1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <linux/anon_inodes.h> 64 #include <linux/sched/mm.h> 65 #include <linux/uaccess.h> 66 #include <linux/nospec.h> 67 #include <linux/highmem.h> 68 #include <linux/fsnotify.h> 69 #include <linux/fadvise.h> 70 #include <linux/task_work.h> 71 #include <linux/io_uring.h> 72 #include <linux/audit.h> 73 #include <linux/security.h> 74 #include <asm/shmparam.h> 75 76 #define CREATE_TRACE_POINTS 77 #include <trace/events/io_uring.h> 78 79 #include <uapi/linux/io_uring.h> 80 81 #include "io-wq.h" 82 83 #include "io_uring.h" 84 #include "opdef.h" 85 #include "refs.h" 86 #include "tctx.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 95 #include "timeout.h" 96 #include "poll.h" 97 #include "rw.h" 98 #include "alloc_cache.h" 99 100 #define IORING_MAX_ENTRIES 32768 101 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 102 103 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 104 IORING_REGISTER_LAST + IORING_OP_LAST) 105 106 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 107 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 108 109 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 110 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 111 112 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 113 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 114 REQ_F_ASYNC_DATA) 115 116 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 117 IO_REQ_CLEAN_FLAGS) 118 119 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 120 121 #define IO_COMPL_BATCH 32 122 #define IO_REQ_ALLOC_BATCH 8 123 124 enum { 125 IO_CHECK_CQ_OVERFLOW_BIT, 126 IO_CHECK_CQ_DROPPED_BIT, 127 }; 128 129 enum { 130 IO_EVENTFD_OP_SIGNAL_BIT, 131 IO_EVENTFD_OP_FREE_BIT, 132 }; 133 134 struct io_defer_entry { 135 struct list_head list; 136 struct io_kiocb *req; 137 u32 seq; 138 }; 139 140 /* requests with any of those set should undergo io_disarm_next() */ 141 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 142 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 143 144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 145 struct task_struct *task, 146 bool cancel_all); 147 148 static void io_queue_sqe(struct io_kiocb *req); 149 150 struct kmem_cache *req_cachep; 151 static struct workqueue_struct *iou_wq __ro_after_init; 152 153 static int __read_mostly sysctl_io_uring_disabled; 154 static int __read_mostly sysctl_io_uring_group = -1; 155 156 #ifdef CONFIG_SYSCTL 157 static struct ctl_table kernel_io_uring_disabled_table[] = { 158 { 159 .procname = "io_uring_disabled", 160 .data = &sysctl_io_uring_disabled, 161 .maxlen = sizeof(sysctl_io_uring_disabled), 162 .mode = 0644, 163 .proc_handler = proc_dointvec_minmax, 164 .extra1 = SYSCTL_ZERO, 165 .extra2 = SYSCTL_TWO, 166 }, 167 { 168 .procname = "io_uring_group", 169 .data = &sysctl_io_uring_group, 170 .maxlen = sizeof(gid_t), 171 .mode = 0644, 172 .proc_handler = proc_dointvec, 173 }, 174 {}, 175 }; 176 #endif 177 178 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 179 { 180 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 181 ctx->submit_state.cqes_count) 182 __io_submit_flush_completions(ctx); 183 } 184 185 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 186 { 187 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 188 } 189 190 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 191 { 192 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 193 } 194 195 static bool io_match_linked(struct io_kiocb *head) 196 { 197 struct io_kiocb *req; 198 199 io_for_each_link(req, head) { 200 if (req->flags & REQ_F_INFLIGHT) 201 return true; 202 } 203 return false; 204 } 205 206 /* 207 * As io_match_task() but protected against racing with linked timeouts. 208 * User must not hold timeout_lock. 209 */ 210 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 211 bool cancel_all) 212 { 213 bool matched; 214 215 if (task && head->task != task) 216 return false; 217 if (cancel_all) 218 return true; 219 220 if (head->flags & REQ_F_LINK_TIMEOUT) { 221 struct io_ring_ctx *ctx = head->ctx; 222 223 /* protect against races with linked timeouts */ 224 spin_lock_irq(&ctx->timeout_lock); 225 matched = io_match_linked(head); 226 spin_unlock_irq(&ctx->timeout_lock); 227 } else { 228 matched = io_match_linked(head); 229 } 230 return matched; 231 } 232 233 static inline void req_fail_link_node(struct io_kiocb *req, int res) 234 { 235 req_set_fail(req); 236 io_req_set_res(req, res, 0); 237 } 238 239 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 240 { 241 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 242 } 243 244 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 245 { 246 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 247 248 complete(&ctx->ref_comp); 249 } 250 251 static __cold void io_fallback_req_func(struct work_struct *work) 252 { 253 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 254 fallback_work.work); 255 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 256 struct io_kiocb *req, *tmp; 257 struct io_tw_state ts = { .locked = true, }; 258 259 percpu_ref_get(&ctx->refs); 260 mutex_lock(&ctx->uring_lock); 261 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 262 req->io_task_work.func(req, &ts); 263 if (WARN_ON_ONCE(!ts.locked)) 264 return; 265 io_submit_flush_completions(ctx); 266 mutex_unlock(&ctx->uring_lock); 267 percpu_ref_put(&ctx->refs); 268 } 269 270 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 271 { 272 unsigned hash_buckets = 1U << bits; 273 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 274 275 table->hbs = kmalloc(hash_size, GFP_KERNEL); 276 if (!table->hbs) 277 return -ENOMEM; 278 279 table->hash_bits = bits; 280 init_hash_table(table, hash_buckets); 281 return 0; 282 } 283 284 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 285 { 286 struct io_ring_ctx *ctx; 287 int hash_bits; 288 289 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 290 if (!ctx) 291 return NULL; 292 293 xa_init(&ctx->io_bl_xa); 294 295 /* 296 * Use 5 bits less than the max cq entries, that should give us around 297 * 32 entries per hash list if totally full and uniformly spread, but 298 * don't keep too many buckets to not overconsume memory. 299 */ 300 hash_bits = ilog2(p->cq_entries) - 5; 301 hash_bits = clamp(hash_bits, 1, 8); 302 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 303 goto err; 304 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 305 goto err; 306 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 307 0, GFP_KERNEL)) 308 goto err; 309 310 ctx->flags = p->flags; 311 init_waitqueue_head(&ctx->sqo_sq_wait); 312 INIT_LIST_HEAD(&ctx->sqd_list); 313 INIT_LIST_HEAD(&ctx->cq_overflow_list); 314 INIT_LIST_HEAD(&ctx->io_buffers_cache); 315 INIT_HLIST_HEAD(&ctx->io_buf_list); 316 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 317 sizeof(struct io_rsrc_node)); 318 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, 319 sizeof(struct async_poll)); 320 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 321 sizeof(struct io_async_msghdr)); 322 init_completion(&ctx->ref_comp); 323 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 324 mutex_init(&ctx->uring_lock); 325 init_waitqueue_head(&ctx->cq_wait); 326 init_waitqueue_head(&ctx->poll_wq); 327 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 328 spin_lock_init(&ctx->completion_lock); 329 spin_lock_init(&ctx->timeout_lock); 330 INIT_WQ_LIST(&ctx->iopoll_list); 331 INIT_LIST_HEAD(&ctx->io_buffers_pages); 332 INIT_LIST_HEAD(&ctx->io_buffers_comp); 333 INIT_LIST_HEAD(&ctx->defer_list); 334 INIT_LIST_HEAD(&ctx->timeout_list); 335 INIT_LIST_HEAD(&ctx->ltimeout_list); 336 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 337 init_llist_head(&ctx->work_llist); 338 INIT_LIST_HEAD(&ctx->tctx_list); 339 ctx->submit_state.free_list.next = NULL; 340 INIT_WQ_LIST(&ctx->locked_free_list); 341 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 342 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 343 return ctx; 344 err: 345 kfree(ctx->cancel_table.hbs); 346 kfree(ctx->cancel_table_locked.hbs); 347 xa_destroy(&ctx->io_bl_xa); 348 kfree(ctx); 349 return NULL; 350 } 351 352 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 353 { 354 struct io_rings *r = ctx->rings; 355 356 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 357 ctx->cq_extra--; 358 } 359 360 static bool req_need_defer(struct io_kiocb *req, u32 seq) 361 { 362 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 363 struct io_ring_ctx *ctx = req->ctx; 364 365 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 366 } 367 368 return false; 369 } 370 371 static void io_clean_op(struct io_kiocb *req) 372 { 373 if (req->flags & REQ_F_BUFFER_SELECTED) { 374 spin_lock(&req->ctx->completion_lock); 375 io_put_kbuf_comp(req); 376 spin_unlock(&req->ctx->completion_lock); 377 } 378 379 if (req->flags & REQ_F_NEED_CLEANUP) { 380 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 381 382 if (def->cleanup) 383 def->cleanup(req); 384 } 385 if ((req->flags & REQ_F_POLLED) && req->apoll) { 386 kfree(req->apoll->double_poll); 387 kfree(req->apoll); 388 req->apoll = NULL; 389 } 390 if (req->flags & REQ_F_INFLIGHT) { 391 struct io_uring_task *tctx = req->task->io_uring; 392 393 atomic_dec(&tctx->inflight_tracked); 394 } 395 if (req->flags & REQ_F_CREDS) 396 put_cred(req->creds); 397 if (req->flags & REQ_F_ASYNC_DATA) { 398 kfree(req->async_data); 399 req->async_data = NULL; 400 } 401 req->flags &= ~IO_REQ_CLEAN_FLAGS; 402 } 403 404 static inline void io_req_track_inflight(struct io_kiocb *req) 405 { 406 if (!(req->flags & REQ_F_INFLIGHT)) { 407 req->flags |= REQ_F_INFLIGHT; 408 atomic_inc(&req->task->io_uring->inflight_tracked); 409 } 410 } 411 412 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 413 { 414 if (WARN_ON_ONCE(!req->link)) 415 return NULL; 416 417 req->flags &= ~REQ_F_ARM_LTIMEOUT; 418 req->flags |= REQ_F_LINK_TIMEOUT; 419 420 /* linked timeouts should have two refs once prep'ed */ 421 io_req_set_refcount(req); 422 __io_req_set_refcount(req->link, 2); 423 return req->link; 424 } 425 426 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 427 { 428 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 429 return NULL; 430 return __io_prep_linked_timeout(req); 431 } 432 433 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 434 { 435 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 436 } 437 438 static inline void io_arm_ltimeout(struct io_kiocb *req) 439 { 440 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 441 __io_arm_ltimeout(req); 442 } 443 444 static void io_prep_async_work(struct io_kiocb *req) 445 { 446 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 447 struct io_ring_ctx *ctx = req->ctx; 448 449 if (!(req->flags & REQ_F_CREDS)) { 450 req->flags |= REQ_F_CREDS; 451 req->creds = get_current_cred(); 452 } 453 454 req->work.list.next = NULL; 455 req->work.flags = 0; 456 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 457 if (req->flags & REQ_F_FORCE_ASYNC) 458 req->work.flags |= IO_WQ_WORK_CONCURRENT; 459 460 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 461 req->flags |= io_file_get_flags(req->file); 462 463 if (req->file && (req->flags & REQ_F_ISREG)) { 464 bool should_hash = def->hash_reg_file; 465 466 /* don't serialize this request if the fs doesn't need it */ 467 if (should_hash && (req->file->f_flags & O_DIRECT) && 468 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) 469 should_hash = false; 470 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 471 io_wq_hash_work(&req->work, file_inode(req->file)); 472 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 473 if (def->unbound_nonreg_file) 474 req->work.flags |= IO_WQ_WORK_UNBOUND; 475 } 476 } 477 478 static void io_prep_async_link(struct io_kiocb *req) 479 { 480 struct io_kiocb *cur; 481 482 if (req->flags & REQ_F_LINK_TIMEOUT) { 483 struct io_ring_ctx *ctx = req->ctx; 484 485 spin_lock_irq(&ctx->timeout_lock); 486 io_for_each_link(cur, req) 487 io_prep_async_work(cur); 488 spin_unlock_irq(&ctx->timeout_lock); 489 } else { 490 io_for_each_link(cur, req) 491 io_prep_async_work(cur); 492 } 493 } 494 495 static void io_queue_iowq(struct io_kiocb *req) 496 { 497 struct io_kiocb *link = io_prep_linked_timeout(req); 498 struct io_uring_task *tctx = req->task->io_uring; 499 500 BUG_ON(!tctx); 501 502 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) { 503 io_req_task_queue_fail(req, -ECANCELED); 504 return; 505 } 506 507 /* init ->work of the whole link before punting */ 508 io_prep_async_link(req); 509 510 /* 511 * Not expected to happen, but if we do have a bug where this _can_ 512 * happen, catch it here and ensure the request is marked as 513 * canceled. That will make io-wq go through the usual work cancel 514 * procedure rather than attempt to run this request (or create a new 515 * worker for it). 516 */ 517 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 518 req->work.flags |= IO_WQ_WORK_CANCEL; 519 520 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 521 io_wq_enqueue(tctx->io_wq, &req->work); 522 if (link) 523 io_queue_linked_timeout(link); 524 } 525 526 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 527 { 528 while (!list_empty(&ctx->defer_list)) { 529 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 530 struct io_defer_entry, list); 531 532 if (req_need_defer(de->req, de->seq)) 533 break; 534 list_del_init(&de->list); 535 io_req_task_queue(de->req); 536 kfree(de); 537 } 538 } 539 540 static void io_eventfd_free(struct rcu_head *rcu) 541 { 542 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 543 544 eventfd_ctx_put(ev_fd->cq_ev_fd); 545 kfree(ev_fd); 546 } 547 548 static void io_eventfd_ops(struct rcu_head *rcu) 549 { 550 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 551 int ops = atomic_xchg(&ev_fd->ops, 0); 552 553 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 554 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 555 556 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 557 * ordering in a race but if references are 0 we know we have to free 558 * it regardless. 559 */ 560 if (atomic_dec_and_test(&ev_fd->refs)) 561 call_rcu(&ev_fd->rcu, io_eventfd_free); 562 } 563 564 static void io_eventfd_signal(struct io_ring_ctx *ctx) 565 { 566 struct io_ev_fd *ev_fd = NULL; 567 568 rcu_read_lock(); 569 /* 570 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 571 * and eventfd_signal 572 */ 573 ev_fd = rcu_dereference(ctx->io_ev_fd); 574 575 /* 576 * Check again if ev_fd exists incase an io_eventfd_unregister call 577 * completed between the NULL check of ctx->io_ev_fd at the start of 578 * the function and rcu_read_lock. 579 */ 580 if (unlikely(!ev_fd)) 581 goto out; 582 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 583 goto out; 584 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 585 goto out; 586 587 if (likely(eventfd_signal_allowed())) { 588 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 589 } else { 590 atomic_inc(&ev_fd->refs); 591 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 592 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 593 else 594 atomic_dec(&ev_fd->refs); 595 } 596 597 out: 598 rcu_read_unlock(); 599 } 600 601 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 602 { 603 bool skip; 604 605 spin_lock(&ctx->completion_lock); 606 607 /* 608 * Eventfd should only get triggered when at least one event has been 609 * posted. Some applications rely on the eventfd notification count 610 * only changing IFF a new CQE has been added to the CQ ring. There's 611 * no depedency on 1:1 relationship between how many times this 612 * function is called (and hence the eventfd count) and number of CQEs 613 * posted to the CQ ring. 614 */ 615 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 616 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 617 spin_unlock(&ctx->completion_lock); 618 if (skip) 619 return; 620 621 io_eventfd_signal(ctx); 622 } 623 624 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 625 { 626 if (ctx->poll_activated) 627 io_poll_wq_wake(ctx); 628 if (ctx->off_timeout_used) 629 io_flush_timeouts(ctx); 630 if (ctx->drain_active) { 631 spin_lock(&ctx->completion_lock); 632 io_queue_deferred(ctx); 633 spin_unlock(&ctx->completion_lock); 634 } 635 if (ctx->has_evfd) 636 io_eventfd_flush_signal(ctx); 637 } 638 639 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 640 { 641 if (!ctx->lockless_cq) 642 spin_lock(&ctx->completion_lock); 643 } 644 645 static inline void io_cq_lock(struct io_ring_ctx *ctx) 646 __acquires(ctx->completion_lock) 647 { 648 spin_lock(&ctx->completion_lock); 649 } 650 651 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 652 { 653 io_commit_cqring(ctx); 654 if (!ctx->task_complete) { 655 if (!ctx->lockless_cq) 656 spin_unlock(&ctx->completion_lock); 657 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 658 if (!ctx->syscall_iopoll) 659 io_cqring_wake(ctx); 660 } 661 