1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <linux/anon_inodes.h> 64 #include <linux/sched/mm.h> 65 #include <linux/uaccess.h> 66 #include <linux/nospec.h> 67 #include <linux/highmem.h> 68 #include <linux/fsnotify.h> 69 #include <linux/fadvise.h> 70 #include <linux/task_work.h> 71 #include <linux/io_uring.h> 72 #include <linux/audit.h> 73 #include <linux/security.h> 74 #include <asm/shmparam.h> 75 76 #define CREATE_TRACE_POINTS 77 #include <trace/events/io_uring.h> 78 79 #include <uapi/linux/io_uring.h> 80 81 #include "io-wq.h" 82 83 #include "io_uring.h" 84 #include "opdef.h" 85 #include "refs.h" 86 #include "tctx.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 95 #include "timeout.h" 96 #include "poll.h" 97 #include "rw.h" 98 #include "alloc_cache.h" 99 100 #define IORING_MAX_ENTRIES 32768 101 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 102 103 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 104 IORING_REGISTER_LAST + IORING_OP_LAST) 105 106 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 107 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 108 109 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 110 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 111 112 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 113 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 114 REQ_F_ASYNC_DATA) 115 116 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 117 IO_REQ_CLEAN_FLAGS) 118 119 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 120 121 #define IO_COMPL_BATCH 32 122 #define IO_REQ_ALLOC_BATCH 8 123 124 enum { 125 IO_CHECK_CQ_OVERFLOW_BIT, 126 IO_CHECK_CQ_DROPPED_BIT, 127 }; 128 129 enum { 130 IO_EVENTFD_OP_SIGNAL_BIT, 131 IO_EVENTFD_OP_FREE_BIT, 132 }; 133 134 struct io_defer_entry { 135 struct list_head list; 136 struct io_kiocb *req; 137 u32 seq; 138 }; 139 140 /* requests with any of those set should undergo io_disarm_next() */ 141 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 142 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 143 144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 145 struct task_struct *task, 146 bool cancel_all); 147 148 static void io_queue_sqe(struct io_kiocb *req); 149 150 struct kmem_cache *req_cachep; 151 static struct workqueue_struct *iou_wq __ro_after_init; 152 153 static int __read_mostly sysctl_io_uring_disabled; 154 static int __read_mostly sysctl_io_uring_group = -1; 155 156 #ifdef CONFIG_SYSCTL 157 static struct ctl_table kernel_io_uring_disabled_table[] = { 158 { 159 .procname = "io_uring_disabled", 160 .data = &sysctl_io_uring_disabled, 161 .maxlen = sizeof(sysctl_io_uring_disabled), 162 .mode = 0644, 163 .proc_handler = proc_dointvec_minmax, 164 .extra1 = SYSCTL_ZERO, 165 .extra2 = SYSCTL_TWO, 166 }, 167 { 168 .procname = "io_uring_group", 169 .data = &sysctl_io_uring_group, 170 .maxlen = sizeof(gid_t), 171 .mode = 0644, 172 .proc_handler = proc_dointvec, 173 }, 174 {}, 175 }; 176 #endif 177 178 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 179 { 180 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 181 ctx->submit_state.cqes_count) 182 __io_submit_flush_completions(ctx); 183 } 184 185 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 186 { 187 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 188 } 189 190 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 191 { 192 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 193 } 194 195 static bool io_match_linked(struct io_kiocb *head) 196 { 197 struct io_kiocb *req; 198 199 io_for_each_link(req, head) { 200 if (req->flags & REQ_F_INFLIGHT) 201 return true; 202 } 203 return false; 204 } 205 206 /* 207 * As io_match_task() but protected against racing with linked timeouts. 208 * User must not hold timeout_lock. 209 */ 210 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 211 bool cancel_all) 212 { 213 bool matched; 214 215 if (task && head->task != task) 216 return false; 217 if (cancel_all) 218 return true; 219 220 if (head->flags & REQ_F_LINK_TIMEOUT) { 221 struct io_ring_ctx *ctx = head->ctx; 222 223 /* protect against races with linked timeouts */ 224 spin_lock_irq(&ctx->timeout_lock); 225 matched = io_match_linked(head); 226 spin_unlock_irq(&ctx->timeout_lock); 227 } else { 228 matched = io_match_linked(head); 229 } 230 return matched; 231 } 232 233 static inline void req_fail_link_node(struct io_kiocb *req, int res) 234 { 235 req_set_fail(req); 236 io_req_set_res(req, res, 0); 237 } 238 239 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 240 { 241 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 242 } 243 244 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 245 { 246 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 247 248 complete(&ctx->ref_comp); 249 } 250 251 static __cold void io_fallback_req_func(struct work_struct *work) 252 { 253 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 254 fallback_work.work); 255 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 256 struct io_kiocb *req, *tmp; 257 struct io_tw_state ts = { .locked = true, }; 258 259 percpu_ref_get(&ctx->refs); 260 mutex_lock(&ctx->uring_lock); 261 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 262 req->io_task_work.func(req, &ts); 263 if (WARN_ON_ONCE(!ts.locked)) 264 return; 265 io_submit_flush_completions(ctx); 266 mutex_unlock(&ctx->uring_lock); 267 percpu_ref_put(&ctx->refs); 268 } 269 270 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 271 { 272 unsigned hash_buckets = 1U << bits; 273 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 274 275 table->hbs = kmalloc(hash_size, GFP_KERNEL); 276 if (!table->hbs) 277 return -ENOMEM; 278 279 table->hash_bits = bits; 280 init_hash_table(table, hash_buckets); 281 return 0; 282 } 283 284 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 285 { 286 struct io_ring_ctx *ctx; 287 int hash_bits; 288 289 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 290 if (!ctx) 291 return NULL; 292 293 xa_init(&ctx->io_bl_xa); 294 295 /* 296 * Use 5 bits less than the max cq entries, that should give us around 297 * 32 entries per hash list if totally full and uniformly spread, but 298 * don't keep too many buckets to not overconsume memory. 