xref: /openbmc/linux/io_uring/io_uring.c (revision f2bb566f5c977ff010baaa9e5e14d9a75b06e5f2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/io_uring.h>
78 
79 #include <uapi/linux/io_uring.h>
80 
81 #include "io-wq.h"
82 
83 #include "io_uring.h"
84 #include "opdef.h"
85 #include "refs.h"
86 #include "tctx.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 
95 #include "timeout.h"
96 #include "poll.h"
97 #include "alloc_cache.h"
98 
99 #define IORING_MAX_ENTRIES	32768
100 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
101 
102 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
103 				 IORING_REGISTER_LAST + IORING_OP_LAST)
104 
105 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
106 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
107 
108 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
109 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
110 
111 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
112 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
113 				REQ_F_ASYNC_DATA)
114 
115 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
116 				 IO_REQ_CLEAN_FLAGS)
117 
118 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
119 
120 #define IO_COMPL_BATCH			32
121 #define IO_REQ_ALLOC_BATCH		8
122 
123 enum {
124 	IO_CHECK_CQ_OVERFLOW_BIT,
125 	IO_CHECK_CQ_DROPPED_BIT,
126 };
127 
128 enum {
129 	IO_EVENTFD_OP_SIGNAL_BIT,
130 	IO_EVENTFD_OP_FREE_BIT,
131 };
132 
133 struct io_defer_entry {
134 	struct list_head	list;
135 	struct io_kiocb		*req;
136 	u32			seq;
137 };
138 
139 /* requests with any of those set should undergo io_disarm_next() */
140 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
141 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
142 
143 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
144 					 struct task_struct *task,
145 					 bool cancel_all);
146 
147 static void io_dismantle_req(struct io_kiocb *req);
148 static void io_clean_op(struct io_kiocb *req);
149 static void io_queue_sqe(struct io_kiocb *req);
150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx);
151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
152 
153 static struct kmem_cache *req_cachep;
154 
155 struct sock *io_uring_get_socket(struct file *file)
156 {
157 #if defined(CONFIG_UNIX)
158 	if (io_is_uring_fops(file)) {
159 		struct io_ring_ctx *ctx = file->private_data;
160 
161 		return ctx->ring_sock->sk;
162 	}
163 #endif
164 	return NULL;
165 }
166 EXPORT_SYMBOL(io_uring_get_socket);
167 
168 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
169 {
170 	if (!wq_list_empty(&ctx->submit_state.compl_reqs))
171 		__io_submit_flush_completions(ctx);
172 }
173 
174 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
175 {
176 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
177 }
178 
179 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
180 {
181 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
182 }
183 
184 static bool io_match_linked(struct io_kiocb *head)
185 {
186 	struct io_kiocb *req;
187 
188 	io_for_each_link(req, head) {
189 		if (req->flags & REQ_F_INFLIGHT)
190 			return true;
191 	}
192 	return false;
193 }
194 
195 /*
196  * As io_match_task() but protected against racing with linked timeouts.
197  * User must not hold timeout_lock.
198  */
199 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
200 			bool cancel_all)
201 {
202 	bool matched;
203 
204 	if (task && head->task != task)
205 		return false;
206 	if (cancel_all)
207 		return true;
208 
209 	if (head->flags & REQ_F_LINK_TIMEOUT) {
210 		struct io_ring_ctx *ctx = head->ctx;
211 
212 		/* protect against races with linked timeouts */
213 		spin_lock_irq(&ctx->timeout_lock);
214 		matched = io_match_linked(head);
215 		spin_unlock_irq(&ctx->timeout_lock);
216 	} else {
217 		matched = io_match_linked(head);
218 	}
219 	return matched;
220 }
221 
222 static inline void req_fail_link_node(struct io_kiocb *req, int res)
223 {
224 	req_set_fail(req);
225 	io_req_set_res(req, res, 0);
226 }
227 
228 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
229 {
230 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
231 }
232 
233 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
234 {
235 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
236 
237 	complete(&ctx->ref_comp);
238 }
239 
240 static __cold void io_fallback_req_func(struct work_struct *work)
241 {
242 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
243 						fallback_work.work);
244 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
245 	struct io_kiocb *req, *tmp;
246 	bool locked = false;
247 
248 	percpu_ref_get(&ctx->refs);
249 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
250 		req->io_task_work.func(req, &locked);
251 
252 	if (locked) {
253 		io_submit_flush_completions(ctx);
254 		mutex_unlock(&ctx->uring_lock);
255 	}
256 	percpu_ref_put(&ctx->refs);
257 }
258 
259 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
260 {
261 	unsigned hash_buckets = 1U << bits;
262 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
263 
264 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
265 	if (!table->hbs)
266 		return -ENOMEM;
267 
268 	table->hash_bits = bits;
269 	init_hash_table(table, hash_buckets);
270 	return 0;
271 }
272 
273 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
274 {
275 	struct io_ring_ctx *ctx;
276 	int hash_bits;
277 
278 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
279 	if (!ctx)
280 		return NULL;
281 
282 	xa_init(&ctx->io_bl_xa);
283 
284 	/*
285 	 * Use 5 bits less than the max cq entries, that should give us around
286 	 * 32 entries per hash list if totally full and uniformly spread, but
287 	 * don't keep too many buckets to not overconsume memory.
288 	 */
289 	hash_bits = ilog2(p->cq_entries) - 5;
290 	hash_bits = clamp(hash_bits, 1, 8);
291 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
292 		goto err;
293 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
294 		goto err;
295 
296 	ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
297 	if (!ctx->dummy_ubuf)
298 		goto err;
299 	/* set invalid range, so io_import_fixed() fails meeting it */
300 	ctx->dummy_ubuf->ubuf = -1UL;
301 
302 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
303 			    0, GFP_KERNEL))
304 		goto err;
305 
306 	ctx->flags = p->flags;
307 	init_waitqueue_head(&ctx->sqo_sq_wait);
308 	INIT_LIST_HEAD(&ctx->sqd_list);
309 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
310 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
311 	io_alloc_cache_init(&ctx->apoll_cache);
312 	io_alloc_cache_init(&ctx->netmsg_cache);
313 	init_completion(&ctx->ref_comp);
314 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
315 	mutex_init(&ctx->uring_lock);
316 	init_waitqueue_head(&ctx->cq_wait);
317 	spin_lock_init(&ctx->completion_lock);
318 	spin_lock_init(&ctx->timeout_lock);
319 	INIT_WQ_LIST(&ctx->iopoll_list);
320 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
321 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
322 	INIT_LIST_HEAD(&ctx->defer_list);
323 	INIT_LIST_HEAD(&ctx->timeout_list);
324 	INIT_LIST_HEAD(&ctx->ltimeout_list);
325 	spin_lock_init(&ctx->rsrc_ref_lock);
326 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
327 	INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
328 	init_llist_head(&ctx->rsrc_put_llist);
329 	init_llist_head(&ctx->work_llist);
330 	INIT_LIST_HEAD(&ctx->tctx_list);
331 	ctx->submit_state.free_list.next = NULL;
332 	INIT_WQ_LIST(&ctx->locked_free_list);
333 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
334 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
335 	return ctx;
336 err:
337 	kfree(ctx->dummy_ubuf);
338 	kfree(ctx->cancel_table.hbs);
339 	kfree(ctx->cancel_table_locked.hbs);
340 	kfree(ctx->io_bl);
341 	xa_destroy(&ctx->io_bl_xa);
342 	kfree(ctx);
343 	return NULL;
344 }
345 
346 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
347 {
348 	struct io_rings *r = ctx->rings;
349 
350 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
351 	ctx->cq_extra--;
352 }
353 
354 static bool req_need_defer(struct io_kiocb *req, u32 seq)
355 {
356 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
357 		struct io_ring_ctx *ctx = req->ctx;
358 
359 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
360 	}
361 
362 	return false;
363 }
364 
365 static inline void io_req_track_inflight(struct io_kiocb *req)
366 {
367 	if (!(req->flags & REQ_F_INFLIGHT)) {
368 		req->flags |= REQ_F_INFLIGHT;
369 		atomic_inc(&req->task->io_uring->inflight_tracked);
370 	}
371 }
372 
373 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
374 {
375 	if (WARN_ON_ONCE(!req->link))
376 		return NULL;
377 
378 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
379 	req->flags |= REQ_F_LINK_TIMEOUT;
380 
381 	/* linked timeouts should have two refs once prep'ed */
382 	io_req_set_refcount(req);
383 	__io_req_set_refcount(req->link, 2);
384 	return req->link;
385 }
386 
387 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
388 {
389 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
390 		return NULL;
391 	return __io_prep_linked_timeout(req);
392 }
393 
394 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
395 {
396 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
397 }
398 
399 static inline void io_arm_ltimeout(struct io_kiocb *req)
400 {
401 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
402 		__io_arm_ltimeout(req);
403 }
404 
405 static void io_prep_async_work(struct io_kiocb *req)
406 {
407 	const struct io_op_def *def = &io_op_defs[req->opcode];
408 	struct io_ring_ctx *ctx = req->ctx;
409 
410 	if (!(req->flags & REQ_F_CREDS)) {
411 		req->flags |= REQ_F_CREDS;
412 		req->creds = get_current_cred();
413 	}
414 
415 	req->work.list.next = NULL;
416 	req->work.flags = 0;
417 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
418 	if (req->flags & REQ_F_FORCE_ASYNC)
419 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
420 
421 	if (req->file && !io_req_ffs_set(req))
422 		req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT;
423 
424 	if (req->flags & REQ_F_ISREG) {
425 		if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
426 			io_wq_hash_work(&req->work, file_inode(req->file));
427 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
428 		if (def->unbound_nonreg_file)
429 			req->work.flags |= IO_WQ_WORK_UNBOUND;
430 	}
431 }
432 
433 static void io_prep_async_link(struct io_kiocb *req)
434 {
435 	struct io_kiocb *cur;
436 
437 	if (req->flags & REQ_F_LINK_TIMEOUT) {
438 		struct io_ring_ctx *ctx = req->ctx;
439 
440 		spin_lock_irq(&ctx->timeout_lock);
441 		io_for_each_link(cur, req)
442 			io_prep_async_work(cur);
443 		spin_unlock_irq(&ctx->timeout_lock);
444 	} else {
445 		io_for_each_link(cur, req)
446 			io_prep_async_work(cur);
447 	}
448 }
449 
450 void io_queue_iowq(struct io_kiocb *req, bool *dont_use)
451 {
452 	struct io_kiocb *link = io_prep_linked_timeout(req);
453 	struct io_uring_task *tctx = req->task->io_uring;
454 
455 	BUG_ON(!tctx);
456 	BUG_ON(!tctx->io_wq);
457 
458 	/* init ->work of the whole link before punting */
459 	io_prep_async_link(req);
460 
461 	/*
462 	 * Not expected to happen, but if we do have a bug where this _can_
463 	 * happen, catch it here and ensure the request is marked as
464 	 * canceled. That will make io-wq go through the usual work cancel
465 	 * procedure rather than attempt to run this request (or create a new
466 	 * worker for it).
467 	 */
468 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
469 		req->work.flags |= IO_WQ_WORK_CANCEL;
470 
471 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
472 	io_wq_enqueue(tctx->io_wq, &req->work);
473 	if (link)
474 		io_queue_linked_timeout(link);
475 }
476 
477 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
478 {
479 	while (!list_empty(&ctx->defer_list)) {
480 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
481 						struct io_defer_entry, list);
482 
483 		if (req_need_defer(de->req, de->seq))
484 			break;
485 		list_del_init(&de->list);
486 		io_req_task_queue(de->req);
487 		kfree(de);
488 	}
489 }
490 
491 
492 static void io_eventfd_ops(struct rcu_head *rcu)
493 {
494 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
495 	int ops = atomic_xchg(&ev_fd->ops, 0);
496 
497 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
498 		eventfd_signal(ev_fd->cq_ev_fd, 1);
499 
500 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
501 	 * ordering in a race but if references are 0 we know we have to free
502 	 * it regardless.
503 	 */
504 	if (atomic_dec_and_test(&ev_fd->refs)) {
505 		eventfd_ctx_put(ev_fd->cq_ev_fd);
506 		kfree(ev_fd);
507 	}
508 }
509 
510 static void io_eventfd_signal(struct io_ring_ctx *ctx)
511 {
512 	struct io_ev_fd *ev_fd = NULL;
513 
514 	rcu_read_lock();
515 	/*
516 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
517 	 * and eventfd_signal
518 	 */
519 	ev_fd = rcu_dereference(ctx->io_ev_fd);
520 
521 	/*
522 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
523 	 * completed between the NULL check of ctx->io_ev_fd at the start of
524 	 * the function and rcu_read_lock.
525 	 */
526 	if (unlikely(!ev_fd))
527 		goto out;
528 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
529 		goto out;
530 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
531 		goto out;
532 
533 	if (likely(eventfd_signal_allowed())) {
534 		eventfd_signal(ev_fd->cq_ev_fd, 1);
535 	} else {
536 		atomic_inc(&ev_fd->refs);
537 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
538 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
539 		else
540 			atomic_dec(&ev_fd->refs);
541 	}
542 
543 out:
544 	rcu_read_unlock();
545 }
546 
547 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
548 {
549 	bool skip;
550 
551 	spin_lock(&ctx->completion_lock);
552 
553 	/*
554 	 * Eventfd should only get triggered when at least one event has been
555 	 * posted. Some applications rely on the eventfd notification count
556 	 * only changing IFF a new CQE has been added to the CQ ring. There's
557 	 * no depedency on 1:1 relationship between how many times this
558 	 * function is called (and hence the eventfd count) and number of CQEs
559 	 * posted to the CQ ring.