io_commit_cqring_flush(ctx); 662 } 663 664 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 665 __releases(ctx->completion_lock) 666 { 667 io_commit_cqring(ctx); 668 spin_unlock(&ctx->completion_lock); 669 io_cqring_wake(ctx); 670 io_commit_cqring_flush(ctx); 671 } 672 673 /* Returns true if there are no backlogged entries after the flush */ 674 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 675 { 676 struct io_overflow_cqe *ocqe; 677 LIST_HEAD(list); 678 679 lockdep_assert_held(&ctx->uring_lock); 680 681 spin_lock(&ctx->completion_lock); 682 list_splice_init(&ctx->cq_overflow_list, &list); 683 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 684 spin_unlock(&ctx->completion_lock); 685 686 while (!list_empty(&list)) { 687 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 688 list_del(&ocqe->list); 689 kfree(ocqe); 690 } 691 } 692 693 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 694 { 695 size_t cqe_size = sizeof(struct io_uring_cqe); 696 697 lockdep_assert_held(&ctx->uring_lock); 698 699 if (__io_cqring_events(ctx) == ctx->cq_entries) 700 return; 701 702 if (ctx->flags & IORING_SETUP_CQE32) 703 cqe_size <<= 1; 704 705 io_cq_lock(ctx); 706 while (!list_empty(&ctx->cq_overflow_list)) { 707 struct io_uring_cqe *cqe; 708 struct io_overflow_cqe *ocqe; 709 710 if (!io_get_cqe_overflow(ctx, &cqe, true)) 711 break; 712 ocqe = list_first_entry(&ctx->cq_overflow_list, 713 struct io_overflow_cqe, list); 714 memcpy(cqe, &ocqe->cqe, cqe_size); 715 list_del(&ocqe->list); 716 kfree(ocqe); 717 718 /* 719 * For silly syzbot cases that deliberately overflow by huge 720 * amounts, check if we need to resched and drop and 721 * reacquire the locks if so. Nothing real would ever hit this. 722 * Ideally we'd have a non-posting unlock for this, but hard 723 * to care for a non-real case. 724 */ 725 if (need_resched()) { 726 io_cq_unlock_post(ctx); 727 mutex_unlock(&ctx->uring_lock); 728 cond_resched(); 729 mutex_lock(&ctx->uring_lock); 730 io_cq_lock(ctx); 731 } 732 } 733 734 if (list_empty(&ctx->cq_overflow_list)) { 735 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 736 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 737 } 738 io_cq_unlock_post(ctx); 739 } 740 741 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 742 { 743 mutex_lock(&ctx->uring_lock); 744 __io_cqring_overflow_flush(ctx); 745 mutex_unlock(&ctx->uring_lock); 746 } 747 748 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 749 { 750 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 751 io_cqring_do_overflow_flush(ctx); 752 } 753 754 /* can be called by any task */ 755 static void io_put_task_remote(struct task_struct *task) 756 { 757 struct io_uring_task *tctx = task->io_uring; 758 759 percpu_counter_sub(&tctx->inflight, 1); 760 if (unlikely(atomic_read(&tctx->in_cancel))) 761 wake_up(&tctx->wait); 762 put_task_struct(task); 763 } 764 765 /* used by a task to put its own references */ 766 static void io_put_task_local(struct task_struct *task) 767 { 768 task->io_uring->cached_refs++; 769 } 770 771 /* must to be called somewhat shortly after putting a request */ 772 static inline void io_put_task(struct task_struct *task) 773 { 774 if (likely(task == current)) 775 io_put_task_local(task); 776 else 777 io_put_task_remote(task); 778 } 779 780 void io_task_refs_refill(struct io_uring_task *tctx) 781 { 782 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 783 784 percpu_counter_add(&tctx->inflight, refill); 785 refcount_add(refill, ¤t->usage); 786 tctx->cached_refs += refill; 787 } 788 789 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 790 { 791 struct io_uring_task *tctx = task->io_uring; 792 unsigned int refs = tctx->cached_refs; 793 794 if (refs) { 795 tctx->cached_refs = 0; 796 percpu_counter_sub(&tctx->inflight, refs); 797 put_task_struct_many(task, refs); 798 } 799 } 800 801 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 802 s32 res, u32 cflags, u64 extra1, u64 extra2) 803 { 804 struct io_overflow_cqe *ocqe; 805 size_t ocq_size = sizeof(struct io_overflow_cqe); 806 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 807 808 lockdep_assert_held(&ctx->completion_lock); 809 810 if (is_cqe32) 811 ocq_size += sizeof(struct io_uring_cqe); 812 813 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 814 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 815 if (!ocqe) { 816 /* 817 * If we're in ring overflow flush mode, or in task cancel mode, 818 * or cannot allocate an overflow entry, then we need to drop it 819 * on the floor. 820 */ 821 io_account_cq_overflow(ctx); 822 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 823 return false; 824 } 825 if (list_empty(&ctx->cq_overflow_list)) { 826 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 827 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 828 829 } 830 ocqe->cqe.user_data = user_data; 831 ocqe->cqe.res = res; 832 ocqe->cqe.flags = cflags; 833 if (is_cqe32) { 834 ocqe->cqe.big_cqe[0] = extra1; 835 ocqe->cqe.big_cqe[1] = extra2; 836 } 837 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 838 return true; 839 } 840 841 void io_req_cqe_overflow(struct io_kiocb *req) 842 { 843 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 844 req->cqe.res, req->cqe.flags, 845 req->big_cqe.extra1, req->big_cqe.extra2); 846 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 847 } 848 849 /* 850 * writes to the cq entry need to come after reading head; the 851 * control dependency is enough as we're using WRITE_ONCE to 852 * fill the cq entry 853 */ 854 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 855 { 856 struct io_rings *rings = ctx->rings; 857 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 858 unsigned int free, queued, len; 859 860 /* 861 * Posting into the CQ when there are pending overflowed CQEs may break 862 * ordering guarantees, which will affect links, F_MORE users and more. 863 * Force overflow the completion. 864 */ 865 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 866 return false; 867 868 /* userspace may cheat modifying the tail, be safe and do min */ 869 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 870 free = ctx->cq_entries - queued; 871 /* we need a contiguous range, limit based on the current array offset */ 872 len = min(free, ctx->cq_entries - off); 873 if (!len) 874 return false; 875 876 if (ctx->flags & IORING_SETUP_CQE32) { 877 off <<= 1; 878 len <<= 1; 879 } 880 881 ctx->cqe_cached = &rings->cqes[off]; 882 ctx->cqe_sentinel = ctx->cqe_cached + len; 883 return true; 884 } 885 886 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 887 u32 cflags) 888 { 889 struct io_uring_cqe *cqe; 890 891 ctx->cq_extra++; 892 893 /* 894 * If we can't get a cq entry, userspace overflowed the 895 * submission (by quite a lot). Increment the overflow count in 896 * the ring. 897 */ 898 if (likely(io_get_cqe(ctx, &cqe))) { 899 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 900 901 WRITE_ONCE(cqe->user_data, user_data); 902 WRITE_ONCE(cqe->res, res); 903 WRITE_ONCE(cqe->flags, cflags); 904 905 if (ctx->flags & IORING_SETUP_CQE32) { 906 WRITE_ONCE(cqe->big_cqe[0], 0); 907 WRITE_ONCE(cqe->big_cqe[1], 0); 908 } 909 return true; 910 } 911 return false; 912 } 913 914 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 915 __must_hold(&ctx->uring_lock) 916 { 917 struct io_submit_state *state = &ctx->submit_state; 918 unsigned int i; 919 920 lockdep_assert_held(&ctx->uring_lock); 921 for (i = 0; i < state->cqes_count; i++) { 922 struct io_uring_cqe *cqe = &ctx->completion_cqes[i]; 923 924 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 925 if (ctx->lockless_cq) { 926 spin_lock(&ctx->completion_lock); 927 io_cqring_event_overflow(ctx, cqe->user_data, 928 cqe->res, cqe->flags, 0, 0); 929 spin_unlock(&ctx->completion_lock); 930 } else { 931 io_cqring_event_overflow(ctx, cqe->user_data, 932 cqe->res, cqe->flags, 0, 0); 933 } 934 } 935 } 936 state->cqes_count = 0; 937 } 938 939 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 940 bool allow_overflow) 941 { 942 bool filled; 943 944 io_cq_lock(ctx); 945 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 946 if (!filled && allow_overflow) 947 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 948 949 io_cq_unlock_post(ctx); 950 return filled; 951 } 952 953 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 954 { 955 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 956 } 957 958 /* 959 * A helper for multishot requests posting additional CQEs. 960 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 961 */ 962 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags) 963 { 964 struct io_ring_ctx *ctx = req->ctx; 965 u64 user_data = req->cqe.user_data; 966 struct io_uring_cqe *cqe; 967 968 if (!defer) 969 return __io_post_aux_cqe(ctx, user_data, res, cflags, false); 970 971 lockdep_assert_held(&ctx->uring_lock); 972 973 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) { 974 __io_cq_lock(ctx); 975 __io_flush_post_cqes(ctx); 976 /* no need to flush - flush is deferred */ 977 __io_cq_unlock_post(ctx); 978 } 979 980 /* For defered completions this is not as strict as it is otherwise, 981 * however it's main job is to prevent unbounded posted completions, 982 * and in that it works just as well. 983 */ 984 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 985 return false; 986 987 cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++]; 988 cqe->user_data = user_data; 989 cqe->res = res; 990 cqe->flags = cflags; 991 return true; 992 } 993 994 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 995 { 996 struct io_ring_ctx *ctx = req->ctx; 997 struct io_rsrc_node *rsrc_node = NULL; 998 999 io_cq_lock(ctx); 1000 if (!(req->flags & REQ_F_CQE_SKIP)) { 1001 if (!io_fill_cqe_req(ctx, req)) 1002 io_req_cqe_overflow(req); 1003 } 1004 1005 /* 1006 * If we're the last reference to this request, add to our locked 1007 * free_list cache. 1008 */ 1009 if (req_ref_put_and_test(req)) { 1010 if (req->flags & IO_REQ_LINK_FLAGS) { 1011 if (req->flags & IO_DISARM_MASK) 1012 io_disarm_next(req); 1013 if (req->link) { 1014 io_req_task_queue(req->link); 1015 req->link = NULL; 1016 } 1017 } 1018 io_put_kbuf_comp(req); 1019 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1020 io_clean_op(req); 1021 io_put_file(req); 1022 1023 rsrc_node = req->rsrc_node; 1024 /* 1025 * Selected buffer deallocation in io_clean_op() assumes that 1026 * we don't hold ->completion_lock. Clean them here to avoid 1027 * deadlocks. 1028 */ 1029 io_put_task_remote(req->task); 1030 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1031 ctx->locked_free_nr++; 1032 } 1033 io_cq_unlock_post(ctx); 1034 1035 if (rsrc_node) { 1036 io_ring_submit_lock(ctx, issue_flags); 1037 io_put_rsrc_node(ctx, rsrc_node); 1038 io_ring_submit_unlock(ctx, issue_flags); 1039 } 1040 } 1041 1042 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1043 { 1044 if (req->ctx->task_complete && req->ctx->submitter_task != current) { 1045 req->io_task_work.func = io_req_task_complete; 1046 io_req_task_work_add(req); 1047 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1048 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 1049 __io_req_complete_post(req, issue_flags); 1050 } else { 1051 struct io_ring_ctx *ctx = req->ctx; 1052 1053 mutex_lock(&ctx->uring_lock); 1054 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); 1055 mutex_unlock(&ctx->uring_lock); 1056 } 1057 } 1058 1059 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1060 __must_hold(&ctx->uring_lock) 1061 { 1062 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1063 1064 lockdep_assert_held(&req->ctx->uring_lock); 1065 1066 req_set_fail(req); 1067 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1068 if (def->fail) 1069 def->fail(req); 1070 io_req_complete_defer(req); 1071 } 1072 1073 /* 1074 * Don't initialise the fields below on every allocation, but do that in 1075 * advance and keep them valid across allocations. 1076 */ 1077 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1078 { 1079 req->ctx = ctx; 1080 req->link = NULL; 1081 req->async_data = NULL; 1082 /* not necessary, but safer to zero */ 1083 memset(&req->cqe, 0, sizeof(req->cqe)); 1084 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 1085 } 1086 1087 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1088 struct io_submit_state *state) 1089 { 1090 spin_lock(&ctx->completion_lock); 1091 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1092 ctx->locked_free_nr = 0; 1093 spin_unlock(&ctx->completion_lock); 1094 } 1095 1096 /* 1097 * A request might get retired back into the request caches even before opcode 1098 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1099 * Because of that, io_alloc_req() should be called only under ->uring_lock 1100 * and with extra caution to not get a request that is still worked on. 1101 */ 1102 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1103 __must_hold(&ctx->uring_lock) 1104 { 1105 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1106 void *reqs[IO_REQ_ALLOC_BATCH]; 1107 int ret, i; 1108 1109 /* 1110 * If we have more than a batch's worth of requests in our IRQ side 1111 * locked cache, grab the lock and move them over to our submission 1112 * side cache. 1113 */ 1114 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1115 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1116 if (!io_req_cache_empty(ctx)) 1117 return true; 1118 } 1119 1120 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1121 1122 /* 1123 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1124 * retry single alloc to be on the safe side. 1125 */ 1126 if (unlikely(ret <= 0)) { 1127 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1128 if (!reqs[0]) 1129 return false; 1130 ret = 1; 1131 } 1132 1133 percpu_ref_get_many(&ctx->refs, ret); 1134 for (i = 0; i < ret; i++) { 1135 struct io_kiocb *req = reqs[i]; 1136 1137 io_preinit_req(req, ctx); 1138 io_req_add_to_cache(req, ctx); 1139 } 1140 return true; 1141 } 1142 1143 __cold void io_free_req(struct io_kiocb *req) 1144 { 1145 /* refs were already put, restore them for io_req_task_complete() */ 1146 req->flags &= ~REQ_F_REFCOUNT; 1147 /* we only want to free it, don't post CQEs */ 1148 req->flags |= REQ_F_CQE_SKIP; 1149 req->io_task_work.func = io_req_task_complete; 1150 io_req_task_work_add(req); 1151 } 1152 1153 static void __io_req_find_next_prep(struct io_kiocb *req) 1154 { 1155 struct io_ring_ctx *ctx = req->ctx; 1156 1157 spin_lock(&ctx->completion_lock); 1158 io_disarm_next(req); 1159 spin_unlock(&ctx->completion_lock); 1160 } 1161 1162 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1163 { 1164 struct io_kiocb *nxt; 1165 1166 /* 1167 * If LINK is set, we have dependent requests in this chain. If we 1168 * didn't fail this request, queue the first one up, moving any other 1169 * dependencies to the next request. In case of failure, fail the rest 1170 * of the chain. 