe_sentinel = ctx->cqe_cached + len;
882 
883 	ctx->cached_cq_tail++;
884 	ctx->cqe_cached++;
885 	if (ctx->flags & IORING_SETUP_CQE32)
886 		ctx->cqe_cached++;
887 	return &rings->cqes[off];
888 }
889 
890 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
891 			      u32 cflags)
892 {
893 	struct io_uring_cqe *cqe;
894 
895 	ctx->cq_extra++;
896 
897 	/*
898 	 * If we can't get a cq entry, userspace overflowed the
899 	 * submission (by quite a lot). Increment the overflow count in
900 	 * the ring.
901 	 */
902 	cqe = io_get_cqe(ctx);
903 	if (likely(cqe)) {
904 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
905 
906 		WRITE_ONCE(cqe->user_data, user_data);
907 		WRITE_ONCE(cqe->res, res);
908 		WRITE_ONCE(cqe->flags, cflags);
909 
910 		if (ctx->flags & IORING_SETUP_CQE32) {
911 			WRITE_ONCE(cqe->big_cqe[0], 0);
912 			WRITE_ONCE(cqe->big_cqe[1], 0);
913 		}
914 		return true;
915 	}
916 	return false;
917 }
918 
919 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
920 	__must_hold(&ctx->uring_lock)
921 {
922 	struct io_submit_state *state = &ctx->submit_state;
923 	unsigned int i;
924 
925 	lockdep_assert_held(&ctx->uring_lock);
926 	for (i = 0; i < state->cqes_count; i++) {
927 		struct io_uring_cqe *cqe = &state->cqes[i];
928 
929 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
930 			if (ctx->task_complete) {
931 				spin_lock(&ctx->completion_lock);
932 				io_cqring_event_overflow(ctx, cqe->user_data,
933 							cqe->res, cqe->flags, 0, 0);
934 				spin_unlock(&ctx->completion_lock);
935 			} else {
936 				io_cqring_event_overflow(ctx, cqe->user_data,
937 							cqe->res, cqe->flags, 0, 0);
938 			}
939 		}
940 	}
941 	state->cqes_count = 0;
942 }
943 
944 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
945 			      bool allow_overflow)
946 {
947 	bool filled;
948 
949 	io_cq_lock(ctx);
950 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
951 	if (!filled && allow_overflow)
952 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
953 
954 	io_cq_unlock_post(ctx);
955 	return filled;
956 }
957 
958 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
959 {
960 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
961 }
962 
963 bool io_aux_cqe(const struct io_kiocb *req, bool defer, s32 res, u32 cflags,
964 		bool allow_overflow)
965 {
966 	struct io_ring_ctx *ctx = req->ctx;
967 	u64 user_data = req->cqe.user_data;
968 	struct io_uring_cqe *cqe;
969 
970 	if (!defer)
971 		return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow);
972 
973 	lockdep_assert_held(&ctx->uring_lock);
974 
975 	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->submit_state.cqes)) {
976 		__io_cq_lock(ctx);
977 		__io_flush_post_cqes(ctx);
978 		/* no need to flush - flush is deferred */
979 		__io_cq_unlock_post(ctx);
980 	}
981 
982 	/* For defered completions this is not as strict as it is otherwise,
983 	 * however it's main job is to prevent unbounded posted completions,
984 	 * and in that it works just as well.
985 	 */
986 	if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
987 		return false;
988 
989 	cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++];
990 	cqe->user_data = user_data;
991 	cqe->res = res;
992 	cqe->flags = cflags;
993 	return true;
994 }
995 
996 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
997 {
998 	struct io_ring_ctx *ctx = req->ctx;
999 	struct io_rsrc_node *rsrc_node = NULL;
1000 
1001 	io_cq_lock(ctx);
1002 	if (!(req->flags & REQ_F_CQE_SKIP))
1003 		io_fill_cqe_req(ctx, req);
1004 
1005 	/*
1006 	 * If we're the last reference to this request, add to our locked
1007 	 * free_list cache.
1008 	 */
1009 	if (req_ref_put_and_test(req)) {
1010 		if (req->flags & IO_REQ_LINK_FLAGS) {
1011 			if (req->flags & IO_DISARM_MASK)
1012 				io_disarm_next(req);
1013 			if (req->link) {
1014 				io_req_task_queue(req->link);
1015 				req->link = NULL;
1016 			}
1017 		}
1018 		io_put_kbuf_comp(req);
1019 		if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1020 			io_clean_op(req);
1021 		if (!(req->flags & REQ_F_FIXED_FILE))
1022 			io_put_file(req->file);
1023 
1024 		rsrc_node = req->rsrc_node;
1025 		/*
1026 		 * Selected buffer deallocation in io_clean_op() assumes that
1027 		 * we don't hold ->completion_lock. Clean them here to avoid
1028 		 * deadlocks.
1029 		 */
1030 		io_put_task_remote(req->task);
1031 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1032 		ctx->locked_free_nr++;
1033 	}
1034 	io_cq_unlock_post(ctx);
1035 
1036 	if (rsrc_node) {
1037 		io_ring_submit_lock(ctx, issue_flags);
1038 		io_put_rsrc_node(ctx, rsrc_node);
1039 		io_ring_submit_unlock(ctx, issue_flags);
1040 	}
1041 }
1042 
1043 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1044 {
1045 	if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1046 		req->io_task_work.func = io_req_task_complete;
1047 		io_req_task_work_add(req);
1048 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1049 		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1050 		__io_req_complete_post(req, issue_flags);
1051 	} else {
1052 		struct io_ring_ctx *ctx = req->ctx;
1053 
1054 		mutex_lock(&ctx->uring_lock);
1055 		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1056 		mutex_unlock(&ctx->uring_lock);
1057 	}
1058 }
1059 
1060 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1061 	__must_hold(&ctx->uring_lock)
1062 {
1063 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1064 
1065 	lockdep_assert_held(&req->ctx->uring_lock);
1066 
1067 	req_set_fail(req);
1068 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1069 	if (def->fail)
1070 		def->fail(req);
1071 	io_req_complete_defer(req);
1072 }
1073 
1074 /*
1075  * Don't initialise the fields below on every allocation, but do that in
1076  * advance and keep them valid across allocations.
1077  */
1078 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1079 {
1080 	req->ctx = ctx;
1081 	req->link = NULL;
1082 	req->async_data = NULL;
1083 	/* not necessary, but safer to zero */
1084 	req->cqe.res = 0;
1085 }
1086 
1087 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1088 					struct io_submit_state *state)
1089 {
1090 	spin_lock(&ctx->completion_lock);
1091 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1092 	ctx->locked_free_nr = 0;
1093 	spin_unlock(&ctx->completion_lock);
1094 }
1095 
1096 /*
1097  * A request might get retired back into the request caches even before opcode
1098  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1099  * Because of that, io_alloc_req() should be called only under ->uring_lock
1100  * and with extra caution to not get a request that is still worked on.
1101  */
1102 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1103 	__must_hold(&ctx->uring_lock)
1104 {
1105 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1106 	void *reqs[IO_REQ_ALLOC_BATCH];
1107 	int ret, i;
1108 
1109 	/*
1110 	 * If we have more than a batch's worth of requests in our IRQ side
1111 	 * locked cache, grab the lock and move them over to our submission
1112 	 * side cache.
1113 	 */
1114 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1115 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1116 		if (!io_req_cache_empty(ctx))
1117 			return true;
1118 	}
1119 
1120 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1121 
1122 	/*
1123 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1124 	 * retry single alloc to be on the safe side.
1125 	 */
1126 	if (unlikely(ret <= 0)) {
1127 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1128 		if (!reqs[0])
1129 			return false;
1130 		ret = 1;
1131 	}
1132 
1133 	percpu_ref_get_many(&ctx->refs, ret);
1134 	for (i = 0; i < ret; i++) {
1135 		struct io_kiocb *req = reqs[i];
1136 
1137 		io_preinit_req(req, ctx);
1138 		io_req_add_to_cache(req, ctx);
1139 	}
1140 	return true;
1141 }
1142 
1143 __cold void io_free_req(struct io_kiocb *req)
1144 {
1145 	/* refs were already put, restore them for io_req_task_complete() */
1146 	req->flags &= ~REQ_F_REFCOUNT;
1147 	/* we only want to free it, don't post CQEs */
1148 	req->flags |= REQ_F_CQE_SKIP;
1149 	req->io_task_work.func = io_req_task_complete;
1150 	io_req_task_work_add(req);
1151 }
1152 
1153 static void __io_req_find_next_prep(struct io_kiocb *req)
1154 {
1155 	struct io_ring_ctx *ctx = req->ctx;
1156 
1157 	spin_lock(&ctx->completion_lock);
1158 	io_disarm_next(req);
1159 	spin_unlock(&ctx->completion_lock);
1160 }
1161 
1162 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1163 {
1164 	struct io_kiocb *nxt;
1165 
1166 	/*
1167 	 * If LINK is set, we have dependent requests in this chain. If we
1168 	 * didn't fail this request, queue the first one up, moving any other
1169 	 * dependencies to the next request. In case of failure, fail the rest
1170 	 * of the chain.
1171 	 */
1172 	if (unlikely(req->flags & IO_DISARM_MASK))
1173 		__io_req_find_next_prep(req);
1174 	nxt = req->link;
1175 	req->link = NULL;
1176 	return nxt;
1177 }
1178 
1179 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1180 {
1181 	if (!ctx)
1182 		return;
1183 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1184 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1185 	if (ts->locked) {
1186 		io_submit_flush_completions(ctx);
1187 		mutex_unlock(&ctx->uring_lock);
1188 		ts->locked = false;
1189 	}
1190 	percpu_ref_put(&ctx->refs);
1191 }
1192 
1193 static unsigned int handle_tw_list(struct llist_node *node,
1194 				   struct io_ring_ctx **ctx,
1195 				   struct io_tw_state *ts,
1196 				   struct llist_node *last)
1197 {
1198 	unsigned int count = 0;
1199 
1200 	while (node && node != last) {
1201 		struct llist_node *next = node->next;
1202 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1203 						    io_task_work.node);
1204 
1205 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1206 
1207 		if (req->ctx != *ctx) {
1208 			ctx_flush_and_put(*ctx, ts);
1209 			*ctx = req->ctx;
1210 			/* if not contended, grab and improve batching */
1211 			ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1212 			percpu_ref_get(&(*ctx)->refs);
1213 		}
1214 		INDIRECT_CALL_2(req->io_task_work.func,
1215 				io_poll_task_func, io_req_rw_complete,
1216 				req, ts);
1217 		node = next;
1218 		count++;
1219 		if (unlikely(need_resched())) {
1220 			ctx_flush_and_put(*ctx, ts);
1221 			*ctx = NULL;
1222 			cond_resched();
1223 		}
1224 	}
1225 
1226 	return count;
1227 }
1228 
1229 /**
1230  * io_llist_xchg - swap all entries in a lock-less list
1231  * @head:	the head of lock-less list to delete all entries
1232  * @new:	new entry as the head of the list
1233  *
1234  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1235  * The order of entries returned is from the newest to the oldest added one.
1236  */
1237 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1238 					       struct llist_node *new)
1239 {
1240 	return xchg(&head->first, new);
1241 }
1242 
1243 /**
1244  * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1245  * @head:	the head of lock-less list to delete all entries
1246  * @old:	expected old value of the first entry of the list
1247  * @new:	new entry as the head of the list
1248  *
1249  * perform a cmpxchg on the first entry of the list.
1250  */
1251 
1252 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1253 						  struct llist_node *old,
1254 						  struct llist_node *new)
1255 {
1256 	return cmpxchg(&head->first, old, new);
1257 }
1258 
1259 void tctx_task_work(struct callback_head *cb)
1260 {
1261 	struct io_tw_state ts = {};
1262 	struct io_ring_ctx *ctx = NULL;
1263 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1264 						  task_work);
1265 	struct llist_node fake = {};
1266 	struct llist_node *node;
1267 	unsigned int loops = 0;
1268 	unsigned int count = 0;
1269 
1270 	if (unlikely(current->flags & PF_EXITING)) {
1271 		io_fallback_tw(tctx);
1272 		return;
1273 	}
1274 
1275 	do {
1276 		loops++;
1277 		node = io_llist_xchg(&tctx->task_list, &fake);
1278 		count += handle_tw_list(node, &ctx, &ts, &fake);
1279 
1280 		/* skip expensive cmpxchg if there are items in the list */
1281 		if (READ_ONCE(tctx->task_list.first) != &fake)
1282 			continue;
1283 		if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1284 			io_submit_flush_completions(ctx);
1285 			if (READ_ONCE(tctx->task_list.first) != &fake)
1286 				continue;
1287 		}
1288 		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1289 	} while (node != &fake);
1290 
1291 	ctx_flush_and_put(ctx, &ts);
1292 
1293 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1294 	if (unlikely(atomic_read(&tctx->in_cancel)))
1295 		io_uring_drop_tctx_refs(current);
1296 
1297 	trace_io_uring_task_work_run(tctx, count, loops);
1298 }
1299 
1300 static __cold void io_fallback_tw(struct io_uring_task *tctx)
1301 {
1302 	struct llist_node *node = llist_del_all(&tctx->task_list);
1303 	struct io_kiocb *req;
1304 
1305 	while (node) {
1306 		req = container_of(node, struct io_kiocb, io_task_work.node);
1307 		node = node->next;
1308 		if (llist_add(&req->io_task_work.node,
1309 			      &req->ctx->fallback_llist))
1310 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1311 	}
1312 }
1313 
1314 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1315 {
1316 	struct io_ring_ctx *ctx = req->ctx;
1317 	unsigned nr_wait, nr_tw, nr_tw_prev;
1318 	struct llist_node *first;
1319 
1320 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1321 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1322 
1323 	first = READ_ONCE(ctx->work_llist.first);
1324 	do {
1325 		nr_tw_prev = 0;
1326 		if (first) {
1327 			struct io_kiocb *first_req = container_of(first,
1328 							struct io_kiocb,
1329 							io_task_work.node);
1330 			/*
1331 			 * Might be executed at any moment, rely on
1332 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1333 			 */
1334 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1335 		}
1336 		nr_tw = nr_tw_prev + 1;
1337 		/* Large enough to fail the nr_wait comparison below */
1338 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1339 			nr_tw = -1U;
1340 
1341 		req->nr_tw = nr_tw;
1342 		req->io_task_work.node.next = first;
1343 	} while (!try_cmpxchg(&ctx->work_llist.first, &first,
1344 			      &req->io_task_work.node));
1345 
1346 	if (!first) {
1347 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1348 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1349 		if (ctx->has_evfd)
1350 			io_eventfd_signal(ctx);
1351 	}
1352 
1353 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1354 	/* no one is waiting */
1355 	if (!nr_wait)
1356 		return;
1357 	/* either not enough or the previous add has already woken it up */
1358 	if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1359 		return;
1360 	/* pairs with set_current_state() in io_cqring_wait() */
1361 	smp_mb__after_atomic();
1362 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1363 }
1364 
1365 static void io_req_normal_work_add(struct io_kiocb *req)
1366 {
1367 	struct io_uring_task *tctx = req->task->io_uring;
1368 	struct io_ring_ctx *ctx = req->ctx;
1369 
1370 	/* task_work already pending, we're done */
1371 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1372 		return;
1373 
1374 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1375 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1376 
1377 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1378 		return;
1379 
1380 	io_fallback_tw(tctx);
1381 }
1382 
1383 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1384 {
1385 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1386 		rcu_read_lock();
1387 		io_req_local_work_add(req, flags);
1388 		rcu_read_unlock();
1389 	} else {
1390 		io_req_normal_work_add(req);
1391 	}
1392 }
1393 
1394 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1395 {
1396 	struct llist_node *node;
1397 
1398 	node = llist_del_all(&ctx->work_llist);
1399 	while (node) {
1400 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1401 						    io_task_work.node);
1402 
1403 		node = node->next;
1404 		io_req_normal_work_add(req);
1405 	}
1406 }
1407 
1408 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1409 {
1410 	struct llist_node *node;
1411 	unsigned int loops = 0;
1412 	int ret = 0;
1413 
1414 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1415 		return -EEXIST;
1416 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1417 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1418 again:
1419 	/*
1420 	 * llists are in reverse order, flip it back the right way before
1421 	 * running the pending items.
