xref: /openbmc/linux/io_uring/io_uring.c (revision cd1e565a5b7fa60c349ca8a16db1e61715fe8230)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <linux/anon_inodes.h>
64 #include <linux/sched/mm.h>
65 #include <linux/uaccess.h>
66 #include <linux/nospec.h>
67 #include <linux/highmem.h>
68 #include <linux/fsnotify.h>
69 #include <linux/fadvise.h>
70 #include <linux/task_work.h>
71 #include <linux/io_uring.h>
72 #include <linux/audit.h>
73 #include <linux/security.h>
74 #include <asm/shmparam.h>
75 
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/io_uring.h>
78 
79 #include <uapi/linux/io_uring.h>
80 
81 #include "io-wq.h"
82 
83 #include "io_uring.h"
84 #include "opdef.h"
85 #include "refs.h"
86 #include "tctx.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 
95 #include "timeout.h"
96 #include "poll.h"
97 #include "rw.h"
98 #include "alloc_cache.h"
99 
100 #define IORING_MAX_ENTRIES	32768
101 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
102 
103 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
104 				 IORING_REGISTER_LAST + IORING_OP_LAST)
105 
106 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
107 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
108 
109 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
110 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
111 
112 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
113 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
114 				REQ_F_ASYNC_DATA)
115 
116 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
117 				 IO_REQ_CLEAN_FLAGS)
118 
119 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
120 
121 #define IO_COMPL_BATCH			32
122 #define IO_REQ_ALLOC_BATCH		8
123 
124 enum {
125 	IO_CHECK_CQ_OVERFLOW_BIT,
126 	IO_CHECK_CQ_DROPPED_BIT,
127 };
128 
129 enum {
130 	IO_EVENTFD_OP_SIGNAL_BIT,
131 	IO_EVENTFD_OP_FREE_BIT,
132 };
133 
134 struct io_defer_entry {
135 	struct list_head	list;
136 	struct io_kiocb		*req;
137 	u32			seq;
138 };
139 
140 /* requests with any of those set should undergo io_disarm_next() */
141 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
142 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
143 
144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
145 					 struct task_struct *task,
146 					 bool cancel_all);
147 
148 static void io_queue_sqe(struct io_kiocb *req);
149 
150 struct kmem_cache *req_cachep;
151 static struct workqueue_struct *iou_wq __ro_after_init;
152 
153 static int __read_mostly sysctl_io_uring_disabled;
154 static int __read_mostly sysctl_io_uring_group = -1;
155 
156 #ifdef CONFIG_SYSCTL
157 static struct ctl_table kernel_io_uring_disabled_table[] = {
158 	{
159 		.procname	= "io_uring_disabled",
160 		.data		= &sysctl_io_uring_disabled,
161 		.maxlen		= sizeof(sysctl_io_uring_disabled),
162 		.mode		= 0644,
163 		.proc_handler	= proc_dointvec_minmax,
164 		.extra1		= SYSCTL_ZERO,
165 		.extra2		= SYSCTL_TWO,
166 	},
167 	{
168 		.procname	= "io_uring_group",
169 		.data		= &sysctl_io_uring_group,
170 		.maxlen		= sizeof(gid_t),
171 		.mode		= 0644,
172 		.proc_handler	= proc_dointvec,
173 	},
174 	{},
175 };
176 #endif
177 
178 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
179 {
180 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
181 	    ctx->submit_state.cqes_count)
182 		__io_submit_flush_completions(ctx);
183 }
184 
185 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
186 {
187 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
188 }
189 
190 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
191 {
192 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
193 }
194 
195 static bool io_match_linked(struct io_kiocb *head)
196 {
197 	struct io_kiocb *req;
198 
199 	io_for_each_link(req, head) {
200 		if (req->flags & REQ_F_INFLIGHT)
201 			return true;
202 	}
203 	return false;
204 }
205 
206 /*
207  * As io_match_task() but protected against racing with linked timeouts.
208  * User must not hold timeout_lock.
209  */
210 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
211 			bool cancel_all)
212 {
213 	bool matched;
214 
215 	if (task && head->task != task)
216 		return false;
217 	if (cancel_all)
218 		return true;
219 
220 	if (head->flags & REQ_F_LINK_TIMEOUT) {
221 		struct io_ring_ctx *ctx = head->ctx;
222 
223 		/* protect against races with linked timeouts */
224 		spin_lock_irq(&ctx->timeout_lock);
225 		matched = io_match_linked(head);
226 		spin_unlock_irq(&ctx->timeout_lock);
227 	} else {
228 		matched = io_match_linked(head);
229 	}
230 	return matched;
231 }
232 
233 static inline void req_fail_link_node(struct io_kiocb *req, int res)
234 {
235 	req_set_fail(req);
236 	io_req_set_res(req, res, 0);
237 }
238 
239 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
240 {
241 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
242 }
243 
244 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
245 {
246 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
247 
248 	complete(&ctx->ref_comp);
249 }
250 
251 static __cold void io_fallback_req_func(struct work_struct *work)
252 {
253 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
254 						fallback_work.work);
255 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
256 	struct io_kiocb *req, *tmp;
257 	struct io_tw_state ts = { .locked = true, };
258 
259 	percpu_ref_get(&ctx->refs);
260 	mutex_lock(&ctx->uring_lock);
261 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
262 		req->io_task_work.func(req, &ts);
263 	if (WARN_ON_ONCE(!ts.locked))
264 		return;
265 	io_submit_flush_completions(ctx);
266 	mutex_unlock(&ctx->uring_lock);
267 	percpu_ref_put(&ctx->refs);
268 }
269 
270 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
271 {
272 	unsigned hash_buckets = 1U << bits;
273 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
274 
275 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
276 	if (!table->hbs)
277 		return -ENOMEM;
278 
279 	table->hash_bits = bits;
280 	init_hash_table(table, hash_buckets);
281 	return 0;
282 }
283 
284 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
285 {
286 	struct io_ring_ctx *ctx;
287 	int hash_bits;
288 
289 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
290 	if (!ctx)
291 		return NULL;
292 
293 	xa_init(&ctx->io_bl_xa);
294 
295 	/*
296 	 * Use 5 bits less than the max cq entries, that should give us around
297 	 * 32 entries per hash list if totally full and uniformly spread, but
298 	 * don't keep too many buckets to not overconsume memory.
299 	 */
300 	hash_bits = ilog2(p->cq_entries) - 5;
301 	hash_bits = clamp(hash_bits, 1, 8);
302 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
303 		goto err;
304 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
305 		goto err;
306 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
307 			    0, GFP_KERNEL))
308 		goto err;
309 
310 	ctx->flags = p->flags;
311 	init_waitqueue_head(&ctx->sqo_sq_wait);
312 	INIT_LIST_HEAD(&ctx->sqd_list);
313 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
314 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
315 	INIT_HLIST_HEAD(&ctx->io_buf_list);
316 	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
317 			    sizeof(struct io_rsrc_node));
318 	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
319 			    sizeof(struct async_poll));
320 	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
321 			    sizeof(struct io_async_msghdr));
322 	init_completion(&ctx->ref_comp);
323 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
324 	mutex_init(&ctx->uring_lock);
325 	init_waitqueue_head(&ctx->cq_wait);
326 	init_waitqueue_head(&ctx->poll_wq);
327 	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
328 	spin_lock_init(&ctx->completion_lock);
329 	spin_lock_init(&ctx->timeout_lock);
330 	INIT_WQ_LIST(&ctx->iopoll_list);
331 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
332 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
333 	INIT_LIST_HEAD(&ctx->defer_list);
334 	INIT_LIST_HEAD(&ctx->timeout_list);
335 	INIT_LIST_HEAD(&ctx->ltimeout_list);
336 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
337 	init_llist_head(&ctx->work_llist);
338 	INIT_LIST_HEAD(&ctx->tctx_list);
339 	ctx->submit_state.free_list.next = NULL;
340 	INIT_WQ_LIST(&ctx->locked_free_list);
341 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
342 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
343 	return ctx;
344 err:
345 	kfree(ctx->cancel_table.hbs);
346 	kfree(ctx->cancel_table_locked.hbs);
347 	xa_destroy(&ctx->io_bl_xa);
348 	kfree(ctx);
349 	return NULL;
350 }
351 
352 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
353 {
354 	struct io_rings *r = ctx->rings;
355 
356 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
357 	ctx->cq_extra--;
358 }
359 
360 static bool req_need_defer(struct io_kiocb *req, u32 seq)
361 {
362 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
363 		struct io_ring_ctx *ctx = req->ctx;
364 
365 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
366 	}
367 
368 	return false;
369 }
370 
371 static void io_clean_op(struct io_kiocb *req)
372 {
373 	if (req->flags & REQ_F_BUFFER_SELECTED) {
374 		spin_lock(&req->ctx->completion_lock);
375 		io_put_kbuf_comp(req);
376 		spin_unlock(&req->ctx->completion_lock);
377 	}
378 
379 	if (req->flags & REQ_F_NEED_CLEANUP) {
380 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
381 
382 		if (def->cleanup)
383 			def->cleanup(req);
384 	}
385 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
386 		kfree(req->apoll->double_poll);
387 		kfree(req->apoll);
388 		req->apoll = NULL;
389 	}
390 	if (req->flags & REQ_F_INFLIGHT) {
391 		struct io_uring_task *tctx = req->task->io_uring;
392 
393 		atomic_dec(&tctx->inflight_tracked);
394 	}
395 	if (req->flags & REQ_F_CREDS)
396 		put_cred(req->creds);
397 	if (req->flags & REQ_F_ASYNC_DATA) {
398 		kfree(req->async_data);
399 		req->async_data = NULL;
400 	}
401 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
402 }
403 
404 static inline void io_req_track_inflight(struct io_kiocb *req)
405 {
406 	if (!(req->flags & REQ_F_INFLIGHT)) {
407 		req->flags |= REQ_F_INFLIGHT;
408 		atomic_inc(&req->task->io_uring->inflight_tracked);
409 	}
410 }
411 
412 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
413 {
414 	if (WARN_ON_ONCE(!req->link))
415 		return NULL;
416 
417 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
418 	req->flags |= REQ_F_LINK_TIMEOUT;
419 
420 	/* linked timeouts should have two refs once prep'ed */
421 	io_req_set_refcount(req);
422 	__io_req_set_refcount(req->link, 2);
423 	return req->link;
424 }
425 
426 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
427 {
428 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
429 		return NULL;
430 	return __io_prep_linked_timeout(req);
431 }
432 
433 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
434 {
435 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
436 }
437 
438 static inline void io_arm_ltimeout(struct io_kiocb *req)
439 {
440 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
441 		__io_arm_ltimeout(req);
442 }
443 
444 static void io_prep_async_work(struct io_kiocb *req)
445 {
446 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
447 	struct io_ring_ctx *ctx = req->ctx;
448 
449 	if (!(req->flags & REQ_F_CREDS)) {
450 		req->flags |= REQ_F_CREDS;
451 		req->creds = get_current_cred();
452 	}
453 
454 	req->work.list.next = NULL;
455 	req->work.flags = 0;
456 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
457 	if (req->flags & REQ_F_FORCE_ASYNC)
458 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
459 
460 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
461 		req->flags |= io_file_get_flags(req->file);
462 
463 	if (req->file && (req->flags & REQ_F_ISREG)) {
464 		bool should_hash = def->hash_reg_file;
465 
466 		/* don't serialize this request if the fs doesn't need it */
467 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
468 		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
469 			should_hash = false;
470 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
471 			io_wq_hash_work(&req->work, file_inode(req->file));
472 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
473 		if (def->unbound_nonreg_file)
474 			req->work.flags |= IO_WQ_WORK_UNBOUND;
475 	}
476 }
477 
478 static void io_prep_async_link(struct io_kiocb *req)
479 {
480 	struct io_kiocb *cur;
481 
482 	if (req->flags & REQ_F_LINK_TIMEOUT) {
483 		struct io_ring_ctx *ctx = req->ctx;
484 
485 		spin_lock_irq(&ctx->timeout_lock);
486 		io_for_each_link(cur, req)
487 			io_prep_async_work(cur);
488 		spin_unlock_irq(&ctx->timeout_lock);
489 	} else {
490 		io_for_each_link(cur, req)
491 			io_prep_async_work(cur);
492 	}
493 }
494 
495 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
496 {
497 	struct io_kiocb *link = io_prep_linked_timeout(req);
498 	struct io_uring_task *tctx = req->task->io_uring;
499 
500 	BUG_ON(!tctx);
501 	BUG_ON(!tctx->io_wq);
502 
503 	/* init ->work of the whole link before punting */
504 	io_prep_async_link(req);
505 
506 	/*
507 	 * Not expected to happen, but if we do have a bug where this _can_
508 	 * happen, catch it here and ensure the request is marked as
509 	 * canceled. That will make io-wq go through the usual work cancel
510 	 * procedure rather than attempt to run this request (or create a new
511 	 * worker for it).
512 	 */
513 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
514 		req->work.flags |= IO_WQ_WORK_CANCEL;
515 
516 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
517 	io_wq_enqueue(tctx->io_wq, &req->work);
518 	if (link)
519 		io_queue_linked_timeout(link);
520 }
521 
522 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
523 {
524 	while (!list_empty(&ctx->defer_list)) {
525 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
526 						struct io_defer_entry, list);
527 
528 		if (req_need_defer(de->req, de->seq))
529 			break;
530 		list_del_init(&de->list);
531 		io_req_task_queue(de->req);
532 		kfree(de);
533 	}
534 }
535 
536 
537 static void io_eventfd_ops(struct rcu_head *rcu)
538 {
539 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
540 	int ops = atomic_xchg(&ev_fd->ops, 0);
541 
542 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
543 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
544 
545 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
546 	 * ordering in a race but if references are 0 we know we have to free
547 	 * it regardless.
548 	 */
549 	if (atomic_dec_and_test(&ev_fd->refs)) {
550 		eventfd_ctx_put(ev_fd->cq_ev_fd);
551 		kfree(ev_fd);
552 	}
553 }
554 
555 static void io_eventfd_signal(struct io_ring_ctx *ctx)
556 {
557 	struct io_ev_fd *ev_fd = NULL;
558 
559 	rcu_read_lock();
560 	/*
561 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
562 	 * and eventfd_signal
563 	 */
564 	ev_fd = rcu_dereference(ctx->io_ev_fd);
565 
566 	/*
567 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
568 	 * completed between the NULL check of ctx->io_ev_fd at the start of
569 	 * the function and rcu_read_lock.
570 	 */
571 	if (unlikely(!ev_fd))
572 		goto out;
573 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
574 		goto out;
575 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
576 		goto out;
577 
578 	if (likely(eventfd_signal_allowed())) {
579 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
580 	} else {
581 		atomic_inc(&ev_fd->refs);
582 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
583 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
584 		else
585 			atomic_dec(&ev_fd->refs);
586 	}
587 
588 out:
589 	rcu_read_unlock();
590 }
591 
592 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
593 {
594 	bool skip;
595 
596 	spin_lock(&ctx->completion_lock);
597 
598 	/*
599 	 * Eventfd should only get triggered when at least one event has been
600 	 * posted. Some applications rely on the eventfd notification count
601 	 * only changing IFF a new CQE has been added to the CQ ring. There's
602 	 * no depedency on 1:1 relationship between how many times this
603 	 * function is called (and hence the eventfd count) and number of CQEs
604 	 * posted to the CQ ring.
605 	 */
606 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
607 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
608 	spin_unlock(&ctx->completion_lock);
609 	if (skip)
610 		return;
611 
612 	io_eventfd_signal(ctx);
613 }
614 
615 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
616 {
617 	if (ctx->poll_activated)
618 		io_poll_wq_wake(ctx);
619 	if (ctx->off_timeout_used)
620 		io_flush_timeouts(ctx);
621 	if (ctx->drain_active) {
622 		spin_lock(&ctx->completion_lock);
623 		io_queue_deferred(ctx);
624 		spin_unlock(&ctx->completion_lock);
625 	}
626 	if (ctx->has_evfd)
627 		io_eventfd_flush_signal(ctx);
628 }
629 
630 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
631 {
632 	if (!ctx->lockless_cq)
633 		spin_lock(&ctx->completion_lock);
634 }
635 
636 static inline void io_cq_lock(struct io_ring_ctx *ctx)
637 	__acquires(ctx->completion_lock)
638 {
639 	spin_lock(&ctx->completion_lock);
640 }
641 
642 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
643 {
644 	io_commit_cqring(ctx);
645 	if (!ctx->task_complete) {
646 		if (!ctx->lockless_cq)
647 			spin_unlock(&ctx->completion_lock);
648 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
649 		if (!ctx->syscall_iopoll)
650 			io_cqring_wake(ctx);
651 	}
652 	io_commit_cqring_flush(ctx);
653 }
654 
655 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
656 	__releases(ctx->completion_lock)
657 {
658 	io_commit_cqring(ctx);
659 	spin_unlock(&ctx->completion_lock);
660 	io_cqring_wake(ctx);
661 	io_commit_cqring_flush(ctx);
662 }
663 
664 /* Returns true if there are no backlogged entries after the flush */
665 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
666 {
667 	struct io_overflow_cqe *ocqe;
668 	LIST_HEAD(list);
669 
670 	lockdep_assert_held(&ctx->uring_lock);
671 
672 	spin_lock(&ctx->completion_lock);
673 	list_splice_init(&ctx->cq_overflow_list, &list);
674 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
675 	spin_unlock(&ctx->completion_lock);
676 
677 	while (!list_empty(&list)) {
678 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
679 		list_del(&ocqe->list);
680 		kfree(ocqe);
681 	}
682 }
683 
684 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
685 {
686 	size_t cqe_size = sizeof(struct io_uring_cqe);
687 
688 	lockdep_assert_held(&ctx->uring_lock);
689 
690 	if (__io_cqring_events(ctx) == ctx->cq_entries)
691 		return;
692 
693 	if (ctx->flags & IORING_SETUP_CQE32)
694 		cqe_size <<= 1;
695 
696 	io_cq_lock(ctx);
697 	while (!list_empty(&ctx->cq_overflow_list)) {
698 		struct io_uring_cqe *cqe;
699 		struct io_overflow_cqe *ocqe;
700 
701 		if (!io_get_cqe_overflow(ctx, &cqe, true))
702 			break;
703 		ocqe = list_first_entry(&ctx->cq_overflow_list,
704 					struct io_overflow_cqe, list);
705 		memcpy(cqe, &ocqe->cqe, cqe_size);
706 		list_del(&ocqe->list);
707 		kfree(ocqe);
708 
709 		/*
710 		 * For silly syzbot cases that deliberately overflow by huge
711 		 * amounts, check if we need to resched and drop and
712 		 * reacquire the locks if so. Nothing real would ever hit this.