1171 */ 1172 if (unlikely(req->flags & IO_DISARM_MASK)) 1173 __io_req_find_next_prep(req); 1174 nxt = req->link; 1175 req->link = NULL; 1176 return nxt; 1177 } 1178 1179 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1180 { 1181 if (!ctx) 1182 return; 1183 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1184 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1185 if (ts->locked) { 1186 io_submit_flush_completions(ctx); 1187 mutex_unlock(&ctx->uring_lock); 1188 ts->locked = false; 1189 } 1190 percpu_ref_put(&ctx->refs); 1191 } 1192 1193 static unsigned int handle_tw_list(struct llist_node *node, 1194 struct io_ring_ctx **ctx, 1195 struct io_tw_state *ts) 1196 { 1197 unsigned int count = 0; 1198 1199 do { 1200 struct llist_node *next = node->next; 1201 struct io_kiocb *req = container_of(node, struct io_kiocb, 1202 io_task_work.node); 1203 1204 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1205 1206 if (req->ctx != *ctx) { 1207 ctx_flush_and_put(*ctx, ts); 1208 *ctx = req->ctx; 1209 /* if not contended, grab and improve batching */ 1210 ts->locked = mutex_trylock(&(*ctx)->uring_lock); 1211 percpu_ref_get(&(*ctx)->refs); 1212 } 1213 INDIRECT_CALL_2(req->io_task_work.func, 1214 io_poll_task_func, io_req_rw_complete, 1215 req, ts); 1216 node = next; 1217 count++; 1218 if (unlikely(need_resched())) { 1219 ctx_flush_and_put(*ctx, ts); 1220 *ctx = NULL; 1221 cond_resched(); 1222 } 1223 } while (node); 1224 1225 return count; 1226 } 1227 1228 /** 1229 * io_llist_xchg - swap all entries in a lock-less list 1230 * @head: the head of lock-less list to delete all entries 1231 * @new: new entry as the head of the list 1232 * 1233 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1234 * The order of entries returned is from the newest to the oldest added one. 1235 */ 1236 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1237 struct llist_node *new) 1238 { 1239 return xchg(&head->first, new); 1240 } 1241 1242 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1243 { 1244 struct llist_node *node = llist_del_all(&tctx->task_list); 1245 struct io_ring_ctx *last_ctx = NULL; 1246 struct io_kiocb *req; 1247 1248 while (node) { 1249 req = container_of(node, struct io_kiocb, io_task_work.node); 1250 node = node->next; 1251 if (sync && last_ctx != req->ctx) { 1252 if (last_ctx) { 1253 flush_delayed_work(&last_ctx->fallback_work); 1254 percpu_ref_put(&last_ctx->refs); 1255 } 1256 last_ctx = req->ctx; 1257 percpu_ref_get(&last_ctx->refs); 1258 } 1259 if (llist_add(&req->io_task_work.node, 1260 &req->ctx->fallback_llist)) 1261 schedule_delayed_work(&req->ctx->fallback_work, 1); 1262 } 1263 1264 if (last_ctx) { 1265 flush_delayed_work(&last_ctx->fallback_work); 1266 percpu_ref_put(&last_ctx->refs); 1267 } 1268 } 1269 1270 void tctx_task_work(struct callback_head *cb) 1271 { 1272 struct io_tw_state ts = {}; 1273 struct io_ring_ctx *ctx = NULL; 1274 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1275 task_work); 1276 struct llist_node *node; 1277 unsigned int count = 0; 1278 1279 if (unlikely(current->flags & PF_EXITING)) { 1280 io_fallback_tw(tctx, true); 1281 return; 1282 } 1283 1284 node = llist_del_all(&tctx->task_list); 1285 if (node) 1286 count = handle_tw_list(node, &ctx, &ts); 1287 1288 ctx_flush_and_put(ctx, &ts); 1289 1290 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1291 if (unlikely(atomic_read(&tctx->in_cancel))) 1292 io_uring_drop_tctx_refs(current); 1293 1294 trace_io_uring_task_work_run(tctx, count, 1); 1295 } 1296 1297 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1298 { 1299 struct io_ring_ctx *ctx = req->ctx; 1300 unsigned nr_wait, nr_tw, nr_tw_prev; 1301 struct llist_node *first; 1302 1303 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1304 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1305 1306 first = READ_ONCE(ctx->work_llist.first); 1307 do { 1308 nr_tw_prev = 0; 1309 if (first) { 1310 struct io_kiocb *first_req = container_of(first, 1311 struct io_kiocb, 1312 io_task_work.node); 1313 /* 1314 * Might be executed at any moment, rely on 1315 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1316 */ 1317 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1318 } 1319 nr_tw = nr_tw_prev + 1; 1320 /* Large enough to fail the nr_wait comparison below */ 1321 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1322 nr_tw = INT_MAX; 1323 1324 req->nr_tw = nr_tw; 1325 req->io_task_work.node.next = first; 1326 } while (!try_cmpxchg(&ctx->work_llist.first, &first, 1327 &req->io_task_work.node)); 1328 1329 if (!first) { 1330 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1331 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1332 if (ctx->has_evfd) 1333 io_eventfd_signal(ctx); 1334 } 1335 1336 nr_wait = atomic_read(&ctx->cq_wait_nr); 1337 /* no one is waiting */ 1338 if (!nr_wait) 1339 return; 1340 /* either not enough or the previous add has already woken it up */ 1341 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait) 1342 return; 1343 /* pairs with set_current_state() in io_cqring_wait() */ 1344 smp_mb__after_atomic(); 1345 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1346 } 1347 1348 static void io_req_normal_work_add(struct io_kiocb *req) 1349 { 1350 struct io_uring_task *tctx = req->task->io_uring; 1351 struct io_ring_ctx *ctx = req->ctx; 1352 1353 /* task_work already pending, we're done */ 1354 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1355 return; 1356 1357 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1358 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1359 1360 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1361 return; 1362 1363 io_fallback_tw(tctx, false); 1364 } 1365 1366 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1367 { 1368 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1369 rcu_read_lock(); 1370 io_req_local_work_add(req, flags); 1371 rcu_read_unlock(); 1372 } else { 1373 io_req_normal_work_add(req); 1374 } 1375 } 1376 1377 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1378 { 1379 struct llist_node *node; 1380 1381 node = llist_del_all(&ctx->work_llist); 1382 while (node) { 1383 struct io_kiocb *req = container_of(node, struct io_kiocb, 1384 io_task_work.node); 1385 1386 node = node->next; 1387 io_req_normal_work_add(req); 1388 } 1389 } 1390 1391 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events, 1392 int min_events) 1393 { 1394 if (llist_empty(&ctx->work_llist)) 1395 return false; 1396 if (events < min_events) 1397 return true; 1398 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1399 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1400 return false; 1401 } 1402 1403 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts, 1404 int min_events) 1405 { 1406 struct llist_node *node; 1407 unsigned int loops = 0; 1408 int ret = 0; 1409 1410 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1411 return -EEXIST; 1412 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1413 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1414 again: 1415 /* 1416 * llists are in reverse order, flip it back the right way before 1417 * running the pending items. 1418 */ 1419 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1420 while (node) { 1421 struct llist_node *next = node->next; 1422 struct io_kiocb *req = container_of(node, struct io_kiocb, 1423 io_task_work.node); 1424 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1425 INDIRECT_CALL_2(req->io_task_work.func, 1426 io_poll_task_func, io_req_rw_complete, 1427 req, ts); 1428 ret++; 1429 node = next; 1430 } 1431 loops++; 1432 1433 if (io_run_local_work_continue(ctx, ret, min_events)) 1434 goto again; 1435 if (ts->locked) { 1436 io_submit_flush_completions(ctx); 1437 if (io_run_local_work_continue(ctx, ret, min_events)) 1438 goto again; 1439 } 1440 1441 trace_io_uring_local_work_run(ctx, ret, loops); 1442 return ret; 1443 } 1444 1445 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx, 1446 int min_events) 1447 { 1448 struct io_tw_state ts = { .locked = true, }; 1449 int ret; 1450 1451 if (llist_empty(&ctx->work_llist)) 1452 return 0; 1453 1454 ret = __io_run_local_work(ctx, &ts, min_events); 1455 /* shouldn't happen! */ 1456 if (WARN_ON_ONCE(!ts.locked)) 1457 mutex_lock(&ctx->uring_lock); 1458 return ret; 1459 } 1460 1461 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events) 1462 { 1463 struct io_tw_state ts = {}; 1464 int ret; 1465 1466 ts.locked = mutex_trylock(&ctx->uring_lock); 1467 ret = __io_run_local_work(ctx, &ts, min_events); 1468 if (ts.locked) 1469 mutex_unlock(&ctx->uring_lock); 1470 1471 return ret; 1472 } 1473 1474 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1475 { 1476 io_tw_lock(req->ctx, ts); 1477 io_req_defer_failed(req, req->cqe.res); 1478 } 1479 1480 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1481 { 1482 io_tw_lock(req->ctx, ts); 1483 /* req->task == current here, checking PF_EXITING is safe */ 1484 if (unlikely(req->task->flags & PF_EXITING)) 1485 io_req_defer_failed(req, -EFAULT); 1486 else if (req->flags & REQ_F_FORCE_ASYNC) 1487 io_queue_iowq(req); 1488 else 1489 io_queue_sqe(req); 1490 } 1491 1492 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1493 { 1494 io_req_set_res(req, ret, 0); 1495 req->io_task_work.func = io_req_task_cancel; 1496 io_req_task_work_add(req); 1497 } 1498 1499 void io_req_task_queue(struct io_kiocb *req) 1500 { 1501 req->io_task_work.func = io_req_task_submit; 1502 io_req_task_work_add(req); 1503 } 1504 1505 void io_queue_next(struct io_kiocb *req) 1506 { 1507 struct io_kiocb *nxt = io_req_find_next(req); 1508 1509 if (nxt) 1510 io_req_task_queue(nxt); 1511 } 1512 1513 static void io_free_batch_list(struct io_ring_ctx *ctx, 1514 struct io_wq_work_node *node) 1515 __must_hold(&ctx->uring_lock) 1516 { 1517 do { 1518 struct io_kiocb *req = container_of(node, struct io_kiocb, 1519 comp_list); 1520 1521 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1522 if (req->flags & REQ_F_REFCOUNT) { 1523 node = req->comp_list.next; 1524 if (!req_ref_put_and_test(req)) 1525 continue; 1526 } 1527 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1528 struct async_poll *apoll = req->apoll; 1529 1530 if (apoll->double_poll) 1531 kfree(apoll->double_poll); 1532 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1533 kfree(apoll); 1534 req->flags &= ~REQ_F_POLLED; 1535 } 1536 if (req->flags & IO_REQ_LINK_FLAGS) 1537 io_queue_next(req); 1538 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1539 io_clean_op(req); 1540 } 1541 io_put_file(req); 1542 1543 io_req_put_rsrc_locked(req, ctx); 1544 1545 io_put_task(req->task); 1546 node = req->comp_list.next; 1547 io_req_add_to_cache(req, ctx); 1548 } while (node); 1549 } 1550 1551 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1552 __must_hold(&ctx->uring_lock) 1553 { 1554 struct io_submit_state *state = &ctx->submit_state; 1555 struct io_wq_work_node *node; 1556 1557 __io_cq_lock(ctx); 1558 /* must come first to preserve CQE ordering in failure cases */ 1559 if (state->cqes_count) 1560 __io_flush_post_cqes(ctx); 1561 __wq_list_for_each(node, &state->compl_reqs) { 1562 struct io_kiocb *req = container_of(node, struct io_kiocb, 1563 comp_list); 1564 1565 if (!(req->flags & REQ_F_CQE_SKIP) && 1566 unlikely(!io_fill_cqe_req(ctx, req))) { 1567 if (ctx->lockless_cq) { 1568 spin_lock(&ctx->completion_lock); 1569 io_req_cqe_overflow(req); 1570 spin_unlock(&ctx->completion_lock); 1571 } else { 1572 io_req_cqe_overflow(req); 1573 } 1574 } 1575 } 1576 __io_cq_unlock_post(ctx); 1577 1578 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1579 io_free_batch_list(ctx, state->compl_reqs.first); 1580 INIT_WQ_LIST(&state->compl_reqs); 1581 } 1582 } 1583 1584 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1585 { 1586 /* See comment at the top of this file */ 1587 smp_rmb(); 1588 return __io_cqring_events(ctx); 1589 } 1590 1591 /* 1592 * We can't just wait for polled events to come to us, we have to actively 1593 * find and complete them. 1594 */ 1595 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1596 { 1597 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1598 return; 1599 1600 mutex_lock(&ctx->uring_lock); 1601 while (!wq_list_empty(&ctx->iopoll_list)) { 1602 /* let it sleep and repeat later if can't complete a request */ 1603 if (io_do_iopoll(ctx, true) == 0) 1604 break; 1605 /* 1606 * Ensure we allow local-to-the-cpu processing to take place, 1607 * in this case we need to ensure that we reap all events. 1608 * Also let task_work, etc. to progress by releasing the mutex 1609 */ 1610 if (need_resched()) { 1611 mutex_unlock(&ctx->uring_lock); 1612 cond_resched(); 1613 mutex_lock(&ctx->uring_lock); 1614 } 1615 } 1616 mutex_unlock(&ctx->uring_lock); 1617 } 1618 1619 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1620 { 1621 unsigned int nr_events = 0; 1622 unsigned long check_cq; 1623 1624 lockdep_assert_held(&ctx->uring_lock); 1625 1626 if (!io_allowed_run_tw(ctx)) 1627 return -EEXIST; 1628 1629 check_cq = READ_ONCE(ctx->check_cq); 1630 if (unlikely(check_cq)) { 1631 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1632 __io_cqring_overflow_flush(ctx); 1633 /* 1634 * Similarly do not spin if we have not informed the user of any 1635 * dropped CQE. 1636 */ 1637 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1638 return -EBADR; 1639 } 1640 /* 1641 * Don't enter poll loop if we already have events pending. 1642 * If we do, we can potentially be spinning for commands that 1643 * already triggered a CQE (eg in error). 1644 */ 1645 if (io_cqring_events(ctx)) 1646 return 0; 1647 1648 do { 1649 int ret = 0; 1650 1651 /* 1652 * If a submit got punted to a workqueue, we can have the 1653 * application entering polling for a command before it gets 1654 * issued. That app will hold the uring_lock for the duration 1655 * of the poll right here, so we need to take a breather every 1656 * now and then to ensure that the issue has a chance to add 1657 * the poll to the issued list. Otherwise we can spin here 1658 * forever, while the workqueue is stuck trying to acquire the 1659 * very same mutex. 1660 */ 1661 if (wq_list_empty(&ctx->iopoll_list) || 1662 io_task_work_pending(ctx)) { 1663 u32 tail = ctx->cached_cq_tail; 1664 1665 (void) io_run_local_work_locked(ctx, min); 1666 1667 if (task_work_pending(current) || 1668 wq_list_empty(&ctx->iopoll_list)) { 1669 mutex_unlock(&ctx->uring_lock); 1670 io_run_task_work(); 1671 mutex_lock(&ctx->uring_lock); 1672 } 1673 /* some requests don't go through iopoll_list */ 1674 if (tail != ctx->cached_cq_tail || 1675 wq_list_empty(&ctx->iopoll_list)) 1676 break; 1677 } 1678 ret = io_do_iopoll(ctx, !min); 1679 if (unlikely(ret < 0)) 1680 return ret; 1681 1682 if (task_sigpending(current)) 1683 return -EINTR; 1684 if (need_resched()) 1685 break; 1686 1687 nr_events += ret; 1688 } while (nr_events < min); 1689 1690 return 0; 1691 } 1692 1693 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1694 { 1695 if (ts->locked) 1696 io_req_complete_defer(req); 1697 else 1698 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1699 } 1700 1701 /* 1702 * After the iocb has been issued, it's safe to be found on the poll list. 1703 * Adding the kiocb to the list AFTER submission ensures that we don't 1704 * find it from a io_do_iopoll() thread before the issuer is done 1705 * accessing the kiocb cookie. 1706 */ 1707 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1708 { 1709 struct io_ring_ctx *ctx = req->ctx; 1710 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1711 1712 /* workqueue context doesn't hold uring_lock, grab it now */ 1713 if (unlikely(needs_lock)) 1714 mutex_lock(&ctx->uring_lock); 1715 1716 /* 1717 * Track whether we have multiple files in our lists. This will impact 1718 * how we do polling eventually, not spinning if we're on potentially 1719 * different devices. 1720 */ 1721 if (wq_list_empty(&ctx->iopoll_list)) { 1722 ctx->poll_multi_queue = false; 1723 } else if (!ctx->poll_multi_queue) { 1724 struct io_kiocb *list_req; 1725 1726 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1727 comp_list); 1728 if (list_req->file != req->file) 1729 ctx->poll_multi_queue = true; 1730 } 1731 1732 /* 1733 * For fast devices, IO may have already completed. If it has, add 1734 * it to the front so we find it first. 1735 */ 1736 if (READ_ONCE(req->iopoll_completed)) 1737 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1738 else 1739 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1740 1741 if (unlikely(needs_lock)) { 1742 /* 1743 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1744 * in sq thread task context or in io worker task context. If 1745 * current task context is sq thread, we don't need to check 1746 * whether should wake up sq thread. 