1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 #include <asm/shmparam.h> 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/io_uring.h> 79 80 #include <uapi/linux/io_uring.h> 81 82 #include "io-wq.h" 83 84 #include "io_uring.h" 85 #include "opdef.h" 86 #include "refs.h" 87 #include "tctx.h" 88 #include "sqpoll.h" 89 #include "fdinfo.h" 90 #include "kbuf.h" 91 #include "rsrc.h" 92 #include "cancel.h" 93 #include "net.h" 94 #include "notif.h" 95 96 #include "timeout.h" 97 #include "poll.h" 98 #include "rw.h" 99 #include "alloc_cache.h" 100 101 #define IORING_MAX_ENTRIES 32768 102 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 103 104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 105 IORING_REGISTER_LAST + IORING_OP_LAST) 106 107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 108 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 109 110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 112 113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 115 REQ_F_ASYNC_DATA) 116 117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 118 IO_REQ_CLEAN_FLAGS) 119 120 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 121 122 #define IO_COMPL_BATCH 32 123 #define IO_REQ_ALLOC_BATCH 8 124 125 enum { 126 IO_CHECK_CQ_OVERFLOW_BIT, 127 IO_CHECK_CQ_DROPPED_BIT, 128 }; 129 130 enum { 131 IO_EVENTFD_OP_SIGNAL_BIT, 132 IO_EVENTFD_OP_FREE_BIT, 133 }; 134 135 struct io_defer_entry { 136 struct list_head list; 137 struct io_kiocb *req; 138 u32 seq; 139 }; 140 141 /* requests with any of those set should undergo io_disarm_next() */ 142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 144 145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 146 struct task_struct *task, 147 bool cancel_all); 148 149 static void io_queue_sqe(struct io_kiocb *req); 150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx); 151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx); 152 static __cold void io_fallback_tw(struct io_uring_task *tctx); 153 154 struct kmem_cache *req_cachep; 155 156 struct sock *io_uring_get_socket(struct file *file) 157 { 158 #if defined(CONFIG_UNIX) 159 if (io_is_uring_fops(file)) { 160 struct io_ring_ctx *ctx = file->private_data; 161 162 return ctx->ring_sock->sk; 163 } 164 #endif 165 return NULL; 166 } 167 EXPORT_SYMBOL(io_uring_get_socket); 168 169 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 170 { 171 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 172 ctx->submit_state.cqes_count) 173 __io_submit_flush_completions(ctx); 174 } 175 176 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 177 { 178 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 179 } 180 181 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 182 { 183 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 184 } 185 186 static bool io_match_linked(struct io_kiocb *head) 187 { 188 struct io_kiocb *req; 189 190 io_for_each_link(req, head) { 191 if (req->flags & REQ_F_INFLIGHT) 192 return true; 193 } 194 return false; 195 } 196 197 /* 198 * As io_match_task() but protected against racing with linked timeouts. 199 * User must not hold timeout_lock. 200 */ 201 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 202 bool cancel_all) 203 { 204 bool matched; 205 206 if (task && head->task != task) 207 return false; 208 if (cancel_all) 209 return true; 210 211 if (head->flags & REQ_F_LINK_TIMEOUT) { 212 struct io_ring_ctx *ctx = head->ctx; 213 214 /* protect against races with linked timeouts */ 215 spin_lock_irq(&ctx->timeout_lock); 216 matched = io_match_linked(head); 217 spin_unlock_irq(&ctx->timeout_lock); 218 } else { 219 matched = io_match_linked(head); 220 } 221 return matched; 222 } 223 224 static inline void req_fail_link_node(struct io_kiocb *req, int res) 225 { 226 req_set_fail(req); 227 io_req_set_res(req, res, 0); 228 } 229 230 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 231 { 232 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 233 kasan_poison_object_data(req_cachep, req); 234 } 235 236 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 237 { 238 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 239 240 complete(&ctx->ref_comp); 241 } 242 243 static __cold void io_fallback_req_func(struct work_struct *work) 244 { 245 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 246 fallback_work.work); 247 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 248 struct io_kiocb *req, *tmp; 249 struct io_tw_state ts = { .locked = true, }; 250 251 mutex_lock(&ctx->uring_lock); 252 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 253 req->io_task_work.func(req, &ts); 254 if (WARN_ON_ONCE(!ts.locked)) 255 return; 256 io_submit_flush_completions(ctx); 257 mutex_unlock(&ctx->uring_lock); 258 } 259 260 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 261 { 262 unsigned hash_buckets = 1U << bits; 263 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 264 265 table->hbs = kmalloc(hash_size, GFP_KERNEL); 266 if (!table->hbs) 267 return -ENOMEM; 268 269 table->hash_bits = bits; 270 init_hash_table(table, hash_buckets); 271 return 0; 272 } 273 274 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 275 { 276 struct io_ring_ctx *ctx; 277 int hash_bits; 278 279 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 280 if (!ctx) 281 return NULL; 282 283 xa_init(&ctx->io_bl_xa); 284 285 /* 286 * Use 5 bits less than the max cq entries, that should give us around 287 * 32 entries per hash list if totally full and uniformly spread, but 288 * don't keep too many buckets to not overconsume memory. 289 */ 290 hash_bits = ilog2(p->cq_entries) - 5; 291 hash_bits = clamp(hash_bits, 1, 8); 292 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 293 goto err; 294 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 295 goto err; 296 297 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL); 298 if (!ctx->dummy_ubuf) 299 goto err; 300 /* set invalid range, so io_import_fixed() fails meeting it */ 301 ctx->dummy_ubuf->ubuf = -1UL; 302 303 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 304 0, GFP_KERNEL)) 305 goto err; 306 307 ctx->flags = p->flags; 308 init_waitqueue_head(&ctx->sqo_sq_wait); 309 INIT_LIST_HEAD(&ctx->sqd_list); 310 INIT_LIST_HEAD(&ctx->cq_overflow_list); 311 INIT_LIST_HEAD(&ctx->io_buffers_cache); 312 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 313 sizeof(struct io_rsrc_node)); 314 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, 315 sizeof(struct async_poll)); 316 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 317 sizeof(struct io_async_msghdr)); 318 init_completion(&ctx->ref_comp); 319 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 320 mutex_init(&ctx->uring_lock); 321 init_waitqueue_head(&ctx->cq_wait); 322 init_waitqueue_head(&ctx->poll_wq); 323 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 324 spin_lock_init(&ctx->completion_lock); 325 spin_lock_init(&ctx->timeout_lock); 326 INIT_WQ_LIST(&ctx->iopoll_list); 327 INIT_LIST_HEAD(&ctx->io_buffers_pages); 328 INIT_LIST_HEAD(&ctx->io_buffers_comp); 329 INIT_LIST_HEAD(&ctx->defer_list); 330 INIT_LIST_HEAD(&ctx->timeout_list); 331 INIT_LIST_HEAD(&ctx->ltimeout_list); 332 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 333 init_llist_head(&ctx->work_llist); 334 INIT_LIST_HEAD(&ctx->tctx_list); 335 ctx->submit_state.free_list.next = NULL; 336 INIT_WQ_LIST(&ctx->locked_free_list); 337 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 338 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 339 return ctx; 340 err: 341 kfree(ctx->dummy_ubuf); 342 kfree(ctx->cancel_table.hbs); 343 kfree(ctx->cancel_table_locked.hbs); 344 kfree(ctx->io_bl); 345 xa_destroy(&ctx->io_bl_xa); 346 kfree(ctx); 347 return NULL; 348 } 349 350 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 351 { 352 struct io_rings *r = ctx->rings; 353 354 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 355 ctx->cq_extra--; 356 } 357 358 static bool req_need_defer(struct io_kiocb *req, u32 seq) 359 { 360 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 361 struct io_ring_ctx *ctx = req->ctx; 362 363 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 364 } 365 366 return false; 367 } 368 369 static void io_clean_op(struct io_kiocb *req) 370 { 371 if (req->flags & REQ_F_BUFFER_SELECTED) { 372 spin_lock(&req->ctx->completion_lock); 373 io_put_kbuf_comp(req); 374 spin_unlock(&req->ctx->completion_lock); 375 } 376 377 if (req->flags & REQ_F_NEED_CLEANUP) { 378 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 379 380 if (def->cleanup) 381 def->cleanup(req); 382 } 383 if ((req->flags & REQ_F_POLLED) && req->apoll) { 384 kfree(req->apoll->double_poll); 385 kfree(req->apoll); 386 req->apoll = NULL; 387 } 388 if (req->flags & REQ_F_INFLIGHT) { 389 struct io_uring_task *tctx = req->task->io_uring; 390 391 atomic_dec(&tctx->inflight_tracked); 392 } 393 if (req->flags & REQ_F_CREDS) 394 put_cred(req->creds); 395 if (req->flags & REQ_F_ASYNC_DATA) { 396 kfree(req->async_data); 397 req->async_data = NULL; 398 } 399 req->flags &= ~IO_REQ_CLEAN_FLAGS; 400 } 401 402 static inline void io_req_track_inflight(struct io_kiocb *req) 403 { 404 if (!(req->flags & REQ_F_INFLIGHT)) { 405 req->flags |= REQ_F_INFLIGHT; 406 atomic_inc(&req->task->io_uring->inflight_tracked); 407 } 408 } 409 410 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 411 { 412 if (WARN_ON_ONCE(!req->link)) 413 return NULL; 414 415 req->flags &= ~REQ_F_ARM_LTIMEOUT; 416 req->flags |= REQ_F_LINK_TIMEOUT; 417 418 /* linked timeouts should have two refs once prep'ed */ 419 io_req_set_refcount(req); 420 __io_req_set_refcount(req->link, 2); 421 return req->link; 422 } 423 424 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 425 { 426 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 427 return NULL; 428 return __io_prep_linked_timeout(req); 429 } 430 431 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 432 { 433 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 434 } 435 436 static inline void io_arm_ltimeout(struct io_kiocb *req) 437 { 438 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 439 __io_arm_ltimeout(req); 440 } 441 442 static void io_prep_async_work(struct io_kiocb *req) 443 { 444 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 445 struct io_ring_ctx *ctx = req->ctx; 446 447 if (!(req->flags & REQ_F_CREDS)) { 448 req->flags |= REQ_F_CREDS; 449 req->creds = get_current_cred(); 450 } 451 452 req->work.list.next = NULL; 453 req->work.flags = 0; 454 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 455 if (req->flags & REQ_F_FORCE_ASYNC) 456 req->work.flags |= IO_WQ_WORK_CONCURRENT; 457 458 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 459 req->flags |= io_file_get_flags(req->file); 460 461 if (req->file && (req->flags & REQ_F_ISREG)) { 462 bool should_hash = def->hash_reg_file; 463 464 /* don't serialize this request if the fs doesn't need it */ 465 if (should_hash && (req->file->f_flags & O_DIRECT) && 466 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) 467 should_hash = false; 468 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 469 io_wq_hash_work(&req->work, file_inode(req->file)); 470 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 471 if (def->unbound_nonreg_file) 472 req->work.flags |= IO_WQ_WORK_UNBOUND; 473 } 474 } 475 476 static void io_prep_async_link(struct io_kiocb *req) 477 { 478 struct io_kiocb *cur; 479 480 if (req->flags & REQ_F_LINK_TIMEOUT) { 481 struct io_ring_ctx *ctx = req->ctx; 482 483 spin_lock_irq(&ctx->timeout_lock); 484 io_for_each_link(cur, req) 485 io_prep_async_work(cur); 486 spin_unlock_irq(&ctx->timeout_lock); 487 } else { 488 io_for_each_link(cur, req) 489 io_prep_async_work(cur); 490 } 491 } 492 493 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) 494 { 495 struct io_kiocb *link = io_prep_linked_timeout(req); 496 struct io_uring_task *tctx = req->task->io_uring; 497 498 BUG_ON(!tctx); 499 BUG_ON(!tctx->io_wq); 500 501 /* init ->work of the whole link before punting */ 502 io_prep_async_link(req); 503 504 /* 505 * Not expected to happen, but if we do have a bug where this _can_ 506 * happen, catch it here and ensure the request is marked as 507 * canceled. That will make io-wq go through the usual work cancel 508 * procedure rather than attempt to run this request (or create a new 509 * worker for it). 510 */ 511 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 512 req->work.flags |= IO_WQ_WORK_CANCEL; 513 514 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 515 io_wq_enqueue(tctx->io_wq, &req->work); 516 if (link) 517 io_queue_linked_timeout(link); 518 } 519 520 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 521 { 522 while (!list_empty(&ctx->defer_list)) { 523 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 524 struct io_defer_entry, list); 525 526 if (req_need_defer(de->req, de->seq)) 527 break; 528 list_del_init(&de->list); 529 io_req_task_queue(de->req); 530 kfree(de); 531 } 532 } 533 534 535 static void io_eventfd_ops(struct rcu_head *rcu) 536 { 537 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 538 int ops = atomic_xchg(&ev_fd->ops, 0); 539 540 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 541 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 542 543 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 544 * ordering in a race but if references are 0 we know we have to free 545 * it regardless. 546 */ 547 if (atomic_dec_and_test(&ev_fd->refs)) { 548 eventfd_ctx_put(ev_fd->cq_ev_fd); 549 kfree(ev_fd); 550 } 551 } 552 553 static void io_eventfd_signal(struct io_ring_ctx *ctx) 554 { 555 struct io_ev_fd *ev_fd = NULL; 556 557 rcu_read_lock(); 558 /* 559 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 560 * and eventfd_signal 561 */ 562 ev_fd = rcu_dereference(ctx->io_ev_fd); 563 564 /* 565 * Check again if ev_fd exists incase an io_eventfd_unregister call 566 * completed between the NULL check of ctx->io_ev_fd at the start of 567 * the function and rcu_read_lock. 568 */ 569 if (unlikely(!ev_fd)) 570 goto out; 571 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 572 goto out; 573 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 574 goto out; 575 576 if (likely(eventfd_signal_allowed())) { 577 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 578 } else { 579 atomic_inc(&ev_fd->refs); 580 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 581 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 582 else 583 atomic_dec(&ev_fd->refs); 584 } 585 586 out: 587 rcu_read_unlock(); 588 } 589 590 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 591 { 592 bool skip; 593 594 spin_lock(&ctx->completion_lock); 595 596 /* 597 * Eventfd should only get triggered when at least one event has been 598 * posted. Some applications rely on the eventfd notification count 599 * only changing IFF a new CQE has been added to the CQ ring. There's 600 * no depedency on 1:1 relationship between how many times this 601 * function is called (and hence the eventfd count) and number of CQEs 602 * posted to the CQ ring. 603 */ 604 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 605 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 606 spin_unlock(&ctx->completion_lock); 607 if (skip) 608 return; 609 610 io_eventfd_signal(ctx); 611 } 612 613 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 614 { 615 if (ctx->poll_activated) 616 io_poll_wq_wake(ctx); 617 if (ctx->off_timeout_used) 618 io_flush_timeouts(ctx); 619 if (ctx->drain_active) { 620 spin_lock(&ctx->completion_lock); 621 io_queue_deferred(ctx); 622 spin_unlock(&ctx->completion_lock); 623 } 624 if (ctx->has_evfd) 625 io_eventfd_flush_signal(ctx); 626 } 627 628 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 629 __acquires(ctx->completion_lock) 630 { 631 if (!ctx->task_complete) 632 spin_lock(&ctx->completion_lock); 633 } 634 635 static inline void __io_cq_unlock(struct io_ring_ctx *ctx) 636 { 637 if (!ctx->task_complete) 638 spin_unlock(&ctx->completion_lock); 639 } 640 641 static inline void io_cq_lock(struct io_ring_ctx *ctx) 642 __acquires(ctx->completion_lock) 643 { 644 spin_lock(&ctx->completion_lock); 645 } 646 647 /* keep it inlined for io_submit_flush_completions() */ 648 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 649 __releases(ctx->completion_lock) 650 { 651 io_commit_cqring(ctx); 652 __io_cq_unlock(ctx); 653 io_commit_cqring_flush(ctx); 654 io_cqring_wake(ctx); 655 } 656 657 static void __io_cq_unlock_post_flush(struct