1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 76 #define CREATE_TRACE_POINTS 77 #include <trace/events/io_uring.h> 78 79 #include <uapi/linux/io_uring.h> 80 81 #include "io-wq.h" 82 83 #include "io_uring.h" 84 #include "opdef.h" 85 #include "refs.h" 86 #include "tctx.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 95 #include "timeout.h" 96 #include "poll.h" 97 #include "alloc_cache.h" 98 99 #define IORING_MAX_ENTRIES 32768 100 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 101 102 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 103 IORING_REGISTER_LAST + IORING_OP_LAST) 104 105 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 106 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 107 108 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 109 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 110 111 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 112 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 113 REQ_F_ASYNC_DATA) 114 115 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 116 IO_REQ_CLEAN_FLAGS) 117 118 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 119 120 #define IO_COMPL_BATCH 32 121 #define IO_REQ_ALLOC_BATCH 8 122 123 enum { 124 IO_CHECK_CQ_OVERFLOW_BIT, 125 IO_CHECK_CQ_DROPPED_BIT, 126 }; 127 128 enum { 129 IO_EVENTFD_OP_SIGNAL_BIT, 130 IO_EVENTFD_OP_FREE_BIT, 131 }; 132 133 struct io_defer_entry { 134 struct list_head list; 135 struct io_kiocb *req; 136 u32 seq; 137 }; 138 139 /* requests with any of those set should undergo io_disarm_next() */ 140 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 141 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 142 143 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 144 struct task_struct *task, 145 bool cancel_all); 146 147 static void io_dismantle_req(struct io_kiocb *req); 148 static void io_clean_op(struct io_kiocb *req); 149 static void io_queue_sqe(struct io_kiocb *req); 150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx); 151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx); 152 static __cold void io_fallback_tw(struct io_uring_task *tctx); 153 154 static struct kmem_cache *req_cachep; 155 156 struct sock *io_uring_get_socket(struct file *file) 157 { 158 #if defined(CONFIG_UNIX) 159 if (io_is_uring_fops(file)) { 160 struct io_ring_ctx *ctx = file->private_data; 161 162 return ctx->ring_sock->sk; 163 } 164 #endif 165 return NULL; 166 } 167 EXPORT_SYMBOL(io_uring_get_socket); 168 169 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 170 { 171 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 172 ctx->submit_state.cqes_count) 173 __io_submit_flush_completions(ctx); 174 } 175 176 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 177 { 178 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 179 } 180 181 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 182 { 183 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 184 } 185 186 static bool io_match_linked(struct io_kiocb *head) 187 { 188 struct io_kiocb *req; 189 190 io_for_each_link(req, head) { 191 if (req->flags & REQ_F_INFLIGHT) 192 return true; 193 } 194 return false; 195 } 196 197 /* 198 * As io_match_task() but protected against racing with linked timeouts. 199 * User must not hold timeout_lock. 200 */ 201 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 202 bool cancel_all) 203 { 204 bool matched; 205 206 if (task && head->task != task) 207 return false; 208 if (cancel_all) 209 return true; 210 211 if (head->flags & REQ_F_LINK_TIMEOUT) { 212 struct io_ring_ctx *ctx = head->ctx; 213 214 /* protect against races with linked timeouts */ 215 spin_lock_irq(&ctx->timeout_lock); 216 matched = io_match_linked(head); 217 spin_unlock_irq(&ctx->timeout_lock); 218 } else { 219 matched = io_match_linked(head); 220 } 221 return matched; 222 } 223 224 static inline void req_fail_link_node(struct io_kiocb *req, int res) 225 { 226 req_set_fail(req); 227 io_req_set_res(req, res, 0); 228 } 229 230 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 231 { 232 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 233 } 234 235 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 236 { 237 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 238 239 complete(&ctx->ref_comp); 240 } 241 242 static __cold void io_fallback_req_func(struct work_struct *work) 243 { 244 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 245 fallback_work.work); 246 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 247 struct io_kiocb *req, *tmp; 248 bool locked = false; 249 250 percpu_ref_get(&ctx->refs); 251 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 252 req->io_task_work.func(req, &locked); 253 254 if (locked) { 255 io_submit_flush_completions(ctx); 256 mutex_unlock(&ctx->uring_lock); 257 } 258 percpu_ref_put(&ctx->refs); 259 } 260 261 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 262 { 263 unsigned hash_buckets = 1U << bits; 264 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 265 266 table->hbs = kmalloc(hash_size, GFP_KERNEL); 267 if (!table->hbs) 268 return -ENOMEM; 269 270 table->hash_bits = bits; 271 init_hash_table(table, hash_buckets); 272 return 0; 273 } 274 275 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 276 { 277 struct io_ring_ctx *ctx; 278 int hash_bits; 279 280 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 281 if (!ctx) 282 return NULL; 283 284 xa_init(&ctx->io_bl_xa); 285 286 /* 287 * Use 5 bits less than the max cq entries, that should give us around 288 * 32 entries per hash list if totally full and uniformly spread, but 289 * don't keep too many buckets to not overconsume memory. 290 */ 291 hash_bits = ilog2(p->cq_entries) - 5; 292 hash_bits = clamp(hash_bits, 1, 8); 293 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 294 goto err; 295 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 296 goto err; 297 298 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL); 299 if (!ctx->dummy_ubuf) 300 goto err; 301 /* set invalid range, so io_import_fixed() fails meeting it */ 302 ctx->dummy_ubuf->ubuf = -1UL; 303 304 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 305 0, GFP_KERNEL)) 306 goto err; 307 308 ctx->flags = p->flags; 309 init_waitqueue_head(&ctx->sqo_sq_wait); 310 INIT_LIST_HEAD(&ctx->sqd_list); 311 INIT_LIST_HEAD(&ctx->cq_overflow_list); 312 INIT_LIST_HEAD(&ctx->io_buffers_cache); 313 io_alloc_cache_init(&ctx->apoll_cache); 314 io_alloc_cache_init(&ctx->netmsg_cache); 315 init_completion(&ctx->ref_comp); 316 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 317 mutex_init(&ctx->uring_lock); 318 init_waitqueue_head(&ctx->cq_wait); 319 spin_lock_init(&ctx->completion_lock); 320 spin_lock_init(&ctx->timeout_lock); 321 INIT_WQ_LIST(&ctx->iopoll_list); 322 INIT_LIST_HEAD(&ctx->io_buffers_pages); 323 INIT_LIST_HEAD(&ctx->io_buffers_comp); 324 INIT_LIST_HEAD(&ctx->defer_list); 325 INIT_LIST_HEAD(&ctx->timeout_list); 326 INIT_LIST_HEAD(&ctx->ltimeout_list); 327 spin_lock_init(&ctx->rsrc_ref_lock); 328 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 329 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work); 330 init_task_work(&ctx->rsrc_put_tw, io_rsrc_put_tw); 331 init_llist_head(&ctx->rsrc_put_llist); 332 init_llist_head(&ctx->work_llist); 333 INIT_LIST_HEAD(&ctx->tctx_list); 334 ctx->submit_state.free_list.next = NULL; 335 INIT_WQ_LIST(&ctx->locked_free_list); 336 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 337 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 338 return ctx; 339 err: 340 kfree(ctx->dummy_ubuf); 341 kfree(ctx->cancel_table.hbs); 342 kfree(ctx->cancel_table_locked.hbs); 343 kfree(ctx->io_bl); 344 xa_destroy(&ctx->io_bl_xa); 345 kfree(ctx); 346 return NULL; 347 } 348 349 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 350 { 351 struct io_rings *r = ctx->rings; 352 353 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 354 ctx->cq_extra--; 355 } 356 357 static bool req_need_defer(struct io_kiocb *req, u32 seq) 358 { 359 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 360 struct io_ring_ctx *ctx = req->ctx; 361 362 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 363 } 364 365 return false; 366 } 367 368 static inline void io_req_track_inflight(struct io_kiocb *req) 369 { 370 if (!(req->flags & REQ_F_INFLIGHT)) { 371 req->flags |= REQ_F_INFLIGHT; 372 atomic_inc(&req->task->io_uring->inflight_tracked); 373 } 374 } 375 376 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 377 { 378 if (WARN_ON_ONCE(!req->link)) 379 return NULL; 380 381 req->flags &= ~REQ_F_ARM_LTIMEOUT; 382 req->flags |= REQ_F_LINK_TIMEOUT; 383 384 /* linked timeouts should have two refs once prep'ed */ 385 io_req_set_refcount(req); 386 __io_req_set_refcount(req->link, 2); 387 return req->link; 388 } 389 390 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 391 { 392 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 393 return NULL; 394 return __io_prep_linked_timeout(req); 395 } 396 397 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 398 { 399 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 400 } 401 402 static inline void io_arm_ltimeout(struct io_kiocb *req) 403 { 404 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 405 __io_arm_ltimeout(req); 406 } 407 408 static void io_prep_async_work(struct io_kiocb *req) 409 { 410 const struct io_op_def *def = &io_op_defs[req->opcode]; 411 struct io_ring_ctx *ctx = req->ctx; 412 413 if (!(req->flags & REQ_F_CREDS)) { 414 req->flags |= REQ_F_CREDS; 415 req->creds = get_current_cred(); 416 } 417 418 req->work.list.next = NULL; 419 req->work.flags = 0; 420 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 421 if (req->flags & REQ_F_FORCE_ASYNC) 422 req->work.flags |= IO_WQ_WORK_CONCURRENT; 423 424 if (req->file && !io_req_ffs_set(req)) 425 req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT; 426 427 if (req->flags & REQ_F_ISREG) { 428 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL)) 429 io_wq_hash_work(&req->work, file_inode(req->file)); 430 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 431 if (def->unbound_nonreg_file) 432 req->work.flags |= IO_WQ_WORK_UNBOUND; 433 } 434 } 435 436 static void io_prep_async_link(struct io_kiocb *req) 437 { 438 struct io_kiocb *cur; 439 440 if (req->flags & REQ_F_LINK_TIMEOUT) { 441 struct io_ring_ctx *ctx = req->ctx; 442 443 spin_lock_irq(&ctx->timeout_lock); 444 io_for_each_link(cur, req) 445 io_prep_async_work(cur); 446 spin_unlock_irq(&ctx->timeout_lock); 447 } else { 448 io_for_each_link(cur, req) 449 io_prep_async_work(cur); 450 } 451 } 452 453 void io_queue_iowq(struct io_kiocb *req, bool *dont_use) 454 { 455 struct io_kiocb *link = io_prep_linked_timeout(req); 456 struct io_uring_task *tctx = req->task->io_uring; 457 458 BUG_ON(!tctx); 459 BUG_ON(!tctx->io_wq); 460 461 /* init ->work of the whole link before punting */ 462 io_prep_async_link(req); 463 464 /* 465 * Not expected to happen, but if we do have a bug where this _can_ 466 * happen, catch it here and ensure the request is marked as 467 * canceled. That will make io-wq go through the usual work cancel 468 * procedure rather than attempt to run this request (or create a new 469 * worker for it). 470 */ 471 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 472 req->work.flags |= IO_WQ_WORK_CANCEL; 473 474 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 475 io_wq_enqueue(tctx->io_wq, &req->work); 476 if (link) 477 io_queue_linked_timeout(link); 478 } 479 480 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 481 { 482 while (!list_empty(&ctx->defer_list)) { 483 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 484 struct io_defer_entry, list); 485 486 if (req_need_defer(de->req, de->seq)) 487 break; 488 list_del_init(&de->list); 489 io_req_task_queue(de->req); 490 kfree(de); 491 } 492 } 493 494 495 static void io_eventfd_ops(struct rcu_head *rcu) 496 { 497 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 498 int ops = atomic_xchg(&ev_fd->ops, 0); 499 500 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 501 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 502 503 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 504 * ordering in a race but if references are 0 we know we have to free 505 * it regardless. 506 */ 507 if (atomic_dec_and_test(&ev_fd->refs)) { 508 eventfd_ctx_put(ev_fd->cq_ev_fd); 509 kfree(ev_fd); 510 } 511 } 512 513 static void io_eventfd_signal(struct io_ring_ctx *ctx) 514 { 515 struct io_ev_fd *ev_fd = NULL; 516 517 rcu_read_lock(); 518 /* 519 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 520 * and eventfd_signal 521 */ 522 ev_fd = rcu_dereference(ctx->io_ev_fd); 523 524 /* 525 * Check again if ev_fd exists incase an io_eventfd_unregister call 526 * completed between the NULL check of ctx->io_ev_fd at the start of 527 * the function and rcu_read_lock. 528 */ 529 if (unlikely(!ev_fd)) 530 goto out; 531 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 532 goto out; 533 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 534 goto out; 535 536 if (likely(eventfd_signal_allowed())) { 537 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 538 } else { 539 atomic_inc(&ev_fd->refs); 540 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 541 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 542 else 543 atomic_dec(&ev_fd->refs); 544 } 545 546 out: 547 rcu_read_unlock(); 548 } 549 550 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 551 { 552 bool skip; 553 554 spin_lock(&ctx->completion_lock); 555 556 /* 557 * Eventfd should only get triggered when at least one event has been 558 * posted. Some applications rely on the eventfd notification count 559 * only changing IFF a new CQE has been added to the CQ ring. There's 560 * no depedency on 1:1 relationship between how many times this 561 * function is called (and hence the eventfd count) and number of CQEs 562 * posted to the CQ ring. 563 */ 564 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 565 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 566 spin_unlock(&ctx->completion_lock); 567 if (skip) 568 return; 569 570 io_eventfd_signal(ctx); 571 } 572 573 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 574 { 575 if (ctx->off_timeout_used) 576 io_flush_timeouts(ctx); 577 if (ctx->drain_active) { 578 spin_lock(&ctx->completion_lock); 579 io_queue_deferred(ctx); 580 spin_unlock(&ctx->completion_lock); 581 } 582 if (ctx->has_evfd) 583 io_eventfd_flush_signal(ctx); 584 } 585 586 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 587 __acquires(ctx->completion_lock) 588 { 589 if (!ctx->task_complete) 590 spin_lock(&ctx->completion_lock); 591 } 592 593 static inline void __io_cq_unlock(struct io_ring_ctx *ctx) 594 { 595 if (!ctx->task_complete) 596 spin_unlock(&ctx->completion_lock); 597 } 598 599 static inline void io_cq_lock(struct io_ring_ctx *ctx) 600 __acquires(ctx->completion_lock) 601 { 602 spin_lock(&ctx->completion_lock); 603 } 604 605 static inline void io_cq_unlock(struct io_ring_ctx *ctx) 606 __releases(ctx->completion_lock) 607 { 608 spin_unlock(&ctx->completion_lock); 609 } 610 611 /* keep it inlined for io_submit_flush_completions() */ 612 