1747 */ 1748 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1749 wq_has_sleeper(&ctx->sq_data->wait)) 1750 wake_up(&ctx->sq_data->wait); 1751 1752 mutex_unlock(&ctx->uring_lock); 1753 } 1754 } 1755 1756 unsigned int io_file_get_flags(struct file *file) 1757 { 1758 unsigned int res = 0; 1759 1760 if (S_ISREG(file_inode(file)->i_mode)) 1761 res |= REQ_F_ISREG; 1762 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1763 res |= REQ_F_SUPPORT_NOWAIT; 1764 return res; 1765 } 1766 1767 bool io_alloc_async_data(struct io_kiocb *req) 1768 { 1769 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1770 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1771 if (req->async_data) { 1772 req->flags |= REQ_F_ASYNC_DATA; 1773 return false; 1774 } 1775 return true; 1776 } 1777 1778 int io_req_prep_async(struct io_kiocb *req) 1779 { 1780 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1781 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1782 1783 /* assign early for deferred execution for non-fixed file */ 1784 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1785 req->file = io_file_get_normal(req, req->cqe.fd); 1786 if (!cdef->prep_async) 1787 return 0; 1788 if (WARN_ON_ONCE(req_has_async_data(req))) 1789 return -EFAULT; 1790 if (!def->manual_alloc) { 1791 if (io_alloc_async_data(req)) 1792 return -EAGAIN; 1793 } 1794 return cdef->prep_async(req); 1795 } 1796 1797 static u32 io_get_sequence(struct io_kiocb *req) 1798 { 1799 u32 seq = req->ctx->cached_sq_head; 1800 struct io_kiocb *cur; 1801 1802 /* need original cached_sq_head, but it was increased for each req */ 1803 io_for_each_link(cur, req) 1804 seq--; 1805 return seq; 1806 } 1807 1808 static __cold void io_drain_req(struct io_kiocb *req) 1809 __must_hold(&ctx->uring_lock) 1810 { 1811 struct io_ring_ctx *ctx = req->ctx; 1812 struct io_defer_entry *de; 1813 int ret; 1814 u32 seq = io_get_sequence(req); 1815 1816 /* Still need defer if there is pending req in defer list. */ 1817 spin_lock(&ctx->completion_lock); 1818 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1819 spin_unlock(&ctx->completion_lock); 1820 queue: 1821 ctx->drain_active = false; 1822 io_req_task_queue(req); 1823 return; 1824 } 1825 spin_unlock(&ctx->completion_lock); 1826 1827 io_prep_async_link(req); 1828 de = kmalloc(sizeof(*de), GFP_KERNEL); 1829 if (!de) { 1830 ret = -ENOMEM; 1831 io_req_defer_failed(req, ret); 1832 return; 1833 } 1834 1835 spin_lock(&ctx->completion_lock); 1836 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1837 spin_unlock(&ctx->completion_lock); 1838 kfree(de); 1839 goto queue; 1840 } 1841 1842 trace_io_uring_defer(req); 1843 de->req = req; 1844 de->seq = seq; 1845 list_add_tail(&de->list, &ctx->defer_list); 1846 spin_unlock(&ctx->completion_lock); 1847 } 1848 1849 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1850 unsigned int issue_flags) 1851 { 1852 if (req->file || !def->needs_file) 1853 return true; 1854 1855 if (req->flags & REQ_F_FIXED_FILE) 1856 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1857 else 1858 req->file = io_file_get_normal(req, req->cqe.fd); 1859 1860 return !!req->file; 1861 } 1862 1863 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1864 { 1865 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1866 const struct cred *creds = NULL; 1867 int ret; 1868 1869 if (unlikely(!io_assign_file(req, def, issue_flags))) 1870 return -EBADF; 1871 1872 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1873 creds = override_creds(req->creds); 1874 1875 if (!def->audit_skip) 1876 audit_uring_entry(req->opcode); 1877 1878 ret = def->issue(req, issue_flags); 1879 1880 if (!def->audit_skip) 1881 audit_uring_exit(!ret, ret); 1882 1883 if (creds) 1884 revert_creds(creds); 1885 1886 if (ret == IOU_OK) { 1887 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1888 io_req_complete_defer(req); 1889 else 1890 io_req_complete_post(req, issue_flags); 1891 1892 return 0; 1893 } 1894 1895 if (ret != IOU_ISSUE_SKIP_COMPLETE) 1896 return ret; 1897 1898 /* If the op doesn't have a file, we're not polling for it */ 1899 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1900 io_iopoll_req_issued(req, issue_flags); 1901 1902 return 0; 1903 } 1904 1905 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1906 { 1907 io_tw_lock(req->ctx, ts); 1908 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1909 IO_URING_F_COMPLETE_DEFER); 1910 } 1911 1912 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1913 { 1914 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1915 struct io_kiocb *nxt = NULL; 1916 1917 if (req_ref_put_and_test(req)) { 1918 if (req->flags & IO_REQ_LINK_FLAGS) 1919 nxt = io_req_find_next(req); 1920 io_free_req(req); 1921 } 1922 return nxt ? &nxt->work : NULL; 1923 } 1924 1925 void io_wq_submit_work(struct io_wq_work *work) 1926 { 1927 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1928 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1929 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1930 bool needs_poll = false; 1931 int ret = 0, err = -ECANCELED; 1932 1933 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1934 if (!(req->flags & REQ_F_REFCOUNT)) 1935 __io_req_set_refcount(req, 2); 1936 else 1937 req_ref_get(req); 1938 1939 io_arm_ltimeout(req); 1940 1941 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1942 if (work->flags & IO_WQ_WORK_CANCEL) { 1943 fail: 1944 io_req_task_queue_fail(req, err); 1945 return; 1946 } 1947 if (!io_assign_file(req, def, issue_flags)) { 1948 err = -EBADF; 1949 work->flags |= IO_WQ_WORK_CANCEL; 1950 goto fail; 1951 } 1952 1953 if (req->flags & REQ_F_FORCE_ASYNC) { 1954 bool opcode_poll = def->pollin || def->pollout; 1955 1956 if (opcode_poll && file_can_poll(req->file)) { 1957 needs_poll = true; 1958 issue_flags |= IO_URING_F_NONBLOCK; 1959 } 1960 } 1961 1962 do { 1963 ret = io_issue_sqe(req, issue_flags); 1964 if (ret != -EAGAIN) 1965 break; 1966 1967 /* 1968 * If REQ_F_NOWAIT is set, then don't wait or retry with 1969 * poll. -EAGAIN is final for that case. 1970 */ 1971 if (req->flags & REQ_F_NOWAIT) 1972 break; 1973 1974 /* 1975 * We can get EAGAIN for iopolled IO even though we're 1976 * forcing a sync submission from here, since we can't 1977 * wait for request slots on the block side. 1978 */ 1979 if (!needs_poll) { 1980 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1981 break; 1982 if (io_wq_worker_stopped()) 1983 break; 1984 cond_resched(); 1985 continue; 1986 } 1987 1988 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1989 return; 1990 /* aborted or ready, in either case retry blocking */ 1991 needs_poll = false; 1992 issue_flags &= ~IO_URING_F_NONBLOCK; 1993 } while (1); 1994 1995 /* avoid locking problems by failing it from a clean context */ 1996 if (ret < 0) 1997 io_req_task_queue_fail(req, ret); 1998 } 1999 2000 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 2001 unsigned int issue_flags) 2002 { 2003 struct io_ring_ctx *ctx = req->ctx; 2004 struct io_fixed_file *slot; 2005 struct file *file = NULL; 2006 2007 io_ring_submit_lock(ctx, issue_flags); 2008 2009 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 2010 goto out; 2011 fd = array_index_nospec(fd, ctx->nr_user_files); 2012 slot = io_fixed_file_slot(&ctx->file_table, fd); 2013 file = io_slot_file(slot); 2014 req->flags |= io_slot_flags(slot); 2015 io_req_set_rsrc_node(req, ctx, 0); 2016 out: 2017 io_ring_submit_unlock(ctx, issue_flags); 2018 return file; 2019 } 2020 2021 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 2022 { 2023 struct file *file = fget(fd); 2024 2025 trace_io_uring_file_get(req, fd); 2026 2027 /* we don't allow fixed io_uring files */ 2028 if (file && io_is_uring_fops(file)) 2029 io_req_track_inflight(req); 2030 return file; 2031 } 2032 2033 static void io_queue_async(struct io_kiocb *req, int ret) 2034 __must_hold(&req->ctx->uring_lock) 2035 { 2036 struct io_kiocb *linked_timeout; 2037 2038 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2039 io_req_defer_failed(req, ret); 2040 return; 2041 } 2042 2043 linked_timeout = io_prep_linked_timeout(req); 2044 2045 switch (io_arm_poll_handler(req, 0)) { 2046 case IO_APOLL_READY: 2047 io_kbuf_recycle(req, 0); 2048 io_req_task_queue(req); 2049 break; 2050 case IO_APOLL_ABORTED: 2051 io_kbuf_recycle(req, 0); 2052 io_queue_iowq(req); 2053 break; 2054 case IO_APOLL_OK: 2055 break; 2056 } 2057 2058 if (linked_timeout) 2059 io_queue_linked_timeout(linked_timeout); 2060 } 2061 2062 static inline void io_queue_sqe(struct io_kiocb *req) 2063 __must_hold(&req->ctx->uring_lock) 2064 { 2065 int ret; 2066 2067 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2068 2069 /* 2070 * We async punt it if the file wasn't marked NOWAIT, or if the file 2071 * doesn't support non-blocking read/write attempts 2072 */ 2073 if (likely(!ret)) 2074 io_arm_ltimeout(req); 2075 else 2076 io_queue_async(req, ret); 2077 } 2078 2079 static void io_queue_sqe_fallback(struct io_kiocb *req) 2080 __must_hold(&req->ctx->uring_lock) 2081 { 2082 if (unlikely(req->flags & REQ_F_FAIL)) { 2083 /* 2084 * We don't submit, fail them all, for that replace hardlinks 2085 * with normal links. Extra REQ_F_LINK is tolerated. 2086 */ 2087 req->flags &= ~REQ_F_HARDLINK; 2088 req->flags |= REQ_F_LINK; 2089 io_req_defer_failed(req, req->cqe.res); 2090 } else { 2091 int ret = io_req_prep_async(req); 2092 2093 if (unlikely(ret)) { 2094 io_req_defer_failed(req, ret); 2095 return; 2096 } 2097 2098 if (unlikely(req->ctx->drain_active)) 2099 io_drain_req(req); 2100 else 2101 io_queue_iowq(req); 2102 } 2103 } 2104 2105 /* 2106 * Check SQE restrictions (opcode and flags). 2107 * 2108 * Returns 'true' if SQE is allowed, 'false' otherwise. 2109 */ 2110 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2111 struct io_kiocb *req, 2112 unsigned int sqe_flags) 2113 { 2114 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2115 return false; 2116 2117 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2118 ctx->restrictions.sqe_flags_required) 2119 return false; 2120 2121 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2122 ctx->restrictions.sqe_flags_required)) 2123 return false; 2124 2125 return true; 2126 } 2127 2128 static void io_init_req_drain(struct io_kiocb *req) 2129 { 2130 struct io_ring_ctx *ctx = req->ctx; 2131 struct io_kiocb *head = ctx->submit_state.link.head; 2132 2133 ctx->drain_active = true; 2134 if (head) { 2135 /* 2136 * If we need to drain a request in the middle of a link, drain 2137 * the head request and the next request/link after the current 2138 * link. Considering sequential execution of links, 2139 * REQ_F_IO_DRAIN will be maintained for every request of our 2140 * link. 2141 */ 2142 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2143 ctx->drain_next = true; 2144 } 2145 } 2146 2147 static __cold int io_init_fail_req(struct io_kiocb *req, int err) 2148 { 2149 /* ensure per-opcode data is cleared if we fail before prep */ 2150 memset(&req->cmd.data, 0, sizeof(req->cmd.data)); 2151 return err; 2152 } 2153 2154 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2155 const struct io_uring_sqe *sqe) 2156 __must_hold(&ctx->uring_lock) 2157 { 2158 const struct io_issue_def *def; 2159 unsigned int sqe_flags; 2160 int personality; 2161 u8 opcode; 2162 2163 /* req is partially pre-initialised, see io_preinit_req() */ 2164 req->opcode = opcode = READ_ONCE(sqe->opcode); 2165 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2166 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2167 req->cqe.user_data = READ_ONCE(sqe->user_data); 2168 req->file = NULL; 2169 req->rsrc_node = NULL; 2170 req->task = current; 2171 2172 if (unlikely(opcode >= IORING_OP_LAST)) { 2173 req->opcode = 0; 2174 return io_init_fail_req(req, -EINVAL); 2175 } 2176 def = &io_issue_defs[opcode]; 2177 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2178 /* enforce forwards compatibility on users */ 2179 if (sqe_flags & ~SQE_VALID_FLAGS) 2180 return io_init_fail_req(req, -EINVAL); 2181 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2182 if (!def->buffer_select) 2183 return io_init_fail_req(req, -EOPNOTSUPP); 2184 req->buf_index = READ_ONCE(sqe->buf_group); 2185 } 2186 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2187 ctx->drain_disabled = true; 2188 if (sqe_flags & IOSQE_IO_DRAIN) { 2189 if (ctx->drain_disabled) 2190 return io_init_fail_req(req, -EOPNOTSUPP); 2191 io_init_req_drain(req); 2192 } 2193 } 2194 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2195 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2196 return io_init_fail_req(req, -EACCES); 2197 /* knock it to the slow queue path, will be drained there */ 2198 if (ctx->drain_active) 2199 req->flags |= REQ_F_FORCE_ASYNC; 2200 /* if there is no link, we're at "next" request and need to drain */ 2201 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2202 ctx->drain_next = false; 2203 ctx->drain_active = true; 2204 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2205 } 2206 } 2207 2208 if (!def->ioprio && sqe->ioprio) 2209 return io_init_fail_req(req, -EINVAL); 2210 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2211 return io_init_fail_req(req, -EINVAL); 2212 2213 if (def->needs_file) { 2214 struct io_submit_state *state = &ctx->submit_state; 2215 2216 req->cqe.fd = READ_ONCE(sqe->fd); 2217 2218 /* 2219 * Plug now if we have more than 2 IO left after this, and the 2220 * target is potentially a read/write to block based storage. 2221 */ 2222 if (state->need_plug && def->plug) { 2223 state->plug_started = true; 2224 state->need_plug = false; 2225 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2226 } 2227 } 2228 2229 personality = READ_ONCE(sqe->personality); 2230 if (personality) { 2231 int ret; 2232 2233 req->creds = xa_load(&ctx->personalities, personality); 2234 if (!req->creds) 2235 return io_init_fail_req(req, -EINVAL); 2236 get_cred(req->creds); 2237 ret = security_uring_override_creds(req->creds); 2238 if (ret) { 2239 put_cred(req->creds); 2240 return io_init_fail_req(req, ret); 2241 } 2242 req->flags |= REQ_F_CREDS; 2243 } 2244 2245 return def->prep(req, sqe); 2246 } 2247 2248 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2249 struct io_kiocb *req, int ret) 2250 { 2251 struct io_ring_ctx *ctx = req->ctx; 2252 struct io_submit_link *link = &ctx->submit_state.link; 2253 struct io_kiocb *head = link->head; 2254 2255 trace_io_uring_req_failed(sqe, req, ret); 2256 2257 /* 2258 * Avoid breaking links in the middle as it renders links with SQPOLL 2259 * unusable. Instead of failing eagerly, continue assembling the link if 2260 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2261 * should find the flag and handle the rest. 2262 */ 2263 req_fail_link_node(req, ret); 2264 if (head && !(head->flags & REQ_F_FAIL)) 2265 req_fail_link_node(head, -ECANCELED); 2266 2267 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2268 if (head) { 2269 link->last->link = req; 2270 link->head = NULL; 2271 req = head; 2272 } 2273 io_queue_sqe_fallback(req); 2274 return ret; 2275 } 2276 2277 if (head) 2278 link->last->link = req; 2279 else 2280 link->head = req; 2281 link->last = req; 2282 return 0; 2283 } 2284 2285 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2286 const struct io_uring_sqe *sqe) 2287 __must_hold(&ctx->uring_lock) 2288 { 2289 struct io_submit_link *link = &ctx->submit_state.link; 2290 int ret; 2291 2292 ret = io_init_req(ctx, req, sqe); 2293 if (unlikely(ret)) 2294 return io_submit_fail_init(sqe, req, ret); 2295 2296 trace_io_uring_submit_req(req); 2297 2298 /* 2299 * If we already have a head request, queue this one for async 2300 * submittal once the head completes. If we don't have a head but 2301 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2302 * submitted sync once the chain is complete. If none of those 2303 * conditions are true (normal request), then just queue it. 2304 */ 2305 if (unlikely(link->head)) { 2306 ret = io_req_prep_async(req); 2307 if (unlikely(ret)) 2308 return io_submit_fail_init(sqe, req, ret); 2309 2310 trace_io_uring_link(req, link->head); 2311 link->last->link = req; 2312 link->last = req; 2313 2314 if (req->flags & IO_REQ_LINK_FLAGS) 2315 return 0; 2316 /* last request of the link, flush it */ 2317 req = link->head; 2318 link->head = NULL; 2319 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2320 goto fallback; 2321 2322 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2323 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2324 if (req->flags & IO_REQ_LINK_FLAGS) { 2325 link->head = req; 2326 link->last = req; 2327 } else { 2328 fallback: 2329 io_queue_sqe_fallback(req); 2330 } 2331 return 0; 2332 } 2333 2334 io_queue_sqe(req); 2335 return 0; 2336 } 2337 2338 /* 2339 * Batched submission is done, ensure local IO is flushed out. 2340 */ 2341 static void io_submit_state_end(struct io_ring_ctx *ctx) 2342 { 2343 struct io_submit_state *state = &ctx->submit_state; 2344 2345 if (unlikely(state->link.head)) 2346 io_queue_sqe_fallback(state->link.head); 2347 /* flush only after queuing links as they can generate completions */ 2348 io_submit_flush_completions(ctx); 2349 if (state->plug_started) 2350 blk_finish_plug(&state->plug); 2351 } 2352 2353 /* 2354 * Start submission side cache. 2355 */ 2356 static void io_submit_state_start(struct io_submit_state *state, 2357 unsigned int max_ios) 2358 { 2359 state->plug_started = false; 2360 state->need_plug = max_ios > 2; 2361 state->submit_nr = max_ios; 2362 /* set only head, no need to init link_last in advance */ 2363 state->link.head = NULL; 2364 } 2365 2366 static void io_commit_sqring(struct io_ring_ctx *ctx) 2367 { 2368 struct io_rings *rings = ctx->rings; 2369 2370 /* 2371 * Ensure any loads from the SQEs are done at this point, 2372 * since once we write the new head, the application could 2373 * write new data to them. 2374 */ 2375 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2376 } 2377 2378 /* 2379 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2380 * that is mapped by userspace. This means that care needs to be taken to 2381 * ensure that reads are stable, as we cannot rely on userspace always 2382 * being a good citizen. If members of the sqe are validated and then later 2383 * used, it's important that those reads are done through READ_ONCE() to 2384 * prevent a re-load down the line. 2385 */ 2386 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2387 { 2388 unsigned mask = ctx->sq_entries - 1; 2389 unsigned head = ctx->cached_sq_head++ & mask; 2390 2391 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) { 2392 head = READ_ONCE(ctx->sq_array[head]); 2393 if (unlikely(head >= ctx->sq_entries)) { 2394 /* drop invalid entries */ 2395 spin_lock(&ctx->completion_lock); 2396 ctx->cq_extra--; 2397 spin_unlock(&ctx->completion_lock); 2398 WRITE_ONCE(ctx->rings->sq_dropped, 2399 READ_ONCE(ctx->rings->sq_dropped) + 1); 2400 return false; 2401 } 2402 } 2403 2404 /* 2405 * The cached sq head (or cq tail) serves two purposes: 2406 * 2407 * 1) allows us to batch the cost of updating the user visible 2408 * head updates. 