560 	 */
561 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
562 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
563 	spin_unlock(&ctx->completion_lock);
564 	if (skip)
565 		return;
566 
567 	io_eventfd_signal(ctx);
568 }
569 
570 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
571 {
572 	if (ctx->off_timeout_used || ctx->drain_active) {
573 		spin_lock(&ctx->completion_lock);
574 		if (ctx->off_timeout_used)
575 			io_flush_timeouts(ctx);
576 		if (ctx->drain_active)
577 			io_queue_deferred(ctx);
578 		spin_unlock(&ctx->completion_lock);
579 	}
580 	if (ctx->has_evfd)
581 		io_eventfd_flush_signal(ctx);
582 }
583 
584 static inline void io_cqring_ev_posted(struct io_ring_ctx *ctx)
585 {
586 	io_commit_cqring_flush(ctx);
587 	io_cqring_wake(ctx);
588 }
589 
590 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
591 	__releases(ctx->completion_lock)
592 {
593 	io_commit_cqring(ctx);
594 	spin_unlock(&ctx->completion_lock);
595 	io_cqring_ev_posted(ctx);
596 }
597 
598 void io_cq_unlock_post(struct io_ring_ctx *ctx)
599 {
600 	__io_cq_unlock_post(ctx);
601 }
602 
603 /* Returns true if there are no backlogged entries after the flush */
604 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
605 {
606 	bool all_flushed;
607 	size_t cqe_size = sizeof(struct io_uring_cqe);
608 
609 	if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
610 		return false;
611 
612 	if (ctx->flags & IORING_SETUP_CQE32)
613 		cqe_size <<= 1;
614 
615 	io_cq_lock(ctx);
616 	while (!list_empty(&ctx->cq_overflow_list)) {
617 		struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true);
618 		struct io_overflow_cqe *ocqe;
619 
620 		if (!cqe && !force)
621 			break;
622 		ocqe = list_first_entry(&ctx->cq_overflow_list,
623 					struct io_overflow_cqe, list);
624 		if (cqe)
625 			memcpy(cqe, &ocqe->cqe, cqe_size);
626 		else
627 			io_account_cq_overflow(ctx);
628 
629 		list_del(&ocqe->list);
630 		kfree(ocqe);
631 	}
632 
633 	all_flushed = list_empty(&ctx->cq_overflow_list);
634 	if (all_flushed) {
635 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
636 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
637 	}
638 
639 	io_cq_unlock_post(ctx);
640 	return all_flushed;
641 }
642 
643 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
644 {
645 	bool ret = true;
646 
647 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
648 		/* iopoll syncs against uring_lock, not completion_lock */
649 		if (ctx->flags & IORING_SETUP_IOPOLL)
650 			mutex_lock(&ctx->uring_lock);
651 		ret = __io_cqring_overflow_flush(ctx, false);
652 		if (ctx->flags & IORING_SETUP_IOPOLL)
653 			mutex_unlock(&ctx->uring_lock);
654 	}
655 
656 	return ret;
657 }
658 
659 void __io_put_task(struct task_struct *task, int nr)
660 {
661 	struct io_uring_task *tctx = task->io_uring;
662 
663 	percpu_counter_sub(&tctx->inflight, nr);
664 	if (unlikely(atomic_read(&tctx->in_idle)))
665 		wake_up(&tctx->wait);
666 	put_task_struct_many(task, nr);
667 }
668 
669 void io_task_refs_refill(struct io_uring_task *tctx)
670 {
671 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
672 
673 	percpu_counter_add(&tctx->inflight, refill);
674 	refcount_add(refill, &current->usage);
675 	tctx->cached_refs += refill;
676 }
677 
678 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
679 {
680 	struct io_uring_task *tctx = task->io_uring;
681 	unsigned int refs = tctx->cached_refs;
682 
683 	if (refs) {
684 		tctx->cached_refs = 0;
685 		percpu_counter_sub(&tctx->inflight, refs);
686 		put_task_struct_many(task, refs);
687 	}
688 }
689 
690 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
691 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
692 {
693 	struct io_overflow_cqe *ocqe;
694 	size_t ocq_size = sizeof(struct io_overflow_cqe);
695 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
696 
697 	if (is_cqe32)
698 		ocq_size += sizeof(struct io_uring_cqe);
699 
700 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
701 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
702 	if (!ocqe) {
703 		/*
704 		 * If we're in ring overflow flush mode, or in task cancel mode,
705 		 * or cannot allocate an overflow entry, then we need to drop it
706 		 * on the floor.
707 		 */
708 		io_account_cq_overflow(ctx);
709 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
710 		return false;
711 	}
712 	if (list_empty(&ctx->cq_overflow_list)) {
713 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
714 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
715 
716 	}
717 	ocqe->cqe.user_data = user_data;
718 	ocqe->cqe.res = res;
719 	ocqe->cqe.flags = cflags;
720 	if (is_cqe32) {
721 		ocqe->cqe.big_cqe[0] = extra1;
722 		ocqe->cqe.big_cqe[1] = extra2;
723 	}
724 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
725 	return true;
726 }
727 
728 bool io_req_cqe_overflow(struct io_kiocb *req)
729 {
730 	if (!(req->flags & REQ_F_CQE32_INIT)) {
731 		req->extra1 = 0;
732 		req->extra2 = 0;
733 	}
734 	return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
735 					req->cqe.res, req->cqe.flags,
736 					req->extra1, req->extra2);
737 }
738 
739 /*
740  * writes to the cq entry need to come after reading head; the
741  * control dependency is enough as we're using WRITE_ONCE to
742  * fill the cq entry
743  */
744 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow)
745 {
746 	struct io_rings *rings = ctx->rings;
747 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
748 	unsigned int free, queued, len;
749 
750 	/*
751 	 * Posting into the CQ when there are pending overflowed CQEs may break
752 	 * ordering guarantees, which will affect links, F_MORE users and more.
753 	 * Force overflow the completion.
754 	 */
755 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
756 		return NULL;
757 
758 	/* userspace may cheat modifying the tail, be safe and do min */
759 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
760 	free = ctx->cq_entries - queued;
761 	/* we need a contiguous range, limit based on the current array offset */
762 	len = min(free, ctx->cq_entries - off);
763 	if (!len)
764 		return NULL;
765 
766 	if (ctx->flags & IORING_SETUP_CQE32) {
767 		off <<= 1;
768 		len <<= 1;
769 	}
770 
771 	ctx->cqe_cached = &rings->cqes[off];
772 	ctx->cqe_sentinel = ctx->cqe_cached + len;
773 
774 	ctx->cached_cq_tail++;
775 	ctx->cqe_cached++;
776 	if (ctx->flags & IORING_SETUP_CQE32)
777 		ctx->cqe_cached++;
778 	return &rings->cqes[off];
779 }
780 
781 bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
782 		     bool allow_overflow)
783 {
784 	struct io_uring_cqe *cqe;
785 
786 	ctx->cq_extra++;
787 
788 	/*
789 	 * If we can't get a cq entry, userspace overflowed the
790 	 * submission (by quite a lot). Increment the overflow count in
791 	 * the ring.
792 	 */
793 	cqe = io_get_cqe(ctx);
794 	if (likely(cqe)) {
795 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
796 
797 		WRITE_ONCE(cqe->user_data, user_data);
798 		WRITE_ONCE(cqe->res, res);
799 		WRITE_ONCE(cqe->flags, cflags);
800 
801 		if (ctx->flags & IORING_SETUP_CQE32) {
802 			WRITE_ONCE(cqe->big_cqe[0], 0);
803 			WRITE_ONCE(cqe->big_cqe[1], 0);
804 		}
805 		return true;
806 	}
807 
808 	if (allow_overflow)
809 		return io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
810 
811 	return false;
812 }
813 
814 bool io_post_aux_cqe(struct io_ring_ctx *ctx,
815 		     u64 user_data, s32 res, u32 cflags,
816 		     bool allow_overflow)
817 {
818 	bool filled;
819 
820 	io_cq_lock(ctx);
821 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags, allow_overflow);
822 	io_cq_unlock_post(ctx);
823 	return filled;
824 }
825 
826 static void __io_req_complete_put(struct io_kiocb *req)
827 {
828 	/*
829 	 * If we're the last reference to this request, add to our locked
830 	 * free_list cache.
831 	 */
832 	if (req_ref_put_and_test(req)) {
833 		struct io_ring_ctx *ctx = req->ctx;
834 
835 		if (req->flags & IO_REQ_LINK_FLAGS) {
836 			if (req->flags & IO_DISARM_MASK)
837 				io_disarm_next(req);
838 			if (req->link) {
839 				io_req_task_queue(req->link);
840 				req->link = NULL;
841 			}
842 		}
843 		io_req_put_rsrc(req);
844 		/*
845 		 * Selected buffer deallocation in io_clean_op() assumes that
846 		 * we don't hold ->completion_lock. Clean them here to avoid
847 		 * deadlocks.
848 		 */
849 		io_put_kbuf_comp(req);
850 		io_dismantle_req(req);
851 		io_put_task(req->task, 1);
852 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
853 		ctx->locked_free_nr++;
854 	}
855 }
856 
857 void __io_req_complete_post(struct io_kiocb *req)
858 {
859 	if (!(req->flags & REQ_F_CQE_SKIP))
860 		__io_fill_cqe_req(req->ctx, req);
861 	__io_req_complete_put(req);
862 }
863 
864 void io_req_complete_post(struct io_kiocb *req)
865 {
866 	struct io_ring_ctx *ctx = req->ctx;
867 
868 	io_cq_lock(ctx);
869 	__io_req_complete_post(req);
870 	io_cq_unlock_post(ctx);
871 }
872 
873 inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags)
874 {
875 	io_req_complete_post(req);
876 }
877 
878 void io_req_complete_failed(struct io_kiocb *req, s32 res)
879 {
880 	const struct io_op_def *def = &io_op_defs[req->opcode];
881 
882 	req_set_fail(req);
883 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
884 	if (def->fail)
885 		def->fail(req);
886 	io_req_complete_post(req);
887 }
888 
889 /*
890  * Don't initialise the fields below on every allocation, but do that in
891  * advance and keep them valid across allocations.
892  */
893 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
894 {
895 	req->ctx = ctx;
896 	req->link = NULL;
897 	req->async_data = NULL;
898 	/* not necessary, but safer to zero */
899 	req->cqe.res = 0;
900 }
901 
902 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
903 					struct io_submit_state *state)
904 {
905 	spin_lock(&ctx->completion_lock);
906 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
907 	ctx->locked_free_nr = 0;
908 	spin_unlock(&ctx->completion_lock);
909 }
910 
911 /*
912  * A request might get retired back into the request caches even before opcode
913  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
914  * Because of that, io_alloc_req() should be called only under ->uring_lock
915  * and with extra caution to not get a request that is still worked on.
916  */
917 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
918 	__must_hold(&ctx->uring_lock)
919 {
920 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
921 	void *reqs[IO_REQ_ALLOC_BATCH];
922 	int ret, i;
923 
924 	/*
925 	 * If we have more than a batch's worth of requests in our IRQ side
926 	 * locked cache, grab the lock and move them over to our submission
927 	 * side cache.
928 	 */
929 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
930 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
931 		if (!io_req_cache_empty(ctx))
932 			return true;
933 	}
934 
935 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
936 
937 	/*
938 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
939 	 * retry single alloc to be on the safe side.
940 	 */
941 	if (unlikely(ret <= 0)) {
942 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
943 		if (!reqs[0])
944 			return false;
945 		ret = 1;
946 	}
947 
948 	percpu_ref_get_many(&ctx->refs, ret);
949 	for (i = 0; i < ret; i++) {
950 		struct io_kiocb *req = reqs[i];
951 
952 		io_preinit_req(req, ctx);
953 		io_req_add_to_cache(req, ctx);
954 	}
955 	return true;
956 }
957 
958 static inline void io_dismantle_req(struct io_kiocb *req)
959 {
960 	unsigned int flags = req->flags;
961 
962 	if (unlikely(flags & IO_REQ_CLEAN_FLAGS))
963 		io_clean_op(req);
964 	if (!(flags & REQ_F_FIXED_FILE))
965 		io_put_file(req->file);
966 }
967 
968 __cold void io_free_req(struct io_kiocb *req)
969 {
970 	struct io_ring_ctx *ctx = req->ctx;
971 
972 	io_req_put_rsrc(req);
973 	io_dismantle_req(req);
974 	io_put_task(req->task, 1);
975 
976 	spin_lock(&ctx->completion_lock);
977 	wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
978 	ctx->locked_free_nr++;
979 	spin_unlock(&ctx->completion_lock);
980 }
981 
982 static void __io_req_find_next_prep(struct io_kiocb *req)
983 {
984 	struct io_ring_ctx *ctx = req->ctx;
985 
986 	io_cq_lock(ctx);
987 	io_disarm_next(req);
988 	io_cq_unlock_post(ctx);
989 }
990 
991 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
992 {
993 	struct io_kiocb *nxt;
994 
995 	/*
996 	 * If LINK is set, we have dependent requests in this chain. If we
997 	 * didn't fail this request, queue the first one up, moving any other
998 	 * dependencies to the next request. In case of failure, fail the rest
999 	 * of the chain.
1000 	 */
1001 	if (unlikely(req->flags & IO_DISARM_MASK))
1002 		__io_req_find_next_prep(req);
1003 	nxt = req->link;
1004 	req->link = NULL;
1005 	return nxt;
1006 }
1007 
1008 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
1009 {
1010 	if (!ctx)
1011 		return;
1012 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1013 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1014 	if (*locked) {
1015 		io_submit_flush_completions(ctx);
1016 		mutex_unlock(&ctx->uring_lock);
1017 		*locked = false;
1018 	}
1019 	percpu_ref_put(&ctx->refs);
1020 }
1021 
1022 static unsigned int handle_tw_list(struct llist_node *node,
1023 				   struct io_ring_ctx **ctx, bool *locked,
1024 				   struct llist_node *last)
1025 {
1026 	unsigned int count = 0;
1027 
1028 	while (node != last) {
1029 		struct llist_node *next = node->next;
1030 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1031 						    io_task_work.node);
1032 
1033 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1034 
1035 		if (req->ctx != *ctx) {
1036 			ctx_flush_and_put(*ctx, locked);
1037 			*ctx = req->ctx;
1038 			/* if not contended, grab and improve batching */
1039 			*locked = mutex_trylock(&(*ctx)->uring_lock);
1040 			percpu_ref_get(&(*ctx)->refs);
1041 		}
1042 		req->io_task_work.func(req, locked);
1043 		node = next;
1044 		count++;
1045 	}
1046 
1047 	return count;
1048 }
1049 
1050 /**
1051  * io_llist_xchg - swap all entries in a lock-less list
1052  * @head:	the head of lock-less list to delete all entries
1053  * @new:	new entry as the head of the list
1054  *
1055  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1056  * The order of entries returned is from the newest to the oldest added one.
1057  */
1058 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1059 					       struct llist_node *new)
1060 {
1061 	return xchg(&head->first, new);
1062 }
1063 
1064 /**
1065  * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1066  * @head:	the head of lock-less list to delete all entries
1067  * @old:	expected old value of the first entry of the list
1068  * @new:	new entry as the head of the list
1069  *
1070  * perform a cmpxchg on the first entry of the list.