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 613 __releases(ctx->completion_lock) 614 { 615 io_commit_cqring(ctx); 616 __io_cq_unlock(ctx); 617 io_commit_cqring_flush(ctx); 618 io_cqring_wake(ctx); 619 } 620 621 void io_cq_unlock_post(struct io_ring_ctx *ctx) 622 __releases(ctx->completion_lock) 623 { 624 io_commit_cqring(ctx); 625 spin_unlock(&ctx->completion_lock); 626 io_commit_cqring_flush(ctx); 627 io_cqring_wake(ctx); 628 } 629 630 /* Returns true if there are no backlogged entries after the flush */ 631 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 632 { 633 struct io_overflow_cqe *ocqe; 634 LIST_HEAD(list); 635 636 io_cq_lock(ctx); 637 list_splice_init(&ctx->cq_overflow_list, &list); 638 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 639 io_cq_unlock(ctx); 640 641 while (!list_empty(&list)) { 642 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 643 list_del(&ocqe->list); 644 kfree(ocqe); 645 } 646 } 647 648 /* Returns true if there are no backlogged entries after the flush */ 649 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 650 { 651 size_t cqe_size = sizeof(struct io_uring_cqe); 652 653 if (__io_cqring_events(ctx) == ctx->cq_entries) 654 return; 655 656 if (ctx->flags & IORING_SETUP_CQE32) 657 cqe_size <<= 1; 658 659 io_cq_lock(ctx); 660 while (!list_empty(&ctx->cq_overflow_list)) { 661 struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true); 662 struct io_overflow_cqe *ocqe; 663 664 if (!cqe) 665 break; 666 ocqe = list_first_entry(&ctx->cq_overflow_list, 667 struct io_overflow_cqe, list); 668 memcpy(cqe, &ocqe->cqe, cqe_size); 669 list_del(&ocqe->list); 670 kfree(ocqe); 671 } 672 673 if (list_empty(&ctx->cq_overflow_list)) { 674 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 675 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 676 } 677 io_cq_unlock_post(ctx); 678 } 679 680 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 681 { 682 /* iopoll syncs against uring_lock, not completion_lock */ 683 if (ctx->flags & IORING_SETUP_IOPOLL) 684 mutex_lock(&ctx->uring_lock); 685 __io_cqring_overflow_flush(ctx); 686 if (ctx->flags & IORING_SETUP_IOPOLL) 687 mutex_unlock(&ctx->uring_lock); 688 } 689 690 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 691 { 692 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 693 io_cqring_do_overflow_flush(ctx); 694 } 695 696 void __io_put_task(struct task_struct *task, int nr) 697 { 698 struct io_uring_task *tctx = task->io_uring; 699 700 percpu_counter_sub(&tctx->inflight, nr); 701 if (unlikely(atomic_read(&tctx->in_idle))) 702 wake_up(&tctx->wait); 703 put_task_struct_many(task, nr); 704 } 705 706 void io_task_refs_refill(struct io_uring_task *tctx) 707 { 708 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 709 710 percpu_counter_add(&tctx->inflight, refill); 711 refcount_add(refill, ¤t->usage); 712 tctx->cached_refs += refill; 713 } 714 715 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 716 { 717 struct io_uring_task *tctx = task->io_uring; 718 unsigned int refs = tctx->cached_refs; 719 720 if (refs) { 721 tctx->cached_refs = 0; 722 percpu_counter_sub(&tctx->inflight, refs); 723 put_task_struct_many(task, refs); 724 } 725 } 726 727 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 728 s32 res, u32 cflags, u64 extra1, u64 extra2) 729 { 730 struct io_overflow_cqe *ocqe; 731 size_t ocq_size = sizeof(struct io_overflow_cqe); 732 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 733 734 if (is_cqe32) 735 ocq_size += sizeof(struct io_uring_cqe); 736 737 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 738 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 739 if (!ocqe) { 740 /* 741 * If we're in ring overflow flush mode, or in task cancel mode, 742 * or cannot allocate an overflow entry, then we need to drop it 743 * on the floor. 744 */ 745 io_account_cq_overflow(ctx); 746 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 747 return false; 748 } 749 if (list_empty(&ctx->cq_overflow_list)) { 750 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 751 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 752 753 } 754 ocqe->cqe.user_data = user_data; 755 ocqe->cqe.res = res; 756 ocqe->cqe.flags = cflags; 757 if (is_cqe32) { 758 ocqe->cqe.big_cqe[0] = extra1; 759 ocqe->cqe.big_cqe[1] = extra2; 760 } 761 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 762 return true; 763 } 764 765 bool io_req_cqe_overflow(struct io_kiocb *req) 766 { 767 if (!(req->flags & REQ_F_CQE32_INIT)) { 768 req->extra1 = 0; 769 req->extra2 = 0; 770 } 771 return io_cqring_event_overflow(req->ctx, req->cqe.user_data, 772 req->cqe.res, req->cqe.flags, 773 req->extra1, req->extra2); 774 } 775 776 /* 777 * writes to the cq entry need to come after reading head; the 778 * control dependency is enough as we're using WRITE_ONCE to 779 * fill the cq entry 780 */ 781 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow) 782 { 783 struct io_rings *rings = ctx->rings; 784 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 785 unsigned int free, queued, len; 786 787 /* 788 * Posting into the CQ when there are pending overflowed CQEs may break 789 * ordering guarantees, which will affect links, F_MORE users and more. 790 * Force overflow the completion. 791 */ 792 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 793 return NULL; 794 795 /* userspace may cheat modifying the tail, be safe and do min */ 796 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 797 free = ctx->cq_entries - queued; 798 /* we need a contiguous range, limit based on the current array offset */ 799 len = min(free, ctx->cq_entries - off); 800 if (!len) 801 return NULL; 802 803 if (ctx->flags & IORING_SETUP_CQE32) { 804 off <<= 1; 805 len <<= 1; 806 } 807 808 ctx->cqe_cached = &rings->cqes[off]; 809 ctx->cqe_sentinel = ctx->cqe_cached + len; 810 811 ctx->cached_cq_tail++; 812 ctx->cqe_cached++; 813 if (ctx->flags & IORING_SETUP_CQE32) 814 ctx->cqe_cached++; 815 return &rings->cqes[off]; 816 } 817 818 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 819 u32 cflags) 820 { 821 struct io_uring_cqe *cqe; 822 823 if (!ctx->task_complete) 824 lockdep_assert_held(&ctx->completion_lock); 825 826 ctx->cq_extra++; 827 828 /* 829 * If we can't get a cq entry, userspace overflowed the 830 * submission (by quite a lot). Increment the overflow count in 831 * the ring. 832 */ 833 cqe = io_get_cqe(ctx); 834 if (likely(cqe)) { 835 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 836 837 WRITE_ONCE(cqe->user_data, user_data); 838 WRITE_ONCE(cqe->res, res); 839 WRITE_ONCE(cqe->flags, cflags); 840 841 if (ctx->flags & IORING_SETUP_CQE32) { 842 WRITE_ONCE(cqe->big_cqe[0], 0); 843 WRITE_ONCE(cqe->big_cqe[1], 0); 844 } 845 return true; 846 } 847 return false; 848 } 849 850 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 851 __must_hold(&ctx->uring_lock) 852 { 853 struct io_submit_state *state = &ctx->submit_state; 854 unsigned int i; 855 856 lockdep_assert_held(&ctx->uring_lock); 857 for (i = 0; i < state->cqes_count; i++) { 858 struct io_uring_cqe *cqe = &state->cqes[i]; 859 860 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 861 if (ctx->task_complete) { 862 spin_lock(&ctx->completion_lock); 863 io_cqring_event_overflow(ctx, cqe->user_data, 864 cqe->res, cqe->flags, 0, 0); 865 spin_unlock(&ctx->completion_lock); 866 } else { 867 io_cqring_event_overflow(ctx, cqe->user_data, 868 cqe->res, cqe->flags, 0, 0); 869 } 870 } 871 } 872 state->cqes_count = 0; 873 } 874 875 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 876 bool allow_overflow) 877 { 878 bool filled; 879 880 io_cq_lock(ctx); 881 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 882 if (!filled && allow_overflow) 883 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 884 885 io_cq_unlock_post(ctx); 886 return filled; 887 } 888 889 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 890 { 891 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 892 } 893 894 bool io_aux_cqe(struct io_ring_ctx *ctx, bool defer, u64 user_data, s32 res, u32 cflags, 895 bool allow_overflow) 896 { 897 struct io_uring_cqe *cqe; 898 unsigned int length; 899 900 if (!defer) 901 return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow); 902 903 length = ARRAY_SIZE(ctx->submit_state.cqes); 904 905 lockdep_assert_held(&ctx->uring_lock); 906 907 if (ctx->submit_state.cqes_count == length) { 908 __io_cq_lock(ctx); 909 __io_flush_post_cqes(ctx); 910 /* no need to flush - flush is deferred */ 911 __io_cq_unlock_post(ctx); 912 } 913 914 /* For defered completions this is not as strict as it is otherwise, 915 * however it's main job is to prevent unbounded posted completions, 916 * and in that it works just as well. 917 */ 918 if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 919 return false; 920 921 cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++]; 922 cqe->user_data = user_data; 923 cqe->res = res; 924 cqe->flags = cflags; 925 return true; 926 } 927 928 static void __io_req_complete_post(struct io_kiocb *req) 929 { 930 struct io_ring_ctx *ctx = req->ctx; 931 932 io_cq_lock(ctx); 933 if (!(req->flags & REQ_F_CQE_SKIP)) 934 io_fill_cqe_req(ctx, req); 935 936 /* 937 * If we're the last reference to this request, add to our locked 938 * free_list cache. 939 */ 940 if (req_ref_put_and_test(req)) { 941 if (req->flags & IO_REQ_LINK_FLAGS) { 942 if (req->flags & IO_DISARM_MASK) 943 io_disarm_next(req); 944 if (req->link) { 945 io_req_task_queue(req->link); 946 req->link = NULL; 947 } 948 } 949 io_req_put_rsrc(req); 950 /* 951 * Selected buffer deallocation in io_clean_op() assumes that 952 * we don't hold ->completion_lock. Clean them here to avoid 953 * deadlocks. 954 */ 955 io_put_kbuf_comp(req); 956 io_dismantle_req(req); 957 io_put_task(req->task, 1); 958 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 959 ctx->locked_free_nr++; 960 } 961 io_cq_unlock_post(ctx); 962 } 963 964 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 965 { 966 if (req->ctx->task_complete && (issue_flags & IO_URING_F_IOWQ)) { 967 req->io_task_work.func = io_req_task_complete; 968 io_req_task_work_add(req); 969 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 970 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 971 __io_req_complete_post(req); 972 } else { 973 struct io_ring_ctx *ctx = req->ctx; 974 975 mutex_lock(&ctx->uring_lock); 976 __io_req_complete_post(req); 977 mutex_unlock(&ctx->uring_lock); 978 } 979 } 980 981 void io_req_defer_failed(struct io_kiocb *req, s32 res) 982 __must_hold(&ctx->uring_lock) 983 { 984 const struct io_op_def *def = &io_op_defs[req->opcode]; 985 986 lockdep_assert_held(&req->ctx->uring_lock); 987 988 req_set_fail(req); 989 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 990 if (def->fail) 991 def->fail(req); 992 io_req_complete_defer(req); 993 } 994 995 /* 996 * Don't initialise the fields below on every allocation, but do that in 997 * advance and keep them valid across allocations. 998 */ 999 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1000 { 1001 req->ctx = ctx; 1002 req->link = NULL; 1003 req->async_data = NULL; 1004 /* not necessary, but safer to zero */ 1005 req->cqe.res = 0; 1006 } 1007 1008 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1009 struct io_submit_state *state) 1010 { 1011 spin_lock(&ctx->completion_lock); 1012 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1013 ctx->locked_free_nr = 0; 1014 spin_unlock(&ctx->completion_lock); 1015 } 1016 1017 /* 1018 * A request might get retired back into the request caches even before opcode 1019 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1020 * Because of that, io_alloc_req() should be called only under ->uring_lock 1021 * and with extra caution to not get a request that is still worked on. 1022 */ 1023 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1024 __must_hold(&ctx->uring_lock) 1025 { 1026 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1027 void *reqs[IO_REQ_ALLOC_BATCH]; 1028 int ret, i; 1029 1030 /* 1031 * If we have more than a batch's worth of requests in our IRQ side 1032 * locked cache, grab the lock and move them over to our submission 1033 * side cache. 1034 */ 1035 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1036 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1037 if (!io_req_cache_empty(ctx)) 1038 return true; 1039 } 1040 1041 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1042 1043 /* 1044 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1045 * retry single alloc to be on the safe side. 1046 */ 1047 if (unlikely(ret <= 0)) { 1048 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1049 if (!reqs[0]) 1050 return false; 1051 ret = 1; 1052 } 1053 1054 percpu_ref_get_many(&ctx->refs, ret); 1055 for (i = 0; i < ret; i++) { 1056 struct io_kiocb *req = reqs[i]; 1057 1058 io_preinit_req(req, ctx); 1059 io_req_add_to_cache(req, ctx); 1060 } 1061 return true; 1062 } 1063 1064 static inline void io_dismantle_req(struct io_kiocb *req) 1065 { 1066 unsigned int flags = req->flags; 1067 1068 if (unlikely(flags & IO_REQ_CLEAN_FLAGS)) 1069 io_clean_op(req); 1070 if (!(flags & REQ_F_FIXED_FILE)) 1071 io_put_file(req->file); 1072 } 1073 1074 __cold void io_free_req(struct io_kiocb *req) 1075 { 1076 struct io_ring_ctx *ctx = req->ctx; 1077 1078 io_req_put_rsrc(req); 1079 io_dismantle_req(req); 1080 io_put_task(req->task, 1); 1081 1082 spin_lock(&ctx->completion_lock); 1083 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1084 ctx->locked_free_nr++; 1085 spin_unlock(&ctx->completion_lock); 1086 } 1087 1088 static void __io_req_find_next_prep(struct io_kiocb *req) 1089 { 1090 struct io_ring_ctx *ctx = req->ctx; 1091 1092 spin_lock(&ctx->completion_lock); 1093 io_disarm_next(req); 1094 spin_unlock(&ctx->completion_lock); 1095 } 1096 1097 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1098 { 1099 struct io_kiocb *nxt; 1100 1101 /* 1102 * If LINK is set, we have dependent requests in this chain. If we 1103 * didn't fail this request, queue the first one up, moving any other 1104 * dependencies to the next request. In case of failure, fail the rest 1105 * of the chain. 