io_ring_ctx *ctx) 658 __releases(ctx->completion_lock) 659 { 660 io_commit_cqring(ctx); 661 662 if (ctx->task_complete) { 663 /* 664 * ->task_complete implies that only current might be waiting 665 * for CQEs, and obviously, we currently don't. No one is 666 * waiting, wakeups are futile, skip them. 667 */ 668 io_commit_cqring_flush(ctx); 669 } else { 670 __io_cq_unlock(ctx); 671 io_commit_cqring_flush(ctx); 672 io_cqring_wake(ctx); 673 } 674 } 675 676 void io_cq_unlock_post(struct io_ring_ctx *ctx) 677 __releases(ctx->completion_lock) 678 { 679 io_commit_cqring(ctx); 680 spin_unlock(&ctx->completion_lock); 681 io_commit_cqring_flush(ctx); 682 io_cqring_wake(ctx); 683 } 684 685 /* Returns true if there are no backlogged entries after the flush */ 686 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 687 { 688 struct io_overflow_cqe *ocqe; 689 LIST_HEAD(list); 690 691 spin_lock(&ctx->completion_lock); 692 list_splice_init(&ctx->cq_overflow_list, &list); 693 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 694 spin_unlock(&ctx->completion_lock); 695 696 while (!list_empty(&list)) { 697 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 698 list_del(&ocqe->list); 699 kfree(ocqe); 700 } 701 } 702 703 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 704 { 705 size_t cqe_size = sizeof(struct io_uring_cqe); 706 707 if (__io_cqring_events(ctx) == ctx->cq_entries) 708 return; 709 710 if (ctx->flags & IORING_SETUP_CQE32) 711 cqe_size <<= 1; 712 713 io_cq_lock(ctx); 714 while (!list_empty(&ctx->cq_overflow_list)) { 715 struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true); 716 struct io_overflow_cqe *ocqe; 717 718 if (!cqe) 719 break; 720 ocqe = list_first_entry(&ctx->cq_overflow_list, 721 struct io_overflow_cqe, list); 722 memcpy(cqe, &ocqe->cqe, cqe_size); 723 list_del(&ocqe->list); 724 kfree(ocqe); 725 } 726 727 if (list_empty(&ctx->cq_overflow_list)) { 728 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 729 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 730 } 731 io_cq_unlock_post(ctx); 732 } 733 734 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 735 { 736 /* iopoll syncs against uring_lock, not completion_lock */ 737 if (ctx->flags & IORING_SETUP_IOPOLL) 738 mutex_lock(&ctx->uring_lock); 739 __io_cqring_overflow_flush(ctx); 740 if (ctx->flags & IORING_SETUP_IOPOLL) 741 mutex_unlock(&ctx->uring_lock); 742 } 743 744 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 745 { 746 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 747 io_cqring_do_overflow_flush(ctx); 748 } 749 750 /* can be called by any task */ 751 static void io_put_task_remote(struct task_struct *task) 752 { 753 struct io_uring_task *tctx = task->io_uring; 754 755 percpu_counter_sub(&tctx->inflight, 1); 756 if (unlikely(atomic_read(&tctx->in_cancel))) 757 wake_up(&tctx->wait); 758 put_task_struct(task); 759 } 760 761 /* used by a task to put its own references */ 762 static void io_put_task_local(struct task_struct *task) 763 { 764 task->io_uring->cached_refs++; 765 } 766 767 /* must to be called somewhat shortly after putting a request */ 768 static inline void io_put_task(struct task_struct *task) 769 { 770 if (likely(task == current)) 771 io_put_task_local(task); 772 else 773 io_put_task_remote(task); 774 } 775 776 void io_task_refs_refill(struct io_uring_task *tctx) 777 { 778 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 779 780 percpu_counter_add(&tctx->inflight, refill); 781 refcount_add(refill, ¤t->usage); 782 tctx->cached_refs += refill; 783 } 784 785 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 786 { 787 struct io_uring_task *tctx = task->io_uring; 788 unsigned int refs = tctx->cached_refs; 789 790 if (refs) { 791 tctx->cached_refs = 0; 792 percpu_counter_sub(&tctx->inflight, refs); 793 put_task_struct_many(task, refs); 794 } 795 } 796 797 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 798 s32 res, u32 cflags, u64 extra1, u64 extra2) 799 { 800 struct io_overflow_cqe *ocqe; 801 size_t ocq_size = sizeof(struct io_overflow_cqe); 802 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 803 804 lockdep_assert_held(&ctx->completion_lock); 805 806 if (is_cqe32) 807 ocq_size += sizeof(struct io_uring_cqe); 808 809 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 810 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 811 if (!ocqe) { 812 /* 813 * If we're in ring overflow flush mode, or in task cancel mode, 814 * or cannot allocate an overflow entry, then we need to drop it 815 * on the floor. 816 */ 817 io_account_cq_overflow(ctx); 818 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 819 return false; 820 } 821 if (list_empty(&ctx->cq_overflow_list)) { 822 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 823 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 824 825 } 826 ocqe->cqe.user_data = user_data; 827 ocqe->cqe.res = res; 828 ocqe->cqe.flags = cflags; 829 if (is_cqe32) { 830 ocqe->cqe.big_cqe[0] = extra1; 831 ocqe->cqe.big_cqe[1] = extra2; 832 } 833 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 834 return true; 835 } 836 837 bool io_req_cqe_overflow(struct io_kiocb *req) 838 { 839 if (!(req->flags & REQ_F_CQE32_INIT)) { 840 req->extra1 = 0; 841 req->extra2 = 0; 842 } 843 return io_cqring_event_overflow(req->ctx, req->cqe.user_data, 844 req->cqe.res, req->cqe.flags, 845 req->extra1, req->extra2); 846 } 847 848 /* 849 * writes to the cq entry need to come after reading head; the 850 * control dependency is enough as we're using WRITE_ONCE to 851 * fill the cq entry 852 */ 853 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow) 854 { 855 struct io_rings *rings = ctx->rings; 856 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 857 unsigned int free, queued, len; 858 859 /* 860 * Posting into the CQ when there are pending overflowed CQEs may break 861 * ordering guarantees, which will affect links, F_MORE users and more. 862 * Force overflow the completion. 863 */ 864 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 865 return NULL; 866 867 /* userspace may cheat modifying the tail, be safe and do min */ 868 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 869 free = ctx->cq_entries - queued; 870 /* we need a contiguous range, limit based on the current array offset */ 871 len = min(free, ctx->cq_entries - off); 872 if (!len) 873 return NULL; 874 875 if (ctx->flags & IORING_SETUP_CQE32) { 876 off <<= 1; 877 len <<= 1; 878 } 879 880 ctx->cqe_cached = &rings->cqes[off]; 881 ctx->cqe_sentinel = ctx->cqe_cached + len; 882 883 ctx->cached_cq_tail++; 884 ctx->cqe_cached++; 885 if (ctx->flags & IORING_SETUP_CQE32) 886 ctx->cqe_cached++; 887 return &rings->cqes[off]; 888 } 889 890 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 891 u32 cflags) 892 { 893 struct io_uring_cqe *cqe; 894 895 ctx->cq_extra++; 896 897 /* 898 * If we can't get a cq entry, userspace overflowed the 899 * submission (by quite a lot). Increment the overflow count in 900 * the ring. 901 */ 902 cqe = io_get_cqe(ctx); 903 if (likely(cqe)) { 904 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 905 906 WRITE_ONCE(cqe->user_data, user_data); 907 WRITE_ONCE(cqe->res, res); 908 WRITE_ONCE(cqe->flags, cflags); 909 910 if (ctx->flags & IORING_SETUP_CQE32) { 911 WRITE_ONCE(cqe->big_cqe[0], 0); 912 WRITE_ONCE(cqe->big_cqe[1], 0); 913 } 914 return true; 915 } 916 return false; 917 } 918 919 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 920 __must_hold(&ctx->uring_lock) 921 { 922 struct io_submit_state *state = &ctx->submit_state; 923 unsigned int i; 924 925 lockdep_assert_held(&ctx->uring_lock); 926 for (i = 0; i < state->cqes_count; i++) { 927 struct io_uring_cqe *cqe = &state->cqes[i]; 928 929 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 930 if (ctx->task_complete) { 931 spin_lock(&ctx->completion_lock); 932 io_cqring_event_overflow(ctx, cqe->user_data, 933 cqe->res, cqe->flags, 0, 0); 934 spin_unlock(&ctx->completion_lock); 935 } else { 936 io_cqring_event_overflow(ctx, cqe->user_data, 937 cqe->res, cqe->flags, 0, 0); 938 } 939 } 940 } 941 state->cqes_count = 0; 942 } 943 944 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 945 bool allow_overflow) 946 { 947 bool filled; 948 949 io_cq_lock(ctx); 950 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 951 if (!filled && allow_overflow) 952 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 953 954 io_cq_unlock_post(ctx); 955 return filled; 956 } 957 958 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 959 { 960 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 961 } 962 963 bool io_aux_cqe(const struct io_kiocb *req, bool defer, s32 res, u32 cflags, 964 bool allow_overflow) 965 { 966 struct io_ring_ctx *ctx = req->ctx; 967 u64 user_data = req->cqe.user_data; 968 struct io_uring_cqe *cqe; 969 970 if (!defer) 971 return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow); 972 973 lockdep_assert_held(&ctx->uring_lock); 974 975 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->submit_state.cqes)) { 976 __io_cq_lock(ctx); 977 __io_flush_post_cqes(ctx); 978 /* no need to flush - flush is deferred */ 979 __io_cq_unlock_post(ctx); 980 } 981 982 /* For defered completions this is not as strict as it is otherwise, 983 * however it's main job is to prevent unbounded posted completions, 984 * and in that it works just as well. 985 */ 986 if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 987 return false; 988 989 cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++]; 990 cqe->user_data = user_data; 991 cqe->res = res; 992 cqe->flags = cflags; 993 return true; 994 } 995 996 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 997 { 998 struct io_ring_ctx *ctx = req->ctx; 999 struct io_rsrc_node *rsrc_node = NULL; 1000 1001 io_cq_lock(ctx); 1002 if (!(req->flags & REQ_F_CQE_SKIP)) 1003 io_fill_cqe_req(ctx, req); 1004 1005 /* 1006 * If we're the last reference to this request, add to our locked 1007 * free_list cache. 1008 */ 1009 if (req_ref_put_and_test(req)) { 1010 if (req->flags & IO_REQ_LINK_FLAGS) { 1011 if (req->flags & IO_DISARM_MASK) 1012 io_disarm_next(req); 1013 if (req->link) { 1014 io_req_task_queue(req->link); 1015 req->link = NULL; 1016 } 1017 } 1018 io_put_kbuf_comp(req); 1019 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1020 io_clean_op(req); 1021 if (!(req->flags & REQ_F_FIXED_FILE)) 1022 io_put_file(req->file); 1023 1024 rsrc_node = req->rsrc_node; 1025 /* 1026 * Selected buffer deallocation in io_clean_op() assumes that 1027 * we don't hold ->completion_lock. Clean them here to avoid 1028 * deadlocks. 1029 */ 1030 io_put_task_remote(req->task); 1031 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1032 ctx->locked_free_nr++; 1033 } 1034 io_cq_unlock_post(ctx); 1035 1036 if (rsrc_node) { 1037 io_ring_submit_lock(ctx, issue_flags); 1038 io_put_rsrc_node(ctx, rsrc_node); 1039 io_ring_submit_unlock(ctx, issue_flags); 1040 } 1041 } 1042 1043 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1044 { 1045 if (req->ctx->task_complete && req->ctx->submitter_task != current) { 1046 req->io_task_work.func = io_req_task_complete; 1047 io_req_task_work_add(req); 1048 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1049 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 1050 __io_req_complete_post(req, issue_flags); 1051 } else { 1052 struct io_ring_ctx *ctx = req->ctx; 1053 1054 mutex_lock(&ctx->uring_lock); 1055 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); 1056 mutex_unlock(&ctx->uring_lock); 1057 } 1058 } 1059 1060 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1061 __must_hold(&ctx->uring_lock) 1062 { 1063 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1064 1065 lockdep_assert_held(&req->ctx->uring_lock); 1066 1067 req_set_fail(req); 1068 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1069 if (def->fail) 1070 def->fail(req); 1071 io_req_complete_defer(req); 1072 } 1073 1074 /* 1075 * Don't initialise the fields below on every allocation, but do that in 1076 * advance and keep them valid across allocations. 1077 */ 1078 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1079 { 1080 req->ctx = ctx; 1081 req->link = NULL; 1082 req->async_data = NULL; 1083 /* not necessary, but safer to zero */ 1084 req->cqe.res = 0; 1085 } 1086 1087 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1088 struct io_submit_state *state) 1089 { 1090 spin_lock(&ctx->completion_lock); 1091 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1092 ctx->locked_free_nr = 0; 1093 spin_unlock(&ctx->completion_lock); 1094 } 1095 1096 /* 1097 * A request might get retired back into the request caches even before opcode 1098 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1099 * Because of that, io_alloc_req() should be called only under ->uring_lock 1100 * and with extra caution to not get a request that is still worked on. 1101 */ 1102 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1103 __must_hold(&ctx->uring_lock) 1104 { 1105 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1106 void *reqs[IO_REQ_ALLOC_BATCH]; 1107 int ret, i; 1108 1109 /* 1110 * If we have more than a batch's worth of requests in our IRQ side 1111 * locked cache, grab the lock and move them over to our submission 1112 * side cache. 1113 */ 1114 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1115 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1116 if (!io_req_cache_empty(ctx)) 1117 return true; 1118 } 1119 1120 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1121 1122 /* 1123 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1124 * retry single alloc to be on the safe side. 1125 */ 1126 if (unlikely(ret <= 0)) { 1127 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1128 if (!reqs[0]) 1129 return false; 1130 ret = 1; 1131 } 1132 1133 percpu_ref_get_many(&ctx->refs, ret); 1134 for (i = 0; i < ret; i++) { 1135 struct io_kiocb *req = reqs[i]; 1136 1137 io_preinit_req(req, ctx); 1138 io_req_add_to_cache(req, ctx); 1139 } 1140 return true; 1141 } 1142 1143 __cold void io_free_req(struct io_kiocb *req) 1144 { 1145 /* refs were already put, restore them for io_req_task_complete() */ 1146 req->flags &= ~REQ_F_REFCOUNT; 1147 /* we only want to free it, don't post CQEs */ 1148 req->flags |= REQ_F_CQE_SKIP; 1149 req->io_task_work.func = io_req_task_complete; 1150 io_req_task_work_add(req); 1151 } 1152 1153 static void __io_req_find_next_prep(struct io_kiocb *req) 1154 { 1155 struct io_ring_ctx *ctx = req->ctx; 1156 1157 spin_lock(&ctx->completion_lock); 1158 io_disarm_next(req); 1159 spin_unlock(&ctx->completion_lock); 1160 } 1161 1162 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1163 { 1164 struct io_kiocb *nxt; 1165 1166 /* 1167 * If LINK is set, we have dependent requests in this chain. If we 1168 * didn't fail this request, queue the first one up, moving any other 1169 * dependencies to the next request. In case of failure, fail the rest 1170 * of the chain. 