713 		 * Ideally we'd have a non-posting unlock for this, but hard
714 		 * to care for a non-real case.
715 		 */
716 		if (need_resched()) {
717 			io_cq_unlock_post(ctx);
718 			mutex_unlock(&ctx->uring_lock);
719 			cond_resched();
720 			mutex_lock(&ctx->uring_lock);
721 			io_cq_lock(ctx);
722 		}
723 	}
724 
725 	if (list_empty(&ctx->cq_overflow_list)) {
726 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
727 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
728 	}
729 	io_cq_unlock_post(ctx);
730 }
731 
732 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
733 {
734 	mutex_lock(&ctx->uring_lock);
735 	__io_cqring_overflow_flush(ctx);
736 	mutex_unlock(&ctx->uring_lock);
737 }
738 
739 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
740 {
741 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
742 		io_cqring_do_overflow_flush(ctx);
743 }
744 
745 /* can be called by any task */
746 static void io_put_task_remote(struct task_struct *task)
747 {
748 	struct io_uring_task *tctx = task->io_uring;
749 
750 	percpu_counter_sub(&tctx->inflight, 1);
751 	if (unlikely(atomic_read(&tctx->in_cancel)))
752 		wake_up(&tctx->wait);
753 	put_task_struct(task);
754 }
755 
756 /* used by a task to put its own references */
757 static void io_put_task_local(struct task_struct *task)
758 {
759 	task->io_uring->cached_refs++;
760 }
761 
762 /* must to be called somewhat shortly after putting a request */
763 static inline void io_put_task(struct task_struct *task)
764 {
765 	if (likely(task == current))
766 		io_put_task_local(task);
767 	else
768 		io_put_task_remote(task);
769 }
770 
771 void io_task_refs_refill(struct io_uring_task *tctx)
772 {
773 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
774 
775 	percpu_counter_add(&tctx->inflight, refill);
776 	refcount_add(refill, &current->usage);
777 	tctx->cached_refs += refill;
778 }
779 
780 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
781 {
782 	struct io_uring_task *tctx = task->io_uring;
783 	unsigned int refs = tctx->cached_refs;
784 
785 	if (refs) {
786 		tctx->cached_refs = 0;
787 		percpu_counter_sub(&tctx->inflight, refs);
788 		put_task_struct_many(task, refs);
789 	}
790 }
791 
792 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
793 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
794 {
795 	struct io_overflow_cqe *ocqe;
796 	size_t ocq_size = sizeof(struct io_overflow_cqe);
797 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
798 
799 	lockdep_assert_held(&ctx->completion_lock);
800 
801 	if (is_cqe32)
802 		ocq_size += sizeof(struct io_uring_cqe);
803 
804 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
805 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
806 	if (!ocqe) {
807 		/*
808 		 * If we're in ring overflow flush mode, or in task cancel mode,
809 		 * or cannot allocate an overflow entry, then we need to drop it
810 		 * on the floor.
811 		 */
812 		io_account_cq_overflow(ctx);
813 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
814 		return false;
815 	}
816 	if (list_empty(&ctx->cq_overflow_list)) {
817 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
818 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
819 
820 	}
821 	ocqe->cqe.user_data = user_data;
822 	ocqe->cqe.res = res;
823 	ocqe->cqe.flags = cflags;
824 	if (is_cqe32) {
825 		ocqe->cqe.big_cqe[0] = extra1;
826 		ocqe->cqe.big_cqe[1] = extra2;
827 	}
828 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
829 	return true;
830 }
831 
832 void io_req_cqe_overflow(struct io_kiocb *req)
833 {
834 	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
835 				req->cqe.res, req->cqe.flags,
836 				req->big_cqe.extra1, req->big_cqe.extra2);
837 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
838 }
839 
840 /*
841  * writes to the cq entry need to come after reading head; the
842  * control dependency is enough as we're using WRITE_ONCE to
843  * fill the cq entry
844  */
845 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
846 {
847 	struct io_rings *rings = ctx->rings;
848 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
849 	unsigned int free, queued, len;
850 
851 	/*
852 	 * Posting into the CQ when there are pending overflowed CQEs may break
853 	 * ordering guarantees, which will affect links, F_MORE users and more.
854 	 * Force overflow the completion.
855 	 */
856 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
857 		return false;
858 
859 	/* userspace may cheat modifying the tail, be safe and do min */
860 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
861 	free = ctx->cq_entries - queued;
862 	/* we need a contiguous range, limit based on the current array offset */
863 	len = min(free, ctx->cq_entries - off);
864 	if (!len)
865 		return false;
866 
867 	if (ctx->flags & IORING_SETUP_CQE32) {
868 		off <<= 1;
869 		len <<= 1;
870 	}
871 
872 	ctx->cqe_cached = &rings->cqes[off];
873 	ctx->cqe_sentinel = ctx->cqe_cached + len;
874 	return true;
875 }
876 
877 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
878 			      u32 cflags)
879 {
880 	struct io_uring_cqe *cqe;
881 
882 	ctx->cq_extra++;
883 
884 	/*
885 	 * If we can't get a cq entry, userspace overflowed the
886 	 * submission (by quite a lot). Increment the overflow count in
887 	 * the ring.
888 	 */
889 	if (likely(io_get_cqe(ctx, &cqe))) {
890 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
891 
892 		WRITE_ONCE(cqe->user_data, user_data);
893 		WRITE_ONCE(cqe->res, res);
894 		WRITE_ONCE(cqe->flags, cflags);
895 
896 		if (ctx->flags & IORING_SETUP_CQE32) {
897 			WRITE_ONCE(cqe->big_cqe[0], 0);
898 			WRITE_ONCE(cqe->big_cqe[1], 0);
899 		}
900 		return true;
901 	}
902 	return false;
903 }
904 
905 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
906 	__must_hold(&ctx->uring_lock)
907 {
908 	struct io_submit_state *state = &ctx->submit_state;
909 	unsigned int i;
910 
911 	lockdep_assert_held(&ctx->uring_lock);
912 	for (i = 0; i < state->cqes_count; i++) {
913 		struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
914 
915 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
916 			if (ctx->lockless_cq) {
917 				spin_lock(&ctx->completion_lock);
918 				io_cqring_event_overflow(ctx, cqe->user_data,
919 							cqe->res, cqe->flags, 0, 0);
920 				spin_unlock(&ctx->completion_lock);
921 			} else {
922 				io_cqring_event_overflow(ctx, cqe->user_data,
923 							cqe->res, cqe->flags, 0, 0);
924 			}
925 		}
926 	}
927 	state->cqes_count = 0;
928 }
929 
930 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
931 			      bool allow_overflow)
932 {
933 	bool filled;
934 
935 	io_cq_lock(ctx);
936 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
937 	if (!filled && allow_overflow)
938 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
939 
940 	io_cq_unlock_post(ctx);
941 	return filled;
942 }
943 
944 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
945 {
946 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
947 }
948 
949 /*
950  * A helper for multishot requests posting additional CQEs.
951  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
952  */
953 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
954 {
955 	struct io_ring_ctx *ctx = req->ctx;
956 	u64 user_data = req->cqe.user_data;
957 	struct io_uring_cqe *cqe;
958 
959 	if (!defer)
960 		return __io_post_aux_cqe(ctx, user_data, res, cflags, false);
961 
962 	lockdep_assert_held(&ctx->uring_lock);
963 
964 	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
965 		__io_cq_lock(ctx);
966 		__io_flush_post_cqes(ctx);
967 		/* no need to flush - flush is deferred */
968 		__io_cq_unlock_post(ctx);
969 	}
970 
971 	/* For defered completions this is not as strict as it is otherwise,
972 	 * however it's main job is to prevent unbounded posted completions,
973 	 * and in that it works just as well.
974 	 */
975 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
976 		return false;
977 
978 	cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
979 	cqe->user_data = user_data;
980 	cqe->res = res;
981 	cqe->flags = cflags;
982 	return true;
983 }
984 
985 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
986 {
987 	struct io_ring_ctx *ctx = req->ctx;
988 	struct io_rsrc_node *rsrc_node = NULL;
989 
990 	io_cq_lock(ctx);
991 	if (!(req->flags & REQ_F_CQE_SKIP)) {
992 		if (!io_fill_cqe_req(ctx, req))
993 			io_req_cqe_overflow(req);
994 	}
995 
996 	/*
997 	 * If we're the last reference to this request, add to our locked
998 	 * free_list cache.
999 	 */
1000 	if (req_ref_put_and_test(req)) {
1001 		if (req->flags & IO_REQ_LINK_FLAGS) {
1002 			if (req->flags & IO_DISARM_MASK)
1003 				io_disarm_next(req);
1004 			if (req->link) {
1005 				io_req_task_queue(req->link);
1006 				req->link = NULL;
1007 			}
1008 		}
1009 		io_put_kbuf_comp(req);
1010 		if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1011 			io_clean_op(req);
1012 		io_put_file(req);
1013 
1014 		rsrc_node = req->rsrc_node;
1015 		/*
1016 		 * Selected buffer deallocation in io_clean_op() assumes that
1017 		 * we don't hold ->completion_lock. Clean them here to avoid
1018 		 * deadlocks.
1019 		 */
1020 		io_put_task_remote(req->task);
1021 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1022 		ctx->locked_free_nr++;
1023 	}
1024 	io_cq_unlock_post(ctx);
1025 
1026 	if (rsrc_node) {
1027 		io_ring_submit_lock(ctx, issue_flags);
1028 		io_put_rsrc_node(ctx, rsrc_node);
1029 		io_ring_submit_unlock(ctx, issue_flags);
1030 	}
1031 }
1032 
1033 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1034 {
1035 	if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1036 		req->io_task_work.func = io_req_task_complete;
1037 		io_req_task_work_add(req);
1038 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1039 		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1040 		__io_req_complete_post(req, issue_flags);
1041 	} else {
1042 		struct io_ring_ctx *ctx = req->ctx;
1043 
1044 		mutex_lock(&ctx->uring_lock);
1045 		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1046 		mutex_unlock(&ctx->uring_lock);
1047 	}
1048 }
1049 
1050 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1051 	__must_hold(&ctx->uring_lock)
1052 {
1053 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1054 
1055 	lockdep_assert_held(&req->ctx->uring_lock);
1056 
1057 	req_set_fail(req);
1058 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1059 	if (def->fail)
1060 		def->fail(req);
1061 	io_req_complete_defer(req);
1062 }
1063 
1064 /*
1065  * Don't initialise the fields below on every allocation, but do that in
1066  * advance and keep them valid across allocations.
1067  */
1068 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1069 {
1070 	req->ctx = ctx;
1071 	req->link = NULL;
1072 	req->async_data = NULL;
1073 	/* not necessary, but safer to zero */
1074 	memset(&req->cqe, 0, sizeof(req->cqe));
1075 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1076 }
1077 
1078 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1079 					struct io_submit_state *state)
1080 {
1081 	spin_lock(&ctx->completion_lock);
1082 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1083 	ctx->locked_free_nr = 0;
1084 	spin_unlock(&ctx->completion_lock);
1085 }
1086 
1087 /*
1088  * A request might get retired back into the request caches even before opcode
1089  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1090  * Because of that, io_alloc_req() should be called only under ->uring_lock
1091  * and with extra caution to not get a request that is still worked on.
1092  */
1093 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1094 	__must_hold(&ctx->uring_lock)
1095 {
1096 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1097 	void *reqs[IO_REQ_ALLOC_BATCH];
1098 	int ret, i;
1099 
1100 	/*
1101 	 * If we have more than a batch's worth of requests in our IRQ side
1102 	 * locked cache, grab the lock and move them over to our submission
1103 	 * side cache.
1104 	 */
1105 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1106 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1107 		if (!io_req_cache_empty(ctx))
1108 			return true;
1109 	}
1110 
1111 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1112 
1113 	/*
1114 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1115 	 * retry single alloc to be on the safe side.
1116 	 */
1117 	if (unlikely(ret <= 0)) {
1118 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1119 		if (!reqs[0])
1120 			return false;
1121 		ret = 1;
1122 	}
1123 
1124 	percpu_ref_get_many(&ctx->refs, ret);
1125 	for (i = 0; i < ret; i++) {
1126 		struct io_kiocb *req = reqs[i];
1127 
1128 		io_preinit_req(req, ctx);
1129 		io_req_add_to_cache(req, ctx);
1130 	}
1131 	return true;
1132 }
1133 
1134 __cold void io_free_req(struct io_kiocb *req)
1135 {
1136 	/* refs were already put, restore them for io_req_task_complete() */
1137 	req->flags &= ~REQ_F_REFCOUNT;
1138 	/* we only want to free it, don't post CQEs */
1139 	req->flags |= REQ_F_CQE_SKIP;
1140 	req->io_task_work.func = io_req_task_complete;
1141 	io_req_task_work_add(req);
1142 }
1143 
1144 static void __io_req_find_next_prep(struct io_kiocb *req)
1145 {
1146 	struct io_ring_ctx *ctx = req->ctx;
1147 
1148 	spin_lock(&ctx->completion_lock);
1149 	io_disarm_next(req);
1150 	spin_unlock(&ctx->completion_lock);
1151 }
1152 
1153 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1154 {
1155 	struct io_kiocb *nxt;
1156 
1157 	/*
1158 	 * If LINK is set, we have dependent requests in this chain. If we
1159 	 * didn't fail this request, queue the first one up, moving any other
1160 	 * dependencies to the next request. In case of failure, fail the rest
1161 	 * of the chain.
1162 	 */
1163 	if (unlikely(req->flags & IO_DISARM_MASK))
1164 		__io_req_find_next_prep(req);
1165 	nxt = req->link;
1166 	req->link = NULL;
1167 	return nxt;
1168 }
1169 
1170 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1171 {
1172 	if (!ctx)
1173 		return;
1174 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1175 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1176 	if (ts->locked) {
1177 		io_submit_flush_completions(ctx);
1178 		mutex_unlock(&ctx->uring_lock);
1179 		ts->locked = false;
1180 	}
1181 	percpu_ref_put(&ctx->refs);
1182 }
1183 
1184 static unsigned int handle_tw_list(struct llist_node *node,
1185 				   struct io_ring_ctx **ctx,
1186 				   struct io_tw_state *ts)
1187 {
1188 	unsigned int count = 0;
1189 
1190 	do {
1191 		struct llist_node *next = node->next;
1192 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1193 						    io_task_work.node);
1194 
1195 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1196 
1197 		if (req->ctx != *ctx) {
1198 			ctx_flush_and_put(*ctx, ts);
1199 			*ctx = req->ctx;
1200 			/* if not contended, grab and improve batching */
1201 			ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1202 			percpu_ref_get(&(*ctx)->refs);
1203 		}
1204 		INDIRECT_CALL_2(req->io_task_work.func,
1205 				io_poll_task_func, io_req_rw_complete,
1206 				req, ts);
1207 		node = next;
1208 		count++;
1209 		if (unlikely(need_resched())) {
1210 			ctx_flush_and_put(*ctx, ts);
1211 			*ctx = NULL;
1212 			cond_resched();
1213 		}
1214 	} while (node);
1215 
1216 	return count;
1217 }
1218 
1219 /**
1220  * io_llist_xchg - swap all entries in a lock-less list
1221  * @head:	the head of lock-less list to delete all entries
1222  * @new:	new entry as the head of the list
1223  *
1224  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1225  * The order of entries returned is from the newest to the oldest added one.