1422 	 */
1423 	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1424 	while (node) {
1425 		struct llist_node *next = node->next;
1426 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1427 						    io_task_work.node);
1428 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1429 		INDIRECT_CALL_2(req->io_task_work.func,
1430 				io_poll_task_func, io_req_rw_complete,
1431 				req, ts);
1432 		ret++;
1433 		node = next;
1434 	}
1435 	loops++;
1436 
1437 	if (!llist_empty(&ctx->work_llist))
1438 		goto again;
1439 	if (ts->locked) {
1440 		io_submit_flush_completions(ctx);
1441 		if (!llist_empty(&ctx->work_llist))
1442 			goto again;
1443 	}
1444 	trace_io_uring_local_work_run(ctx, ret, loops);
1445 	return ret;
1446 }
1447 
1448 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1449 {
1450 	struct io_tw_state ts = { .locked = true, };
1451 	int ret;
1452 
1453 	if (llist_empty(&ctx->work_llist))
1454 		return 0;
1455 
1456 	ret = __io_run_local_work(ctx, &ts);
1457 	/* shouldn't happen! */
1458 	if (WARN_ON_ONCE(!ts.locked))
1459 		mutex_lock(&ctx->uring_lock);
1460 	return ret;
1461 }
1462 
1463 static int io_run_local_work(struct io_ring_ctx *ctx)
1464 {
1465 	struct io_tw_state ts = {};
1466 	int ret;
1467 
1468 	ts.locked = mutex_trylock(&ctx->uring_lock);
1469 	ret = __io_run_local_work(ctx, &ts);
1470 	if (ts.locked)
1471 		mutex_unlock(&ctx->uring_lock);
1472 
1473 	return ret;
1474 }
1475 
1476 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1477 {
1478 	io_tw_lock(req->ctx, ts);
1479 	io_req_defer_failed(req, req->cqe.res);
1480 }
1481 
1482 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1483 {
1484 	io_tw_lock(req->ctx, ts);
1485 	/* req->task == current here, checking PF_EXITING is safe */
1486 	if (unlikely(req->task->flags & PF_EXITING))
1487 		io_req_defer_failed(req, -EFAULT);
1488 	else if (req->flags & REQ_F_FORCE_ASYNC)
1489 		io_queue_iowq(req, ts);
1490 	else
1491 		io_queue_sqe(req);
1492 }
1493 
1494 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1495 {
1496 	io_req_set_res(req, ret, 0);
1497 	req->io_task_work.func = io_req_task_cancel;
1498 	io_req_task_work_add(req);
1499 }
1500 
1501 void io_req_task_queue(struct io_kiocb *req)
1502 {
1503 	req->io_task_work.func = io_req_task_submit;
1504 	io_req_task_work_add(req);
1505 }
1506 
1507 void io_queue_next(struct io_kiocb *req)
1508 {
1509 	struct io_kiocb *nxt = io_req_find_next(req);
1510 
1511 	if (nxt)
1512 		io_req_task_queue(nxt);
1513 }
1514 
1515 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1516 	__must_hold(&ctx->uring_lock)
1517 {
1518 	do {
1519 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1520 						    comp_list);
1521 
1522 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1523 			if (req->flags & REQ_F_REFCOUNT) {
1524 				node = req->comp_list.next;
1525 				if (!req_ref_put_and_test(req))
1526 					continue;
1527 			}
1528 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1529 				struct async_poll *apoll = req->apoll;
1530 
1531 				if (apoll->double_poll)
1532 					kfree(apoll->double_poll);
1533 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1534 					kfree(apoll);
1535 				req->flags &= ~REQ_F_POLLED;
1536 			}
1537 			if (req->flags & IO_REQ_LINK_FLAGS)
1538 				io_queue_next(req);
1539 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1540 				io_clean_op(req);
1541 		}
1542 		if (!(req->flags & REQ_F_FIXED_FILE))
1543 			io_put_file(req->file);
1544 
1545 		io_req_put_rsrc_locked(req, ctx);
1546 
1547 		io_put_task(req->task);
1548 		node = req->comp_list.next;
1549 		io_req_add_to_cache(req, ctx);
1550 	} while (node);
1551 }
1552 
1553 static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1554 	__must_hold(&ctx->uring_lock)
1555 {
1556 	struct io_submit_state *state = &ctx->submit_state;
1557 	struct io_wq_work_node *node;
1558 
1559 	__io_cq_lock(ctx);
1560 	/* must come first to preserve CQE ordering in failure cases */
1561 	if (state->cqes_count)
1562 		__io_flush_post_cqes(ctx);
1563 	__wq_list_for_each(node, &state->compl_reqs) {
1564 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1565 					    comp_list);
1566 
1567 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1568 		    unlikely(!__io_fill_cqe_req(ctx, req))) {
1569 			if (ctx->task_complete) {
1570 				spin_lock(&ctx->completion_lock);
1571 				io_req_cqe_overflow(req);
1572 				spin_unlock(&ctx->completion_lock);
1573 			} else {
1574 				io_req_cqe_overflow(req);
1575 			}
1576 		}
1577 	}
1578 	__io_cq_unlock_post_flush(ctx);
1579 
1580 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1581 		io_free_batch_list(ctx, state->compl_reqs.first);
1582 		INIT_WQ_LIST(&state->compl_reqs);
1583 	}
1584 }
1585 
1586 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1587 {
1588 	/* See comment at the top of this file */
1589 	smp_rmb();
1590 	return __io_cqring_events(ctx);
1591 }
1592 
1593 /*
1594  * We can't just wait for polled events to come to us, we have to actively
1595  * find and complete them.
1596  */
1597 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1598 {
1599 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1600 		return;
1601 
1602 	mutex_lock(&ctx->uring_lock);
1603 	while (!wq_list_empty(&ctx->iopoll_list)) {
1604 		/* let it sleep and repeat later if can't complete a request */
1605 		if (io_do_iopoll(ctx, true) == 0)
1606 			break;
1607 		/*
1608 		 * Ensure we allow local-to-the-cpu processing to take place,
1609 		 * in this case we need to ensure that we reap all events.
1610 		 * Also let task_work, etc. to progress by releasing the mutex
1611 		 */
1612 		if (need_resched()) {
1613 			mutex_unlock(&ctx->uring_lock);
1614 			cond_resched();
1615 			mutex_lock(&ctx->uring_lock);
1616 		}
1617 	}
1618 	mutex_unlock(&ctx->uring_lock);
1619 }
1620 
1621 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1622 {
1623 	unsigned int nr_events = 0;
1624 	int ret = 0;
1625 	unsigned long check_cq;
1626 
1627 	if (!io_allowed_run_tw(ctx))
1628 		return -EEXIST;
1629 
1630 	check_cq = READ_ONCE(ctx->check_cq);
1631 	if (unlikely(check_cq)) {
1632 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1633 			__io_cqring_overflow_flush(ctx);
1634 		/*
1635 		 * Similarly do not spin if we have not informed the user of any
1636 		 * dropped CQE.
1637 		 */
1638 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1639 			return -EBADR;
1640 	}
1641 	/*
1642 	 * Don't enter poll loop if we already have events pending.
1643 	 * If we do, we can potentially be spinning for commands that
1644 	 * already triggered a CQE (eg in error).
1645 	 */
1646 	if (io_cqring_events(ctx))
1647 		return 0;
1648 
1649 	do {
1650 		/*
1651 		 * If a submit got punted to a workqueue, we can have the
1652 		 * application entering polling for a command before it gets
1653 		 * issued. That app will hold the uring_lock for the duration
1654 		 * of the poll right here, so we need to take a breather every
1655 		 * now and then to ensure that the issue has a chance to add
1656 		 * the poll to the issued list. Otherwise we can spin here
1657 		 * forever, while the workqueue is stuck trying to acquire the
1658 		 * very same mutex.
1659 		 */
1660 		if (wq_list_empty(&ctx->iopoll_list) ||
1661 		    io_task_work_pending(ctx)) {
1662 			u32 tail = ctx->cached_cq_tail;
1663 
1664 			(void) io_run_local_work_locked(ctx);
1665 
1666 			if (task_work_pending(current) ||
1667 			    wq_list_empty(&ctx->iopoll_list)) {
1668 				mutex_unlock(&ctx->uring_lock);
1669 				io_run_task_work();
1670 				mutex_lock(&ctx->uring_lock);
1671 			}
1672 			/* some requests don't go through iopoll_list */
1673 			if (tail != ctx->cached_cq_tail ||
1674 			    wq_list_empty(&ctx->iopoll_list))
1675 				break;
1676 		}
1677 		ret = io_do_iopoll(ctx, !min);
1678 		if (ret < 0)
1679 			break;
1680 		nr_events += ret;
1681 		ret = 0;
1682 	} while (nr_events < min && !need_resched());
1683 
1684 	return ret;
1685 }
1686 
1687 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1688 {
1689 	if (ts->locked)
1690 		io_req_complete_defer(req);
1691 	else
1692 		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1693 }
1694 
1695 /*
1696  * After the iocb has been issued, it's safe to be found on the poll list.
1697  * Adding the kiocb to the list AFTER submission ensures that we don't
1698  * find it from a io_do_iopoll() thread before the issuer is done
1699  * accessing the kiocb cookie.
1700  */
1701 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1702 {
1703 	struct io_ring_ctx *ctx = req->ctx;
1704 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1705 
1706 	/* workqueue context doesn't hold uring_lock, grab it now */
1707 	if (unlikely(needs_lock))
1708 		mutex_lock(&ctx->uring_lock);
1709 
1710 	/*
1711 	 * Track whether we have multiple files in our lists. This will impact
1712 	 * how we do polling eventually, not spinning if we're on potentially
1713 	 * different devices.
1714 	 */
1715 	if (wq_list_empty(&ctx->iopoll_list)) {
1716 		ctx->poll_multi_queue = false;
1717 	} else if (!ctx->poll_multi_queue) {
1718 		struct io_kiocb *list_req;
1719 
1720 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1721 					comp_list);
1722 		if (list_req->file != req->file)
1723 			ctx->poll_multi_queue = true;
1724 	}
1725 
1726 	/*
1727 	 * For fast devices, IO may have already completed. If it has, add
1728 	 * it to the front so we find it first.
1729 	 */
1730 	if (READ_ONCE(req->iopoll_completed))
1731 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1732 	else
1733 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1734 
1735 	if (unlikely(needs_lock)) {
1736 		/*
1737 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1738 		 * in sq thread task context or in io worker task context. If
1739 		 * current task context is sq thread, we don't need to check
1740 		 * whether should wake up sq thread.