1171 */ 1172 if (unlikely(req->flags & IO_DISARM_MASK)) 1173 __io_req_find_next_prep(req); 1174 nxt = req->link; 1175 req->link = NULL; 1176 return nxt; 1177 } 1178 1179 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1180 { 1181 if (!ctx) 1182 return; 1183 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1184 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1185 if (ts->locked) { 1186 io_submit_flush_completions(ctx); 1187 mutex_unlock(&ctx->uring_lock); 1188 ts->locked = false; 1189 } 1190 percpu_ref_put(&ctx->refs); 1191 } 1192 1193 static unsigned int handle_tw_list(struct llist_node *node, 1194 struct io_ring_ctx **ctx, 1195 struct io_tw_state *ts, 1196 struct llist_node *last) 1197 { 1198 unsigned int count = 0; 1199 1200 while (node && node != last) { 1201 struct llist_node *next = node->next; 1202 struct io_kiocb *req = container_of(node, struct io_kiocb, 1203 io_task_work.node); 1204 1205 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1206 1207 if (req->ctx != *ctx) { 1208 ctx_flush_and_put(*ctx, ts); 1209 *ctx = req->ctx; 1210 /* if not contended, grab and improve batching */ 1211 ts->locked = mutex_trylock(&(*ctx)->uring_lock); 1212 percpu_ref_get(&(*ctx)->refs); 1213 } 1214 INDIRECT_CALL_2(req->io_task_work.func, 1215 io_poll_task_func, io_req_rw_complete, 1216 req, ts); 1217 node = next; 1218 count++; 1219 if (unlikely(need_resched())) { 1220 ctx_flush_and_put(*ctx, ts); 1221 *ctx = NULL; 1222 cond_resched(); 1223 } 1224 } 1225 1226 return count; 1227 } 1228 1229 /** 1230 * io_llist_xchg - swap all entries in a lock-less list 1231 * @head: the head of lock-less list to delete all entries 1232 * @new: new entry as the head of the list 1233 * 1234 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1235 * The order of entries returned is from the newest to the oldest added one. 1236 */ 1237 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1238 struct llist_node *new) 1239 { 1240 return xchg(&head->first, new); 1241 } 1242 1243 /** 1244 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1245 * @head: the head of lock-less list to delete all entries 1246 * @old: expected old value of the first entry of the list 1247 * @new: new entry as the head of the list 1248 * 1249 * perform a cmpxchg on the first entry of the list. 1250 */ 1251 1252 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1253 struct llist_node *old, 1254 struct llist_node *new) 1255 { 1256 return cmpxchg(&head->first, old, new); 1257 } 1258 1259 void tctx_task_work(struct callback_head *cb) 1260 { 1261 struct io_tw_state ts = {}; 1262 struct io_ring_ctx *ctx = NULL; 1263 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1264 task_work); 1265 struct llist_node fake = {}; 1266 struct llist_node *node; 1267 unsigned int loops = 0; 1268 unsigned int count = 0; 1269 1270 if (unlikely(current->flags & PF_EXITING)) { 1271 io_fallback_tw(tctx); 1272 return; 1273 } 1274 1275 do { 1276 loops++; 1277 node = io_llist_xchg(&tctx->task_list, &fake); 1278 count += handle_tw_list(node, &ctx, &ts, &fake); 1279 1280 /* skip expensive cmpxchg if there are items in the list */ 1281 if (READ_ONCE(tctx->task_list.first) != &fake) 1282 continue; 1283 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) { 1284 io_submit_flush_completions(ctx); 1285 if (READ_ONCE(tctx->task_list.first) != &fake) 1286 continue; 1287 } 1288 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1289 } while (node != &fake); 1290 1291 ctx_flush_and_put(ctx, &ts); 1292 1293 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1294 if (unlikely(atomic_read(&tctx->in_cancel))) 1295 io_uring_drop_tctx_refs(current); 1296 1297 trace_io_uring_task_work_run(tctx, count, loops); 1298 } 1299 1300 static __cold void io_fallback_tw(struct io_uring_task *tctx) 1301 { 1302 struct llist_node *node = llist_del_all(&tctx->task_list); 1303 struct io_kiocb *req; 1304 1305 while (node) { 1306 req = container_of(node, struct io_kiocb, io_task_work.node); 1307 node = node->next; 1308 if (llist_add(&req->io_task_work.node, 1309 &req->ctx->fallback_llist)) 1310 schedule_delayed_work(&req->ctx->fallback_work, 1); 1311 } 1312 } 1313 1314 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1315 { 1316 struct io_ring_ctx *ctx = req->ctx; 1317 unsigned nr_wait, nr_tw, nr_tw_prev; 1318 struct llist_node *first; 1319 1320 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1321 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1322 1323 first = READ_ONCE(ctx->work_llist.first); 1324 do { 1325 nr_tw_prev = 0; 1326 if (first) { 1327 struct io_kiocb *first_req = container_of(first, 1328 struct io_kiocb, 1329 io_task_work.node); 1330 /* 1331 * Might be executed at any moment, rely on 1332 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1333 */ 1334 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1335 } 1336 nr_tw = nr_tw_prev + 1; 1337 /* Large enough to fail the nr_wait comparison below */ 1338 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1339 nr_tw = -1U; 1340 1341 req->nr_tw = nr_tw; 1342 req->io_task_work.node.next = first; 1343 } while (!try_cmpxchg(&ctx->work_llist.first, &first, 1344 &req->io_task_work.node)); 1345 1346 if (!first) { 1347 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1348 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1349 if (ctx->has_evfd) 1350 io_eventfd_signal(ctx); 1351 } 1352 1353 nr_wait = atomic_read(&ctx->cq_wait_nr); 1354 /* no one is waiting */ 1355 if (!nr_wait) 1356 return; 1357 /* either not enough or the previous add has already woken it up */ 1358 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait) 1359 return; 1360 /* pairs with set_current_state() in io_cqring_wait() */ 1361 smp_mb__after_atomic(); 1362 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1363 } 1364 1365 static void io_req_normal_work_add(struct io_kiocb *req) 1366 { 1367 struct io_uring_task *tctx = req->task->io_uring; 1368 struct io_ring_ctx *ctx = req->ctx; 1369 1370 /* task_work already pending, we're done */ 1371 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1372 return; 1373 1374 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1375 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1376 1377 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1378 return; 1379 1380 io_fallback_tw(tctx); 1381 } 1382 1383 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1384 { 1385 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1386 rcu_read_lock(); 1387 io_req_local_work_add(req, flags); 1388 rcu_read_unlock(); 1389 } else { 1390 io_req_normal_work_add(req); 1391 } 1392 } 1393 1394 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1395 { 1396 struct llist_node *node; 1397 1398 node = llist_del_all(&ctx->work_llist); 1399 while (node) { 1400 struct io_kiocb *req = container_of(node, struct io_kiocb, 1401 io_task_work.node); 1402 1403 node = node->next; 1404 io_req_normal_work_add(req); 1405 } 1406 } 1407 1408 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1409 { 1410 struct llist_node *node; 1411 unsigned int loops = 0; 1412 int ret = 0; 1413 1414 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1415 return -EEXIST; 1416 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1417 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1418 again: 1419 /* 1420 * llists are in reverse order, flip it back the right way before 1421 * running the pending items. 1422 */ 1423 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1424 while (node) { 1425 struct llist_node *next = node->next; 1426 struct io_kiocb *req = container_of(node, struct io_kiocb, 1427 io_task_work.node); 1428 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1429 INDIRECT_CALL_2(req->io_task_work.func, 1430 io_poll_task_func, io_req_rw_complete, 1431 req, ts); 1432 ret++; 1433 node = next; 1434 } 1435 loops++; 1436 1437 if (!llist_empty(&ctx->work_llist)) 1438 goto again; 1439 if (ts->locked) { 1440 io_submit_flush_completions(ctx); 1441 if (!llist_empty(&ctx->work_llist)) 1442 goto again; 1443 } 1444 trace_io_uring_local_work_run(ctx, ret, loops); 1445 return ret; 1446 } 1447 1448 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx) 1449 { 1450 struct io_tw_state ts = { .locked = true, }; 1451 int ret; 1452 1453 if (llist_empty(&ctx->work_llist)) 1454 return 0; 1455 1456 ret = __io_run_local_work(ctx, &ts); 1457 /* shouldn't happen! */ 1458 if (WARN_ON_ONCE(!ts.locked)) 1459 mutex_lock(&ctx->uring_lock); 1460 return ret; 1461 } 1462 1463 static int io_run_local_work(struct io_ring_ctx *ctx) 1464 { 1465 struct io_tw_state ts = {}; 1466 int ret; 1467 1468 ts.locked = mutex_trylock(&ctx->uring_lock); 1469 ret = __io_run_local_work(ctx, &ts); 1470 if (ts.locked) 1471 mutex_unlock(&ctx->uring_lock); 1472 1473 return ret; 1474 } 1475 1476 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1477 { 1478 io_tw_lock(req->ctx, ts); 1479 io_req_defer_failed(req, req->cqe.res); 1480 } 1481 1482 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1483 { 1484 io_tw_lock(req->ctx, ts); 1485 /* req->task == current here, checking PF_EXITING is safe */ 1486 if (unlikely(req->task->flags & PF_EXITING)) 1487 io_req_defer_failed(req, -EFAULT); 1488 else if (req->flags & REQ_F_FORCE_ASYNC) 1489 io_queue_iowq(req, ts); 1490 else 1491 io_queue_sqe(req); 1492 } 1493 1494 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1495 { 1496 io_req_set_res(req, ret, 0); 1497 req->io_task_work.func = io_req_task_cancel; 1498 io_req_task_work_add(req); 1499 } 1500 1501 void io_req_task_queue(struct io_kiocb *req) 1502 { 1503 req->io_task_work.func = io_req_task_submit; 1504 io_req_task_work_add(req); 1505 } 1506 1507 void io_queue_next(struct io_kiocb *req) 1508 { 1509 struct io_kiocb *nxt = io_req_find_next(req); 1510 1511 if (nxt) 1512 io_req_task_queue(nxt); 1513 } 1514 1515 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node) 1516 __must_hold(&ctx->uring_lock) 1517 { 1518 do { 1519 struct io_kiocb *req = container_of(node, struct io_kiocb, 1520 comp_list); 1521 1522 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1523 if (req->flags & REQ_F_REFCOUNT) { 1524 node = req->comp_list.next; 1525 if (!req_ref_put_and_test(req)) 1526 continue; 1527 } 1528 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1529 struct async_poll *apoll = req->apoll; 1530 1531 if (apoll->double_poll) 1532 kfree(apoll->double_poll); 1533 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1534 kfree(apoll); 1535 req->flags &= ~REQ_F_POLLED; 1536 } 1537 if (req->flags & IO_REQ_LINK_FLAGS) 1538 io_queue_next(req); 1539 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1540 io_clean_op(req); 1541 } 1542 if (!(req->flags & REQ_F_FIXED_FILE)) 1543 io_put_file(req->file); 1544 1545 io_req_put_rsrc_locked(req, ctx); 1546 1547 io_put_task(req->task); 1548 node = req->comp_list.next; 1549 io_req_add_to_cache(req, ctx); 1550 } while (node); 1551 } 1552 1553 static void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1554 __must_hold(&ctx->uring_lock) 1555 { 1556 struct io_submit_state *state = &ctx->submit_state; 1557 struct io_wq_work_node *node; 1558 1559 __io_cq_lock(ctx); 1560 /* must come first to preserve CQE ordering in failure cases */ 1561 if (state->cqes_count) 1562 __io_flush_post_cqes(ctx); 1563 __wq_list_for_each(node, &state->compl_reqs) { 1564 struct io_kiocb *req = container_of(node, struct io_kiocb, 1565 comp_list); 1566 1567 if (!(req->flags & REQ_F_CQE_SKIP) && 1568 unlikely(!__io_fill_cqe_req(ctx, req))) { 1569 if (ctx->task_complete) { 1570 spin_lock(&ctx->completion_lock); 1571 io_req_cqe_overflow(req); 1572 spin_unlock(&ctx->completion_lock); 1573 } else { 1574 io_req_cqe_overflow(req); 1575 } 1576 } 1577 } 1578 __io_cq_unlock_post_flush(ctx); 1579 1580 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1581 io_free_batch_list(ctx, state->compl_reqs.first); 1582 INIT_WQ_LIST(&state->compl_reqs); 1583 } 1584 } 1585 1586 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1587 { 1588 /* See comment at the top of this file */ 1589 smp_rmb(); 1590 return __io_cqring_events(ctx); 1591 } 1592 1593 /* 1594 * We can't just wait for polled events to come to us, we have to actively 1595 * find and complete them. 1596 */ 1597 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1598 { 1599 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1600 return; 1601 1602 mutex_lock(&ctx->uring_lock); 1603 while (!wq_list_empty(&ctx->iopoll_list)) { 1604 /* let it sleep and repeat later if can't complete a request */ 1605 if (io_do_iopoll(ctx, true) == 0) 1606 break; 1607 /* 1608 * Ensure we allow local-to-the-cpu processing to take place, 1609 * in this case we need to ensure that we reap all events. 1610 * Also let task_work, etc. to progress by releasing the mutex 1611 */ 1612 if (need_resched()) { 1613 mutex_unlock(&ctx->uring_lock); 1614 cond_resched(); 1615 mutex_lock(&ctx->uring_lock); 1616 } 1617 } 1618 mutex_unlock(&ctx->uring_lock); 1619 } 1620 1621 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1622 { 1623 unsigned int nr_events = 0; 1624 int ret = 0; 1625 unsigned long check_cq; 1626 1627 if (!io_allowed_run_tw(ctx)) 1628 return -EEXIST; 1629 1630 check_cq = READ_ONCE(ctx->check_cq); 1631 if (unlikely(check_cq)) { 1632 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1633 __io_cqring_overflow_flush(ctx); 1634 /* 1635 * Similarly do not spin if we have not informed the user of any 1636 * dropped CQE. 1637 */ 1638 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1639 return -EBADR; 1640 } 1641 /* 1642 * Don't enter poll loop if we already have events pending. 1643 * If we do, we can potentially be spinning for commands that 1644 * already triggered a CQE (eg in error). 1645 */ 1646 if (io_cqring_events(ctx)) 1647 return 0; 1648 1649 do { 1650 /* 1651 * If a submit got punted to a workqueue, we can have the 1652 * application entering polling for a command before it gets 1653 * issued. That app will hold the uring_lock for the duration 1654 * of the poll right here, so we need to take a breather every 1655 * now and then to ensure that the issue has a chance to add 1656 * the poll to the issued list. Otherwise we can spin here 1657 * forever, while the workqueue is stuck trying to acquire the 1658 * very same mutex. 1659 */ 1660 if (wq_list_empty(&ctx->iopoll_list) || 1661 io_task_work_pending(ctx)) { 1662 u32 tail = ctx->cached_cq_tail; 1663 1664 (void) io_run_local_work_locked(ctx); 1665 1666 if (task_work_pending(current) || 1667 wq_list_empty(&ctx->iopoll_list)) { 1668 mutex_unlock(&ctx->uring_lock); 1669 io_run_task_work(); 1670 mutex_lock(&ctx->uring_lock); 1671 } 1672 /* some requests don't go through iopoll_list */ 1673 if (tail != ctx->cached_cq_tail || 1674 wq_list_empty(&ctx->iopoll_list)) 1675 break; 1676 } 1677 ret = io_do_iopoll(ctx, !min); 1678 if (ret < 0) 1679 break; 1680 nr_events += ret; 1681 ret = 0; 1682 } while (nr_events < min && !need_resched()); 1683 1684 return ret; 1685 } 1686 1687 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1688 { 1689 if (ts->locked) 1690 io_req_complete_defer(req); 1691 else 1692 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1693 } 1694 1695 /* 1696 * After the iocb has been issued, it's safe to be found on the poll list. 1697 * Adding the kiocb to the list AFTER submission ensures that we don't 1698 * find it from a io_do_iopoll() thread before the issuer is done 1699 * accessing the kiocb cookie. 1700 */ 1701 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1702 { 1703 struct io_ring_ctx *ctx = req->ctx; 1704 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1705 1706 /* workqueue context doesn't hold uring_lock, grab it now */ 1707 if (unlikely(needs_lock)) 1708 mutex_lock(&ctx->uring_lock); 1709 1710 /* 1711 * Track whether we have multiple files in our lists. This will impact 1712 * how we do polling eventually, not spinning if we're on potentially 1713 * different devices. 1714 */ 1715 if (wq_list_empty(&ctx->iopoll_list)) { 1716 ctx->poll_multi_queue = false; 1717 } else if (!ctx->poll_multi_queue) { 1718 struct io_kiocb *list_req; 1719 1720 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1721 comp_list); 1722 if (list_req->file != req->file) 1723 ctx->poll_multi_queue = true; 1724 } 1725 1726 /* 1727 * For fast devices, IO may have already completed. If it has, add 1728 * it to the front so we find it first. 1729 */ 1730 if (READ_ONCE(req->iopoll_completed)) 1731 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1732 else 1733 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1734 1735 if (unlikely(needs_lock)) { 1736 /* 1737 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1738 * in sq thread task context or in io worker task context. If 1739 * current task context is sq thread, we don't need to check 1740 * whether should wake up sq thread. 