1071  */
1072 
1073 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1074 						  struct llist_node *old,
1075 						  struct llist_node *new)
1076 {
1077 	return cmpxchg(&head->first, old, new);
1078 }
1079 
1080 void tctx_task_work(struct callback_head *cb)
1081 {
1082 	bool uring_locked = false;
1083 	struct io_ring_ctx *ctx = NULL;
1084 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1085 						  task_work);
1086 	struct llist_node fake = {};
1087 	struct llist_node *node = io_llist_xchg(&tctx->task_list, &fake);
1088 	unsigned int loops = 1;
1089 	unsigned int count = handle_tw_list(node, &ctx, &uring_locked, NULL);
1090 
1091 	node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1092 	while (node != &fake) {
1093 		loops++;
1094 		node = io_llist_xchg(&tctx->task_list, &fake);
1095 		count += handle_tw_list(node, &ctx, &uring_locked, &fake);
1096 		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1097 	}
1098 
1099 	ctx_flush_and_put(ctx, &uring_locked);
1100 
1101 	/* relaxed read is enough as only the task itself sets ->in_idle */
1102 	if (unlikely(atomic_read(&tctx->in_idle)))
1103 		io_uring_drop_tctx_refs(current);
1104 
1105 	trace_io_uring_task_work_run(tctx, count, loops);
1106 }
1107 
1108 static void io_req_local_work_add(struct io_kiocb *req)
1109 {
1110 	struct io_ring_ctx *ctx = req->ctx;
1111 
1112 	if (!llist_add(&req->io_task_work.node, &ctx->work_llist))
1113 		return;
1114 	/* need it for the following io_cqring_wake() */
1115 	smp_mb__after_atomic();
1116 
1117 	if (unlikely(atomic_read(&req->task->io_uring->in_idle))) {
1118 		io_move_task_work_from_local(ctx);
1119 		return;
1120 	}
1121 
1122 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1123 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1124 
1125 	if (ctx->has_evfd)
1126 		io_eventfd_signal(ctx);
1127 	__io_cqring_wake(ctx);
1128 }
1129 
1130 static inline void __io_req_task_work_add(struct io_kiocb *req, bool allow_local)
1131 {
1132 	struct io_uring_task *tctx = req->task->io_uring;
1133 	struct io_ring_ctx *ctx = req->ctx;
1134 	struct llist_node *node;
1135 
1136 	if (allow_local && ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1137 		io_req_local_work_add(req);
1138 		return;
1139 	}
1140 
1141 	/* task_work already pending, we're done */
1142 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1143 		return;
1144 
1145 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1146 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1147 
1148 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1149 		return;
1150 
1151 	node = llist_del_all(&tctx->task_list);
1152 
1153 	while (node) {
1154 		req = container_of(node, struct io_kiocb, io_task_work.node);
1155 		node = node->next;
1156 		if (llist_add(&req->io_task_work.node,
1157 			      &req->ctx->fallback_llist))
1158 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1159 	}
1160 }
1161 
1162 void io_req_task_work_add(struct io_kiocb *req)
1163 {
1164 	__io_req_task_work_add(req, true);
1165 }
1166 
1167 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1168 {
1169 	struct llist_node *node;
1170 
1171 	node = llist_del_all(&ctx->work_llist);
1172 	while (node) {
1173 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1174 						    io_task_work.node);
1175 
1176 		node = node->next;
1177 		__io_req_task_work_add(req, false);
1178 	}
1179 }
1180 
1181 int __io_run_local_work(struct io_ring_ctx *ctx, bool *locked)
1182 {
1183 	struct llist_node *node;
1184 	struct llist_node fake;
1185 	struct llist_node *current_final = NULL;
1186 	int ret;
1187 	unsigned int loops = 1;
1188 
1189 	if (unlikely(ctx->submitter_task != current))
1190 		return -EEXIST;
1191 
1192 	node = io_llist_xchg(&ctx->work_llist, &fake);
1193 	ret = 0;
1194 again:
1195 	while (node != current_final) {
1196 		struct llist_node *next = node->next;
1197 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1198 						    io_task_work.node);
1199 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1200 		req->io_task_work.func(req, locked);
1201 		ret++;
1202 		node = next;
1203 	}
1204 
1205 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1206 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1207 
1208 	node = io_llist_cmpxchg(&ctx->work_llist, &fake, NULL);
1209 	if (node != &fake) {
1210 		loops++;
1211 		current_final = &fake;
1212 		node = io_llist_xchg(&ctx->work_llist, &fake);
1213 		goto again;
1214 	}
1215 
1216 	if (*locked)
1217 		io_submit_flush_completions(ctx);
1218 	trace_io_uring_local_work_run(ctx, ret, loops);
1219 	return ret;
1220 
1221 }
1222 
1223 int io_run_local_work(struct io_ring_ctx *ctx)
1224 {
1225 	bool locked;
1226 	int ret;
1227 
1228 	if (llist_empty(&ctx->work_llist))
1229 		return 0;
1230 
1231 	__set_current_state(TASK_RUNNING);
1232 	locked = mutex_trylock(&ctx->uring_lock);
1233 	ret = __io_run_local_work(ctx, &locked);
1234 	if (locked)
1235 		mutex_unlock(&ctx->uring_lock);
1236 
1237 	return ret;
1238 }
1239 
1240 static void io_req_tw_post(struct io_kiocb *req, bool *locked)
1241 {
1242 	io_req_complete_post(req);
1243 }
1244 
1245 void io_req_tw_post_queue(struct io_kiocb *req, s32 res, u32 cflags)
1246 {
1247 	io_req_set_res(req, res, cflags);
1248 	req->io_task_work.func = io_req_tw_post;
1249 	io_req_task_work_add(req);
1250 }
1251 
1252 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
1253 {
1254 	/* not needed for normal modes, but SQPOLL depends on it */
1255 	io_tw_lock(req->ctx, locked);
1256 	io_req_complete_failed(req, req->cqe.res);
1257 }
1258 
1259 void io_req_task_submit(struct io_kiocb *req, bool *locked)
1260 {
1261 	io_tw_lock(req->ctx, locked);
1262 	/* req->task == current here, checking PF_EXITING is safe */
1263 	if (likely(!(req->task->flags & PF_EXITING)))
1264 		io_queue_sqe(req);
1265 	else
1266 		io_req_complete_failed(req, -EFAULT);
1267 }
1268 
1269 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1270 {
1271 	io_req_set_res(req, ret, 0);
1272 	req->io_task_work.func = io_req_task_cancel;
1273 	io_req_task_work_add(req);
1274 }
1275 
1276 void io_req_task_queue(struct io_kiocb *req)
1277 {
1278 	req->io_task_work.func = io_req_task_submit;
1279 	io_req_task_work_add(req);
1280 }
1281 
1282 void io_queue_next(struct io_kiocb *req)
1283 {
1284 	struct io_kiocb *nxt = io_req_find_next(req);
1285 
1286 	if (nxt)
1287 		io_req_task_queue(nxt);
1288 }
1289 
1290 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1291 	__must_hold(&ctx->uring_lock)
1292 {
1293 	struct task_struct *task = NULL;
1294 	int task_refs = 0;
1295 
1296 	do {
1297 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1298 						    comp_list);
1299 
1300 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1301 			if (req->flags & REQ_F_REFCOUNT) {
1302 				node = req->comp_list.next;
1303 				if (!req_ref_put_and_test(req))
1304 					continue;
1305 			}
1306 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1307 				struct async_poll *apoll = req->apoll;
1308 
1309 				if (apoll->double_poll)
1310 					kfree(apoll->double_poll);
1311 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1312 					kfree(apoll);
1313 				req->flags &= ~REQ_F_POLLED;
1314 			}
1315 			if (req->flags & IO_REQ_LINK_FLAGS)
1316 				io_queue_next(req);
1317 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1318 				io_clean_op(req);
1319 		}
1320 		if (!(req->flags & REQ_F_FIXED_FILE))
1321 			io_put_file(req->file);
1322 
1323 		io_req_put_rsrc_locked(req, ctx);
1324 
1325 		if (req->task != task) {
1326 			if (task)
1327 				io_put_task(task, task_refs);
1328 			task = req->task;
1329 			task_refs = 0;
1330 		}
1331 		task_refs++;
1332 		node = req->comp_list.next;
1333 		io_req_add_to_cache(req, ctx);
1334 	} while (node);
1335 
1336 	if (task)
1337 		io_put_task(task, task_refs);
1338 }
1339 
1340 static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1341 	__must_hold(&ctx->uring_lock)
1342 {
1343 	struct io_wq_work_node *node, *prev;
1344 	struct io_submit_state *state = &ctx->submit_state;
1345 
1346 	io_cq_lock(ctx);
1347 	wq_list_for_each(node, prev, &state->compl_reqs) {
1348 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1349 					    comp_list);
1350 
1351 		if (!(req->flags & REQ_F_CQE_SKIP))
1352 			__io_fill_cqe_req(ctx, req);
1353 	}
1354 	__io_cq_unlock_post(ctx);
1355 
1356 	io_free_batch_list(ctx, state->compl_reqs.first);
1357 	INIT_WQ_LIST(&state->compl_reqs);
1358 }
1359 
1360 /*
1361  * Drop reference to request, return next in chain (if there is one) if this
1362  * was the last reference to this request.
1363  */
1364 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
1365 {
1366 	struct io_kiocb *nxt = NULL;
1367 
1368 	if (req_ref_put_and_test(req)) {
1369 		if (unlikely(req->flags & IO_REQ_LINK_FLAGS))
1370 			nxt = io_req_find_next(req);
1371 		io_free_req(req);
1372 	}
1373 	return nxt;
1374 }
1375 
1376 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1377 {
1378 	/* See comment at the top of this file */
1379 	smp_rmb();
1380 	return __io_cqring_events(ctx);
1381 }
1382 
1383 /*
1384  * We can't just wait for polled events to come to us, we have to actively
1385  * find and complete them.
1386  */
1387 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1388 {
1389 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1390 		return;
1391 
1392 	mutex_lock(&ctx->uring_lock);
1393 	while (!wq_list_empty(&ctx->iopoll_list)) {
1394 		/* let it sleep and repeat later if can't complete a request */
1395 		if (io_do_iopoll(ctx, true) == 0)
1396 			break;
1397 		/*
1398 		 * Ensure we allow local-to-the-cpu processing to take place,
1399 		 * in this case we need to ensure that we reap all events.
1400 		 * Also let task_work, etc. to progress by releasing the mutex
1401 		 */
1402 		if (need_resched()) {
1403 			mutex_unlock(&ctx->uring_lock);
1404 			cond_resched();
1405 			mutex_lock(&ctx->uring_lock);
1406 		}
1407 	}
1408 	mutex_unlock(&ctx->uring_lock);
1409 }
1410 
1411 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1412 {
1413 	unsigned int nr_events = 0;
1414 	int ret = 0;
1415 	unsigned long check_cq;
1416 
1417 	if (!io_allowed_run_tw(ctx))
1418 		return -EEXIST;
1419 
1420 	check_cq = READ_ONCE(ctx->check_cq);
1421 	if (unlikely(check_cq)) {
1422 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1423 			__io_cqring_overflow_flush(ctx, false);
1424 		/*
1425 		 * Similarly do not spin if we have not informed the user of any
1426 		 * dropped CQE.
1427 		 */
1428 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1429 			return -EBADR;
1430 	}
1431 	/*
1432 	 * Don't enter poll loop if we already have events pending.
1433 	 * If we do, we can potentially be spinning for commands that
1434 	 * already triggered a CQE (eg in error).
1435 	 */
1436 	if (io_cqring_events(ctx))
1437 		return 0;
1438 
1439 	do {
1440 		/*
1441 		 * If a submit got punted to a workqueue, we can have the
1442 		 * application entering polling for a command before it gets
1443 		 * issued. That app will hold the uring_lock for the duration
1444 		 * of the poll right here, so we need to take a breather every
1445 		 * now and then to ensure that the issue has a chance to add
1446 		 * the poll to the issued list. Otherwise we can spin here
1447 		 * forever, while the workqueue is stuck trying to acquire the
1448 		 * very same mutex.
1449 		 */
1450 		if (wq_list_empty(&ctx->iopoll_list) ||
1451 		    io_task_work_pending(ctx)) {
1452 			u32 tail = ctx->cached_cq_tail;
1453 
1454 			(void) io_run_local_work_locked(ctx);
1455 
1456 			if (task_work_pending(current) ||
1457 			    wq_list_empty(&ctx->iopoll_list)) {
1458 				mutex_unlock(&ctx->uring_lock);
1459 				io_run_task_work();
1460 				mutex_lock(&ctx->uring_lock);
1461 			}
1462 			/* some requests don't go through iopoll_list */
1463 			if (tail != ctx->cached_cq_tail ||
1464 			    wq_list_empty(&ctx->iopoll_list))
1465 				break;
1466 		}
1467 		ret = io_do_iopoll(ctx, !min);
1468 		if (ret < 0)
1469 			break;
1470 		nr_events += ret;
1471 		ret = 0;
1472 	} while (nr_events < min && !need_resched());
1473 
1474 	return ret;
1475 }
1476 
1477 void io_req_task_complete(struct io_kiocb *req, bool *locked)
1478 {
1479 	if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)) {
1480 		unsigned issue_flags = *locked ? 0 : IO_URING_F_UNLOCKED;
1481 
1482 		req->cqe.flags |= io_put_kbuf(req, issue_flags);
1483 	}
1484 
1485 	if (*locked)
1486 		io_req_complete_defer(req);
1487 	else
1488 		io_req_complete_post(req);
1489 }
1490 
1491 /*
1492  * After the iocb has been issued, it's safe to be found on the poll list.
1493  * Adding the kiocb to the list AFTER submission ensures that we don't
1494  * find it from a io_do_iopoll() thread before the issuer is done
1495  * accessing the kiocb cookie.
1496  */
1497 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1498 {
1499 	struct io_ring_ctx *ctx = req->ctx;
1500 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1501 
1502 	/* workqueue context doesn't hold uring_lock, grab it now */
1503 	if (unlikely(needs_lock))
1504 		mutex_lock(&ctx->uring_lock);
1505 
1506 	/*
1507 	 * Track whether we have multiple files in our lists. This will impact
1508 	 * how we do polling eventually, not spinning if we're on potentially
1509 	 * different devices.
1510 	 */
1511 	if (wq_list_empty(&ctx->iopoll_list)) {
1512 		ctx->poll_multi_queue = false;
1513 	} else if (!ctx->poll_multi_queue) {
1514 		struct io_kiocb *list_req;
1515 
1516 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1517 					comp_list);
1518 		if (list_req->file != req->file)
1519 			ctx->poll_multi_queue = true;
1520 	}
1521 
1522 	/*
1523 	 * For fast devices, IO may have already completed. If it has, add
1524 	 * it to the front so we find it first.
1525 	 */
1526 	if (READ_ONCE(req->iopoll_completed))
1527 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1528 	else
1529 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1530 
1531 	if (unlikely(needs_lock)) {
1532 		/*
1533 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1534 		 * in sq thread task context or in io worker task context. If
1535 		 * current task context is sq thread, we don't need to check
1536 		 * whether should wake up sq thread.
1537 		 */
1538 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1539 		    wq_has_sleeper(&ctx->sq_data->wait))
1540 			wake_up(&ctx->sq_data->wait);
1541 
1542 		mutex_unlock(&ctx->uring_lock);
1543 	}
1544 }
1545 
1546 static bool io_bdev_nowait(struct block_device *bdev)
1547 {
1548 	return !bdev || bdev_nowait(bdev);
1549 }
1550 
1551 /*
1552  * If we tracked the file through the SCM inflight mechanism, we could support
1553  * any file. For now, just ensure that anything potentially problematic is done
1554  * inline.
1555  */
1556 static bool __io_file_supports_nowait(struct file *file, umode_t mode)
1557 {
1558 	if (S_ISBLK(mode)) {
1559 		if (IS_ENABLED(CONFIG_BLOCK) &&
1560 		    io_bdev_nowait(I_BDEV(file->f_mapping->host)))
1561 			return true;
1562 		return false;
1563 	}
1564 	if (S_ISSOCK(mode))
1565 		return true;
1566 	if (S_ISREG(mode)) {
1567 		if (IS_ENABLED(CONFIG_BLOCK) &&
1568 		    io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
1569 		    !io_is_uring_fops(file))
1570 			return true;
1571 		return false;
1572 	}
1573 
1574 	/* any ->read/write should understand O_NONBLOCK */
1575 	if (file->f_flags & O_NONBLOCK)
1576 		return true;
1577 	return file->f_mode & FMODE_NOWAIT;
1578 }
1579 
1580 /*
1581  * If we tracked the file through the SCM inflight mechanism, we could support
1582  * any file. For now, just ensure that anything potentially problematic is done
1583  * inline.