1741 		 */
1742 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1743 		    wq_has_sleeper(&ctx->sq_data->wait))
1744 			wake_up(&ctx->sq_data->wait);
1745 
1746 		mutex_unlock(&ctx->uring_lock);
1747 	}
1748 }
1749 
1750 unsigned int io_file_get_flags(struct file *file)
1751 {
1752 	unsigned int res = 0;
1753 
1754 	if (S_ISREG(file_inode(file)->i_mode))
1755 		res |= REQ_F_ISREG;
1756 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1757 		res |= REQ_F_SUPPORT_NOWAIT;
1758 	return res;
1759 }
1760 
1761 bool io_alloc_async_data(struct io_kiocb *req)
1762 {
1763 	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1764 	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1765 	if (req->async_data) {
1766 		req->flags |= REQ_F_ASYNC_DATA;
1767 		return false;
1768 	}
1769 	return true;
1770 }
1771 
1772 int io_req_prep_async(struct io_kiocb *req)
1773 {
1774 	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1775 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1776 
1777 	/* assign early for deferred execution for non-fixed file */
1778 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1779 		req->file = io_file_get_normal(req, req->cqe.fd);
1780 	if (!cdef->prep_async)
1781 		return 0;
1782 	if (WARN_ON_ONCE(req_has_async_data(req)))
1783 		return -EFAULT;
1784 	if (!def->manual_alloc) {
1785 		if (io_alloc_async_data(req))
1786 			return -EAGAIN;
1787 	}
1788 	return cdef->prep_async(req);
1789 }
1790 
1791 static u32 io_get_sequence(struct io_kiocb *req)
1792 {
1793 	u32 seq = req->ctx->cached_sq_head;
1794 	struct io_kiocb *cur;
1795 
1796 	/* need original cached_sq_head, but it was increased for each req */
1797 	io_for_each_link(cur, req)
1798 		seq--;
1799 	return seq;
1800 }
1801 
1802 static __cold void io_drain_req(struct io_kiocb *req)
1803 	__must_hold(&ctx->uring_lock)
1804 {
1805 	struct io_ring_ctx *ctx = req->ctx;
1806 	struct io_defer_entry *de;
1807 	int ret;
1808 	u32 seq = io_get_sequence(req);
1809 
1810 	/* Still need defer if there is pending req in defer list. */
1811 	spin_lock(&ctx->completion_lock);
1812 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1813 		spin_unlock(&ctx->completion_lock);
1814 queue:
1815 		ctx->drain_active = false;
1816 		io_req_task_queue(req);
1817 		return;
1818 	}
1819 	spin_unlock(&ctx->completion_lock);
1820 
1821 	io_prep_async_link(req);
1822 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1823 	if (!de) {
1824 		ret = -ENOMEM;
1825 		io_req_defer_failed(req, ret);
1826 		return;
1827 	}
1828 
1829 	spin_lock(&ctx->completion_lock);
1830 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1831 		spin_unlock(&ctx->completion_lock);
1832 		kfree(de);
1833 		goto queue;
1834 	}
1835 
1836 	trace_io_uring_defer(req);
1837 	de->req = req;
1838 	de->seq = seq;
1839 	list_add_tail(&de->list, &ctx->defer_list);
1840 	spin_unlock(&ctx->completion_lock);
1841 }
1842 
1843 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1844 			   unsigned int issue_flags)
1845 {
1846 	if (req->file || !def->needs_file)
1847 		return true;
1848 
1849 	if (req->flags & REQ_F_FIXED_FILE)
1850 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1851 	else
1852 		req->file = io_file_get_normal(req, req->cqe.fd);
1853 
1854 	return !!req->file;
1855 }
1856 
1857 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1858 {
1859 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1860 	const struct cred *creds = NULL;
1861 	int ret;
1862 
1863 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1864 		return -EBADF;
1865 
1866 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1867 		creds = override_creds(req->creds);
1868 
1869 	if (!def->audit_skip)
1870 		audit_uring_entry(req->opcode);
1871 
1872 	ret = def->issue(req, issue_flags);
1873 
1874 	if (!def->audit_skip)
1875 		audit_uring_exit(!ret, ret);
1876 
1877 	if (creds)
1878 		revert_creds(creds);
1879 
1880 	if (ret == IOU_OK) {
1881 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1882 			io_req_complete_defer(req);
1883 		else
1884 			io_req_complete_post(req, issue_flags);
1885 	} else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1886 		return ret;
1887 
1888 	/* If the op doesn't have a file, we're not polling for it */
1889 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1890 		io_iopoll_req_issued(req, issue_flags);
1891 
1892 	return 0;
1893 }
1894 
1895 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1896 {
1897 	io_tw_lock(req->ctx, ts);
1898 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1899 				 IO_URING_F_COMPLETE_DEFER);
1900 }
1901 
1902 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1903 {
1904 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1905 	struct io_kiocb *nxt = NULL;
1906 
1907 	if (req_ref_put_and_test(req)) {
1908 		if (req->flags & IO_REQ_LINK_FLAGS)
1909 			nxt = io_req_find_next(req);
1910 		io_free_req(req);
1911 	}
1912 	return nxt ? &nxt->work : NULL;
1913 }
1914 
1915 void io_wq_submit_work(struct io_wq_work *work)
1916 {
1917 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1918 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1919 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1920 	bool needs_poll = false;
1921 	int ret = 0, err = -ECANCELED;
1922 
1923 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1924 	if (!(req->flags & REQ_F_REFCOUNT))
1925 		__io_req_set_refcount(req, 2);
1926 	else
1927 		req_ref_get(req);
1928 
1929 	io_arm_ltimeout(req);
1930 
1931 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1932 	if (work->flags & IO_WQ_WORK_CANCEL) {
1933 fail:
1934 		io_req_task_queue_fail(req, err);
1935 		return;
1936 	}
1937 	if (!io_assign_file(req, def, issue_flags)) {
1938 		err = -EBADF;
1939 		work->flags |= IO_WQ_WORK_CANCEL;
1940 		goto fail;
1941 	}
1942 
1943 	if (req->flags & REQ_F_FORCE_ASYNC) {
1944 		bool opcode_poll = def->pollin || def->pollout;
1945 
1946 		if (opcode_poll && file_can_poll(req->file)) {
1947 			needs_poll = true;
1948 			issue_flags |= IO_URING_F_NONBLOCK;
1949 		}
1950 	}
1951 
1952 	do {
1953 		ret = io_issue_sqe(req, issue_flags);
1954 		if (ret != -EAGAIN)
1955 			break;
1956 		/*
1957 		 * We can get EAGAIN for iopolled IO even though we're
1958 		 * forcing a sync submission from here, since we can't
1959 		 * wait for request slots on the block side.
1960 		 */
1961 		if (!needs_poll) {
1962 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1963 				break;
1964 			cond_resched();
1965 			continue;
1966 		}
1967 
1968 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1969 			return;
1970 		/* aborted or ready, in either case retry blocking */
1971 		needs_poll = false;
1972 		issue_flags &= ~IO_URING_F_NONBLOCK;
1973 	} while (1);
1974 
1975 	/* avoid locking problems by failing it from a clean context */
1976 	if (ret < 0)
1977 		io_req_task_queue_fail(req, ret);
1978 }
1979 
1980 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1981 				      unsigned int issue_flags)
1982 {
1983 	struct io_ring_ctx *ctx = req->ctx;
1984 	struct io_fixed_file *slot;
1985 	struct file *file = NULL;
1986 
1987 	io_ring_submit_lock(ctx, issue_flags);
1988 
1989 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1990 		goto out;
1991 	fd = array_index_nospec(fd, ctx->nr_user_files);
1992 	slot = io_fixed_file_slot(&ctx->file_table, fd);
1993 	file = io_slot_file(slot);
1994 	req->flags |= io_slot_flags(slot);
1995 	io_req_set_rsrc_node(req, ctx, 0);
1996 out:
1997 	io_ring_submit_unlock(ctx, issue_flags);
1998 	return file;
1999 }
2000 
2001 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2002 {
2003 	struct file *file = fget(fd);
2004 
2005 	trace_io_uring_file_get(req, fd);
2006 
2007 	/* we don't allow fixed io_uring files */
2008 	if (file && io_is_uring_fops(file))
2009 		io_req_track_inflight(req);
2010 	return file;
2011 }
2012 
2013 static void io_queue_async(struct io_kiocb *req, int ret)
2014 	__must_hold(&req->ctx->uring_lock)
2015 {
2016 	struct io_kiocb *linked_timeout;
2017 
2018 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2019 		io_req_defer_failed(req, ret);
2020 		return;
2021 	}
2022 
2023 	linked_timeout = io_prep_linked_timeout(req);
2024 
2025 	switch (io_arm_poll_handler(req, 0)) {
2026 	case IO_APOLL_READY:
2027 		io_kbuf_recycle(req, 0);
2028 		io_req_task_queue(req);
2029 		break;
2030 	case IO_APOLL_ABORTED:
2031 		io_kbuf_recycle(req, 0);
2032 		io_queue_iowq(req, NULL);
2033 		break;
2034 	case IO_APOLL_OK:
2035 		break;
2036 	}
2037 
2038 	if (linked_timeout)
2039 		io_queue_linked_timeout(linked_timeout);
2040 }
2041 
2042 static inline void io_queue_sqe(struct io_kiocb *req)
2043 	__must_hold(&req->ctx->uring_lock)
2044 {
2045 	int ret;
2046 
2047 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2048 
2049 	/*
2050 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2051 	 * doesn't support non-blocking read/write attempts
2052 	 */
2053 	if (likely(!ret))
2054 		io_arm_ltimeout(req);
2055 	else
2056 		io_queue_async(req, ret);
2057 }
2058 
2059 static void io_queue_sqe_fallback(struct io_kiocb *req)
2060 	__must_hold(&req->ctx->uring_lock)
2061 {
2062 	if (unlikely(req->flags & REQ_F_FAIL)) {
2063 		/*
2064 		 * We don't submit, fail them all, for that replace hardlinks
2065 		 * with normal links. Extra REQ_F_LINK is tolerated.
2066 		 */
2067 		req->flags &= ~REQ_F_HARDLINK;
2068 		req->flags |= REQ_F_LINK;
2069 		io_req_defer_failed(req, req->cqe.res);
2070 	} else {
2071 		int ret = io_req_prep_async(req);
2072 
2073 		if (unlikely(ret)) {
2074 			io_req_defer_failed(req, ret);
2075 			return;
2076 		}
2077 
2078 		if (unlikely(req->ctx->drain_active))
2079 			io_drain_req(req);
2080 		else
2081 			io_queue_iowq(req, NULL);
2082 	}
2083 }
2084 
2085 /*
2086  * Check SQE restrictions (opcode and flags).
2087  *
2088  * Returns 'true' if SQE is allowed, 'false' otherwise.
2089  */
2090 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2091 					struct io_kiocb *req,
2092 					unsigned int sqe_flags)
2093 {
2094 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2095 		return false;
2096 
2097 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2098 	    ctx->restrictions.sqe_flags_required)
2099 		return false;
2100 
2101 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2102 			  ctx->restrictions.sqe_flags_required))
2103 		return false;
2104 
2105 	return true;
2106 }
2107 
2108 static void io_init_req_drain(struct io_kiocb *req)
2109 {
2110 	struct io_ring_ctx *ctx = req->ctx;
2111 	struct io_kiocb *head = ctx->submit_state.link.head;
2112 
2113 	ctx->drain_active = true;
2114 	if (head) {
2115 		/*
2116 		 * If we need to drain a request in the middle of a link, drain
2117 		 * the head request and the next request/link after the current
2118 		 * link. Considering sequential execution of links,
2119 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2120 		 * link.
2121 		 */
2122 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2123 		ctx->drain_next = true;
2124 	}
2125 }
2126 
2127 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2128 		       const struct io_uring_sqe *sqe)
2129 	__must_hold(&ctx->uring_lock)
2130 {
2131 	const struct io_issue_def *def;
2132 	unsigned int sqe_flags;
2133 	int personality;
2134 	u8 opcode;
2135 
2136 	/* req is partially pre-initialised, see io_preinit_req() */
2137 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2138 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2139 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2140 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2141 	req->file = NULL;
2142 	req->rsrc_node = NULL;
2143 	req->task = current;
2144 
2145 	if (unlikely(opcode >= IORING_OP_LAST)) {
2146 		req->opcode = 0;
2147 		return -EINVAL;
2148 	}
2149 	def = &io_issue_defs[opcode];
2150 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2151 		/* enforce forwards compatibility on users */
2152 		if (sqe_flags & ~SQE_VALID_FLAGS)
2153 			return -EINVAL;
2154 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2155 			if (!def->buffer_select)
2156 				return -EOPNOTSUPP;
2157 			req->buf_index = READ_ONCE(sqe->buf_group);
2158 		}
2159 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2160 			ctx->drain_disabled = true;
2161 		if (sqe_flags & IOSQE_IO_DRAIN) {
2162 			if (ctx->drain_disabled)
2163 				return -EOPNOTSUPP;
2164 			io_init_req_drain(req);
2165 		}
2166 	}
2167 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2168 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2169 			return -EACCES;
2170 		/* knock it to the slow queue path, will be drained there */
2171 		if (ctx->drain_active)
2172 			req->flags |= REQ_F_FORCE_ASYNC;
2173 		/* if there is no link, we're at "next" request and need to drain */
2174 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2175 			ctx->drain_next = false;
2176 			ctx->drain_active = true;
2177 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2178 		}
2179 	}
2180 
2181 	if (!def->ioprio && sqe->ioprio)
2182 		return -EINVAL;
2183 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2184 		return -EINVAL;
2185 
2186 	if (def->needs_file) {
2187 		struct io_submit_state *state = &ctx->submit_state;
2188 
2189 		req->cqe.fd = READ_ONCE(sqe->fd);
2190 
2191 		/*
2192 		 * Plug now if we have more than 2 IO left after this, and the
2193 		 * target is potentially a read/write to block based storage.
2194 		 */
2195 		if (state->need_plug && def->plug) {
2196 			state->plug_started = true;
2197 			state->need_plug = false;
2198 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2199 		}
2200 	}
2201 
2202 	personality = READ_ONCE(sqe->personality);
2203 	if (personality) {
2204 		int ret;
2205 
2206 		req->creds = xa_load(&ctx->personalities, personality);
2207 		if (!req->creds)
2208 			return -EINVAL;
2209 		get_cred(req->creds);
2210 		ret = security_uring_override_creds(req->creds);
2211 		if (ret) {
2212 			put_cred(req->creds);
2213 			return ret;
2214 		}
2215 		req->flags |= REQ_F_CREDS;
2216 	}
2217 
2218 	return def->prep(req, sqe);
2219 }
2220 
2221 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2222 				      struct io_kiocb *req, int ret)
2223 {
2224 	struct io_ring_ctx *ctx = req->ctx;
2225 	struct io_submit_link *link = &ctx->submit_state.link;
2226 	struct io_kiocb *head = link->head;
2227 
2228 	trace_io_uring_req_failed(sqe, req, ret);
2229 
2230 	/*
2231 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2232 	 * unusable. Instead of failing eagerly, continue assembling the link if
2233 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2234 	 * should find the flag and handle the rest.