1741 */ 1742 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1743 wq_has_sleeper(&ctx->sq_data->wait)) 1744 wake_up(&ctx->sq_data->wait); 1745 1746 mutex_unlock(&ctx->uring_lock); 1747 } 1748 } 1749 1750 unsigned int io_file_get_flags(struct file *file) 1751 { 1752 unsigned int res = 0; 1753 1754 if (S_ISREG(file_inode(file)->i_mode)) 1755 res |= REQ_F_ISREG; 1756 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1757 res |= REQ_F_SUPPORT_NOWAIT; 1758 return res; 1759 } 1760 1761 bool io_alloc_async_data(struct io_kiocb *req) 1762 { 1763 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1764 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1765 if (req->async_data) { 1766 req->flags |= REQ_F_ASYNC_DATA; 1767 return false; 1768 } 1769 return true; 1770 } 1771 1772 int io_req_prep_async(struct io_kiocb *req) 1773 { 1774 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1775 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1776 1777 /* assign early for deferred execution for non-fixed file */ 1778 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1779 req->file = io_file_get_normal(req, req->cqe.fd); 1780 if (!cdef->prep_async) 1781 return 0; 1782 if (WARN_ON_ONCE(req_has_async_data(req))) 1783 return -EFAULT; 1784 if (!def->manual_alloc) { 1785 if (io_alloc_async_data(req)) 1786 return -EAGAIN; 1787 } 1788 return cdef->prep_async(req); 1789 } 1790 1791 static u32 io_get_sequence(struct io_kiocb *req) 1792 { 1793 u32 seq = req->ctx->cached_sq_head; 1794 struct io_kiocb *cur; 1795 1796 /* need original cached_sq_head, but it was increased for each req */ 1797 io_for_each_link(cur, req) 1798 seq--; 1799 return seq; 1800 } 1801 1802 static __cold void io_drain_req(struct io_kiocb *req) 1803 __must_hold(&ctx->uring_lock) 1804 { 1805 struct io_ring_ctx *ctx = req->ctx; 1806 struct io_defer_entry *de; 1807 int ret; 1808 u32 seq = io_get_sequence(req); 1809 1810 /* Still need defer if there is pending req in defer list. */ 1811 spin_lock(&ctx->completion_lock); 1812 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1813 spin_unlock(&ctx->completion_lock); 1814 queue: 1815 ctx->drain_active = false; 1816 io_req_task_queue(req); 1817 return; 1818 } 1819 spin_unlock(&ctx->completion_lock); 1820 1821 io_prep_async_link(req); 1822 de = kmalloc(sizeof(*de), GFP_KERNEL); 1823 if (!de) { 1824 ret = -ENOMEM; 1825 io_req_defer_failed(req, ret); 1826 return; 1827 } 1828 1829 spin_lock(&ctx->completion_lock); 1830 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1831 spin_unlock(&ctx->completion_lock); 1832 kfree(de); 1833 goto queue; 1834 } 1835 1836 trace_io_uring_defer(req); 1837 de->req = req; 1838 de->seq = seq; 1839 list_add_tail(&de->list, &ctx->defer_list); 1840 spin_unlock(&ctx->completion_lock); 1841 } 1842 1843 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1844 unsigned int issue_flags) 1845 { 1846 if (req->file || !def->needs_file) 1847 return true; 1848 1849 if (req->flags & REQ_F_FIXED_FILE) 1850 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1851 else 1852 req->file = io_file_get_normal(req, req->cqe.fd); 1853 1854 return !!req->file; 1855 } 1856 1857 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1858 { 1859 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1860 const struct cred *creds = NULL; 1861 int ret; 1862 1863 if (unlikely(!io_assign_file(req, def, issue_flags))) 1864 return -EBADF; 1865 1866 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1867 creds = override_creds(req->creds); 1868 1869 if (!def->audit_skip) 1870 audit_uring_entry(req->opcode); 1871 1872 ret = def->issue(req, issue_flags); 1873 1874 if (!def->audit_skip) 1875 audit_uring_exit(!ret, ret); 1876 1877 if (creds) 1878 revert_creds(creds); 1879 1880 if (ret == IOU_OK) { 1881 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1882 io_req_complete_defer(req); 1883 else 1884 io_req_complete_post(req, issue_flags); 1885 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1886 return ret; 1887 1888 /* If the op doesn't have a file, we're not polling for it */ 1889 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1890 io_iopoll_req_issued(req, issue_flags); 1891 1892 return 0; 1893 } 1894 1895 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1896 { 1897 io_tw_lock(req->ctx, ts); 1898 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1899 IO_URING_F_COMPLETE_DEFER); 1900 } 1901 1902 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1903 { 1904 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1905 struct io_kiocb *nxt = NULL; 1906 1907 if (req_ref_put_and_test(req)) { 1908 if (req->flags & IO_REQ_LINK_FLAGS) 1909 nxt = io_req_find_next(req); 1910 io_free_req(req); 1911 } 1912 return nxt ? &nxt->work : NULL; 1913 } 1914 1915 void io_wq_submit_work(struct io_wq_work *work) 1916 { 1917 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1918 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1919 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1920 bool needs_poll = false; 1921 int ret = 0, err = -ECANCELED; 1922 1923 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1924 if (!(req->flags & REQ_F_REFCOUNT)) 1925 __io_req_set_refcount(req, 2); 1926 else 1927 req_ref_get(req); 1928 1929 io_arm_ltimeout(req); 1930 1931 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1932 if (work->flags & IO_WQ_WORK_CANCEL) { 1933 fail: 1934 io_req_task_queue_fail(req, err); 1935 return; 1936 } 1937 if (!io_assign_file(req, def, issue_flags)) { 1938 err = -EBADF; 1939 work->flags |= IO_WQ_WORK_CANCEL; 1940 goto fail; 1941 } 1942 1943 if (req->flags & REQ_F_FORCE_ASYNC) { 1944 bool opcode_poll = def->pollin || def->pollout; 1945 1946 if (opcode_poll && file_can_poll(req->file)) { 1947 needs_poll = true; 1948 issue_flags |= IO_URING_F_NONBLOCK; 1949 } 1950 } 1951 1952 do { 1953 ret = io_issue_sqe(req, issue_flags); 1954 if (ret != -EAGAIN) 1955 break; 1956 /* 1957 * We can get EAGAIN for iopolled IO even though we're 1958 * forcing a sync submission from here, since we can't 1959 * wait for request slots on the block side. 1960 */ 1961 if (!needs_poll) { 1962 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1963 break; 1964 cond_resched(); 1965 continue; 1966 } 1967 1968 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1969 return; 1970 /* aborted or ready, in either case retry blocking */ 1971 needs_poll = false; 1972 issue_flags &= ~IO_URING_F_NONBLOCK; 1973 } while (1); 1974 1975 /* avoid locking problems by failing it from a clean context */ 1976 if (ret < 0) 1977 io_req_task_queue_fail(req, ret); 1978 } 1979 1980 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1981 unsigned int issue_flags) 1982 { 1983 struct io_ring_ctx *ctx = req->ctx; 1984 struct io_fixed_file *slot; 1985 struct file *file = NULL; 1986 1987 io_ring_submit_lock(ctx, issue_flags); 1988 1989 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 1990 goto out; 1991 fd = array_index_nospec(fd, ctx->nr_user_files); 1992 slot = io_fixed_file_slot(&ctx->file_table, fd); 1993 file = io_slot_file(slot); 1994 req->flags |= io_slot_flags(slot); 1995 io_req_set_rsrc_node(req, ctx, 0); 1996 out: 1997 io_ring_submit_unlock(ctx, issue_flags); 1998 return file; 1999 } 2000 2001 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 2002 { 2003 struct file *file = fget(fd); 2004 2005 trace_io_uring_file_get(req, fd); 2006 2007 /* we don't allow fixed io_uring files */ 2008 if (file && io_is_uring_fops(file)) 2009 io_req_track_inflight(req); 2010 return file; 2011 } 2012 2013 static void io_queue_async(struct io_kiocb *req, int ret) 2014 __must_hold(&req->ctx->uring_lock) 2015 { 2016 struct io_kiocb *linked_timeout; 2017 2018 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2019 io_req_defer_failed(req, ret); 2020 return; 2021 } 2022 2023 linked_timeout = io_prep_linked_timeout(req); 2024 2025 switch (io_arm_poll_handler(req, 0)) { 2026 case IO_APOLL_READY: 2027 io_kbuf_recycle(req, 0); 2028 io_req_task_queue(req); 2029 break; 2030 case IO_APOLL_ABORTED: 2031 io_kbuf_recycle(req, 0); 2032 io_queue_iowq(req, NULL); 2033 break; 2034 case IO_APOLL_OK: 2035 break; 2036 } 2037 2038 if (linked_timeout) 2039 io_queue_linked_timeout(linked_timeout); 2040 } 2041 2042 static inline void io_queue_sqe(struct io_kiocb *req) 2043 __must_hold(&req->ctx->uring_lock) 2044 { 2045 int ret; 2046 2047 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2048 2049 /* 2050 * We async punt it if the file wasn't marked NOWAIT, or if the file 2051 * doesn't support non-blocking read/write attempts 2052 */ 2053 if (likely(!ret)) 2054 io_arm_ltimeout(req); 2055 else 2056 io_queue_async(req, ret); 2057 } 2058 2059 static void io_queue_sqe_fallback(struct io_kiocb *req) 2060 __must_hold(&req->ctx->uring_lock) 2061 { 2062 if (unlikely(req->flags & REQ_F_FAIL)) { 2063 /* 2064 * We don't submit, fail them all, for that replace hardlinks 2065 * with normal links. Extra REQ_F_LINK is tolerated. 2066 */ 2067 req->flags &= ~REQ_F_HARDLINK; 2068 req->flags |= REQ_F_LINK; 2069 io_req_defer_failed(req, req->cqe.res); 2070 } else { 2071 int ret = io_req_prep_async(req); 2072 2073 if (unlikely(ret)) { 2074 io_req_defer_failed(req, ret); 2075 return; 2076 } 2077 2078 if (unlikely(req->ctx->drain_active)) 2079 io_drain_req(req); 2080 else 2081 io_queue_iowq(req, NULL); 2082 } 2083 } 2084 2085 /* 2086 * Check SQE restrictions (opcode and flags). 2087 * 2088 * Returns 'true' if SQE is allowed, 'false' otherwise. 2089 */ 2090 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2091 struct io_kiocb *req, 2092 unsigned int sqe_flags) 2093 { 2094 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2095 return false; 2096 2097 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2098 ctx->restrictions.sqe_flags_required) 2099 return false; 2100 2101 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2102 ctx->restrictions.sqe_flags_required)) 2103 return false; 2104 2105 return true; 2106 } 2107 2108 static void io_init_req_drain(struct io_kiocb *req) 2109 { 2110 struct io_ring_ctx *ctx = req->ctx; 2111 struct io_kiocb *head = ctx->submit_state.link.head; 2112 2113 ctx->drain_active = true; 2114 if (head) { 2115 /* 2116 * If we need to drain a request in the middle of a link, drain 2117 * the head request and the next request/link after the current 2118 * link. Considering sequential execution of links, 2119 * REQ_F_IO_DRAIN will be maintained for every request of our 2120 * link. 2121 */ 2122 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2123 ctx->drain_next = true; 2124 } 2125 } 2126 2127 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2128 const struct io_uring_sqe *sqe) 2129 __must_hold(&ctx->uring_lock) 2130 { 2131 const struct io_issue_def *def; 2132 unsigned int sqe_flags; 2133 int personality; 2134 u8 opcode; 2135 2136 /* req is partially pre-initialised, see io_preinit_req() */ 2137 req->opcode = opcode = READ_ONCE(sqe->opcode); 2138 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2139 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2140 req->cqe.user_data = READ_ONCE(sqe->user_data); 2141 req->file = NULL; 2142 req->rsrc_node = NULL; 2143 req->task = current; 2144 2145 if (unlikely(opcode >= IORING_OP_LAST)) { 2146 req->opcode = 0; 2147 return -EINVAL; 2148 } 2149 def = &io_issue_defs[opcode]; 2150 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2151 /* enforce forwards compatibility on users */ 2152 if (sqe_flags & ~SQE_VALID_FLAGS) 2153 return -EINVAL; 2154 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2155 if (!def->buffer_select) 2156 return -EOPNOTSUPP; 2157 req->buf_index = READ_ONCE(sqe->buf_group); 2158 } 2159 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2160 ctx->drain_disabled = true; 2161 if (sqe_flags & IOSQE_IO_DRAIN) { 2162 if (ctx->drain_disabled) 2163 return -EOPNOTSUPP; 2164 io_init_req_drain(req); 2165 } 2166 } 2167 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2168 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2169 return -EACCES; 2170 /* knock it to the slow queue path, will be drained there */ 2171 if (ctx->drain_active) 2172 req->flags |= REQ_F_FORCE_ASYNC; 2173 /* if there is no link, we're at "next" request and need to drain */ 2174 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2175 ctx->drain_next = false; 2176 ctx->drain_active = true; 2177 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2178 } 2179 } 2180 2181 if (!def->ioprio && sqe->ioprio) 2182 return -EINVAL; 2183 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2184 return -EINVAL; 2185 2186 if (def->needs_file) { 2187 struct io_submit_state *state = &ctx->submit_state; 2188 2189 req->cqe.fd = READ_ONCE(sqe->fd); 2190 2191 /* 2192 * Plug now if we have more than 2 IO left after this, and the 2193 * target is potentially a read/write to block based storage. 2194 */ 2195 if (state->need_plug && def->plug) { 2196 state->plug_started = true; 2197 state->need_plug = false; 2198 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2199 } 2200 } 2201 2202 personality = READ_ONCE(sqe->personality); 2203 if (personality) { 2204 int ret; 2205 2206 req->creds = xa_load(&ctx->personalities, personality); 2207 if (!req->creds) 2208 return -EINVAL; 2209 get_cred(req->creds); 2210 ret = security_uring_override_creds(req->creds); 2211 if (ret) { 2212 put_cred(req->creds); 2213 return ret; 2214 } 2215 req->flags |= REQ_F_CREDS; 2216 } 2217 2218 return def->prep(req, sqe); 2219 } 2220 2221 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2222 struct io_kiocb *req, int ret) 2223 { 2224 struct io_ring_ctx *ctx = req->ctx; 2225 struct io_submit_link *link = &ctx->submit_state.link; 2226 struct io_kiocb *head = link->head; 2227 2228 trace_io_uring_req_failed(sqe, req, ret); 2229 2230 /* 2231 * Avoid breaking links in the middle as it renders links with SQPOLL 2232 * unusable. Instead of failing eagerly, continue assembling the link if 2233 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2234 * should find the flag and handle the rest. 2235 */ 2236 req_fail_link_node(req, ret); 2237 if (head && !(head->flags & REQ_F_FAIL)) 2238 req_fail_link_node(head, -ECANCELED); 2239 2240 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2241 if (head) { 2242 link->last->link = req; 2243 link->head = NULL; 2244 req = head; 2245 } 2246 io_queue_sqe_fallback(req); 2247 return ret; 2248 } 2249 2250 if (head) 2251 link->last->link = req; 2252 else 2253 link->head = req; 2254 link->last = req; 2255 return 0; 2256 } 2257 2258 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2259 const struct io_uring_sqe *sqe) 2260 __must_hold(&ctx->uring_lock) 2261 { 2262 struct io_submit_link *link = &ctx->submit_state.link; 2263 int ret; 2264 2265 ret = io_init_req(ctx, req, sqe); 2266 if (unlikely(ret)) 2267 return io_submit_fail_init(sqe, req, ret); 2268 2269 trace_io_uring_submit_req(req); 2270 2271 /* 2272 * If we already have a head request, queue this one for async 2273 * submittal once the head completes. If we don't have a head but 2274 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2275 * submitted sync once the chain is complete. If none of those 2276 * conditions are true (normal request), then just queue it. 2277 */ 2278 if (unlikely(link->head)) { 2279 ret = io_req_prep_async(req); 2280 if (unlikely(ret)) 2281 return io_submit_fail_init(sqe, req, ret); 2282 2283 trace_io_uring_link(req, link->head); 2284 link->last->link = req; 2285 link->last = req; 2286 2287 if (req->flags & IO_REQ_LINK_FLAGS) 2288 return 0; 2289 /* last request of the link, flush it */ 2290 req = link->head; 2291 link->head = NULL; 2292 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2293 goto fallback; 2294 2295 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2296 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2297 if (req->flags & IO_REQ_LINK_FLAGS) { 2298 link->head = req; 2299 link->last = req; 2300 } else { 2301 fallback: 2302 io_queue_sqe_fallback(req); 2303 } 2304 return 0; 2305 } 2306 2307 io_queue_sqe(req); 2308 return 0; 2309 } 2310 2311 /* 2312 * Batched submission is done, ensure local IO is flushed out. 2313 */ 2314 static void io_submit_state_end(struct io_ring_ctx *ctx) 2315 { 2316 struct io_submit_state *state = &ctx->submit_state; 2317 2318 if (unlikely(state->link.head)) 2319 io_queue_sqe_fallback(state->link.head); 2320 /* flush only after queuing links as they can generate completions */ 2321 io_submit_flush_completions(ctx); 2322 if (state->plug_started) 2323 blk_finish_plug(&state->plug); 2324 } 2325 2326 /* 2327 * Start submission side cache. 2328 */ 2329 static void io_submit_state_start(struct io_submit_state *state, 2330 unsigned int max_ios) 2331 { 2332 state->plug_started = false; 2333 state->need_plug = max_ios > 2; 2334 state->submit_nr = max_ios; 2335 /* set only head, no need to init link_last in advance */ 2336 state->link.head = NULL; 2337 } 2338 2339 static void io_commit_sqring(struct io_ring_ctx *ctx) 2340 { 2341 struct io_rings *rings = ctx->rings; 2342 2343 /* 2344 * Ensure any loads from the SQEs are done at this point, 2345 * since once we write the new head, the application could 2346 * write new data to them. 2347 */ 2348 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2349 } 2350 2351 /* 2352 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2353 * that is mapped by userspace. This means that care needs to be taken to 2354 * ensure that reads are stable, as we cannot rely on userspace always 2355 * being a good citizen. If members of the sqe are validated and then later 2356 * used, it's important that those reads are done through READ_ONCE() to 2357 * prevent a re-load down the line. 2358 */ 2359 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2360 { 2361 unsigned head, mask = ctx->sq_entries - 1; 2362 unsigned sq_idx = ctx->cached_sq_head++ & mask; 2363 2364 /* 2365 * The cached sq head (or cq tail) serves two purposes: 2366 * 2367 * 1) allows us to batch the cost of updating the user visible 2368 * head updates. 