2409 * 2) allows the kernel side to track the head on its own, even 2410 * though the application is the one updating it. 2411 */ 2412 2413 /* double index for 128-byte SQEs, twice as long */ 2414 if (ctx->flags & IORING_SETUP_SQE128) 2415 head <<= 1; 2416 *sqe = &ctx->sq_sqes[head]; 2417 return true; 2418 } 2419 2420 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2421 __must_hold(&ctx->uring_lock) 2422 { 2423 unsigned int entries = io_sqring_entries(ctx); 2424 unsigned int left; 2425 int ret; 2426 2427 if (unlikely(!entries)) 2428 return 0; 2429 /* make sure SQ entry isn't read before tail */ 2430 ret = left = min(nr, entries); 2431 io_get_task_refs(left); 2432 io_submit_state_start(&ctx->submit_state, left); 2433 2434 do { 2435 const struct io_uring_sqe *sqe; 2436 struct io_kiocb *req; 2437 2438 if (unlikely(!io_alloc_req(ctx, &req))) 2439 break; 2440 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2441 io_req_add_to_cache(req, ctx); 2442 break; 2443 } 2444 2445 /* 2446 * Continue submitting even for sqe failure if the 2447 * ring was setup with IORING_SETUP_SUBMIT_ALL 2448 */ 2449 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2450 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2451 left--; 2452 break; 2453 } 2454 } while (--left); 2455 2456 if (unlikely(left)) { 2457 ret -= left; 2458 /* try again if it submitted nothing and can't allocate a req */ 2459 if (!ret && io_req_cache_empty(ctx)) 2460 ret = -EAGAIN; 2461 current->io_uring->cached_refs += left; 2462 } 2463 2464 io_submit_state_end(ctx); 2465 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2466 io_commit_sqring(ctx); 2467 return ret; 2468 } 2469 2470 struct io_wait_queue { 2471 struct wait_queue_entry wq; 2472 struct io_ring_ctx *ctx; 2473 unsigned cq_tail; 2474 unsigned nr_timeouts; 2475 ktime_t timeout; 2476 }; 2477 2478 static inline bool io_has_work(struct io_ring_ctx *ctx) 2479 { 2480 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2481 !llist_empty(&ctx->work_llist); 2482 } 2483 2484 static inline bool io_should_wake(struct io_wait_queue *iowq) 2485 { 2486 struct io_ring_ctx *ctx = iowq->ctx; 2487 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2488 2489 /* 2490 * Wake up if we have enough events, or if a timeout occurred since we 2491 * started waiting. For timeouts, we always want to return to userspace, 2492 * regardless of event count. 2493 */ 2494 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2495 } 2496 2497 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2498 int wake_flags, void *key) 2499 { 2500 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2501 2502 /* 2503 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2504 * the task, and the next invocation will do it. 2505 */ 2506 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2507 return autoremove_wake_function(curr, mode, wake_flags, key); 2508 return -1; 2509 } 2510 2511 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2512 { 2513 if (!llist_empty(&ctx->work_llist)) { 2514 __set_current_state(TASK_RUNNING); 2515 if (io_run_local_work(ctx, INT_MAX) > 0) 2516 return 0; 2517 } 2518 if (io_run_task_work() > 0) 2519 return 0; 2520 if (task_sigpending(current)) 2521 return -EINTR; 2522 return 0; 2523 } 2524 2525 static bool current_pending_io(void) 2526 { 2527 struct io_uring_task *tctx = current->io_uring; 2528 2529 if (!tctx) 2530 return false; 2531 return percpu_counter_read_positive(&tctx->inflight); 2532 } 2533 2534 /* when returns >0, the caller should retry */ 2535 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2536 struct io_wait_queue *iowq) 2537 { 2538 int ret; 2539 2540 if (unlikely(READ_ONCE(ctx->check_cq))) 2541 return 1; 2542 if (unlikely(!llist_empty(&ctx->work_llist))) 2543 return 1; 2544 if (unlikely(task_work_pending(current))) 2545 return 1; 2546 if (unlikely(task_sigpending(current))) 2547 return -EINTR; 2548 if (unlikely(io_should_wake(iowq))) 2549 return 0; 2550 2551 /* 2552 * Mark us as being in io_wait if we have pending requests, so cpufreq 2553 * can take into account that the task is waiting for IO - turns out 2554 * to be important for low QD IO. 2555 */ 2556 if (current_pending_io()) 2557 current->in_iowait = 1; 2558 ret = 0; 2559 if (iowq->timeout == KTIME_MAX) 2560 schedule(); 2561 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2562 ret = -ETIME; 2563 current->in_iowait = 0; 2564 return ret; 2565 } 2566 2567 /* 2568 * Wait until events become available, if we don't already have some. The 2569 * application must reap them itself, as they reside on the shared cq ring. 2570 */ 2571 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2572 const sigset_t __user *sig, size_t sigsz, 2573 struct __kernel_timespec __user *uts) 2574 { 2575 struct io_wait_queue iowq; 2576 struct io_rings *rings = ctx->rings; 2577 int ret; 2578 2579 if (!io_allowed_run_tw(ctx)) 2580 return -EEXIST; 2581 if (!llist_empty(&ctx->work_llist)) 2582 io_run_local_work(ctx, min_events); 2583 io_run_task_work(); 2584 io_cqring_overflow_flush(ctx); 2585 /* if user messes with these they will just get an early return */ 2586 if (__io_cqring_events_user(ctx) >= min_events) 2587 return 0; 2588 2589 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2590 iowq.wq.private = current; 2591 INIT_LIST_HEAD(&iowq.wq.entry); 2592 iowq.ctx = ctx; 2593 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2594 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2595 iowq.timeout = KTIME_MAX; 2596 2597 if (uts) { 2598 struct timespec64 ts; 2599 2600 if (get_timespec64(&ts, uts)) 2601 return -EFAULT; 2602 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2603 } 2604 2605 if (sig) { 2606 #ifdef CONFIG_COMPAT 2607 if (in_compat_syscall()) 2608 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2609 sigsz); 2610 else 2611 #endif 2612 ret = set_user_sigmask(sig, sigsz); 2613 2614 if (ret) 2615 return ret; 2616 } 2617 2618 trace_io_uring_cqring_wait(ctx, min_events); 2619 do { 2620 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2621 unsigned long check_cq; 2622 2623 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2624 atomic_set(&ctx->cq_wait_nr, nr_wait); 2625 set_current_state(TASK_INTERRUPTIBLE); 2626 } else { 2627 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2628 TASK_INTERRUPTIBLE); 2629 } 2630 2631 ret = io_cqring_wait_schedule(ctx, &iowq); 2632 __set_current_state(TASK_RUNNING); 2633 atomic_set(&ctx->cq_wait_nr, 0); 2634 2635 /* 2636 * Run task_work after scheduling and before io_should_wake(). 2637 * If we got woken because of task_work being processed, run it 2638 * now rather than let the caller do another wait loop. 2639 */ 2640 if (!llist_empty(&ctx->work_llist)) 2641 io_run_local_work(ctx, nr_wait); 2642 io_run_task_work(); 2643 2644 /* 2645 * Non-local task_work will be run on exit to userspace, but 2646 * if we're using DEFER_TASKRUN, then we could have waited 2647 * with a timeout for a number of requests. If the timeout 2648 * hits, we could have some requests ready to process. Ensure 2649 * this break is _after_ we have run task_work, to avoid 2650 * deferring running potentially pending requests until the 2651 * next time we wait for events. 2652 */ 2653 if (ret < 0) 2654 break; 2655 2656 check_cq = READ_ONCE(ctx->check_cq); 2657 if (unlikely(check_cq)) { 2658 /* let the caller flush overflows, retry */ 2659 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2660 io_cqring_do_overflow_flush(ctx); 2661 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2662 ret = -EBADR; 2663 break; 2664 } 2665 } 2666 2667 if (io_should_wake(&iowq)) { 2668 ret = 0; 2669 break; 2670 } 2671 cond_resched(); 2672 } while (1); 2673 2674 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2675 finish_wait(&ctx->cq_wait, &iowq.wq); 2676 restore_saved_sigmask_unless(ret == -EINTR); 2677 2678 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2679 } 2680 2681 void io_mem_free(void *ptr) 2682 { 2683 if (!ptr) 2684 return; 2685 2686 folio_put(virt_to_folio(ptr)); 2687 } 2688 2689 static void io_pages_free(struct page ***pages, int npages) 2690 { 2691 struct page **page_array; 2692 int i; 2693 2694 if (!pages) 2695 return; 2696 2697 page_array = *pages; 2698 if (!page_array) 2699 return; 2700 2701 for (i = 0; i < npages; i++) 2702 unpin_user_page(page_array[i]); 2703 kvfree(page_array); 2704 *pages = NULL; 2705 } 2706 2707 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, 2708 unsigned long uaddr, size_t size) 2709 { 2710 struct page **page_array; 2711 unsigned int nr_pages; 2712 void *page_addr; 2713 int ret, i, pinned; 2714 2715 *npages = 0; 2716 2717 if (uaddr & (PAGE_SIZE - 1) || !size) 2718 return ERR_PTR(-EINVAL); 2719 2720 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2721 if (nr_pages > USHRT_MAX) 2722 return ERR_PTR(-EINVAL); 2723 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); 2724 if (!page_array) 2725 return ERR_PTR(-ENOMEM); 2726 2727 2728 pinned = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, 2729 page_array); 2730 if (pinned != nr_pages) { 2731 ret = (pinned < 0) ? pinned : -EFAULT; 2732 goto free_pages; 2733 } 2734 2735 page_addr = page_address(page_array[0]); 2736 for (i = 0; i < nr_pages; i++) { 2737 ret = -EINVAL; 2738 2739 /* 2740 * Can't support mapping user allocated ring memory on 32-bit 2741 * archs where it could potentially reside in highmem. Just 2742 * fail those with -EINVAL, just like we did on kernels that 2743 * didn't support this feature. 2744 */ 2745 if (PageHighMem(page_array[i])) 2746 goto free_pages; 2747 2748 /* 2749 * No support for discontig pages for now, should either be a 2750 * single normal page, or a huge page. Later on we can add 2751 * support for remapping discontig pages, for now we will 2752 * just fail them with EINVAL. 2753 */ 2754 if (page_address(page_array[i]) != page_addr) 2755 goto free_pages; 2756 page_addr += PAGE_SIZE; 2757 } 2758 2759 *pages = page_array; 2760 *npages = nr_pages; 2761 return page_to_virt(page_array[0]); 2762 2763 free_pages: 2764 io_pages_free(&page_array, pinned > 0 ? pinned : 0); 2765 return ERR_PTR(ret); 2766 } 2767 2768 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2769 size_t size) 2770 { 2771 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2772 size); 2773 } 2774 2775 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2776 size_t size) 2777 { 2778 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2779 size); 2780 } 2781 2782 static void io_rings_free(struct io_ring_ctx *ctx) 2783 { 2784 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2785 io_mem_free(ctx->rings); 2786 io_mem_free(ctx->sq_sqes); 2787 } else { 2788 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2789 ctx->n_ring_pages = 0; 2790 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2791 ctx->n_sqe_pages = 0; 2792 } 2793 2794 ctx->rings = NULL; 2795 ctx->sq_sqes = NULL; 2796 } 2797 2798 void *io_mem_alloc(size_t size) 2799 { 2800 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2801 void *ret; 2802 2803 ret = (void *) __get_free_pages(gfp, get_order(size)); 2804 if (ret) 2805 return ret; 2806 return ERR_PTR(-ENOMEM); 2807 } 2808 2809 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2810 unsigned int cq_entries, size_t *sq_offset) 2811 { 2812 struct io_rings *rings; 2813 size_t off, sq_array_size; 2814 2815 off = struct_size(rings, cqes, cq_entries); 2816 if (off == SIZE_MAX) 2817 return SIZE_MAX; 2818 if (ctx->flags & IORING_SETUP_CQE32) { 2819 if (check_shl_overflow(off, 1, &off)) 2820 return SIZE_MAX; 2821 } 2822 2823 #ifdef CONFIG_SMP 2824 off = ALIGN(off, SMP_CACHE_BYTES); 2825 if (off == 0) 2826 return SIZE_MAX; 2827 #endif 2828 2829 if (ctx->flags & IORING_SETUP_NO_SQARRAY) { 2830 if (sq_offset) 2831 *sq_offset = SIZE_MAX; 2832 return off; 2833 } 2834 2835 if (sq_offset) 2836 *sq_offset = off; 2837 2838 sq_array_size = array_size(sizeof(u32), sq_entries); 2839 if (sq_array_size == SIZE_MAX) 2840 return SIZE_MAX; 2841 2842 if (check_add_overflow(off, sq_array_size, &off)) 2843 return SIZE_MAX; 2844 2845 return off; 2846 } 2847 2848 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2849 unsigned int eventfd_async) 2850 { 2851 struct io_ev_fd *ev_fd; 2852 __s32 __user *fds = arg; 2853 int fd; 2854 2855 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2856 lockdep_is_held(&ctx->uring_lock)); 2857 if (ev_fd) 2858 return -EBUSY; 2859 2860 if (copy_from_user(&fd, fds, sizeof(*fds))) 2861 return -EFAULT; 2862 2863 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2864 if (!ev_fd) 2865 return -ENOMEM; 2866 2867 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2868 if (IS_ERR(ev_fd->cq_ev_fd)) { 2869 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2870 kfree(ev_fd); 2871 return ret; 2872 } 2873 2874 spin_lock(&ctx->completion_lock); 2875 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2876 spin_unlock(&ctx->completion_lock); 2877 2878 ev_fd->eventfd_async = eventfd_async; 2879 ctx->has_evfd = true; 2880 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2881 atomic_set(&ev_fd->refs, 1); 2882 atomic_set(&ev_fd->ops, 0); 2883 return 0; 2884 } 2885 2886 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2887 { 2888 struct io_ev_fd *ev_fd; 2889 2890 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2891 lockdep_is_held(&ctx->uring_lock)); 2892 if (ev_fd) { 2893 ctx->has_evfd = false; 2894 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2895 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2896 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2897 return 0; 2898 } 2899 2900 return -ENXIO; 2901 } 2902 2903 static void io_req_caches_free(struct io_ring_ctx *ctx) 2904 { 2905 struct io_kiocb *req; 2906 int nr = 0; 2907 2908 mutex_lock(&ctx->uring_lock); 2909 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2910 2911 while (!io_req_cache_empty(ctx)) { 2912 req = io_extract_req(ctx); 2913 kmem_cache_free(req_cachep, req); 2914 nr++; 2915 } 2916 if (nr) 2917 percpu_ref_put_many(&ctx->refs, nr); 2918 mutex_unlock(&ctx->uring_lock); 2919 } 2920 2921 static void io_rsrc_node_cache_free(struct io_cache_entry *entry) 2922 { 2923 kfree(container_of(entry, struct io_rsrc_node, cache)); 2924 } 2925 2926 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2927 { 2928 io_sq_thread_finish(ctx); 2929 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2930 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2931 return; 2932 2933 mutex_lock(&ctx->uring_lock); 2934 if (ctx->buf_data) 2935 __io_sqe_buffers_unregister(ctx); 2936 if (ctx->file_data) 2937 __io_sqe_files_unregister(ctx); 2938 io_cqring_overflow_kill(ctx); 2939 io_eventfd_unregister(ctx); 2940 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2941 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2942 io_destroy_buffers(ctx); 2943 mutex_unlock(&ctx->uring_lock); 2944 if (ctx->sq_creds) 2945 put_cred(ctx->sq_creds); 2946 if (ctx->submitter_task) 2947 put_task_struct(ctx->submitter_task); 2948 2949 /* there are no registered resources left, nobody uses it */ 2950 if (ctx->rsrc_node) 2951 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2952 2953 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2954 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2955 2956 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); 2957 if (ctx->mm_account) { 2958 mmdrop(ctx->mm_account); 2959 ctx->mm_account = NULL; 2960 } 2961 io_rings_free(ctx); 2962 io_kbuf_mmap_list_free(ctx); 2963 2964 percpu_ref_exit(&ctx->refs); 2965 free_uid(ctx->user); 2966 io_req_caches_free(ctx); 2967 if (ctx->hash_map) 2968 io_wq_put_hash(ctx->hash_map); 2969 kfree(ctx->cancel_table.hbs); 2970 kfree(ctx->cancel_table_locked.hbs); 2971 xa_destroy(&ctx->io_bl_xa); 2972 kfree(ctx); 2973 } 2974 2975 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2976 { 2977 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2978 poll_wq_task_work); 2979 2980 mutex_lock(&ctx->uring_lock); 2981 ctx->poll_activated = true; 2982 mutex_unlock(&ctx->uring_lock); 2983 2984 /* 2985 * Wake ups for some events between start of polling and activation 2986 * might've been lost due to loose synchronisation. 2987 */ 2988 wake_up_all(&ctx->poll_wq); 2989 percpu_ref_put(&ctx->refs); 2990 } 2991 2992 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2993 { 2994 spin_lock(&ctx->completion_lock); 2995 /* already activated or in progress */ 2996 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2997 goto out; 2998 if (WARN_ON_ONCE(!ctx->task_complete)) 2999 goto out; 3000 if (!ctx->submitter_task) 3001 goto out; 3002 /* 3003 * with ->submitter_task only the submitter task completes requests, we 3004 * only need to sync with it, which is done by injecting a tw 3005 */ 3006 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 3007 percpu_ref_get(&ctx->refs); 3008 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 3009 percpu_ref_put(&ctx->refs); 3010 out: 3011 spin_unlock(&ctx->completion_lock); 3012 } 3013 3014 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 3015 { 3016 struct io_ring_ctx *ctx = file->private_data; 3017 __poll_t mask = 0; 3018 3019 if (unlikely(!ctx->poll_activated)) 3020 io_activate_pollwq(ctx); 3021 3022 poll_wait(file, &ctx->poll_wq, wait); 3023 /* 3024 * synchronizes with barrier from wq_has_sleeper call in 3025 * io_commit_cqring 3026 */ 3027 smp_rmb(); 3028 if (!io_sqring_full(ctx)) 3029 mask |= EPOLLOUT | EPOLLWRNORM; 3030 3031 /* 3032 * Don't flush cqring overflow list here, just do a simple check. 