1226  */
1227 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1228 					       struct llist_node *new)
1229 {
1230 	return xchg(&head->first, new);
1231 }
1232 
1233 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1234 {
1235 	struct llist_node *node = llist_del_all(&tctx->task_list);
1236 	struct io_ring_ctx *last_ctx = NULL;
1237 	struct io_kiocb *req;
1238 
1239 	while (node) {
1240 		req = container_of(node, struct io_kiocb, io_task_work.node);
1241 		node = node->next;
1242 		if (sync && last_ctx != req->ctx) {
1243 			if (last_ctx) {
1244 				flush_delayed_work(&last_ctx->fallback_work);
1245 				percpu_ref_put(&last_ctx->refs);
1246 			}
1247 			last_ctx = req->ctx;
1248 			percpu_ref_get(&last_ctx->refs);
1249 		}
1250 		if (llist_add(&req->io_task_work.node,
1251 			      &req->ctx->fallback_llist))
1252 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1253 	}
1254 
1255 	if (last_ctx) {
1256 		flush_delayed_work(&last_ctx->fallback_work);
1257 		percpu_ref_put(&last_ctx->refs);
1258 	}
1259 }
1260 
1261 void tctx_task_work(struct callback_head *cb)
1262 {
1263 	struct io_tw_state ts = {};
1264 	struct io_ring_ctx *ctx = NULL;
1265 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1266 						  task_work);
1267 	struct llist_node *node;
1268 	unsigned int count = 0;
1269 
1270 	if (unlikely(current->flags & PF_EXITING)) {
1271 		io_fallback_tw(tctx, true);
1272 		return;
1273 	}
1274 
1275 	node = llist_del_all(&tctx->task_list);
1276 	if (node)
1277 		count = handle_tw_list(node, &ctx, &ts);
1278 
1279 	ctx_flush_and_put(ctx, &ts);
1280 
1281 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1282 	if (unlikely(atomic_read(&tctx->in_cancel)))
1283 		io_uring_drop_tctx_refs(current);
1284 
1285 	trace_io_uring_task_work_run(tctx, count, 1);
1286 }
1287 
1288 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1289 {
1290 	struct io_ring_ctx *ctx = req->ctx;
1291 	unsigned nr_wait, nr_tw, nr_tw_prev;
1292 	struct llist_node *first;
1293 
1294 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1295 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1296 
1297 	first = READ_ONCE(ctx->work_llist.first);
1298 	do {
1299 		nr_tw_prev = 0;
1300 		if (first) {
1301 			struct io_kiocb *first_req = container_of(first,
1302 							struct io_kiocb,
1303 							io_task_work.node);
1304 			/*
1305 			 * Might be executed at any moment, rely on
1306 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1307 			 */
1308 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1309 		}
1310 		nr_tw = nr_tw_prev + 1;
1311 		/* Large enough to fail the nr_wait comparison below */
1312 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1313 			nr_tw = INT_MAX;
1314 
1315 		req->nr_tw = nr_tw;
1316 		req->io_task_work.node.next = first;
1317 	} while (!try_cmpxchg(&ctx->work_llist.first, &first,
1318 			      &req->io_task_work.node));
1319 
1320 	if (!first) {
1321 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1322 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1323 		if (ctx->has_evfd)
1324 			io_eventfd_signal(ctx);
1325 	}
1326 
1327 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1328 	/* no one is waiting */
1329 	if (!nr_wait)
1330 		return;
1331 	/* either not enough or the previous add has already woken it up */
1332 	if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1333 		return;
1334 	/* pairs with set_current_state() in io_cqring_wait() */
1335 	smp_mb__after_atomic();
1336 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1337 }
1338 
1339 static void io_req_normal_work_add(struct io_kiocb *req)
1340 {
1341 	struct io_uring_task *tctx = req->task->io_uring;
1342 	struct io_ring_ctx *ctx = req->ctx;
1343 
1344 	/* task_work already pending, we're done */
1345 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1346 		return;
1347 
1348 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1349 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1350 
1351 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1352 		return;
1353 
1354 	io_fallback_tw(tctx, false);
1355 }
1356 
1357 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1358 {
1359 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1360 		rcu_read_lock();
1361 		io_req_local_work_add(req, flags);
1362 		rcu_read_unlock();
1363 	} else {
1364 		io_req_normal_work_add(req);
1365 	}
1366 }
1367 
1368 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1369 {
1370 	struct llist_node *node;
1371 
1372 	node = llist_del_all(&ctx->work_llist);
1373 	while (node) {
1374 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1375 						    io_task_work.node);
1376 
1377 		node = node->next;
1378 		io_req_normal_work_add(req);
1379 	}
1380 }
1381 
1382 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1383 				       int min_events)
1384 {
1385 	if (llist_empty(&ctx->work_llist))
1386 		return false;
1387 	if (events < min_events)
1388 		return true;
1389 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1390 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1391 	return false;
1392 }
1393 
1394 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1395 			       int min_events)
1396 {
1397 	struct llist_node *node;
1398 	unsigned int loops = 0;
1399 	int ret = 0;
1400 
1401 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1402 		return -EEXIST;
1403 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1404 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1405 again:
1406 	/*
1407 	 * llists are in reverse order, flip it back the right way before
1408 	 * running the pending items.
1409 	 */
1410 	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1411 	while (node) {
1412 		struct llist_node *next = node->next;
1413 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1414 						    io_task_work.node);
1415 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1416 		INDIRECT_CALL_2(req->io_task_work.func,
1417 				io_poll_task_func, io_req_rw_complete,
1418 				req, ts);
1419 		ret++;
1420 		node = next;
1421 	}
1422 	loops++;
1423 
1424 	if (io_run_local_work_continue(ctx, ret, min_events))
1425 		goto again;
1426 	if (ts->locked) {
1427 		io_submit_flush_completions(ctx);
1428 		if (io_run_local_work_continue(ctx, ret, min_events))
1429 			goto again;
1430 	}
1431 
1432 	trace_io_uring_local_work_run(ctx, ret, loops);
1433 	return ret;
1434 }
1435 
1436 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1437 					   int min_events)
1438 {
1439 	struct io_tw_state ts = { .locked = true, };
1440 	int ret;
1441 
1442 	if (llist_empty(&ctx->work_llist))
1443 		return 0;
1444 
1445 	ret = __io_run_local_work(ctx, &ts, min_events);
1446 	/* shouldn't happen! */
1447 	if (WARN_ON_ONCE(!ts.locked))
1448 		mutex_lock(&ctx->uring_lock);
1449 	return ret;
1450 }
1451 
1452 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events)
1453 {
1454 	struct io_tw_state ts = {};
1455 	int ret;
1456 
1457 	ts.locked = mutex_trylock(&ctx->uring_lock);
1458 	ret = __io_run_local_work(ctx, &ts, min_events);
1459 	if (ts.locked)
1460 		mutex_unlock(&ctx->uring_lock);
1461 
1462 	return ret;
1463 }
1464 
1465 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1466 {
1467 	io_tw_lock(req->ctx, ts);
1468 	io_req_defer_failed(req, req->cqe.res);
1469 }
1470 
1471 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1472 {
1473 	io_tw_lock(req->ctx, ts);
1474 	/* req->task == current here, checking PF_EXITING is safe */
1475 	if (unlikely(req->task->flags & PF_EXITING))
1476 		io_req_defer_failed(req, -EFAULT);
1477 	else if (req->flags & REQ_F_FORCE_ASYNC)
1478 		io_queue_iowq(req, ts);
1479 	else
1480 		io_queue_sqe(req);
1481 }
1482 
1483 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1484 {
1485 	io_req_set_res(req, ret, 0);
1486 	req->io_task_work.func = io_req_task_cancel;
1487 	io_req_task_work_add(req);
1488 }
1489 
1490 void io_req_task_queue(struct io_kiocb *req)
1491 {
1492 	req->io_task_work.func = io_req_task_submit;
1493 	io_req_task_work_add(req);
1494 }
1495 
1496 void io_queue_next(struct io_kiocb *req)
1497 {
1498 	struct io_kiocb *nxt = io_req_find_next(req);
1499 
1500 	if (nxt)
1501 		io_req_task_queue(nxt);
1502 }
1503 
1504 static void io_free_batch_list(struct io_ring_ctx *ctx,
1505 			       struct io_wq_work_node *node)
1506 	__must_hold(&ctx->uring_lock)
1507 {
1508 	do {
1509 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1510 						    comp_list);
1511 
1512 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1513 			if (req->flags & REQ_F_REFCOUNT) {
1514 				node = req->comp_list.next;
1515 				if (!req_ref_put_and_test(req))
1516 					continue;
1517 			}
1518 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1519 				struct async_poll *apoll = req->apoll;
1520 
1521 				if (apoll->double_poll)
1522 					kfree(apoll->double_poll);
1523 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1524 					kfree(apoll);
1525 				req->flags &= ~REQ_F_POLLED;
1526 			}
1527 			if (req->flags & IO_REQ_LINK_FLAGS)
1528 				io_queue_next(req);
1529 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1530 				io_clean_op(req);
1531 		}
1532 		io_put_file(req);
1533 
1534 		io_req_put_rsrc_locked(req, ctx);
1535 
1536 		io_put_task(req->task);
1537 		node = req->comp_list.next;
1538 		io_req_add_to_cache(req, ctx);
1539 	} while (node);
1540 }
1541 
1542 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1543 	__must_hold(&ctx->uring_lock)
1544 {
1545 	struct io_submit_state *state = &ctx->submit_state;
1546 	struct io_wq_work_node *node;
1547 
1548 	__io_cq_lock(ctx);
1549 	/* must come first to preserve CQE ordering in failure cases */
1550 	if (state->cqes_count)
1551 		__io_flush_post_cqes(ctx);
1552 	__wq_list_for_each(node, &state->compl_reqs) {
1553 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1554 					    comp_list);
1555 
1556 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1557 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1558 			if (ctx->lockless_cq) {
1559 				spin_lock(&ctx->completion_lock);
1560 				io_req_cqe_overflow(req);
1561 				spin_unlock(&ctx->completion_lock);
1562 			} else {
1563 				io_req_cqe_overflow(req);
1564 			}
1565 		}
1566 	}
1567 	__io_cq_unlock_post(ctx);
1568 
1569 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1570 		io_free_batch_list(ctx, state->compl_reqs.first);
1571 		INIT_WQ_LIST(&state->compl_reqs);
1572 	}
1573 }
1574 
1575 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1576 {
1577 	/* See comment at the top of this file */
1578 	smp_rmb();
1579 	return __io_cqring_events(ctx);
1580 }
1581 
1582 /*
1583  * We can't just wait for polled events to come to us, we have to actively
1584  * find and complete them.
1585  */
1586 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1587 {
1588 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1589 		return;
1590 
1591 	mutex_lock(&ctx->uring_lock);
1592 	while (!wq_list_empty(&ctx->iopoll_list)) {
1593 		/* let it sleep and repeat later if can't complete a request */
1594 		if (io_do_iopoll(ctx, true) == 0)
1595 			break;
1596 		/*
1597 		 * Ensure we allow local-to-the-cpu processing to take place,
1598 		 * in this case we need to ensure that we reap all events.
1599 		 * Also let task_work, etc. to progress by releasing the mutex
1600 		 */
1601 		if (need_resched()) {
1602 			mutex_unlock(&ctx->uring_lock);
1603 			cond_resched();
1604 			mutex_lock(&ctx->uring_lock);
1605 		}
1606 	}
1607 	mutex_unlock(&ctx->uring_lock);
1608 }
1609 
1610 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1611 {
1612 	unsigned int nr_events = 0;
1613 	unsigned long check_cq;
1614 
1615 	lockdep_assert_held(&ctx->uring_lock);
1616 
1617 	if (!io_allowed_run_tw(ctx))
1618 		return -EEXIST;
1619 
1620 	check_cq = READ_ONCE(ctx->check_cq);
1621 	if (unlikely(check_cq)) {
1622 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1623 			__io_cqring_overflow_flush(ctx);
1624 		/*
1625 		 * Similarly do not spin if we have not informed the user of any
1626 		 * dropped CQE.
1627 		 */
1628 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1629 			return -EBADR;
1630 	}
1631 	/*
1632 	 * Don't enter poll loop if we already have events pending.
1633 	 * If we do, we can potentially be spinning for commands that
1634 	 * already triggered a CQE (eg in error).
1635 	 */
1636 	if (io_cqring_events(ctx))
1637 		return 0;
1638 
1639 	do {
1640 		int ret = 0;
1641 
1642 		/*
1643 		 * If a submit got punted to a workqueue, we can have the
1644 		 * application entering polling for a command before it gets
1645 		 * issued. That app will hold the uring_lock for the duration
1646 		 * of the poll right here, so we need to take a breather every
1647 		 * now and then to ensure that the issue has a chance to add
1648 		 * the poll to the issued list. Otherwise we can spin here
1649 		 * forever, while the workqueue is stuck trying to acquire the
1650 		 * very same mutex.
1651 		 */
1652 		if (wq_list_empty(&ctx->iopoll_list) ||
1653 		    io_task_work_pending(ctx)) {
1654 			u32 tail = ctx->cached_cq_tail;
1655 
1656 			(void) io_run_local_work_locked(ctx, min);
1657 
1658 			if (task_work_pending(current) ||
1659 			    wq_list_empty(&ctx->iopoll_list)) {
1660 				mutex_unlock(&ctx->uring_lock);
1661 				io_run_task_work();
1662 				mutex_lock(&ctx->uring_lock);
1663 			}
1664 			/* some requests don't go through iopoll_list */
1665 			if (tail != ctx->cached_cq_tail ||
1666 			    wq_list_empty(&ctx->iopoll_list))
1667 				break;
1668 		}
1669 		ret = io_do_iopoll(ctx, !min);
1670 		if (unlikely(ret < 0))
1671 			return ret;
1672 
1673 		if (task_sigpending(current))
1674 			return -EINTR;
1675 		if (need_resched())
1676 			break;
1677 
1678 		nr_events += ret;
1679 	} while (nr_events < min);
1680 
1681 	return 0;
1682 }
1683 
1684 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1685 {
1686 	if (ts->locked)
1687 		io_req_complete_defer(req);
1688 	else
1689 		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1690 }
1691 
1692 /*
1693  * After the iocb has been issued, it's safe to be found on the poll list.
1694  * Adding the kiocb to the list AFTER submission ensures that we don't
1695  * find it from a io_do_iopoll() thread before the issuer is done
1696  * accessing the kiocb cookie.
1697  */
1698 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1699 {
1700 	struct io_ring_ctx *ctx = req->ctx;
1701 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1702 
1703 	/* workqueue context doesn't hold uring_lock, grab it now */
1704 	if (unlikely(needs_lock))
1705 		mutex_lock(&ctx->uring_lock);
1706 
1707 	/*
1708 	 * Track whether we have multiple files in our lists. This will impact
1709 	 * how we do polling eventually, not spinning if we're on potentially
1710 	 * different devices.
1711 	 */
1712 	if (wq_list_empty(&ctx->iopoll_list)) {
1713 		ctx->poll_multi_queue = false;
1714 	} else if (!ctx->poll_multi_queue) {
1715 		struct io_kiocb *list_req;
1716 
1717 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1718 					comp_list);
1719 		if (list_req->file != req->file)
1720 			ctx->poll_multi_queue = true;
1721 	}
1722 
1723 	/*
1724 	 * For fast devices, IO may have already completed. If it has, add
1725 	 * it to the front so we find it first.
1726 	 */
1727 	if (READ_ONCE(req->iopoll_completed))
1728 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1729 	else
1730 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1731 
1732 	if (unlikely(needs_lock)) {
1733 		/*
1734 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1735 		 * in sq thread task context or in io worker task context. If
1736 		 * current task context is sq thread, we don't need to check
1737 		 * whether should wake up sq thread.