2235 	 */
2236 	req_fail_link_node(req, ret);
2237 	if (head && !(head->flags & REQ_F_FAIL))
2238 		req_fail_link_node(head, -ECANCELED);
2239 
2240 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2241 		if (head) {
2242 			link->last->link = req;
2243 			link->head = NULL;
2244 			req = head;
2245 		}
2246 		io_queue_sqe_fallback(req);
2247 		return ret;
2248 	}
2249 
2250 	if (head)
2251 		link->last->link = req;
2252 	else
2253 		link->head = req;
2254 	link->last = req;
2255 	return 0;
2256 }
2257 
2258 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2259 			 const struct io_uring_sqe *sqe)
2260 	__must_hold(&ctx->uring_lock)
2261 {
2262 	struct io_submit_link *link = &ctx->submit_state.link;
2263 	int ret;
2264 
2265 	ret = io_init_req(ctx, req, sqe);
2266 	if (unlikely(ret))
2267 		return io_submit_fail_init(sqe, req, ret);
2268 
2269 	trace_io_uring_submit_req(req);
2270 
2271 	/*
2272 	 * If we already have a head request, queue this one for async
2273 	 * submittal once the head completes. If we don't have a head but
2274 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2275 	 * submitted sync once the chain is complete. If none of those
2276 	 * conditions are true (normal request), then just queue it.
2277 	 */
2278 	if (unlikely(link->head)) {
2279 		ret = io_req_prep_async(req);
2280 		if (unlikely(ret))
2281 			return io_submit_fail_init(sqe, req, ret);
2282 
2283 		trace_io_uring_link(req, link->head);
2284 		link->last->link = req;
2285 		link->last = req;
2286 
2287 		if (req->flags & IO_REQ_LINK_FLAGS)
2288 			return 0;
2289 		/* last request of the link, flush it */
2290 		req = link->head;
2291 		link->head = NULL;
2292 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2293 			goto fallback;
2294 
2295 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2296 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2297 		if (req->flags & IO_REQ_LINK_FLAGS) {
2298 			link->head = req;
2299 			link->last = req;
2300 		} else {
2301 fallback:
2302 			io_queue_sqe_fallback(req);
2303 		}
2304 		return 0;
2305 	}
2306 
2307 	io_queue_sqe(req);
2308 	return 0;
2309 }
2310 
2311 /*
2312  * Batched submission is done, ensure local IO is flushed out.
2313  */
2314 static void io_submit_state_end(struct io_ring_ctx *ctx)
2315 {
2316 	struct io_submit_state *state = &ctx->submit_state;
2317 
2318 	if (unlikely(state->link.head))
2319 		io_queue_sqe_fallback(state->link.head);
2320 	/* flush only after queuing links as they can generate completions */
2321 	io_submit_flush_completions(ctx);
2322 	if (state->plug_started)
2323 		blk_finish_plug(&state->plug);
2324 }
2325 
2326 /*
2327  * Start submission side cache.
2328  */
2329 static void io_submit_state_start(struct io_submit_state *state,
2330 				  unsigned int max_ios)
2331 {
2332 	state->plug_started = false;
2333 	state->need_plug = max_ios > 2;
2334 	state->submit_nr = max_ios;
2335 	/* set only head, no need to init link_last in advance */
2336 	state->link.head = NULL;
2337 }
2338 
2339 static void io_commit_sqring(struct io_ring_ctx *ctx)
2340 {
2341 	struct io_rings *rings = ctx->rings;
2342 
2343 	/*
2344 	 * Ensure any loads from the SQEs are done at this point,
2345 	 * since once we write the new head, the application could
2346 	 * write new data to them.
2347 	 */
2348 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2349 }
2350 
2351 /*
2352  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2353  * that is mapped by userspace. This means that care needs to be taken to
2354  * ensure that reads are stable, as we cannot rely on userspace always
2355  * being a good citizen. If members of the sqe are validated and then later
2356  * used, it's important that those reads are done through READ_ONCE() to
2357  * prevent a re-load down the line.
2358  */
2359 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2360 {
2361 	unsigned head, mask = ctx->sq_entries - 1;
2362 	unsigned sq_idx = ctx->cached_sq_head++ & mask;
2363 
2364 	/*
2365 	 * The cached sq head (or cq tail) serves two purposes:
2366 	 *
2367 	 * 1) allows us to batch the cost of updating the user visible
2368 	 *    head updates.
2369 	 * 2) allows the kernel side to track the head on its own, even
2370 	 *    though the application is the one updating it.
2371 	 */
2372 	head = READ_ONCE(ctx->sq_array[sq_idx]);
2373 	if (likely(head < ctx->sq_entries)) {
2374 		/* double index for 128-byte SQEs, twice as long */
2375 		if (ctx->flags & IORING_SETUP_SQE128)
2376 			head <<= 1;
2377 		*sqe = &ctx->sq_sqes[head];
2378 		return true;
2379 	}
2380 
2381 	/* drop invalid entries */
2382 	ctx->cq_extra--;
2383 	WRITE_ONCE(ctx->rings->sq_dropped,
2384 		   READ_ONCE(ctx->rings->sq_dropped) + 1);
2385 	return false;
2386 }
2387 
2388 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2389 	__must_hold(&ctx->uring_lock)
2390 {
2391 	unsigned int entries = io_sqring_entries(ctx);
2392 	unsigned int left;
2393 	int ret;
2394 
2395 	if (unlikely(!entries))
2396 		return 0;
2397 	/* make sure SQ entry isn't read before tail */
2398 	ret = left = min(nr, entries);
2399 	io_get_task_refs(left);
2400 	io_submit_state_start(&ctx->submit_state, left);
2401 
2402 	do {
2403 		const struct io_uring_sqe *sqe;
2404 		struct io_kiocb *req;
2405 
2406 		if (unlikely(!io_alloc_req(ctx, &req)))
2407 			break;
2408 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2409 			io_req_add_to_cache(req, ctx);
2410 			break;
2411 		}
2412 
2413 		/*
2414 		 * Continue submitting even for sqe failure if the
2415 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2416 		 */
2417 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2418 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2419 			left--;
2420 			break;
2421 		}
2422 	} while (--left);
2423 
2424 	if (unlikely(left)) {
2425 		ret -= left;
2426 		/* try again if it submitted nothing and can't allocate a req */
2427 		if (!ret && io_req_cache_empty(ctx))
2428 			ret = -EAGAIN;
2429 		current->io_uring->cached_refs += left;
2430 	}
2431 
2432 	io_submit_state_end(ctx);
2433 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2434 	io_commit_sqring(ctx);
2435 	return ret;
2436 }
2437 
2438 struct io_wait_queue {
2439 	struct wait_queue_entry wq;
2440 	struct io_ring_ctx *ctx;
2441 	unsigned cq_tail;
2442 	unsigned nr_timeouts;
2443 	ktime_t timeout;
2444 };
2445 
2446 static inline bool io_has_work(struct io_ring_ctx *ctx)
2447 {
2448 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2449 	       !llist_empty(&ctx->work_llist);
2450 }
2451 
2452 static inline bool io_should_wake(struct io_wait_queue *iowq)
2453 {
2454 	struct io_ring_ctx *ctx = iowq->ctx;
2455 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2456 
2457 	/*
2458 	 * Wake up if we have enough events, or if a timeout occurred since we
2459 	 * started waiting. For timeouts, we always want to return to userspace,
2460 	 * regardless of event count.
2461 	 */
2462 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2463 }
2464 
2465 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2466 			    int wake_flags, void *key)
2467 {
2468 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2469 
2470 	/*
2471 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2472 	 * the task, and the next invocation will do it.
2473 	 */
2474 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2475 		return autoremove_wake_function(curr, mode, wake_flags, key);
2476 	return -1;
2477 }
2478 
2479 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2480 {
2481 	if (!llist_empty(&ctx->work_llist)) {
2482 		__set_current_state(TASK_RUNNING);
2483 		if (io_run_local_work(ctx) > 0)
2484 			return 1;
2485 	}
2486 	if (io_run_task_work() > 0)
2487 		return 1;
2488 	if (task_sigpending(current))
2489 		return -EINTR;
2490 	return 0;
2491 }
2492 
2493 /* when returns >0, the caller should retry */
2494 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2495 					  struct io_wait_queue *iowq)
2496 {
2497 	if (unlikely(READ_ONCE(ctx->check_cq)))
2498 		return 1;
2499 	if (unlikely(!llist_empty(&ctx->work_llist)))
2500 		return 1;
2501 	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2502 		return 1;
2503 	if (unlikely(task_sigpending(current)))
2504 		return -EINTR;
2505 	if (unlikely(io_should_wake(iowq)))
2506 		return 0;
2507 	if (iowq->timeout == KTIME_MAX)
2508 		schedule();
2509 	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2510 		return -ETIME;
2511 	return 0;
2512 }
2513 
2514 /*
2515  * Wait until events become available, if we don't already have some. The
2516  * application must reap them itself, as they reside on the shared cq ring.
2517  */
2518 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2519 			  const sigset_t __user *sig, size_t sigsz,
2520 			  struct __kernel_timespec __user *uts)
2521 {
2522 	struct io_wait_queue iowq;
2523 	struct io_rings *rings = ctx->rings;
2524 	int ret;
2525 
2526 	if (!io_allowed_run_tw(ctx))
2527 		return -EEXIST;
2528 	if (!llist_empty(&ctx->work_llist))
2529 		io_run_local_work(ctx);
2530 	io_run_task_work();
2531 	io_cqring_overflow_flush(ctx);
2532 	/* if user messes with these they will just get an early return */
2533 	if (__io_cqring_events_user(ctx) >= min_events)
2534 		return 0;
2535 
2536 	if (sig) {
2537 #ifdef CONFIG_COMPAT
2538 		if (in_compat_syscall())
2539 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2540 						      sigsz);
2541 		else
2542 #endif
2543 			ret = set_user_sigmask(sig, sigsz);
2544 
2545 		if (ret)
2546 			return ret;
2547 	}
2548 
2549 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2550 	iowq.wq.private = current;
2551 	INIT_LIST_HEAD(&iowq.wq.entry);
2552 	iowq.ctx = ctx;
2553 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2554 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2555 	iowq.timeout = KTIME_MAX;
2556 
2557 	if (uts) {
2558 		struct timespec64 ts;
2559 
2560 		if (get_timespec64(&ts, uts))
2561 			return -EFAULT;
2562 		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2563 	}
2564 
2565 	trace_io_uring_cqring_wait(ctx, min_events);
2566 	do {
2567 		unsigned long check_cq;
2568 
2569 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2570 			int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2571 
2572 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2573 			set_current_state(TASK_INTERRUPTIBLE);
2574 		} else {
2575 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2576 							TASK_INTERRUPTIBLE);
2577 		}
2578 
2579 		ret = io_cqring_wait_schedule(ctx, &iowq);
2580 		__set_current_state(TASK_RUNNING);
2581 		atomic_set(&ctx->cq_wait_nr, 0);
2582 
2583 		if (ret < 0)
2584 			break;
2585 		/*
2586 		 * Run task_work after scheduling and before io_should_wake().
2587 		 * If we got woken because of task_work being processed, run it
2588 		 * now rather than let the caller do another wait loop.
2589 		 */
2590 		io_run_task_work();
2591 		if (!llist_empty(&ctx->work_llist))
2592 			io_run_local_work(ctx);
2593 
2594 		check_cq = READ_ONCE(ctx->check_cq);
2595 		if (unlikely(check_cq)) {
2596 			/* let the caller flush overflows, retry */
2597 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2598 				io_cqring_do_overflow_flush(ctx);
2599 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2600 				ret = -EBADR;
2601 				break;
2602 			}
2603 		}
2604 
2605 		if (io_should_wake(&iowq)) {
2606 			ret = 0;
2607 			break;
2608 		}
2609 		cond_resched();
2610 	} while (1);
2611 
2612 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2613 		finish_wait(&ctx->cq_wait, &iowq.wq);
2614 	restore_saved_sigmask_unless(ret == -EINTR);
2615 
2616 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2617 }
2618 
2619 static void io_mem_free(void *ptr)
2620 {
2621 	struct page *page;
2622 
2623 	if (!ptr)
2624 		return;
2625 
2626 	page = virt_to_head_page(ptr);
2627 	if (put_page_testzero(page))
2628 		free_compound_page(page);
2629 }
2630 
2631 static void io_pages_free(struct page ***pages, int npages)
2632 {
2633 	struct page **page_array;
2634 	int i;
2635 
2636 	if (!pages)
2637 		return;
2638 	page_array = *pages;
2639 	for (i = 0; i < npages; i++)
2640 		unpin_user_page(page_array[i]);
2641 	kvfree(page_array);
2642 	*pages = NULL;
2643 }
2644 
2645 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2646 			    unsigned long uaddr, size_t size)
2647 {
2648 	struct page **page_array;
2649 	unsigned int nr_pages;
2650 	int ret;
2651 
2652 	*npages = 0;
2653 
2654 	if (uaddr & (PAGE_SIZE - 1) || !size)
2655 		return ERR_PTR(-EINVAL);
2656 
2657 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2658 	if (nr_pages > USHRT_MAX)
2659 		return ERR_PTR(-EINVAL);
2660 	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2661 	if (!page_array)
2662 		return ERR_PTR(-ENOMEM);
2663 
2664 	ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2665 					page_array);
2666 	if (ret != nr_pages) {
2667 err:
2668 		io_pages_free(&page_array, ret > 0 ? ret : 0);
2669 		return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT);
2670 	}
2671 	/*
2672 	 * Should be a single page. If the ring is small enough that we can
2673 	 * use a normal page, that is fine. If we need multiple pages, then
2674 	 * userspace should use a huge page. That's the only way to guarantee
2675 	 * that we get contigious memory, outside of just being lucky or
2676 	 * (currently) having low memory fragmentation.