2369 * 2) allows the kernel side to track the head on its own, even 2370 * though the application is the one updating it. 2371 */ 2372 head = READ_ONCE(ctx->sq_array[sq_idx]); 2373 if (likely(head < ctx->sq_entries)) { 2374 /* double index for 128-byte SQEs, twice as long */ 2375 if (ctx->flags & IORING_SETUP_SQE128) 2376 head <<= 1; 2377 *sqe = &ctx->sq_sqes[head]; 2378 return true; 2379 } 2380 2381 /* drop invalid entries */ 2382 ctx->cq_extra--; 2383 WRITE_ONCE(ctx->rings->sq_dropped, 2384 READ_ONCE(ctx->rings->sq_dropped) + 1); 2385 return false; 2386 } 2387 2388 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2389 __must_hold(&ctx->uring_lock) 2390 { 2391 unsigned int entries = io_sqring_entries(ctx); 2392 unsigned int left; 2393 int ret; 2394 2395 if (unlikely(!entries)) 2396 return 0; 2397 /* make sure SQ entry isn't read before tail */ 2398 ret = left = min(nr, entries); 2399 io_get_task_refs(left); 2400 io_submit_state_start(&ctx->submit_state, left); 2401 2402 do { 2403 const struct io_uring_sqe *sqe; 2404 struct io_kiocb *req; 2405 2406 if (unlikely(!io_alloc_req(ctx, &req))) 2407 break; 2408 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2409 io_req_add_to_cache(req, ctx); 2410 break; 2411 } 2412 2413 /* 2414 * Continue submitting even for sqe failure if the 2415 * ring was setup with IORING_SETUP_SUBMIT_ALL 2416 */ 2417 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2418 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2419 left--; 2420 break; 2421 } 2422 } while (--left); 2423 2424 if (unlikely(left)) { 2425 ret -= left; 2426 /* try again if it submitted nothing and can't allocate a req */ 2427 if (!ret && io_req_cache_empty(ctx)) 2428 ret = -EAGAIN; 2429 current->io_uring->cached_refs += left; 2430 } 2431 2432 io_submit_state_end(ctx); 2433 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2434 io_commit_sqring(ctx); 2435 return ret; 2436 } 2437 2438 struct io_wait_queue { 2439 struct wait_queue_entry wq; 2440 struct io_ring_ctx *ctx; 2441 unsigned cq_tail; 2442 unsigned nr_timeouts; 2443 ktime_t timeout; 2444 }; 2445 2446 static inline bool io_has_work(struct io_ring_ctx *ctx) 2447 { 2448 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2449 !llist_empty(&ctx->work_llist); 2450 } 2451 2452 static inline bool io_should_wake(struct io_wait_queue *iowq) 2453 { 2454 struct io_ring_ctx *ctx = iowq->ctx; 2455 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2456 2457 /* 2458 * Wake up if we have enough events, or if a timeout occurred since we 2459 * started waiting. For timeouts, we always want to return to userspace, 2460 * regardless of event count. 2461 */ 2462 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2463 } 2464 2465 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2466 int wake_flags, void *key) 2467 { 2468 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2469 2470 /* 2471 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2472 * the task, and the next invocation will do it. 2473 */ 2474 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2475 return autoremove_wake_function(curr, mode, wake_flags, key); 2476 return -1; 2477 } 2478 2479 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2480 { 2481 if (!llist_empty(&ctx->work_llist)) { 2482 __set_current_state(TASK_RUNNING); 2483 if (io_run_local_work(ctx) > 0) 2484 return 1; 2485 } 2486 if (io_run_task_work() > 0) 2487 return 1; 2488 if (task_sigpending(current)) 2489 return -EINTR; 2490 return 0; 2491 } 2492 2493 /* when returns >0, the caller should retry */ 2494 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2495 struct io_wait_queue *iowq) 2496 { 2497 if (unlikely(READ_ONCE(ctx->check_cq))) 2498 return 1; 2499 if (unlikely(!llist_empty(&ctx->work_llist))) 2500 return 1; 2501 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) 2502 return 1; 2503 if (unlikely(task_sigpending(current))) 2504 return -EINTR; 2505 if (unlikely(io_should_wake(iowq))) 2506 return 0; 2507 if (iowq->timeout == KTIME_MAX) 2508 schedule(); 2509 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2510 return -ETIME; 2511 return 0; 2512 } 2513 2514 /* 2515 * Wait until events become available, if we don't already have some. The 2516 * application must reap them itself, as they reside on the shared cq ring. 2517 */ 2518 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2519 const sigset_t __user *sig, size_t sigsz, 2520 struct __kernel_timespec __user *uts) 2521 { 2522 struct io_wait_queue iowq; 2523 struct io_rings *rings = ctx->rings; 2524 int ret; 2525 2526 if (!io_allowed_run_tw(ctx)) 2527 return -EEXIST; 2528 if (!llist_empty(&ctx->work_llist)) 2529 io_run_local_work(ctx); 2530 io_run_task_work(); 2531 io_cqring_overflow_flush(ctx); 2532 /* if user messes with these they will just get an early return */ 2533 if (__io_cqring_events_user(ctx) >= min_events) 2534 return 0; 2535 2536 if (sig) { 2537 #ifdef CONFIG_COMPAT 2538 if (in_compat_syscall()) 2539 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2540 sigsz); 2541 else 2542 #endif 2543 ret = set_user_sigmask(sig, sigsz); 2544 2545 if (ret) 2546 return ret; 2547 } 2548 2549 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2550 iowq.wq.private = current; 2551 INIT_LIST_HEAD(&iowq.wq.entry); 2552 iowq.ctx = ctx; 2553 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2554 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2555 iowq.timeout = KTIME_MAX; 2556 2557 if (uts) { 2558 struct timespec64 ts; 2559 2560 if (get_timespec64(&ts, uts)) 2561 return -EFAULT; 2562 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2563 } 2564 2565 trace_io_uring_cqring_wait(ctx, min_events); 2566 do { 2567 unsigned long check_cq; 2568 2569 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2570 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2571 2572 atomic_set(&ctx->cq_wait_nr, nr_wait); 2573 set_current_state(TASK_INTERRUPTIBLE); 2574 } else { 2575 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2576 TASK_INTERRUPTIBLE); 2577 } 2578 2579 ret = io_cqring_wait_schedule(ctx, &iowq); 2580 __set_current_state(TASK_RUNNING); 2581 atomic_set(&ctx->cq_wait_nr, 0); 2582 2583 if (ret < 0) 2584 break; 2585 /* 2586 * Run task_work after scheduling and before io_should_wake(). 2587 * If we got woken because of task_work being processed, run it 2588 * now rather than let the caller do another wait loop. 2589 */ 2590 io_run_task_work(); 2591 if (!llist_empty(&ctx->work_llist)) 2592 io_run_local_work(ctx); 2593 2594 check_cq = READ_ONCE(ctx->check_cq); 2595 if (unlikely(check_cq)) { 2596 /* let the caller flush overflows, retry */ 2597 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2598 io_cqring_do_overflow_flush(ctx); 2599 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2600 ret = -EBADR; 2601 break; 2602 } 2603 } 2604 2605 if (io_should_wake(&iowq)) { 2606 ret = 0; 2607 break; 2608 } 2609 cond_resched(); 2610 } while (1); 2611 2612 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2613 finish_wait(&ctx->cq_wait, &iowq.wq); 2614 restore_saved_sigmask_unless(ret == -EINTR); 2615 2616 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2617 } 2618 2619 static void io_mem_free(void *ptr) 2620 { 2621 struct page *page; 2622 2623 if (!ptr) 2624 return; 2625 2626 page = virt_to_head_page(ptr); 2627 if (put_page_testzero(page)) 2628 free_compound_page(page); 2629 } 2630 2631 static void io_pages_free(struct page ***pages, int npages) 2632 { 2633 struct page **page_array; 2634 int i; 2635 2636 if (!pages) 2637 return; 2638 page_array = *pages; 2639 for (i = 0; i < npages; i++) 2640 unpin_user_page(page_array[i]); 2641 kvfree(page_array); 2642 *pages = NULL; 2643 } 2644 2645 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, 2646 unsigned long uaddr, size_t size) 2647 { 2648 struct page **page_array; 2649 unsigned int nr_pages; 2650 int ret; 2651 2652 *npages = 0; 2653 2654 if (uaddr & (PAGE_SIZE - 1) || !size) 2655 return ERR_PTR(-EINVAL); 2656 2657 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2658 if (nr_pages > USHRT_MAX) 2659 return ERR_PTR(-EINVAL); 2660 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); 2661 if (!page_array) 2662 return ERR_PTR(-ENOMEM); 2663 2664 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, 2665 page_array); 2666 if (ret != nr_pages) { 2667 err: 2668 io_pages_free(&page_array, ret > 0 ? ret : 0); 2669 return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT); 2670 } 2671 /* 2672 * Should be a single page. If the ring is small enough that we can 2673 * use a normal page, that is fine. If we need multiple pages, then 2674 * userspace should use a huge page. That's the only way to guarantee 2675 * that we get contigious memory, outside of just being lucky or 2676 * (currently) having low memory fragmentation. 2677 */ 2678 if (page_array[0] != page_array[ret - 1]) 2679 goto err; 2680 *pages = page_array; 2681 *npages = nr_pages; 2682 return page_to_virt(page_array[0]); 2683 } 2684 2685 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2686 size_t size) 2687 { 2688 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2689 size); 2690 } 2691 2692 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2693 size_t size) 2694 { 2695 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2696 size); 2697 } 2698 2699 static void io_rings_free(struct io_ring_ctx *ctx) 2700 { 2701 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2702 io_mem_free(ctx->rings); 2703 io_mem_free(ctx->sq_sqes); 2704 ctx->rings = NULL; 2705 ctx->sq_sqes = NULL; 2706 } else { 2707 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2708 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2709 } 2710 } 2711 2712 static void *io_mem_alloc(size_t size) 2713 { 2714 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2715 void *ret; 2716 2717 ret = (void *) __get_free_pages(gfp, get_order(size)); 2718 if (ret) 2719 return ret; 2720 return ERR_PTR(-ENOMEM); 2721 } 2722 2723 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2724 unsigned int cq_entries, size_t *sq_offset) 2725 { 2726 struct io_rings *rings; 2727 size_t off, sq_array_size; 2728 2729 off = struct_size(rings, cqes, cq_entries); 2730 if (off == SIZE_MAX) 2731 return SIZE_MAX; 2732 if (ctx->flags & IORING_SETUP_CQE32) { 2733 if (check_shl_overflow(off, 1, &off)) 2734 return SIZE_MAX; 2735 } 2736 2737 #ifdef CONFIG_SMP 2738 off = ALIGN(off, SMP_CACHE_BYTES); 2739 if (off == 0) 2740 return SIZE_MAX; 2741 #endif 2742 2743 if (sq_offset) 2744 *sq_offset = off; 2745 2746 sq_array_size = array_size(sizeof(u32), sq_entries); 2747 if (sq_array_size == SIZE_MAX) 2748 return SIZE_MAX; 2749 2750 if (check_add_overflow(off, sq_array_size, &off)) 2751 return SIZE_MAX; 2752 2753 return off; 2754 } 2755 2756 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2757 unsigned int eventfd_async) 2758 { 2759 struct io_ev_fd *ev_fd; 2760 __s32 __user *fds = arg; 2761 int fd; 2762 2763 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2764 lockdep_is_held(&ctx->uring_lock)); 2765 if (ev_fd) 2766 return -EBUSY; 2767 2768 if (copy_from_user(&fd, fds, sizeof(*fds))) 2769 return -EFAULT; 2770 2771 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2772 if (!ev_fd) 2773 return -ENOMEM; 2774 2775 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2776 if (IS_ERR(ev_fd->cq_ev_fd)) { 2777 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2778 kfree(ev_fd); 2779 return ret; 2780 } 2781 2782 spin_lock(&ctx->completion_lock); 2783 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2784 spin_unlock(&ctx->completion_lock); 2785 2786 ev_fd->eventfd_async = eventfd_async; 2787 ctx->has_evfd = true; 2788 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2789 atomic_set(&ev_fd->refs, 1); 2790 atomic_set(&ev_fd->ops, 0); 2791 return 0; 2792 } 2793 2794 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2795 { 2796 struct io_ev_fd *ev_fd; 2797 2798 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2799 lockdep_is_held(&ctx->uring_lock)); 2800 if (ev_fd) { 2801 ctx->has_evfd = false; 2802 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2803 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2804 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2805 return 0; 2806 } 2807 2808 return -ENXIO; 2809 } 2810 2811 static void io_req_caches_free(struct io_ring_ctx *ctx) 2812 { 2813 struct io_kiocb *req; 2814 int nr = 0; 2815 2816 mutex_lock(&ctx->uring_lock); 2817 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2818 2819 while (!io_req_cache_empty(ctx)) { 2820 req = io_extract_req(ctx); 2821 kmem_cache_free(req_cachep, req); 2822 nr++; 2823 } 2824 if (nr) 2825 percpu_ref_put_many(&ctx->refs, nr); 2826 mutex_unlock(&ctx->uring_lock); 2827 } 2828 2829 static void io_rsrc_node_cache_free(struct io_cache_entry *entry) 2830 { 2831 kfree(container_of(entry, struct io_rsrc_node, cache)); 2832 } 2833 2834 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2835 { 2836 io_sq_thread_finish(ctx); 2837 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2838 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2839 return; 2840 2841 mutex_lock(&ctx->uring_lock); 2842 if (ctx->buf_data) 2843 __io_sqe_buffers_unregister(ctx); 2844 if (ctx->file_data) 2845 __io_sqe_files_unregister(ctx); 2846 io_cqring_overflow_kill(ctx); 2847 io_eventfd_unregister(ctx); 2848 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2849 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2850 io_destroy_buffers(ctx); 2851 mutex_unlock(&ctx->uring_lock); 2852 if (ctx->sq_creds) 2853 put_cred(ctx->sq_creds); 2854 if (ctx->submitter_task) 2855 put_task_struct(ctx->submitter_task); 2856 2857 /* there are no registered resources left, nobody uses it */ 2858 if (ctx->rsrc_node) 2859 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2860 2861 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2862 2863 #if defined(CONFIG_UNIX) 2864 if (ctx->ring_sock) { 2865 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2866 sock_release(ctx->ring_sock); 2867 } 2868 #endif 2869 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2870 2871 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); 2872 if (ctx->mm_account) { 2873 mmdrop(ctx->mm_account); 2874 ctx->mm_account = NULL; 2875 } 2876 io_rings_free(ctx); 2877 2878 percpu_ref_exit(&ctx->refs); 2879 free_uid(ctx->user); 2880 io_req_caches_free(ctx); 2881 if (ctx->hash_map) 2882 io_wq_put_hash(ctx->hash_map); 2883 kfree(ctx->cancel_table.hbs); 2884 kfree(ctx->cancel_table_locked.hbs); 2885 kfree(ctx->dummy_ubuf); 2886 kfree(ctx->io_bl); 2887 xa_destroy(&ctx->io_bl_xa); 2888 kfree(ctx); 2889 } 2890 2891 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2892 { 2893 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2894 poll_wq_task_work); 2895 2896 mutex_lock(&ctx->uring_lock); 2897 ctx->poll_activated = true; 2898 mutex_unlock(&ctx->uring_lock); 2899 2900 /* 2901 * Wake ups for some events between start of polling and activation 2902 * might've been lost due to loose synchronisation. 2903 */ 2904 wake_up_all(&ctx->poll_wq); 2905 percpu_ref_put(&ctx->refs); 2906 } 2907 2908 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2909 { 2910 spin_lock(&ctx->completion_lock); 2911 /* already activated or in progress */ 2912 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2913 goto out; 2914 if (WARN_ON_ONCE(!ctx->task_complete)) 2915 goto out; 2916 if (!ctx->submitter_task) 2917 goto out; 2918 /* 2919 * with ->submitter_task only the submitter task completes requests, we 2920 * only need to sync with it, which is done by injecting a tw 2921 */ 2922 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2923 percpu_ref_get(&ctx->refs); 2924 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2925 percpu_ref_put(&ctx->refs); 2926 out: 2927 spin_unlock(&ctx->completion_lock); 2928 } 2929 2930 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2931 { 2932 struct io_ring_ctx *ctx = file->private_data; 2933 __poll_t mask = 0; 2934 2935 if (unlikely(!ctx->poll_activated)) 2936 io_activate_pollwq(ctx); 2937 2938 poll_wait(file, &ctx->poll_wq, wait); 2939 /* 2940 * synchronizes with barrier from wq_has_sleeper call in 2941 * io_commit_cqring 2942 */ 2943 smp_rmb(); 2944 if (!io_sqring_full(ctx)) 2945 mask |= EPOLLOUT | EPOLLWRNORM; 2946 2947 /* 2948 * Don't flush cqring overflow list here, just do a simple check. 