1584  */
1585 unsigned int io_file_get_flags(struct file *file)
1586 {
1587 	umode_t mode = file_inode(file)->i_mode;
1588 	unsigned int res = 0;
1589 
1590 	if (S_ISREG(mode))
1591 		res |= FFS_ISREG;
1592 	if (__io_file_supports_nowait(file, mode))
1593 		res |= FFS_NOWAIT;
1594 	return res;
1595 }
1596 
1597 bool io_alloc_async_data(struct io_kiocb *req)
1598 {
1599 	WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
1600 	req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
1601 	if (req->async_data) {
1602 		req->flags |= REQ_F_ASYNC_DATA;
1603 		return false;
1604 	}
1605 	return true;
1606 }
1607 
1608 int io_req_prep_async(struct io_kiocb *req)
1609 {
1610 	const struct io_op_def *def = &io_op_defs[req->opcode];
1611 
1612 	/* assign early for deferred execution for non-fixed file */
1613 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE))
1614 		req->file = io_file_get_normal(req, req->cqe.fd);
1615 	if (!def->prep_async)
1616 		return 0;
1617 	if (WARN_ON_ONCE(req_has_async_data(req)))
1618 		return -EFAULT;
1619 	if (!io_op_defs[req->opcode].manual_alloc) {
1620 		if (io_alloc_async_data(req))
1621 			return -EAGAIN;
1622 	}
1623 	return def->prep_async(req);
1624 }
1625 
1626 static u32 io_get_sequence(struct io_kiocb *req)
1627 {
1628 	u32 seq = req->ctx->cached_sq_head;
1629 	struct io_kiocb *cur;
1630 
1631 	/* need original cached_sq_head, but it was increased for each req */
1632 	io_for_each_link(cur, req)
1633 		seq--;
1634 	return seq;
1635 }
1636 
1637 static __cold void io_drain_req(struct io_kiocb *req)
1638 {
1639 	struct io_ring_ctx *ctx = req->ctx;
1640 	struct io_defer_entry *de;
1641 	int ret;
1642 	u32 seq = io_get_sequence(req);
1643 
1644 	/* Still need defer if there is pending req in defer list. */
1645 	spin_lock(&ctx->completion_lock);
1646 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1647 		spin_unlock(&ctx->completion_lock);
1648 queue:
1649 		ctx->drain_active = false;
1650 		io_req_task_queue(req);
1651 		return;
1652 	}
1653 	spin_unlock(&ctx->completion_lock);
1654 
1655 	ret = io_req_prep_async(req);
1656 	if (ret) {
1657 fail:
1658 		io_req_complete_failed(req, ret);
1659 		return;
1660 	}
1661 	io_prep_async_link(req);
1662 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1663 	if (!de) {
1664 		ret = -ENOMEM;
1665 		goto fail;
1666 	}
1667 
1668 	spin_lock(&ctx->completion_lock);
1669 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1670 		spin_unlock(&ctx->completion_lock);
1671 		kfree(de);
1672 		goto queue;
1673 	}
1674 
1675 	trace_io_uring_defer(req);
1676 	de->req = req;
1677 	de->seq = seq;
1678 	list_add_tail(&de->list, &ctx->defer_list);
1679 	spin_unlock(&ctx->completion_lock);
1680 }
1681 
1682 static void io_clean_op(struct io_kiocb *req)
1683 {
1684 	if (req->flags & REQ_F_BUFFER_SELECTED) {
1685 		spin_lock(&req->ctx->completion_lock);
1686 		io_put_kbuf_comp(req);
1687 		spin_unlock(&req->ctx->completion_lock);
1688 	}
1689 
1690 	if (req->flags & REQ_F_NEED_CLEANUP) {
1691 		const struct io_op_def *def = &io_op_defs[req->opcode];
1692 
1693 		if (def->cleanup)
1694 			def->cleanup(req);
1695 	}
1696 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
1697 		kfree(req->apoll->double_poll);
1698 		kfree(req->apoll);
1699 		req->apoll = NULL;
1700 	}
1701 	if (req->flags & REQ_F_INFLIGHT) {
1702 		struct io_uring_task *tctx = req->task->io_uring;
1703 
1704 		atomic_dec(&tctx->inflight_tracked);
1705 	}
1706 	if (req->flags & REQ_F_CREDS)
1707 		put_cred(req->creds);
1708 	if (req->flags & REQ_F_ASYNC_DATA) {
1709 		kfree(req->async_data);
1710 		req->async_data = NULL;
1711 	}
1712 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
1713 }
1714 
1715 static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags)
1716 {
1717 	if (req->file || !io_op_defs[req->opcode].needs_file)
1718 		return true;
1719 
1720 	if (req->flags & REQ_F_FIXED_FILE)
1721 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1722 	else
1723 		req->file = io_file_get_normal(req, req->cqe.fd);
1724 
1725 	return !!req->file;
1726 }
1727 
1728 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1729 {
1730 	const struct io_op_def *def = &io_op_defs[req->opcode];
1731 	const struct cred *creds = NULL;
1732 	int ret;
1733 
1734 	if (unlikely(!io_assign_file(req, issue_flags)))
1735 		return -EBADF;
1736 
1737 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1738 		creds = override_creds(req->creds);
1739 
1740 	if (!def->audit_skip)
1741 		audit_uring_entry(req->opcode);
1742 
1743 	ret = def->issue(req, issue_flags);
1744 
1745 	if (!def->audit_skip)
1746 		audit_uring_exit(!ret, ret);
1747 
1748 	if (creds)
1749 		revert_creds(creds);
1750 
1751 	if (ret == IOU_OK) {
1752 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1753 			io_req_complete_defer(req);
1754 		else
1755 			io_req_complete_post(req);
1756 	} else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1757 		return ret;
1758 
1759 	/* If the op doesn't have a file, we're not polling for it */
1760 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && req->file)
1761 		io_iopoll_req_issued(req, issue_flags);
1762 
1763 	return 0;
1764 }
1765 
1766 int io_poll_issue(struct io_kiocb *req, bool *locked)
1767 {
1768 	io_tw_lock(req->ctx, locked);
1769 	if (unlikely(req->task->flags & PF_EXITING))
1770 		return -EFAULT;
1771 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT);
1772 }
1773 
1774 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1775 {
1776 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1777 
1778 	req = io_put_req_find_next(req);
1779 	return req ? &req->work : NULL;
1780 }
1781 
1782 void io_wq_submit_work(struct io_wq_work *work)
1783 {
1784 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1785 	const struct io_op_def *def = &io_op_defs[req->opcode];
1786 	unsigned int issue_flags = IO_URING_F_UNLOCKED;
1787 	bool needs_poll = false;
1788 	int ret = 0, err = -ECANCELED;
1789 
1790 	/* one will be dropped by ->io_free_work() after returning to io-wq */
1791 	if (!(req->flags & REQ_F_REFCOUNT))
1792 		__io_req_set_refcount(req, 2);
1793 	else
1794 		req_ref_get(req);
1795 
1796 	io_arm_ltimeout(req);
1797 
1798 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1799 	if (work->flags & IO_WQ_WORK_CANCEL) {
1800 fail:
1801 		io_req_task_queue_fail(req, err);
1802 		return;
1803 	}
1804 	if (!io_assign_file(req, issue_flags)) {
1805 		err = -EBADF;
1806 		work->flags |= IO_WQ_WORK_CANCEL;
1807 		goto fail;
1808 	}
1809 
1810 	if (req->flags & REQ_F_FORCE_ASYNC) {
1811 		bool opcode_poll = def->pollin || def->pollout;
1812 
1813 		if (opcode_poll && file_can_poll(req->file)) {
1814 			needs_poll = true;
1815 			issue_flags |= IO_URING_F_NONBLOCK;
1816 		}
1817 	}
1818 
1819 	do {
1820 		ret = io_issue_sqe(req, issue_flags);
1821 		if (ret != -EAGAIN)
1822 			break;
1823 		/*
1824 		 * We can get EAGAIN for iopolled IO even though we're
1825 		 * forcing a sync submission from here, since we can't
1826 		 * wait for request slots on the block side.
1827 		 */
1828 		if (!needs_poll) {
1829 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1830 				break;
1831 			cond_resched();
1832 			continue;
1833 		}
1834 
1835 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1836 			return;
1837 		/* aborted or ready, in either case retry blocking */
1838 		needs_poll = false;
1839 		issue_flags &= ~IO_URING_F_NONBLOCK;
1840 	} while (1);
1841 
1842 	/* avoid locking problems by failing it from a clean context */
1843 	if (ret < 0)
1844 		io_req_task_queue_fail(req, ret);
1845 }
1846 
1847 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1848 				      unsigned int issue_flags)
1849 {
1850 	struct io_ring_ctx *ctx = req->ctx;
1851 	struct file *file = NULL;
1852 	unsigned long file_ptr;
1853 
1854 	io_ring_submit_lock(ctx, issue_flags);
1855 
1856 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1857 		goto out;
1858 	fd = array_index_nospec(fd, ctx->nr_user_files);
1859 	file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
1860 	file = (struct file *) (file_ptr & FFS_MASK);
1861 	file_ptr &= ~FFS_MASK;
1862 	/* mask in overlapping REQ_F and FFS bits */
1863 	req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT);
1864 	io_req_set_rsrc_node(req, ctx, 0);
1865 out:
1866 	io_ring_submit_unlock(ctx, issue_flags);
1867 	return file;
1868 }
1869 
1870 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1871 {
1872 	struct file *file = fget(fd);
1873 
1874 	trace_io_uring_file_get(req, fd);
1875 
1876 	/* we don't allow fixed io_uring files */
1877 	if (file && io_is_uring_fops(file))
1878 		io_req_track_inflight(req);
1879 	return file;
1880 }
1881 
1882 static void io_queue_async(struct io_kiocb *req, int ret)
1883 	__must_hold(&req->ctx->uring_lock)
1884 {
1885 	struct io_kiocb *linked_timeout;
1886 
1887 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1888 		io_req_complete_failed(req, ret);
1889 		return;
1890 	}
1891 
1892 	linked_timeout = io_prep_linked_timeout(req);
1893 
1894 	switch (io_arm_poll_handler(req, 0)) {
1895 	case IO_APOLL_READY:
1896 		io_kbuf_recycle(req, 0);
1897 		io_req_task_queue(req);
1898 		break;
1899 	case IO_APOLL_ABORTED:
1900 		io_kbuf_recycle(req, 0);
1901 		io_queue_iowq(req, NULL);
1902 		break;
1903 	case IO_APOLL_OK:
1904 		break;
1905 	}
1906 
1907 	if (linked_timeout)
1908 		io_queue_linked_timeout(linked_timeout);
1909 }
1910 
1911 static inline void io_queue_sqe(struct io_kiocb *req)
1912 	__must_hold(&req->ctx->uring_lock)
1913 {
1914 	int ret;
1915 
1916 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1917 
1918 	/*
1919 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
1920 	 * doesn't support non-blocking read/write attempts
1921 	 */
1922 	if (likely(!ret))
1923 		io_arm_ltimeout(req);
1924 	else
1925 		io_queue_async(req, ret);
1926 }
1927 
1928 static void io_queue_sqe_fallback(struct io_kiocb *req)
1929 	__must_hold(&req->ctx->uring_lock)
1930 {
1931 	if (unlikely(req->flags & REQ_F_FAIL)) {
1932 		/*
1933 		 * We don't submit, fail them all, for that replace hardlinks
1934 		 * with normal links. Extra REQ_F_LINK is tolerated.
1935 		 */
1936 		req->flags &= ~REQ_F_HARDLINK;
1937 		req->flags |= REQ_F_LINK;
1938 		io_req_complete_failed(req, req->cqe.res);
1939 	} else if (unlikely(req->ctx->drain_active)) {
1940 		io_drain_req(req);
1941 	} else {
1942 		int ret = io_req_prep_async(req);
1943 
1944 		if (unlikely(ret))
1945 			io_req_complete_failed(req, ret);
1946 		else
1947 			io_queue_iowq(req, NULL);
1948 	}
1949 }
1950 
1951 /*
1952  * Check SQE restrictions (opcode and flags).
1953  *
1954  * Returns 'true' if SQE is allowed, 'false' otherwise.
1955  */
1956 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1957 					struct io_kiocb *req,
1958 					unsigned int sqe_flags)
1959 {
1960 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1961 		return false;
1962 
1963 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1964 	    ctx->restrictions.sqe_flags_required)
1965 		return false;
1966 
1967 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1968 			  ctx->restrictions.sqe_flags_required))
1969 		return false;
1970 
1971 	return true;
1972 }
1973 
1974 static void io_init_req_drain(struct io_kiocb *req)
1975 {
1976 	struct io_ring_ctx *ctx = req->ctx;
1977 	struct io_kiocb *head = ctx->submit_state.link.head;
1978 
1979 	ctx->drain_active = true;
1980 	if (head) {
1981 		/*
1982 		 * If we need to drain a request in the middle of a link, drain
1983 		 * the head request and the next request/link after the current
1984 		 * link. Considering sequential execution of links,
1985 		 * REQ_F_IO_DRAIN will be maintained for every request of our
1986 		 * link.
1987 		 */
1988 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
1989 		ctx->drain_next = true;
1990 	}
1991 }
1992 
1993 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
1994 		       const struct io_uring_sqe *sqe)
1995 	__must_hold(&ctx->uring_lock)
1996 {
1997 	const struct io_op_def *def;
1998 	unsigned int sqe_flags;
1999 	int personality;
2000 	u8 opcode;
2001 
2002 	/* req is partially pre-initialised, see io_preinit_req() */
2003 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2004 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2005 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2006 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2007 	req->file = NULL;
2008 	req->rsrc_node = NULL;
2009 	req->task = current;
2010 
2011 	if (unlikely(opcode >= IORING_OP_LAST)) {
2012 		req->opcode = 0;
2013 		return -EINVAL;
2014 	}
2015 	def = &io_op_defs[opcode];
2016 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2017 		/* enforce forwards compatibility on users */
2018 		if (sqe_flags & ~SQE_VALID_FLAGS)
2019 			return -EINVAL;
2020 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2021 			if (!def->buffer_select)
2022 				return -EOPNOTSUPP;
2023 			req->buf_index = READ_ONCE(sqe->buf_group);
2024 		}
2025 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2026 			ctx->drain_disabled = true;
2027 		if (sqe_flags & IOSQE_IO_DRAIN) {
2028 			if (ctx->drain_disabled)
2029 				return -EOPNOTSUPP;
2030 			io_init_req_drain(req);
2031 		}
2032 	}
2033 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2034 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2035 			return -EACCES;
2036 		/* knock it to the slow queue path, will be drained there */
2037 		if (ctx->drain_active)
2038 			req->flags |= REQ_F_FORCE_ASYNC;
2039 		/* if there is no link, we're at "next" request and need to drain */
2040 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2041 			ctx->drain_next = false;
2042 			ctx->drain_active = true;
2043 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2044 		}
2045 	}
2046 
2047 	if (!def->ioprio && sqe->ioprio)
2048 		return -EINVAL;
2049 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2050 		return -EINVAL;
2051 
2052 	if (def->needs_file) {
2053 		struct io_submit_state *state = &ctx->submit_state;
2054 
2055 		req->cqe.fd = READ_ONCE(sqe->fd);
2056 
2057 		/*
2058 		 * Plug now if we have more than 2 IO left after this, and the
2059 		 * target is potentially a read/write to block based storage.
2060 		 */
2061 		if (state->need_plug && def->plug) {
2062 			state->plug_started = true;
2063 			state->need_plug = false;
2064 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2065 		}
2066 	}
2067 
2068 	personality = READ_ONCE(sqe->personality);
2069 	if (personality) {
2070 		int ret;
2071 
2072 		req->creds = xa_load(&ctx->personalities, personality);
2073 		if (!req->creds)
2074 			return -EINVAL;
2075 		get_cred(req->creds);
2076 		ret = security_uring_override_creds(req->creds);
2077 		if (ret) {
2078 			put_cred(req->creds);
2079 			return ret;
2080 		}
2081 		req->flags |= REQ_F_CREDS;
2082 	}
2083 
2084 	return def->prep(req, sqe);
2085 }
2086 
2087 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2088 				      struct io_kiocb *req, int ret)
2089 {
2090 	struct io_ring_ctx *ctx = req->ctx;
2091 	struct io_submit_link *link = &ctx->submit_state.link;
2092 	struct io_kiocb *head = link->head;
2093 
2094 	trace_io_uring_req_failed(sqe, req, ret);
2095 
2096 	/*
2097 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2098 	 * unusable. Instead of failing eagerly, continue assembling the link if
2099 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2100 	 * should find the flag and handle the rest.