3033 * Otherwise there could possible be ABBA deadlock: 3034 * CPU0 CPU1 3035 * ---- ---- 3036 * lock(&ctx->uring_lock); 3037 * lock(&ep->mtx); 3038 * lock(&ctx->uring_lock); 3039 * lock(&ep->mtx); 3040 * 3041 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 3042 * pushes them to do the flush. 3043 */ 3044 3045 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 3046 mask |= EPOLLIN | EPOLLRDNORM; 3047 3048 return mask; 3049 } 3050 3051 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 3052 { 3053 const struct cred *creds; 3054 3055 creds = xa_erase(&ctx->personalities, id); 3056 if (creds) { 3057 put_cred(creds); 3058 return 0; 3059 } 3060 3061 return -EINVAL; 3062 } 3063 3064 struct io_tctx_exit { 3065 struct callback_head task_work; 3066 struct completion completion; 3067 struct io_ring_ctx *ctx; 3068 }; 3069 3070 static __cold void io_tctx_exit_cb(struct callback_head *cb) 3071 { 3072 struct io_uring_task *tctx = current->io_uring; 3073 struct io_tctx_exit *work; 3074 3075 work = container_of(cb, struct io_tctx_exit, task_work); 3076 /* 3077 * When @in_cancel, we're in cancellation and it's racy to remove the 3078 * node. It'll be removed by the end of cancellation, just ignore it. 3079 * tctx can be NULL if the queueing of this task_work raced with 3080 * work cancelation off the exec path. 3081 */ 3082 if (tctx && !atomic_read(&tctx->in_cancel)) 3083 io_uring_del_tctx_node((unsigned long)work->ctx); 3084 complete(&work->completion); 3085 } 3086 3087 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 3088 { 3089 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3090 3091 return req->ctx == data; 3092 } 3093 3094 static __cold void io_ring_exit_work(struct work_struct *work) 3095 { 3096 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 3097 unsigned long timeout = jiffies + HZ * 60 * 5; 3098 unsigned long interval = HZ / 20; 3099 struct io_tctx_exit exit; 3100 struct io_tctx_node *node; 3101 int ret; 3102 3103 /* 3104 * If we're doing polled IO and end up having requests being 3105 * submitted async (out-of-line), then completions can come in while 3106 * we're waiting for refs to drop. We need to reap these manually, 3107 * as nobody else will be looking for them. 3108 */ 3109 do { 3110 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 3111 mutex_lock(&ctx->uring_lock); 3112 io_cqring_overflow_kill(ctx); 3113 mutex_unlock(&ctx->uring_lock); 3114 } 3115 3116 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3117 io_move_task_work_from_local(ctx); 3118 3119 while (io_uring_try_cancel_requests(ctx, NULL, true)) 3120 cond_resched(); 3121 3122 if (ctx->sq_data) { 3123 struct io_sq_data *sqd = ctx->sq_data; 3124 struct task_struct *tsk; 3125 3126 io_sq_thread_park(sqd); 3127 tsk = sqd->thread; 3128 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 3129 io_wq_cancel_cb(tsk->io_uring->io_wq, 3130 io_cancel_ctx_cb, ctx, true); 3131 io_sq_thread_unpark(sqd); 3132 } 3133 3134 io_req_caches_free(ctx); 3135 3136 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3137 /* there is little hope left, don't run it too often */ 3138 interval = HZ * 60; 3139 } 3140 /* 3141 * This is really an uninterruptible wait, as it has to be 3142 * complete. But it's also run from a kworker, which doesn't 3143 * take signals, so it's fine to make it interruptible. This 3144 * avoids scenarios where we knowingly can wait much longer 3145 * on completions, for example if someone does a SIGSTOP on 3146 * a task that needs to finish task_work to make this loop 3147 * complete. That's a synthetic situation that should not 3148 * cause a stuck task backtrace, and hence a potential panic 3149 * on stuck tasks if that is enabled. 3150 */ 3151 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 3152 3153 init_completion(&exit.completion); 3154 init_task_work(&exit.task_work, io_tctx_exit_cb); 3155 exit.ctx = ctx; 3156 3157 mutex_lock(&ctx->uring_lock); 3158 while (!list_empty(&ctx->tctx_list)) { 3159 WARN_ON_ONCE(time_after(jiffies, timeout)); 3160 3161 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3162 ctx_node); 3163 /* don't spin on a single task if cancellation failed */ 3164 list_rotate_left(&ctx->tctx_list); 3165 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3166 if (WARN_ON_ONCE(ret)) 3167 continue; 3168 3169 mutex_unlock(&ctx->uring_lock); 3170 /* 3171 * See comment above for 3172 * wait_for_completion_interruptible_timeout() on why this 3173 * wait is marked as interruptible. 3174 */ 3175 wait_for_completion_interruptible(&exit.completion); 3176 mutex_lock(&ctx->uring_lock); 3177 } 3178 mutex_unlock(&ctx->uring_lock); 3179 spin_lock(&ctx->completion_lock); 3180 spin_unlock(&ctx->completion_lock); 3181 3182 /* pairs with RCU read section in io_req_local_work_add() */ 3183 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3184 synchronize_rcu(); 3185 3186 io_ring_ctx_free(ctx); 3187 } 3188 3189 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3190 { 3191 unsigned long index; 3192 struct creds *creds; 3193 3194 mutex_lock(&ctx->uring_lock); 3195 percpu_ref_kill(&ctx->refs); 3196 xa_for_each(&ctx->personalities, index, creds) 3197 io_unregister_personality(ctx, index); 3198 if (ctx->rings) 3199 io_poll_remove_all(ctx, NULL, true); 3200 mutex_unlock(&ctx->uring_lock); 3201 3202 /* 3203 * If we failed setting up the ctx, we might not have any rings 3204 * and therefore did not submit any requests 3205 */ 3206 if (ctx->rings) 3207 io_kill_timeouts(ctx, NULL, true); 3208 3209 flush_delayed_work(&ctx->fallback_work); 3210 3211 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3212 /* 3213 * Use system_unbound_wq to avoid spawning tons of event kworkers 3214 * if we're exiting a ton of rings at the same time. It just adds 3215 * noise and overhead, there's no discernable change in runtime 3216 * over using system_wq. 3217 */ 3218 queue_work(iou_wq, &ctx->exit_work); 3219 } 3220 3221 static int io_uring_release(struct inode *inode, struct file *file) 3222 { 3223 struct io_ring_ctx *ctx = file->private_data; 3224 3225 file->private_data = NULL; 3226 io_ring_ctx_wait_and_kill(ctx); 3227 return 0; 3228 } 3229 3230 struct io_task_cancel { 3231 struct task_struct *task; 3232 bool all; 3233 }; 3234 3235 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3236 { 3237 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3238 struct io_task_cancel *cancel = data; 3239 3240 return io_match_task_safe(req, cancel->task, cancel->all); 3241 } 3242 3243 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3244 struct task_struct *task, 3245 bool cancel_all) 3246 { 3247 struct io_defer_entry *de; 3248 LIST_HEAD(list); 3249 3250 spin_lock(&ctx->completion_lock); 3251 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3252 if (io_match_task_safe(de->req, task, cancel_all)) { 3253 list_cut_position(&list, &ctx->defer_list, &de->list); 3254 break; 3255 } 3256 } 3257 spin_unlock(&ctx->completion_lock); 3258 if (list_empty(&list)) 3259 return false; 3260 3261 while (!list_empty(&list)) { 3262 de = list_first_entry(&list, struct io_defer_entry, list); 3263 list_del_init(&de->list); 3264 io_req_task_queue_fail(de->req, -ECANCELED); 3265 kfree(de); 3266 } 3267 return true; 3268 } 3269 3270 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3271 { 3272 struct io_tctx_node *node; 3273 enum io_wq_cancel cret; 3274 bool ret = false; 3275 3276 mutex_lock(&ctx->uring_lock); 3277 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3278 struct io_uring_task *tctx = node->task->io_uring; 3279 3280 /* 3281 * io_wq will stay alive while we hold uring_lock, because it's 3282 * killed after ctx nodes, which requires to take the lock. 3283 */ 3284 if (!tctx || !tctx->io_wq) 3285 continue; 3286 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3287 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3288 } 3289 mutex_unlock(&ctx->uring_lock); 3290 3291 return ret; 3292 } 3293 3294 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3295 struct task_struct *task, 3296 bool cancel_all) 3297 { 3298 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3299 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3300 enum io_wq_cancel cret; 3301 bool ret = false; 3302 3303 /* set it so io_req_local_work_add() would wake us up */ 3304 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3305 atomic_set(&ctx->cq_wait_nr, 1); 3306 smp_mb(); 3307 } 3308 3309 /* failed during ring init, it couldn't have issued any requests */ 3310 if (!ctx->rings) 3311 return false; 3312 3313 if (!task) { 3314 ret |= io_uring_try_cancel_iowq(ctx); 3315 } else if (tctx && tctx->io_wq) { 3316 /* 3317 * Cancels requests of all rings, not only @ctx, but 3318 * it's fine as the task is in exit/exec. 3319 */ 3320 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3321 &cancel, true); 3322 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3323 } 3324 3325 /* SQPOLL thread does its own polling */ 3326 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3327 (ctx->sq_data && ctx->sq_data->thread == current)) { 3328 while (!wq_list_empty(&ctx->iopoll_list)) { 3329 io_iopoll_try_reap_events(ctx); 3330 ret = true; 3331 cond_resched(); 3332 } 3333 } 3334 3335 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3336 io_allowed_defer_tw_run(ctx)) 3337 ret |= io_run_local_work(ctx, INT_MAX) > 0; 3338 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3339 mutex_lock(&ctx->uring_lock); 3340 ret |= io_poll_remove_all(ctx, task, cancel_all); 3341 mutex_unlock(&ctx->uring_lock); 3342 ret |= io_kill_timeouts(ctx, task, cancel_all); 3343 if (task) 3344 ret |= io_run_task_work() > 0; 3345 return ret; 3346 } 3347 3348 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3349 { 3350 if (tracked) 3351 return atomic_read(&tctx->inflight_tracked); 3352 return percpu_counter_sum(&tctx->inflight); 3353 } 3354 3355 /* 3356 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3357 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3358 */ 3359 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3360 { 3361 struct io_uring_task *tctx = current->io_uring; 3362 struct io_ring_ctx *ctx; 3363 struct io_tctx_node *node; 3364 unsigned long index; 3365 s64 inflight; 3366 DEFINE_WAIT(wait); 3367 3368 WARN_ON_ONCE(sqd && sqd->thread != current); 3369 3370 if (!current->io_uring) 3371 return; 3372 if (tctx->io_wq) 3373 io_wq_exit_start(tctx->io_wq); 3374 3375 atomic_inc(&tctx->in_cancel); 3376 do { 3377 bool loop = false; 3378 3379 io_uring_drop_tctx_refs(current); 3380 if (!tctx_inflight(tctx, !cancel_all)) 3381 break; 3382 3383 /* read completions before cancelations */ 3384 inflight = tctx_inflight(tctx, false); 3385 if (!inflight) 3386 break; 3387 3388 if (!sqd) { 3389 xa_for_each(&tctx->xa, index, node) { 3390 /* sqpoll task will cancel all its requests */ 3391 if (node->ctx->sq_data) 3392 continue; 3393 loop |= io_uring_try_cancel_requests(node->ctx, 3394 current, cancel_all); 3395 } 3396 } else { 3397 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3398 loop |= io_uring_try_cancel_requests(ctx, 3399 current, 3400 cancel_all); 3401 } 3402 3403 if (loop) { 3404 cond_resched(); 3405 continue; 3406 } 3407 3408 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3409 io_run_task_work(); 3410 io_uring_drop_tctx_refs(current); 3411 xa_for_each(&tctx->xa, index, node) { 3412 if (!llist_empty(&node->ctx->work_llist)) { 3413 WARN_ON_ONCE(node->ctx->submitter_task && 3414 node->ctx->submitter_task != current); 3415 goto end_wait; 3416 } 3417 } 3418 /* 3419 * If we've seen completions, retry without waiting. This 3420 * avoids a race where a completion comes in before we did 3421 * prepare_to_wait(). 3422 */ 3423 if (inflight == tctx_inflight(tctx, !cancel_all)) 3424 schedule(); 3425 end_wait: 3426 finish_wait(&tctx->wait, &wait); 3427 } while (1); 3428 3429 io_uring_clean_tctx(tctx); 3430 if (cancel_all) { 3431 /* 3432 * We shouldn't run task_works after cancel, so just leave 3433 * ->in_cancel set for normal exit. 3434 */ 3435 atomic_dec(&tctx->in_cancel); 3436 /* for exec all current's requests should be gone, kill tctx */ 3437 __io_uring_free(current); 3438 } 3439 } 3440 3441 void __io_uring_cancel(bool cancel_all) 3442 { 3443 io_uring_unreg_ringfd(); 3444 io_uring_cancel_generic(cancel_all, NULL); 3445 } 3446 3447 static void *io_uring_validate_mmap_request(struct file *file, 3448 loff_t pgoff, size_t sz) 3449 { 3450 struct io_ring_ctx *ctx = file->private_data; 3451 loff_t offset = pgoff << PAGE_SHIFT; 3452 struct page *page; 3453 void *ptr; 3454 3455 switch (offset & IORING_OFF_MMAP_MASK) { 3456 case IORING_OFF_SQ_RING: 3457 case IORING_OFF_CQ_RING: 3458 /* Don't allow mmap if the ring was setup without it */ 3459 if (ctx->flags & IORING_SETUP_NO_MMAP) 3460 return ERR_PTR(-EINVAL); 3461 ptr = ctx->rings; 3462 break; 3463 case IORING_OFF_SQES: 3464 /* Don't allow mmap if the ring was setup without it */ 3465 if (ctx->flags & IORING_SETUP_NO_MMAP) 3466 return ERR_PTR(-EINVAL); 3467 ptr = ctx->sq_sqes; 3468 break; 3469 case IORING_OFF_PBUF_RING: { 3470 struct io_buffer_list *bl; 3471 unsigned int bgid; 3472 3473 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; 3474 bl = io_pbuf_get_bl(ctx, bgid); 3475 if (IS_ERR(bl)) 3476 return bl; 3477 ptr = bl->buf_ring; 3478 io_put_bl(ctx, bl); 3479 break; 3480 } 3481 default: 3482 return ERR_PTR(-EINVAL); 3483 } 3484 3485 page = virt_to_head_page(ptr); 3486 if (sz > page_size(page)) 3487 return ERR_PTR(-EINVAL); 3488 3489 return ptr; 3490 } 3491 3492 #ifdef CONFIG_MMU 3493 3494 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3495 { 3496 size_t sz = vma->vm_end - vma->vm_start; 3497 unsigned long pfn; 3498 void *ptr; 3499 3500 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3501 if (IS_ERR(ptr)) 3502 return PTR_ERR(ptr); 3503 3504 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3505 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3506 } 3507 3508 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, 3509 unsigned long addr, unsigned long len, 3510 unsigned long pgoff, unsigned long flags) 3511 { 3512 void *ptr; 3513 3514 /* 3515 * Do not allow to map to user-provided address to avoid breaking the 3516 * aliasing rules. Userspace is not able to guess the offset address of 3517 * kernel kmalloc()ed memory area. 3518 */ 3519 if (addr) 3520 return -EINVAL; 3521 3522 ptr = io_uring_validate_mmap_request(filp, pgoff, len); 3523 if (IS_ERR(ptr)) 3524 return -ENOMEM; 3525 3526 /* 3527 * Some architectures have strong cache aliasing requirements. 3528 * For such architectures we need a coherent mapping which aliases 3529 * kernel memory *and* userspace memory. To achieve that: 3530 * - use a NULL file pointer to reference physical memory, and 3531 * - use the kernel virtual address of the shared io_uring context 3532 * (instead of the userspace-provided address, which has to be 0UL 3533 * anyway). 3534 * - use the same pgoff which the get_unmapped_area() uses to 3535 * calculate the page colouring. 3536 * For architectures without such aliasing requirements, the 3537 * architecture will return any suitable mapping because addr is 0. 3538 */ 3539 filp = NULL; 3540 flags |= MAP_SHARED; 3541 pgoff = 0; /* has been translated to ptr above */ 3542 #ifdef SHM_COLOUR 3543 addr = (uintptr_t) ptr; 3544 pgoff = addr >> PAGE_SHIFT; 3545 #else 3546 addr = 0UL; 3547 #endif 3548 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 3549 } 3550 3551 #else /* !CONFIG_MMU */ 3552 3553 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3554 { 3555 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3556 } 3557 3558 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3559 { 3560 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3561 } 3562 3563 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3564 unsigned long addr, unsigned long len, 3565 unsigned long pgoff, unsigned long flags) 3566 { 3567 void *ptr; 3568 3569 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3570 if (IS_ERR(ptr)) 3571 return PTR_ERR(ptr); 3572 3573 return (unsigned long) ptr; 3574 } 3575 3576 #endif /* !CONFIG_MMU */ 3577 3578 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3579 { 3580 if (flags & IORING_ENTER_EXT_ARG) { 3581 struct io_uring_getevents_arg arg; 3582 3583 if (argsz != sizeof(arg)) 3584 return -EINVAL; 3585 if (copy_from_user(&arg, argp, sizeof(arg))) 3586 return -EFAULT; 3587 } 3588 return 0; 3589 } 3590 3591 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3592 struct __kernel_timespec __user **ts, 3593 const sigset_t __user **sig) 3594 { 3595 struct io_uring_getevents_arg arg; 3596 3597 /* 3598 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3599 * is just a pointer to the sigset_t. 3600 */ 3601 if (!