1738 		 */
1739 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1740 		    wq_has_sleeper(&ctx->sq_data->wait))
1741 			wake_up(&ctx->sq_data->wait);
1742 
1743 		mutex_unlock(&ctx->uring_lock);
1744 	}
1745 }
1746 
1747 unsigned int io_file_get_flags(struct file *file)
1748 {
1749 	unsigned int res = 0;
1750 
1751 	if (S_ISREG(file_inode(file)->i_mode))
1752 		res |= REQ_F_ISREG;
1753 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1754 		res |= REQ_F_SUPPORT_NOWAIT;
1755 	return res;
1756 }
1757 
1758 bool io_alloc_async_data(struct io_kiocb *req)
1759 {
1760 	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1761 	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1762 	if (req->async_data) {
1763 		req->flags |= REQ_F_ASYNC_DATA;
1764 		return false;
1765 	}
1766 	return true;
1767 }
1768 
1769 int io_req_prep_async(struct io_kiocb *req)
1770 {
1771 	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1772 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1773 
1774 	/* assign early for deferred execution for non-fixed file */
1775 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1776 		req->file = io_file_get_normal(req, req->cqe.fd);
1777 	if (!cdef->prep_async)
1778 		return 0;
1779 	if (WARN_ON_ONCE(req_has_async_data(req)))
1780 		return -EFAULT;
1781 	if (!def->manual_alloc) {
1782 		if (io_alloc_async_data(req))
1783 			return -EAGAIN;
1784 	}
1785 	return cdef->prep_async(req);
1786 }
1787 
1788 static u32 io_get_sequence(struct io_kiocb *req)
1789 {
1790 	u32 seq = req->ctx->cached_sq_head;
1791 	struct io_kiocb *cur;
1792 
1793 	/* need original cached_sq_head, but it was increased for each req */
1794 	io_for_each_link(cur, req)
1795 		seq--;
1796 	return seq;
1797 }
1798 
1799 static __cold void io_drain_req(struct io_kiocb *req)
1800 	__must_hold(&ctx->uring_lock)
1801 {
1802 	struct io_ring_ctx *ctx = req->ctx;
1803 	struct io_defer_entry *de;
1804 	int ret;
1805 	u32 seq = io_get_sequence(req);
1806 
1807 	/* Still need defer if there is pending req in defer list. */
1808 	spin_lock(&ctx->completion_lock);
1809 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1810 		spin_unlock(&ctx->completion_lock);
1811 queue:
1812 		ctx->drain_active = false;
1813 		io_req_task_queue(req);
1814 		return;
1815 	}
1816 	spin_unlock(&ctx->completion_lock);
1817 
1818 	io_prep_async_link(req);
1819 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1820 	if (!de) {
1821 		ret = -ENOMEM;
1822 		io_req_defer_failed(req, ret);
1823 		return;
1824 	}
1825 
1826 	spin_lock(&ctx->completion_lock);
1827 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1828 		spin_unlock(&ctx->completion_lock);
1829 		kfree(de);
1830 		goto queue;
1831 	}
1832 
1833 	trace_io_uring_defer(req);
1834 	de->req = req;
1835 	de->seq = seq;
1836 	list_add_tail(&de->list, &ctx->defer_list);
1837 	spin_unlock(&ctx->completion_lock);
1838 }
1839 
1840 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1841 			   unsigned int issue_flags)
1842 {
1843 	if (req->file || !def->needs_file)
1844 		return true;
1845 
1846 	if (req->flags & REQ_F_FIXED_FILE)
1847 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1848 	else
1849 		req->file = io_file_get_normal(req, req->cqe.fd);
1850 
1851 	return !!req->file;
1852 }
1853 
1854 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1855 {
1856 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1857 	const struct cred *creds = NULL;
1858 	int ret;
1859 
1860 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1861 		return -EBADF;
1862 
1863 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1864 		creds = override_creds(req->creds);
1865 
1866 	if (!def->audit_skip)
1867 		audit_uring_entry(req->opcode);
1868 
1869 	ret = def->issue(req, issue_flags);
1870 
1871 	if (!def->audit_skip)
1872 		audit_uring_exit(!ret, ret);
1873 
1874 	if (creds)
1875 		revert_creds(creds);
1876 
1877 	if (ret == IOU_OK) {
1878 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1879 			io_req_complete_defer(req);
1880 		else
1881 			io_req_complete_post(req, issue_flags);
1882 
1883 		return 0;
1884 	}
1885 
1886 	if (ret != IOU_ISSUE_SKIP_COMPLETE)
1887 		return ret;
1888 
1889 	/* If the op doesn't have a file, we're not polling for it */
1890 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1891 		io_iopoll_req_issued(req, issue_flags);
1892 
1893 	return 0;
1894 }
1895 
1896 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1897 {
1898 	io_tw_lock(req->ctx, ts);
1899 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1900 				 IO_URING_F_COMPLETE_DEFER);
1901 }
1902 
1903 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1904 {
1905 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1906 	struct io_kiocb *nxt = NULL;
1907 
1908 	if (req_ref_put_and_test(req)) {
1909 		if (req->flags & IO_REQ_LINK_FLAGS)
1910 			nxt = io_req_find_next(req);
1911 		io_free_req(req);
1912 	}
1913 	return nxt ? &nxt->work : NULL;
1914 }
1915 
1916 void io_wq_submit_work(struct io_wq_work *work)
1917 {
1918 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1919 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1920 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1921 	bool needs_poll = false;
1922 	int ret = 0, err = -ECANCELED;
1923 
1924 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1925 	if (!(req->flags & REQ_F_REFCOUNT))
1926 		__io_req_set_refcount(req, 2);
1927 	else
1928 		req_ref_get(req);
1929 
1930 	io_arm_ltimeout(req);
1931 
1932 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1933 	if (work->flags & IO_WQ_WORK_CANCEL) {
1934 fail:
1935 		io_req_task_queue_fail(req, err);
1936 		return;
1937 	}
1938 	if (!io_assign_file(req, def, issue_flags)) {
1939 		err = -EBADF;
1940 		work->flags |= IO_WQ_WORK_CANCEL;
1941 		goto fail;
1942 	}
1943 
1944 	if (req->flags & REQ_F_FORCE_ASYNC) {
1945 		bool opcode_poll = def->pollin || def->pollout;
1946 
1947 		if (opcode_poll && file_can_poll(req->file)) {
1948 			needs_poll = true;
1949 			issue_flags |= IO_URING_F_NONBLOCK;
1950 		}
1951 	}
1952 
1953 	do {
1954 		ret = io_issue_sqe(req, issue_flags);
1955 		if (ret != -EAGAIN)
1956 			break;
1957 
1958 		/*
1959 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1960 		 * poll. -EAGAIN is final for that case.
1961 		 */
1962 		if (req->flags & REQ_F_NOWAIT)
1963 			break;
1964 
1965 		/*
1966 		 * We can get EAGAIN for iopolled IO even though we're
1967 		 * forcing a sync submission from here, since we can't
1968 		 * wait for request slots on the block side.
1969 		 */
1970 		if (!needs_poll) {
1971 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1972 				break;
1973 			if (io_wq_worker_stopped())
1974 				break;
1975 			cond_resched();
1976 			continue;
1977 		}
1978 
1979 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1980 			return;
1981 		/* aborted or ready, in either case retry blocking */
1982 		needs_poll = false;
1983 		issue_flags &= ~IO_URING_F_NONBLOCK;
1984 	} while (1);
1985 
1986 	/* avoid locking problems by failing it from a clean context */
1987 	if (ret < 0)
1988 		io_req_task_queue_fail(req, ret);
1989 }
1990 
1991 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1992 				      unsigned int issue_flags)
1993 {
1994 	struct io_ring_ctx *ctx = req->ctx;
1995 	struct io_fixed_file *slot;
1996 	struct file *file = NULL;
1997 
1998 	io_ring_submit_lock(ctx, issue_flags);
1999 
2000 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2001 		goto out;
2002 	fd = array_index_nospec(fd, ctx->nr_user_files);
2003 	slot = io_fixed_file_slot(&ctx->file_table, fd);
2004 	file = io_slot_file(slot);
2005 	req->flags |= io_slot_flags(slot);
2006 	io_req_set_rsrc_node(req, ctx, 0);
2007 out:
2008 	io_ring_submit_unlock(ctx, issue_flags);
2009 	return file;
2010 }
2011 
2012 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2013 {
2014 	struct file *file = fget(fd);
2015 
2016 	trace_io_uring_file_get(req, fd);
2017 
2018 	/* we don't allow fixed io_uring files */
2019 	if (file && io_is_uring_fops(file))
2020 		io_req_track_inflight(req);
2021 	return file;
2022 }
2023 
2024 static void io_queue_async(struct io_kiocb *req, int ret)
2025 	__must_hold(&req->ctx->uring_lock)
2026 {
2027 	struct io_kiocb *linked_timeout;
2028 
2029 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2030 		io_req_defer_failed(req, ret);
2031 		return;
2032 	}
2033 
2034 	linked_timeout = io_prep_linked_timeout(req);
2035 
2036 	switch (io_arm_poll_handler(req, 0)) {
2037 	case IO_APOLL_READY:
2038 		io_kbuf_recycle(req, 0);
2039 		io_req_task_queue(req);
2040 		break;
2041 	case IO_APOLL_ABORTED:
2042 		io_kbuf_recycle(req, 0);
2043 		io_queue_iowq(req, NULL);
2044 		break;
2045 	case IO_APOLL_OK:
2046 		break;
2047 	}
2048 
2049 	if (linked_timeout)
2050 		io_queue_linked_timeout(linked_timeout);
2051 }
2052 
2053 static inline void io_queue_sqe(struct io_kiocb *req)
2054 	__must_hold(&req->ctx->uring_lock)
2055 {
2056 	int ret;
2057 
2058 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2059 
2060 	/*
2061 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2062 	 * doesn't support non-blocking read/write attempts
2063 	 */
2064 	if (likely(!ret))
2065 		io_arm_ltimeout(req);
2066 	else
2067 		io_queue_async(req, ret);
2068 }
2069 
2070 static void io_queue_sqe_fallback(struct io_kiocb *req)
2071 	__must_hold(&req->ctx->uring_lock)
2072 {
2073 	if (unlikely(req->flags & REQ_F_FAIL)) {
2074 		/*
2075 		 * We don't submit, fail them all, for that replace hardlinks
2076 		 * with normal links. Extra REQ_F_LINK is tolerated.
2077 		 */
2078 		req->flags &= ~REQ_F_HARDLINK;
2079 		req->flags |= REQ_F_LINK;
2080 		io_req_defer_failed(req, req->cqe.res);
2081 	} else {
2082 		int ret = io_req_prep_async(req);
2083 
2084 		if (unlikely(ret)) {
2085 			io_req_defer_failed(req, ret);
2086 			return;
2087 		}
2088 
2089 		if (unlikely(req->ctx->drain_active))
2090 			io_drain_req(req);
2091 		else
2092 			io_queue_iowq(req, NULL);
2093 	}
2094 }
2095 
2096 /*
2097  * Check SQE restrictions (opcode and flags).
2098  *
2099  * Returns 'true' if SQE is allowed, 'false' otherwise.
2100  */
2101 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2102 					struct io_kiocb *req,
2103 					unsigned int sqe_flags)
2104 {
2105 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2106 		return false;
2107 
2108 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2109 	    ctx->restrictions.sqe_flags_required)
2110 		return false;
2111 
2112 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2113 			  ctx->restrictions.sqe_flags_required))
2114 		return false;
2115 
2116 	return true;
2117 }
2118 
2119 static void io_init_req_drain(struct io_kiocb *req)
2120 {
2121 	struct io_ring_ctx *ctx = req->ctx;
2122 	struct io_kiocb *head = ctx->submit_state.link.head;
2123 
2124 	ctx->drain_active = true;
2125 	if (head) {
2126 		/*
2127 		 * If we need to drain a request in the middle of a link, drain
2128 		 * the head request and the next request/link after the current
2129 		 * link. Considering sequential execution of links,
2130 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2131 		 * link.
2132 		 */
2133 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2134 		ctx->drain_next = true;
2135 	}
2136 }
2137 
2138 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2139 {
2140 	/* ensure per-opcode data is cleared if we fail before prep */
2141 	memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2142 	return err;
2143 }
2144 
2145 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2146 		       const struct io_uring_sqe *sqe)
2147 	__must_hold(&ctx->uring_lock)
2148 {
2149 	const struct io_issue_def *def;
2150 	unsigned int sqe_flags;
2151 	int personality;
2152 	u8 opcode;
2153 
2154 	/* req is partially pre-initialised, see io_preinit_req() */
2155 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2156 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2157 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2158 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2159 	req->file = NULL;
2160 	req->rsrc_node = NULL;
2161 	req->task = current;
2162 
2163 	if (unlikely(opcode >= IORING_OP_LAST)) {
2164 		req->opcode = 0;
2165 		return io_init_fail_req(req, -EINVAL);
2166 	}
2167 	def = &io_issue_defs[opcode];
2168 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2169 		/* enforce forwards compatibility on users */
2170 		if (sqe_flags & ~SQE_VALID_FLAGS)
2171 			return io_init_fail_req(req, -EINVAL);
2172 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2173 			if (!def->buffer_select)
2174 				return io_init_fail_req(req, -EOPNOTSUPP);
2175 			req->buf_index = READ_ONCE(sqe->buf_group);
2176 		}
2177 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2178 			ctx->drain_disabled = true;
2179 		if (sqe_flags & IOSQE_IO_DRAIN) {
2180 			if (ctx->drain_disabled)
2181 				return io_init_fail_req(req, -EOPNOTSUPP);
2182 			io_init_req_drain(req);
2183 		}
2184 	}
2185 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2186 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2187 			return io_init_fail_req(req, -EACCES);
2188 		/* knock it to the slow queue path, will be drained there */
2189 		if (ctx->drain_active)
2190 			req->flags |= REQ_F_FORCE_ASYNC;
2191 		/* if there is no link, we're at "next" request and need to drain */
2192 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2193 			ctx->drain_next = false;
2194 			ctx->drain_active = true;
2195 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2196 		}
2197 	}
2198 
2199 	if (!def->ioprio && sqe->ioprio)
2200 		return io_init_fail_req(req, -EINVAL);
2201 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2202 		return io_init_fail_req(req, -EINVAL);
2203 
2204 	if (def->needs_file) {
2205 		struct io_submit_state *state = &ctx->submit_state;
2206 
2207 		req->cqe.fd = READ_ONCE(sqe->fd);
2208 
2209 		/*
2210 		 * Plug now if we have more than 2 IO left after this, and the
2211 		 * target is potentially a read/write to block based storage.
2212 		 */
2213 		if (state->need_plug && def->plug) {
2214 			state->plug_started = true;
2215 			state->need_plug = false;
2216 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2217 		}
2218 	}
2219 
2220 	personality = READ_ONCE(sqe->personality);
2221 	if (personality) {
2222 		int ret;
2223 
2224 		req->creds = xa_load(&ctx->personalities, personality);
2225 		if (!req->creds)
2226 			return io_init_fail_req(req, -EINVAL);
2227 		get_cred(req->creds);
2228 		ret = security_uring_override_creds(req->creds);
2229 		if (ret) {
2230 			put_cred(req->creds);
2231 			return io_init_fail_req(req, ret);
2232 		}
2233 		req->flags |= REQ_F_CREDS;
2234 	}
2235 
2236 	return def->prep(req, sqe);
2237 }
2238 
2239 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2240 				      struct io_kiocb *req, int ret)
2241 {
2242 	struct io_ring_ctx *ctx = req->ctx;
2243 	struct io_submit_link *link = &ctx->submit_state.link;
2244 	struct io_kiocb *head = link->head;
2245 
2246 	trace_io_uring_req_failed(sqe, req, ret);
2247 
2248 	/*
2249 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2250 	 * unusable. Instead of failing eagerly, continue assembling the link if
2251 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2252 	 * should find the flag and handle the rest.
2253 	 */
2254 	req_fail_link_node(req, ret);
2255 	if (head && !(head->flags & REQ_F_FAIL))
2256 		req_fail_link_node(head, -ECANCELED);
2257 
2258 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2259 		if (head) {
2260 			link->last->link = req;
2261 			link->head = NULL;
2262 			req = head;
2263 		}
2264 		io_queue_sqe_fallback(req);
2265 		return ret;
2266 	}
2267 
2268 	if (head)
2269 		link->last->link = req;
2270 	else
2271 		link->head = req;
2272 	link->last = req;
2273 	return 0;
2274 }
2275 
2276 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2277 			 const struct io_uring_sqe *sqe)
2278 	__must_hold(&ctx->uring_lock)
2279 {
2280 	struct io_submit_link *link = &ctx->submit_state.link;
2281 	int ret;
2282 
2283 	ret = io_init_req(ctx, req, sqe);
2284 	if (unlikely(ret))
2285 		return io_submit_fail_init(sqe, req, ret);
2286 
2287 	trace_io_uring_submit_req(req);
2288 
2289 	/*
2290 	 * If we already have a head request, queue this one for async
2291 	 * submittal once the head completes. If we don't have a head but
2292 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2293 	 * submitted sync once the chain is complete. If none of those
2294 	 * conditions are true (normal request), then just queue it.
2295 	 */
2296 	if (unlikely(link->head)) {
2297 		ret = io_req_prep_async(req);
2298 		if (unlikely(ret))
2299 			return io_submit_fail_init(sqe, req, ret);
2300 
2301 		trace_io_uring_link(req, link->head);
2302 		link->last->link = req;
2303 		link->last = req;
2304 
2305 		if (req->flags & IO_REQ_LINK_FLAGS)
2306 			return 0;
2307 		/* last request of the link, flush it */
2308 		req = link->head;
2309 		link->head = NULL;
2310 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2311 			goto fallback;
2312 
2313 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2314 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2315 		if (req->flags & IO_REQ_LINK_FLAGS) {
2316 			link->head = req;
2317 			link->last = req;
2318 		} else {
2319 fallback:
2320 			io_queue_sqe_fallback(req);
2321 		}
2322 		return 0;
2323 	}
2324 
2325 	io_queue_sqe(req);
2326 	return 0;
2327 }
2328 
2329 /*
2330  * Batched submission is done, ensure local IO is flushed out.
2331  */
2332 static void io_submit_state_end(struct io_ring_ctx *ctx)
2333 {
2334 	struct io_submit_state *state = &ctx->submit_state;
2335 
2336 	if (unlikely(state->link.head))
2337 		io_queue_sqe_fallback(state->link.head);
2338 	/* flush only after queuing links as they can generate completions */
2339 	io_submit_flush_completions(ctx);
2340 	if (state->plug_started)
2341 		blk_finish_plug(&state->plug);
2342 }
2343 
2344 /*
2345  * Start submission side cache.
2346  */
2347 static void io_submit_state_start(struct io_submit_state *state,
2348 				  unsigned int max_ios)
2349 {
2350 	state->plug_started = false;
2351 	state->need_plug = max_ios > 2;
2352 	state->submit_nr = max_ios;
2353 	/* set only head, no need to init link_last in advance */
2354 	state->link.head = NULL;
2355 }
2356 
2357 static void io_commit_sqring(struct io_ring_ctx *ctx)
2358 {
2359 	struct io_rings *rings = ctx->rings;
2360 
2361 	/*
2362 	 * Ensure any loads from the SQEs are done at this point,
2363 	 * since once we write the new head, the application could
2364 	 * write new data to them.
2365 	 */
2366 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2367 }
2368 
2369 /*
2370  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2371  * that is mapped by userspace. This means that care needs to be taken to
2372  * ensure that reads are stable, as we cannot rely on userspace always
2373  * being a good citizen. If members of the sqe are validated and then later
2374  * used, it's important that those reads are done through READ_ONCE() to
2375  * prevent a re-load down the line.
2376  */
2377 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2378 {
2379 	unsigned mask = ctx->sq_entries - 1;
2380 	unsigned head = ctx->cached_sq_head++ & mask;
2381 
2382 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2383 		head = READ_ONCE(ctx->sq_array[head]);
2384 		if (unlikely(head >= ctx->sq_entries)) {
2385 			/* drop invalid entries */
2386 			spin_lock(&ctx->completion_lock);
2387 			ctx->cq_extra--;
2388 			spin_unlock(&ctx->completion_lock);
2389 			WRITE_ONCE(ctx->rings->sq_dropped,
2390 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2391 			return false;
2392 		}
2393 	}
2394 
2395 	/*
2396 	 * The cached sq head (or cq tail) serves two purposes:
2397 	 *
2398 	 * 1) allows us to batch the cost of updating the user visible
2399 	 *    head updates.