1106 */ 1107 if (unlikely(req->flags & IO_DISARM_MASK)) 1108 __io_req_find_next_prep(req); 1109 nxt = req->link; 1110 req->link = NULL; 1111 return nxt; 1112 } 1113 1114 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked) 1115 { 1116 if (!ctx) 1117 return; 1118 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1119 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1120 if (*locked) { 1121 io_submit_flush_completions(ctx); 1122 mutex_unlock(&ctx->uring_lock); 1123 *locked = false; 1124 } 1125 percpu_ref_put(&ctx->refs); 1126 } 1127 1128 static unsigned int handle_tw_list(struct llist_node *node, 1129 struct io_ring_ctx **ctx, bool *locked, 1130 struct llist_node *last) 1131 { 1132 unsigned int count = 0; 1133 1134 while (node != last) { 1135 struct llist_node *next = node->next; 1136 struct io_kiocb *req = container_of(node, struct io_kiocb, 1137 io_task_work.node); 1138 1139 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1140 1141 if (req->ctx != *ctx) { 1142 ctx_flush_and_put(*ctx, locked); 1143 *ctx = req->ctx; 1144 /* if not contended, grab and improve batching */ 1145 *locked = mutex_trylock(&(*ctx)->uring_lock); 1146 percpu_ref_get(&(*ctx)->refs); 1147 } 1148 req->io_task_work.func(req, locked); 1149 node = next; 1150 count++; 1151 } 1152 1153 return count; 1154 } 1155 1156 /** 1157 * io_llist_xchg - swap all entries in a lock-less list 1158 * @head: the head of lock-less list to delete all entries 1159 * @new: new entry as the head of the list 1160 * 1161 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1162 * The order of entries returned is from the newest to the oldest added one. 1163 */ 1164 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1165 struct llist_node *new) 1166 { 1167 return xchg(&head->first, new); 1168 } 1169 1170 /** 1171 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1172 * @head: the head of lock-less list to delete all entries 1173 * @old: expected old value of the first entry of the list 1174 * @new: new entry as the head of the list 1175 * 1176 * perform a cmpxchg on the first entry of the list. 1177 */ 1178 1179 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1180 struct llist_node *old, 1181 struct llist_node *new) 1182 { 1183 return cmpxchg(&head->first, old, new); 1184 } 1185 1186 void tctx_task_work(struct callback_head *cb) 1187 { 1188 bool uring_locked = false; 1189 struct io_ring_ctx *ctx = NULL; 1190 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1191 task_work); 1192 struct llist_node fake = {}; 1193 struct llist_node *node; 1194 unsigned int loops = 1; 1195 unsigned int count; 1196 1197 if (unlikely(current->flags & PF_EXITING)) { 1198 io_fallback_tw(tctx); 1199 return; 1200 } 1201 1202 node = io_llist_xchg(&tctx->task_list, &fake); 1203 count = handle_tw_list(node, &ctx, &uring_locked, NULL); 1204 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1205 while (node != &fake) { 1206 loops++; 1207 node = io_llist_xchg(&tctx->task_list, &fake); 1208 count += handle_tw_list(node, &ctx, &uring_locked, &fake); 1209 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1210 } 1211 1212 ctx_flush_and_put(ctx, &uring_locked); 1213 1214 /* relaxed read is enough as only the task itself sets ->in_idle */ 1215 if (unlikely(atomic_read(&tctx->in_idle))) 1216 io_uring_drop_tctx_refs(current); 1217 1218 trace_io_uring_task_work_run(tctx, count, loops); 1219 } 1220 1221 static __cold void io_fallback_tw(struct io_uring_task *tctx) 1222 { 1223 struct llist_node *node = llist_del_all(&tctx->task_list); 1224 struct io_kiocb *req; 1225 1226 while (node) { 1227 req = container_of(node, struct io_kiocb, io_task_work.node); 1228 node = node->next; 1229 if (llist_add(&req->io_task_work.node, 1230 &req->ctx->fallback_llist)) 1231 schedule_delayed_work(&req->ctx->fallback_work, 1); 1232 } 1233 } 1234 1235 static void io_req_local_work_add(struct io_kiocb *req) 1236 { 1237 struct io_ring_ctx *ctx = req->ctx; 1238 1239 if (!llist_add(&req->io_task_work.node, &ctx->work_llist)) 1240 return; 1241 /* need it for the following io_cqring_wake() */ 1242 smp_mb__after_atomic(); 1243 1244 if (unlikely(atomic_read(&req->task->io_uring->in_idle))) { 1245 io_move_task_work_from_local(ctx); 1246 return; 1247 } 1248 1249 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1250 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1251 1252 if (ctx->has_evfd) 1253 io_eventfd_signal(ctx); 1254 __io_cqring_wake(ctx); 1255 } 1256 1257 void __io_req_task_work_add(struct io_kiocb *req, bool allow_local) 1258 { 1259 struct io_uring_task *tctx = req->task->io_uring; 1260 struct io_ring_ctx *ctx = req->ctx; 1261 1262 if (allow_local && ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1263 io_req_local_work_add(req); 1264 return; 1265 } 1266 1267 /* task_work already pending, we're done */ 1268 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1269 return; 1270 1271 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1272 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1273 1274 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1275 return; 1276 1277 io_fallback_tw(tctx); 1278 } 1279 1280 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1281 { 1282 struct llist_node *node; 1283 1284 node = llist_del_all(&ctx->work_llist); 1285 while (node) { 1286 struct io_kiocb *req = container_of(node, struct io_kiocb, 1287 io_task_work.node); 1288 1289 node = node->next; 1290 __io_req_task_work_add(req, false); 1291 } 1292 } 1293 1294 int __io_run_local_work(struct io_ring_ctx *ctx, bool *locked) 1295 { 1296 struct llist_node *node; 1297 struct llist_node fake; 1298 struct llist_node *current_final = NULL; 1299 int ret; 1300 unsigned int loops = 1; 1301 1302 if (unlikely(ctx->submitter_task != current)) 1303 return -EEXIST; 1304 1305 node = io_llist_xchg(&ctx->work_llist, &fake); 1306 ret = 0; 1307 again: 1308 while (node != current_final) { 1309 struct llist_node *next = node->next; 1310 struct io_kiocb *req = container_of(node, struct io_kiocb, 1311 io_task_work.node); 1312 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1313 req->io_task_work.func(req, locked); 1314 ret++; 1315 node = next; 1316 } 1317 1318 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1319 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1320 1321 node = io_llist_cmpxchg(&ctx->work_llist, &fake, NULL); 1322 if (node != &fake) { 1323 loops++; 1324 current_final = &fake; 1325 node = io_llist_xchg(&ctx->work_llist, &fake); 1326 goto again; 1327 } 1328 1329 if (*locked) 1330 io_submit_flush_completions(ctx); 1331 trace_io_uring_local_work_run(ctx, ret, loops); 1332 return ret; 1333 1334 } 1335 1336 int io_run_local_work(struct io_ring_ctx *ctx) 1337 { 1338 bool locked; 1339 int ret; 1340 1341 if (llist_empty(&ctx->work_llist)) 1342 return 0; 1343 1344 __set_current_state(TASK_RUNNING); 1345 locked = mutex_trylock(&ctx->uring_lock); 1346 ret = __io_run_local_work(ctx, &locked); 1347 if (locked) 1348 mutex_unlock(&ctx->uring_lock); 1349 1350 return ret; 1351 } 1352 1353 static void io_req_task_cancel(struct io_kiocb *req, bool *locked) 1354 { 1355 io_tw_lock(req->ctx, locked); 1356 io_req_defer_failed(req, req->cqe.res); 1357 } 1358 1359 void io_req_task_submit(struct io_kiocb *req, bool *locked) 1360 { 1361 io_tw_lock(req->ctx, locked); 1362 /* req->task == current here, checking PF_EXITING is safe */ 1363 if (likely(!(req->task->flags & PF_EXITING))) 1364 io_queue_sqe(req); 1365 else 1366 io_req_defer_failed(req, -EFAULT); 1367 } 1368 1369 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1370 { 1371 io_req_set_res(req, ret, 0); 1372 req->io_task_work.func = io_req_task_cancel; 1373 io_req_task_work_add(req); 1374 } 1375 1376 void io_req_task_queue(struct io_kiocb *req) 1377 { 1378 req->io_task_work.func = io_req_task_submit; 1379 io_req_task_work_add(req); 1380 } 1381 1382 void io_queue_next(struct io_kiocb *req) 1383 { 1384 struct io_kiocb *nxt = io_req_find_next(req); 1385 1386 if (nxt) 1387 io_req_task_queue(nxt); 1388 } 1389 1390 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node) 1391 __must_hold(&ctx->uring_lock) 1392 { 1393 struct task_struct *task = NULL; 1394 int task_refs = 0; 1395 1396 do { 1397 struct io_kiocb *req = container_of(node, struct io_kiocb, 1398 comp_list); 1399 1400 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1401 if (req->flags & REQ_F_REFCOUNT) { 1402 node = req->comp_list.next; 1403 if (!req_ref_put_and_test(req)) 1404 continue; 1405 } 1406 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1407 struct async_poll *apoll = req->apoll; 1408 1409 if (apoll->double_poll) 1410 kfree(apoll->double_poll); 1411 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1412 kfree(apoll); 1413 req->flags &= ~REQ_F_POLLED; 1414 } 1415 if (req->flags & IO_REQ_LINK_FLAGS) 1416 io_queue_next(req); 1417 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1418 io_clean_op(req); 1419 } 1420 if (!(req->flags & REQ_F_FIXED_FILE)) 1421 io_put_file(req->file); 1422 1423 io_req_put_rsrc_locked(req, ctx); 1424 1425 if (req->task != task) { 1426 if (task) 1427 io_put_task(task, task_refs); 1428 task = req->task; 1429 task_refs = 0; 1430 } 1431 task_refs++; 1432 node = req->comp_list.next; 1433 io_req_add_to_cache(req, ctx); 1434 } while (node); 1435 1436 if (task) 1437 io_put_task(task, task_refs); 1438 } 1439 1440 static void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1441 __must_hold(&ctx->uring_lock) 1442 { 1443 struct io_wq_work_node *node, *prev; 1444 struct io_submit_state *state = &ctx->submit_state; 1445 1446 __io_cq_lock(ctx); 1447 /* must come first to preserve CQE ordering in failure cases */ 1448 if (state->cqes_count) 1449 __io_flush_post_cqes(ctx); 1450 wq_list_for_each(node, prev, &state->compl_reqs) { 1451 struct io_kiocb *req = container_of(node, struct io_kiocb, 1452 comp_list); 1453 1454 if (!(req->flags & REQ_F_CQE_SKIP) && 1455 unlikely(!__io_fill_cqe_req(ctx, req))) { 1456 if (ctx->task_complete) { 1457 spin_lock(&ctx->completion_lock); 1458 io_req_cqe_overflow(req); 1459 spin_unlock(&ctx->completion_lock); 1460 } else { 1461 io_req_cqe_overflow(req); 1462 } 1463 } 1464 } 1465 __io_cq_unlock_post(ctx); 1466 1467 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1468 io_free_batch_list(ctx, state->compl_reqs.first); 1469 INIT_WQ_LIST(&state->compl_reqs); 1470 } 1471 } 1472 1473 /* 1474 * Drop reference to request, return next in chain (if there is one) if this 1475 * was the last reference to this request. 1476 */ 1477 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req) 1478 { 1479 struct io_kiocb *nxt = NULL; 1480 1481 if (req_ref_put_and_test(req)) { 1482 if (unlikely(req->flags & IO_REQ_LINK_FLAGS)) 1483 nxt = io_req_find_next(req); 1484 io_free_req(req); 1485 } 1486 return nxt; 1487 } 1488 1489 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1490 { 1491 /* See comment at the top of this file */ 1492 smp_rmb(); 1493 return __io_cqring_events(ctx); 1494 } 1495 1496 /* 1497 * We can't just wait for polled events to come to us, we have to actively 1498 * find and complete them. 1499 */ 1500 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1501 { 1502 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1503 return; 1504 1505 mutex_lock(&ctx->uring_lock); 1506 while (!wq_list_empty(&ctx->iopoll_list)) { 1507 /* let it sleep and repeat later if can't complete a request */ 1508 if (io_do_iopoll(ctx, true) == 0) 1509 break; 1510 /* 1511 * Ensure we allow local-to-the-cpu processing to take place, 1512 * in this case we need to ensure that we reap all events. 1513 * Also let task_work, etc. to progress by releasing the mutex 1514 */ 1515 if (need_resched()) { 1516 mutex_unlock(&ctx->uring_lock); 1517 cond_resched(); 1518 mutex_lock(&ctx->uring_lock); 1519 } 1520 } 1521 mutex_unlock(&ctx->uring_lock); 1522 } 1523 1524 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1525 { 1526 unsigned int nr_events = 0; 1527 int ret = 0; 1528 unsigned long check_cq; 1529 1530 if (!io_allowed_run_tw(ctx)) 1531 return -EEXIST; 1532 1533 check_cq = READ_ONCE(ctx->check_cq); 1534 if (unlikely(check_cq)) { 1535 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1536 __io_cqring_overflow_flush(ctx); 1537 /* 1538 * Similarly do not spin if we have not informed the user of any 1539 * dropped CQE. 1540 */ 1541 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1542 return -EBADR; 1543 } 1544 /* 1545 * Don't enter poll loop if we already have events pending. 1546 * If we do, we can potentially be spinning for commands that 1547 * already triggered a CQE (eg in error). 1548 */ 1549 if (io_cqring_events(ctx)) 1550 return 0; 1551 1552 do { 1553 /* 1554 * If a submit got punted to a workqueue, we can have the 1555 * application entering polling for a command before it gets 1556 * issued. That app will hold the uring_lock for the duration 1557 * of the poll right here, so we need to take a breather every 1558 * now and then to ensure that the issue has a chance to add 1559 * the poll to the issued list. Otherwise we can spin here 1560 * forever, while the workqueue is stuck trying to acquire the 1561 * very same mutex. 1562 */ 1563 if (wq_list_empty(&ctx->iopoll_list) || 1564 io_task_work_pending(ctx)) { 1565 u32 tail = ctx->cached_cq_tail; 1566 1567 (void) io_run_local_work_locked(ctx); 1568 1569 if (task_work_pending(current) || 1570 wq_list_empty(&ctx->iopoll_list)) { 1571 mutex_unlock(&ctx->uring_lock); 1572 io_run_task_work(); 1573 mutex_lock(&ctx->uring_lock); 1574 } 1575 /* some requests don't go through iopoll_list */ 1576 if (tail != ctx->cached_cq_tail || 1577 wq_list_empty(&ctx->iopoll_list)) 1578 break; 1579 } 1580 ret = io_do_iopoll(ctx, !min); 1581 if (ret < 0) 1582 break; 1583 nr_events += ret; 1584 ret = 0; 1585 } while (nr_events < min && !need_resched()); 1586 1587 return ret; 1588 } 1589 1590 void io_req_task_complete(struct io_kiocb *req, bool *locked) 1591 { 1592 if (*locked) 1593 io_req_complete_defer(req); 1594 else 1595 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1596 } 1597 1598 /* 1599 * After the iocb has been issued, it's safe to be found on the poll list. 1600 * Adding the kiocb to the list AFTER submission ensures that we don't 1601 * find it from a io_do_iopoll() thread before the issuer is done 1602 * accessing the kiocb cookie. 1603 */ 1604 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1605 { 1606 struct io_ring_ctx *ctx = req->ctx; 1607 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1608 1609 /* workqueue context doesn't hold uring_lock, grab it now */ 1610 if (unlikely(needs_lock)) 1611 mutex_lock(&ctx->uring_lock); 1612 1613 /* 1614 * Track whether we have multiple files in our lists. This will impact 1615 * how we do polling eventually, not spinning if we're on potentially 1616 * different devices. 1617 */ 1618 if (wq_list_empty(&ctx->iopoll_list)) { 1619 ctx->poll_multi_queue = false; 1620 } else if (!ctx->poll_multi_queue) { 1621 struct io_kiocb *list_req; 1622 1623 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1624 comp_list); 1625 if (list_req->file != req->file) 1626 ctx->poll_multi_queue = true; 1627 } 1628 1629 /* 1630 * For fast devices, IO may have already completed. If it has, add 1631 * it to the front so we find it first. 1632 */ 1633 if (READ_ONCE(req->iopoll_completed)) 1634 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1635 else 1636 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1637 1638 if (unlikely(needs_lock)) { 1639 /* 1640 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1641 * in sq thread task context or in io worker task context. If 1642 * current task context is sq thread, we don't need to check 1643 * whether should wake up sq thread. 1644 */ 1645 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1646 wq_has_sleeper(&ctx->sq_data->wait)) 1647 wake_up(&ctx->sq_data->wait); 1648 1649 mutex_unlock(&ctx->uring_lock); 1650 } 1651 } 1652 1653 static bool io_bdev_nowait(struct block_device *bdev) 1654 { 1655 return !bdev || bdev_nowait(bdev); 1656 } 1657 1658 /* 1659 * If we tracked the file through the SCM inflight mechanism, we could support 1660 * any file. For now, just ensure that anything potentially problematic is done 1661 * inline. 