(flags & IORING_ENTER_EXT_ARG)) { 3602 *sig = (const sigset_t __user *) argp; 3603 *ts = NULL; 3604 return 0; 3605 } 3606 3607 /* 3608 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3609 * timespec and sigset_t pointers if good. 3610 */ 3611 if (*argsz != sizeof(arg)) 3612 return -EINVAL; 3613 if (copy_from_user(&arg, argp, sizeof(arg))) 3614 return -EFAULT; 3615 if (arg.pad) 3616 return -EINVAL; 3617 *sig = u64_to_user_ptr(arg.sigmask); 3618 *argsz = arg.sigmask_sz; 3619 *ts = u64_to_user_ptr(arg.ts); 3620 return 0; 3621 } 3622 3623 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3624 u32, min_complete, u32, flags, const void __user *, argp, 3625 size_t, argsz) 3626 { 3627 struct io_ring_ctx *ctx; 3628 struct file *file; 3629 long ret; 3630 3631 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3632 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3633 IORING_ENTER_REGISTERED_RING))) 3634 return -EINVAL; 3635 3636 /* 3637 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3638 * need only dereference our task private array to find it. 3639 */ 3640 if (flags & IORING_ENTER_REGISTERED_RING) { 3641 struct io_uring_task *tctx = current->io_uring; 3642 3643 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3644 return -EINVAL; 3645 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3646 file = tctx->registered_rings[fd]; 3647 if (unlikely(!file)) 3648 return -EBADF; 3649 } else { 3650 file = fget(fd); 3651 if (unlikely(!file)) 3652 return -EBADF; 3653 ret = -EOPNOTSUPP; 3654 if (unlikely(!io_is_uring_fops(file))) 3655 goto out; 3656 } 3657 3658 ctx = file->private_data; 3659 ret = -EBADFD; 3660 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3661 goto out; 3662 3663 /* 3664 * For SQ polling, the thread will do all submissions and completions. 3665 * Just return the requested submit count, and wake the thread if 3666 * we were asked to. 3667 */ 3668 ret = 0; 3669 if (ctx->flags & IORING_SETUP_SQPOLL) { 3670 io_cqring_overflow_flush(ctx); 3671 3672 if (unlikely(ctx->sq_data->thread == NULL)) { 3673 ret = -EOWNERDEAD; 3674 goto out; 3675 } 3676 if (flags & IORING_ENTER_SQ_WAKEUP) 3677 wake_up(&ctx->sq_data->wait); 3678 if (flags & IORING_ENTER_SQ_WAIT) 3679 io_sqpoll_wait_sq(ctx); 3680 3681 ret = to_submit; 3682 } else if (to_submit) { 3683 ret = io_uring_add_tctx_node(ctx); 3684 if (unlikely(ret)) 3685 goto out; 3686 3687 mutex_lock(&ctx->uring_lock); 3688 ret = io_submit_sqes(ctx, to_submit); 3689 if (ret != to_submit) { 3690 mutex_unlock(&ctx->uring_lock); 3691 goto out; 3692 } 3693 if (flags & IORING_ENTER_GETEVENTS) { 3694 if (ctx->syscall_iopoll) 3695 goto iopoll_locked; 3696 /* 3697 * Ignore errors, we'll soon call io_cqring_wait() and 3698 * it should handle ownership problems if any. 3699 */ 3700 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3701 (void)io_run_local_work_locked(ctx, min_complete); 3702 } 3703 mutex_unlock(&ctx->uring_lock); 3704 } 3705 3706 if (flags & IORING_ENTER_GETEVENTS) { 3707 int ret2; 3708 3709 if (ctx->syscall_iopoll) { 3710 /* 3711 * We disallow the app entering submit/complete with 3712 * polling, but we still need to lock the ring to 3713 * prevent racing with polled issue that got punted to 3714 * a workqueue. 3715 */ 3716 mutex_lock(&ctx->uring_lock); 3717 iopoll_locked: 3718 ret2 = io_validate_ext_arg(flags, argp, argsz); 3719 if (likely(!ret2)) { 3720 min_complete = min(min_complete, 3721 ctx->cq_entries); 3722 ret2 = io_iopoll_check(ctx, min_complete); 3723 } 3724 mutex_unlock(&ctx->uring_lock); 3725 } else { 3726 const sigset_t __user *sig; 3727 struct __kernel_timespec __user *ts; 3728 3729 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3730 if (likely(!ret2)) { 3731 min_complete = min(min_complete, 3732 ctx->cq_entries); 3733 ret2 = io_cqring_wait(ctx, min_complete, sig, 3734 argsz, ts); 3735 } 3736 } 3737 3738 if (!ret) { 3739 ret = ret2; 3740 3741 /* 3742 * EBADR indicates that one or more CQE were dropped. 3743 * Once the user has been informed we can clear the bit 3744 * as they are obviously ok with those drops. 3745 */ 3746 if (unlikely(ret2 == -EBADR)) 3747 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3748 &ctx->check_cq); 3749 } 3750 } 3751 out: 3752 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3753 fput(file); 3754 return ret; 3755 } 3756 3757 static const struct file_operations io_uring_fops = { 3758 .release = io_uring_release, 3759 .mmap = io_uring_mmap, 3760 #ifndef CONFIG_MMU 3761 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3762 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3763 #else 3764 .get_unmapped_area = io_uring_mmu_get_unmapped_area, 3765 #endif 3766 .poll = io_uring_poll, 3767 #ifdef CONFIG_PROC_FS 3768 .show_fdinfo = io_uring_show_fdinfo, 3769 #endif 3770 }; 3771 3772 bool io_is_uring_fops(struct file *file) 3773 { 3774 return file->f_op == &io_uring_fops; 3775 } 3776 3777 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3778 struct io_uring_params *p) 3779 { 3780 struct io_rings *rings; 3781 size_t size, sq_array_offset; 3782 void *ptr; 3783 3784 /* make sure these are sane, as we already accounted them */ 3785 ctx->sq_entries = p->sq_entries; 3786 ctx->cq_entries = p->cq_entries; 3787 3788 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3789 if (size == SIZE_MAX) 3790 return -EOVERFLOW; 3791 3792 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3793 rings = io_mem_alloc(size); 3794 else 3795 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3796 3797 if (IS_ERR(rings)) 3798 return PTR_ERR(rings); 3799 3800 ctx->rings = rings; 3801 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3802 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3803 rings->sq_ring_mask = p->sq_entries - 1; 3804 rings->cq_ring_mask = p->cq_entries - 1; 3805 rings->sq_ring_entries = p->sq_entries; 3806 rings->cq_ring_entries = p->cq_entries; 3807 3808 if (p->flags & IORING_SETUP_SQE128) 3809 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3810 else 3811 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3812 if (size == SIZE_MAX) { 3813 io_rings_free(ctx); 3814 return -EOVERFLOW; 3815 } 3816 3817 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3818 ptr = io_mem_alloc(size); 3819 else 3820 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3821 3822 if (IS_ERR(ptr)) { 3823 io_rings_free(ctx); 3824 return PTR_ERR(ptr); 3825 } 3826 3827 ctx->sq_sqes = ptr; 3828 return 0; 3829 } 3830 3831 static int io_uring_install_fd(struct file *file) 3832 { 3833 int fd; 3834 3835 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3836 if (fd < 0) 3837 return fd; 3838 fd_install(fd, file); 3839 return fd; 3840 } 3841 3842 /* 3843 * Allocate an anonymous fd, this is what constitutes the application 3844 * visible backing of an io_uring instance. The application mmaps this 3845 * fd to gain access to the SQ/CQ ring details. 3846 */ 3847 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3848 { 3849 return anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3850 O_RDWR | O_CLOEXEC, NULL); 3851 } 3852 3853 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3854 struct io_uring_params __user *params) 3855 { 3856 struct io_ring_ctx *ctx; 3857 struct io_uring_task *tctx; 3858 struct file *file; 3859 int ret; 3860 3861 if (!entries) 3862 return -EINVAL; 3863 if (entries > IORING_MAX_ENTRIES) { 3864 if (!(p->flags & IORING_SETUP_CLAMP)) 3865 return -EINVAL; 3866 entries = IORING_MAX_ENTRIES; 3867 } 3868 3869 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3870 && !(p->flags & IORING_SETUP_NO_MMAP)) 3871 return -EINVAL; 3872 3873 /* 3874 * Use twice as many entries for the CQ ring. It's possible for the 3875 * application to drive a higher depth than the size of the SQ ring, 3876 * since the sqes are only used at submission time. This allows for 3877 * some flexibility in overcommitting a bit. If the application has 3878 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3879 * of CQ ring entries manually. 3880 */ 3881 p->sq_entries = roundup_pow_of_two(entries); 3882 if (p->flags & IORING_SETUP_CQSIZE) { 3883 /* 3884 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3885 * to a power-of-two, if it isn't already. We do NOT impose 3886 * any cq vs sq ring sizing. 3887 */ 3888 if (!p->cq_entries) 3889 return -EINVAL; 3890 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3891 if (!(p->flags & IORING_SETUP_CLAMP)) 3892 return -EINVAL; 3893 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3894 } 3895 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3896 if (p->cq_entries < p->sq_entries) 3897 return -EINVAL; 3898 } else { 3899 p->cq_entries = 2 * p->sq_entries; 3900 } 3901 3902 ctx = io_ring_ctx_alloc(p); 3903 if (!ctx) 3904 return -ENOMEM; 3905 3906 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3907 !(ctx->flags & IORING_SETUP_IOPOLL) && 3908 !(ctx->flags & IORING_SETUP_SQPOLL)) 3909 ctx->task_complete = true; 3910 3911 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3912 ctx->lockless_cq = true; 3913 3914 /* 3915 * lazy poll_wq activation relies on ->task_complete for synchronisation 3916 * purposes, see io_activate_pollwq() 3917 */ 3918 if (!ctx->task_complete) 3919 ctx->poll_activated = true; 3920 3921 /* 3922 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3923 * space applications don't need to do io completion events 3924 * polling again, they can rely on io_sq_thread to do polling 3925 * work, which can reduce cpu usage and uring_lock contention. 3926 */ 3927 if (ctx->flags & IORING_SETUP_IOPOLL && 3928 !(ctx->flags & IORING_SETUP_SQPOLL)) 3929 ctx->syscall_iopoll = 1; 3930 3931 ctx->compat = in_compat_syscall(); 3932 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3933 ctx->user = get_uid(current_user()); 3934 3935 /* 3936 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3937 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3938 */ 3939 ret = -EINVAL; 3940 if (ctx->flags & IORING_SETUP_SQPOLL) { 3941 /* IPI related flags don't make sense with SQPOLL */ 3942 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3943 IORING_SETUP_TASKRUN_FLAG | 3944 IORING_SETUP_DEFER_TASKRUN)) 3945 goto err; 3946 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3947 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3948 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3949 } else { 3950 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3951 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3952 goto err; 3953 ctx->notify_method = TWA_SIGNAL; 3954 } 3955 3956 /* 3957 * For DEFER_TASKRUN we require the completion task to be the same as the 3958 * submission task. This implies that there is only one submitter, so enforce 3959 * that. 3960 */ 3961 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3962 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3963 goto err; 3964 } 3965 3966 /* 3967 * This is just grabbed for accounting purposes. When a process exits, 3968 * the mm is exited and dropped before the files, hence we need to hang 3969 * on to this mm purely for the purposes of being able to unaccount 3970 * memory (locked/pinned vm). It's not used for anything else. 3971 */ 3972 mmgrab(current->mm); 3973 ctx->mm_account = current->mm; 3974 3975 ret = io_allocate_scq_urings(ctx, p); 3976 if (ret) 3977 goto err; 3978 3979 ret = io_sq_offload_create(ctx, p); 3980 if (ret) 3981 goto err; 3982 3983 ret = io_rsrc_init(ctx); 3984 if (ret) 3985 goto err; 3986 3987 p->sq_off.head = offsetof(struct io_rings, sq.head); 3988 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3989 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3990 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3991 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3992 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3993 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3994 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3995 p->sq_off.resv1 = 0; 3996 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3997 p->sq_off.user_addr = 0; 3998 3999 p->cq_off.head = offsetof(struct io_rings, cq.head); 4000 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 4001 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 4002 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 4003 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 4004 p->cq_off.cqes = offsetof(struct io_rings, cqes); 4005 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 4006 p->cq_off.resv1 = 0; 4007 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 4008 p->cq_off.user_addr = 0; 4009 4010 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 4011 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 4012 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 4013 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 4014 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 4015 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 4016 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 4017 4018 if (copy_to_user(params, p, sizeof(*p))) { 4019 ret = -EFAULT; 4020 goto err; 4021 } 4022 4023 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 4024 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 4025 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4026 4027 file = io_uring_get_file(ctx); 4028 if (IS_ERR(file)) { 4029 ret = PTR_ERR(file); 4030 goto err; 4031 } 4032 4033 ret = __io_uring_add_tctx_node(ctx); 4034 if (ret) 4035 goto err_fput; 4036 tctx = current->io_uring; 4037 4038 /* 4039 * Install ring fd as the very last thing, so we don't risk someone 4040 * having closed it before we finish setup 4041 */ 4042 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 4043 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 4044 else 4045 ret = io_uring_install_fd(file); 4046 if (ret < 0) 4047 goto err_fput; 4048 4049 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 4050 return ret; 4051 err: 4052 io_ring_ctx_wait_and_kill(ctx); 4053 return ret; 4054 err_fput: 4055 fput(file); 4056 return ret; 4057 } 4058 4059 /* 4060 * Sets up an aio uring context, and returns the fd. Applications asks for a 4061 * ring size, we return the actual sq/cq ring sizes (among other things) in the 4062 * params structure passed in. 4063 */ 4064 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 4065 { 4066 struct io_uring_params p; 4067 int i; 4068 4069 if (copy_from_user(&p, params, sizeof(p))) 4070 return -EFAULT; 4071 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 4072 if (p.resv[i]) 4073 return -EINVAL; 4074 } 4075 4076 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 4077 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 4078 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 4079 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 4080 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 4081 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 4082 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 4083 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 4084 IORING_SETUP_NO_SQARRAY)) 4085 return -EINVAL; 4086 4087 return io_uring_create(entries, &p, params); 4088 } 4089 4090 static inline bool io_uring_allowed(void) 4091 { 4092 int disabled = READ_ONCE(sysctl_io_uring_disabled); 4093 kgid_t io_uring_group; 4094 4095 if (disabled == 2) 4096 return false; 4097 4098 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 4099 return true; 4100 4101 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 4102 if (!gid_valid(io_uring_group)) 4103 return false; 4104 4105 return in_group_p(io_uring_group); 4106 } 4107 4108 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 4109 struct io_uring_params __user *, params) 4110 { 4111 if (!io_uring_allowed()) 4112 return -EPERM; 4113 4114 return io_uring_setup(entries, params); 4115 } 4116 4117 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 4118 unsigned nr_args) 4119 { 4120 struct io_uring_probe *p; 4121 size_t size; 4122 int i, ret; 4123 4124 size = struct_size(p, ops, nr_args); 4125 if (size == SIZE_MAX) 4126 return -EOVERFLOW; 4127 p = kzalloc(size, GFP_KERNEL); 4128 if (!p) 4129 return -ENOMEM; 4130 4131 ret = -EFAULT; 4132 if (copy_from_user(p, arg, size)) 4133 goto out; 4134 ret = -EINVAL; 4135 if (memchr_inv(p, 0, size)) 4136 goto out; 4137 4138 p->last_op = IORING_OP_LAST - 1; 4139 if (nr_args > IORING_OP_LAST) 4140 nr_args = IORING_OP_LAST; 4141 4142 for (i = 0; i < nr_args; i++) { 4143 p->ops[i].op = i; 4144 if (!io_issue_defs[i].not_supported) 4145 p->ops[i].flags = IO_URING_OP_SUPPORTED; 4146 } 4147 p->ops_len = i; 4148 4149 ret = 0; 4150 if (copy_to_user(arg, p, size)) 4151 ret = -EFAULT; 4152 out: 4153 kfree(p); 4154 return ret; 4155 } 4156 4157 static int io_register_personality(struct