2400 	 * 2) allows the kernel side to track the head on its own, even
2401 	 *    though the application is the one updating it.
2402 	 */
2403 
2404 	/* double index for 128-byte SQEs, twice as long */
2405 	if (ctx->flags & IORING_SETUP_SQE128)
2406 		head <<= 1;
2407 	*sqe = &ctx->sq_sqes[head];
2408 	return true;
2409 }
2410 
2411 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2412 	__must_hold(&ctx->uring_lock)
2413 {
2414 	unsigned int entries = io_sqring_entries(ctx);
2415 	unsigned int left;
2416 	int ret;
2417 
2418 	if (unlikely(!entries))
2419 		return 0;
2420 	/* make sure SQ entry isn't read before tail */
2421 	ret = left = min(nr, entries);
2422 	io_get_task_refs(left);
2423 	io_submit_state_start(&ctx->submit_state, left);
2424 
2425 	do {
2426 		const struct io_uring_sqe *sqe;
2427 		struct io_kiocb *req;
2428 
2429 		if (unlikely(!io_alloc_req(ctx, &req)))
2430 			break;
2431 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2432 			io_req_add_to_cache(req, ctx);
2433 			break;
2434 		}
2435 
2436 		/*
2437 		 * Continue submitting even for sqe failure if the
2438 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2439 		 */
2440 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2441 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2442 			left--;
2443 			break;
2444 		}
2445 	} while (--left);
2446 
2447 	if (unlikely(left)) {
2448 		ret -= left;
2449 		/* try again if it submitted nothing and can't allocate a req */
2450 		if (!ret && io_req_cache_empty(ctx))
2451 			ret = -EAGAIN;
2452 		current->io_uring->cached_refs += left;
2453 	}
2454 
2455 	io_submit_state_end(ctx);
2456 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2457 	io_commit_sqring(ctx);
2458 	return ret;
2459 }
2460 
2461 struct io_wait_queue {
2462 	struct wait_queue_entry wq;
2463 	struct io_ring_ctx *ctx;
2464 	unsigned cq_tail;
2465 	unsigned nr_timeouts;
2466 	ktime_t timeout;
2467 };
2468 
2469 static inline bool io_has_work(struct io_ring_ctx *ctx)
2470 {
2471 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2472 	       !llist_empty(&ctx->work_llist);
2473 }
2474 
2475 static inline bool io_should_wake(struct io_wait_queue *iowq)
2476 {
2477 	struct io_ring_ctx *ctx = iowq->ctx;
2478 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2479 
2480 	/*
2481 	 * Wake up if we have enough events, or if a timeout occurred since we
2482 	 * started waiting. For timeouts, we always want to return to userspace,
2483 	 * regardless of event count.
2484 	 */
2485 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2486 }
2487 
2488 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2489 			    int wake_flags, void *key)
2490 {
2491 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2492 
2493 	/*
2494 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2495 	 * the task, and the next invocation will do it.
2496 	 */
2497 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2498 		return autoremove_wake_function(curr, mode, wake_flags, key);
2499 	return -1;
2500 }
2501 
2502 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2503 {
2504 	if (!llist_empty(&ctx->work_llist)) {
2505 		__set_current_state(TASK_RUNNING);
2506 		if (io_run_local_work(ctx, INT_MAX) > 0)
2507 			return 0;
2508 	}
2509 	if (io_run_task_work() > 0)
2510 		return 0;
2511 	if (task_sigpending(current))
2512 		return -EINTR;
2513 	return 0;
2514 }
2515 
2516 static bool current_pending_io(void)
2517 {
2518 	struct io_uring_task *tctx = current->io_uring;
2519 
2520 	if (!tctx)
2521 		return false;
2522 	return percpu_counter_read_positive(&tctx->inflight);
2523 }
2524 
2525 /* when returns >0, the caller should retry */
2526 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2527 					  struct io_wait_queue *iowq)
2528 {
2529 	int ret;
2530 
2531 	if (unlikely(READ_ONCE(ctx->check_cq)))
2532 		return 1;
2533 	if (unlikely(!llist_empty(&ctx->work_llist)))
2534 		return 1;
2535 	if (unlikely(task_work_pending(current)))
2536 		return 1;
2537 	if (unlikely(task_sigpending(current)))
2538 		return -EINTR;
2539 	if (unlikely(io_should_wake(iowq)))
2540 		return 0;
2541 
2542 	/*
2543 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2544 	 * can take into account that the task is waiting for IO - turns out
2545 	 * to be important for low QD IO.
2546 	 */
2547 	if (current_pending_io())
2548 		current->in_iowait = 1;
2549 	ret = 0;
2550 	if (iowq->timeout == KTIME_MAX)
2551 		schedule();
2552 	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2553 		ret = -ETIME;
2554 	current->in_iowait = 0;
2555 	return ret;
2556 }
2557 
2558 /*
2559  * Wait until events become available, if we don't already have some. The
2560  * application must reap them itself, as they reside on the shared cq ring.
2561  */
2562 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2563 			  const sigset_t __user *sig, size_t sigsz,
2564 			  struct __kernel_timespec __user *uts)
2565 {
2566 	struct io_wait_queue iowq;
2567 	struct io_rings *rings = ctx->rings;
2568 	int ret;
2569 
2570 	if (!io_allowed_run_tw(ctx))
2571 		return -EEXIST;
2572 	if (!llist_empty(&ctx->work_llist))
2573 		io_run_local_work(ctx, min_events);
2574 	io_run_task_work();
2575 	io_cqring_overflow_flush(ctx);
2576 	/* if user messes with these they will just get an early return */
2577 	if (__io_cqring_events_user(ctx) >= min_events)
2578 		return 0;
2579 
2580 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2581 	iowq.wq.private = current;
2582 	INIT_LIST_HEAD(&iowq.wq.entry);
2583 	iowq.ctx = ctx;
2584 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2585 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2586 	iowq.timeout = KTIME_MAX;
2587 
2588 	if (uts) {
2589 		struct timespec64 ts;
2590 
2591 		if (get_timespec64(&ts, uts))
2592 			return -EFAULT;
2593 		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2594 	}
2595 
2596 	if (sig) {
2597 #ifdef CONFIG_COMPAT
2598 		if (in_compat_syscall())
2599 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2600 						      sigsz);
2601 		else
2602 #endif
2603 			ret = set_user_sigmask(sig, sigsz);
2604 
2605 		if (ret)
2606 			return ret;
2607 	}
2608 
2609 	trace_io_uring_cqring_wait(ctx, min_events);
2610 	do {
2611 		int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2612 		unsigned long check_cq;
2613 
2614 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2615 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2616 			set_current_state(TASK_INTERRUPTIBLE);
2617 		} else {
2618 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2619 							TASK_INTERRUPTIBLE);
2620 		}
2621 
2622 		ret = io_cqring_wait_schedule(ctx, &iowq);
2623 		__set_current_state(TASK_RUNNING);
2624 		atomic_set(&ctx->cq_wait_nr, 0);
2625 
2626 		/*
2627 		 * Run task_work after scheduling and before io_should_wake().
2628 		 * If we got woken because of task_work being processed, run it
2629 		 * now rather than let the caller do another wait loop.
2630 		 */
2631 		if (!llist_empty(&ctx->work_llist))
2632 			io_run_local_work(ctx, nr_wait);
2633 		io_run_task_work();
2634 
2635 		/*
2636 		 * Non-local task_work will be run on exit to userspace, but
2637 		 * if we're using DEFER_TASKRUN, then we could have waited
2638 		 * with a timeout for a number of requests. If the timeout
2639 		 * hits, we could have some requests ready to process. Ensure
2640 		 * this break is _after_ we have run task_work, to avoid
2641 		 * deferring running potentially pending requests until the
2642 		 * next time we wait for events.
2643 		 */
2644 		if (ret < 0)
2645 			break;
2646 
2647 		check_cq = READ_ONCE(ctx->check_cq);
2648 		if (unlikely(check_cq)) {
2649 			/* let the caller flush overflows, retry */
2650 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2651 				io_cqring_do_overflow_flush(ctx);
2652 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2653 				ret = -EBADR;
2654 				break;
2655 			}
2656 		}
2657 
2658 		if (io_should_wake(&iowq)) {
2659 			ret = 0;
2660 			break;
2661 		}
2662 		cond_resched();
2663 	} while (1);
2664 
2665 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2666 		finish_wait(&ctx->cq_wait, &iowq.wq);
2667 	restore_saved_sigmask_unless(ret == -EINTR);
2668 
2669 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2670 }
2671 
2672 void io_mem_free(void *ptr)
2673 {
2674 	if (!ptr)
2675 		return;
2676 
2677 	folio_put(virt_to_folio(ptr));
2678 }
2679 
2680 static void io_pages_free(struct page ***pages, int npages)
2681 {
2682 	struct page **page_array;
2683 	int i;
2684 
2685 	if (!pages)
2686 		return;
2687 
2688 	page_array = *pages;
2689 	if (!page_array)
2690 		return;
2691 
2692 	for (i = 0; i < npages; i++)
2693 		unpin_user_page(page_array[i]);
2694 	kvfree(page_array);
2695 	*pages = NULL;
2696 }
2697 
2698 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2699 			    unsigned long uaddr, size_t size)
2700 {
2701 	struct page **page_array;
2702 	unsigned int nr_pages;
2703 	void *page_addr;
2704 	int ret, i, pinned;
2705 
2706 	*npages = 0;
2707 
2708 	if (uaddr & (PAGE_SIZE - 1) || !size)
2709 		return ERR_PTR(-EINVAL);
2710 
2711 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2712 	if (nr_pages > USHRT_MAX)
2713 		return ERR_PTR(-EINVAL);
2714 	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2715 	if (!page_array)
2716 		return ERR_PTR(-ENOMEM);
2717 
2718 
2719 	pinned = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2720 				     page_array);
2721 	if (pinned != nr_pages) {
2722 		ret = (pinned < 0) ? pinned : -EFAULT;
2723 		goto free_pages;
2724 	}
2725 
2726 	page_addr = page_address(page_array[0]);
2727 	for (i = 0; i < nr_pages; i++) {
2728 		ret = -EINVAL;
2729 
2730 		/*
2731 		 * Can't support mapping user allocated ring memory on 32-bit
2732 		 * archs where it could potentially reside in highmem. Just
2733 		 * fail those with -EINVAL, just like we did on kernels that
2734 		 * didn't support this feature.
2735 		 */
2736 		if (PageHighMem(page_array[i]))
2737 			goto free_pages;
2738 
2739 		/*
2740 		 * No support for discontig pages for now, should either be a
2741 		 * single normal page, or a huge page. Later on we can add
2742 		 * support for remapping discontig pages, for now we will
2743 		 * just fail them with EINVAL.
2744 		 */
2745 		if (page_address(page_array[i]) != page_addr)
2746 			goto free_pages;
2747 		page_addr += PAGE_SIZE;
2748 	}
2749 
2750 	*pages = page_array;
2751 	*npages = nr_pages;
2752 	return page_to_virt(page_array[0]);
2753 
2754 free_pages:
2755 	io_pages_free(&page_array, pinned > 0 ? pinned : 0);
2756 	return ERR_PTR(ret);
2757 }
2758 
2759 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2760 			  size_t size)
2761 {
2762 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2763 				size);
2764 }
2765 
2766 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2767 			 size_t size)
2768 {
2769 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2770 				size);
2771 }
2772 
2773 static void io_rings_free(struct io_ring_ctx *ctx)
2774 {
2775 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2776 		io_mem_free(ctx->rings);
2777 		io_mem_free(ctx->sq_sqes);
2778 	} else {
2779 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2780 		ctx->n_ring_pages = 0;
2781 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2782 		ctx->n_sqe_pages = 0;
2783 	}
2784 
2785 	ctx->rings = NULL;
2786 	ctx->sq_sqes = NULL;
2787 }
2788 
2789 void *io_mem_alloc(size_t size)
2790 {
2791 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2792 	void *ret;
2793 
2794 	ret = (void *) __get_free_pages(gfp, get_order(size));
2795 	if (ret)
2796 		return ret;
2797 	return ERR_PTR(-ENOMEM);
2798 }
2799 
2800 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2801 				unsigned int cq_entries, size_t *sq_offset)
2802 {
2803 	struct io_rings *rings;
2804 	size_t off, sq_array_size;
2805 
2806 	off = struct_size(rings, cqes, cq_entries);
2807 	if (off == SIZE_MAX)
2808 		return SIZE_MAX;
2809 	if (ctx->flags & IORING_SETUP_CQE32) {
2810 		if (check_shl_overflow(off, 1, &off))
2811 			return SIZE_MAX;
2812 	}
2813 
2814 #ifdef CONFIG_SMP
2815 	off = ALIGN(off, SMP_CACHE_BYTES);
2816 	if (off == 0)
2817 		return SIZE_MAX;
2818 #endif
2819 
2820 	if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2821 		if (sq_offset)
2822 			*sq_offset = SIZE_MAX;
2823 		return off;
2824 	}
2825 
2826 	if (sq_offset)
2827 		*sq_offset = off;
2828 
2829 	sq_array_size = array_size(sizeof(u32), sq_entries);
2830 	if (sq_array_size == SIZE_MAX)
2831 		return SIZE_MAX;
2832 
2833 	if (check_add_overflow(off, sq_array_size, &off))
2834 		return SIZE_MAX;
2835 
2836 	return off;
2837 }
2838 
2839 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2840 			       unsigned int eventfd_async)
2841 {
2842 	struct io_ev_fd *ev_fd;
2843 	__s32 __user *fds = arg;
2844 	int fd;
2845 
2846 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2847 					lockdep_is_held(&ctx->uring_lock));
2848 	if (ev_fd)
2849 		return -EBUSY;
2850 
2851 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2852 		return -EFAULT;
2853 
2854 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2855 	if (!ev_fd)
2856 		return -ENOMEM;
2857 
2858 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2859 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2860 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2861 		kfree(ev_fd);
2862 		return ret;
2863 	}
2864 
2865 	spin_lock(&ctx->completion_lock);
2866 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2867 	spin_unlock(&ctx->completion_lock);
2868 
2869 	ev_fd->eventfd_async = eventfd_async;
2870 	ctx->has_evfd = true;
2871 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2872 	atomic_set(&ev_fd->refs, 1);
2873 	atomic_set(&ev_fd->ops, 0);
2874 	return 0;
2875 }
2876 
2877 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2878 {
2879 	struct io_ev_fd *ev_fd;
2880 
2881 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2882 					lockdep_is_held(&ctx->uring_lock));
2883 	if (ev_fd) {
2884 		ctx->has_evfd = false;
2885 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2886 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2887 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2888 		return 0;
2889 	}
2890 
2891 	return -ENXIO;
2892 }
2893 
2894 static void io_req_caches_free(struct io_ring_ctx *ctx)
2895 {
2896 	struct io_kiocb *req;
2897 	int nr = 0;
2898 
2899 	mutex_lock(&ctx->uring_lock);
2900 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2901 
2902 	while (!io_req_cache_empty(ctx)) {
2903 		req = io_extract_req(ctx);
2904 		kmem_cache_free(req_cachep, req);
2905 		nr++;
2906 	}
2907 	if (nr)
2908 		percpu_ref_put_many(&ctx->refs, nr);
2909 	mutex_unlock(&ctx->uring_lock);
2910 }
2911 
2912 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2913 {
2914 	kfree(container_of(entry, struct io_rsrc_node, cache));
2915 }
2916 
2917 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2918 {
2919 	io_sq_thread_finish(ctx);
2920 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2921 	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2922 		return;
2923 
2924 	mutex_lock(&ctx->uring_lock);
2925 	if (ctx->buf_data)
2926 		__io_sqe_buffers_unregister(ctx);
2927 	if (ctx->file_data)
2928 		__io_sqe_files_unregister(ctx);
2929 	io_cqring_overflow_kill(ctx);
2930 	io_eventfd_unregister(ctx);
2931 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2932 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2933 	io_destroy_buffers(ctx);
2934 	mutex_unlock(&ctx->uring_lock);
2935 	if (ctx->sq_creds)
2936 		put_cred(ctx->sq_creds);
2937 	if (ctx->submitter_task)
2938 		put_task_struct(ctx->submitter_task);
2939 
2940 	/* there are no registered resources left, nobody uses it */
2941 	if (ctx->rsrc_node)
2942 		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2943 
2944 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2945 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2946 
2947 	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2948 	if (ctx->mm_account) {
2949 		mmdrop(ctx->mm_account);
2950 		ctx->mm_account = NULL;
2951 	}
2952 	io_rings_free(ctx);
2953 	io_kbuf_mmap_list_free(ctx);
2954 
2955 	percpu_ref_exit(&ctx->refs);
2956 	free_uid(ctx->user);
2957 	io_req_caches_free(ctx);
2958 	if (ctx->hash_map)
2959 		io_wq_put_hash(ctx->hash_map);
2960 	kfree(ctx->cancel_table.hbs);
2961 	kfree(ctx->cancel_table_locked.hbs);
2962 	xa_destroy(&ctx->io_bl_xa);
2963 	kfree(ctx);
2964 }
2965 
2966 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2967 {
2968 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2969 					       poll_wq_task_work);
2970 
2971 	mutex_lock(&ctx->uring_lock);
2972 	ctx->poll_activated = true;
2973 	mutex_unlock(&ctx->uring_lock);
2974 
2975 	/*
2976 	 * Wake ups for some events between start of polling and activation
2977 	 * might've been lost due to loose synchronisation.