2677 	 */
2678 	if (page_array[0] != page_array[ret - 1])
2679 		goto err;
2680 	*pages = page_array;
2681 	*npages = nr_pages;
2682 	return page_to_virt(page_array[0]);
2683 }
2684 
2685 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2686 			  size_t size)
2687 {
2688 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2689 				size);
2690 }
2691 
2692 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2693 			 size_t size)
2694 {
2695 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2696 				size);
2697 }
2698 
2699 static void io_rings_free(struct io_ring_ctx *ctx)
2700 {
2701 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2702 		io_mem_free(ctx->rings);
2703 		io_mem_free(ctx->sq_sqes);
2704 		ctx->rings = NULL;
2705 		ctx->sq_sqes = NULL;
2706 	} else {
2707 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2708 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2709 	}
2710 }
2711 
2712 static void *io_mem_alloc(size_t size)
2713 {
2714 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2715 	void *ret;
2716 
2717 	ret = (void *) __get_free_pages(gfp, get_order(size));
2718 	if (ret)
2719 		return ret;
2720 	return ERR_PTR(-ENOMEM);
2721 }
2722 
2723 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2724 				unsigned int cq_entries, size_t *sq_offset)
2725 {
2726 	struct io_rings *rings;
2727 	size_t off, sq_array_size;
2728 
2729 	off = struct_size(rings, cqes, cq_entries);
2730 	if (off == SIZE_MAX)
2731 		return SIZE_MAX;
2732 	if (ctx->flags & IORING_SETUP_CQE32) {
2733 		if (check_shl_overflow(off, 1, &off))
2734 			return SIZE_MAX;
2735 	}
2736 
2737 #ifdef CONFIG_SMP
2738 	off = ALIGN(off, SMP_CACHE_BYTES);
2739 	if (off == 0)
2740 		return SIZE_MAX;
2741 #endif
2742 
2743 	if (sq_offset)
2744 		*sq_offset = off;
2745 
2746 	sq_array_size = array_size(sizeof(u32), sq_entries);
2747 	if (sq_array_size == SIZE_MAX)
2748 		return SIZE_MAX;
2749 
2750 	if (check_add_overflow(off, sq_array_size, &off))
2751 		return SIZE_MAX;
2752 
2753 	return off;
2754 }
2755 
2756 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2757 			       unsigned int eventfd_async)
2758 {
2759 	struct io_ev_fd *ev_fd;
2760 	__s32 __user *fds = arg;
2761 	int fd;
2762 
2763 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2764 					lockdep_is_held(&ctx->uring_lock));
2765 	if (ev_fd)
2766 		return -EBUSY;
2767 
2768 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2769 		return -EFAULT;
2770 
2771 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2772 	if (!ev_fd)
2773 		return -ENOMEM;
2774 
2775 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2776 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2777 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2778 		kfree(ev_fd);
2779 		return ret;
2780 	}
2781 
2782 	spin_lock(&ctx->completion_lock);
2783 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2784 	spin_unlock(&ctx->completion_lock);
2785 
2786 	ev_fd->eventfd_async = eventfd_async;
2787 	ctx->has_evfd = true;
2788 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2789 	atomic_set(&ev_fd->refs, 1);
2790 	atomic_set(&ev_fd->ops, 0);
2791 	return 0;
2792 }
2793 
2794 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2795 {
2796 	struct io_ev_fd *ev_fd;
2797 
2798 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2799 					lockdep_is_held(&ctx->uring_lock));
2800 	if (ev_fd) {
2801 		ctx->has_evfd = false;
2802 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2803 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2804 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2805 		return 0;
2806 	}
2807 
2808 	return -ENXIO;
2809 }
2810 
2811 static void io_req_caches_free(struct io_ring_ctx *ctx)
2812 {
2813 	struct io_kiocb *req;
2814 	int nr = 0;
2815 
2816 	mutex_lock(&ctx->uring_lock);
2817 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2818 
2819 	while (!io_req_cache_empty(ctx)) {
2820 		req = io_extract_req(ctx);
2821 		kmem_cache_free(req_cachep, req);
2822 		nr++;
2823 	}
2824 	if (nr)
2825 		percpu_ref_put_many(&ctx->refs, nr);
2826 	mutex_unlock(&ctx->uring_lock);
2827 }
2828 
2829 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2830 {
2831 	kfree(container_of(entry, struct io_rsrc_node, cache));
2832 }
2833 
2834 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2835 {
2836 	io_sq_thread_finish(ctx);
2837 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2838 	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2839 		return;
2840 
2841 	mutex_lock(&ctx->uring_lock);
2842 	if (ctx->buf_data)
2843 		__io_sqe_buffers_unregister(ctx);
2844 	if (ctx->file_data)
2845 		__io_sqe_files_unregister(ctx);
2846 	io_cqring_overflow_kill(ctx);
2847 	io_eventfd_unregister(ctx);
2848 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2849 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2850 	io_destroy_buffers(ctx);
2851 	mutex_unlock(&ctx->uring_lock);
2852 	if (ctx->sq_creds)
2853 		put_cred(ctx->sq_creds);
2854 	if (ctx->submitter_task)
2855 		put_task_struct(ctx->submitter_task);
2856 
2857 	/* there are no registered resources left, nobody uses it */
2858 	if (ctx->rsrc_node)
2859 		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2860 
2861 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2862 
2863 #if defined(CONFIG_UNIX)
2864 	if (ctx->ring_sock) {
2865 		ctx->ring_sock->file = NULL; /* so that iput() is called */
2866 		sock_release(ctx->ring_sock);
2867 	}
2868 #endif
2869 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2870 
2871 	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2872 	if (ctx->mm_account) {
2873 		mmdrop(ctx->mm_account);
2874 		ctx->mm_account = NULL;
2875 	}
2876 	io_rings_free(ctx);
2877 
2878 	percpu_ref_exit(&ctx->refs);
2879 	free_uid(ctx->user);
2880 	io_req_caches_free(ctx);
2881 	if (ctx->hash_map)
2882 		io_wq_put_hash(ctx->hash_map);
2883 	kfree(ctx->cancel_table.hbs);
2884 	kfree(ctx->cancel_table_locked.hbs);
2885 	kfree(ctx->dummy_ubuf);
2886 	kfree(ctx->io_bl);
2887 	xa_destroy(&ctx->io_bl_xa);
2888 	kfree(ctx);
2889 }
2890 
2891 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2892 {
2893 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2894 					       poll_wq_task_work);
2895 
2896 	mutex_lock(&ctx->uring_lock);
2897 	ctx->poll_activated = true;
2898 	mutex_unlock(&ctx->uring_lock);
2899 
2900 	/*
2901 	 * Wake ups for some events between start of polling and activation
2902 	 * might've been lost due to loose synchronisation.
2903 	 */
2904 	wake_up_all(&ctx->poll_wq);
2905 	percpu_ref_put(&ctx->refs);
2906 }
2907 
2908 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2909 {
2910 	spin_lock(&ctx->completion_lock);
2911 	/* already activated or in progress */
2912 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2913 		goto out;
2914 	if (WARN_ON_ONCE(!ctx->task_complete))
2915 		goto out;
2916 	if (!ctx->submitter_task)
2917 		goto out;
2918 	/*
2919 	 * with ->submitter_task only the submitter task completes requests, we
2920 	 * only need to sync with it, which is done by injecting a tw
2921 	 */
2922 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2923 	percpu_ref_get(&ctx->refs);
2924 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2925 		percpu_ref_put(&ctx->refs);
2926 out:
2927 	spin_unlock(&ctx->completion_lock);
2928 }
2929 
2930 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2931 {
2932 	struct io_ring_ctx *ctx = file->private_data;
2933 	__poll_t mask = 0;
2934 
2935 	if (unlikely(!ctx->poll_activated))
2936 		io_activate_pollwq(ctx);
2937 
2938 	poll_wait(file, &ctx->poll_wq, wait);
2939 	/*
2940 	 * synchronizes with barrier from wq_has_sleeper call in
2941 	 * io_commit_cqring
2942 	 */
2943 	smp_rmb();
2944 	if (!io_sqring_full(ctx))
2945 		mask |= EPOLLOUT | EPOLLWRNORM;
2946 
2947 	/*
2948 	 * Don't flush cqring overflow list here, just do a simple check.
2949 	 * Otherwise there could possible be ABBA deadlock:
2950 	 *      CPU0                    CPU1
2951 	 *      ----                    ----
2952 	 * lock(&ctx->uring_lock);
2953 	 *                              lock(&ep->mtx);
2954 	 *                              lock(&ctx->uring_lock);
2955 	 * lock(&ep->mtx);
2956 	 *
2957 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2958 	 * pushes them to do the flush.
2959 	 */
2960 
2961 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2962 		mask |= EPOLLIN | EPOLLRDNORM;
2963 
2964 	return mask;
2965 }
2966 
2967 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2968 {
2969 	const struct cred *creds;
2970 
2971 	creds = xa_erase(&ctx->personalities, id);
2972 	if (creds) {
2973 		put_cred(creds);
2974 		return 0;
2975 	}
2976 
2977 	return -EINVAL;
2978 }
2979 
2980 struct io_tctx_exit {
2981 	struct callback_head		task_work;
2982 	struct completion		completion;
2983 	struct io_ring_ctx		*ctx;
2984 };
2985 
2986 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2987 {
2988 	struct io_uring_task *tctx = current->io_uring;
2989 	struct io_tctx_exit *work;
2990 
2991 	work = container_of(cb, struct io_tctx_exit, task_work);
2992 	/*
2993 	 * When @in_cancel, we're in cancellation and it's racy to remove the
2994 	 * node. It'll be removed by the end of cancellation, just ignore it.
2995 	 * tctx can be NULL if the queueing of this task_work raced with
2996 	 * work cancelation off the exec path.
2997 	 */
2998 	if (tctx && !atomic_read(&tctx->in_cancel))
2999 		io_uring_del_tctx_node((unsigned long)work->ctx);
3000 	complete(&work->completion);
3001 }
3002 
3003 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3004 {
3005 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3006 
3007 	return req->ctx == data;
3008 }
3009 
3010 static __cold void io_ring_exit_work(struct work_struct *work)
3011 {
3012 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3013 	unsigned long timeout = jiffies + HZ * 60 * 5;
3014 	unsigned long interval = HZ / 20;
3015 	struct io_tctx_exit exit;
3016 	struct io_tctx_node *node;
3017 	int ret;
3018 
3019 	/*
3020 	 * If we're doing polled IO and end up having requests being
3021 	 * submitted async (out-of-line), then completions can come in while
3022 	 * we're waiting for refs to drop. We need to reap these manually,
3023 	 * as nobody else will be looking for them.
3024 	 */
3025 	do {
3026 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3027 			mutex_lock(&ctx->uring_lock);
3028 			io_cqring_overflow_kill(ctx);
3029 			mutex_unlock(&ctx->uring_lock);
3030 		}
3031 
3032 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3033 			io_move_task_work_from_local(ctx);
3034 
3035 		while (io_uring_try_cancel_requests(ctx, NULL, true))
3036 			cond_resched();
3037 
3038 		if (ctx->sq_data) {
3039 			struct io_sq_data *sqd = ctx->sq_data;
3040 			struct task_struct *tsk;
3041 
3042 			io_sq_thread_park(sqd);
3043 			tsk = sqd->thread;
3044 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3045 				io_wq_cancel_cb(tsk->io_uring->io_wq,
3046 						io_cancel_ctx_cb, ctx, true);
3047 			io_sq_thread_unpark(sqd);
3048 		}
3049 
3050 		io_req_caches_free(ctx);
3051 
3052 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3053 			/* there is little hope left, don't run it too often */
3054 			interval = HZ * 60;
3055 		}
3056 		/*
3057 		 * This is really an uninterruptible wait, as it has to be
3058 		 * complete. But it's also run from a kworker, which doesn't
3059 		 * take signals, so it's fine to make it interruptible. This
3060 		 * avoids scenarios where we knowingly can wait much longer
3061 		 * on completions, for example if someone does a SIGSTOP on
3062 		 * a task that needs to finish task_work to make this loop
3063 		 * complete. That's a synthetic situation that should not
3064 		 * cause a stuck task backtrace, and hence a potential panic
3065 		 * on stuck tasks if that is enabled.
3066 		 */
3067 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3068 
3069 	init_completion(&exit.completion);
3070 	init_task_work(&exit.task_work, io_tctx_exit_cb);
3071 	exit.ctx = ctx;
3072 	/*
3073 	 * Some may use context even when all refs and requests have been put,
3074 	 * and they are free to do so while still holding uring_lock or
3075 	 * completion_lock, see io_req_task_submit(). Apart from other work,
3076 	 * this lock/unlock section also waits them to finish.
3077 	 */
3078 	mutex_lock(&ctx->uring_lock);
3079 	while (!list_empty(&ctx->tctx_list)) {
3080 		WARN_ON_ONCE(time_after(jiffies, timeout));
3081 
3082 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3083 					ctx_node);
3084 		/* don't spin on a single task if cancellation failed */
3085 		list_rotate_left(&ctx->tctx_list);
3086 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3087 		if (WARN_ON_ONCE(ret))
3088 			continue;
3089 
3090 		mutex_unlock(&ctx->uring_lock);
3091 		/*
3092 		 * See comment above for
3093 		 * wait_for_completion_interruptible_timeout() on why this
3094 		 * wait is marked as interruptible.
3095 		 */
3096 		wait_for_completion_interruptible(&exit.completion);
3097 		mutex_lock(&ctx->uring_lock);
3098 	}
3099 	mutex_unlock(&ctx->uring_lock);
3100 	spin_lock(&ctx->completion_lock);
3101 	spin_unlock(&ctx->completion_lock);
3102 
3103 	/* pairs with RCU read section in io_req_local_work_add() */
3104 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3105 		synchronize_rcu();
3106 
3107 	io_ring_ctx_free(ctx);
3108 }
3109 
3110 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3111 {
3112 	unsigned long index;
3113 	struct creds *creds;
3114 
3115 	mutex_lock(&ctx->uring_lock);
3116 	percpu_ref_kill(&ctx->refs);
3117 	xa_for_each(&ctx->personalities, index, creds)
3118 		io_unregister_personality(ctx, index);
3119 	if (ctx->rings)
3120 		io_poll_remove_all(ctx, NULL, true);
3121 	mutex_unlock(&ctx->uring_lock);
3122 
3123 	/*
3124 	 * If we failed setting up the ctx, we might not have any rings
3125 	 * and therefore did not submit any requests
3126 	 */
3127 	if (ctx->rings)
3128 		io_kill_timeouts(ctx, NULL, true);
3129 
3130 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3131 	/*
3132 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3133 	 * if we're exiting a ton of rings at the same time. It just adds
3134 	 * noise and overhead, there's no discernable change in runtime
3135 	 * over using system_wq.