1662 */ 1663 static bool __io_file_supports_nowait(struct file *file, umode_t mode) 1664 { 1665 if (S_ISBLK(mode)) { 1666 if (IS_ENABLED(CONFIG_BLOCK) && 1667 io_bdev_nowait(I_BDEV(file->f_mapping->host))) 1668 return true; 1669 return false; 1670 } 1671 if (S_ISSOCK(mode)) 1672 return true; 1673 if (S_ISREG(mode)) { 1674 if (IS_ENABLED(CONFIG_BLOCK) && 1675 io_bdev_nowait(file->f_inode->i_sb->s_bdev) && 1676 !io_is_uring_fops(file)) 1677 return true; 1678 return false; 1679 } 1680 1681 /* any ->read/write should understand O_NONBLOCK */ 1682 if (file->f_flags & O_NONBLOCK) 1683 return true; 1684 return file->f_mode & FMODE_NOWAIT; 1685 } 1686 1687 /* 1688 * If we tracked the file through the SCM inflight mechanism, we could support 1689 * any file. For now, just ensure that anything potentially problematic is done 1690 * inline. 1691 */ 1692 unsigned int io_file_get_flags(struct file *file) 1693 { 1694 umode_t mode = file_inode(file)->i_mode; 1695 unsigned int res = 0; 1696 1697 if (S_ISREG(mode)) 1698 res |= FFS_ISREG; 1699 if (__io_file_supports_nowait(file, mode)) 1700 res |= FFS_NOWAIT; 1701 return res; 1702 } 1703 1704 bool io_alloc_async_data(struct io_kiocb *req) 1705 { 1706 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size); 1707 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL); 1708 if (req->async_data) { 1709 req->flags |= REQ_F_ASYNC_DATA; 1710 return false; 1711 } 1712 return true; 1713 } 1714 1715 int io_req_prep_async(struct io_kiocb *req) 1716 { 1717 const struct io_op_def *def = &io_op_defs[req->opcode]; 1718 1719 /* assign early for deferred execution for non-fixed file */ 1720 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE)) 1721 req->file = io_file_get_normal(req, req->cqe.fd); 1722 if (!def->prep_async) 1723 return 0; 1724 if (WARN_ON_ONCE(req_has_async_data(req))) 1725 return -EFAULT; 1726 if (!io_op_defs[req->opcode].manual_alloc) { 1727 if (io_alloc_async_data(req)) 1728 return -EAGAIN; 1729 } 1730 return def->prep_async(req); 1731 } 1732 1733 static u32 io_get_sequence(struct io_kiocb *req) 1734 { 1735 u32 seq = req->ctx->cached_sq_head; 1736 struct io_kiocb *cur; 1737 1738 /* need original cached_sq_head, but it was increased for each req */ 1739 io_for_each_link(cur, req) 1740 seq--; 1741 return seq; 1742 } 1743 1744 static __cold void io_drain_req(struct io_kiocb *req) 1745 __must_hold(&ctx->uring_lock) 1746 { 1747 struct io_ring_ctx *ctx = req->ctx; 1748 struct io_defer_entry *de; 1749 int ret; 1750 u32 seq = io_get_sequence(req); 1751 1752 /* Still need defer if there is pending req in defer list. */ 1753 spin_lock(&ctx->completion_lock); 1754 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1755 spin_unlock(&ctx->completion_lock); 1756 queue: 1757 ctx->drain_active = false; 1758 io_req_task_queue(req); 1759 return; 1760 } 1761 spin_unlock(&ctx->completion_lock); 1762 1763 ret = io_req_prep_async(req); 1764 if (ret) { 1765 fail: 1766 io_req_defer_failed(req, ret); 1767 return; 1768 } 1769 io_prep_async_link(req); 1770 de = kmalloc(sizeof(*de), GFP_KERNEL); 1771 if (!de) { 1772 ret = -ENOMEM; 1773 goto fail; 1774 } 1775 1776 spin_lock(&ctx->completion_lock); 1777 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1778 spin_unlock(&ctx->completion_lock); 1779 kfree(de); 1780 goto queue; 1781 } 1782 1783 trace_io_uring_defer(req); 1784 de->req = req; 1785 de->seq = seq; 1786 list_add_tail(&de->list, &ctx->defer_list); 1787 spin_unlock(&ctx->completion_lock); 1788 } 1789 1790 static void io_clean_op(struct io_kiocb *req) 1791 { 1792 if (req->flags & REQ_F_BUFFER_SELECTED) { 1793 spin_lock(&req->ctx->completion_lock); 1794 io_put_kbuf_comp(req); 1795 spin_unlock(&req->ctx->completion_lock); 1796 } 1797 1798 if (req->flags & REQ_F_NEED_CLEANUP) { 1799 const struct io_op_def *def = &io_op_defs[req->opcode]; 1800 1801 if (def->cleanup) 1802 def->cleanup(req); 1803 } 1804 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1805 kfree(req->apoll->double_poll); 1806 kfree(req->apoll); 1807 req->apoll = NULL; 1808 } 1809 if (req->flags & REQ_F_INFLIGHT) { 1810 struct io_uring_task *tctx = req->task->io_uring; 1811 1812 atomic_dec(&tctx->inflight_tracked); 1813 } 1814 if (req->flags & REQ_F_CREDS) 1815 put_cred(req->creds); 1816 if (req->flags & REQ_F_ASYNC_DATA) { 1817 kfree(req->async_data); 1818 req->async_data = NULL; 1819 } 1820 req->flags &= ~IO_REQ_CLEAN_FLAGS; 1821 } 1822 1823 static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags) 1824 { 1825 if (req->file || !io_op_defs[req->opcode].needs_file) 1826 return true; 1827 1828 if (req->flags & REQ_F_FIXED_FILE) 1829 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1830 else 1831 req->file = io_file_get_normal(req, req->cqe.fd); 1832 1833 return !!req->file; 1834 } 1835 1836 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1837 { 1838 const struct io_op_def *def = &io_op_defs[req->opcode]; 1839 const struct cred *creds = NULL; 1840 int ret; 1841 1842 if (unlikely(!io_assign_file(req, issue_flags))) 1843 return -EBADF; 1844 1845 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1846 creds = override_creds(req->creds); 1847 1848 if (!def->audit_skip) 1849 audit_uring_entry(req->opcode); 1850 1851 ret = def->issue(req, issue_flags); 1852 1853 if (!def->audit_skip) 1854 audit_uring_exit(!ret, ret); 1855 1856 if (creds) 1857 revert_creds(creds); 1858 1859 if (ret == IOU_OK) { 1860 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1861 io_req_complete_defer(req); 1862 else 1863 io_req_complete_post(req, issue_flags); 1864 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1865 return ret; 1866 1867 /* If the op doesn't have a file, we're not polling for it */ 1868 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1869 io_iopoll_req_issued(req, issue_flags); 1870 1871 return 0; 1872 } 1873 1874 int io_poll_issue(struct io_kiocb *req, bool *locked) 1875 { 1876 io_tw_lock(req->ctx, locked); 1877 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1878 IO_URING_F_COMPLETE_DEFER); 1879 } 1880 1881 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1882 { 1883 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1884 1885 req = io_put_req_find_next(req); 1886 return req ? &req->work : NULL; 1887 } 1888 1889 void io_wq_submit_work(struct io_wq_work *work) 1890 { 1891 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1892 const struct io_op_def *def = &io_op_defs[req->opcode]; 1893 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1894 bool needs_poll = false; 1895 int ret = 0, err = -ECANCELED; 1896 1897 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1898 if (!(req->flags & REQ_F_REFCOUNT)) 1899 __io_req_set_refcount(req, 2); 1900 else 1901 req_ref_get(req); 1902 1903 io_arm_ltimeout(req); 1904 1905 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1906 if (work->flags & IO_WQ_WORK_CANCEL) { 1907 fail: 1908 io_req_task_queue_fail(req, err); 1909 return; 1910 } 1911 if (!io_assign_file(req, issue_flags)) { 1912 err = -EBADF; 1913 work->flags |= IO_WQ_WORK_CANCEL; 1914 goto fail; 1915 } 1916 1917 if (req->flags & REQ_F_FORCE_ASYNC) { 1918 bool opcode_poll = def->pollin || def->pollout; 1919 1920 if (opcode_poll && file_can_poll(req->file)) { 1921 needs_poll = true; 1922 issue_flags |= IO_URING_F_NONBLOCK; 1923 } 1924 } 1925 1926 do { 1927 ret = io_issue_sqe(req, issue_flags); 1928 if (ret != -EAGAIN) 1929 break; 1930 /* 1931 * We can get EAGAIN for iopolled IO even though we're 1932 * forcing a sync submission from here, since we can't 1933 * wait for request slots on the block side. 1934 */ 1935 if (!needs_poll) { 1936 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1937 break; 1938 cond_resched(); 1939 continue; 1940 } 1941 1942 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1943 return; 1944 /* aborted or ready, in either case retry blocking */ 1945 needs_poll = false; 1946 issue_flags &= ~IO_URING_F_NONBLOCK; 1947 } while (1); 1948 1949 /* avoid locking problems by failing it from a clean context */ 1950 if (ret < 0) 1951 io_req_task_queue_fail(req, ret); 1952 } 1953 1954 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1955 unsigned int issue_flags) 1956 { 1957 struct io_ring_ctx *ctx = req->ctx; 1958 struct file *file = NULL; 1959 unsigned long file_ptr; 1960 1961 io_ring_submit_lock(ctx, issue_flags); 1962 1963 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 1964 goto out; 1965 fd = array_index_nospec(fd, ctx->nr_user_files); 1966 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr; 1967 file = (struct file *) (file_ptr & FFS_MASK); 1968 file_ptr &= ~FFS_MASK; 1969 /* mask in overlapping REQ_F and FFS bits */ 1970 req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT); 1971 io_req_set_rsrc_node(req, ctx, 0); 1972 out: 1973 io_ring_submit_unlock(ctx, issue_flags); 1974 return file; 1975 } 1976 1977 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1978 { 1979 struct file *file = fget(fd); 1980 1981 trace_io_uring_file_get(req, fd); 1982 1983 /* we don't allow fixed io_uring files */ 1984 if (file && io_is_uring_fops(file)) 1985 io_req_track_inflight(req); 1986 return file; 1987 } 1988 1989 static void io_queue_async(struct io_kiocb *req, int ret) 1990 __must_hold(&req->ctx->uring_lock) 1991 { 1992 struct io_kiocb *linked_timeout; 1993 1994 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1995 io_req_defer_failed(req, ret); 1996 return; 1997 } 1998 1999 linked_timeout = io_prep_linked_timeout(req); 2000 2001 switch (io_arm_poll_handler(req, 0)) { 2002 case IO_APOLL_READY: 2003 io_kbuf_recycle(req, 0); 2004 io_req_task_queue(req); 2005 break; 2006 case IO_APOLL_ABORTED: 2007 io_kbuf_recycle(req, 0); 2008 io_queue_iowq(req, NULL); 2009 break; 2010 case IO_APOLL_OK: 2011 break; 2012 } 2013 2014 if (linked_timeout) 2015 io_queue_linked_timeout(linked_timeout); 2016 } 2017 2018 static inline void io_queue_sqe(struct io_kiocb *req) 2019 __must_hold(&req->ctx->uring_lock) 2020 { 2021 int ret; 2022 2023 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2024 2025 /* 2026 * We async punt it if the file wasn't marked NOWAIT, or if the file 2027 * doesn't support non-blocking read/write attempts 2028 */ 2029 if (likely(!ret)) 2030 io_arm_ltimeout(req); 2031 else 2032 io_queue_async(req, ret); 2033 } 2034 2035 static void io_queue_sqe_fallback(struct io_kiocb *req) 2036 __must_hold(&req->ctx->uring_lock) 2037 { 2038 if (unlikely(req->flags & REQ_F_FAIL)) { 2039 /* 2040 * We don't submit, fail them all, for that replace hardlinks 2041 * with normal links. Extra REQ_F_LINK is tolerated. 2042 */ 2043 req->flags &= ~REQ_F_HARDLINK; 2044 req->flags |= REQ_F_LINK; 2045 io_req_defer_failed(req, req->cqe.res); 2046 } else if (unlikely(req->ctx->drain_active)) { 2047 io_drain_req(req); 2048 } else { 2049 int ret = io_req_prep_async(req); 2050 2051 if (unlikely(ret)) 2052 io_req_defer_failed(req, ret); 2053 else 2054 io_queue_iowq(req, NULL); 2055 } 2056 } 2057 2058 /* 2059 * Check SQE restrictions (opcode and flags). 2060 * 2061 * Returns 'true' if SQE is allowed, 'false' otherwise. 2062 */ 2063 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2064 struct io_kiocb *req, 2065 unsigned int sqe_flags) 2066 { 2067 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2068 return false; 2069 2070 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2071 ctx->restrictions.sqe_flags_required) 2072 return false; 2073 2074 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2075 ctx->restrictions.sqe_flags_required)) 2076 return false; 2077 2078 return true; 2079 } 2080 2081 static void io_init_req_drain(struct io_kiocb *req) 2082 { 2083 struct io_ring_ctx *ctx = req->ctx; 2084 struct io_kiocb *head = ctx->submit_state.link.head; 2085 2086 ctx->drain_active = true; 2087 if (head) { 2088 /* 2089 * If we need to drain a request in the middle of a link, drain 2090 * the head request and the next request/link after the current 2091 * link. Considering sequential execution of links, 2092 * REQ_F_IO_DRAIN will be maintained for every request of our 2093 * link. 2094 */ 2095 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2096 ctx->drain_next = true; 2097 } 2098 } 2099 2100 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2101 const struct io_uring_sqe *sqe) 2102 __must_hold(&ctx->uring_lock) 2103 { 2104 const struct io_op_def *def; 2105 unsigned int sqe_flags; 2106 int personality; 2107 u8 opcode; 2108 2109 /* req is partially pre-initialised, see io_preinit_req() */ 2110 req->opcode = opcode = READ_ONCE(sqe->opcode); 2111 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2112 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2113 req->cqe.user_data = READ_ONCE(sqe->user_data); 2114 req->file = NULL; 2115 req->rsrc_node = NULL; 2116 req->task = current; 2117 2118 if (unlikely(opcode >= IORING_OP_LAST)) { 2119 req->opcode = 0; 2120 return -EINVAL; 2121 } 2122 def = &io_op_defs[opcode]; 2123 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2124 /* enforce forwards compatibility on users */ 2125 if (sqe_flags & ~SQE_VALID_FLAGS) 2126 return -EINVAL; 2127 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2128 if (!def->buffer_select) 2129 return -EOPNOTSUPP; 2130 req->buf_index = READ_ONCE(sqe->buf_group); 2131 } 2132 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2133 ctx->drain_disabled = true; 2134 if (sqe_flags & IOSQE_IO_DRAIN) { 2135 if (ctx->drain_disabled) 2136 return -EOPNOTSUPP; 2137 io_init_req_drain(req); 2138 } 2139 } 2140 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2141 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2142 return -EACCES; 2143 /* knock it to the slow queue path, will be drained there */ 2144 if (ctx->drain_active) 2145 req->flags |= REQ_F_FORCE_ASYNC; 2146 /* if there is no link, we're at "next" request and need to drain */ 2147 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2148 ctx->drain_next = false; 2149 ctx->drain_active = true; 2150 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2151 } 2152 } 2153 2154 if (!def->ioprio && sqe->ioprio) 2155 return -EINVAL; 2156 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2157 return -EINVAL; 2158 2159 if (def->needs_file) { 2160 struct io_submit_state *state = &ctx->submit_state; 2161 2162 req->cqe.fd = READ_ONCE(sqe->fd); 2163 2164 /* 2165 * Plug now if we have more than 2 IO left after this, and the 2166 * target is potentially a read/write to block based storage. 2167 */ 2168 if (state->need_plug && def->plug) { 2169 state->plug_started = true; 2170 state->need_plug = false; 2171 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2172 } 2173 } 2174 2175 personality = READ_ONCE(sqe->personality); 2176 if (personality) { 2177 int ret; 2178 2179 req->creds = xa_load(&ctx->personalities, personality); 2180 if (!req->creds) 2181 return -EINVAL; 2182 get_cred(req->creds); 2183 ret = security_uring_override_creds(req->creds); 2184 if (ret) { 2185 put_cred(req->creds); 2186 return ret; 2187 } 2188 req->flags |= REQ_F_CREDS; 2189 } 2190 2191 return def->prep(req, sqe); 2192 } 2193 2194 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2195 struct io_kiocb *req, int ret) 2196 { 2197 struct io_ring_ctx *ctx = req->ctx; 2198 struct io_submit_link *link = &ctx->submit_state.link; 2199 struct io_kiocb *head = link->head; 2200 2201 trace_io_uring_req_failed(sqe, req, ret); 2202 2203 /* 2204 * Avoid breaking links in the middle as it renders links with SQPOLL 2205 * unusable. Instead of failing eagerly, continue assembling the link if 2206 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2207 * should find the flag and handle the rest. 2208 */ 2209 req_fail_link_node(req, ret); 2210 if (head && !