2978 	 */
2979 	wake_up_all(&ctx->poll_wq);
2980 	percpu_ref_put(&ctx->refs);
2981 }
2982 
2983 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2984 {
2985 	spin_lock(&ctx->completion_lock);
2986 	/* already activated or in progress */
2987 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2988 		goto out;
2989 	if (WARN_ON_ONCE(!ctx->task_complete))
2990 		goto out;
2991 	if (!ctx->submitter_task)
2992 		goto out;
2993 	/*
2994 	 * with ->submitter_task only the submitter task completes requests, we
2995 	 * only need to sync with it, which is done by injecting a tw
2996 	 */
2997 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2998 	percpu_ref_get(&ctx->refs);
2999 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
3000 		percpu_ref_put(&ctx->refs);
3001 out:
3002 	spin_unlock(&ctx->completion_lock);
3003 }
3004 
3005 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
3006 {
3007 	struct io_ring_ctx *ctx = file->private_data;
3008 	__poll_t mask = 0;
3009 
3010 	if (unlikely(!ctx->poll_activated))
3011 		io_activate_pollwq(ctx);
3012 
3013 	poll_wait(file, &ctx->poll_wq, wait);
3014 	/*
3015 	 * synchronizes with barrier from wq_has_sleeper call in
3016 	 * io_commit_cqring
3017 	 */
3018 	smp_rmb();
3019 	if (!io_sqring_full(ctx))
3020 		mask |= EPOLLOUT | EPOLLWRNORM;
3021 
3022 	/*
3023 	 * Don't flush cqring overflow list here, just do a simple check.
3024 	 * Otherwise there could possible be ABBA deadlock:
3025 	 *      CPU0                    CPU1
3026 	 *      ----                    ----
3027 	 * lock(&ctx->uring_lock);
3028 	 *                              lock(&ep->mtx);
3029 	 *                              lock(&ctx->uring_lock);
3030 	 * lock(&ep->mtx);
3031 	 *
3032 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
3033 	 * pushes them to do the flush.
3034 	 */
3035 
3036 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
3037 		mask |= EPOLLIN | EPOLLRDNORM;
3038 
3039 	return mask;
3040 }
3041 
3042 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
3043 {
3044 	const struct cred *creds;
3045 
3046 	creds = xa_erase(&ctx->personalities, id);
3047 	if (creds) {
3048 		put_cred(creds);
3049 		return 0;
3050 	}
3051 
3052 	return -EINVAL;
3053 }
3054 
3055 struct io_tctx_exit {
3056 	struct callback_head		task_work;
3057 	struct completion		completion;
3058 	struct io_ring_ctx		*ctx;
3059 };
3060 
3061 static __cold void io_tctx_exit_cb(struct callback_head *cb)
3062 {
3063 	struct io_uring_task *tctx = current->io_uring;
3064 	struct io_tctx_exit *work;
3065 
3066 	work = container_of(cb, struct io_tctx_exit, task_work);
3067 	/*
3068 	 * When @in_cancel, we're in cancellation and it's racy to remove the
3069 	 * node. It'll be removed by the end of cancellation, just ignore it.
3070 	 * tctx can be NULL if the queueing of this task_work raced with
3071 	 * work cancelation off the exec path.
3072 	 */
3073 	if (tctx && !atomic_read(&tctx->in_cancel))
3074 		io_uring_del_tctx_node((unsigned long)work->ctx);
3075 	complete(&work->completion);
3076 }
3077 
3078 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3079 {
3080 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3081 
3082 	return req->ctx == data;
3083 }
3084 
3085 static __cold void io_ring_exit_work(struct work_struct *work)
3086 {
3087 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3088 	unsigned long timeout = jiffies + HZ * 60 * 5;
3089 	unsigned long interval = HZ / 20;
3090 	struct io_tctx_exit exit;
3091 	struct io_tctx_node *node;
3092 	int ret;
3093 
3094 	/*
3095 	 * If we're doing polled IO and end up having requests being
3096 	 * submitted async (out-of-line), then completions can come in while
3097 	 * we're waiting for refs to drop. We need to reap these manually,
3098 	 * as nobody else will be looking for them.
3099 	 */
3100 	do {
3101 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3102 			mutex_lock(&ctx->uring_lock);
3103 			io_cqring_overflow_kill(ctx);
3104 			mutex_unlock(&ctx->uring_lock);
3105 		}
3106 
3107 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3108 			io_move_task_work_from_local(ctx);
3109 
3110 		while (io_uring_try_cancel_requests(ctx, NULL, true))
3111 			cond_resched();
3112 
3113 		if (ctx->sq_data) {
3114 			struct io_sq_data *sqd = ctx->sq_data;
3115 			struct task_struct *tsk;
3116 
3117 			io_sq_thread_park(sqd);
3118 			tsk = sqd->thread;
3119 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3120 				io_wq_cancel_cb(tsk->io_uring->io_wq,
3121 						io_cancel_ctx_cb, ctx, true);
3122 			io_sq_thread_unpark(sqd);
3123 		}
3124 
3125 		io_req_caches_free(ctx);
3126 
3127 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3128 			/* there is little hope left, don't run it too often */
3129 			interval = HZ * 60;
3130 		}
3131 		/*
3132 		 * This is really an uninterruptible wait, as it has to be
3133 		 * complete. But it's also run from a kworker, which doesn't
3134 		 * take signals, so it's fine to make it interruptible. This
3135 		 * avoids scenarios where we knowingly can wait much longer
3136 		 * on completions, for example if someone does a SIGSTOP on
3137 		 * a task that needs to finish task_work to make this loop
3138 		 * complete. That's a synthetic situation that should not
3139 		 * cause a stuck task backtrace, and hence a potential panic
3140 		 * on stuck tasks if that is enabled.
3141 		 */
3142 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3143 
3144 	init_completion(&exit.completion);
3145 	init_task_work(&exit.task_work, io_tctx_exit_cb);
3146 	exit.ctx = ctx;
3147 
3148 	mutex_lock(&ctx->uring_lock);
3149 	while (!list_empty(&ctx->tctx_list)) {
3150 		WARN_ON_ONCE(time_after(jiffies, timeout));
3151 
3152 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3153 					ctx_node);
3154 		/* don't spin on a single task if cancellation failed */
3155 		list_rotate_left(&ctx->tctx_list);
3156 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3157 		if (WARN_ON_ONCE(ret))
3158 			continue;
3159 
3160 		mutex_unlock(&ctx->uring_lock);
3161 		/*
3162 		 * See comment above for
3163 		 * wait_for_completion_interruptible_timeout() on why this
3164 		 * wait is marked as interruptible.
3165 		 */
3166 		wait_for_completion_interruptible(&exit.completion);
3167 		mutex_lock(&ctx->uring_lock);
3168 	}
3169 	mutex_unlock(&ctx->uring_lock);
3170 	spin_lock(&ctx->completion_lock);
3171 	spin_unlock(&ctx->completion_lock);
3172 
3173 	/* pairs with RCU read section in io_req_local_work_add() */
3174 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3175 		synchronize_rcu();
3176 
3177 	io_ring_ctx_free(ctx);
3178 }
3179 
3180 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3181 {
3182 	unsigned long index;
3183 	struct creds *creds;
3184 
3185 	mutex_lock(&ctx->uring_lock);
3186 	percpu_ref_kill(&ctx->refs);
3187 	xa_for_each(&ctx->personalities, index, creds)
3188 		io_unregister_personality(ctx, index);
3189 	if (ctx->rings)
3190 		io_poll_remove_all(ctx, NULL, true);
3191 	mutex_unlock(&ctx->uring_lock);
3192 
3193 	/*
3194 	 * If we failed setting up the ctx, we might not have any rings
3195 	 * and therefore did not submit any requests
3196 	 */
3197 	if (ctx->rings)
3198 		io_kill_timeouts(ctx, NULL, true);
3199 
3200 	flush_delayed_work(&ctx->fallback_work);
3201 
3202 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3203 	/*
3204 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3205 	 * if we're exiting a ton of rings at the same time. It just adds
3206 	 * noise and overhead, there's no discernable change in runtime
3207 	 * over using system_wq.
3208 	 */
3209 	queue_work(iou_wq, &ctx->exit_work);
3210 }
3211 
3212 static int io_uring_release(struct inode *inode, struct file *file)
3213 {
3214 	struct io_ring_ctx *ctx = file->private_data;
3215 
3216 	file->private_data = NULL;
3217 	io_ring_ctx_wait_and_kill(ctx);
3218 	return 0;
3219 }
3220 
3221 struct io_task_cancel {
3222 	struct task_struct *task;
3223 	bool all;
3224 };
3225 
3226 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3227 {
3228 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3229 	struct io_task_cancel *cancel = data;
3230 
3231 	return io_match_task_safe(req, cancel->task, cancel->all);
3232 }
3233 
3234 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3235 					 struct task_struct *task,
3236 					 bool cancel_all)
3237 {
3238 	struct io_defer_entry *de;
3239 	LIST_HEAD(list);
3240 
3241 	spin_lock(&ctx->completion_lock);
3242 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3243 		if (io_match_task_safe(de->req, task, cancel_all)) {
3244 			list_cut_position(&list, &ctx->defer_list, &de->list);
3245 			break;
3246 		}
3247 	}
3248 	spin_unlock(&ctx->completion_lock);
3249 	if (list_empty(&list))
3250 		return false;
3251 
3252 	while (!list_empty(&list)) {
3253 		de = list_first_entry(&list, struct io_defer_entry, list);
3254 		list_del_init(&de->list);
3255 		io_req_task_queue_fail(de->req, -ECANCELED);
3256 		kfree(de);
3257 	}
3258 	return true;
3259 }
3260 
3261 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3262 {
3263 	struct io_tctx_node *node;
3264 	enum io_wq_cancel cret;
3265 	bool ret = false;
3266 
3267 	mutex_lock(&ctx->uring_lock);
3268 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3269 		struct io_uring_task *tctx = node->task->io_uring;
3270 
3271 		/*
3272 		 * io_wq will stay alive while we hold uring_lock, because it's
3273 		 * killed after ctx nodes, which requires to take the lock.
3274 		 */
3275 		if (!tctx || !tctx->io_wq)
3276 			continue;
3277 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3278 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3279 	}
3280 	mutex_unlock(&ctx->uring_lock);
3281 
3282 	return ret;
3283 }
3284 
3285 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3286 						struct task_struct *task,
3287 						bool cancel_all)
3288 {
3289 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3290 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3291 	enum io_wq_cancel cret;
3292 	bool ret = false;
3293 
3294 	/* set it so io_req_local_work_add() would wake us up */
3295 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3296 		atomic_set(&ctx->cq_wait_nr, 1);
3297 		smp_mb();
3298 	}
3299 
3300 	/* failed during ring init, it couldn't have issued any requests */
3301 	if (!ctx->rings)
3302 		return false;
3303 
3304 	if (!task) {
3305 		ret |= io_uring_try_cancel_iowq(ctx);
3306 	} else if (tctx && tctx->io_wq) {
3307 		/*
3308 		 * Cancels requests of all rings, not only @ctx, but
3309 		 * it's fine as the task is in exit/exec.
3310 		 */
3311 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3312 				       &cancel, true);
3313 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3314 	}
3315 
3316 	/* SQPOLL thread does its own polling */
3317 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3318 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3319 		while (!wq_list_empty(&ctx->iopoll_list)) {
3320 			io_iopoll_try_reap_events(ctx);
3321 			ret = true;
3322 			cond_resched();
3323 		}
3324 	}
3325 
3326 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3327 	    io_allowed_defer_tw_run(ctx))
3328 		ret |= io_run_local_work(ctx, INT_MAX) > 0;
3329 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3330 	mutex_lock(&ctx->uring_lock);
3331 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3332 	mutex_unlock(&ctx->uring_lock);
3333 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3334 	if (task)
3335 		ret |= io_run_task_work() > 0;
3336 	return ret;
3337 }
3338 
3339 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3340 {
3341 	if (tracked)
3342 		return atomic_read(&tctx->inflight_tracked);
3343 	return percpu_counter_sum(&tctx->inflight);
3344 }
3345 
3346 /*
3347  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3348  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3349  */
3350 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3351 {
3352 	struct io_uring_task *tctx = current->io_uring;
3353 	struct io_ring_ctx *ctx;
3354 	struct io_tctx_node *node;
3355 	unsigned long index;
3356 	s64 inflight;
3357 	DEFINE_WAIT(wait);
3358 
3359 	WARN_ON_ONCE(sqd && sqd->thread != current);
3360 
3361 	if (!current->io_uring)
3362 		return;
3363 	if (tctx->io_wq)
3364 		io_wq_exit_start(tctx->io_wq);
3365 
3366 	atomic_inc(&tctx->in_cancel);
3367 	do {
3368 		bool loop = false;
3369 
3370 		io_uring_drop_tctx_refs(current);
3371 		if (!tctx_inflight(tctx, !cancel_all))
3372 			break;
3373 
3374 		/* read completions before cancelations */
3375 		inflight = tctx_inflight(tctx, false);
3376 		if (!inflight)
3377 			break;
3378 
3379 		if (!sqd) {
3380 			xa_for_each(&tctx->xa, index, node) {
3381 				/* sqpoll task will cancel all its requests */
3382 				if (node->ctx->sq_data)
3383 					continue;
3384 				loop |= io_uring_try_cancel_requests(node->ctx,
3385 							current, cancel_all);
3386 			}
3387 		} else {
3388 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3389 				loop |= io_uring_try_cancel_requests(ctx,
3390 								     current,
3391 								     cancel_all);
3392 		}
3393 
3394 		if (loop) {
3395 			cond_resched();
3396 			continue;
3397 		}
3398 
3399 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3400 		io_run_task_work();
3401 		io_uring_drop_tctx_refs(current);
3402 		xa_for_each(&tctx->xa, index, node) {
3403 			if (!llist_empty(&node->ctx->work_llist)) {
3404 				WARN_ON_ONCE(node->ctx->submitter_task &&
3405 					     node->ctx->submitter_task != current);
3406 				goto end_wait;
3407 			}
3408 		}
3409 		/*
3410 		 * If we've seen completions, retry without waiting. This
3411 		 * avoids a race where a completion comes in before we did
3412 		 * prepare_to_wait().
3413 		 */
3414 		if (inflight == tctx_inflight(tctx, !cancel_all))
3415 			schedule();
3416 end_wait:
3417 		finish_wait(&tctx->wait, &wait);
3418 	} while (1);
3419 
3420 	io_uring_clean_tctx(tctx);
3421 	if (cancel_all) {
3422 		/*
3423 		 * We shouldn't run task_works after cancel, so just leave
3424 		 * ->in_cancel set for normal exit.
3425 		 */
3426 		atomic_dec(&tctx->in_cancel);
3427 		/* for exec all current's requests should be gone, kill tctx */
3428 		__io_uring_free(current);
3429 	}
3430 }
3431 
3432 void __io_uring_cancel(bool cancel_all)
3433 {
3434 	io_uring_cancel_generic(cancel_all, NULL);
3435 }
3436 
3437 static void *io_uring_validate_mmap_request(struct file *file,
3438 					    loff_t pgoff, size_t sz)
3439 {
3440 	struct io_ring_ctx *ctx = file->private_data;
3441 	loff_t offset = pgoff << PAGE_SHIFT;
3442 	struct page *page;
3443 	void *ptr;
3444 
3445 	switch (offset & IORING_OFF_MMAP_MASK) {
3446 	case IORING_OFF_SQ_RING:
3447 	case IORING_OFF_CQ_RING:
3448 		/* Don't allow mmap if the ring was setup without it */
3449 		if (ctx->flags & IORING_SETUP_NO_MMAP)
3450 			return ERR_PTR(-EINVAL);
3451 		ptr = ctx->rings;
3452 		break;
3453 	case IORING_OFF_SQES:
3454 		/* Don't allow mmap if the ring was setup without it */
3455 		if (ctx->flags & IORING_SETUP_NO_MMAP)
3456 			return ERR_PTR(-EINVAL);
3457 		ptr = ctx->sq_sqes;
3458 		break;
3459 	case IORING_OFF_PBUF_RING: {
3460 		struct io_buffer_list *bl;
3461 		unsigned int bgid;
3462 
3463 		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3464 		bl = io_pbuf_get_bl(ctx, bgid);
3465 		if (IS_ERR(bl))
3466 			return bl;
3467 		ptr = bl->buf_ring;
3468 		io_put_bl(ctx, bl);
3469 		break;
3470 		}
3471 	default:
3472 		return ERR_PTR(-EINVAL);
3473 	}
3474 
3475 	page = virt_to_head_page(ptr);
3476 	if (sz > page_size(page))
3477 		return ERR_PTR(-EINVAL);
3478 
3479 	return ptr;
3480 }
3481 
3482 #ifdef CONFIG_MMU
3483 
3484 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3485 {
3486 	size_t sz = vma->vm_end - vma->vm_start;
3487 	unsigned long pfn;
3488 	void *ptr;
3489 
3490 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3491 	if (IS_ERR(ptr))
3492 		return PTR_ERR(ptr);
3493 
3494 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3495 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3496 }
3497 
3498 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3499 			unsigned long addr, unsigned long len,
3500 			unsigned long pgoff, unsigned long flags)
3501 {
3502 	void *ptr;
3503 
3504 	/*
3505 	 * Do not allow to map to user-provided address to avoid breaking the
3506 	 * aliasing rules. Userspace is not able to guess the offset address of
3507 	 * kernel kmalloc()ed memory area.