3136 	 */
3137 	queue_work(system_unbound_wq, &ctx->exit_work);
3138 }
3139 
3140 static int io_uring_release(struct inode *inode, struct file *file)
3141 {
3142 	struct io_ring_ctx *ctx = file->private_data;
3143 
3144 	file->private_data = NULL;
3145 	io_ring_ctx_wait_and_kill(ctx);
3146 	return 0;
3147 }
3148 
3149 struct io_task_cancel {
3150 	struct task_struct *task;
3151 	bool all;
3152 };
3153 
3154 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3155 {
3156 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3157 	struct io_task_cancel *cancel = data;
3158 
3159 	return io_match_task_safe(req, cancel->task, cancel->all);
3160 }
3161 
3162 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3163 					 struct task_struct *task,
3164 					 bool cancel_all)
3165 {
3166 	struct io_defer_entry *de;
3167 	LIST_HEAD(list);
3168 
3169 	spin_lock(&ctx->completion_lock);
3170 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3171 		if (io_match_task_safe(de->req, task, cancel_all)) {
3172 			list_cut_position(&list, &ctx->defer_list, &de->list);
3173 			break;
3174 		}
3175 	}
3176 	spin_unlock(&ctx->completion_lock);
3177 	if (list_empty(&list))
3178 		return false;
3179 
3180 	while (!list_empty(&list)) {
3181 		de = list_first_entry(&list, struct io_defer_entry, list);
3182 		list_del_init(&de->list);
3183 		io_req_task_queue_fail(de->req, -ECANCELED);
3184 		kfree(de);
3185 	}
3186 	return true;
3187 }
3188 
3189 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3190 {
3191 	struct io_tctx_node *node;
3192 	enum io_wq_cancel cret;
3193 	bool ret = false;
3194 
3195 	mutex_lock(&ctx->uring_lock);
3196 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3197 		struct io_uring_task *tctx = node->task->io_uring;
3198 
3199 		/*
3200 		 * io_wq will stay alive while we hold uring_lock, because it's
3201 		 * killed after ctx nodes, which requires to take the lock.
3202 		 */
3203 		if (!tctx || !tctx->io_wq)
3204 			continue;
3205 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3206 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3207 	}
3208 	mutex_unlock(&ctx->uring_lock);
3209 
3210 	return ret;
3211 }
3212 
3213 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3214 						struct task_struct *task,
3215 						bool cancel_all)
3216 {
3217 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3218 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3219 	enum io_wq_cancel cret;
3220 	bool ret = false;
3221 
3222 	/* set it so io_req_local_work_add() would wake us up */
3223 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3224 		atomic_set(&ctx->cq_wait_nr, 1);
3225 		smp_mb();
3226 	}
3227 
3228 	/* failed during ring init, it couldn't have issued any requests */
3229 	if (!ctx->rings)
3230 		return false;
3231 
3232 	if (!task) {
3233 		ret |= io_uring_try_cancel_iowq(ctx);
3234 	} else if (tctx && tctx->io_wq) {
3235 		/*
3236 		 * Cancels requests of all rings, not only @ctx, but
3237 		 * it's fine as the task is in exit/exec.
3238 		 */
3239 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3240 				       &cancel, true);
3241 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3242 	}
3243 
3244 	/* SQPOLL thread does its own polling */
3245 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3246 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3247 		while (!wq_list_empty(&ctx->iopoll_list)) {
3248 			io_iopoll_try_reap_events(ctx);
3249 			ret = true;
3250 			cond_resched();
3251 		}
3252 	}
3253 
3254 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3255 	    io_allowed_defer_tw_run(ctx))
3256 		ret |= io_run_local_work(ctx) > 0;
3257 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3258 	mutex_lock(&ctx->uring_lock);
3259 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3260 	mutex_unlock(&ctx->uring_lock);
3261 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3262 	if (task)
3263 		ret |= io_run_task_work() > 0;
3264 	return ret;
3265 }
3266 
3267 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3268 {
3269 	if (tracked)
3270 		return atomic_read(&tctx->inflight_tracked);
3271 	return percpu_counter_sum(&tctx->inflight);
3272 }
3273 
3274 /*
3275  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3276  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3277  */
3278 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3279 {
3280 	struct io_uring_task *tctx = current->io_uring;
3281 	struct io_ring_ctx *ctx;
3282 	struct io_tctx_node *node;
3283 	unsigned long index;
3284 	s64 inflight;
3285 	DEFINE_WAIT(wait);
3286 
3287 	WARN_ON_ONCE(sqd && sqd->thread != current);
3288 
3289 	if (!current->io_uring)
3290 		return;
3291 	if (tctx->io_wq)
3292 		io_wq_exit_start(tctx->io_wq);
3293 
3294 	atomic_inc(&tctx->in_cancel);
3295 	do {
3296 		bool loop = false;
3297 
3298 		io_uring_drop_tctx_refs(current);
3299 		/* read completions before cancelations */
3300 		inflight = tctx_inflight(tctx, !cancel_all);
3301 		if (!inflight)
3302 			break;
3303 
3304 		if (!sqd) {
3305 			xa_for_each(&tctx->xa, index, node) {
3306 				/* sqpoll task will cancel all its requests */
3307 				if (node->ctx->sq_data)
3308 					continue;
3309 				loop |= io_uring_try_cancel_requests(node->ctx,
3310 							current, cancel_all);
3311 			}
3312 		} else {
3313 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3314 				loop |= io_uring_try_cancel_requests(ctx,
3315 								     current,
3316 								     cancel_all);
3317 		}
3318 
3319 		if (loop) {
3320 			cond_resched();
3321 			continue;
3322 		}
3323 
3324 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3325 		io_run_task_work();
3326 		io_uring_drop_tctx_refs(current);
3327 		xa_for_each(&tctx->xa, index, node) {
3328 			if (!llist_empty(&node->ctx->work_llist)) {
3329 				WARN_ON_ONCE(node->ctx->submitter_task &&
3330 					     node->ctx->submitter_task != current);
3331 				goto end_wait;
3332 			}
3333 		}
3334 		/*
3335 		 * If we've seen completions, retry without waiting. This
3336 		 * avoids a race where a completion comes in before we did
3337 		 * prepare_to_wait().
3338 		 */
3339 		if (inflight == tctx_inflight(tctx, !cancel_all))
3340 			schedule();
3341 end_wait:
3342 		finish_wait(&tctx->wait, &wait);
3343 	} while (1);
3344 
3345 	io_uring_clean_tctx(tctx);
3346 	if (cancel_all) {
3347 		/*
3348 		 * We shouldn't run task_works after cancel, so just leave
3349 		 * ->in_cancel set for normal exit.
3350 		 */
3351 		atomic_dec(&tctx->in_cancel);
3352 		/* for exec all current's requests should be gone, kill tctx */
3353 		__io_uring_free(current);
3354 	}
3355 }
3356 
3357 void __io_uring_cancel(bool cancel_all)
3358 {
3359 	io_uring_cancel_generic(cancel_all, NULL);
3360 }
3361 
3362 static void *io_uring_validate_mmap_request(struct file *file,
3363 					    loff_t pgoff, size_t sz)
3364 {
3365 	struct io_ring_ctx *ctx = file->private_data;
3366 	loff_t offset = pgoff << PAGE_SHIFT;
3367 	struct page *page;
3368 	void *ptr;
3369 
3370 	/* Don't allow mmap if the ring was setup without it */
3371 	if (ctx->flags & IORING_SETUP_NO_MMAP)
3372 		return ERR_PTR(-EINVAL);
3373 
3374 	switch (offset & IORING_OFF_MMAP_MASK) {
3375 	case IORING_OFF_SQ_RING:
3376 	case IORING_OFF_CQ_RING:
3377 		ptr = ctx->rings;
3378 		break;
3379 	case IORING_OFF_SQES:
3380 		ptr = ctx->sq_sqes;
3381 		break;
3382 	case IORING_OFF_PBUF_RING: {
3383 		unsigned int bgid;
3384 
3385 		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3386 		mutex_lock(&ctx->uring_lock);
3387 		ptr = io_pbuf_get_address(ctx, bgid);
3388 		mutex_unlock(&ctx->uring_lock);
3389 		if (!ptr)
3390 			return ERR_PTR(-EINVAL);
3391 		break;
3392 		}
3393 	default:
3394 		return ERR_PTR(-EINVAL);
3395 	}
3396 
3397 	page = virt_to_head_page(ptr);
3398 	if (sz > page_size(page))
3399 		return ERR_PTR(-EINVAL);
3400 
3401 	return ptr;
3402 }
3403 
3404 #ifdef CONFIG_MMU
3405 
3406 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3407 {
3408 	size_t sz = vma->vm_end - vma->vm_start;
3409 	unsigned long pfn;
3410 	void *ptr;
3411 
3412 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3413 	if (IS_ERR(ptr))
3414 		return PTR_ERR(ptr);
3415 
3416 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3417 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3418 }
3419 
3420 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3421 			unsigned long addr, unsigned long len,
3422 			unsigned long pgoff, unsigned long flags)
3423 {
3424 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
3425 	struct vm_unmapped_area_info info;
3426 	void *ptr;
3427 
3428 	/*
3429 	 * Do not allow to map to user-provided address to avoid breaking the
3430 	 * aliasing rules. Userspace is not able to guess the offset address of
3431 	 * kernel kmalloc()ed memory area.
3432 	 */
3433 	if (addr)
3434 		return -EINVAL;
3435 
3436 	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3437 	if (IS_ERR(ptr))
3438 		return -ENOMEM;
3439 
3440 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
3441 	info.length = len;
3442 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
3443 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
3444 #ifdef SHM_COLOUR
3445 	info.align_mask = PAGE_MASK & (SHM_COLOUR - 1UL);
3446 #else
3447 	info.align_mask = PAGE_MASK & (SHMLBA - 1UL);
3448 #endif
3449 	info.align_offset = (unsigned long) ptr;
3450 
3451 	/*
3452 	 * A failed mmap() very likely causes application failure,
3453 	 * so fall back to the bottom-up function here. This scenario
3454 	 * can happen with large stack limits and large mmap()
3455 	 * allocations.
3456 	 */
3457 	addr = vm_unmapped_area(&info);
3458 	if (offset_in_page(addr)) {
3459 		info.flags = 0;
3460 		info.low_limit = TASK_UNMAPPED_BASE;
3461 		info.high_limit = mmap_end;
3462 		addr = vm_unmapped_area(&info);
3463 	}
3464 
3465 	return addr;
3466 }
3467 
3468 #else /* !CONFIG_MMU */
3469 
3470 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3471 {
3472 	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3473 }
3474 
3475 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3476 {
3477 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3478 }
3479 
3480 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3481 	unsigned long addr, unsigned long len,
3482 	unsigned long pgoff, unsigned long flags)
3483 {
3484 	void *ptr;
3485 
3486 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3487 	if (IS_ERR(ptr))
3488 		return PTR_ERR(ptr);
3489 
3490 	return (unsigned long) ptr;
3491 }
3492 
3493 #endif /* !CONFIG_MMU */
3494 
3495 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3496 {
3497 	if (flags & IORING_ENTER_EXT_ARG) {
3498 		struct io_uring_getevents_arg arg;
3499 
3500 		if (argsz != sizeof(arg))
3501 			return -EINVAL;
3502 		if (copy_from_user(&arg, argp, sizeof(arg)))
3503 			return -EFAULT;
3504 	}
3505 	return 0;
3506 }
3507 
3508 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3509 			  struct __kernel_timespec __user **ts,
3510 			  const sigset_t __user **sig)
3511 {
3512 	struct io_uring_getevents_arg arg;
3513 
3514 	/*
3515 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3516 	 * is just a pointer to the sigset_t.
3517 	 */
3518 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3519 		*sig = (const sigset_t __user *) argp;
3520 		*ts = NULL;
3521 		return 0;
3522 	}
3523 
3524 	/*
3525 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3526 	 * timespec and sigset_t pointers if good.
3527 	 */
3528 	if (*argsz != sizeof(arg))
3529 		return -EINVAL;
3530 	if (copy_from_user(&arg, argp, sizeof(arg)))
3531 		return -EFAULT;
3532 	if (arg.pad)
3533 		return -EINVAL;
3534 	*sig = u64_to_user_ptr(arg.sigmask);
3535 	*argsz = arg.sigmask_sz;
3536 	*ts = u64_to_user_ptr(arg.ts);
3537 	return 0;
3538 }
3539 
3540 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3541 		u32, min_complete, u32, flags, const void __user *, argp,
3542 		size_t, argsz)
3543 {
3544 	struct io_ring_ctx *ctx;
3545 	struct fd f;
3546 	long ret;
3547 
3548 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3549 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3550 			       IORING_ENTER_REGISTERED_RING)))
3551 		return -EINVAL;
3552 
3553 	/*
3554 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3555 	 * need only dereference our task private array to find it.
3556 	 */
3557 	if (flags & IORING_ENTER_REGISTERED_RING) {
3558 		struct io_uring_task *tctx = current->io_uring;
3559 
3560 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3561 			return -EINVAL;
3562 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3563 		f.file = tctx->registered_rings[fd];
3564 		f.flags = 0;
3565 		if (unlikely(!f.file))
3566 			return -EBADF;
3567 	} else {
3568 		f = fdget(fd);
3569 		if (unlikely(!f.file))
3570 			return -EBADF;
3571 		ret = -EOPNOTSUPP;
3572 		if (unlikely(!io_is_uring_fops(f.file)))
3573 			goto out;
3574 	}
3575 
3576 	ctx = f.file->private_data;
3577 	ret = -EBADFD;
3578 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3579 		goto out;
3580 
3581 	/*
3582 	 * For SQ polling, the thread will do all submissions and completions.
3583 	 * Just return the requested submit count, and wake the thread if
3584 	 * we were asked to.
3585 	 */
3586 	ret = 0;
3587 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3588 		io_cqring_overflow_flush(ctx);
3589 
3590 		if (unlikely(ctx->sq_data->thread == NULL)) {
3591 			ret = -EOWNERDEAD;
3592 			goto out;
3593 		}
3594 		if (flags & IORING_ENTER_SQ_WAKEUP)
3595 			wake_up(&ctx->sq_data->wait);
3596 		if (flags & IORING_ENTER_SQ_WAIT)
3597 			io_sqpoll_wait_sq(ctx);
3598 
3599 		ret = to_submit;
3600 	} else if (to_submit) {
3601 		ret = io_uring_add_tctx_node(ctx);
3602 		if (unlikely(ret))
3603 			goto out;
3604 
3605 		mutex_lock(&ctx->uring_lock);
3606 		ret = io_submit_sqes(ctx, to_submit);
3607 		if (ret != to_submit) {
3608 			mutex_unlock(&ctx->uring_lock);
3609 			goto out;
3610 		}
3611 		if (flags & IORING_ENTER_GETEVENTS) {
3612 			if (ctx->syscall_iopoll)
3613 				goto iopoll_locked;
3614 			/*
3615 			 * Ignore errors, we'll soon call io_cqring_wait() and
3616 			 * it should handle ownership problems if any.