(head->flags & REQ_F_FAIL)) 2211 req_fail_link_node(head, -ECANCELED); 2212 2213 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2214 if (head) { 2215 link->last->link = req; 2216 link->head = NULL; 2217 req = head; 2218 } 2219 io_queue_sqe_fallback(req); 2220 return ret; 2221 } 2222 2223 if (head) 2224 link->last->link = req; 2225 else 2226 link->head = req; 2227 link->last = req; 2228 return 0; 2229 } 2230 2231 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2232 const struct io_uring_sqe *sqe) 2233 __must_hold(&ctx->uring_lock) 2234 { 2235 struct io_submit_link *link = &ctx->submit_state.link; 2236 int ret; 2237 2238 ret = io_init_req(ctx, req, sqe); 2239 if (unlikely(ret)) 2240 return io_submit_fail_init(sqe, req, ret); 2241 2242 /* don't need @sqe from now on */ 2243 trace_io_uring_submit_sqe(req, true); 2244 2245 /* 2246 * If we already have a head request, queue this one for async 2247 * submittal once the head completes. If we don't have a head but 2248 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2249 * submitted sync once the chain is complete. If none of those 2250 * conditions are true (normal request), then just queue it. 2251 */ 2252 if (unlikely(link->head)) { 2253 ret = io_req_prep_async(req); 2254 if (unlikely(ret)) 2255 return io_submit_fail_init(sqe, req, ret); 2256 2257 trace_io_uring_link(req, link->head); 2258 link->last->link = req; 2259 link->last = req; 2260 2261 if (req->flags & IO_REQ_LINK_FLAGS) 2262 return 0; 2263 /* last request of the link, flush it */ 2264 req = link->head; 2265 link->head = NULL; 2266 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2267 goto fallback; 2268 2269 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2270 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2271 if (req->flags & IO_REQ_LINK_FLAGS) { 2272 link->head = req; 2273 link->last = req; 2274 } else { 2275 fallback: 2276 io_queue_sqe_fallback(req); 2277 } 2278 return 0; 2279 } 2280 2281 io_queue_sqe(req); 2282 return 0; 2283 } 2284 2285 /* 2286 * Batched submission is done, ensure local IO is flushed out. 2287 */ 2288 static void io_submit_state_end(struct io_ring_ctx *ctx) 2289 { 2290 struct io_submit_state *state = &ctx->submit_state; 2291 2292 if (unlikely(state->link.head)) 2293 io_queue_sqe_fallback(state->link.head); 2294 /* flush only after queuing links as they can generate completions */ 2295 io_submit_flush_completions(ctx); 2296 if (state->plug_started) 2297 blk_finish_plug(&state->plug); 2298 } 2299 2300 /* 2301 * Start submission side cache. 2302 */ 2303 static void io_submit_state_start(struct io_submit_state *state, 2304 unsigned int max_ios) 2305 { 2306 state->plug_started = false; 2307 state->need_plug = max_ios > 2; 2308 state->submit_nr = max_ios; 2309 /* set only head, no need to init link_last in advance */ 2310 state->link.head = NULL; 2311 } 2312 2313 static void io_commit_sqring(struct io_ring_ctx *ctx) 2314 { 2315 struct io_rings *rings = ctx->rings; 2316 2317 /* 2318 * Ensure any loads from the SQEs are done at this point, 2319 * since once we write the new head, the application could 2320 * write new data to them. 2321 */ 2322 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2323 } 2324 2325 /* 2326 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2327 * that is mapped by userspace. This means that care needs to be taken to 2328 * ensure that reads are stable, as we cannot rely on userspace always 2329 * being a good citizen. If members of the sqe are validated and then later 2330 * used, it's important that those reads are done through READ_ONCE() to 2331 * prevent a re-load down the line. 2332 */ 2333 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx) 2334 { 2335 unsigned head, mask = ctx->sq_entries - 1; 2336 unsigned sq_idx = ctx->cached_sq_head++ & mask; 2337 2338 /* 2339 * The cached sq head (or cq tail) serves two purposes: 2340 * 2341 * 1) allows us to batch the cost of updating the user visible 2342 * head updates. 2343 * 2) allows the kernel side to track the head on its own, even 2344 * though the application is the one updating it. 2345 */ 2346 head = READ_ONCE(ctx->sq_array[sq_idx]); 2347 if (likely(head < ctx->sq_entries)) { 2348 /* double index for 128-byte SQEs, twice as long */ 2349 if (ctx->flags & IORING_SETUP_SQE128) 2350 head <<= 1; 2351 return &ctx->sq_sqes[head]; 2352 } 2353 2354 /* drop invalid entries */ 2355 ctx->cq_extra--; 2356 WRITE_ONCE(ctx->rings->sq_dropped, 2357 READ_ONCE(ctx->rings->sq_dropped) + 1); 2358 return NULL; 2359 } 2360 2361 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2362 __must_hold(&ctx->uring_lock) 2363 { 2364 unsigned int entries = io_sqring_entries(ctx); 2365 unsigned int left; 2366 int ret; 2367 2368 if (unlikely(!entries)) 2369 return 0; 2370 /* make sure SQ entry isn't read before tail */ 2371 ret = left = min3(nr, ctx->sq_entries, entries); 2372 io_get_task_refs(left); 2373 io_submit_state_start(&ctx->submit_state, left); 2374 2375 do { 2376 const struct io_uring_sqe *sqe; 2377 struct io_kiocb *req; 2378 2379 if (unlikely(!io_alloc_req_refill(ctx))) 2380 break; 2381 req = io_alloc_req(ctx); 2382 sqe = io_get_sqe(ctx); 2383 if (unlikely(!sqe)) { 2384 io_req_add_to_cache(req, ctx); 2385 break; 2386 } 2387 2388 /* 2389 * Continue submitting even for sqe failure if the 2390 * ring was setup with IORING_SETUP_SUBMIT_ALL 2391 */ 2392 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2393 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2394 left--; 2395 break; 2396 } 2397 } while (--left); 2398 2399 if (unlikely(left)) { 2400 ret -= left; 2401 /* try again if it submitted nothing and can't allocate a req */ 2402 if (!ret && io_req_cache_empty(ctx)) 2403 ret = -EAGAIN; 2404 current->io_uring->cached_refs += left; 2405 } 2406 2407 io_submit_state_end(ctx); 2408 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2409 io_commit_sqring(ctx); 2410 return ret; 2411 } 2412 2413 struct io_wait_queue { 2414 struct wait_queue_entry wq; 2415 struct io_ring_ctx *ctx; 2416 unsigned cq_tail; 2417 unsigned nr_timeouts; 2418 }; 2419 2420 static inline bool io_has_work(struct io_ring_ctx *ctx) 2421 { 2422 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2423 ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 2424 !llist_empty(&ctx->work_llist)); 2425 } 2426 2427 static inline bool io_should_wake(struct io_wait_queue *iowq) 2428 { 2429 struct io_ring_ctx *ctx = iowq->ctx; 2430 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2431 2432 /* 2433 * Wake up if we have enough events, or if a timeout occurred since we 2434 * started waiting. For timeouts, we always want to return to userspace, 2435 * regardless of event count. 2436 */ 2437 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2438 } 2439 2440 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2441 int wake_flags, void *key) 2442 { 2443 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, 2444 wq); 2445 struct io_ring_ctx *ctx = iowq->ctx; 2446 2447 /* 2448 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2449 * the task, and the next invocation will do it. 2450 */ 2451 if (io_should_wake(iowq) || io_has_work(ctx)) 2452 return autoremove_wake_function(curr, mode, wake_flags, key); 2453 return -1; 2454 } 2455 2456 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2457 { 2458 if (io_run_task_work_ctx(ctx) > 0) 2459 return 1; 2460 if (task_sigpending(current)) 2461 return -EINTR; 2462 return 0; 2463 } 2464 2465 /* when returns >0, the caller should retry */ 2466 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2467 struct io_wait_queue *iowq, 2468 ktime_t timeout) 2469 { 2470 int ret; 2471 unsigned long check_cq; 2472 2473 /* make sure we run task_work before checking for signals */ 2474 ret = io_run_task_work_sig(ctx); 2475 if (ret || io_should_wake(iowq)) 2476 return ret; 2477 2478 check_cq = READ_ONCE(ctx->check_cq); 2479 if (unlikely(check_cq)) { 2480 /* let the caller flush overflows, retry */ 2481 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2482 return 1; 2483 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 2484 return -EBADR; 2485 } 2486 if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS)) 2487 return -ETIME; 2488 2489 /* 2490 * Run task_work after scheduling. If we got woken because of 2491 * task_work being processed, run it now rather than let the caller 2492 * do another wait loop. 2493 */ 2494 ret = io_run_task_work_sig(ctx); 2495 return ret < 0 ? ret : 1; 2496 } 2497 2498 /* 2499 * Wait until events become available, if we don't already have some. The 2500 * application must reap them itself, as they reside on the shared cq ring. 2501 */ 2502 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2503 const sigset_t __user *sig, size_t sigsz, 2504 struct __kernel_timespec __user *uts) 2505 { 2506 struct io_wait_queue iowq; 2507 struct io_rings *rings = ctx->rings; 2508 ktime_t timeout = KTIME_MAX; 2509 int ret; 2510 2511 if (!io_allowed_run_tw(ctx)) 2512 return -EEXIST; 2513 2514 do { 2515 /* always run at least 1 task work to process local work */ 2516 ret = io_run_task_work_ctx(ctx); 2517 if (ret < 0) 2518 return ret; 2519 io_cqring_overflow_flush(ctx); 2520 2521 /* if user messes with these they will just get an early return */ 2522 if (__io_cqring_events_user(ctx) >= min_events) 2523 return 0; 2524 } while (ret > 0); 2525 2526 if (sig) { 2527 #ifdef CONFIG_COMPAT 2528 if (in_compat_syscall()) 2529 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2530 sigsz); 2531 else 2532 #endif 2533 ret = set_user_sigmask(sig, sigsz); 2534 2535 if (ret) 2536 return ret; 2537 } 2538 2539 if (uts) { 2540 struct timespec64 ts; 2541 2542 if (get_timespec64(&ts, uts)) 2543 return -EFAULT; 2544 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2545 } 2546 2547 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2548 iowq.wq.private = current; 2549 INIT_LIST_HEAD(&iowq.wq.entry); 2550 iowq.ctx = ctx; 2551 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2552 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2553 2554 trace_io_uring_cqring_wait(ctx, min_events); 2555 do { 2556 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2557 finish_wait(&ctx->cq_wait, &iowq.wq); 2558 io_cqring_do_overflow_flush(ctx); 2559 } 2560 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2561 TASK_INTERRUPTIBLE); 2562 ret = io_cqring_wait_schedule(ctx, &iowq, timeout); 2563 if (__io_cqring_events_user(ctx) >= min_events) 2564 break; 2565 cond_resched(); 2566 } while (ret > 0); 2567 2568 finish_wait(&ctx->cq_wait, &iowq.wq); 2569 restore_saved_sigmask_unless(ret == -EINTR); 2570 2571 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2572 } 2573 2574 static void io_mem_free(void *ptr) 2575 { 2576 struct page *page; 2577 2578 if (!ptr) 2579 return; 2580 2581 page = virt_to_head_page(ptr); 2582 if (put_page_testzero(page)) 2583 free_compound_page(page); 2584 } 2585 2586 static void *io_mem_alloc(size_t size) 2587 { 2588 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2589 2590 return (void *) __get_free_pages(gfp, get_order(size)); 2591 } 2592 2593 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2594 unsigned int cq_entries, size_t *sq_offset) 2595 { 2596 struct io_rings *rings; 2597 size_t off, sq_array_size; 2598 2599 off = struct_size(rings, cqes, cq_entries); 2600 if (off == SIZE_MAX) 2601 return SIZE_MAX; 2602 if (ctx->flags & IORING_SETUP_CQE32) { 2603 if (check_shl_overflow(off, 1, &off)) 2604 return SIZE_MAX; 2605 } 2606 2607 #ifdef CONFIG_SMP 2608 off = ALIGN(off, SMP_CACHE_BYTES); 2609 if (off == 0) 2610 return SIZE_MAX; 2611 #endif 2612 2613 if (sq_offset) 2614 *sq_offset = off; 2615 2616 sq_array_size = array_size(sizeof(u32), sq_entries); 2617 if (sq_array_size == SIZE_MAX) 2618 return SIZE_MAX; 2619 2620 if (check_add_overflow(off, sq_array_size, &off)) 2621 return SIZE_MAX; 2622 2623 return off; 2624 } 2625 2626 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2627 unsigned int eventfd_async) 2628 { 2629 struct io_ev_fd *ev_fd; 2630 __s32 __user *fds = arg; 2631 int fd; 2632 2633 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2634 lockdep_is_held(&ctx->uring_lock)); 2635 if (ev_fd) 2636 return -EBUSY; 2637 2638 if (copy_from_user(&fd, fds, sizeof(*fds))) 2639 return -EFAULT; 2640 2641 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2642 if (!ev_fd) 2643 return -ENOMEM; 2644 2645 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2646 if (IS_ERR(ev_fd->cq_ev_fd)) { 2647 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2648 kfree(ev_fd); 2649 return ret; 2650 } 2651 2652 spin_lock(&ctx->completion_lock); 2653 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2654 spin_unlock(&ctx->completion_lock); 2655 2656 ev_fd->eventfd_async = eventfd_async; 2657 ctx->has_evfd = true; 2658 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2659 atomic_set(&ev_fd->refs, 1); 2660 atomic_set(&ev_fd->ops, 0); 2661 return 0; 2662 } 2663 2664 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2665 { 2666 struct io_ev_fd *ev_fd; 2667 2668 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2669 lockdep_is_held(&ctx->uring_lock)); 2670 if (ev_fd) { 2671 ctx->has_evfd = false; 2672 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2673 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2674 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2675 return 0; 2676 } 2677 2678 return -ENXIO; 2679 } 2680 2681 static void io_req_caches_free(struct io_ring_ctx *ctx) 2682 { 2683 int nr = 0; 2684 2685 mutex_lock(&ctx->uring_lock); 2686 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2687 2688 while (!io_req_cache_empty(ctx)) { 2689 struct io_kiocb *req = io_alloc_req(ctx); 2690 2691 kmem_cache_free(req_cachep, req); 2692 nr++; 2693 } 2694 if (nr) 2695 percpu_ref_put_many(&ctx->refs, nr); 2696 mutex_unlock(&ctx->uring_lock); 2697 } 2698 2699 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2700 { 2701 io_sq_thread_finish(ctx); 2702 io_rsrc_refs_drop(ctx); 2703 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2704 io_wait_rsrc_data(ctx->buf_data); 2705 io_wait_rsrc_data(ctx->file_data); 2706 2707 mutex_lock(&ctx->uring_lock); 2708 if (ctx->buf_data) 2709 __io_sqe_buffers_unregister(ctx); 2710 if (ctx->file_data) 2711 __io_sqe_files_unregister(ctx); 2712 io_cqring_overflow_kill(ctx); 2713 io_eventfd_unregister(ctx); 2714 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2715 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2716 mutex_unlock(&ctx->uring_lock); 2717 io_destroy_buffers(ctx); 2718 if (ctx->sq_creds) 2719 put_cred(ctx->sq_creds); 2720 if (ctx->submitter_task) 2721 put_task_struct(ctx->submitter_task); 2722 2723 /* there are no registered resources left, nobody uses it */ 2724 if (ctx->rsrc_node) 2725 io_rsrc_node_destroy(ctx->rsrc_node); 2726 if (ctx->rsrc_backup_node) 2727 io_rsrc_node_destroy(ctx->rsrc_backup_node); 2728 flush_delayed_work(&ctx->rsrc_put_work); 2729 flush_delayed_work(&ctx->fallback_work); 2730 2731 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2732 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist)); 2733 2734 #if defined(CONFIG_UNIX) 2735 if (ctx->ring_sock) { 2736 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2737 sock_release(ctx->ring_sock); 2738 } 2739 #endif 2740 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2741 2742 if (ctx->mm_account) { 2743 mmdrop(ctx->mm_account); 2744 ctx->mm_account = NULL; 2745 } 2746 io_mem_free(ctx->rings); 2747 io_mem_free(ctx->sq_sqes); 2748 2749 percpu_ref_exit(&ctx->refs); 2750 free_uid(ctx->user); 2751 io_req_caches_free(ctx); 2752 if (ctx->hash_map) 2753 io_wq_put_hash(ctx->hash_map); 2754 kfree(ctx->cancel_table.hbs); 2755 kfree(ctx->cancel_table_locked.hbs); 2756 kfree(ctx->dummy_ubuf); 2757 kfree(ctx->io_bl); 2758 xa_destroy(&ctx->io_bl_xa); 2759 kfree(ctx); 2760 } 2761 2762 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2763 { 2764 struct io_ring_ctx *ctx = file->private_data; 2765 __poll_t mask = 0; 2766 2767 poll_wait(file, &ctx->cq_wait, wait); 2768 /* 2769 * synchronizes with barrier from wq_has_sleeper call in 2770 * io_commit_cqring 2771 */ 2772 smp_rmb(); 2773 if (!io_sqring_full(ctx)) 2774 mask |= EPOLLOUT | EPOLLWRNORM; 2775 2776 /* 2777 * Don't flush cqring overflow list here, just do a simple check. 