2101 	 */
2102 	req_fail_link_node(req, ret);
2103 	if (head && !(head->flags & REQ_F_FAIL))
2104 		req_fail_link_node(head, -ECANCELED);
2105 
2106 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2107 		if (head) {
2108 			link->last->link = req;
2109 			link->head = NULL;
2110 			req = head;
2111 		}
2112 		io_queue_sqe_fallback(req);
2113 		return ret;
2114 	}
2115 
2116 	if (head)
2117 		link->last->link = req;
2118 	else
2119 		link->head = req;
2120 	link->last = req;
2121 	return 0;
2122 }
2123 
2124 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2125 			 const struct io_uring_sqe *sqe)
2126 	__must_hold(&ctx->uring_lock)
2127 {
2128 	struct io_submit_link *link = &ctx->submit_state.link;
2129 	int ret;
2130 
2131 	ret = io_init_req(ctx, req, sqe);
2132 	if (unlikely(ret))
2133 		return io_submit_fail_init(sqe, req, ret);
2134 
2135 	/* don't need @sqe from now on */
2136 	trace_io_uring_submit_sqe(req, true);
2137 
2138 	/*
2139 	 * If we already have a head request, queue this one for async
2140 	 * submittal once the head completes. If we don't have a head but
2141 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2142 	 * submitted sync once the chain is complete. If none of those
2143 	 * conditions are true (normal request), then just queue it.
2144 	 */
2145 	if (unlikely(link->head)) {
2146 		ret = io_req_prep_async(req);
2147 		if (unlikely(ret))
2148 			return io_submit_fail_init(sqe, req, ret);
2149 
2150 		trace_io_uring_link(req, link->head);
2151 		link->last->link = req;
2152 		link->last = req;
2153 
2154 		if (req->flags & IO_REQ_LINK_FLAGS)
2155 			return 0;
2156 		/* last request of the link, flush it */
2157 		req = link->head;
2158 		link->head = NULL;
2159 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2160 			goto fallback;
2161 
2162 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2163 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2164 		if (req->flags & IO_REQ_LINK_FLAGS) {
2165 			link->head = req;
2166 			link->last = req;
2167 		} else {
2168 fallback:
2169 			io_queue_sqe_fallback(req);
2170 		}
2171 		return 0;
2172 	}
2173 
2174 	io_queue_sqe(req);
2175 	return 0;
2176 }
2177 
2178 /*
2179  * Batched submission is done, ensure local IO is flushed out.
2180  */
2181 static void io_submit_state_end(struct io_ring_ctx *ctx)
2182 {
2183 	struct io_submit_state *state = &ctx->submit_state;
2184 
2185 	if (unlikely(state->link.head))
2186 		io_queue_sqe_fallback(state->link.head);
2187 	/* flush only after queuing links as they can generate completions */
2188 	io_submit_flush_completions(ctx);
2189 	if (state->plug_started)
2190 		blk_finish_plug(&state->plug);
2191 }
2192 
2193 /*
2194  * Start submission side cache.
2195  */
2196 static void io_submit_state_start(struct io_submit_state *state,
2197 				  unsigned int max_ios)
2198 {
2199 	state->plug_started = false;
2200 	state->need_plug = max_ios > 2;
2201 	state->submit_nr = max_ios;
2202 	/* set only head, no need to init link_last in advance */
2203 	state->link.head = NULL;
2204 }
2205 
2206 static void io_commit_sqring(struct io_ring_ctx *ctx)
2207 {
2208 	struct io_rings *rings = ctx->rings;
2209 
2210 	/*
2211 	 * Ensure any loads from the SQEs are done at this point,
2212 	 * since once we write the new head, the application could
2213 	 * write new data to them.
2214 	 */
2215 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2216 }
2217 
2218 /*
2219  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2220  * that is mapped by userspace. This means that care needs to be taken to
2221  * ensure that reads are stable, as we cannot rely on userspace always
2222  * being a good citizen. If members of the sqe are validated and then later
2223  * used, it's important that those reads are done through READ_ONCE() to
2224  * prevent a re-load down the line.
2225  */
2226 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
2227 {
2228 	unsigned head, mask = ctx->sq_entries - 1;
2229 	unsigned sq_idx = ctx->cached_sq_head++ & mask;
2230 
2231 	/*
2232 	 * The cached sq head (or cq tail) serves two purposes:
2233 	 *
2234 	 * 1) allows us to batch the cost of updating the user visible
2235 	 *    head updates.
2236 	 * 2) allows the kernel side to track the head on its own, even
2237 	 *    though the application is the one updating it.
2238 	 */
2239 	head = READ_ONCE(ctx->sq_array[sq_idx]);
2240 	if (likely(head < ctx->sq_entries)) {
2241 		/* double index for 128-byte SQEs, twice as long */
2242 		if (ctx->flags & IORING_SETUP_SQE128)
2243 			head <<= 1;
2244 		return &ctx->sq_sqes[head];
2245 	}
2246 
2247 	/* drop invalid entries */
2248 	ctx->cq_extra--;
2249 	WRITE_ONCE(ctx->rings->sq_dropped,
2250 		   READ_ONCE(ctx->rings->sq_dropped) + 1);
2251 	return NULL;
2252 }
2253 
2254 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2255 	__must_hold(&ctx->uring_lock)
2256 {
2257 	unsigned int entries = io_sqring_entries(ctx);
2258 	unsigned int left;
2259 	int ret;
2260 
2261 	if (unlikely(!entries))
2262 		return 0;
2263 	/* make sure SQ entry isn't read before tail */
2264 	ret = left = min3(nr, ctx->sq_entries, entries);
2265 	io_get_task_refs(left);
2266 	io_submit_state_start(&ctx->submit_state, left);
2267 
2268 	do {
2269 		const struct io_uring_sqe *sqe;
2270 		struct io_kiocb *req;
2271 
2272 		if (unlikely(!io_alloc_req_refill(ctx)))
2273 			break;
2274 		req = io_alloc_req(ctx);
2275 		sqe = io_get_sqe(ctx);
2276 		if (unlikely(!sqe)) {
2277 			io_req_add_to_cache(req, ctx);
2278 			break;
2279 		}
2280 
2281 		/*
2282 		 * Continue submitting even for sqe failure if the
2283 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2284 		 */
2285 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2286 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2287 			left--;
2288 			break;
2289 		}
2290 	} while (--left);
2291 
2292 	if (unlikely(left)) {
2293 		ret -= left;
2294 		/* try again if it submitted nothing and can't allocate a req */
2295 		if (!ret && io_req_cache_empty(ctx))
2296 			ret = -EAGAIN;
2297 		current->io_uring->cached_refs += left;
2298 	}
2299 
2300 	io_submit_state_end(ctx);
2301 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2302 	io_commit_sqring(ctx);
2303 	return ret;
2304 }
2305 
2306 struct io_wait_queue {
2307 	struct wait_queue_entry wq;
2308 	struct io_ring_ctx *ctx;
2309 	unsigned cq_tail;
2310 	unsigned nr_timeouts;
2311 };
2312 
2313 static inline bool io_has_work(struct io_ring_ctx *ctx)
2314 {
2315 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2316 	       ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
2317 		!llist_empty(&ctx->work_llist));
2318 }
2319 
2320 static inline bool io_should_wake(struct io_wait_queue *iowq)
2321 {
2322 	struct io_ring_ctx *ctx = iowq->ctx;
2323 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2324 
2325 	/*
2326 	 * Wake up if we have enough events, or if a timeout occurred since we
2327 	 * started waiting. For timeouts, we always want to return to userspace,
2328 	 * regardless of event count.
2329 	 */
2330 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2331 }
2332 
2333 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2334 			    int wake_flags, void *key)
2335 {
2336 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
2337 							wq);
2338 	struct io_ring_ctx *ctx = iowq->ctx;
2339 
2340 	/*
2341 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2342 	 * the task, and the next invocation will do it.
2343 	 */
2344 	if (io_should_wake(iowq) || io_has_work(ctx))
2345 		return autoremove_wake_function(curr, mode, wake_flags, key);
2346 	return -1;
2347 }
2348 
2349 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2350 {
2351 	if (io_run_task_work_ctx(ctx) > 0)
2352 		return 1;
2353 	if (task_sigpending(current))
2354 		return -EINTR;
2355 	return 0;
2356 }
2357 
2358 /* when returns >0, the caller should retry */
2359 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2360 					  struct io_wait_queue *iowq,
2361 					  ktime_t timeout)
2362 {
2363 	int ret;
2364 	unsigned long check_cq;
2365 
2366 	/* make sure we run task_work before checking for signals */
2367 	ret = io_run_task_work_sig(ctx);
2368 	if (ret || io_should_wake(iowq))
2369 		return ret;
2370 
2371 	check_cq = READ_ONCE(ctx->check_cq);
2372 	if (unlikely(check_cq)) {
2373 		/* let the caller flush overflows, retry */
2374 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2375 			return 1;
2376 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
2377 			return -EBADR;
2378 	}
2379 	if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS))
2380 		return -ETIME;
2381 	return 1;
2382 }
2383 
2384 /*
2385  * Wait until events become available, if we don't already have some. The
2386  * application must reap them itself, as they reside on the shared cq ring.
2387  */
2388 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2389 			  const sigset_t __user *sig, size_t sigsz,
2390 			  struct __kernel_timespec __user *uts)
2391 {
2392 	struct io_wait_queue iowq;
2393 	struct io_rings *rings = ctx->rings;
2394 	ktime_t timeout = KTIME_MAX;
2395 	int ret;
2396 
2397 	if (!io_allowed_run_tw(ctx))
2398 		return -EEXIST;
2399 
2400 	do {
2401 		/* always run at least 1 task work to process local work */
2402 		ret = io_run_task_work_ctx(ctx);
2403 		if (ret < 0)
2404 			return ret;
2405 		io_cqring_overflow_flush(ctx);
2406 
2407 		/* if user messes with these they will just get an early return */
2408 		if (__io_cqring_events_user(ctx) >= min_events)
2409 			return 0;
2410 	} while (ret > 0);
2411 
2412 	if (sig) {
2413 #ifdef CONFIG_COMPAT
2414 		if (in_compat_syscall())
2415 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2416 						      sigsz);
2417 		else
2418 #endif
2419 			ret = set_user_sigmask(sig, sigsz);
2420 
2421 		if (ret)
2422 			return ret;
2423 	}
2424 
2425 	if (uts) {
2426 		struct timespec64 ts;
2427 
2428 		if (get_timespec64(&ts, uts))
2429 			return -EFAULT;
2430 		timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2431 	}
2432 
2433 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2434 	iowq.wq.private = current;
2435 	INIT_LIST_HEAD(&iowq.wq.entry);
2436 	iowq.ctx = ctx;
2437 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2438 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2439 
2440 	trace_io_uring_cqring_wait(ctx, min_events);
2441 	do {
2442 		/* if we can't even flush overflow, don't wait for more */
2443 		if (!io_cqring_overflow_flush(ctx)) {
2444 			ret = -EBUSY;
2445 			break;
2446 		}
2447 		prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2448 						TASK_INTERRUPTIBLE);
2449 		ret = io_cqring_wait_schedule(ctx, &iowq, timeout);
2450 		cond_resched();
2451 	} while (ret > 0);
2452 
2453 	finish_wait(&ctx->cq_wait, &iowq.wq);
2454 	restore_saved_sigmask_unless(ret == -EINTR);
2455 
2456 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2457 }
2458 
2459 static void io_mem_free(void *ptr)
2460 {
2461 	struct page *page;
2462 
2463 	if (!ptr)
2464 		return;
2465 
2466 	page = virt_to_head_page(ptr);
2467 	if (put_page_testzero(page))
2468 		free_compound_page(page);
2469 }
2470 
2471 static void *io_mem_alloc(size_t size)
2472 {
2473 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2474 
2475 	return (void *) __get_free_pages(gfp, get_order(size));
2476 }
2477 
2478 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2479 				unsigned int cq_entries, size_t *sq_offset)
2480 {
2481 	struct io_rings *rings;
2482 	size_t off, sq_array_size;
2483 
2484 	off = struct_size(rings, cqes, cq_entries);
2485 	if (off == SIZE_MAX)
2486 		return SIZE_MAX;
2487 	if (ctx->flags & IORING_SETUP_CQE32) {
2488 		if (check_shl_overflow(off, 1, &off))
2489 			return SIZE_MAX;
2490 	}
2491 
2492 #ifdef CONFIG_SMP
2493 	off = ALIGN(off, SMP_CACHE_BYTES);
2494 	if (off == 0)
2495 		return SIZE_MAX;
2496 #endif
2497 
2498 	if (sq_offset)
2499 		*sq_offset = off;
2500 
2501 	sq_array_size = array_size(sizeof(u32), sq_entries);
2502 	if (sq_array_size == SIZE_MAX)
2503 		return SIZE_MAX;
2504 
2505 	if (check_add_overflow(off, sq_array_size, &off))
2506 		return SIZE_MAX;
2507 
2508 	return off;
2509 }
2510 
2511 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2512 			       unsigned int eventfd_async)
2513 {
2514 	struct io_ev_fd *ev_fd;
2515 	__s32 __user *fds = arg;
2516 	int fd;
2517 
2518 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2519 					lockdep_is_held(&ctx->uring_lock));
2520 	if (ev_fd)
2521 		return -EBUSY;
2522 
2523 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2524 		return -EFAULT;
2525 
2526 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2527 	if (!ev_fd)
2528 		return -ENOMEM;
2529 
2530 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2531 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2532 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2533 		kfree(ev_fd);
2534 		return ret;
2535 	}
2536 
2537 	spin_lock(&ctx->completion_lock);
2538 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2539 	spin_unlock(&ctx->completion_lock);
2540 
2541 	ev_fd->eventfd_async = eventfd_async;
2542 	ctx->has_evfd = true;
2543 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2544 	atomic_set(&ev_fd->refs, 1);
2545 	atomic_set(&ev_fd->ops, 0);
2546 	return 0;
2547 }
2548 
2549 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2550 {
2551 	struct io_ev_fd *ev_fd;
2552 
2553 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2554 					lockdep_is_held(&ctx->uring_lock));
2555 	if (ev_fd) {
2556 		ctx->has_evfd = false;
2557 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2558 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2559 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2560 		return 0;
2561 	}
2562 
2563 	return -ENXIO;
2564 }
2565 
2566 static void io_req_caches_free(struct io_ring_ctx *ctx)
2567 {
2568 	int nr = 0;
2569 
2570 	mutex_lock(&ctx->uring_lock);
2571 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2572 
2573 	while (!io_req_cache_empty(ctx)) {
2574 		struct io_kiocb *req = io_alloc_req(ctx);
2575 
2576 		kmem_cache_free(req_cachep, req);
2577 		nr++;
2578 	}
2579 	if (nr)
2580 		percpu_ref_put_many(&ctx->refs, nr);
2581 	mutex_unlock(&ctx->uring_lock);
2582 }
2583 
2584 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2585 {
2586 	io_sq_thread_finish(ctx);
2587 	io_rsrc_refs_drop(ctx);
2588 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2589 	io_wait_rsrc_data(ctx->buf_data);
2590 	io_wait_rsrc_data(ctx->file_data);
2591 
2592 	mutex_lock(&ctx->uring_lock);
2593 	if (ctx->buf_data)
2594 		__io_sqe_buffers_unregister(ctx);
2595 	if (ctx->file_data)
2596 		__io_sqe_files_unregister(ctx);
2597 	if (ctx->rings)
2598 		__io_cqring_overflow_flush(ctx, true);
2599 	io_eventfd_unregister(ctx);
2600 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2601 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2602 	mutex_unlock(&ctx->uring_lock);
2603 	io_destroy_buffers(ctx);
2604 	if (ctx->sq_creds)
2605 		put_cred(ctx->sq_creds);
2606 	if (ctx->submitter_task)
2607 		put_task_struct(ctx->submitter_task);
2608 
2609 	/* there are no registered resources left, nobody uses it */
2610 	if (ctx->rsrc_node)
2611 		io_rsrc_node_destroy(ctx->rsrc_node);
2612 	if (ctx->rsrc_backup_node)
2613 		io_rsrc_node_destroy(ctx->rsrc_backup_node);
2614 	flush_delayed_work(&ctx->rsrc_put_work);
2615 	flush_delayed_work(&ctx->fallback_work);
2616 
2617 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2618 	WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
2619 
2620 #if defined(CONFIG_UNIX)
2621 	if (ctx->ring_sock) {
2622 		ctx->ring_sock->file = NULL; /* so that iput() is called */
2623 		sock_release(ctx->ring_sock);
2624 	}
2625 #endif
2626 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2627 
2628 	if (ctx->mm_account) {
2629 		mmdrop(ctx->mm_account);
2630 		ctx->mm_account = NULL;
2631 	}
2632 	io_mem_free(ctx->rings);
2633 	io_mem_free(ctx->sq_sqes);
2634 
2635 	percpu_ref_exit(&ctx->refs);
2636 	free_uid(ctx->user);
2637 	io_req_caches_free(ctx);
2638 	if (ctx->hash_map)
2639 		io_wq_put_hash(ctx->hash_map);
2640 	kfree(ctx->cancel_table.hbs);
2641 	kfree(ctx->cancel_table_locked.hbs);
2642 	kfree(ctx->dummy_ubuf);
2643 	kfree(ctx->io_bl);
2644 	xa_destroy(&ctx->io_bl_xa);
2645 	kfree(ctx);
2646 }
2647 
2648 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2649 {
2650 	struct io_ring_ctx *ctx = file->private_data;
2651 	__poll_t mask = 0;
2652 
2653 	poll_wait(file, &ctx->cq_wait, wait);
2654 	/*
2655 	 * synchronizes with barrier from wq_has_sleeper call in
2656 	 * io_commit_cqring
2657 	 */
2658 	smp_rmb();
2659 	if (!io_sqring_full(ctx))
2660 		mask |= EPOLLOUT | EPOLLWRNORM;
2661 
2662 	/*
2663 	 * Don't flush cqring overflow list here, just do a simple check.