3508 	 */
3509 	if (addr)
3510 		return -EINVAL;
3511 
3512 	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3513 	if (IS_ERR(ptr))
3514 		return -ENOMEM;
3515 
3516 	/*
3517 	 * Some architectures have strong cache aliasing requirements.
3518 	 * For such architectures we need a coherent mapping which aliases
3519 	 * kernel memory *and* userspace memory. To achieve that:
3520 	 * - use a NULL file pointer to reference physical memory, and
3521 	 * - use the kernel virtual address of the shared io_uring context
3522 	 *   (instead of the userspace-provided address, which has to be 0UL
3523 	 *   anyway).
3524 	 * - use the same pgoff which the get_unmapped_area() uses to
3525 	 *   calculate the page colouring.
3526 	 * For architectures without such aliasing requirements, the
3527 	 * architecture will return any suitable mapping because addr is 0.
3528 	 */
3529 	filp = NULL;
3530 	flags |= MAP_SHARED;
3531 	pgoff = 0;	/* has been translated to ptr above */
3532 #ifdef SHM_COLOUR
3533 	addr = (uintptr_t) ptr;
3534 	pgoff = addr >> PAGE_SHIFT;
3535 #else
3536 	addr = 0UL;
3537 #endif
3538 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3539 }
3540 
3541 #else /* !CONFIG_MMU */
3542 
3543 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3544 {
3545 	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3546 }
3547 
3548 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3549 {
3550 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3551 }
3552 
3553 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3554 	unsigned long addr, unsigned long len,
3555 	unsigned long pgoff, unsigned long flags)
3556 {
3557 	void *ptr;
3558 
3559 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3560 	if (IS_ERR(ptr))
3561 		return PTR_ERR(ptr);
3562 
3563 	return (unsigned long) ptr;
3564 }
3565 
3566 #endif /* !CONFIG_MMU */
3567 
3568 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3569 {
3570 	if (flags & IORING_ENTER_EXT_ARG) {
3571 		struct io_uring_getevents_arg arg;
3572 
3573 		if (argsz != sizeof(arg))
3574 			return -EINVAL;
3575 		if (copy_from_user(&arg, argp, sizeof(arg)))
3576 			return -EFAULT;
3577 	}
3578 	return 0;
3579 }
3580 
3581 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3582 			  struct __kernel_timespec __user **ts,
3583 			  const sigset_t __user **sig)
3584 {
3585 	struct io_uring_getevents_arg arg;
3586 
3587 	/*
3588 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3589 	 * is just a pointer to the sigset_t.
3590 	 */
3591 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3592 		*sig = (const sigset_t __user *) argp;
3593 		*ts = NULL;
3594 		return 0;
3595 	}
3596 
3597 	/*
3598 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3599 	 * timespec and sigset_t pointers if good.
3600 	 */
3601 	if (*argsz != sizeof(arg))
3602 		return -EINVAL;
3603 	if (copy_from_user(&arg, argp, sizeof(arg)))
3604 		return -EFAULT;
3605 	if (arg.pad)
3606 		return -EINVAL;
3607 	*sig = u64_to_user_ptr(arg.sigmask);
3608 	*argsz = arg.sigmask_sz;
3609 	*ts = u64_to_user_ptr(arg.ts);
3610 	return 0;
3611 }
3612 
3613 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3614 		u32, min_complete, u32, flags, const void __user *, argp,
3615 		size_t, argsz)
3616 {
3617 	struct io_ring_ctx *ctx;
3618 	struct file *file;
3619 	long ret;
3620 
3621 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3622 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3623 			       IORING_ENTER_REGISTERED_RING)))
3624 		return -EINVAL;
3625 
3626 	/*
3627 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3628 	 * need only dereference our task private array to find it.
3629 	 */
3630 	if (flags & IORING_ENTER_REGISTERED_RING) {
3631 		struct io_uring_task *tctx = current->io_uring;
3632 
3633 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3634 			return -EINVAL;
3635 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3636 		file = tctx->registered_rings[fd];
3637 		if (unlikely(!file))
3638 			return -EBADF;
3639 	} else {
3640 		file = fget(fd);
3641 		if (unlikely(!file))
3642 			return -EBADF;
3643 		ret = -EOPNOTSUPP;
3644 		if (unlikely(!io_is_uring_fops(file)))
3645 			goto out;
3646 	}
3647 
3648 	ctx = file->private_data;
3649 	ret = -EBADFD;
3650 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3651 		goto out;
3652 
3653 	/*
3654 	 * For SQ polling, the thread will do all submissions and completions.
3655 	 * Just return the requested submit count, and wake the thread if
3656 	 * we were asked to.
3657 	 */
3658 	ret = 0;
3659 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3660 		io_cqring_overflow_flush(ctx);
3661 
3662 		if (unlikely(ctx->sq_data->thread == NULL)) {
3663 			ret = -EOWNERDEAD;
3664 			goto out;
3665 		}
3666 		if (flags & IORING_ENTER_SQ_WAKEUP)
3667 			wake_up(&ctx->sq_data->wait);
3668 		if (flags & IORING_ENTER_SQ_WAIT)
3669 			io_sqpoll_wait_sq(ctx);
3670 
3671 		ret = to_submit;
3672 	} else if (to_submit) {
3673 		ret = io_uring_add_tctx_node(ctx);
3674 		if (unlikely(ret))
3675 			goto out;
3676 
3677 		mutex_lock(&ctx->uring_lock);
3678 		ret = io_submit_sqes(ctx, to_submit);
3679 		if (ret != to_submit) {
3680 			mutex_unlock(&ctx->uring_lock);
3681 			goto out;
3682 		}
3683 		if (flags & IORING_ENTER_GETEVENTS) {
3684 			if (ctx->syscall_iopoll)
3685 				goto iopoll_locked;
3686 			/*
3687 			 * Ignore errors, we'll soon call io_cqring_wait() and
3688 			 * it should handle ownership problems if any.
3689 			 */
3690 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3691 				(void)io_run_local_work_locked(ctx, min_complete);
3692 		}
3693 		mutex_unlock(&ctx->uring_lock);
3694 	}
3695 
3696 	if (flags & IORING_ENTER_GETEVENTS) {
3697 		int ret2;
3698 
3699 		if (ctx->syscall_iopoll) {
3700 			/*
3701 			 * We disallow the app entering submit/complete with
3702 			 * polling, but we still need to lock the ring to
3703 			 * prevent racing with polled issue that got punted to
3704 			 * a workqueue.
3705 			 */
3706 			mutex_lock(&ctx->uring_lock);
3707 iopoll_locked:
3708 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3709 			if (likely(!ret2)) {
3710 				min_complete = min(min_complete,
3711 						   ctx->cq_entries);
3712 				ret2 = io_iopoll_check(ctx, min_complete);
3713 			}
3714 			mutex_unlock(&ctx->uring_lock);
3715 		} else {
3716 			const sigset_t __user *sig;
3717 			struct __kernel_timespec __user *ts;
3718 
3719 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3720 			if (likely(!ret2)) {
3721 				min_complete = min(min_complete,
3722 						   ctx->cq_entries);
3723 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3724 						      argsz, ts);
3725 			}
3726 		}
3727 
3728 		if (!ret) {
3729 			ret = ret2;
3730 
3731 			/*
3732 			 * EBADR indicates that one or more CQE were dropped.
3733 			 * Once the user has been informed we can clear the bit
3734 			 * as they are obviously ok with those drops.
3735 			 */
3736 			if (unlikely(ret2 == -EBADR))
3737 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3738 					  &ctx->check_cq);
3739 		}
3740 	}
3741 out:
3742 	if (!(flags & IORING_ENTER_REGISTERED_RING))
3743 		fput(file);
3744 	return ret;
3745 }
3746 
3747 static const struct file_operations io_uring_fops = {
3748 	.release	= io_uring_release,
3749 	.mmap		= io_uring_mmap,
3750 #ifndef CONFIG_MMU
3751 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3752 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3753 #else
3754 	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3755 #endif
3756 	.poll		= io_uring_poll,
3757 #ifdef CONFIG_PROC_FS
3758 	.show_fdinfo	= io_uring_show_fdinfo,
3759 #endif
3760 };
3761 
3762 bool io_is_uring_fops(struct file *file)
3763 {
3764 	return file->f_op == &io_uring_fops;
3765 }
3766 
3767 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3768 					 struct io_uring_params *p)
3769 {
3770 	struct io_rings *rings;
3771 	size_t size, sq_array_offset;
3772 	void *ptr;
3773 
3774 	/* make sure these are sane, as we already accounted them */
3775 	ctx->sq_entries = p->sq_entries;
3776 	ctx->cq_entries = p->cq_entries;
3777 
3778 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3779 	if (size == SIZE_MAX)
3780 		return -EOVERFLOW;
3781 
3782 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3783 		rings = io_mem_alloc(size);
3784 	else
3785 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3786 
3787 	if (IS_ERR(rings))
3788 		return PTR_ERR(rings);
3789 
3790 	ctx->rings = rings;
3791 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3792 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3793 	rings->sq_ring_mask = p->sq_entries - 1;
3794 	rings->cq_ring_mask = p->cq_entries - 1;
3795 	rings->sq_ring_entries = p->sq_entries;
3796 	rings->cq_ring_entries = p->cq_entries;
3797 
3798 	if (p->flags & IORING_SETUP_SQE128)
3799 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3800 	else
3801 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3802 	if (size == SIZE_MAX) {
3803 		io_rings_free(ctx);
3804 		return -EOVERFLOW;
3805 	}
3806 
3807 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3808 		ptr = io_mem_alloc(size);
3809 	else
3810 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3811 
3812 	if (IS_ERR(ptr)) {
3813 		io_rings_free(ctx);
3814 		return PTR_ERR(ptr);
3815 	}
3816 
3817 	ctx->sq_sqes = ptr;
3818 	return 0;
3819 }
3820 
3821 static int io_uring_install_fd(struct file *file)
3822 {
3823 	int fd;
3824 
3825 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3826 	if (fd < 0)
3827 		return fd;
3828 	fd_install(fd, file);
3829 	return fd;
3830 }
3831 
3832 /*
3833  * Allocate an anonymous fd, this is what constitutes the application
3834  * visible backing of an io_uring instance. The application mmaps this
3835  * fd to gain access to the SQ/CQ ring details.
3836  */
3837 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3838 {
3839 	return anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3840 					 O_RDWR | O_CLOEXEC, NULL);
3841 }
3842 
3843 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3844 				  struct io_uring_params __user *params)
3845 {
3846 	struct io_ring_ctx *ctx;
3847 	struct io_uring_task *tctx;
3848 	struct file *file;
3849 	int ret;
3850 
3851 	if (!entries)
3852 		return -EINVAL;
3853 	if (entries > IORING_MAX_ENTRIES) {
3854 		if (!(p->flags & IORING_SETUP_CLAMP))
3855 			return -EINVAL;
3856 		entries = IORING_MAX_ENTRIES;
3857 	}
3858 
3859 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3860 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3861 		return -EINVAL;
3862 
3863 	/*
3864 	 * Use twice as many entries for the CQ ring. It's possible for the
3865 	 * application to drive a higher depth than the size of the SQ ring,
3866 	 * since the sqes are only used at submission time. This allows for
3867 	 * some flexibility in overcommitting a bit. If the application has
3868 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3869 	 * of CQ ring entries manually.
3870 	 */
3871 	p->sq_entries = roundup_pow_of_two(entries);
3872 	if (p->flags & IORING_SETUP_CQSIZE) {
3873 		/*
3874 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3875 		 * to a power-of-two, if it isn't already. We do NOT impose
3876 		 * any cq vs sq ring sizing.
3877 		 */
3878 		if (!p->cq_entries)
3879 			return -EINVAL;
3880 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3881 			if (!(p->flags & IORING_SETUP_CLAMP))
3882 				return -EINVAL;
3883 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3884 		}
3885 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3886 		if (p->cq_entries < p->sq_entries)
3887 			return -EINVAL;
3888 	} else {
3889 		p->cq_entries = 2 * p->sq_entries;
3890 	}
3891 
3892 	ctx = io_ring_ctx_alloc(p);
3893 	if (!ctx)
3894 		return -ENOMEM;
3895 
3896 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3897 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3898 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3899 		ctx->task_complete = true;
3900 
3901 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3902 		ctx->lockless_cq = true;
3903 
3904 	/*
3905 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3906 	 * purposes, see io_activate_pollwq()
3907 	 */
3908 	if (!ctx->task_complete)
3909 		ctx->poll_activated = true;
3910 
3911 	/*
3912 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3913 	 * space applications don't need to do io completion events
3914 	 * polling again, they can rely on io_sq_thread to do polling
3915 	 * work, which can reduce cpu usage and uring_lock contention.
3916 	 */
3917 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3918 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3919 		ctx->syscall_iopoll = 1;
3920 
3921 	ctx->compat = in_compat_syscall();
3922 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3923 		ctx->user = get_uid(current_user());
3924 
3925 	/*
3926 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3927 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3928 	 */
3929 	ret = -EINVAL;
3930 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3931 		/* IPI related flags don't make sense with SQPOLL */
3932 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3933 				  IORING_SETUP_TASKRUN_FLAG |
3934 				  IORING_SETUP_DEFER_TASKRUN))
3935 			goto err;
3936 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3937 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3938 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3939 	} else {
3940 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3941 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3942 			goto err;
3943 		ctx->notify_method = TWA_SIGNAL;
3944 	}
3945 
3946 	/*
3947 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3948 	 * submission task. This implies that there is only one submitter, so enforce
3949 	 * that.
3950 	 */
3951 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3952 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3953 		goto err;
3954 	}
3955 
3956 	/*
3957 	 * This is just grabbed for accounting purposes. When a process exits,
3958 	 * the mm is exited and dropped before the files, hence we need to hang
3959 	 * on to this mm purely for the purposes of being able to unaccount
3960 	 * memory (locked/pinned vm). It's not used for anything else.
3961 	 */
3962 	mmgrab(current->mm);
3963 	ctx->mm_account = current->mm;
3964 
3965 	ret = io_allocate_scq_urings(ctx, p);
3966 	if (ret)
3967 		goto err;
3968 
3969 	ret = io_sq_offload_create(ctx, p);
3970 	if (ret)
3971 		goto err;
3972 
3973 	ret = io_rsrc_init(ctx);
3974 	if (ret)
3975 		goto err;
3976 
3977 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3978 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3979 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3980 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3981 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3982 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3983 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3984 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3985 	p->sq_off.resv1 = 0;
3986 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3987 		p->sq_off.user_addr = 0;
3988 
3989 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3990 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3991 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3992 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3993 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3994 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3995 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3996 	p->cq_off.resv1 = 0;
3997 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3998 		p->cq_off.user_addr = 0;
3999 
4000 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
4001 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
4002 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
4003 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
4004 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
4005 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
4006 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
4007 
4008 	if (copy_to_user(params, p, sizeof(*p))) {
4009 		ret = -EFAULT;
4010 		goto err;
4011 	}
4012 
4013 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
4014 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
4015 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4016 
4017 	file = io_uring_get_file(ctx);
4018 	if (IS_ERR(file)) {
4019 		ret = PTR_ERR(file);
4020 		goto err;
4021 	}
4022 
4023 	ret = __io_uring_add_tctx_node(ctx);
4024 	if (ret)
4025 		goto err_fput;
4026 	tctx = current->io_uring;
4027 
4028 	/*
4029 	 * Install ring fd as the very last thing, so we don't risk someone
4030 	 * having closed it before we finish setup
4031 	 */
4032 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
4033 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
4034 	else
4035 		ret = io_uring_install_fd(file);
4036 	if (ret < 0)
4037 		goto err_fput;
4038 
4039 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4040 	return ret;
4041 err:
4042 	io_ring_ctx_wait_and_kill(ctx);
4043 	return ret;
4044 err_fput:
4045 	fput(file);
4046 	return ret;
4047 }
4048 
4049 /*
4050  * Sets up an aio uring context, and returns the fd. Applications asks for a
4051  * ring size, we return the actual sq/cq ring sizes (among other things) in the
4052  * params structure passed in.