2778 * Otherwise there could possible be ABBA deadlock: 2779 * CPU0 CPU1 2780 * ---- ---- 2781 * lock(&ctx->uring_lock); 2782 * lock(&ep->mtx); 2783 * lock(&ctx->uring_lock); 2784 * lock(&ep->mtx); 2785 * 2786 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2787 * pushes them to do the flush. 2788 */ 2789 2790 if (io_cqring_events(ctx) || io_has_work(ctx)) 2791 mask |= EPOLLIN | EPOLLRDNORM; 2792 2793 return mask; 2794 } 2795 2796 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 2797 { 2798 const struct cred *creds; 2799 2800 creds = xa_erase(&ctx->personalities, id); 2801 if (creds) { 2802 put_cred(creds); 2803 return 0; 2804 } 2805 2806 return -EINVAL; 2807 } 2808 2809 struct io_tctx_exit { 2810 struct callback_head task_work; 2811 struct completion completion; 2812 struct io_ring_ctx *ctx; 2813 }; 2814 2815 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2816 { 2817 struct io_uring_task *tctx = current->io_uring; 2818 struct io_tctx_exit *work; 2819 2820 work = container_of(cb, struct io_tctx_exit, task_work); 2821 /* 2822 * When @in_idle, we're in cancellation and it's racy to remove the 2823 * node. It'll be removed by the end of cancellation, just ignore it. 2824 * tctx can be NULL if the queueing of this task_work raced with 2825 * work cancelation off the exec path. 2826 */ 2827 if (tctx && !atomic_read(&tctx->in_idle)) 2828 io_uring_del_tctx_node((unsigned long)work->ctx); 2829 complete(&work->completion); 2830 } 2831 2832 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2833 { 2834 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2835 2836 return req->ctx == data; 2837 } 2838 2839 static __cold void io_ring_exit_work(struct work_struct *work) 2840 { 2841 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2842 unsigned long timeout = jiffies + HZ * 60 * 5; 2843 unsigned long interval = HZ / 20; 2844 struct io_tctx_exit exit; 2845 struct io_tctx_node *node; 2846 int ret; 2847 2848 /* 2849 * If we're doing polled IO and end up having requests being 2850 * submitted async (out-of-line), then completions can come in while 2851 * we're waiting for refs to drop. We need to reap these manually, 2852 * as nobody else will be looking for them. 2853 */ 2854 do { 2855 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2856 mutex_lock(&ctx->uring_lock); 2857 io_cqring_overflow_kill(ctx); 2858 mutex_unlock(&ctx->uring_lock); 2859 } 2860 2861 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2862 io_move_task_work_from_local(ctx); 2863 2864 while (io_uring_try_cancel_requests(ctx, NULL, true)) 2865 cond_resched(); 2866 2867 if (ctx->sq_data) { 2868 struct io_sq_data *sqd = ctx->sq_data; 2869 struct task_struct *tsk; 2870 2871 io_sq_thread_park(sqd); 2872 tsk = sqd->thread; 2873 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2874 io_wq_cancel_cb(tsk->io_uring->io_wq, 2875 io_cancel_ctx_cb, ctx, true); 2876 io_sq_thread_unpark(sqd); 2877 } 2878 2879 io_req_caches_free(ctx); 2880 2881 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2882 /* there is little hope left, don't run it too often */ 2883 interval = HZ * 60; 2884 } 2885 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval)); 2886 2887 init_completion(&exit.completion); 2888 init_task_work(&exit.task_work, io_tctx_exit_cb); 2889 exit.ctx = ctx; 2890 /* 2891 * Some may use context even when all refs and requests have been put, 2892 * and they are free to do so while still holding uring_lock or 2893 * completion_lock, see io_req_task_submit(). Apart from other work, 2894 * this lock/unlock section also waits them to finish. 2895 */ 2896 mutex_lock(&ctx->uring_lock); 2897 while (!list_empty(&ctx->tctx_list)) { 2898 WARN_ON_ONCE(time_after(jiffies, timeout)); 2899 2900 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 2901 ctx_node); 2902 /* don't spin on a single task if cancellation failed */ 2903 list_rotate_left(&ctx->tctx_list); 2904 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 2905 if (WARN_ON_ONCE(ret)) 2906 continue; 2907 2908 mutex_unlock(&ctx->uring_lock); 2909 wait_for_completion(&exit.completion); 2910 mutex_lock(&ctx->uring_lock); 2911 } 2912 mutex_unlock(&ctx->uring_lock); 2913 spin_lock(&ctx->completion_lock); 2914 spin_unlock(&ctx->completion_lock); 2915 2916 io_ring_ctx_free(ctx); 2917 } 2918 2919 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 2920 { 2921 unsigned long index; 2922 struct creds *creds; 2923 2924 mutex_lock(&ctx->uring_lock); 2925 percpu_ref_kill(&ctx->refs); 2926 xa_for_each(&ctx->personalities, index, creds) 2927 io_unregister_personality(ctx, index); 2928 if (ctx->rings) 2929 io_poll_remove_all(ctx, NULL, true); 2930 mutex_unlock(&ctx->uring_lock); 2931 2932 /* 2933 * If we failed setting up the ctx, we might not have any rings 2934 * and therefore did not submit any requests 2935 */ 2936 if (ctx->rings) 2937 io_kill_timeouts(ctx, NULL, true); 2938 2939 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 2940 /* 2941 * Use system_unbound_wq to avoid spawning tons of event kworkers 2942 * if we're exiting a ton of rings at the same time. It just adds 2943 * noise and overhead, there's no discernable change in runtime 2944 * over using system_wq. 2945 */ 2946 queue_work(system_unbound_wq, &ctx->exit_work); 2947 } 2948 2949 static int io_uring_release(struct inode *inode, struct file *file) 2950 { 2951 struct io_ring_ctx *ctx = file->private_data; 2952 2953 file->private_data = NULL; 2954 io_ring_ctx_wait_and_kill(ctx); 2955 return 0; 2956 } 2957 2958 struct io_task_cancel { 2959 struct task_struct *task; 2960 bool all; 2961 }; 2962 2963 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 2964 { 2965 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2966 struct io_task_cancel *cancel = data; 2967 2968 return io_match_task_safe(req, cancel->task, cancel->all); 2969 } 2970 2971 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 2972 struct task_struct *task, 2973 bool cancel_all) 2974 { 2975 struct io_defer_entry *de; 2976 LIST_HEAD(list); 2977 2978 spin_lock(&ctx->completion_lock); 2979 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 2980 if (io_match_task_safe(de->req, task, cancel_all)) { 2981 list_cut_position(&list, &ctx->defer_list, &de->list); 2982 break; 2983 } 2984 } 2985 spin_unlock(&ctx->completion_lock); 2986 if (list_empty(&list)) 2987 return false; 2988 2989 while (!list_empty(&list)) { 2990 de = list_first_entry(&list, struct io_defer_entry, list); 2991 list_del_init(&de->list); 2992 io_req_task_queue_fail(de->req, -ECANCELED); 2993 kfree(de); 2994 } 2995 return true; 2996 } 2997 2998 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 2999 { 3000 struct io_tctx_node *node; 3001 enum io_wq_cancel cret; 3002 bool ret = false; 3003 3004 mutex_lock(&ctx->uring_lock); 3005 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3006 struct io_uring_task *tctx = node->task->io_uring; 3007 3008 /* 3009 * io_wq will stay alive while we hold uring_lock, because it's 3010 * killed after ctx nodes, which requires to take the lock. 3011 */ 3012 if (!tctx || !tctx->io_wq) 3013 continue; 3014 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3015 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3016 } 3017 mutex_unlock(&ctx->uring_lock); 3018 3019 return ret; 3020 } 3021 3022 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3023 struct task_struct *task, 3024 bool cancel_all) 3025 { 3026 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3027 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3028 enum io_wq_cancel cret; 3029 bool ret = false; 3030 3031 /* failed during ring init, it couldn't have issued any requests */ 3032 if (!ctx->rings) 3033 return false; 3034 3035 if (!task) { 3036 ret |= io_uring_try_cancel_iowq(ctx); 3037 } else if (tctx && tctx->io_wq) { 3038 /* 3039 * Cancels requests of all rings, not only @ctx, but 3040 * it's fine as the task is in exit/exec. 3041 */ 3042 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3043 &cancel, true); 3044 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3045 } 3046 3047 /* SQPOLL thread does its own polling */ 3048 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3049 (ctx->sq_data && ctx->sq_data->thread == current)) { 3050 while (!wq_list_empty(&ctx->iopoll_list)) { 3051 io_iopoll_try_reap_events(ctx); 3052 ret = true; 3053 } 3054 } 3055 3056 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3057 ret |= io_run_local_work(ctx) > 0; 3058 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3059 mutex_lock(&ctx->uring_lock); 3060 ret |= io_poll_remove_all(ctx, task, cancel_all); 3061 mutex_unlock(&ctx->uring_lock); 3062 ret |= io_kill_timeouts(ctx, task, cancel_all); 3063 if (task) 3064 ret |= io_run_task_work() > 0; 3065 return ret; 3066 } 3067 3068 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3069 { 3070 if (tracked) 3071 return atomic_read(&tctx->inflight_tracked); 3072 return percpu_counter_sum(&tctx->inflight); 3073 } 3074 3075 /* 3076 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3077 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3078 */ 3079 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3080 { 3081 struct io_uring_task *tctx = current->io_uring; 3082 struct io_ring_ctx *ctx; 3083 s64 inflight; 3084 DEFINE_WAIT(wait); 3085 3086 WARN_ON_ONCE(sqd && sqd->thread != current); 3087 3088 if (!current->io_uring) 3089 return; 3090 if (tctx->io_wq) 3091 io_wq_exit_start(tctx->io_wq); 3092 3093 atomic_inc(&tctx->in_idle); 3094 do { 3095 bool loop = false; 3096 3097 io_uring_drop_tctx_refs(current); 3098 /* read completions before cancelations */ 3099 inflight = tctx_inflight(tctx, !cancel_all); 3100 if (!inflight) 3101 break; 3102 3103 if (!sqd) { 3104 struct io_tctx_node *node; 3105 unsigned long index; 3106 3107 xa_for_each(&tctx->xa, index, node) { 3108 /* sqpoll task will cancel all its requests */ 3109 if (node->ctx->sq_data) 3110 continue; 3111 loop |= io_uring_try_cancel_requests(node->ctx, 3112 current, cancel_all); 3113 } 3114 } else { 3115 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3116 loop |= io_uring_try_cancel_requests(ctx, 3117 current, 3118 cancel_all); 3119 } 3120 3121 if (loop) { 3122 cond_resched(); 3123 continue; 3124 } 3125 3126 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3127 io_run_task_work(); 3128 io_uring_drop_tctx_refs(current); 3129 3130 /* 3131 * If we've seen completions, retry without waiting. This 3132 * avoids a race where a completion comes in before we did 3133 * prepare_to_wait(). 3134 */ 3135 if (inflight == tctx_inflight(tctx, !cancel_all)) 3136 schedule(); 3137 finish_wait(&tctx->wait, &wait); 3138 } while (1); 3139 3140 io_uring_clean_tctx(tctx); 3141 if (cancel_all) { 3142 /* 3143 * We shouldn't run task_works after cancel, so just leave 3144 * ->in_idle set for normal exit. 3145 */ 3146 atomic_dec(&tctx->in_idle); 3147 /* for exec all current's requests should be gone, kill tctx */ 3148 __io_uring_free(current); 3149 } 3150 } 3151 3152 void __io_uring_cancel(bool cancel_all) 3153 { 3154 io_uring_cancel_generic(cancel_all, NULL); 3155 } 3156 3157 static void *io_uring_validate_mmap_request(struct file *file, 3158 loff_t pgoff, size_t sz) 3159 { 3160 struct io_ring_ctx *ctx = file->private_data; 3161 loff_t offset = pgoff << PAGE_SHIFT; 3162 struct page *page; 3163 void *ptr; 3164 3165 switch (offset) { 3166 case IORING_OFF_SQ_RING: 3167 case IORING_OFF_CQ_RING: 3168 ptr = ctx->rings; 3169 break; 3170 case IORING_OFF_SQES: 3171 ptr = ctx->sq_sqes; 3172 break; 3173 default: 3174 return ERR_PTR(-EINVAL); 3175 } 3176 3177 page = virt_to_head_page(ptr); 3178 if (sz > page_size(page)) 3179 return ERR_PTR(-EINVAL); 3180 3181 return ptr; 3182 } 3183 3184 #ifdef CONFIG_MMU 3185 3186 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3187 { 3188 size_t sz = vma->vm_end - vma->vm_start; 3189 unsigned long pfn; 3190 void *ptr; 3191 3192 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3193 if (IS_ERR(ptr)) 3194 return PTR_ERR(ptr); 3195 3196 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3197 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3198 } 3199 3200 #else /* !CONFIG_MMU */ 3201 3202 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3203 { 3204 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL; 3205 } 3206 3207 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3208 { 3209 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3210 } 3211 3212 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3213 unsigned long addr, unsigned long len, 3214 unsigned long pgoff, unsigned long flags) 3215 { 3216 void *ptr; 3217 3218 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3219 if (IS_ERR(ptr)) 3220 return PTR_ERR(ptr); 3221 3222 return (unsigned long) ptr; 3223 } 3224 3225 #endif /* !CONFIG_MMU */ 3226 3227 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3228 { 3229 if (flags & IORING_ENTER_EXT_ARG) { 3230 struct io_uring_getevents_arg arg; 3231 3232 if (argsz != sizeof(arg)) 3233 return -EINVAL; 3234 if (copy_from_user(&arg, argp, sizeof(arg))) 3235 return -EFAULT; 3236 } 3237 return 0; 3238 } 3239 3240 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3241 struct __kernel_timespec __user **ts, 3242 const sigset_t __user **sig) 3243 { 3244 struct io_uring_getevents_arg arg; 3245 3246 /* 3247 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3248 * is just a pointer to the sigset_t. 3249 */ 3250 if (!