3617 			 */
3618 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3619 				(void)io_run_local_work_locked(ctx);
3620 		}
3621 		mutex_unlock(&ctx->uring_lock);
3622 	}
3623 
3624 	if (flags & IORING_ENTER_GETEVENTS) {
3625 		int ret2;
3626 
3627 		if (ctx->syscall_iopoll) {
3628 			/*
3629 			 * We disallow the app entering submit/complete with
3630 			 * polling, but we still need to lock the ring to
3631 			 * prevent racing with polled issue that got punted to
3632 			 * a workqueue.
3633 			 */
3634 			mutex_lock(&ctx->uring_lock);
3635 iopoll_locked:
3636 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3637 			if (likely(!ret2)) {
3638 				min_complete = min(min_complete,
3639 						   ctx->cq_entries);
3640 				ret2 = io_iopoll_check(ctx, min_complete);
3641 			}
3642 			mutex_unlock(&ctx->uring_lock);
3643 		} else {
3644 			const sigset_t __user *sig;
3645 			struct __kernel_timespec __user *ts;
3646 
3647 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3648 			if (likely(!ret2)) {
3649 				min_complete = min(min_complete,
3650 						   ctx->cq_entries);
3651 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3652 						      argsz, ts);
3653 			}
3654 		}
3655 
3656 		if (!ret) {
3657 			ret = ret2;
3658 
3659 			/*
3660 			 * EBADR indicates that one or more CQE were dropped.
3661 			 * Once the user has been informed we can clear the bit
3662 			 * as they are obviously ok with those drops.
3663 			 */
3664 			if (unlikely(ret2 == -EBADR))
3665 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3666 					  &ctx->check_cq);
3667 		}
3668 	}
3669 out:
3670 	fdput(f);
3671 	return ret;
3672 }
3673 
3674 static const struct file_operations io_uring_fops = {
3675 	.release	= io_uring_release,
3676 	.mmap		= io_uring_mmap,
3677 #ifndef CONFIG_MMU
3678 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3679 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3680 #else
3681 	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3682 #endif
3683 	.poll		= io_uring_poll,
3684 #ifdef CONFIG_PROC_FS
3685 	.show_fdinfo	= io_uring_show_fdinfo,
3686 #endif
3687 };
3688 
3689 bool io_is_uring_fops(struct file *file)
3690 {
3691 	return file->f_op == &io_uring_fops;
3692 }
3693 
3694 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3695 					 struct io_uring_params *p)
3696 {
3697 	struct io_rings *rings;
3698 	size_t size, sq_array_offset;
3699 	void *ptr;
3700 
3701 	/* make sure these are sane, as we already accounted them */
3702 	ctx->sq_entries = p->sq_entries;
3703 	ctx->cq_entries = p->cq_entries;
3704 
3705 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3706 	if (size == SIZE_MAX)
3707 		return -EOVERFLOW;
3708 
3709 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3710 		rings = io_mem_alloc(size);
3711 	else
3712 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3713 
3714 	if (IS_ERR(rings))
3715 		return PTR_ERR(rings);
3716 
3717 	ctx->rings = rings;
3718 	ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3719 	rings->sq_ring_mask = p->sq_entries - 1;
3720 	rings->cq_ring_mask = p->cq_entries - 1;
3721 	rings->sq_ring_entries = p->sq_entries;
3722 	rings->cq_ring_entries = p->cq_entries;
3723 
3724 	if (p->flags & IORING_SETUP_SQE128)
3725 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3726 	else
3727 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3728 	if (size == SIZE_MAX) {
3729 		io_rings_free(ctx);
3730 		return -EOVERFLOW;
3731 	}
3732 
3733 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3734 		ptr = io_mem_alloc(size);
3735 	else
3736 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3737 
3738 	if (IS_ERR(ptr)) {
3739 		io_rings_free(ctx);
3740 		return PTR_ERR(ptr);
3741 	}
3742 
3743 	ctx->sq_sqes = ptr;
3744 	return 0;
3745 }
3746 
3747 static int io_uring_install_fd(struct file *file)
3748 {
3749 	int fd;
3750 
3751 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3752 	if (fd < 0)
3753 		return fd;
3754 	fd_install(fd, file);
3755 	return fd;
3756 }
3757 
3758 /*
3759  * Allocate an anonymous fd, this is what constitutes the application
3760  * visible backing of an io_uring instance. The application mmaps this
3761  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3762  * we have to tie this fd to a socket for file garbage collection purposes.
3763  */
3764 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3765 {
3766 	struct file *file;
3767 #if defined(CONFIG_UNIX)
3768 	int ret;
3769 
3770 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3771 				&ctx->ring_sock);
3772 	if (ret)
3773 		return ERR_PTR(ret);
3774 #endif
3775 
3776 	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3777 					 O_RDWR | O_CLOEXEC, NULL);
3778 #if defined(CONFIG_UNIX)
3779 	if (IS_ERR(file)) {
3780 		sock_release(ctx->ring_sock);
3781 		ctx->ring_sock = NULL;
3782 	} else {
3783 		ctx->ring_sock->file = file;
3784 	}
3785 #endif
3786 	return file;
3787 }
3788 
3789 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3790 				  struct io_uring_params __user *params)
3791 {
3792 	struct io_ring_ctx *ctx;
3793 	struct io_uring_task *tctx;
3794 	struct file *file;
3795 	int ret;
3796 
3797 	if (!entries)
3798 		return -EINVAL;
3799 	if (entries > IORING_MAX_ENTRIES) {
3800 		if (!(p->flags & IORING_SETUP_CLAMP))
3801 			return -EINVAL;
3802 		entries = IORING_MAX_ENTRIES;
3803 	}
3804 
3805 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3806 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3807 		return -EINVAL;
3808 
3809 	/*
3810 	 * Use twice as many entries for the CQ ring. It's possible for the
3811 	 * application to drive a higher depth than the size of the SQ ring,
3812 	 * since the sqes are only used at submission time. This allows for
3813 	 * some flexibility in overcommitting a bit. If the application has
3814 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3815 	 * of CQ ring entries manually.
3816 	 */
3817 	p->sq_entries = roundup_pow_of_two(entries);
3818 	if (p->flags & IORING_SETUP_CQSIZE) {
3819 		/*
3820 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3821 		 * to a power-of-two, if it isn't already. We do NOT impose
3822 		 * any cq vs sq ring sizing.
3823 		 */
3824 		if (!p->cq_entries)
3825 			return -EINVAL;
3826 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3827 			if (!(p->flags & IORING_SETUP_CLAMP))
3828 				return -EINVAL;
3829 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3830 		}
3831 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3832 		if (p->cq_entries < p->sq_entries)
3833 			return -EINVAL;
3834 	} else {
3835 		p->cq_entries = 2 * p->sq_entries;
3836 	}
3837 
3838 	ctx = io_ring_ctx_alloc(p);
3839 	if (!ctx)
3840 		return -ENOMEM;
3841 
3842 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3843 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3844 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3845 		ctx->task_complete = true;
3846 
3847 	/*
3848 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3849 	 * purposes, see io_activate_pollwq()
3850 	 */
3851 	if (!ctx->task_complete)
3852 		ctx->poll_activated = true;
3853 
3854 	/*
3855 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3856 	 * space applications don't need to do io completion events
3857 	 * polling again, they can rely on io_sq_thread to do polling
3858 	 * work, which can reduce cpu usage and uring_lock contention.
3859 	 */
3860 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3861 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3862 		ctx->syscall_iopoll = 1;
3863 
3864 	ctx->compat = in_compat_syscall();
3865 	if (!capable(CAP_IPC_LOCK))
3866 		ctx->user = get_uid(current_user());
3867 
3868 	/*
3869 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3870 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3871 	 */
3872 	ret = -EINVAL;
3873 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3874 		/* IPI related flags don't make sense with SQPOLL */
3875 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3876 				  IORING_SETUP_TASKRUN_FLAG |
3877 				  IORING_SETUP_DEFER_TASKRUN))
3878 			goto err;
3879 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3880 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3881 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3882 	} else {
3883 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3884 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3885 			goto err;
3886 		ctx->notify_method = TWA_SIGNAL;
3887 	}
3888 
3889 	/*
3890 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3891 	 * submission task. This implies that there is only one submitter, so enforce
3892 	 * that.
3893 	 */
3894 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3895 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3896 		goto err;
3897 	}
3898 
3899 	/*
3900 	 * This is just grabbed for accounting purposes. When a process exits,
3901 	 * the mm is exited and dropped before the files, hence we need to hang
3902 	 * on to this mm purely for the purposes of being able to unaccount
3903 	 * memory (locked/pinned vm). It's not used for anything else.
3904 	 */
3905 	mmgrab(current->mm);
3906 	ctx->mm_account = current->mm;
3907 
3908 	ret = io_allocate_scq_urings(ctx, p);
3909 	if (ret)
3910 		goto err;
3911 
3912 	ret = io_sq_offload_create(ctx, p);
3913 	if (ret)
3914 		goto err;
3915 
3916 	ret = io_rsrc_init(ctx);
3917 	if (ret)
3918 		goto err;
3919 
3920 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3921 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3922 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3923 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3924 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3925 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3926 	p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3927 	p->sq_off.resv1 = 0;
3928 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3929 		p->sq_off.user_addr = 0;
3930 
3931 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3932 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3933 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3934 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3935 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3936 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3937 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3938 	p->cq_off.resv1 = 0;
3939 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3940 		p->cq_off.user_addr = 0;
3941 
3942 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3943 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3944 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3945 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3946 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3947 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3948 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
3949 
3950 	if (copy_to_user(params, p, sizeof(*p))) {
3951 		ret = -EFAULT;
3952 		goto err;
3953 	}
3954 
3955 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3956 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3957 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3958 
3959 	file = io_uring_get_file(ctx);
3960 	if (IS_ERR(file)) {
3961 		ret = PTR_ERR(file);
3962 		goto err;
3963 	}
3964 
3965 	ret = __io_uring_add_tctx_node(ctx);
3966 	if (ret)
3967 		goto err_fput;
3968 	tctx = current->io_uring;
3969 
3970 	/*
3971 	 * Install ring fd as the very last thing, so we don't risk someone
3972 	 * having closed it before we finish setup
3973 	 */
3974 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3975 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3976 	else
3977 		ret = io_uring_install_fd(file);
3978 	if (ret < 0)
3979 		goto err_fput;
3980 
3981 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3982 	return ret;
3983 err:
3984 	io_ring_ctx_wait_and_kill(ctx);
3985 	return ret;
3986 err_fput:
3987 	fput(file);
3988 	return ret;
3989 }
3990 
3991 /*
3992  * Sets up an aio uring context, and returns the fd. Applications asks for a
3993  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3994  * params structure passed in.
3995  */
3996 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3997 {
3998 	struct io_uring_params p;
3999 	int i;
4000 
4001 	if (copy_from_user(&p, params, sizeof(p)))
4002 		return -EFAULT;
4003 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4004 		if (p.resv[i])
4005 			return -EINVAL;
4006 	}
4007 
4008 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4009 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4010 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4011 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4012 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4013 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4014 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4015 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY))
4016 		return -EINVAL;
4017 
4018 	return io_uring_create(entries, &p, params);
4019 }
4020 
4021 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4022 		struct io_uring_params __user *, params)
4023 {
4024 	return io_uring_setup(entries, params);
4025 }
4026 
4027 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4028 			   unsigned nr_args)
4029 {
4030 	struct io_uring_probe *p;
4031 	size_t size;
4032 	int i, ret;
4033 
4034 	size = struct_size(p, ops, nr_args);
4035 	if (size == SIZE_MAX)
4036 		return -EOVERFLOW;
4037 	p = kzalloc(size, GFP_KERNEL);
4038 	if (!p)
4039 		return -ENOMEM;
4040 
4041 	ret = -EFAULT;
4042 	if (copy_from_user(p, arg, size))
4043 		goto out;
4044 	ret = -EINVAL;
4045 	if (memchr_inv(p, 0, size))
4046 		goto out;
4047 
4048 	p->last_op = IORING_OP_LAST - 1;
4049 	if (nr_args > IORING_OP_LAST)
4050 		nr_args = IORING_OP_LAST;
4051 
4052 	for (i = 0; i < nr_args; i++) {
4053 		p->ops[i].op = i;
4054 		if (!io_issue_defs[i].not_supported)
4055 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
4056 	}
4057 	p->ops_len = i;
4058 
4059 	ret = 0;
4060 	if (copy_to_user(arg, p, size))
4061 		ret = -EFAULT;
4062 out:
4063 	kfree(p);
4064 	return ret;
4065 }
4066 
4067 static int io_register_personality(struct io_ring_ctx *ctx)
4068 {
4069 	const struct cred *creds;
4070 	u32 id;
4071 	int ret;
4072 
4073 	creds = get_current_cred();
4074 
4075 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4076 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4077 	if (ret < 0) {
4078 		put_cred(creds);
4079 		return ret;
4080 	}
4081 	return id;
4082 }
4083 
4084 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4085 					   void __user *arg, unsigned int nr_args)
4086 {
4087 	struct io_uring_restriction *res;
4088 	size_t size;
4089 	int i, ret;
4090 
4091 	/* Restrictions allowed only if rings started disabled */
4092 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4093 		return -EBADFD;
4094 
4095 	/* We allow only a single restrictions registration */
4096 	if (ctx->restrictions.registered)
4097 		return -EBUSY;
4098 
4099 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4100 		return -EINVAL;
4101 
4102 	size = array_size(nr_args, sizeof(*res));
4103 	if (size == SIZE_MAX)
4104 		return -EOVERFLOW;
4105 
4106 	res = memdup_user(arg, size);
4107 	if (IS_ERR(res))
4108 		return PTR_ERR(res);
4109 
4110 	ret = 0;
4111 
4112 	for (i = 0; i < nr_args; i++) {
4113 		switch (res[i].opcode) {
4114 		case IORING_RESTRICTION_REGISTER_OP:
4115 			if (res[i].register_op >= IORING_REGISTER_LAST) {
4116 				ret = -EINVAL;
4117 				goto out;
4118 			}
4119 
4120 			__set_bit(res[i].register_op,
4121 				  ctx->restrictions.register_op);
4122 			break;
4123 		case IORING_RESTRICTION_SQE_OP:
4124 			if (res[i].sqe_op >= IORING_OP_LAST) {
4125 				ret = -EINVAL;
4126 				goto out;
4127 			}
4128 
4129 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4130 			break;
4131 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4132 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4133 			break;
4134 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4135 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4136 			break;
4137 		default:
4138 			ret = -EINVAL;
4139 			goto out;
4140 		}
4141 	}
4142 
4143 out:
4144 	/* Reset all restrictions if an error happened */
4145 	if (ret != 0)
4146 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4147 	else
4148 		ctx->restrictions.registered = true;
4149 
4150 	kfree(res);
4151 	return ret;
4152 }
4153 
4154 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4155 {
4156 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4157 		return -EBADFD;
4158 
4159 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4160 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4161 		/*
4162 		 * Lazy activation attempts would fail if it was polled before
4163 		 * submitter_task is set.