2949 * Otherwise there could possible be ABBA deadlock: 2950 * CPU0 CPU1 2951 * ---- ---- 2952 * lock(&ctx->uring_lock); 2953 * lock(&ep->mtx); 2954 * lock(&ctx->uring_lock); 2955 * lock(&ep->mtx); 2956 * 2957 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2958 * pushes them to do the flush. 2959 */ 2960 2961 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2962 mask |= EPOLLIN | EPOLLRDNORM; 2963 2964 return mask; 2965 } 2966 2967 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 2968 { 2969 const struct cred *creds; 2970 2971 creds = xa_erase(&ctx->personalities, id); 2972 if (creds) { 2973 put_cred(creds); 2974 return 0; 2975 } 2976 2977 return -EINVAL; 2978 } 2979 2980 struct io_tctx_exit { 2981 struct callback_head task_work; 2982 struct completion completion; 2983 struct io_ring_ctx *ctx; 2984 }; 2985 2986 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2987 { 2988 struct io_uring_task *tctx = current->io_uring; 2989 struct io_tctx_exit *work; 2990 2991 work = container_of(cb, struct io_tctx_exit, task_work); 2992 /* 2993 * When @in_cancel, we're in cancellation and it's racy to remove the 2994 * node. It'll be removed by the end of cancellation, just ignore it. 2995 * tctx can be NULL if the queueing of this task_work raced with 2996 * work cancelation off the exec path. 2997 */ 2998 if (tctx && !atomic_read(&tctx->in_cancel)) 2999 io_uring_del_tctx_node((unsigned long)work->ctx); 3000 complete(&work->completion); 3001 } 3002 3003 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 3004 { 3005 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3006 3007 return req->ctx == data; 3008 } 3009 3010 static __cold void io_ring_exit_work(struct work_struct *work) 3011 { 3012 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 3013 unsigned long timeout = jiffies + HZ * 60 * 5; 3014 unsigned long interval = HZ / 20; 3015 struct io_tctx_exit exit; 3016 struct io_tctx_node *node; 3017 int ret; 3018 3019 /* 3020 * If we're doing polled IO and end up having requests being 3021 * submitted async (out-of-line), then completions can come in while 3022 * we're waiting for refs to drop. We need to reap these manually, 3023 * as nobody else will be looking for them. 3024 */ 3025 do { 3026 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 3027 mutex_lock(&ctx->uring_lock); 3028 io_cqring_overflow_kill(ctx); 3029 mutex_unlock(&ctx->uring_lock); 3030 } 3031 3032 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3033 io_move_task_work_from_local(ctx); 3034 3035 while (io_uring_try_cancel_requests(ctx, NULL, true)) 3036 cond_resched(); 3037 3038 if (ctx->sq_data) { 3039 struct io_sq_data *sqd = ctx->sq_data; 3040 struct task_struct *tsk; 3041 3042 io_sq_thread_park(sqd); 3043 tsk = sqd->thread; 3044 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 3045 io_wq_cancel_cb(tsk->io_uring->io_wq, 3046 io_cancel_ctx_cb, ctx, true); 3047 io_sq_thread_unpark(sqd); 3048 } 3049 3050 io_req_caches_free(ctx); 3051 3052 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3053 /* there is little hope left, don't run it too often */ 3054 interval = HZ * 60; 3055 } 3056 /* 3057 * This is really an uninterruptible wait, as it has to be 3058 * complete. But it's also run from a kworker, which doesn't 3059 * take signals, so it's fine to make it interruptible. This 3060 * avoids scenarios where we knowingly can wait much longer 3061 * on completions, for example if someone does a SIGSTOP on 3062 * a task that needs to finish task_work to make this loop 3063 * complete. That's a synthetic situation that should not 3064 * cause a stuck task backtrace, and hence a potential panic 3065 * on stuck tasks if that is enabled. 3066 */ 3067 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 3068 3069 init_completion(&exit.completion); 3070 init_task_work(&exit.task_work, io_tctx_exit_cb); 3071 exit.ctx = ctx; 3072 /* 3073 * Some may use context even when all refs and requests have been put, 3074 * and they are free to do so while still holding uring_lock or 3075 * completion_lock, see io_req_task_submit(). Apart from other work, 3076 * this lock/unlock section also waits them to finish. 3077 */ 3078 mutex_lock(&ctx->uring_lock); 3079 while (!list_empty(&ctx->tctx_list)) { 3080 WARN_ON_ONCE(time_after(jiffies, timeout)); 3081 3082 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3083 ctx_node); 3084 /* don't spin on a single task if cancellation failed */ 3085 list_rotate_left(&ctx->tctx_list); 3086 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3087 if (WARN_ON_ONCE(ret)) 3088 continue; 3089 3090 mutex_unlock(&ctx->uring_lock); 3091 /* 3092 * See comment above for 3093 * wait_for_completion_interruptible_timeout() on why this 3094 * wait is marked as interruptible. 3095 */ 3096 wait_for_completion_interruptible(&exit.completion); 3097 mutex_lock(&ctx->uring_lock); 3098 } 3099 mutex_unlock(&ctx->uring_lock); 3100 spin_lock(&ctx->completion_lock); 3101 spin_unlock(&ctx->completion_lock); 3102 3103 /* pairs with RCU read section in io_req_local_work_add() */ 3104 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3105 synchronize_rcu(); 3106 3107 io_ring_ctx_free(ctx); 3108 } 3109 3110 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3111 { 3112 unsigned long index; 3113 struct creds *creds; 3114 3115 mutex_lock(&ctx->uring_lock); 3116 percpu_ref_kill(&ctx->refs); 3117 xa_for_each(&ctx->personalities, index, creds) 3118 io_unregister_personality(ctx, index); 3119 if (ctx->rings) 3120 io_poll_remove_all(ctx, NULL, true); 3121 mutex_unlock(&ctx->uring_lock); 3122 3123 /* 3124 * If we failed setting up the ctx, we might not have any rings 3125 * and therefore did not submit any requests 3126 */ 3127 if (ctx->rings) 3128 io_kill_timeouts(ctx, NULL, true); 3129 3130 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3131 /* 3132 * Use system_unbound_wq to avoid spawning tons of event kworkers 3133 * if we're exiting a ton of rings at the same time. It just adds 3134 * noise and overhead, there's no discernable change in runtime 3135 * over using system_wq. 3136 */ 3137 queue_work(system_unbound_wq, &ctx->exit_work); 3138 } 3139 3140 static int io_uring_release(struct inode *inode, struct file *file) 3141 { 3142 struct io_ring_ctx *ctx = file->private_data; 3143 3144 file->private_data = NULL; 3145 io_ring_ctx_wait_and_kill(ctx); 3146 return 0; 3147 } 3148 3149 struct io_task_cancel { 3150 struct task_struct *task; 3151 bool all; 3152 }; 3153 3154 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3155 { 3156 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3157 struct io_task_cancel *cancel = data; 3158 3159 return io_match_task_safe(req, cancel->task, cancel->all); 3160 } 3161 3162 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3163 struct task_struct *task, 3164 bool cancel_all) 3165 { 3166 struct io_defer_entry *de; 3167 LIST_HEAD(list); 3168 3169 spin_lock(&ctx->completion_lock); 3170 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3171 if (io_match_task_safe(de->req, task, cancel_all)) { 3172 list_cut_position(&list, &ctx->defer_list, &de->list); 3173 break; 3174 } 3175 } 3176 spin_unlock(&ctx->completion_lock); 3177 if (list_empty(&list)) 3178 return false; 3179 3180 while (!list_empty(&list)) { 3181 de = list_first_entry(&list, struct io_defer_entry, list); 3182 list_del_init(&de->list); 3183 io_req_task_queue_fail(de->req, -ECANCELED); 3184 kfree(de); 3185 } 3186 return true; 3187 } 3188 3189 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3190 { 3191 struct io_tctx_node *node; 3192 enum io_wq_cancel cret; 3193 bool ret = false; 3194 3195 mutex_lock(&ctx->uring_lock); 3196 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3197 struct io_uring_task *tctx = node->task->io_uring; 3198 3199 /* 3200 * io_wq will stay alive while we hold uring_lock, because it's 3201 * killed after ctx nodes, which requires to take the lock. 3202 */ 3203 if (!tctx || !tctx->io_wq) 3204 continue; 3205 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3206 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3207 } 3208 mutex_unlock(&ctx->uring_lock); 3209 3210 return ret; 3211 } 3212 3213 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3214 struct task_struct *task, 3215 bool cancel_all) 3216 { 3217 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3218 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3219 enum io_wq_cancel cret; 3220 bool ret = false; 3221 3222 /* set it so io_req_local_work_add() would wake us up */ 3223 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3224 atomic_set(&ctx->cq_wait_nr, 1); 3225 smp_mb(); 3226 } 3227 3228 /* failed during ring init, it couldn't have issued any requests */ 3229 if (!ctx->rings) 3230 return false; 3231 3232 if (!task) { 3233 ret |= io_uring_try_cancel_iowq(ctx); 3234 } else if (tctx && tctx->io_wq) { 3235 /* 3236 * Cancels requests of all rings, not only @ctx, but 3237 * it's fine as the task is in exit/exec. 3238 */ 3239 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3240 &cancel, true); 3241 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3242 } 3243 3244 /* SQPOLL thread does its own polling */ 3245 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3246 (ctx->sq_data && ctx->sq_data->thread == current)) { 3247 while (!wq_list_empty(&ctx->iopoll_list)) { 3248 io_iopoll_try_reap_events(ctx); 3249 ret = true; 3250 cond_resched(); 3251 } 3252 } 3253 3254 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3255 io_allowed_defer_tw_run(ctx)) 3256 ret |= io_run_local_work(ctx) > 0; 3257 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3258 mutex_lock(&ctx->uring_lock); 3259 ret |= io_poll_remove_all(ctx, task, cancel_all); 3260 mutex_unlock(&ctx->uring_lock); 3261 ret |= io_kill_timeouts(ctx, task, cancel_all); 3262 if (task) 3263 ret |= io_run_task_work() > 0; 3264 return ret; 3265 } 3266 3267 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3268 { 3269 if (tracked) 3270 return atomic_read(&tctx->inflight_tracked); 3271 return percpu_counter_sum(&tctx->inflight); 3272 } 3273 3274 /* 3275 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3276 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3277 */ 3278 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3279 { 3280 struct io_uring_task *tctx = current->io_uring; 3281 struct io_ring_ctx *ctx; 3282 struct io_tctx_node *node; 3283 unsigned long index; 3284 s64 inflight; 3285 DEFINE_WAIT(wait); 3286 3287 WARN_ON_ONCE(sqd && sqd->thread != current); 3288 3289 if (!current->io_uring) 3290 return; 3291 if (tctx->io_wq) 3292 io_wq_exit_start(tctx->io_wq); 3293 3294 atomic_inc(&tctx->in_cancel); 3295 do { 3296 bool loop = false; 3297 3298 io_uring_drop_tctx_refs(current); 3299 /* read completions before cancelations */ 3300 inflight = tctx_inflight(tctx, !cancel_all); 3301 if (!inflight) 3302 break; 3303 3304 if (!sqd) { 3305 xa_for_each(&tctx->xa, index, node) { 3306 /* sqpoll task will cancel all its requests */ 3307 if (node->ctx->sq_data) 3308 continue; 3309 loop |= io_uring_try_cancel_requests(node->ctx, 3310 current, cancel_all); 3311 } 3312 } else { 3313 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3314 loop |= io_uring_try_cancel_requests(ctx, 3315 current, 3316 cancel_all); 3317 } 3318 3319 if (loop) { 3320 cond_resched(); 3321 continue; 3322 } 3323 3324 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3325 io_run_task_work(); 3326 io_uring_drop_tctx_refs(current); 3327 xa_for_each(&tctx->xa, index, node) { 3328 if (!llist_empty(&node->ctx->work_llist)) { 3329 WARN_ON_ONCE(node->ctx->submitter_task && 3330 node->ctx->submitter_task != current); 3331 goto end_wait; 3332 } 3333 } 3334 /* 3335 * If we've seen completions, retry without waiting. This 3336 * avoids a race where a completion comes in before we did 3337 * prepare_to_wait(). 3338 */ 3339 if (inflight == tctx_inflight(tctx, !cancel_all)) 3340 schedule(); 3341 end_wait: 3342 finish_wait(&tctx->wait, &wait); 3343 } while (1); 3344 3345 io_uring_clean_tctx(tctx); 3346 if (cancel_all) { 3347 /* 3348 * We shouldn't run task_works after cancel, so just leave 3349 * ->in_cancel set for normal exit. 3350 */ 3351 atomic_dec(&tctx->in_cancel); 3352 /* for exec all current's requests should be gone, kill tctx */ 3353 __io_uring_free(current); 3354 } 3355 } 3356 3357 void __io_uring_cancel(bool cancel_all) 3358 { 3359 io_uring_cancel_generic(cancel_all, NULL); 3360 } 3361 3362 static void *io_uring_validate_mmap_request(struct file *file, 3363 loff_t pgoff, size_t sz) 3364 { 3365 struct io_ring_ctx *ctx = file->private_data; 3366 loff_t offset = pgoff << PAGE_SHIFT; 3367 struct page *page; 3368 void *ptr; 3369 3370 /* Don't allow mmap if the ring was setup without it */ 3371 if (ctx->flags & IORING_SETUP_NO_MMAP) 3372 return ERR_PTR(-EINVAL); 3373 3374 switch (offset & IORING_OFF_MMAP_MASK) { 3375 case IORING_OFF_SQ_RING: 3376 case IORING_OFF_CQ_RING: 3377 ptr = ctx->rings; 3378 break; 3379 case IORING_OFF_SQES: 3380 ptr = ctx->sq_sqes; 3381 break; 3382 case IORING_OFF_PBUF_RING: { 3383 unsigned int bgid; 3384 3385 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; 3386 mutex_lock(&ctx->uring_lock); 3387 ptr = io_pbuf_get_address(ctx, bgid); 3388 mutex_unlock(&ctx->uring_lock); 3389 if (!ptr) 3390 return ERR_PTR(-EINVAL); 3391 break; 3392 } 3393 default: 3394 return ERR_PTR(-EINVAL); 3395 } 3396 3397 page = virt_to_head_page(ptr); 3398 if (sz > page_size(page)) 3399 return ERR_PTR(-EINVAL); 3400 3401 return ptr; 3402 } 3403 3404 #ifdef CONFIG_MMU 3405 3406 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3407 { 3408 size_t sz = vma->vm_end - vma->vm_start; 3409 unsigned long pfn; 3410 void *ptr; 3411 3412 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3413 if (IS_ERR(ptr)) 3414 return PTR_ERR(ptr); 3415 3416 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3417 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3418 } 3419 3420 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, 3421 unsigned long addr, unsigned long len, 3422 unsigned long pgoff, unsigned long flags) 3423 { 3424 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 3425 struct vm_unmapped_area_info info; 3426 void *ptr; 3427 3428 /* 3429 * Do not allow to map to user-provided address to avoid breaking the 3430 * aliasing rules. Userspace is not able to guess the offset address of 3431 * kernel kmalloc()ed memory area. 3432 */ 3433 if (addr) 3434 return -EINVAL; 3435 3436 ptr = io_uring_validate_mmap_request(filp, pgoff, len); 3437 if (IS_ERR(ptr)) 3438 return -ENOMEM; 3439 3440 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 3441 info.length = len; 3442 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 3443 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base); 3444 #ifdef SHM_COLOUR 3445 info.align_mask = PAGE_MASK & (SHM_COLOUR - 1UL); 3446 #else 3447 info.align_mask = PAGE_MASK & (SHMLBA - 1UL); 3448 #endif 3449 info.align_offset = (unsigned long) ptr; 3450 3451 /* 3452 * A failed mmap() very likely causes application failure, 3453 * so fall back to the bottom-up function here. This scenario 3454 * can happen with large stack limits and large mmap() 3455 * allocations. 3456 */ 3457 addr = vm_unmapped_area(&info); 3458 if (offset_in_page(addr)) { 3459 info.flags = 0; 3460 info.low_limit = TASK_UNMAPPED_BASE; 3461 info.high_limit = mmap_end; 3462 addr = vm_unmapped_area(&info); 3463 } 3464 3465 return addr; 3466 } 3467 3468 #else /* !CONFIG_MMU */ 3469 3470 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3471 { 3472 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3473 } 3474 3475 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3476 { 3477 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3478 } 3479 3480 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3481 unsigned long addr, unsigned long len, 3482 unsigned long pgoff, unsigned long flags) 3483 { 3484 void *ptr; 3485 3486 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3487 if (IS_ERR(ptr)) 3488 return PTR_ERR(ptr); 3489 3490 return (unsigned long) ptr; 3491 } 3492 3493 #endif /* !CONFIG_MMU */ 3494 3495 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3496 { 3497 if (flags & IORING_ENTER_EXT_ARG) { 3498 struct io_uring_getevents_arg arg; 3499 3500 if (argsz != sizeof(arg)) 3501 return -EINVAL; 3502 if (copy_from_user(&arg, argp, sizeof(arg))) 3503 return -EFAULT; 3504 } 3505 return 0; 3506 } 3507 3508 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3509 struct __kernel_timespec __user **ts, 3510 const sigset_t __user **sig) 3511 { 3512 struct io_uring_getevents_arg arg; 3513 3514 /* 3515 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3516 * is just a pointer to the sigset_t. 3517 */ 3518 if (!