2664 	 * Otherwise there could possible be ABBA deadlock:
2665 	 *      CPU0                    CPU1
2666 	 *      ----                    ----
2667 	 * lock(&ctx->uring_lock);
2668 	 *                              lock(&ep->mtx);
2669 	 *                              lock(&ctx->uring_lock);
2670 	 * lock(&ep->mtx);
2671 	 *
2672 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2673 	 * pushs them to do the flush.
2674 	 */
2675 
2676 	if (io_cqring_events(ctx) || io_has_work(ctx))
2677 		mask |= EPOLLIN | EPOLLRDNORM;
2678 
2679 	return mask;
2680 }
2681 
2682 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2683 {
2684 	const struct cred *creds;
2685 
2686 	creds = xa_erase(&ctx->personalities, id);
2687 	if (creds) {
2688 		put_cred(creds);
2689 		return 0;
2690 	}
2691 
2692 	return -EINVAL;
2693 }
2694 
2695 struct io_tctx_exit {
2696 	struct callback_head		task_work;
2697 	struct completion		completion;
2698 	struct io_ring_ctx		*ctx;
2699 };
2700 
2701 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2702 {
2703 	struct io_uring_task *tctx = current->io_uring;
2704 	struct io_tctx_exit *work;
2705 
2706 	work = container_of(cb, struct io_tctx_exit, task_work);
2707 	/*
2708 	 * When @in_idle, we're in cancellation and it's racy to remove the
2709 	 * node. It'll be removed by the end of cancellation, just ignore it.
2710 	 */
2711 	if (!atomic_read(&tctx->in_idle))
2712 		io_uring_del_tctx_node((unsigned long)work->ctx);
2713 	complete(&work->completion);
2714 }
2715 
2716 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2717 {
2718 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2719 
2720 	return req->ctx == data;
2721 }
2722 
2723 static __cold void io_ring_exit_work(struct work_struct *work)
2724 {
2725 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2726 	unsigned long timeout = jiffies + HZ * 60 * 5;
2727 	unsigned long interval = HZ / 20;
2728 	struct io_tctx_exit exit;
2729 	struct io_tctx_node *node;
2730 	int ret;
2731 
2732 	/*
2733 	 * If we're doing polled IO and end up having requests being
2734 	 * submitted async (out-of-line), then completions can come in while
2735 	 * we're waiting for refs to drop. We need to reap these manually,
2736 	 * as nobody else will be looking for them.
2737 	 */
2738 	do {
2739 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2740 			io_move_task_work_from_local(ctx);
2741 
2742 		while (io_uring_try_cancel_requests(ctx, NULL, true))
2743 			cond_resched();
2744 
2745 		if (ctx->sq_data) {
2746 			struct io_sq_data *sqd = ctx->sq_data;
2747 			struct task_struct *tsk;
2748 
2749 			io_sq_thread_park(sqd);
2750 			tsk = sqd->thread;
2751 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2752 				io_wq_cancel_cb(tsk->io_uring->io_wq,
2753 						io_cancel_ctx_cb, ctx, true);
2754 			io_sq_thread_unpark(sqd);
2755 		}
2756 
2757 		io_req_caches_free(ctx);
2758 
2759 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2760 			/* there is little hope left, don't run it too often */
2761 			interval = HZ * 60;
2762 		}
2763 	} while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
2764 
2765 	init_completion(&exit.completion);
2766 	init_task_work(&exit.task_work, io_tctx_exit_cb);
2767 	exit.ctx = ctx;
2768 	/*
2769 	 * Some may use context even when all refs and requests have been put,
2770 	 * and they are free to do so while still holding uring_lock or
2771 	 * completion_lock, see io_req_task_submit(). Apart from other work,
2772 	 * this lock/unlock section also waits them to finish.
2773 	 */
2774 	mutex_lock(&ctx->uring_lock);
2775 	while (!list_empty(&ctx->tctx_list)) {
2776 		WARN_ON_ONCE(time_after(jiffies, timeout));
2777 
2778 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2779 					ctx_node);
2780 		/* don't spin on a single task if cancellation failed */
2781 		list_rotate_left(&ctx->tctx_list);
2782 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2783 		if (WARN_ON_ONCE(ret))
2784 			continue;
2785 
2786 		mutex_unlock(&ctx->uring_lock);
2787 		wait_for_completion(&exit.completion);
2788 		mutex_lock(&ctx->uring_lock);
2789 	}
2790 	mutex_unlock(&ctx->uring_lock);
2791 	spin_lock(&ctx->completion_lock);
2792 	spin_unlock(&ctx->completion_lock);
2793 
2794 	io_ring_ctx_free(ctx);
2795 }
2796 
2797 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2798 {
2799 	unsigned long index;
2800 	struct creds *creds;
2801 
2802 	mutex_lock(&ctx->uring_lock);
2803 	percpu_ref_kill(&ctx->refs);
2804 	if (ctx->rings)
2805 		__io_cqring_overflow_flush(ctx, true);
2806 	xa_for_each(&ctx->personalities, index, creds)
2807 		io_unregister_personality(ctx, index);
2808 	if (ctx->rings)
2809 		io_poll_remove_all(ctx, NULL, true);
2810 	mutex_unlock(&ctx->uring_lock);
2811 
2812 	/*
2813 	 * If we failed setting up the ctx, we might not have any rings
2814 	 * and therefore did not submit any requests
2815 	 */
2816 	if (ctx->rings)
2817 		io_kill_timeouts(ctx, NULL, true);
2818 
2819 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2820 	/*
2821 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
2822 	 * if we're exiting a ton of rings at the same time. It just adds
2823 	 * noise and overhead, there's no discernable change in runtime
2824 	 * over using system_wq.
2825 	 */
2826 	queue_work(system_unbound_wq, &ctx->exit_work);
2827 }
2828 
2829 static int io_uring_release(struct inode *inode, struct file *file)
2830 {
2831 	struct io_ring_ctx *ctx = file->private_data;
2832 
2833 	file->private_data = NULL;
2834 	io_ring_ctx_wait_and_kill(ctx);
2835 	return 0;
2836 }
2837 
2838 struct io_task_cancel {
2839 	struct task_struct *task;
2840 	bool all;
2841 };
2842 
2843 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
2844 {
2845 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2846 	struct io_task_cancel *cancel = data;
2847 
2848 	return io_match_task_safe(req, cancel->task, cancel->all);
2849 }
2850 
2851 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
2852 					 struct task_struct *task,
2853 					 bool cancel_all)
2854 {
2855 	struct io_defer_entry *de;
2856 	LIST_HEAD(list);
2857 
2858 	spin_lock(&ctx->completion_lock);
2859 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
2860 		if (io_match_task_safe(de->req, task, cancel_all)) {
2861 			list_cut_position(&list, &ctx->defer_list, &de->list);
2862 			break;
2863 		}
2864 	}
2865 	spin_unlock(&ctx->completion_lock);
2866 	if (list_empty(&list))
2867 		return false;
2868 
2869 	while (!list_empty(&list)) {
2870 		de = list_first_entry(&list, struct io_defer_entry, list);
2871 		list_del_init(&de->list);
2872 		io_req_complete_failed(de->req, -ECANCELED);
2873 		kfree(de);
2874 	}
2875 	return true;
2876 }
2877 
2878 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
2879 {
2880 	struct io_tctx_node *node;
2881 	enum io_wq_cancel cret;
2882 	bool ret = false;
2883 
2884 	mutex_lock(&ctx->uring_lock);
2885 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
2886 		struct io_uring_task *tctx = node->task->io_uring;
2887 
2888 		/*
2889 		 * io_wq will stay alive while we hold uring_lock, because it's
2890 		 * killed after ctx nodes, which requires to take the lock.
2891 		 */
2892 		if (!tctx || !tctx->io_wq)
2893 			continue;
2894 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
2895 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
2896 	}
2897 	mutex_unlock(&ctx->uring_lock);
2898 
2899 	return ret;
2900 }
2901 
2902 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
2903 						struct task_struct *task,
2904 						bool cancel_all)
2905 {
2906 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
2907 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
2908 	enum io_wq_cancel cret;
2909 	bool ret = false;
2910 
2911 	/* failed during ring init, it couldn't have issued any requests */
2912 	if (!ctx->rings)
2913 		return false;
2914 
2915 	if (!task) {
2916 		ret |= io_uring_try_cancel_iowq(ctx);
2917 	} else if (tctx && tctx->io_wq) {
2918 		/*
2919 		 * Cancels requests of all rings, not only @ctx, but
2920 		 * it's fine as the task is in exit/exec.
2921 		 */
2922 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
2923 				       &cancel, true);
2924 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
2925 	}
2926 
2927 	/* SQPOLL thread does its own polling */
2928 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
2929 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
2930 		while (!wq_list_empty(&ctx->iopoll_list)) {
2931 			io_iopoll_try_reap_events(ctx);
2932 			ret = true;
2933 		}
2934 	}
2935 
2936 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2937 		ret |= io_run_local_work(ctx) > 0;
2938 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
2939 	mutex_lock(&ctx->uring_lock);
2940 	ret |= io_poll_remove_all(ctx, task, cancel_all);
2941 	mutex_unlock(&ctx->uring_lock);
2942 	ret |= io_kill_timeouts(ctx, task, cancel_all);
2943 	if (task)
2944 		ret |= io_run_task_work() > 0;
2945 	return ret;
2946 }
2947 
2948 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
2949 {
2950 	if (tracked)
2951 		return atomic_read(&tctx->inflight_tracked);
2952 	return percpu_counter_sum(&tctx->inflight);
2953 }
2954 
2955 /*
2956  * Find any io_uring ctx that this task has registered or done IO on, and cancel
2957  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
2958  */
2959 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
2960 {
2961 	struct io_uring_task *tctx = current->io_uring;
2962 	struct io_ring_ctx *ctx;
2963 	s64 inflight;
2964 	DEFINE_WAIT(wait);
2965 
2966 	WARN_ON_ONCE(sqd && sqd->thread != current);
2967 
2968 	if (!current->io_uring)
2969 		return;
2970 	if (tctx->io_wq)
2971 		io_wq_exit_start(tctx->io_wq);
2972 
2973 	atomic_inc(&tctx->in_idle);
2974 	do {
2975 		bool loop = false;
2976 
2977 		io_uring_drop_tctx_refs(current);
2978 		/* read completions before cancelations */
2979 		inflight = tctx_inflight(tctx, !cancel_all);
2980 		if (!inflight)
2981 			break;
2982 
2983 		if (!sqd) {
2984 			struct io_tctx_node *node;
2985 			unsigned long index;
2986 
2987 			xa_for_each(&tctx->xa, index, node) {
2988 				/* sqpoll task will cancel all its requests */
2989 				if (node->ctx->sq_data)
2990 					continue;
2991 				loop |= io_uring_try_cancel_requests(node->ctx,
2992 							current, cancel_all);
2993 			}
2994 		} else {
2995 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
2996 				loop |= io_uring_try_cancel_requests(ctx,
2997 								     current,
2998 								     cancel_all);
2999 		}
3000 
3001 		if (loop) {
3002 			cond_resched();
3003 			continue;
3004 		}
3005 
3006 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3007 		io_run_task_work();
3008 		io_uring_drop_tctx_refs(current);
3009 
3010 		/*
3011 		 * If we've seen completions, retry without waiting. This
3012 		 * avoids a race where a completion comes in before we did
3013 		 * prepare_to_wait().
3014 		 */
3015 		if (inflight == tctx_inflight(tctx, !cancel_all))
3016 			schedule();
3017 		finish_wait(&tctx->wait, &wait);
3018 	} while (1);
3019 
3020 	io_uring_clean_tctx(tctx);
3021 	if (cancel_all) {
3022 		/*
3023 		 * We shouldn't run task_works after cancel, so just leave
3024 		 * ->in_idle set for normal exit.
3025 		 */
3026 		atomic_dec(&tctx->in_idle);
3027 		/* for exec all current's requests should be gone, kill tctx */
3028 		__io_uring_free(current);
3029 	}
3030 }
3031 
3032 void __io_uring_cancel(bool cancel_all)
3033 {
3034 	io_uring_cancel_generic(cancel_all, NULL);
3035 }
3036 
3037 static void *io_uring_validate_mmap_request(struct file *file,
3038 					    loff_t pgoff, size_t sz)
3039 {
3040 	struct io_ring_ctx *ctx = file->private_data;
3041 	loff_t offset = pgoff << PAGE_SHIFT;
3042 	struct page *page;
3043 	void *ptr;
3044 
3045 	switch (offset) {
3046 	case IORING_OFF_SQ_RING:
3047 	case IORING_OFF_CQ_RING:
3048 		ptr = ctx->rings;
3049 		break;
3050 	case IORING_OFF_SQES:
3051 		ptr = ctx->sq_sqes;
3052 		break;
3053 	default:
3054 		return ERR_PTR(-EINVAL);
3055 	}
3056 
3057 	page = virt_to_head_page(ptr);
3058 	if (sz > page_size(page))
3059 		return ERR_PTR(-EINVAL);
3060 
3061 	return ptr;
3062 }
3063 
3064 #ifdef CONFIG_MMU
3065 
3066 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3067 {
3068 	size_t sz = vma->vm_end - vma->vm_start;
3069 	unsigned long pfn;
3070 	void *ptr;
3071 
3072 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3073 	if (IS_ERR(ptr))
3074 		return PTR_ERR(ptr);
3075 
3076 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3077 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3078 }
3079 
3080 #else /* !CONFIG_MMU */
3081 
3082 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3083 {
3084 	return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
3085 }
3086 
3087 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3088 {
3089 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3090 }
3091 
3092 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3093 	unsigned long addr, unsigned long len,
3094 	unsigned long pgoff, unsigned long flags)
3095 {
3096 	void *ptr;
3097 
3098 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3099 	if (IS_ERR(ptr))
3100 		return PTR_ERR(ptr);
3101 
3102 	return (unsigned long) ptr;
3103 }
3104 
3105 #endif /* !CONFIG_MMU */
3106 
3107 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3108 {
3109 	if (flags & IORING_ENTER_EXT_ARG) {
3110 		struct io_uring_getevents_arg arg;
3111 
3112 		if (argsz != sizeof(arg))
3113 			return -EINVAL;
3114 		if (copy_from_user(&arg, argp, sizeof(arg)))
3115 			return -EFAULT;
3116 	}
3117 	return 0;
3118 }
3119 
3120 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3121 			  struct __kernel_timespec __user **ts,
3122 			  const sigset_t __user **sig)
3123 {
3124 	struct io_uring_getevents_arg arg;
3125 
3126 	/*
3127 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3128 	 * is just a pointer to the sigset_t.