4053  */
4054 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4055 {
4056 	struct io_uring_params p;
4057 	int i;
4058 
4059 	if (copy_from_user(&p, params, sizeof(p)))
4060 		return -EFAULT;
4061 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4062 		if (p.resv[i])
4063 			return -EINVAL;
4064 	}
4065 
4066 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4067 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4068 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4069 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4070 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4071 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4072 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4073 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4074 			IORING_SETUP_NO_SQARRAY))
4075 		return -EINVAL;
4076 
4077 	return io_uring_create(entries, &p, params);
4078 }
4079 
4080 static inline bool io_uring_allowed(void)
4081 {
4082 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
4083 	kgid_t io_uring_group;
4084 
4085 	if (disabled == 2)
4086 		return false;
4087 
4088 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
4089 		return true;
4090 
4091 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
4092 	if (!gid_valid(io_uring_group))
4093 		return false;
4094 
4095 	return in_group_p(io_uring_group);
4096 }
4097 
4098 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4099 		struct io_uring_params __user *, params)
4100 {
4101 	if (!io_uring_allowed())
4102 		return -EPERM;
4103 
4104 	return io_uring_setup(entries, params);
4105 }
4106 
4107 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4108 			   unsigned nr_args)
4109 {
4110 	struct io_uring_probe *p;
4111 	size_t size;
4112 	int i, ret;
4113 
4114 	size = struct_size(p, ops, nr_args);
4115 	if (size == SIZE_MAX)
4116 		return -EOVERFLOW;
4117 	p = kzalloc(size, GFP_KERNEL);
4118 	if (!p)
4119 		return -ENOMEM;
4120 
4121 	ret = -EFAULT;
4122 	if (copy_from_user(p, arg, size))
4123 		goto out;
4124 	ret = -EINVAL;
4125 	if (memchr_inv(p, 0, size))
4126 		goto out;
4127 
4128 	p->last_op = IORING_OP_LAST - 1;
4129 	if (nr_args > IORING_OP_LAST)
4130 		nr_args = IORING_OP_LAST;
4131 
4132 	for (i = 0; i < nr_args; i++) {
4133 		p->ops[i].op = i;
4134 		if (!io_issue_defs[i].not_supported)
4135 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
4136 	}
4137 	p->ops_len = i;
4138 
4139 	ret = 0;
4140 	if (copy_to_user(arg, p, size))
4141 		ret = -EFAULT;
4142 out:
4143 	kfree(p);
4144 	return ret;
4145 }
4146 
4147 static int io_register_personality(struct io_ring_ctx *ctx)
4148 {
4149 	const struct cred *creds;
4150 	u32 id;
4151 	int ret;
4152 
4153 	creds = get_current_cred();
4154 
4155 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4156 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4157 	if (ret < 0) {
4158 		put_cred(creds);
4159 		return ret;
4160 	}
4161 	return id;
4162 }
4163 
4164 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4165 					   void __user *arg, unsigned int nr_args)
4166 {
4167 	struct io_uring_restriction *res;
4168 	size_t size;
4169 	int i, ret;
4170 
4171 	/* Restrictions allowed only if rings started disabled */
4172 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4173 		return -EBADFD;
4174 
4175 	/* We allow only a single restrictions registration */
4176 	if (ctx->restrictions.registered)
4177 		return -EBUSY;
4178 
4179 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4180 		return -EINVAL;
4181 
4182 	size = array_size(nr_args, sizeof(*res));
4183 	if (size == SIZE_MAX)
4184 		return -EOVERFLOW;
4185 
4186 	res = memdup_user(arg, size);
4187 	if (IS_ERR(res))
4188 		return PTR_ERR(res);
4189 
4190 	ret = 0;
4191 
4192 	for (i = 0; i < nr_args; i++) {
4193 		switch (res[i].opcode) {
4194 		case IORING_RESTRICTION_REGISTER_OP:
4195 			if (res[i].register_op >= IORING_REGISTER_LAST) {
4196 				ret = -EINVAL;
4197 				goto out;
4198 			}
4199 
4200 			__set_bit(res[i].register_op,
4201 				  ctx->restrictions.register_op);
4202 			break;
4203 		case IORING_RESTRICTION_SQE_OP:
4204 			if (res[i].sqe_op >= IORING_OP_LAST) {
4205 				ret = -EINVAL;
4206 				goto out;
4207 			}
4208 
4209 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4210 			break;
4211 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4212 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4213 			break;
4214 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4215 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4216 			break;
4217 		default:
4218 			ret = -EINVAL;
4219 			goto out;
4220 		}
4221 	}
4222 
4223 out:
4224 	/* Reset all restrictions if an error happened */
4225 	if (ret != 0)
4226 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4227 	else
4228 		ctx->restrictions.registered = true;
4229 
4230 	kfree(res);
4231 	return ret;
4232 }
4233 
4234 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4235 {
4236 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4237 		return -EBADFD;
4238 
4239 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4240 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4241 		/*
4242 		 * Lazy activation attempts would fail if it was polled before
4243 		 * submitter_task is set.
4244 		 */
4245 		if (wq_has_sleeper(&ctx->poll_wq))
4246 			io_activate_pollwq(ctx);
4247 	}
4248 
4249 	if (ctx->restrictions.registered)
4250 		ctx->restricted = 1;
4251 
4252 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
4253 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4254 		wake_up(&ctx->sq_data->wait);
4255 	return 0;
4256 }
4257 
4258 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx,
4259 					 cpumask_var_t new_mask)
4260 {
4261 	int ret;
4262 
4263 	if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
4264 		ret = io_wq_cpu_affinity(current->io_uring, new_mask);
4265 	} else {
4266 		mutex_unlock(&ctx->uring_lock);
4267 		ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask);
4268 		mutex_lock(&ctx->uring_lock);
4269 	}
4270 
4271 	return ret;
4272 }
4273 
4274 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4275 				       void __user *arg, unsigned len)
4276 {
4277 	cpumask_var_t new_mask;
4278 	int ret;
4279 
4280 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4281 		return -ENOMEM;
4282 
4283 	cpumask_clear(new_mask);
4284 	if (len > cpumask_size())
4285 		len = cpumask_size();
4286 
4287 	if (in_compat_syscall()) {
4288 		ret = compat_get_bitmap(cpumask_bits(new_mask),
4289 					(const compat_ulong_t __user *)arg,
4290 					len * 8 /* CHAR_BIT */);
4291 	} else {
4292 		ret = copy_from_user(new_mask, arg, len);
4293 	}
4294 
4295 	if (ret) {
4296 		free_cpumask_var(new_mask);
4297 		return -EFAULT;
4298 	}
4299 
4300 	ret = __io_register_iowq_aff(ctx, new_mask);
4301 	free_cpumask_var(new_mask);
4302 	return ret;
4303 }
4304 
4305 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4306 {
4307 	return __io_register_iowq_aff(ctx, NULL);
4308 }
4309 
4310 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4311 					       void __user *arg)
4312 	__must_hold(&ctx->uring_lock)
4313 {
4314 	struct io_tctx_node *node;
4315 	struct io_uring_task *tctx = NULL;
4316 	struct io_sq_data *sqd = NULL;
4317 	__u32 new_count[2];
4318 	int i, ret;
4319 
4320 	if (copy_from_user(new_count, arg, sizeof(new_count)))
4321 		return -EFAULT;
4322 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4323 		if (new_count[i] > INT_MAX)
4324 			return -EINVAL;
4325 
4326 	if (ctx->flags & IORING_SETUP_SQPOLL) {
4327 		sqd = ctx->sq_data;
4328 		if (sqd) {
4329 			/*
4330 			 * Observe the correct sqd->lock -> ctx->uring_lock
4331 			 * ordering. Fine to drop uring_lock here, we hold
4332 			 * a ref to the ctx.
4333 			 */
4334 			refcount_inc(&sqd->refs);
4335 			mutex_unlock(&ctx->uring_lock);
4336 			mutex_lock(&sqd->lock);
4337 			mutex_lock(&ctx->uring_lock);
4338 			if (sqd->thread)
4339 				tctx = sqd->thread->io_uring;
4340 		}
4341 	} else {
4342 		tctx = current->io_uring;
4343 	}
4344 
4345 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4346 
4347 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4348 		if (new_count[i])
4349 			ctx->iowq_limits[i] = new_count[i];
4350 	ctx->iowq_limits_set = true;
4351 
4352 	if (tctx && tctx->io_wq) {
4353 		ret = io_wq_max_workers(tctx->io_wq, new_count);
4354 		if (ret)
4355 			goto err;
4356 	} else {
4357 		memset(new_count, 0, sizeof(new_count));
4358 	}
4359 
4360 	if (sqd) {
4361 		mutex_unlock(&ctx->uring_lock);
4362 		mutex_unlock(&sqd->lock);
4363 		io_put_sq_data(sqd);
4364 		mutex_lock(&ctx->uring_lock);
4365 	}
4366 
4367 	if (copy_to_user(arg, new_count, sizeof(new_count)))
4368 		return -EFAULT;
4369 
4370 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
4371 	if (sqd)
4372 		return 0;
4373 
4374 	/* now propagate the restriction to all registered users */
4375 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4376 		struct io_uring_task *tctx = node->task->io_uring;
4377 
4378 		if (WARN_ON_ONCE(!tctx->io_wq))
4379 			continue;
4380 
4381 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
4382 			new_count[i] = ctx->iowq_limits[i];
4383 		/* ignore errors, it always returns zero anyway */
4384 		(void)io_wq_max_workers(tctx->io_wq, new_count);
4385 	}
4386 	return 0;
4387 err:
4388 	if (sqd) {
4389 		mutex_unlock(&ctx->uring_lock);
4390 		mutex_unlock(&sqd->lock);
4391 		io_put_sq_data(sqd);
4392 		mutex_lock(&ctx->uring_lock);
4393 
4394 	}
4395 	return ret;
4396 }
4397 
4398 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4399 			       void __user *arg, unsigned nr_args)
4400 	__releases(ctx->uring_lock)
4401 	__acquires(ctx->uring_lock)
4402 {
4403 	int ret;
4404 
4405 	/*
4406 	 * We don't quiesce the refs for register anymore and so it can't be
4407 	 * dying as we're holding a file ref here.
4408 	 */
4409 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4410 		return -ENXIO;
4411 
4412 	if (ctx->submitter_task && ctx->submitter_task != current)
4413 		return -EEXIST;
4414 
4415 	if (ctx->restricted) {
4416 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4417 		if (!test_bit(opcode, ctx->restrictions.register_op))
4418 			return -EACCES;
4419 	}
4420 
4421 	switch (opcode) {
4422 	case IORING_REGISTER_BUFFERS:
4423 		ret = -EFAULT;
4424 		if (!arg)
4425 			break;
4426 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4427 		break;
4428 	case IORING_UNREGISTER_BUFFERS:
4429 		ret = -EINVAL;
4430 		if (arg || nr_args)
4431 			break;
4432 		ret = io_sqe_buffers_unregister(ctx);
4433 		break;
4434 	case IORING_REGISTER_FILES:
4435 		ret = -EFAULT;
4436 		if (!arg)
4437 			break;
4438 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4439 		break;
4440 	case IORING_UNREGISTER_FILES:
4441 		ret = -EINVAL;
4442 		if (arg || nr_args)
4443 			break;
4444 		ret = io_sqe_files_unregister(ctx);
4445 		break;
4446 	case IORING_REGISTER_FILES_UPDATE:
4447 		ret = io_register_files_update(ctx, arg, nr_args);
4448 		break;
4449 	case IORING_REGISTER_EVENTFD:
4450 		ret = -EINVAL;
4451 		if (nr_args != 1)
4452 			break;
4453 		ret = io_eventfd_register(ctx, arg, 0);
4454 		break;
4455 	case IORING_REGISTER_EVENTFD_ASYNC:
4456 		ret = -EINVAL;
4457 		if (nr_args != 1)
4458 			break;
4459 		ret = io_eventfd_register(ctx, arg, 1);
4460 		break;
4461 	case IORING_UNREGISTER_EVENTFD:
4462 		ret = -EINVAL;
4463 		if (arg || nr_args)
4464 			break;
4465 		ret = io_eventfd_unregister(ctx);
4466 		break;
4467 	case IORING_REGISTER_PROBE:
4468 		ret = -EINVAL;
4469 		if (!arg || nr_args > 256)
4470 			break;
4471 		ret = io_probe(ctx, arg, nr_args);
4472 		break;
4473 	case IORING_REGISTER_PERSONALITY:
4474 		ret = -EINVAL;
4475 		if (arg || nr_args)
4476 			break;
4477 		ret = io_register_personality(ctx);
4478 		break;
4479 	case IORING_UNREGISTER_PERSONALITY:
4480 		ret = -EINVAL;
4481 		if (arg)
4482 			break;
4483 		ret = io_unregister_personality(ctx, nr_args);
4484 		break;
4485 	case IORING_REGISTER_ENABLE_RINGS:
4486 		ret = -EINVAL;
4487 		if (arg || nr_args)
4488 			break;
4489 		ret = io_register_enable_rings(ctx);
4490 		break;
4491 	case IORING_REGISTER_RESTRICTIONS:
4492 		ret = io_register_restrictions(ctx, arg, nr_args);
4493 		break;
4494 	case IORING_REGISTER_FILES2:
4495 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4496 		break;
4497 	case IORING_REGISTER_FILES_UPDATE2:
4498 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4499 					      IORING_RSRC_FILE);
4500 		break;
4501 	case IORING_REGISTER_BUFFERS2:
4502 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4503 		break;
4504 	case IORING_REGISTER_BUFFERS_UPDATE:
4505 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4506 					      IORING_RSRC_BUFFER);
4507 		break;
4508 	case IORING_REGISTER_IOWQ_AFF:
4509 		ret = -EINVAL;
4510 		if (!arg || !nr_args)
4511 			break;
4512 		ret = io_register_iowq_aff(ctx, arg, nr_args);
4513 		break;
4514 	case IORING_UNREGISTER_IOWQ_AFF:
4515 		ret = -EINVAL;
4516 		if (arg || nr_args)
4517 			break;
4518 		ret = io_unregister_iowq_aff(ctx);
4519 		break;
4520 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4521 		ret = -EINVAL;
4522 		if (!arg || nr_args != 2)
4523 			break;
4524 		ret = io_register_iowq_max_workers(ctx, arg);
4525 		break;
4526 	case IORING_REGISTER_RING_FDS:
4527 		ret = io_ringfd_register(ctx, arg, nr_args);
4528 		break;
4529 	case IORING_UNREGISTER_RING_FDS:
4530 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4531 		break;
4532 	case IORING_REGISTER_PBUF_RING:
4533 		ret = -EINVAL;
4534 		if (!arg || nr_args != 1)
4535 			break;
4536 		ret = io_register_pbuf_ring(ctx, arg);
4537 		break;
4538 	case IORING_UNREGISTER_PBUF_RING:
4539 		ret = -EINVAL;
4540 		if (!arg || nr_args != 1)
4541 			break;
4542 		ret = io_unregister_pbuf_ring(ctx, arg);
4543 		break;
4544 	case IORING_REGISTER_SYNC_CANCEL:
4545 		ret = -EINVAL;
4546 		if (!arg || nr_args != 1)
4547 			break;
4548 		ret = io_sync_cancel(ctx, arg);
4549 		break;
4550 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4551 		ret = -EINVAL;
4552 		if (!arg || nr_args)
4553 			break;
4554 		ret = io_register_file_alloc_range(ctx, arg);
4555 		break;
4556 	default:
4557 		ret = -EINVAL;
4558 		break;
4559 	}
4560 
4561 	return ret;
4562 }
4563 
4564 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4565 		void __user *, arg, unsigned int, nr_args)
4566 {
4567 	struct io_ring_ctx *ctx;
4568 	long ret = -EBADF;
4569 	struct file *file;
4570 	bool use_registered_ring;
4571 
4572 	use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4573 	opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4574 
4575 	if (opcode >= IORING_REGISTER_LAST)
4576 		return -EINVAL;
4577 
4578 	if (use_registered_ring) {
4579 		/*
4580 		 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4581 		 * need only dereference our task private array to find it.
4582 		 */
4583 		struct io_uring_task *tctx = current->io_uring;
4584 
4585 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4586 			return -EINVAL;
4587 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4588 		file = tctx->registered_rings[fd];
4589 		if (unlikely(!file))
4590 			return -EBADF;
4591 	} else {
4592 		file = fget(fd);
4593 		if (unlikely(!file))
4594 			return -EBADF;
4595 		ret = -EOPNOTSUPP;
4596 		if (!io_is_uring_fops(file))
4597 			goto out_fput;
4598 	}
4599 
4600 	ctx = file->private_data;
4601 
4602 	mutex_lock(&ctx->uring_lock);
4603 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4604 	mutex_unlock(&ctx->uring_lock);
4605 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4606 out_fput:
4607 	if (!use_registered_ring)
4608 		fput(file);
4609 	return ret;
4610 }
4611 
4612 static int __init io_uring_init(void)
4613 {
4614 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4615 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4616 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4617 } while (0)
4618 
4619 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4620 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4621 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4622 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4623 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4624 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4625 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4626 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4627 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4628 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4629 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4630 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4631 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4632 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4633 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4634 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4635 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4636 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4637 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4638 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4639 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4640 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4641 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4642 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4643 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4644 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4645 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4646 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4647 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4648 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4649 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4650 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4651 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4652 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4653 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4654 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4655 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4656 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4657 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4658 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4659 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4660 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4661 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4662 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4663 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4664 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4665 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4666 
4667 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4668 		     sizeof(struct io_uring_rsrc_update));
4669 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4670 		     sizeof(struct io_uring_rsrc_update2));
4671 
4672 	/* ->buf_index is u16 */
4673 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4674 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4675 		     offsetof(struct io_uring_buf_ring, tail));
4676 
4677 	/* should fit into one byte */
4678 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4679 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4680 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4681 
4682 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4683 
4684 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4685 
4686 	io_uring_optable_init();
4687 
4688 	/*
4689 	 * Allow user copy in the per-command field, which starts after the
4690 	 * file in io_kiocb and until the opcode field. The openat2 handling
4691 	 * requires copying in user memory into the io_kiocb object in that
4692 	 * range, and HARDENED_USERCOPY will complain if we haven't
4693 	 * correctly annotated this range.
4694 	 */
4695 	req_cachep = kmem_cache_create_usercopy("io_kiocb",
4696 				sizeof(struct io_kiocb), 0,
4697 				SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4698 				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4699 				offsetof(struct io_kiocb, cmd.data),
4700 				sizeof_field(struct io_kiocb, cmd.data), NULL);
4701 
4702 	iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
4703 
4704 #ifdef CONFIG_SYSCTL
4705 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4706 #endif
4707 
4708 	return 0;
4709 };
4710 __initcall(io_uring_init);
4711