(flags & IORING_ENTER_EXT_ARG)) { 3519 *sig = (const sigset_t __user *) argp; 3520 *ts = NULL; 3521 return 0; 3522 } 3523 3524 /* 3525 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3526 * timespec and sigset_t pointers if good. 3527 */ 3528 if (*argsz != sizeof(arg)) 3529 return -EINVAL; 3530 if (copy_from_user(&arg, argp, sizeof(arg))) 3531 return -EFAULT; 3532 if (arg.pad) 3533 return -EINVAL; 3534 *sig = u64_to_user_ptr(arg.sigmask); 3535 *argsz = arg.sigmask_sz; 3536 *ts = u64_to_user_ptr(arg.ts); 3537 return 0; 3538 } 3539 3540 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3541 u32, min_complete, u32, flags, const void __user *, argp, 3542 size_t, argsz) 3543 { 3544 struct io_ring_ctx *ctx; 3545 struct fd f; 3546 long ret; 3547 3548 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3549 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3550 IORING_ENTER_REGISTERED_RING))) 3551 return -EINVAL; 3552 3553 /* 3554 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3555 * need only dereference our task private array to find it. 3556 */ 3557 if (flags & IORING_ENTER_REGISTERED_RING) { 3558 struct io_uring_task *tctx = current->io_uring; 3559 3560 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3561 return -EINVAL; 3562 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3563 f.file = tctx->registered_rings[fd]; 3564 f.flags = 0; 3565 if (unlikely(!f.file)) 3566 return -EBADF; 3567 } else { 3568 f = fdget(fd); 3569 if (unlikely(!f.file)) 3570 return -EBADF; 3571 ret = -EOPNOTSUPP; 3572 if (unlikely(!io_is_uring_fops(f.file))) 3573 goto out; 3574 } 3575 3576 ctx = f.file->private_data; 3577 ret = -EBADFD; 3578 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3579 goto out; 3580 3581 /* 3582 * For SQ polling, the thread will do all submissions and completions. 3583 * Just return the requested submit count, and wake the thread if 3584 * we were asked to. 3585 */ 3586 ret = 0; 3587 if (ctx->flags & IORING_SETUP_SQPOLL) { 3588 io_cqring_overflow_flush(ctx); 3589 3590 if (unlikely(ctx->sq_data->thread == NULL)) { 3591 ret = -EOWNERDEAD; 3592 goto out; 3593 } 3594 if (flags & IORING_ENTER_SQ_WAKEUP) 3595 wake_up(&ctx->sq_data->wait); 3596 if (flags & IORING_ENTER_SQ_WAIT) 3597 io_sqpoll_wait_sq(ctx); 3598 3599 ret = to_submit; 3600 } else if (to_submit) { 3601 ret = io_uring_add_tctx_node(ctx); 3602 if (unlikely(ret)) 3603 goto out; 3604 3605 mutex_lock(&ctx->uring_lock); 3606 ret = io_submit_sqes(ctx, to_submit); 3607 if (ret != to_submit) { 3608 mutex_unlock(&ctx->uring_lock); 3609 goto out; 3610 } 3611 if (flags & IORING_ENTER_GETEVENTS) { 3612 if (ctx->syscall_iopoll) 3613 goto iopoll_locked; 3614 /* 3615 * Ignore errors, we'll soon call io_cqring_wait() and 3616 * it should handle ownership problems if any. 3617 */ 3618 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3619 (void)io_run_local_work_locked(ctx); 3620 } 3621 mutex_unlock(&ctx->uring_lock); 3622 } 3623 3624 if (flags & IORING_ENTER_GETEVENTS) { 3625 int ret2; 3626 3627 if (ctx->syscall_iopoll) { 3628 /* 3629 * We disallow the app entering submit/complete with 3630 * polling, but we still need to lock the ring to 3631 * prevent racing with polled issue that got punted to 3632 * a workqueue. 3633 */ 3634 mutex_lock(&ctx->uring_lock); 3635 iopoll_locked: 3636 ret2 = io_validate_ext_arg(flags, argp, argsz); 3637 if (likely(!ret2)) { 3638 min_complete = min(min_complete, 3639 ctx->cq_entries); 3640 ret2 = io_iopoll_check(ctx, min_complete); 3641 } 3642 mutex_unlock(&ctx->uring_lock); 3643 } else { 3644 const sigset_t __user *sig; 3645 struct __kernel_timespec __user *ts; 3646 3647 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3648 if (likely(!ret2)) { 3649 min_complete = min(min_complete, 3650 ctx->cq_entries); 3651 ret2 = io_cqring_wait(ctx, min_complete, sig, 3652 argsz, ts); 3653 } 3654 } 3655 3656 if (!ret) { 3657 ret = ret2; 3658 3659 /* 3660 * EBADR indicates that one or more CQE were dropped. 3661 * Once the user has been informed we can clear the bit 3662 * as they are obviously ok with those drops. 3663 */ 3664 if (unlikely(ret2 == -EBADR)) 3665 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3666 &ctx->check_cq); 3667 } 3668 } 3669 out: 3670 fdput(f); 3671 return ret; 3672 } 3673 3674 static const struct file_operations io_uring_fops = { 3675 .release = io_uring_release, 3676 .mmap = io_uring_mmap, 3677 #ifndef CONFIG_MMU 3678 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3679 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3680 #else 3681 .get_unmapped_area = io_uring_mmu_get_unmapped_area, 3682 #endif 3683 .poll = io_uring_poll, 3684 #ifdef CONFIG_PROC_FS 3685 .show_fdinfo = io_uring_show_fdinfo, 3686 #endif 3687 }; 3688 3689 bool io_is_uring_fops(struct file *file) 3690 { 3691 return file->f_op == &io_uring_fops; 3692 } 3693 3694 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3695 struct io_uring_params *p) 3696 { 3697 struct io_rings *rings; 3698 size_t size, sq_array_offset; 3699 void *ptr; 3700 3701 /* make sure these are sane, as we already accounted them */ 3702 ctx->sq_entries = p->sq_entries; 3703 ctx->cq_entries = p->cq_entries; 3704 3705 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3706 if (size == SIZE_MAX) 3707 return -EOVERFLOW; 3708 3709 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3710 rings = io_mem_alloc(size); 3711 else 3712 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3713 3714 if (IS_ERR(rings)) 3715 return PTR_ERR(rings); 3716 3717 ctx->rings = rings; 3718 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3719 rings->sq_ring_mask = p->sq_entries - 1; 3720 rings->cq_ring_mask = p->cq_entries - 1; 3721 rings->sq_ring_entries = p->sq_entries; 3722 rings->cq_ring_entries = p->cq_entries; 3723 3724 if (p->flags & IORING_SETUP_SQE128) 3725 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3726 else 3727 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3728 if (size == SIZE_MAX) { 3729 io_rings_free(ctx); 3730 return -EOVERFLOW; 3731 } 3732 3733 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3734 ptr = io_mem_alloc(size); 3735 else 3736 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3737 3738 if (IS_ERR(ptr)) { 3739 io_rings_free(ctx); 3740 return PTR_ERR(ptr); 3741 } 3742 3743 ctx->sq_sqes = ptr; 3744 return 0; 3745 } 3746 3747 static int io_uring_install_fd(struct file *file) 3748 { 3749 int fd; 3750 3751 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3752 if (fd < 0) 3753 return fd; 3754 fd_install(fd, file); 3755 return fd; 3756 } 3757 3758 /* 3759 * Allocate an anonymous fd, this is what constitutes the application 3760 * visible backing of an io_uring instance. The application mmaps this 3761 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3762 * we have to tie this fd to a socket for file garbage collection purposes. 3763 */ 3764 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3765 { 3766 struct file *file; 3767 #if defined(CONFIG_UNIX) 3768 int ret; 3769 3770 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3771 &ctx->ring_sock); 3772 if (ret) 3773 return ERR_PTR(ret); 3774 #endif 3775 3776 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3777 O_RDWR | O_CLOEXEC, NULL); 3778 #if defined(CONFIG_UNIX) 3779 if (IS_ERR(file)) { 3780 sock_release(ctx->ring_sock); 3781 ctx->ring_sock = NULL; 3782 } else { 3783 ctx->ring_sock->file = file; 3784 } 3785 #endif 3786 return file; 3787 } 3788 3789 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3790 struct io_uring_params __user *params) 3791 { 3792 struct io_ring_ctx *ctx; 3793 struct io_uring_task *tctx; 3794 struct file *file; 3795 int ret; 3796 3797 if (!entries) 3798 return -EINVAL; 3799 if (entries > IORING_MAX_ENTRIES) { 3800 if (!(p->flags & IORING_SETUP_CLAMP)) 3801 return -EINVAL; 3802 entries = IORING_MAX_ENTRIES; 3803 } 3804 3805 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3806 && !(p->flags & IORING_SETUP_NO_MMAP)) 3807 return -EINVAL; 3808 3809 /* 3810 * Use twice as many entries for the CQ ring. It's possible for the 3811 * application to drive a higher depth than the size of the SQ ring, 3812 * since the sqes are only used at submission time. This allows for 3813 * some flexibility in overcommitting a bit. If the application has 3814 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3815 * of CQ ring entries manually. 3816 */ 3817 p->sq_entries = roundup_pow_of_two(entries); 3818 if (p->flags & IORING_SETUP_CQSIZE) { 3819 /* 3820 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3821 * to a power-of-two, if it isn't already. We do NOT impose 3822 * any cq vs sq ring sizing. 3823 */ 3824 if (!p->cq_entries) 3825 return -EINVAL; 3826 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3827 if (!(p->flags & IORING_SETUP_CLAMP)) 3828 return -EINVAL; 3829 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3830 } 3831 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3832 if (p->cq_entries < p->sq_entries) 3833 return -EINVAL; 3834 } else { 3835 p->cq_entries = 2 * p->sq_entries; 3836 } 3837 3838 ctx = io_ring_ctx_alloc(p); 3839 if (!ctx) 3840 return -ENOMEM; 3841 3842 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3843 !(ctx->flags & IORING_SETUP_IOPOLL) && 3844 !(ctx->flags & IORING_SETUP_SQPOLL)) 3845 ctx->task_complete = true; 3846 3847 /* 3848 * lazy poll_wq activation relies on ->task_complete for synchronisation 3849 * purposes, see io_activate_pollwq() 3850 */ 3851 if (!ctx->task_complete) 3852 ctx->poll_activated = true; 3853 3854 /* 3855 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3856 * space applications don't need to do io completion events 3857 * polling again, they can rely on io_sq_thread to do polling 3858 * work, which can reduce cpu usage and uring_lock contention. 3859 */ 3860 if (ctx->flags & IORING_SETUP_IOPOLL && 3861 !(ctx->flags & IORING_SETUP_SQPOLL)) 3862 ctx->syscall_iopoll = 1; 3863 3864 ctx->compat = in_compat_syscall(); 3865 if (!capable(CAP_IPC_LOCK)) 3866 ctx->user = get_uid(current_user()); 3867 3868 /* 3869 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3870 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3871 */ 3872 ret = -EINVAL; 3873 if (ctx->flags & IORING_SETUP_SQPOLL) { 3874 /* IPI related flags don't make sense with SQPOLL */ 3875 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3876 IORING_SETUP_TASKRUN_FLAG | 3877 IORING_SETUP_DEFER_TASKRUN)) 3878 goto err; 3879 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3880 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3881 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3882 } else { 3883 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3884 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3885 goto err; 3886 ctx->notify_method = TWA_SIGNAL; 3887 } 3888 3889 /* 3890 * For DEFER_TASKRUN we require the completion task to be the same as the 3891 * submission task. This implies that there is only one submitter, so enforce 3892 * that. 3893 */ 3894 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3895 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3896 goto err; 3897 } 3898 3899 /* 3900 * This is just grabbed for accounting purposes. When a process exits, 3901 * the mm is exited and dropped before the files, hence we need to hang 3902 * on to this mm purely for the purposes of being able to unaccount 3903 * memory (locked/pinned vm). It's not used for anything else. 3904 */ 3905 mmgrab(current->mm); 3906 ctx->mm_account = current->mm; 3907 3908 ret = io_allocate_scq_urings(ctx, p); 3909 if (ret) 3910 goto err; 3911 3912 ret = io_sq_offload_create(ctx, p); 3913 if (ret) 3914 goto err; 3915 3916 ret = io_rsrc_init(ctx); 3917 if (ret) 3918 goto err; 3919 3920 p->sq_off.head = offsetof(struct io_rings, sq.head); 3921 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3922 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3923 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3924 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3925 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3926 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3927 p->sq_off.resv1 = 0; 3928 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3929 p->sq_off.user_addr = 0; 3930 3931 p->cq_off.head = offsetof(struct io_rings, cq.head); 3932 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3933 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3934 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3935 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3936 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3937 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3938 p->cq_off.resv1 = 0; 3939 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3940 p->cq_off.user_addr = 0; 3941 3942 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3943 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3944 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3945 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3946 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3947 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3948 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 3949 3950 if (copy_to_user(params, p, sizeof(*p))) { 3951 ret = -EFAULT; 3952 goto err; 3953 } 3954 3955 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3956 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3957 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3958 3959 file = io_uring_get_file(ctx); 3960 if (IS_ERR(file)) { 3961 ret = PTR_ERR(file); 3962 goto err; 3963 } 3964 3965 ret = __io_uring_add_tctx_node(ctx); 3966 if (ret) 3967 goto err_fput; 3968 tctx = current->io_uring; 3969 3970 /* 3971 * Install ring fd as the very last thing, so we don't risk someone 3972 * having closed it before we finish setup 3973 */ 3974 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3975 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3976 else 3977 ret = io_uring_install_fd(file); 3978 if (ret < 0) 3979 goto err_fput; 3980 3981 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3982 return ret; 3983 err: 3984 io_ring_ctx_wait_and_kill(ctx); 3985 return ret; 3986 err_fput: 3987 fput(file); 3988 return ret; 3989 } 3990 3991 /* 3992 * Sets up an aio uring context, and returns the fd. Applications asks for a 3993 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3994 * params structure passed in. 3995 */ 3996 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3997 { 3998 struct io_uring_params p; 3999 int i; 4000 4001 if (copy_from_user(&p, params, sizeof(p))) 4002 return -EFAULT; 4003 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 4004 if (p.resv[i]) 4005 return -EINVAL; 4006 } 4007 4008 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 4009 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 4010 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 4011 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 4012 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 4013 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 4014 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 4015 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY)) 4016 return -EINVAL; 4017 4018 return io_uring_create(entries, &p, params); 4019 } 4020 4021 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 4022 struct io_uring_params __user *, params) 4023 { 4024 return io_uring_setup(entries, params); 4025 } 4026 4027 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 4028 unsigned nr_args) 4029 { 4030 struct io_uring_probe *p; 4031 size_t size; 4032 int i, ret; 4033 4034 size = struct_size(p, ops, nr_args); 4035 if (size == SIZE_MAX) 4036 return -EOVERFLOW; 4037 p = kzalloc(size, GFP_KERNEL); 4038 if (!p) 4039 return -ENOMEM; 4040 4041 ret = -EFAULT; 4042 if (copy_from_user(p, arg, size)) 4043 goto out; 4044 ret = -EINVAL; 4045 if (memchr_inv(p, 0, size)) 4046 goto out; 4047 4048 p->last_op = IORING_OP_LAST - 1; 4049 if (nr_args > IORING_OP_LAST) 4050 nr_args = IORING_OP_LAST; 4051 4052 for (i = 0; i < nr_args; i++) { 4053 p->ops[i].op = i; 4054 if (!io_issue_defs[i].not_supported) 4055 p->ops[i].flags = IO_URING_OP_SUPPORTED; 4056 } 4057 p->ops_len = i; 4058 4059 ret = 0; 4060 if (copy_to_user(arg, p, size)) 4061 ret = -EFAULT; 4062 out: 4063 kfree(p); 4064 return ret; 4065 } 4066 4067 static int io_register_personality(struct io_ring_ctx *ctx) 4068 { 4069 const struct cred *creds; 4070 u32 id; 4071 int ret; 4072 4073 creds = get_current_cred(); 4074 4075 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 4076 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 4077 if (ret < 0) { 4078 put_cred(creds); 4079 return ret; 4080 } 4081 return id; 4082 } 4083 4084 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 4085 void __user *arg, unsigned int nr_args) 4086 { 4087 struct io_uring_restriction *res; 4088 size_t size; 4089 int i, ret; 4090 4091 /* Restrictions allowed only if rings started disabled */ 4092 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4093 return -EBADFD; 4094 4095 /* We allow only a single restrictions registration */ 4096 if (ctx->restrictions.registered) 4097 return -EBUSY; 4098 4099 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 4100 return -EINVAL; 4101 4102 size = array_size(nr_args, sizeof(*res)); 4103 if (size == SIZE_MAX) 4104 return -EOVERFLOW; 4105 4106 res = memdup_user(arg, size); 4107 if (IS_ERR(res)) 4108 return PTR_ERR(res); 4109 4110 ret = 0; 4111 4112 for (i = 0; i < nr_args; i++) { 4113 switch (res[i].opcode) { 4114 case IORING_RESTRICTION_REGISTER_OP: 4115 if (res[i].register_op >= IORING_REGISTER_LAST) { 4116 ret = -EINVAL; 4117 goto out; 4118 } 4119 4120 __set_bit(res[i].register_op, 4121 ctx->restrictions.register_op); 4122 break; 4123 case IORING_RESTRICTION_SQE_OP: 4124 if (res[i].sqe_op >= IORING_OP_LAST) { 4125 ret = -EINVAL; 4126 goto out; 4127 } 4128 4129 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 4130 break; 4131 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 4132 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 4133 break; 4134 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 4135 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 4136 break; 4137 default: 4138 ret = -EINVAL; 4139 goto out; 4140 } 4141 } 4142 4143 out: 4144 /* Reset all restrictions if an error happened */ 4145 if (ret != 0) 4146 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 4147 else 4148 ctx->restrictions.registered = true; 4149 4150 kfree(res); 4151 return ret; 4152 } 4153 4154 static int io_register_enable_rings(struct io_ring_ctx *ctx) 4155 { 4156 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4157 return -EBADFD; 4158 4159 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) { 4160 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4161 /* 4162 * Lazy activation attempts would fail if it was polled before 4163 * submitter_task is set. 4164 */ 4165 if (wq_has_sleeper(&ctx->poll_wq)) 4166 io_activate_pollwq(ctx); 4167 } 4168 4169 if (ctx->restrictions.registered) 4170 ctx->restricted = 1; 4171 4172 ctx->flags &= ~IORING_SETUP_R_DISABLED; 4173 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 4174 wake_up(&ctx->sq_data->wait); 4175 return 0; 4176 } 4177 4178 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 4179 void __user *arg, unsigned len) 4180 { 4181 struct io_uring_task *tctx = current->io_uring; 4182 cpumask_var_t new_mask; 4183 int ret; 4184 4185 if (!tctx || !tctx->io_wq) 4186 return -EINVAL; 4187 4188 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4189 return -ENOMEM; 4190 4191 cpumask_clear(new_mask); 4192 if (len > cpumask_size()) 4193 len = cpumask_size(); 4194 4195 if (in_compat_syscall()) { 4196 ret = compat_get_bitmap(cpumask_bits(new_mask), 4197 (const compat_ulong_t __user *)arg, 4198 len * 8 /* CHAR_BIT */); 4199 } else { 4200 ret = copy_from_user(new_mask, arg, len); 4201 } 4202 4203 if (ret) { 4204 free_cpumask_var(new_mask); 4205 return -EFAULT; 4206 } 4207 4208 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask); 4209 free_cpumask_var(new_mask); 4210 return ret; 4211 } 4212 4213 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 4214 { 4215 struct io_uring_task *tctx = current->io_uring; 4216 4217 if (!tctx || !tctx->io_wq) 4218 return -EINVAL; 4219 4220 return io_wq_cpu_affinity(tctx->io_wq, NULL); 4221 } 4222 4223 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 4224 void __user *arg) 4225 __must_hold(&ctx->uring_lock) 4226 { 4227 struct io_tctx_node *node; 4228 struct io_uring_task *tctx = NULL; 4229 struct io_sq_data *sqd = NULL; 4230 __u32 new_count[2]; 4231 int i, ret; 4232 4233 if (copy_from_user(new_count, arg, sizeof(new_count))) 4234 return -EFAULT; 4235 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4236 if (new_count[i] > INT_MAX) 4237 return -EINVAL; 4238 4239 if (ctx->flags & IORING_SETUP_SQPOLL) { 4240 sqd = ctx->sq_data; 4241 if (sqd) { 4242 /* 4243 * Observe the correct sqd->lock -> ctx->uring_lock 4244 * ordering. Fine to drop uring_lock here, we hold 4245 * a ref to the ctx. 4246 */ 4247 refcount_inc(&sqd->refs); 4248 mutex_unlock(&ctx->uring_lock); 4249 mutex_lock(&sqd->lock); 4250 mutex_lock(&ctx->uring_lock); 4251 if (sqd->thread) 4252 tctx = sqd->thread->io_uring; 4253 } 4254 } else { 4255 tctx = current->io_uring; 4256 } 4257 4258 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 4259 4260 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4261 if (new_count[i]) 4262 ctx->iowq_limits[i] = new_count[i]; 4263 ctx->iowq_limits_set = true; 4264 4265 if (tctx && tctx->io_wq) { 4266 ret = io_wq_max_workers(tctx->io_wq, new_count); 4267 if (ret) 4268 goto err; 4269 } else { 4270 memset(new_count, 0, sizeof(new_count)); 4271 } 4272 4273 if (sqd) { 4274 mutex_unlock(&sqd->lock); 4275 io_put_sq_data(sqd); 4276 } 4277 4278 if (copy_to_user(arg, new_count, sizeof(new_count))) 4279 return -EFAULT; 4280 4281 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 4282 if (sqd) 4283 return 0; 4284 4285 /* now propagate the restriction to all registered users */ 4286 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 4287 struct io_uring_task *tctx = node->task->io_uring; 4288 4289 if (WARN_ON_ONCE(!tctx->io_wq)) 4290 continue; 4291 4292 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4293 new_count[i] = ctx->iowq_limits[i]; 4294 /* ignore errors, it always returns zero anyway */ 4295 (void)io_wq_max_workers(tctx->io_wq, new_count); 4296 } 4297 return 0; 4298 err: 4299 if (sqd) { 4300 mutex_unlock(&sqd->lock); 4301 io_put_sq_data(sqd); 4302 } 4303 return ret; 4304 } 4305 4306 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4307 void __user *arg, unsigned nr_args) 4308 __releases(ctx->uring_lock) 4309 __acquires(ctx->uring_lock) 4310 { 4311 int ret; 4312 4313 /* 4314 * We don't quiesce the refs for register anymore and so it can't be 4315 * dying as we're holding a file ref here. 4316 */ 4317 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4318 return -ENXIO; 4319 4320 if (ctx->submitter_task && ctx->submitter_task != current) 4321 return -EEXIST; 4322 4323 if (ctx->restricted) { 4324 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4325 if (!test_bit(opcode, ctx->restrictions.register_op)) 4326 return -EACCES; 4327 } 4328 4329 switch (opcode) { 4330 case IORING_REGISTER_BUFFERS: 4331 ret = -EFAULT; 4332 if (!arg) 4333 break; 4334 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4335 break; 4336 case IORING_UNREGISTER_BUFFERS: 4337 ret = -EINVAL; 4338 if (arg || nr_args) 4339 break; 4340 ret = io_sqe_buffers_unregister(ctx); 4341 break; 4342 case IORING_REGISTER_FILES: 4343 ret = -EFAULT; 4344 if (!arg) 4345 break; 4346 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4347 break; 4348 case IORING_UNREGISTER_FILES: 4349 ret = -EINVAL; 4350 if (arg || nr_args) 4351 break; 4352 ret = io_sqe_files_unregister(ctx); 4353 break; 4354 case IORING_REGISTER_FILES_UPDATE: 4355 ret = io_register_files_update(ctx, arg, nr_args); 4356 break; 4357 case IORING_REGISTER_EVENTFD: 4358 ret = -EINVAL; 4359 if (nr_args != 1) 4360 break; 4361 ret = io_eventfd_register(ctx, arg, 0); 4362 break; 4363 case IORING_REGISTER_EVENTFD_ASYNC: 4364 ret = -EINVAL; 4365 if (nr_args != 1) 4366 break; 4367 ret = io_eventfd_register(ctx, arg, 1); 4368 break; 4369 case IORING_UNREGISTER_EVENTFD: 4370 ret = -EINVAL; 4371 if (arg || nr_args) 4372 break; 4373 ret = io_eventfd_unregister(ctx); 4374 break; 4375 case IORING_REGISTER_PROBE: 4376 ret = -EINVAL; 4377 if (!arg || nr_args > 256) 4378 break; 4379 ret = io_probe(ctx, arg, nr_args); 4380 break; 4381 case IORING_REGISTER_PERSONALITY: 4382 ret = -EINVAL; 4383 if (arg || nr_args) 4384 break; 4385 ret = io_register_personality(ctx); 4386 break; 4387 case IORING_UNREGISTER_PERSONALITY: 4388 ret = -EINVAL; 4389 if (arg) 4390 break; 4391 ret = io_unregister_personality(ctx, nr_args); 4392 break; 4393 case IORING_REGISTER_ENABLE_RINGS: 4394 ret = -EINVAL; 4395 if (arg || nr_args) 4396 break; 4397 ret = io_register_enable_rings(ctx); 4398 break; 4399 case IORING_REGISTER_RESTRICTIONS: 4400 ret = io_register_restrictions(ctx, arg, nr_args); 4401 break; 4402 case IORING_REGISTER_FILES2: 4403 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4404 break; 4405 case IORING_REGISTER_FILES_UPDATE2: 4406 ret = io_register_rsrc_update(ctx, arg, nr_args, 4407 IORING_RSRC_FILE); 4408 break; 4409 case IORING_REGISTER_BUFFERS2: 4410 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4411 break; 4412 case IORING_REGISTER_BUFFERS_UPDATE: 4413 ret = io_register_rsrc_update(ctx, arg, nr_args, 4414 IORING_RSRC_BUFFER); 4415 break; 4416 case IORING_REGISTER_IOWQ_AFF: 4417 ret = -EINVAL; 4418 if (!arg || !nr_args) 4419 break; 4420 ret = io_register_iowq_aff(ctx, arg, nr_args); 4421 break; 4422 case IORING_UNREGISTER_IOWQ_AFF: 4423 ret = -EINVAL; 4424 if (arg || nr_args) 4425 break; 4426 ret = io_unregister_iowq_aff(ctx); 4427 break; 4428 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4429 ret = -EINVAL; 4430 if (!arg || nr_args != 2) 4431 break; 4432 ret = io_register_iowq_max_workers(ctx, arg); 4433 break; 4434 case IORING_REGISTER_RING_FDS: 4435 ret = io_ringfd_register(ctx, arg, nr_args); 4436 break; 4437 case IORING_UNREGISTER_RING_FDS: 4438 ret = io_ringfd_unregister(ctx, arg, nr_args); 4439 break; 4440 case IORING_REGISTER_PBUF_RING: 4441 ret = -EINVAL; 4442 if (!arg || nr_args != 1) 4443 break; 4444 ret = io_register_pbuf_ring(ctx, arg); 4445 break; 4446 case IORING_UNREGISTER_PBUF_RING: 4447 ret = -EINVAL; 4448 if (!arg || nr_args != 1) 4449 break; 4450 ret = io_unregister_pbuf_ring(ctx, arg); 4451 break; 4452 case IORING_REGISTER_SYNC_CANCEL: 4453 ret = -EINVAL; 4454 if (!arg || nr_args != 1) 4455 break; 4456 ret = io_sync_cancel(ctx, arg); 4457 break; 4458 case IORING_REGISTER_FILE_ALLOC_RANGE: 4459 ret = -EINVAL; 4460 if (!arg || nr_args) 4461 break; 4462 ret = io_register_file_alloc_range(ctx, arg); 4463 break; 4464 default: 4465 ret = -EINVAL; 4466 break; 4467 } 4468 4469 return ret; 4470 } 4471 4472 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4473 void __user *, arg, unsigned int, nr_args) 4474 { 4475 struct io_ring_ctx *ctx; 4476 long ret = -EBADF; 4477 struct fd f; 4478 bool use_registered_ring; 4479 4480 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING); 4481 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING; 4482 4483 if (opcode >= IORING_REGISTER_LAST) 4484 return -EINVAL; 4485 4486 if (use_registered_ring) { 4487 /* 4488 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 4489 * need only dereference our task private array to find it. 4490 */ 4491 struct io_uring_task *tctx = current->io_uring; 4492 4493 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 4494 return -EINVAL; 4495 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 4496 f.file = tctx->registered_rings[fd]; 4497 f.flags = 0; 4498 if (unlikely(!f.file)) 4499 return -EBADF; 4500 } else { 4501 f = fdget(fd); 4502 if (unlikely(!f.file)) 4503 return -EBADF; 4504 ret = -EOPNOTSUPP; 4505 if (!io_is_uring_fops(f.file)) 4506 goto out_fput; 4507 } 4508 4509 ctx = f.file->private_data; 4510 4511 mutex_lock(&ctx->uring_lock); 4512 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4513 mutex_unlock(&ctx->uring_lock); 4514 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4515 out_fput: 4516 fdput(f); 4517 return ret; 4518 } 4519 4520 static int __init io_uring_init(void) 4521 { 4522 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4523 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4524 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4525 } while (0) 4526 4527 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4528 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4529 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4530 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4531 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4532 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4533 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4534 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4535 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4536 BUILD_BUG_SQE_ELEM(8, __u64, off); 4537 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4538 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4539 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4540 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4541 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4542 BUILD_BUG_SQE_ELEM(24, __u32, len); 4543 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4544 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4545 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4546 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4547 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4548 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4549 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4550 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4551 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4552 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4553 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4554 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4555 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4556 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4557 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4558 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4559 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4560 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4561 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4562 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4563 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4564 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4565 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4566 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4567 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4568 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4569 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4570 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4571 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4572 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4573 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4574 4575 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4576 sizeof(struct io_uring_rsrc_update)); 4577 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4578 sizeof(struct io_uring_rsrc_update2)); 4579 4580 /* ->buf_index is u16 */ 4581 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4582 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4583 offsetof(struct io_uring_buf_ring, tail)); 4584 4585 /* should fit into one byte */ 4586 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4587 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4588 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4589 4590 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4591 4592 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4593 4594 io_uring_optable_init(); 4595 4596 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4597 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU); 4598 return 0; 4599 }; 4600 __initcall(io_uring_init); 4601