3129 	 */
3130 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3131 		*sig = (const sigset_t __user *) argp;
3132 		*ts = NULL;
3133 		return 0;
3134 	}
3135 
3136 	/*
3137 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3138 	 * timespec and sigset_t pointers if good.
3139 	 */
3140 	if (*argsz != sizeof(arg))
3141 		return -EINVAL;
3142 	if (copy_from_user(&arg, argp, sizeof(arg)))
3143 		return -EFAULT;
3144 	if (arg.pad)
3145 		return -EINVAL;
3146 	*sig = u64_to_user_ptr(arg.sigmask);
3147 	*argsz = arg.sigmask_sz;
3148 	*ts = u64_to_user_ptr(arg.ts);
3149 	return 0;
3150 }
3151 
3152 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3153 		u32, min_complete, u32, flags, const void __user *, argp,
3154 		size_t, argsz)
3155 {
3156 	struct io_ring_ctx *ctx;
3157 	struct fd f;
3158 	long ret;
3159 
3160 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3161 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3162 			       IORING_ENTER_REGISTERED_RING)))
3163 		return -EINVAL;
3164 
3165 	/*
3166 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3167 	 * need only dereference our task private array to find it.
3168 	 */
3169 	if (flags & IORING_ENTER_REGISTERED_RING) {
3170 		struct io_uring_task *tctx = current->io_uring;
3171 
3172 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3173 			return -EINVAL;
3174 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3175 		f.file = tctx->registered_rings[fd];
3176 		f.flags = 0;
3177 		if (unlikely(!f.file))
3178 			return -EBADF;
3179 	} else {
3180 		f = fdget(fd);
3181 		if (unlikely(!f.file))
3182 			return -EBADF;
3183 		ret = -EOPNOTSUPP;
3184 		if (unlikely(!io_is_uring_fops(f.file)))
3185 			goto out;
3186 	}
3187 
3188 	ctx = f.file->private_data;
3189 	ret = -EBADFD;
3190 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3191 		goto out;
3192 
3193 	/*
3194 	 * For SQ polling, the thread will do all submissions and completions.
3195 	 * Just return the requested submit count, and wake the thread if
3196 	 * we were asked to.
3197 	 */
3198 	ret = 0;
3199 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3200 		io_cqring_overflow_flush(ctx);
3201 
3202 		if (unlikely(ctx->sq_data->thread == NULL)) {
3203 			ret = -EOWNERDEAD;
3204 			goto out;
3205 		}
3206 		if (flags & IORING_ENTER_SQ_WAKEUP)
3207 			wake_up(&ctx->sq_data->wait);
3208 		if (flags & IORING_ENTER_SQ_WAIT) {
3209 			ret = io_sqpoll_wait_sq(ctx);
3210 			if (ret)
3211 				goto out;
3212 		}
3213 		ret = to_submit;
3214 	} else if (to_submit) {
3215 		ret = io_uring_add_tctx_node(ctx);
3216 		if (unlikely(ret))
3217 			goto out;
3218 
3219 		mutex_lock(&ctx->uring_lock);
3220 		ret = io_submit_sqes(ctx, to_submit);
3221 		if (ret != to_submit) {
3222 			mutex_unlock(&ctx->uring_lock);
3223 			goto out;
3224 		}
3225 		if (flags & IORING_ENTER_GETEVENTS) {
3226 			if (ctx->syscall_iopoll)
3227 				goto iopoll_locked;
3228 			/*
3229 			 * Ignore errors, we'll soon call io_cqring_wait() and
3230 			 * it should handle ownership problems if any.
3231 			 */
3232 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3233 				(void)io_run_local_work_locked(ctx);
3234 		}
3235 		mutex_unlock(&ctx->uring_lock);
3236 	}
3237 
3238 	if (flags & IORING_ENTER_GETEVENTS) {
3239 		int ret2;
3240 
3241 		if (ctx->syscall_iopoll) {
3242 			/*
3243 			 * We disallow the app entering submit/complete with
3244 			 * polling, but we still need to lock the ring to
3245 			 * prevent racing with polled issue that got punted to
3246 			 * a workqueue.
3247 			 */
3248 			mutex_lock(&ctx->uring_lock);
3249 iopoll_locked:
3250 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3251 			if (likely(!ret2)) {
3252 				min_complete = min(min_complete,
3253 						   ctx->cq_entries);
3254 				ret2 = io_iopoll_check(ctx, min_complete);
3255 			}
3256 			mutex_unlock(&ctx->uring_lock);
3257 		} else {
3258 			const sigset_t __user *sig;
3259 			struct __kernel_timespec __user *ts;
3260 
3261 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3262 			if (likely(!ret2)) {
3263 				min_complete = min(min_complete,
3264 						   ctx->cq_entries);
3265 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3266 						      argsz, ts);
3267 			}
3268 		}
3269 
3270 		if (!ret) {
3271 			ret = ret2;
3272 
3273 			/*
3274 			 * EBADR indicates that one or more CQE were dropped.
3275 			 * Once the user has been informed we can clear the bit
3276 			 * as they are obviously ok with those drops.
3277 			 */
3278 			if (unlikely(ret2 == -EBADR))
3279 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3280 					  &ctx->check_cq);
3281 		}
3282 	}
3283 out:
3284 	fdput(f);
3285 	return ret;
3286 }
3287 
3288 static const struct file_operations io_uring_fops = {
3289 	.release	= io_uring_release,
3290 	.mmap		= io_uring_mmap,
3291 #ifndef CONFIG_MMU
3292 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3293 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3294 #endif
3295 	.poll		= io_uring_poll,
3296 #ifdef CONFIG_PROC_FS
3297 	.show_fdinfo	= io_uring_show_fdinfo,
3298 #endif
3299 };
3300 
3301 bool io_is_uring_fops(struct file *file)
3302 {
3303 	return file->f_op == &io_uring_fops;
3304 }
3305 
3306 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3307 					 struct io_uring_params *p)
3308 {
3309 	struct io_rings *rings;
3310 	size_t size, sq_array_offset;
3311 
3312 	/* make sure these are sane, as we already accounted them */
3313 	ctx->sq_entries = p->sq_entries;
3314 	ctx->cq_entries = p->cq_entries;
3315 
3316 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3317 	if (size == SIZE_MAX)
3318 		return -EOVERFLOW;
3319 
3320 	rings = io_mem_alloc(size);
3321 	if (!rings)
3322 		return -ENOMEM;
3323 
3324 	ctx->rings = rings;
3325 	ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3326 	rings->sq_ring_mask = p->sq_entries - 1;
3327 	rings->cq_ring_mask = p->cq_entries - 1;
3328 	rings->sq_ring_entries = p->sq_entries;
3329 	rings->cq_ring_entries = p->cq_entries;
3330 
3331 	if (p->flags & IORING_SETUP_SQE128)
3332 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3333 	else
3334 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3335 	if (size == SIZE_MAX) {
3336 		io_mem_free(ctx->rings);
3337 		ctx->rings = NULL;
3338 		return -EOVERFLOW;
3339 	}
3340 
3341 	ctx->sq_sqes = io_mem_alloc(size);
3342 	if (!ctx->sq_sqes) {
3343 		io_mem_free(ctx->rings);
3344 		ctx->rings = NULL;
3345 		return -ENOMEM;
3346 	}
3347 
3348 	return 0;
3349 }
3350 
3351 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
3352 {
3353 	int ret, fd;
3354 
3355 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3356 	if (fd < 0)
3357 		return fd;
3358 
3359 	ret = __io_uring_add_tctx_node(ctx);
3360 	if (ret) {
3361 		put_unused_fd(fd);
3362 		return ret;
3363 	}
3364 	fd_install(fd, file);
3365 	return fd;
3366 }
3367 
3368 /*
3369  * Allocate an anonymous fd, this is what constitutes the application
3370  * visible backing of an io_uring instance. The application mmaps this
3371  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3372  * we have to tie this fd to a socket for file garbage collection purposes.
3373  */
3374 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3375 {
3376 	struct file *file;
3377 #if defined(CONFIG_UNIX)
3378 	int ret;
3379 
3380 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3381 				&ctx->ring_sock);
3382 	if (ret)
3383 		return ERR_PTR(ret);
3384 #endif
3385 
3386 	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3387 					 O_RDWR | O_CLOEXEC, NULL);
3388 #if defined(CONFIG_UNIX)
3389 	if (IS_ERR(file)) {
3390 		sock_release(ctx->ring_sock);
3391 		ctx->ring_sock = NULL;
3392 	} else {
3393 		ctx->ring_sock->file = file;
3394 	}
3395 #endif
3396 	return file;
3397 }
3398 
3399 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3400 				  struct io_uring_params __user *params)
3401 {
3402 	struct io_ring_ctx *ctx;
3403 	struct file *file;
3404 	int ret;
3405 
3406 	if (!entries)
3407 		return -EINVAL;
3408 	if (entries > IORING_MAX_ENTRIES) {
3409 		if (!(p->flags & IORING_SETUP_CLAMP))
3410 			return -EINVAL;
3411 		entries = IORING_MAX_ENTRIES;
3412 	}
3413 
3414 	/*
3415 	 * Use twice as many entries for the CQ ring. It's possible for the
3416 	 * application to drive a higher depth than the size of the SQ ring,
3417 	 * since the sqes are only used at submission time. This allows for
3418 	 * some flexibility in overcommitting a bit. If the application has
3419 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3420 	 * of CQ ring entries manually.
3421 	 */
3422 	p->sq_entries = roundup_pow_of_two(entries);
3423 	if (p->flags & IORING_SETUP_CQSIZE) {
3424 		/*
3425 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3426 		 * to a power-of-two, if it isn't already. We do NOT impose
3427 		 * any cq vs sq ring sizing.
3428 		 */
3429 		if (!p->cq_entries)
3430 			return -EINVAL;
3431 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3432 			if (!(p->flags & IORING_SETUP_CLAMP))
3433 				return -EINVAL;
3434 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3435 		}
3436 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3437 		if (p->cq_entries < p->sq_entries)
3438 			return -EINVAL;
3439 	} else {
3440 		p->cq_entries = 2 * p->sq_entries;
3441 	}
3442 
3443 	ctx = io_ring_ctx_alloc(p);
3444 	if (!ctx)
3445 		return -ENOMEM;
3446 
3447 	/*
3448 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3449 	 * space applications don't need to do io completion events
3450 	 * polling again, they can rely on io_sq_thread to do polling
3451 	 * work, which can reduce cpu usage and uring_lock contention.
3452 	 */
3453 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3454 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3455 		ctx->syscall_iopoll = 1;
3456 
3457 	ctx->compat = in_compat_syscall();
3458 	if (!capable(CAP_IPC_LOCK))
3459 		ctx->user = get_uid(current_user());
3460 
3461 	/*
3462 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3463 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3464 	 */
3465 	ret = -EINVAL;
3466 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3467 		/* IPI related flags don't make sense with SQPOLL */
3468 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3469 				  IORING_SETUP_TASKRUN_FLAG |
3470 				  IORING_SETUP_DEFER_TASKRUN))
3471 			goto err;
3472 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3473 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3474 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3475 	} else {
3476 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3477 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3478 			goto err;
3479 		ctx->notify_method = TWA_SIGNAL;
3480 	}
3481 
3482 	/*
3483 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3484 	 * submission task. This implies that there is only one submitter, so enforce
3485 	 * that.
3486 	 */
3487 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3488 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3489 		goto err;
3490 	}
3491 
3492 	/*
3493 	 * This is just grabbed for accounting purposes. When a process exits,
3494 	 * the mm is exited and dropped before the files, hence we need to hang
3495 	 * on to this mm purely for the purposes of being able to unaccount
3496 	 * memory (locked/pinned vm). It's not used for anything else.
3497 	 */
3498 	mmgrab(current->mm);
3499 	ctx->mm_account = current->mm;
3500 
3501 	ret = io_allocate_scq_urings(ctx, p);
3502 	if (ret)
3503 		goto err;
3504 
3505 	ret = io_sq_offload_create(ctx, p);
3506 	if (ret)
3507 		goto err;
3508 	/* always set a rsrc node */
3509 	ret = io_rsrc_node_switch_start(ctx);
3510 	if (ret)
3511 		goto err;
3512 	io_rsrc_node_switch(ctx, NULL);
3513 
3514 	memset(&p->sq_off, 0, sizeof(p->sq_off));
3515 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3516 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3517 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3518 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3519 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3520 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3521 	p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3522 
3523 	memset(&p->cq_off, 0, sizeof(p->cq_off));
3524 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3525 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3526 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3527 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3528 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3529 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3530 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3531 
3532 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3533 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3534 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3535 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3536 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3537 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3538 			IORING_FEAT_LINKED_FILE;
3539 
3540 	if (copy_to_user(params, p, sizeof(*p))) {
3541 		ret = -EFAULT;
3542 		goto err;
3543 	}
3544 
3545 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3546 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3547 		ctx->submitter_task = get_task_struct(current);
3548 
3549 	file = io_uring_get_file(ctx);
3550 	if (IS_ERR(file)) {
3551 		ret = PTR_ERR(file);
3552 		goto err;
3553 	}
3554 
3555 	/*
3556 	 * Install ring fd as the very last thing, so we don't risk someone
3557 	 * having closed it before we finish setup
3558 	 */
3559 	ret = io_uring_install_fd(ctx, file);
3560 	if (ret < 0) {
3561 		/* fput will clean it up */
3562 		fput(file);
3563 		return ret;
3564 	}
3565 
3566 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3567 	return ret;
3568 err:
3569 	io_ring_ctx_wait_and_kill(ctx);
3570 	return ret;
3571 }
3572 
3573 /*
3574  * Sets up an aio uring context, and returns the fd. Applications asks for a
3575  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3576  * params structure passed in.