(flags & IORING_ENTER_EXT_ARG)) { 3251 *sig = (const sigset_t __user *) argp; 3252 *ts = NULL; 3253 return 0; 3254 } 3255 3256 /* 3257 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3258 * timespec and sigset_t pointers if good. 3259 */ 3260 if (*argsz != sizeof(arg)) 3261 return -EINVAL; 3262 if (copy_from_user(&arg, argp, sizeof(arg))) 3263 return -EFAULT; 3264 if (arg.pad) 3265 return -EINVAL; 3266 *sig = u64_to_user_ptr(arg.sigmask); 3267 *argsz = arg.sigmask_sz; 3268 *ts = u64_to_user_ptr(arg.ts); 3269 return 0; 3270 } 3271 3272 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3273 u32, min_complete, u32, flags, const void __user *, argp, 3274 size_t, argsz) 3275 { 3276 struct io_ring_ctx *ctx; 3277 struct fd f; 3278 long ret; 3279 3280 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3281 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3282 IORING_ENTER_REGISTERED_RING))) 3283 return -EINVAL; 3284 3285 /* 3286 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3287 * need only dereference our task private array to find it. 3288 */ 3289 if (flags & IORING_ENTER_REGISTERED_RING) { 3290 struct io_uring_task *tctx = current->io_uring; 3291 3292 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3293 return -EINVAL; 3294 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3295 f.file = tctx->registered_rings[fd]; 3296 f.flags = 0; 3297 if (unlikely(!f.file)) 3298 return -EBADF; 3299 } else { 3300 f = fdget(fd); 3301 if (unlikely(!f.file)) 3302 return -EBADF; 3303 ret = -EOPNOTSUPP; 3304 if (unlikely(!io_is_uring_fops(f.file))) 3305 goto out; 3306 } 3307 3308 ctx = f.file->private_data; 3309 ret = -EBADFD; 3310 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3311 goto out; 3312 3313 /* 3314 * For SQ polling, the thread will do all submissions and completions. 3315 * Just return the requested submit count, and wake the thread if 3316 * we were asked to. 3317 */ 3318 ret = 0; 3319 if (ctx->flags & IORING_SETUP_SQPOLL) { 3320 io_cqring_overflow_flush(ctx); 3321 3322 if (unlikely(ctx->sq_data->thread == NULL)) { 3323 ret = -EOWNERDEAD; 3324 goto out; 3325 } 3326 if (flags & IORING_ENTER_SQ_WAKEUP) 3327 wake_up(&ctx->sq_data->wait); 3328 if (flags & IORING_ENTER_SQ_WAIT) { 3329 ret = io_sqpoll_wait_sq(ctx); 3330 if (ret) 3331 goto out; 3332 } 3333 ret = to_submit; 3334 } else if (to_submit) { 3335 ret = io_uring_add_tctx_node(ctx); 3336 if (unlikely(ret)) 3337 goto out; 3338 3339 mutex_lock(&ctx->uring_lock); 3340 ret = io_submit_sqes(ctx, to_submit); 3341 if (ret != to_submit) { 3342 mutex_unlock(&ctx->uring_lock); 3343 goto out; 3344 } 3345 if (flags & IORING_ENTER_GETEVENTS) { 3346 if (ctx->syscall_iopoll) 3347 goto iopoll_locked; 3348 /* 3349 * Ignore errors, we'll soon call io_cqring_wait() and 3350 * it should handle ownership problems if any. 3351 */ 3352 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3353 (void)io_run_local_work_locked(ctx); 3354 } 3355 mutex_unlock(&ctx->uring_lock); 3356 } 3357 3358 if (flags & IORING_ENTER_GETEVENTS) { 3359 int ret2; 3360 3361 if (ctx->syscall_iopoll) { 3362 /* 3363 * We disallow the app entering submit/complete with 3364 * polling, but we still need to lock the ring to 3365 * prevent racing with polled issue that got punted to 3366 * a workqueue. 3367 */ 3368 mutex_lock(&ctx->uring_lock); 3369 iopoll_locked: 3370 ret2 = io_validate_ext_arg(flags, argp, argsz); 3371 if (likely(!ret2)) { 3372 min_complete = min(min_complete, 3373 ctx->cq_entries); 3374 ret2 = io_iopoll_check(ctx, min_complete); 3375 } 3376 mutex_unlock(&ctx->uring_lock); 3377 } else { 3378 const sigset_t __user *sig; 3379 struct __kernel_timespec __user *ts; 3380 3381 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3382 if (likely(!ret2)) { 3383 min_complete = min(min_complete, 3384 ctx->cq_entries); 3385 ret2 = io_cqring_wait(ctx, min_complete, sig, 3386 argsz, ts); 3387 } 3388 } 3389 3390 if (!ret) { 3391 ret = ret2; 3392 3393 /* 3394 * EBADR indicates that one or more CQE were dropped. 3395 * Once the user has been informed we can clear the bit 3396 * as they are obviously ok with those drops. 3397 */ 3398 if (unlikely(ret2 == -EBADR)) 3399 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3400 &ctx->check_cq); 3401 } 3402 } 3403 out: 3404 fdput(f); 3405 return ret; 3406 } 3407 3408 static const struct file_operations io_uring_fops = { 3409 .release = io_uring_release, 3410 .mmap = io_uring_mmap, 3411 #ifndef CONFIG_MMU 3412 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3413 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3414 #endif 3415 .poll = io_uring_poll, 3416 #ifdef CONFIG_PROC_FS 3417 .show_fdinfo = io_uring_show_fdinfo, 3418 #endif 3419 }; 3420 3421 bool io_is_uring_fops(struct file *file) 3422 { 3423 return file->f_op == &io_uring_fops; 3424 } 3425 3426 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3427 struct io_uring_params *p) 3428 { 3429 struct io_rings *rings; 3430 size_t size, sq_array_offset; 3431 3432 /* make sure these are sane, as we already accounted them */ 3433 ctx->sq_entries = p->sq_entries; 3434 ctx->cq_entries = p->cq_entries; 3435 3436 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3437 if (size == SIZE_MAX) 3438 return -EOVERFLOW; 3439 3440 rings = io_mem_alloc(size); 3441 if (!rings) 3442 return -ENOMEM; 3443 3444 ctx->rings = rings; 3445 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3446 rings->sq_ring_mask = p->sq_entries - 1; 3447 rings->cq_ring_mask = p->cq_entries - 1; 3448 rings->sq_ring_entries = p->sq_entries; 3449 rings->cq_ring_entries = p->cq_entries; 3450 3451 if (p->flags & IORING_SETUP_SQE128) 3452 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3453 else 3454 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3455 if (size == SIZE_MAX) { 3456 io_mem_free(ctx->rings); 3457 ctx->rings = NULL; 3458 return -EOVERFLOW; 3459 } 3460 3461 ctx->sq_sqes = io_mem_alloc(size); 3462 if (!ctx->sq_sqes) { 3463 io_mem_free(ctx->rings); 3464 ctx->rings = NULL; 3465 return -ENOMEM; 3466 } 3467 3468 return 0; 3469 } 3470 3471 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file) 3472 { 3473 int ret, fd; 3474 3475 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3476 if (fd < 0) 3477 return fd; 3478 3479 ret = __io_uring_add_tctx_node(ctx); 3480 if (ret) { 3481 put_unused_fd(fd); 3482 return ret; 3483 } 3484 fd_install(fd, file); 3485 return fd; 3486 } 3487 3488 /* 3489 * Allocate an anonymous fd, this is what constitutes the application 3490 * visible backing of an io_uring instance. The application mmaps this 3491 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3492 * we have to tie this fd to a socket for file garbage collection purposes. 3493 */ 3494 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3495 { 3496 struct file *file; 3497 #if defined(CONFIG_UNIX) 3498 int ret; 3499 3500 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3501 &ctx->ring_sock); 3502 if (ret) 3503 return ERR_PTR(ret); 3504 #endif 3505 3506 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3507 O_RDWR | O_CLOEXEC, NULL); 3508 #if defined(CONFIG_UNIX) 3509 if (IS_ERR(file)) { 3510 sock_release(ctx->ring_sock); 3511 ctx->ring_sock = NULL; 3512 } else { 3513 ctx->ring_sock->file = file; 3514 } 3515 #endif 3516 return file; 3517 } 3518 3519 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3520 struct io_uring_params __user *params) 3521 { 3522 struct io_ring_ctx *ctx; 3523 struct file *file; 3524 int ret; 3525 3526 if (!entries) 3527 return -EINVAL; 3528 if (entries > IORING_MAX_ENTRIES) { 3529 if (!(p->flags & IORING_SETUP_CLAMP)) 3530 return -EINVAL; 3531 entries = IORING_MAX_ENTRIES; 3532 } 3533 3534 /* 3535 * Use twice as many entries for the CQ ring. It's possible for the 3536 * application to drive a higher depth than the size of the SQ ring, 3537 * since the sqes are only used at submission time. This allows for 3538 * some flexibility in overcommitting a bit. If the application has 3539 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3540 * of CQ ring entries manually. 3541 */ 3542 p->sq_entries = roundup_pow_of_two(entries); 3543 if (p->flags & IORING_SETUP_CQSIZE) { 3544 /* 3545 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3546 * to a power-of-two, if it isn't already. We do NOT impose 3547 * any cq vs sq ring sizing. 3548 */ 3549 if (!p->cq_entries) 3550 return -EINVAL; 3551 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3552 if (!(p->flags & IORING_SETUP_CLAMP)) 3553 return -EINVAL; 3554 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3555 } 3556 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3557 if (p->cq_entries < p->sq_entries) 3558 return -EINVAL; 3559 } else { 3560 p->cq_entries = 2 * p->sq_entries; 3561 } 3562 3563 ctx = io_ring_ctx_alloc(p); 3564 if (!ctx) 3565 return -ENOMEM; 3566 3567 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3568 !(ctx->flags & IORING_SETUP_IOPOLL) && 3569 !(ctx->flags & IORING_SETUP_SQPOLL)) 3570 ctx->task_complete = true; 3571 3572 /* 3573 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3574 * space applications don't need to do io completion events 3575 * polling again, they can rely on io_sq_thread to do polling 3576 * work, which can reduce cpu usage and uring_lock contention. 3577 */ 3578 if (ctx->flags & IORING_SETUP_IOPOLL && 3579 !(ctx->flags & IORING_SETUP_SQPOLL)) 3580 ctx->syscall_iopoll = 1; 3581 3582 ctx->compat = in_compat_syscall(); 3583 if (!capable(CAP_IPC_LOCK)) 3584 ctx->user = get_uid(current_user()); 3585 3586 /* 3587 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3588 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3589 */ 3590 ret = -EINVAL; 3591 if (ctx->flags & IORING_SETUP_SQPOLL) { 3592 /* IPI related flags don't make sense with SQPOLL */ 3593 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3594 IORING_SETUP_TASKRUN_FLAG | 3595 IORING_SETUP_DEFER_TASKRUN)) 3596 goto err; 3597 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3598 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3599 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3600 } else { 3601 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3602 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3603 goto err; 3604 ctx->notify_method = TWA_SIGNAL; 3605 } 3606 3607 /* 3608 * For DEFER_TASKRUN we require the completion task to be the same as the 3609 * submission task. This implies that there is only one submitter, so enforce 3610 * that. 3611 */ 3612 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3613 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3614 goto err; 3615 } 3616 3617 /* 3618 * This is just grabbed for accounting purposes. When a process exits, 3619 * the mm is exited and dropped before the files, hence we need to hang 3620 * on to this mm purely for the purposes of being able to unaccount 3621 * memory (locked/pinned vm). It's not used for anything else. 3622 */ 3623 mmgrab(current->mm); 3624 ctx->mm_account = current->mm; 3625 3626 ret = io_allocate_scq_urings(ctx, p); 3627 if (ret) 3628 goto err; 3629 3630 ret = io_sq_offload_create(ctx, p); 3631 if (ret) 3632 goto err; 3633 /* always set a rsrc node */ 3634 ret = io_rsrc_node_switch_start(ctx); 3635 if (ret) 3636 goto err; 3637 io_rsrc_node_switch(ctx, NULL); 3638 3639 memset(&p->sq_off, 0, sizeof(p->sq_off)); 3640 p->sq_off.head = offsetof(struct io_rings, sq.head); 3641 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3642 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3643 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3644 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3645 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3646 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3647 3648 memset(&p->cq_off, 0, sizeof(p->cq_off)); 3649 p->cq_off.head = offsetof(struct io_rings, cq.head); 3650 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3651 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3652 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3653 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3654 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3655 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3656 3657 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3658 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3659 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3660 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3661 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3662 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3663 IORING_FEAT_LINKED_FILE; 3664 3665 if (copy_to_user(params, p, sizeof(*p))) { 3666 ret = -EFAULT; 3667 goto err; 3668 } 3669 3670 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3671 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3672 ctx->submitter_task = get_task_struct(current); 3673 3674 file = io_uring_get_file(ctx); 3675 if (IS_ERR(file)) { 3676 ret = PTR_ERR(file); 3677 goto err; 3678 } 3679 3680 /* 3681 * Install ring fd as the very last thing, so we don't risk someone 3682 * having closed it before we finish setup 3683 */ 3684 ret = io_uring_install_fd(ctx, file); 3685 if (ret < 0) { 3686 /* fput will clean it up */ 3687 fput(file); 3688 return ret; 3689 } 3690 3691 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3692 return ret; 3693 err: 3694 io_ring_ctx_wait_and_kill(ctx); 3695 return ret; 3696 } 3697 3698 /* 3699 * Sets up an aio uring context, and returns the fd. Applications asks for a 3700 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3701 * params structure passed in. 3702 */ 3703 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3704 { 3705 struct io_uring_params p; 3706 int i; 3707 3708 if (copy_from_user(&p, params, sizeof(p))) 3709 return -EFAULT; 3710 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3711 if (p.resv[i]) 3712 return -EINVAL; 3713 } 3714 3715 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3716 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3717 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3718 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3719 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3720 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3721 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN)) 3722 return -EINVAL; 3723 3724 return io_uring_create(entries, &p, params); 3725 } 3726 3727 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3728 struct io_uring_params __user *, params) 3729 { 3730 return io_uring_setup(entries, params); 3731 } 3732 3733 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 3734 unsigned nr_args) 3735 { 3736 struct io_uring_probe *p; 3737 size_t size; 3738 int i, ret; 3739 3740 size = struct_size(p, ops, nr_args); 3741 if (size == SIZE_MAX) 3742 return -EOVERFLOW; 3743 p = kzalloc(size, GFP_KERNEL); 3744 if (!p) 3745 return -ENOMEM; 3746 3747 ret = -EFAULT; 3748 if (copy_from_user(p, arg, size)) 3749 goto out; 3750 ret = -EINVAL; 3751 if (memchr_inv(p, 0, size)) 3752 goto out; 3753 3754 p->last_op = IORING_OP_LAST - 1; 3755 if (nr_args > IORING_OP_LAST) 3756 nr_args = IORING_OP_LAST; 3757 3758 for (i = 0; i < nr_args; i++) { 3759 p->ops[i].op = i; 3760 if (!io_op_defs[i].not_supported) 3761 p->ops[i].flags = IO_URING_OP_SUPPORTED; 3762 } 3763 p->ops_len = i; 3764 3765 ret = 0; 3766 if (copy_to_user(arg, p, size)) 3767 ret = -EFAULT; 3768 out: 3769 kfree(p); 3770 return ret; 3771 } 3772 3773 static int io_register_personality(struct io_ring_ctx *ctx) 3774 { 3775 const struct cred *creds; 3776 u32 id; 3777 int ret; 3778 3779 creds = get_current_cred(); 3780 3781 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 3782 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 3783 if (ret < 0) { 3784 put_cred(creds); 3785 return ret; 3786 } 3787 return id; 3788 } 3789 3790 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 3791 void __user *arg, unsigned int nr_args) 3792 { 3793 struct io_uring_restriction *res; 3794 size_t size; 3795 int i, ret; 3796 3797 /* Restrictions allowed only if rings started disabled */ 3798 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 3799 return -EBADFD; 3800 3801 /* We allow only a single restrictions registration */ 3802 if (ctx->restrictions.registered) 3803 return -EBUSY; 3804 3805 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 3806 return -EINVAL; 3807 3808 size = array_size(nr_args, sizeof(*res)); 3809 if (size == SIZE_MAX) 3810 return -EOVERFLOW; 3811 3812 res = memdup_user(arg, size); 3813 if (IS_ERR(res)) 3814 return PTR_ERR(res); 3815 3816 ret = 0; 3817 3818 for (i = 0; i < nr_args; i++) { 3819 switch (res[i].opcode) { 3820 case IORING_RESTRICTION_REGISTER_OP: 3821 if (res[i].register_op >= IORING_REGISTER_LAST) { 3822 ret = -EINVAL; 3823 goto out; 3824 } 3825 3826 __set_bit(res[i].register_op, 3827 ctx->restrictions.register_op); 3828 break; 3829 case IORING_RESTRICTION_SQE_OP: 3830 if (res[i].sqe_op >= IORING_OP_LAST) { 3831 ret = -EINVAL; 3832 goto out; 3833 } 3834 3835 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 3836 break; 3837 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 3838 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 3839 break; 3840 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 3841 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 3842 break; 3843 default: 3844 ret = -EINVAL; 3845 goto out; 3846 } 3847 } 3848 3849 out: 3850 /* Reset all restrictions if an error happened */ 3851 if (ret != 0) 3852 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 3853 else 3854 ctx->restrictions.registered = true; 3855 3856 kfree(res); 3857 return ret; 3858 } 3859 3860 static int io_register_enable_rings(struct io_ring_ctx *ctx) 3861 { 3862 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 3863 return -EBADFD; 3864 3865 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) 3866 ctx->submitter_task = get_task_struct(current); 3867 3868 if (ctx->restrictions.registered) 3869 ctx->restricted = 1; 3870 3871 ctx->flags &= ~IORING_SETUP_R_DISABLED; 3872 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 3873 wake_up(&ctx->sq_data->wait); 3874 return 0; 3875 } 3876 3877 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 3878 void __user *arg, unsigned len) 3879 { 3880 struct io_uring_task *tctx = current->io_uring; 3881 cpumask_var_t new_mask; 3882 int ret; 3883 3884 if (!tctx || !tctx->io_wq) 3885 return -EINVAL; 3886 3887 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 3888 return -ENOMEM; 3889 3890 cpumask_clear(new_mask); 3891 if (len > cpumask_size()) 3892 len = cpumask_size(); 3893 3894 if (in_compat_syscall()) { 3895 ret = compat_get_bitmap(cpumask_bits(new_mask), 3896 (const compat_ulong_t __user *)arg, 3897 len * 8 /* CHAR_BIT */); 3898 } else { 3899 ret = copy_from_user(new_mask, arg, len); 3900 } 3901 3902 if (ret) { 3903 free_cpumask_var(new_mask); 3904 return -EFAULT; 3905 } 3906 3907 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask); 3908 free_cpumask_var(new_mask); 3909 return ret; 3910 } 3911 3912 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 3913 { 3914 struct io_uring_task *tctx = current->io_uring; 3915 3916 if (!tctx || !tctx->io_wq) 3917 return -EINVAL; 3918 3919 return io_wq_cpu_affinity(tctx->io_wq, NULL); 3920 } 3921 3922 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 3923 void __user *arg) 3924 __must_hold(&ctx->uring_lock) 3925 { 3926 struct io_tctx_node *node; 3927 struct io_uring_task *tctx = NULL; 3928 struct io_sq_data *sqd = NULL; 3929 __u32 new_count[2]; 3930 int i, ret; 3931 3932 if (copy_from_user(new_count, arg, sizeof(new_count))) 3933 return -EFAULT; 3934 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3935 if (new_count[i] > INT_MAX) 3936 return -EINVAL; 3937 3938 if (ctx->flags & IORING_SETUP_SQPOLL) { 3939 sqd = ctx->sq_data; 3940 if (sqd) { 3941 /* 3942 * Observe the correct sqd->lock -> ctx->uring_lock 3943 * ordering. Fine to drop uring_lock here, we hold 3944 * a ref to the ctx. 3945 */ 3946 refcount_inc(&sqd->refs); 3947 mutex_unlock(&ctx->uring_lock); 3948 mutex_lock(&sqd->lock); 3949 mutex_lock(&ctx->uring_lock); 3950 if (sqd->thread) 3951 tctx = sqd->thread->io_uring; 3952 } 3953 } else { 3954 tctx = current->io_uring; 3955 } 3956 3957 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 3958 3959 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3960 if (new_count[i]) 3961 ctx->iowq_limits[i] = new_count[i]; 3962 ctx->iowq_limits_set = true; 3963 3964 if (tctx && tctx->io_wq) { 3965 ret = io_wq_max_workers(tctx->io_wq, new_count); 3966 if (ret) 3967 goto err; 3968 } else { 3969 memset(new_count, 0, sizeof(new_count)); 3970 } 3971 3972 if (sqd) { 3973 mutex_unlock(&sqd->lock); 3974 io_put_sq_data(sqd); 3975 } 3976 3977 if (copy_to_user(arg, new_count, sizeof(new_count))) 3978 return -EFAULT; 3979 3980 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 3981 if (sqd) 3982 return 0; 3983 3984 /* now propagate the restriction to all registered users */ 3985 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3986 struct io_uring_task *tctx = node->task->io_uring; 3987 3988 if (WARN_ON_ONCE(!tctx->io_wq)) 3989 continue; 3990 3991 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3992 new_count[i] = ctx->iowq_limits[i]; 3993 /* ignore errors, it always returns zero anyway */ 3994 (void)io_wq_max_workers(tctx->io_wq, new_count); 3995 } 3996 return 0; 3997 err: 3998 if (sqd) { 3999 mutex_unlock(&sqd->lock); 4000 io_put_sq_data(sqd); 4001 } 4002 return ret; 4003 } 4004 4005 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4006 void __user *arg, unsigned nr_args) 4007 __releases(ctx->uring_lock) 4008 __acquires(ctx->uring_lock) 4009 { 4010 int ret; 4011 4012 /* 4013 * We don't quiesce the refs for register anymore and so it can't be 4014 * dying as we're holding a file ref here. 4015 */ 4016 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4017 return -ENXIO; 4018 4019 if (ctx->submitter_task && ctx->submitter_task != current) 4020 return -EEXIST; 4021 4022 if (ctx->restricted) { 4023 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4024 if (!test_bit(opcode, ctx->restrictions.register_op)) 4025 return -EACCES; 4026 } 4027 4028 switch (opcode) { 4029 case IORING_REGISTER_BUFFERS: 4030 ret = -EFAULT; 4031 if (!arg) 4032 break; 4033 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4034 break; 4035 case IORING_UNREGISTER_BUFFERS: 4036 ret = -EINVAL; 4037 if (arg || nr_args) 4038 break; 4039 ret = io_sqe_buffers_unregister(ctx); 4040 break; 4041 case IORING_REGISTER_FILES: 4042 ret = -EFAULT; 4043 if (!arg) 4044 break; 4045 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4046 break; 4047 case IORING_UNREGISTER_FILES: 4048 ret = -EINVAL; 4049 if (arg || nr_args) 4050 break; 4051 ret = io_sqe_files_unregister(ctx); 4052 break; 4053 case IORING_REGISTER_FILES_UPDATE: 4054 ret = io_register_files_update(ctx, arg, nr_args); 4055 break; 4056 case IORING_REGISTER_EVENTFD: 4057 ret = -EINVAL; 4058 if (nr_args != 1) 4059 break; 4060 ret = io_eventfd_register(ctx, arg, 0); 4061 break; 4062 case IORING_REGISTER_EVENTFD_ASYNC: 4063 ret = -EINVAL; 4064 if (nr_args != 1) 4065 break; 4066 ret = io_eventfd_register(ctx, arg, 1); 4067 break; 4068 case IORING_UNREGISTER_EVENTFD: 4069 ret = -EINVAL; 4070 if (arg || nr_args) 4071 break; 4072 ret = io_eventfd_unregister(ctx); 4073 break; 4074 case IORING_REGISTER_PROBE: 4075 ret = -EINVAL; 4076 if (!arg || nr_args > 256) 4077 break; 4078 ret = io_probe(ctx, arg, nr_args); 4079 break; 4080 case IORING_REGISTER_PERSONALITY: 4081 ret = -EINVAL; 4082 if (arg || nr_args) 4083 break; 4084 ret = io_register_personality(ctx); 4085 break; 4086 case IORING_UNREGISTER_PERSONALITY: 4087 ret = -EINVAL; 4088 if (arg) 4089 break; 4090 ret = io_unregister_personality(ctx, nr_args); 4091 break; 4092 case IORING_REGISTER_ENABLE_RINGS: 4093 ret = -EINVAL; 4094 if (arg || nr_args) 4095 break; 4096 ret = io_register_enable_rings(ctx); 4097 break; 4098 case IORING_REGISTER_RESTRICTIONS: 4099 ret = io_register_restrictions(ctx, arg, nr_args); 4100 break; 4101 case IORING_REGISTER_FILES2: 4102 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4103 break; 4104 case IORING_REGISTER_FILES_UPDATE2: 4105 ret = io_register_rsrc_update(ctx, arg, nr_args, 4106 IORING_RSRC_FILE); 4107 break; 4108 case IORING_REGISTER_BUFFERS2: 4109 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4110 break; 4111 case IORING_REGISTER_BUFFERS_UPDATE: 4112 ret = io_register_rsrc_update(ctx, arg, nr_args, 4113 IORING_RSRC_BUFFER); 4114 break; 4115 case IORING_REGISTER_IOWQ_AFF: 4116 ret = -EINVAL; 4117 if (!arg || !nr_args) 4118 break; 4119 ret = io_register_iowq_aff(ctx, arg, nr_args); 4120 break; 4121 case IORING_UNREGISTER_IOWQ_AFF: 4122 ret = -EINVAL; 4123 if (arg || nr_args) 4124 break; 4125 ret = io_unregister_iowq_aff(ctx); 4126 break; 4127 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4128 ret = -EINVAL; 4129 if (!arg || nr_args != 2) 4130 break; 4131 ret = io_register_iowq_max_workers(ctx, arg); 4132 break; 4133 case IORING_REGISTER_RING_FDS: 4134 ret = io_ringfd_register(ctx, arg, nr_args); 4135 break; 4136 case IORING_UNREGISTER_RING_FDS: 4137 ret = io_ringfd_unregister(ctx, arg, nr_args); 4138 break; 4139 case IORING_REGISTER_PBUF_RING: 4140 ret = -EINVAL; 4141 if (!arg || nr_args != 1) 4142 break; 4143 ret = io_register_pbuf_ring(ctx, arg); 4144 break; 4145 case IORING_UNREGISTER_PBUF_RING: 4146 ret = -EINVAL; 4147 if (!arg || nr_args != 1) 4148 break; 4149 ret = io_unregister_pbuf_ring(ctx, arg); 4150 break; 4151 case IORING_REGISTER_SYNC_CANCEL: 4152 ret = -EINVAL; 4153 if (!arg || nr_args != 1) 4154 break; 4155 ret = io_sync_cancel(ctx, arg); 4156 break; 4157 case IORING_REGISTER_FILE_ALLOC_RANGE: 4158 ret = -EINVAL; 4159 if (!arg || nr_args) 4160 break; 4161 ret = io_register_file_alloc_range(ctx, arg); 4162 break; 4163 default: 4164 ret = -EINVAL; 4165 break; 4166 } 4167 4168 return ret; 4169 } 4170 4171 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4172 void __user *, arg, unsigned int, nr_args) 4173 { 4174 struct io_ring_ctx *ctx; 4175 long ret = -EBADF; 4176 struct fd f; 4177 4178 if (opcode >= IORING_REGISTER_LAST) 4179 return -EINVAL; 4180 4181 f = fdget(fd); 4182 if (!f.file) 4183 return -EBADF; 4184 4185 ret = -EOPNOTSUPP; 4186 if (!io_is_uring_fops(f.file)) 4187 goto out_fput; 4188 4189 ctx = f.file->private_data; 4190 4191 mutex_lock(&ctx->uring_lock); 4192 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4193 mutex_unlock(&ctx->uring_lock); 4194 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4195 out_fput: 4196 fdput(f); 4197 return ret; 4198 } 4199 4200 static int __init io_uring_init(void) 4201 { 4202 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4203 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4204 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4205 } while (0) 4206 4207 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4208 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4209 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4210 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4211 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4212 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4213 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4214 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4215 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4216 BUILD_BUG_SQE_ELEM(8, __u64, off); 4217 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4218 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4219 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4220 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4221 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4222 BUILD_BUG_SQE_ELEM(24, __u32, len); 4223 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4224 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4225 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4226 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4227 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4228 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4229 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4230 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4231 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4232 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4233 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4234 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4235 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4236 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4237 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4238 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4239 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4240 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4241 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4242 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4243 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4244 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4245 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4246 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4247 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4248 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4249 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4250 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4251 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4252 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4253 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4254 4255 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4256 sizeof(struct io_uring_rsrc_update)); 4257 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4258 sizeof(struct io_uring_rsrc_update2)); 4259 4260 /* ->buf_index is u16 */ 4261 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4262 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4263 offsetof(struct io_uring_buf_ring, tail)); 4264 4265 /* should fit into one byte */ 4266 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4267 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4268 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4269 4270 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4271 4272 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4273 4274 io_uring_optable_init(); 4275 4276 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4277 SLAB_ACCOUNT); 4278 return 0; 4279 }; 4280 __initcall(io_uring_init); 4281