io_ring_ctx *ctx) 4158 { 4159 const struct cred *creds; 4160 u32 id; 4161 int ret; 4162 4163 creds = get_current_cred(); 4164 4165 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 4166 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 4167 if (ret < 0) { 4168 put_cred(creds); 4169 return ret; 4170 } 4171 return id; 4172 } 4173 4174 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 4175 void __user *arg, unsigned int nr_args) 4176 { 4177 struct io_uring_restriction *res; 4178 size_t size; 4179 int i, ret; 4180 4181 /* Restrictions allowed only if rings started disabled */ 4182 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4183 return -EBADFD; 4184 4185 /* We allow only a single restrictions registration */ 4186 if (ctx->restrictions.registered) 4187 return -EBUSY; 4188 4189 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 4190 return -EINVAL; 4191 4192 size = array_size(nr_args, sizeof(*res)); 4193 if (size == SIZE_MAX) 4194 return -EOVERFLOW; 4195 4196 res = memdup_user(arg, size); 4197 if (IS_ERR(res)) 4198 return PTR_ERR(res); 4199 4200 ret = 0; 4201 4202 for (i = 0; i < nr_args; i++) { 4203 switch (res[i].opcode) { 4204 case IORING_RESTRICTION_REGISTER_OP: 4205 if (res[i].register_op >= IORING_REGISTER_LAST) { 4206 ret = -EINVAL; 4207 goto out; 4208 } 4209 4210 __set_bit(res[i].register_op, 4211 ctx->restrictions.register_op); 4212 break; 4213 case IORING_RESTRICTION_SQE_OP: 4214 if (res[i].sqe_op >= IORING_OP_LAST) { 4215 ret = -EINVAL; 4216 goto out; 4217 } 4218 4219 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 4220 break; 4221 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 4222 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 4223 break; 4224 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 4225 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 4226 break; 4227 default: 4228 ret = -EINVAL; 4229 goto out; 4230 } 4231 } 4232 4233 out: 4234 /* Reset all restrictions if an error happened */ 4235 if (ret != 0) 4236 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 4237 else 4238 ctx->restrictions.registered = true; 4239 4240 kfree(res); 4241 return ret; 4242 } 4243 4244 static int io_register_enable_rings(struct io_ring_ctx *ctx) 4245 { 4246 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4247 return -EBADFD; 4248 4249 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) { 4250 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4251 /* 4252 * Lazy activation attempts would fail if it was polled before 4253 * submitter_task is set. 4254 */ 4255 if (wq_has_sleeper(&ctx->poll_wq)) 4256 io_activate_pollwq(ctx); 4257 } 4258 4259 if (ctx->restrictions.registered) 4260 ctx->restricted = 1; 4261 4262 ctx->flags &= ~IORING_SETUP_R_DISABLED; 4263 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 4264 wake_up(&ctx->sq_data->wait); 4265 return 0; 4266 } 4267 4268 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx, 4269 cpumask_var_t new_mask) 4270 { 4271 int ret; 4272 4273 if (!(ctx->flags & IORING_SETUP_SQPOLL)) { 4274 ret = io_wq_cpu_affinity(current->io_uring, new_mask); 4275 } else { 4276 mutex_unlock(&ctx->uring_lock); 4277 ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask); 4278 mutex_lock(&ctx->uring_lock); 4279 } 4280 4281 return ret; 4282 } 4283 4284 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 4285 void __user *arg, unsigned len) 4286 { 4287 cpumask_var_t new_mask; 4288 int ret; 4289 4290 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4291 return -ENOMEM; 4292 4293 cpumask_clear(new_mask); 4294 if (len > cpumask_size()) 4295 len = cpumask_size(); 4296 4297 if (in_compat_syscall()) { 4298 ret = compat_get_bitmap(cpumask_bits(new_mask), 4299 (const compat_ulong_t __user *)arg, 4300 len * 8 /* CHAR_BIT */); 4301 } else { 4302 ret = copy_from_user(new_mask, arg, len); 4303 } 4304 4305 if (ret) { 4306 free_cpumask_var(new_mask); 4307 return -EFAULT; 4308 } 4309 4310 ret = __io_register_iowq_aff(ctx, new_mask); 4311 free_cpumask_var(new_mask); 4312 return ret; 4313 } 4314 4315 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 4316 { 4317 return __io_register_iowq_aff(ctx, NULL); 4318 } 4319 4320 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 4321 void __user *arg) 4322 __must_hold(&ctx->uring_lock) 4323 { 4324 struct io_tctx_node *node; 4325 struct io_uring_task *tctx = NULL; 4326 struct io_sq_data *sqd = NULL; 4327 __u32 new_count[2]; 4328 int i, ret; 4329 4330 if (copy_from_user(new_count, arg, sizeof(new_count))) 4331 return -EFAULT; 4332 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4333 if (new_count[i] > INT_MAX) 4334 return -EINVAL; 4335 4336 if (ctx->flags & IORING_SETUP_SQPOLL) { 4337 sqd = ctx->sq_data; 4338 if (sqd) { 4339 /* 4340 * Observe the correct sqd->lock -> ctx->uring_lock 4341 * ordering. Fine to drop uring_lock here, we hold 4342 * a ref to the ctx. 4343 */ 4344 refcount_inc(&sqd->refs); 4345 mutex_unlock(&ctx->uring_lock); 4346 mutex_lock(&sqd->lock); 4347 mutex_lock(&ctx->uring_lock); 4348 if (sqd->thread) 4349 tctx = sqd->thread->io_uring; 4350 } 4351 } else { 4352 tctx = current->io_uring; 4353 } 4354 4355 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 4356 4357 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4358 if (new_count[i]) 4359 ctx->iowq_limits[i] = new_count[i]; 4360 ctx->iowq_limits_set = true; 4361 4362 if (tctx && tctx->io_wq) { 4363 ret = io_wq_max_workers(tctx->io_wq, new_count); 4364 if (ret) 4365 goto err; 4366 } else { 4367 memset(new_count, 0, sizeof(new_count)); 4368 } 4369 4370 if (sqd) { 4371 mutex_unlock(&ctx->uring_lock); 4372 mutex_unlock(&sqd->lock); 4373 io_put_sq_data(sqd); 4374 mutex_lock(&ctx->uring_lock); 4375 } 4376 4377 if (copy_to_user(arg, new_count, sizeof(new_count))) 4378 return -EFAULT; 4379 4380 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 4381 if (sqd) 4382 return 0; 4383 4384 /* now propagate the restriction to all registered users */ 4385 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 4386 struct io_uring_task *tctx = node->task->io_uring; 4387 4388 if (WARN_ON_ONCE(!tctx->io_wq)) 4389 continue; 4390 4391 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4392 new_count[i] = ctx->iowq_limits[i]; 4393 /* ignore errors, it always returns zero anyway */ 4394 (void)io_wq_max_workers(tctx->io_wq, new_count); 4395 } 4396 return 0; 4397 err: 4398 if (sqd) { 4399 mutex_unlock(&ctx->uring_lock); 4400 mutex_unlock(&sqd->lock); 4401 io_put_sq_data(sqd); 4402 mutex_lock(&ctx->uring_lock); 4403 4404 } 4405 return ret; 4406 } 4407 4408 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4409 void __user *arg, unsigned nr_args) 4410 __releases(ctx->uring_lock) 4411 __acquires(ctx->uring_lock) 4412 { 4413 int ret; 4414 4415 /* 4416 * We don't quiesce the refs for register anymore and so it can't be 4417 * dying as we're holding a file ref here. 4418 */ 4419 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4420 return -ENXIO; 4421 4422 if (ctx->submitter_task && ctx->submitter_task != current) 4423 return -EEXIST; 4424 4425 if (ctx->restricted) { 4426 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4427 if (!test_bit(opcode, ctx->restrictions.register_op)) 4428 return -EACCES; 4429 } 4430 4431 switch (opcode) { 4432 case IORING_REGISTER_BUFFERS: 4433 ret = -EFAULT; 4434 if (!arg) 4435 break; 4436 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4437 break; 4438 case IORING_UNREGISTER_BUFFERS: 4439 ret = -EINVAL; 4440 if (arg || nr_args) 4441 break; 4442 ret = io_sqe_buffers_unregister(ctx); 4443 break; 4444 case IORING_REGISTER_FILES: 4445 ret = -EFAULT; 4446 if (!arg) 4447 break; 4448 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4449 break; 4450 case IORING_UNREGISTER_FILES: 4451 ret = -EINVAL; 4452 if (arg || nr_args) 4453 break; 4454 ret = io_sqe_files_unregister(ctx); 4455 break; 4456 case IORING_REGISTER_FILES_UPDATE: 4457 ret = io_register_files_update(ctx, arg, nr_args); 4458 break; 4459 case IORING_REGISTER_EVENTFD: 4460 ret = -EINVAL; 4461 if (nr_args != 1) 4462 break; 4463 ret = io_eventfd_register(ctx, arg, 0); 4464 break; 4465 case IORING_REGISTER_EVENTFD_ASYNC: 4466 ret = -EINVAL; 4467 if (nr_args != 1) 4468 break; 4469 ret = io_eventfd_register(ctx, arg, 1); 4470 break; 4471 case IORING_UNREGISTER_EVENTFD: 4472 ret = -EINVAL; 4473 if (arg || nr_args) 4474 break; 4475 ret = io_eventfd_unregister(ctx); 4476 break; 4477 case IORING_REGISTER_PROBE: 4478 ret = -EINVAL; 4479 if (!arg || nr_args > 256) 4480 break; 4481 ret = io_probe(ctx, arg, nr_args); 4482 break; 4483 case IORING_REGISTER_PERSONALITY: 4484 ret = -EINVAL; 4485 if (arg || nr_args) 4486 break; 4487 ret = io_register_personality(ctx); 4488 break; 4489 case IORING_UNREGISTER_PERSONALITY: 4490 ret = -EINVAL; 4491 if (arg) 4492 break; 4493 ret = io_unregister_personality(ctx, nr_args); 4494 break; 4495 case IORING_REGISTER_ENABLE_RINGS: 4496 ret = -EINVAL; 4497 if (arg || nr_args) 4498 break; 4499 ret = io_register_enable_rings(ctx); 4500 break; 4501 case IORING_REGISTER_RESTRICTIONS: 4502 ret = io_register_restrictions(ctx, arg, nr_args); 4503 break; 4504 case IORING_REGISTER_FILES2: 4505 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4506 break; 4507 case IORING_REGISTER_FILES_UPDATE2: 4508 ret = io_register_rsrc_update(ctx, arg, nr_args, 4509 IORING_RSRC_FILE); 4510 break; 4511 case IORING_REGISTER_BUFFERS2: 4512 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4513 break; 4514 case IORING_REGISTER_BUFFERS_UPDATE: 4515 ret = io_register_rsrc_update(ctx, arg, nr_args, 4516 IORING_RSRC_BUFFER); 4517 break; 4518 case IORING_REGISTER_IOWQ_AFF: 4519 ret = -EINVAL; 4520 if (!arg || !nr_args) 4521 break; 4522 ret = io_register_iowq_aff(ctx, arg, nr_args); 4523 break; 4524 case IORING_UNREGISTER_IOWQ_AFF: 4525 ret = -EINVAL; 4526 if (arg || nr_args) 4527 break; 4528 ret = io_unregister_iowq_aff(ctx); 4529 break; 4530 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4531 ret = -EINVAL; 4532 if (!arg || nr_args != 2) 4533 break; 4534 ret = io_register_iowq_max_workers(ctx, arg); 4535 break; 4536 case IORING_REGISTER_RING_FDS: 4537 ret = io_ringfd_register(ctx, arg, nr_args); 4538 break; 4539 case IORING_UNREGISTER_RING_FDS: 4540 ret = io_ringfd_unregister(ctx, arg, nr_args); 4541 break; 4542 case IORING_REGISTER_PBUF_RING: 4543 ret = -EINVAL; 4544 if (!arg || nr_args != 1) 4545 break; 4546 ret = io_register_pbuf_ring(ctx, arg); 4547 break; 4548 case IORING_UNREGISTER_PBUF_RING: 4549 ret = -EINVAL; 4550 if (!arg || nr_args != 1) 4551 break; 4552 ret = io_unregister_pbuf_ring(ctx, arg); 4553 break; 4554 case IORING_REGISTER_SYNC_CANCEL: 4555 ret = -EINVAL; 4556 if (!arg || nr_args != 1) 4557 break; 4558 ret = io_sync_cancel(ctx, arg); 4559 break; 4560 case IORING_REGISTER_FILE_ALLOC_RANGE: 4561 ret = -EINVAL; 4562 if (!arg || nr_args) 4563 break; 4564 ret = io_register_file_alloc_range(ctx, arg); 4565 break; 4566 default: 4567 ret = -EINVAL; 4568 break; 4569 } 4570 4571 return ret; 4572 } 4573 4574 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4575 void __user *, arg, unsigned int, nr_args) 4576 { 4577 struct io_ring_ctx *ctx; 4578 long ret = -EBADF; 4579 struct file *file; 4580 bool use_registered_ring; 4581 4582 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING); 4583 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING; 4584 4585 if (opcode >= IORING_REGISTER_LAST) 4586 return -EINVAL; 4587 4588 if (use_registered_ring) { 4589 /* 4590 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 4591 * need only dereference our task private array to find it. 4592 */ 4593 struct io_uring_task *tctx = current->io_uring; 4594 4595 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 4596 return -EINVAL; 4597 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 4598 file = tctx->registered_rings[fd]; 4599 if (unlikely(!file)) 4600 return -EBADF; 4601 } else { 4602 file = fget(fd); 4603 if (unlikely(!file)) 4604 return -EBADF; 4605 ret = -EOPNOTSUPP; 4606 if (!io_is_uring_fops(file)) 4607 goto out_fput; 4608 } 4609 4610 ctx = file->private_data; 4611 4612 mutex_lock(&ctx->uring_lock); 4613 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4614 mutex_unlock(&ctx->uring_lock); 4615 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4616 out_fput: 4617 if (!use_registered_ring) 4618 fput(file); 4619 return ret; 4620 } 4621 4622 static int __init io_uring_init(void) 4623 { 4624 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4625 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4626 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4627 } while (0) 4628 4629 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4630 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4631 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4632 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4633 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4634 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4635 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4636 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4637 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4638 BUILD_BUG_SQE_ELEM(8, __u64, off); 4639 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4640 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4641 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4642 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4643 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4644 BUILD_BUG_SQE_ELEM(24, __u32, len); 4645 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4646 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4647 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4648 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4649 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4650 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4651 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4652 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4653 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4654 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4655 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4656 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4657 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4658 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4659 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4660 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4661 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4662 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4663 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4664 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4665 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4666 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4667 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4668 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4669 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4670 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4671 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4672 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4673 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4674 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4675 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4676 4677 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4678 sizeof(struct io_uring_rsrc_update)); 4679 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4680 sizeof(struct io_uring_rsrc_update2)); 4681 4682 /* ->buf_index is u16 */ 4683 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4684 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4685 offsetof(struct io_uring_buf_ring, tail)); 4686 4687 /* should fit into one byte */ 4688 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4689 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4690 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4691 4692 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4693 4694 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4695 4696 io_uring_optable_init(); 4697 4698 /* 4699 * Allow user copy in the per-command field, which starts after the 4700 * file in io_kiocb and until the opcode field. The openat2 handling 4701 * requires copying in user memory into the io_kiocb object in that 4702 * range, and HARDENED_USERCOPY will complain if we haven't 4703 * correctly annotated this range. 4704 */ 4705 req_cachep = kmem_cache_create_usercopy("io_kiocb", 4706 sizeof(struct io_kiocb), 0, 4707 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4708 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU, 4709 offsetof(struct io_kiocb, cmd.data), 4710 sizeof_field(struct io_kiocb, cmd.data), NULL); 4711 4712 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64); 4713 4714 #ifdef CONFIG_SYSCTL 4715 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 4716 #endif 4717 4718 return 0; 4719 }; 4720 __initcall(io_uring_init); 4721