4164 		 */
4165 		if (wq_has_sleeper(&ctx->poll_wq))
4166 			io_activate_pollwq(ctx);
4167 	}
4168 
4169 	if (ctx->restrictions.registered)
4170 		ctx->restricted = 1;
4171 
4172 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
4173 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4174 		wake_up(&ctx->sq_data->wait);
4175 	return 0;
4176 }
4177 
4178 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4179 				       void __user *arg, unsigned len)
4180 {
4181 	struct io_uring_task *tctx = current->io_uring;
4182 	cpumask_var_t new_mask;
4183 	int ret;
4184 
4185 	if (!tctx || !tctx->io_wq)
4186 		return -EINVAL;
4187 
4188 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4189 		return -ENOMEM;
4190 
4191 	cpumask_clear(new_mask);
4192 	if (len > cpumask_size())
4193 		len = cpumask_size();
4194 
4195 	if (in_compat_syscall()) {
4196 		ret = compat_get_bitmap(cpumask_bits(new_mask),
4197 					(const compat_ulong_t __user *)arg,
4198 					len * 8 /* CHAR_BIT */);
4199 	} else {
4200 		ret = copy_from_user(new_mask, arg, len);
4201 	}
4202 
4203 	if (ret) {
4204 		free_cpumask_var(new_mask);
4205 		return -EFAULT;
4206 	}
4207 
4208 	ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
4209 	free_cpumask_var(new_mask);
4210 	return ret;
4211 }
4212 
4213 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4214 {
4215 	struct io_uring_task *tctx = current->io_uring;
4216 
4217 	if (!tctx || !tctx->io_wq)
4218 		return -EINVAL;
4219 
4220 	return io_wq_cpu_affinity(tctx->io_wq, NULL);
4221 }
4222 
4223 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4224 					       void __user *arg)
4225 	__must_hold(&ctx->uring_lock)
4226 {
4227 	struct io_tctx_node *node;
4228 	struct io_uring_task *tctx = NULL;
4229 	struct io_sq_data *sqd = NULL;
4230 	__u32 new_count[2];
4231 	int i, ret;
4232 
4233 	if (copy_from_user(new_count, arg, sizeof(new_count)))
4234 		return -EFAULT;
4235 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4236 		if (new_count[i] > INT_MAX)
4237 			return -EINVAL;
4238 
4239 	if (ctx->flags & IORING_SETUP_SQPOLL) {
4240 		sqd = ctx->sq_data;
4241 		if (sqd) {
4242 			/*
4243 			 * Observe the correct sqd->lock -> ctx->uring_lock
4244 			 * ordering. Fine to drop uring_lock here, we hold
4245 			 * a ref to the ctx.
4246 			 */
4247 			refcount_inc(&sqd->refs);
4248 			mutex_unlock(&ctx->uring_lock);
4249 			mutex_lock(&sqd->lock);
4250 			mutex_lock(&ctx->uring_lock);
4251 			if (sqd->thread)
4252 				tctx = sqd->thread->io_uring;
4253 		}
4254 	} else {
4255 		tctx = current->io_uring;
4256 	}
4257 
4258 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4259 
4260 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4261 		if (new_count[i])
4262 			ctx->iowq_limits[i] = new_count[i];
4263 	ctx->iowq_limits_set = true;
4264 
4265 	if (tctx && tctx->io_wq) {
4266 		ret = io_wq_max_workers(tctx->io_wq, new_count);
4267 		if (ret)
4268 			goto err;
4269 	} else {
4270 		memset(new_count, 0, sizeof(new_count));
4271 	}
4272 
4273 	if (sqd) {
4274 		mutex_unlock(&sqd->lock);
4275 		io_put_sq_data(sqd);
4276 	}
4277 
4278 	if (copy_to_user(arg, new_count, sizeof(new_count)))
4279 		return -EFAULT;
4280 
4281 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
4282 	if (sqd)
4283 		return 0;
4284 
4285 	/* now propagate the restriction to all registered users */
4286 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4287 		struct io_uring_task *tctx = node->task->io_uring;
4288 
4289 		if (WARN_ON_ONCE(!tctx->io_wq))
4290 			continue;
4291 
4292 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
4293 			new_count[i] = ctx->iowq_limits[i];
4294 		/* ignore errors, it always returns zero anyway */
4295 		(void)io_wq_max_workers(tctx->io_wq, new_count);
4296 	}
4297 	return 0;
4298 err:
4299 	if (sqd) {
4300 		mutex_unlock(&sqd->lock);
4301 		io_put_sq_data(sqd);
4302 	}
4303 	return ret;
4304 }
4305 
4306 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4307 			       void __user *arg, unsigned nr_args)
4308 	__releases(ctx->uring_lock)
4309 	__acquires(ctx->uring_lock)
4310 {
4311 	int ret;
4312 
4313 	/*
4314 	 * We don't quiesce the refs for register anymore and so it can't be
4315 	 * dying as we're holding a file ref here.
4316 	 */
4317 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4318 		return -ENXIO;
4319 
4320 	if (ctx->submitter_task && ctx->submitter_task != current)
4321 		return -EEXIST;
4322 
4323 	if (ctx->restricted) {
4324 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4325 		if (!test_bit(opcode, ctx->restrictions.register_op))
4326 			return -EACCES;
4327 	}
4328 
4329 	switch (opcode) {
4330 	case IORING_REGISTER_BUFFERS:
4331 		ret = -EFAULT;
4332 		if (!arg)
4333 			break;
4334 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4335 		break;
4336 	case IORING_UNREGISTER_BUFFERS:
4337 		ret = -EINVAL;
4338 		if (arg || nr_args)
4339 			break;
4340 		ret = io_sqe_buffers_unregister(ctx);
4341 		break;
4342 	case IORING_REGISTER_FILES:
4343 		ret = -EFAULT;
4344 		if (!arg)
4345 			break;
4346 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4347 		break;
4348 	case IORING_UNREGISTER_FILES:
4349 		ret = -EINVAL;
4350 		if (arg || nr_args)
4351 			break;
4352 		ret = io_sqe_files_unregister(ctx);
4353 		break;
4354 	case IORING_REGISTER_FILES_UPDATE:
4355 		ret = io_register_files_update(ctx, arg, nr_args);
4356 		break;
4357 	case IORING_REGISTER_EVENTFD:
4358 		ret = -EINVAL;
4359 		if (nr_args != 1)
4360 			break;
4361 		ret = io_eventfd_register(ctx, arg, 0);
4362 		break;
4363 	case IORING_REGISTER_EVENTFD_ASYNC:
4364 		ret = -EINVAL;
4365 		if (nr_args != 1)
4366 			break;
4367 		ret = io_eventfd_register(ctx, arg, 1);
4368 		break;
4369 	case IORING_UNREGISTER_EVENTFD:
4370 		ret = -EINVAL;
4371 		if (arg || nr_args)
4372 			break;
4373 		ret = io_eventfd_unregister(ctx);
4374 		break;
4375 	case IORING_REGISTER_PROBE:
4376 		ret = -EINVAL;
4377 		if (!arg || nr_args > 256)
4378 			break;
4379 		ret = io_probe(ctx, arg, nr_args);
4380 		break;
4381 	case IORING_REGISTER_PERSONALITY:
4382 		ret = -EINVAL;
4383 		if (arg || nr_args)
4384 			break;
4385 		ret = io_register_personality(ctx);
4386 		break;
4387 	case IORING_UNREGISTER_PERSONALITY:
4388 		ret = -EINVAL;
4389 		if (arg)
4390 			break;
4391 		ret = io_unregister_personality(ctx, nr_args);
4392 		break;
4393 	case IORING_REGISTER_ENABLE_RINGS:
4394 		ret = -EINVAL;
4395 		if (arg || nr_args)
4396 			break;
4397 		ret = io_register_enable_rings(ctx);
4398 		break;
4399 	case IORING_REGISTER_RESTRICTIONS:
4400 		ret = io_register_restrictions(ctx, arg, nr_args);
4401 		break;
4402 	case IORING_REGISTER_FILES2:
4403 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4404 		break;
4405 	case IORING_REGISTER_FILES_UPDATE2:
4406 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4407 					      IORING_RSRC_FILE);
4408 		break;
4409 	case IORING_REGISTER_BUFFERS2:
4410 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4411 		break;
4412 	case IORING_REGISTER_BUFFERS_UPDATE:
4413 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4414 					      IORING_RSRC_BUFFER);
4415 		break;
4416 	case IORING_REGISTER_IOWQ_AFF:
4417 		ret = -EINVAL;
4418 		if (!arg || !nr_args)
4419 			break;
4420 		ret = io_register_iowq_aff(ctx, arg, nr_args);
4421 		break;
4422 	case IORING_UNREGISTER_IOWQ_AFF:
4423 		ret = -EINVAL;
4424 		if (arg || nr_args)
4425 			break;
4426 		ret = io_unregister_iowq_aff(ctx);
4427 		break;
4428 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4429 		ret = -EINVAL;
4430 		if (!arg || nr_args != 2)
4431 			break;
4432 		ret = io_register_iowq_max_workers(ctx, arg);
4433 		break;
4434 	case IORING_REGISTER_RING_FDS:
4435 		ret = io_ringfd_register(ctx, arg, nr_args);
4436 		break;
4437 	case IORING_UNREGISTER_RING_FDS:
4438 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4439 		break;
4440 	case IORING_REGISTER_PBUF_RING:
4441 		ret = -EINVAL;
4442 		if (!arg || nr_args != 1)
4443 			break;
4444 		ret = io_register_pbuf_ring(ctx, arg);
4445 		break;
4446 	case IORING_UNREGISTER_PBUF_RING:
4447 		ret = -EINVAL;
4448 		if (!arg || nr_args != 1)
4449 			break;
4450 		ret = io_unregister_pbuf_ring(ctx, arg);
4451 		break;
4452 	case IORING_REGISTER_SYNC_CANCEL:
4453 		ret = -EINVAL;
4454 		if (!arg || nr_args != 1)
4455 			break;
4456 		ret = io_sync_cancel(ctx, arg);
4457 		break;
4458 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4459 		ret = -EINVAL;
4460 		if (!arg || nr_args)
4461 			break;
4462 		ret = io_register_file_alloc_range(ctx, arg);
4463 		break;
4464 	default:
4465 		ret = -EINVAL;
4466 		break;
4467 	}
4468 
4469 	return ret;
4470 }
4471 
4472 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4473 		void __user *, arg, unsigned int, nr_args)
4474 {
4475 	struct io_ring_ctx *ctx;
4476 	long ret = -EBADF;
4477 	struct fd f;
4478 	bool use_registered_ring;
4479 
4480 	use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4481 	opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4482 
4483 	if (opcode >= IORING_REGISTER_LAST)
4484 		return -EINVAL;
4485 
4486 	if (use_registered_ring) {
4487 		/*
4488 		 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4489 		 * need only dereference our task private array to find it.
4490 		 */
4491 		struct io_uring_task *tctx = current->io_uring;
4492 
4493 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4494 			return -EINVAL;
4495 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4496 		f.file = tctx->registered_rings[fd];
4497 		f.flags = 0;
4498 		if (unlikely(!f.file))
4499 			return -EBADF;
4500 	} else {
4501 		f = fdget(fd);
4502 		if (unlikely(!f.file))
4503 			return -EBADF;
4504 		ret = -EOPNOTSUPP;
4505 		if (!io_is_uring_fops(f.file))
4506 			goto out_fput;
4507 	}
4508 
4509 	ctx = f.file->private_data;
4510 
4511 	mutex_lock(&ctx->uring_lock);
4512 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4513 	mutex_unlock(&ctx->uring_lock);
4514 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4515 out_fput:
4516 	fdput(f);
4517 	return ret;
4518 }
4519 
4520 static int __init io_uring_init(void)
4521 {
4522 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4523 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4524 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4525 } while (0)
4526 
4527 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4528 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4529 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4530 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4531 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4532 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4533 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4534 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4535 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4536 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4537 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4538 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4539 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4540 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4541 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4542 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4543 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4544 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4545 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4546 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4547 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4548 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4549 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4550 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4551 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4552 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4553 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4554 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4555 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4556 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4557 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4558 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4559 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4560 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4561 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4562 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4563 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4564 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4565 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4566 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4567 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4568 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4569 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4570 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4571 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4572 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4573 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4574 
4575 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4576 		     sizeof(struct io_uring_rsrc_update));
4577 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4578 		     sizeof(struct io_uring_rsrc_update2));
4579 
4580 	/* ->buf_index is u16 */
4581 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4582 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4583 		     offsetof(struct io_uring_buf_ring, tail));
4584 
4585 	/* should fit into one byte */
4586 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4587 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4588 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4589 
4590 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4591 
4592 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4593 
4594 	io_uring_optable_init();
4595 
4596 	req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4597 				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU);
4598 	return 0;
4599 };
4600 __initcall(io_uring_init);
4601