3577  */
3578 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3579 {
3580 	struct io_uring_params p;
3581 	int i;
3582 
3583 	if (copy_from_user(&p, params, sizeof(p)))
3584 		return -EFAULT;
3585 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3586 		if (p.resv[i])
3587 			return -EINVAL;
3588 	}
3589 
3590 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3591 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3592 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3593 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3594 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3595 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3596 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN))
3597 		return -EINVAL;
3598 
3599 	return io_uring_create(entries, &p, params);
3600 }
3601 
3602 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3603 		struct io_uring_params __user *, params)
3604 {
3605 	return io_uring_setup(entries, params);
3606 }
3607 
3608 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
3609 			   unsigned nr_args)
3610 {
3611 	struct io_uring_probe *p;
3612 	size_t size;
3613 	int i, ret;
3614 
3615 	size = struct_size(p, ops, nr_args);
3616 	if (size == SIZE_MAX)
3617 		return -EOVERFLOW;
3618 	p = kzalloc(size, GFP_KERNEL);
3619 	if (!p)
3620 		return -ENOMEM;
3621 
3622 	ret = -EFAULT;
3623 	if (copy_from_user(p, arg, size))
3624 		goto out;
3625 	ret = -EINVAL;
3626 	if (memchr_inv(p, 0, size))
3627 		goto out;
3628 
3629 	p->last_op = IORING_OP_LAST - 1;
3630 	if (nr_args > IORING_OP_LAST)
3631 		nr_args = IORING_OP_LAST;
3632 
3633 	for (i = 0; i < nr_args; i++) {
3634 		p->ops[i].op = i;
3635 		if (!io_op_defs[i].not_supported)
3636 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
3637 	}
3638 	p->ops_len = i;
3639 
3640 	ret = 0;
3641 	if (copy_to_user(arg, p, size))
3642 		ret = -EFAULT;
3643 out:
3644 	kfree(p);
3645 	return ret;
3646 }
3647 
3648 static int io_register_personality(struct io_ring_ctx *ctx)
3649 {
3650 	const struct cred *creds;
3651 	u32 id;
3652 	int ret;
3653 
3654 	creds = get_current_cred();
3655 
3656 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
3657 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
3658 	if (ret < 0) {
3659 		put_cred(creds);
3660 		return ret;
3661 	}
3662 	return id;
3663 }
3664 
3665 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
3666 					   void __user *arg, unsigned int nr_args)
3667 {
3668 	struct io_uring_restriction *res;
3669 	size_t size;
3670 	int i, ret;
3671 
3672 	/* Restrictions allowed only if rings started disabled */
3673 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3674 		return -EBADFD;
3675 
3676 	/* We allow only a single restrictions registration */
3677 	if (ctx->restrictions.registered)
3678 		return -EBUSY;
3679 
3680 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
3681 		return -EINVAL;
3682 
3683 	size = array_size(nr_args, sizeof(*res));
3684 	if (size == SIZE_MAX)
3685 		return -EOVERFLOW;
3686 
3687 	res = memdup_user(arg, size);
3688 	if (IS_ERR(res))
3689 		return PTR_ERR(res);
3690 
3691 	ret = 0;
3692 
3693 	for (i = 0; i < nr_args; i++) {
3694 		switch (res[i].opcode) {
3695 		case IORING_RESTRICTION_REGISTER_OP:
3696 			if (res[i].register_op >= IORING_REGISTER_LAST) {
3697 				ret = -EINVAL;
3698 				goto out;
3699 			}
3700 
3701 			__set_bit(res[i].register_op,
3702 				  ctx->restrictions.register_op);
3703 			break;
3704 		case IORING_RESTRICTION_SQE_OP:
3705 			if (res[i].sqe_op >= IORING_OP_LAST) {
3706 				ret = -EINVAL;
3707 				goto out;
3708 			}
3709 
3710 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
3711 			break;
3712 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
3713 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
3714 			break;
3715 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
3716 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
3717 			break;
3718 		default:
3719 			ret = -EINVAL;
3720 			goto out;
3721 		}
3722 	}
3723 
3724 out:
3725 	/* Reset all restrictions if an error happened */
3726 	if (ret != 0)
3727 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
3728 	else
3729 		ctx->restrictions.registered = true;
3730 
3731 	kfree(res);
3732 	return ret;
3733 }
3734 
3735 static int io_register_enable_rings(struct io_ring_ctx *ctx)
3736 {
3737 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3738 		return -EBADFD;
3739 
3740 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task)
3741 		ctx->submitter_task = get_task_struct(current);
3742 
3743 	if (ctx->restrictions.registered)
3744 		ctx->restricted = 1;
3745 
3746 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
3747 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
3748 		wake_up(&ctx->sq_data->wait);
3749 	return 0;
3750 }
3751 
3752 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
3753 				       void __user *arg, unsigned len)
3754 {
3755 	struct io_uring_task *tctx = current->io_uring;
3756 	cpumask_var_t new_mask;
3757 	int ret;
3758 
3759 	if (!tctx || !tctx->io_wq)
3760 		return -EINVAL;
3761 
3762 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3763 		return -ENOMEM;
3764 
3765 	cpumask_clear(new_mask);
3766 	if (len > cpumask_size())
3767 		len = cpumask_size();
3768 
3769 	if (in_compat_syscall()) {
3770 		ret = compat_get_bitmap(cpumask_bits(new_mask),
3771 					(const compat_ulong_t __user *)arg,
3772 					len * 8 /* CHAR_BIT */);
3773 	} else {
3774 		ret = copy_from_user(new_mask, arg, len);
3775 	}
3776 
3777 	if (ret) {
3778 		free_cpumask_var(new_mask);
3779 		return -EFAULT;
3780 	}
3781 
3782 	ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
3783 	free_cpumask_var(new_mask);
3784 	return ret;
3785 }
3786 
3787 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
3788 {
3789 	struct io_uring_task *tctx = current->io_uring;
3790 
3791 	if (!tctx || !tctx->io_wq)
3792 		return -EINVAL;
3793 
3794 	return io_wq_cpu_affinity(tctx->io_wq, NULL);
3795 }
3796 
3797 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
3798 					       void __user *arg)
3799 	__must_hold(&ctx->uring_lock)
3800 {
3801 	struct io_tctx_node *node;
3802 	struct io_uring_task *tctx = NULL;
3803 	struct io_sq_data *sqd = NULL;
3804 	__u32 new_count[2];
3805 	int i, ret;
3806 
3807 	if (copy_from_user(new_count, arg, sizeof(new_count)))
3808 		return -EFAULT;
3809 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
3810 		if (new_count[i] > INT_MAX)
3811 			return -EINVAL;
3812 
3813 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3814 		sqd = ctx->sq_data;
3815 		if (sqd) {
3816 			/*
3817 			 * Observe the correct sqd->lock -> ctx->uring_lock
3818 			 * ordering. Fine to drop uring_lock here, we hold
3819 			 * a ref to the ctx.
3820 			 */
3821 			refcount_inc(&sqd->refs);
3822 			mutex_unlock(&ctx->uring_lock);
3823 			mutex_lock(&sqd->lock);
3824 			mutex_lock(&ctx->uring_lock);
3825 			if (sqd->thread)
3826 				tctx = sqd->thread->io_uring;
3827 		}
3828 	} else {
3829 		tctx = current->io_uring;
3830 	}
3831 
3832 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
3833 
3834 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
3835 		if (new_count[i])
3836 			ctx->iowq_limits[i] = new_count[i];
3837 	ctx->iowq_limits_set = true;
3838 
3839 	if (tctx && tctx->io_wq) {
3840 		ret = io_wq_max_workers(tctx->io_wq, new_count);
3841 		if (ret)
3842 			goto err;
3843 	} else {
3844 		memset(new_count, 0, sizeof(new_count));
3845 	}
3846 
3847 	if (sqd) {
3848 		mutex_unlock(&sqd->lock);
3849 		io_put_sq_data(sqd);
3850 	}
3851 
3852 	if (copy_to_user(arg, new_count, sizeof(new_count)))
3853 		return -EFAULT;
3854 
3855 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
3856 	if (sqd)
3857 		return 0;
3858 
3859 	/* now propagate the restriction to all registered users */
3860 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3861 		struct io_uring_task *tctx = node->task->io_uring;
3862 
3863 		if (WARN_ON_ONCE(!tctx->io_wq))
3864 			continue;
3865 
3866 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
3867 			new_count[i] = ctx->iowq_limits[i];
3868 		/* ignore errors, it always returns zero anyway */
3869 		(void)io_wq_max_workers(tctx->io_wq, new_count);
3870 	}
3871 	return 0;
3872 err:
3873 	if (sqd) {
3874 		mutex_unlock(&sqd->lock);
3875 		io_put_sq_data(sqd);
3876 	}
3877 	return ret;
3878 }
3879 
3880 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
3881 			       void __user *arg, unsigned nr_args)
3882 	__releases(ctx->uring_lock)
3883 	__acquires(ctx->uring_lock)
3884 {
3885 	int ret;
3886 
3887 	/*
3888 	 * We don't quiesce the refs for register anymore and so it can't be
3889 	 * dying as we're holding a file ref here.
3890 	 */
3891 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
3892 		return -ENXIO;
3893 
3894 	if (ctx->submitter_task && ctx->submitter_task != current)
3895 		return -EEXIST;
3896 
3897 	if (ctx->restricted) {
3898 		if (opcode >= IORING_REGISTER_LAST)
3899 			return -EINVAL;
3900 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
3901 		if (!test_bit(opcode, ctx->restrictions.register_op))
3902 			return -EACCES;
3903 	}
3904 
3905 	switch (opcode) {
3906 	case IORING_REGISTER_BUFFERS:
3907 		ret = -EFAULT;
3908 		if (!arg)
3909 			break;
3910 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
3911 		break;
3912 	case IORING_UNREGISTER_BUFFERS:
3913 		ret = -EINVAL;
3914 		if (arg || nr_args)
3915 			break;
3916 		ret = io_sqe_buffers_unregister(ctx);
3917 		break;
3918 	case IORING_REGISTER_FILES:
3919 		ret = -EFAULT;
3920 		if (!arg)
3921 			break;
3922 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
3923 		break;
3924 	case IORING_UNREGISTER_FILES:
3925 		ret = -EINVAL;
3926 		if (arg || nr_args)
3927 			break;
3928 		ret = io_sqe_files_unregister(ctx);
3929 		break;
3930 	case IORING_REGISTER_FILES_UPDATE:
3931 		ret = io_register_files_update(ctx, arg, nr_args);
3932 		break;
3933 	case IORING_REGISTER_EVENTFD:
3934 		ret = -EINVAL;
3935 		if (nr_args != 1)
3936 			break;
3937 		ret = io_eventfd_register(ctx, arg, 0);
3938 		break;
3939 	case IORING_REGISTER_EVENTFD_ASYNC:
3940 		ret = -EINVAL;
3941 		if (nr_args != 1)
3942 			break;
3943 		ret = io_eventfd_register(ctx, arg, 1);
3944 		break;
3945 	case IORING_UNREGISTER_EVENTFD:
3946 		ret = -EINVAL;
3947 		if (arg || nr_args)
3948 			break;
3949 		ret = io_eventfd_unregister(ctx);
3950 		break;
3951 	case IORING_REGISTER_PROBE:
3952 		ret = -EINVAL;
3953 		if (!arg || nr_args > 256)
3954 			break;
3955 		ret = io_probe(ctx, arg, nr_args);
3956 		break;
3957 	case IORING_REGISTER_PERSONALITY:
3958 		ret = -EINVAL;
3959 		if (arg || nr_args)
3960 			break;
3961 		ret = io_register_personality(ctx);
3962 		break;
3963 	case IORING_UNREGISTER_PERSONALITY:
3964 		ret = -EINVAL;
3965 		if (arg)
3966 			break;
3967 		ret = io_unregister_personality(ctx, nr_args);
3968 		break;
3969 	case IORING_REGISTER_ENABLE_RINGS:
3970 		ret = -EINVAL;
3971 		if (arg || nr_args)
3972 			break;
3973 		ret = io_register_enable_rings(ctx);
3974 		break;
3975 	case IORING_REGISTER_RESTRICTIONS:
3976 		ret = io_register_restrictions(ctx, arg, nr_args);
3977 		break;
3978 	case IORING_REGISTER_FILES2:
3979 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
3980 		break;
3981 	case IORING_REGISTER_FILES_UPDATE2:
3982 		ret = io_register_rsrc_update(ctx, arg, nr_args,
3983 					      IORING_RSRC_FILE);
3984 		break;
3985 	case IORING_REGISTER_BUFFERS2:
3986 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
3987 		break;
3988 	case IORING_REGISTER_BUFFERS_UPDATE:
3989 		ret = io_register_rsrc_update(ctx, arg, nr_args,
3990 					      IORING_RSRC_BUFFER);
3991 		break;
3992 	case IORING_REGISTER_IOWQ_AFF:
3993 		ret = -EINVAL;
3994 		if (!arg || !nr_args)
3995 			break;
3996 		ret = io_register_iowq_aff(ctx, arg, nr_args);
3997 		break;
3998 	case IORING_UNREGISTER_IOWQ_AFF:
3999 		ret = -EINVAL;
4000 		if (arg || nr_args)
4001 			break;
4002 		ret = io_unregister_iowq_aff(ctx);
4003 		break;
4004 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4005 		ret = -EINVAL;
4006 		if (!arg || nr_args != 2)
4007 			break;
4008 		ret = io_register_iowq_max_workers(ctx, arg);
4009 		break;
4010 	case IORING_REGISTER_RING_FDS:
4011 		ret = io_ringfd_register(ctx, arg, nr_args);
4012 		break;
4013 	case IORING_UNREGISTER_RING_FDS:
4014 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4015 		break;
4016 	case IORING_REGISTER_PBUF_RING:
4017 		ret = -EINVAL;
4018 		if (!arg || nr_args != 1)
4019 			break;
4020 		ret = io_register_pbuf_ring(ctx, arg);
4021 		break;
4022 	case IORING_UNREGISTER_PBUF_RING:
4023 		ret = -EINVAL;
4024 		if (!arg || nr_args != 1)
4025 			break;
4026 		ret = io_unregister_pbuf_ring(ctx, arg);
4027 		break;
4028 	case IORING_REGISTER_SYNC_CANCEL:
4029 		ret = -EINVAL;
4030 		if (!arg || nr_args != 1)
4031 			break;
4032 		ret = io_sync_cancel(ctx, arg);
4033 		break;
4034 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4035 		ret = -EINVAL;
4036 		if (!arg || nr_args)
4037 			break;
4038 		ret = io_register_file_alloc_range(ctx, arg);
4039 		break;
4040 	default:
4041 		ret = -EINVAL;
4042 		break;
4043 	}
4044 
4045 	return ret;
4046 }
4047 
4048 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4049 		void __user *, arg, unsigned int, nr_args)
4050 {
4051 	struct io_ring_ctx *ctx;
4052 	long ret = -EBADF;
4053 	struct fd f;
4054 
4055 	f = fdget(fd);
4056 	if (!f.file)
4057 		return -EBADF;
4058 
4059 	ret = -EOPNOTSUPP;
4060 	if (!io_is_uring_fops(f.file))
4061 		goto out_fput;
4062 
4063 	ctx = f.file->private_data;
4064 
4065 	io_run_task_work_ctx(ctx);
4066 
4067 	mutex_lock(&ctx->uring_lock);
4068 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4069 	mutex_unlock(&ctx->uring_lock);
4070 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4071 out_fput:
4072 	fdput(f);
4073 	return ret;
4074 }
4075 
4076 static int __init io_uring_init(void)
4077 {
4078 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4079 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4080 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4081 } while (0)
4082 
4083 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4084 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4085 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4086 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4087 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4088 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4089 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4090 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4091 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4092 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4093 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4094 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4095 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4096 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4097 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4098 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4099 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4100 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4101 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4102 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4103 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4104 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4105 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4106 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4107 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4108 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4109 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4110 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4111 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4112 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4113 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4114 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4115 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4116 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4117 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4118 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4119 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4120 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4121 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4122 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4123 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4124 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4125 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4126 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4127 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4128 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4129 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4130 
4131 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4132 		     sizeof(struct io_uring_rsrc_update));
4133 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4134 		     sizeof(struct io_uring_rsrc_update2));
4135 
4136 	/* ->buf_index is u16 */
4137 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4138 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4139 		     offsetof(struct io_uring_buf_ring, tail));
4140 
4141 	/* should fit into one byte */
4142 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4143 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4144 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4145 
4146 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4147 
4148 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4149 
4150 	io_uring_optable_init();
4151 
4152 	req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4153 				SLAB_ACCOUNT);
4154 	return 0;
4155 };
4156 __initcall(io_uring_init);
4157