299 */ 300 hash_bits = ilog2(p->cq_entries) - 5; 301 hash_bits = clamp(hash_bits, 1, 8); 302 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 303 goto err; 304 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 305 goto err; 306 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 307 0, GFP_KERNEL)) 308 goto err; 309 310 ctx->flags = p->flags; 311 init_waitqueue_head(&ctx->sqo_sq_wait); 312 INIT_LIST_HEAD(&ctx->sqd_list); 313 INIT_LIST_HEAD(&ctx->cq_overflow_list); 314 INIT_LIST_HEAD(&ctx->io_buffers_cache); 315 INIT_HLIST_HEAD(&ctx->io_buf_list); 316 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 317 sizeof(struct io_rsrc_node)); 318 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, 319 sizeof(struct async_poll)); 320 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 321 sizeof(struct io_async_msghdr)); 322 init_completion(&ctx->ref_comp); 323 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 324 mutex_init(&ctx->uring_lock); 325 init_waitqueue_head(&ctx->cq_wait); 326 init_waitqueue_head(&ctx->poll_wq); 327 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 328 spin_lock_init(&ctx->completion_lock); 329 spin_lock_init(&ctx->timeout_lock); 330 INIT_WQ_LIST(&ctx->iopoll_list); 331 INIT_LIST_HEAD(&ctx->io_buffers_pages); 332 INIT_LIST_HEAD(&ctx->io_buffers_comp); 333 INIT_LIST_HEAD(&ctx->defer_list); 334 INIT_LIST_HEAD(&ctx->timeout_list); 335 INIT_LIST_HEAD(&ctx->ltimeout_list); 336 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 337 init_llist_head(&ctx->work_llist); 338 INIT_LIST_HEAD(&ctx->tctx_list); 339 ctx->submit_state.free_list.next = NULL; 340 INIT_WQ_LIST(&ctx->locked_free_list); 341 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 342 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 343 return ctx; 344 err: 345 kfree(ctx->cancel_table.hbs); 346 kfree(ctx->cancel_table_locked.hbs); 347 xa_destroy(&ctx->io_bl_xa); 348 kfree(ctx); 349 return NULL; 350 } 351 352 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 353 { 354 struct io_rings *r = ctx->rings; 355 356 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 357 ctx->cq_extra--; 358 } 359 360 static bool req_need_defer(struct io_kiocb *req, u32 seq) 361 { 362 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 363 struct io_ring_ctx *ctx = req->ctx; 364 365 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 366 } 367 368 return false; 369 } 370 371 static void io_clean_op(struct io_kiocb *req) 372 { 373 if (req->flags & REQ_F_BUFFER_SELECTED) { 374 spin_lock(&req->ctx->completion_lock); 375 io_put_kbuf_comp(req); 376 spin_unlock(&req->ctx->completion_lock); 377 } 378 379 if (req->flags & REQ_F_NEED_CLEANUP) { 380 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 381 382 if (def->cleanup) 383 def->cleanup(req); 384 } 385 if ((req->flags & REQ_F_POLLED) && req->apoll) { 386 kfree(req->apoll->double_poll); 387 kfree(req->apoll); 388 req->apoll = NULL; 389 } 390 if (req->flags & REQ_F_INFLIGHT) { 391 struct io_uring_task *tctx = req->task->io_uring; 392 393 atomic_dec(&tctx->inflight_tracked); 394 } 395 if (req->flags & REQ_F_CREDS) 396 put_cred(req->creds); 397 if (req->flags & REQ_F_ASYNC_DATA) { 398 kfree(req->async_data); 399 req->async_data = NULL; 400 } 401 req->flags &= ~IO_REQ_CLEAN_FLAGS; 402 } 403 404 static inline void io_req_track_inflight(struct io_kiocb *req) 405 { 406 if (!(req->flags & REQ_F_INFLIGHT)) { 407 req->flags |= REQ_F_INFLIGHT; 408 atomic_inc(&req->task->io_uring->inflight_tracked); 409 } 410 } 411 412 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 413 { 414 if (WARN_ON_ONCE(!req->link)) 415 return NULL; 416 417 req->flags &= ~REQ_F_ARM_LTIMEOUT; 418 req->flags |= REQ_F_LINK_TIMEOUT; 419 420 /* linked timeouts should have two refs once prep'ed */ 421 io_req_set_refcount(req); 422 __io_req_set_refcount(req->link, 2); 423 return req->link; 424 } 425 426 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 427 { 428 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 429 return NULL; 430 return __io_prep_linked_timeout(req); 431 } 432 433 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 434 { 435 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 436 } 437 438 static inline void io_arm_ltimeout(struct io_kiocb *req) 439 { 440 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 441 __io_arm_ltimeout(req); 442 } 443 444 static void io_prep_async_work(struct io_kiocb *req) 445 { 446 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 447 struct io_ring_ctx *ctx = req->ctx; 448 449 if (!(req->flags & REQ_F_CREDS)) { 450 req->flags |= REQ_F_CREDS; 451 req->creds = get_current_cred(); 452 } 453 454 req->work.list.next = NULL; 455 req->work.flags = 0; 456 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 457 if (req->flags & REQ_F_FORCE_ASYNC) 458 req->work.flags |= IO_WQ_WORK_CONCURRENT; 459 460 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 461 req->flags |= io_file_get_flags(req->file); 462 463 if (req->file && (req->flags & REQ_F_ISREG)) { 464 bool should_hash = def->hash_reg_file; 465 466 /* don't serialize this request if the fs doesn't need it */ 467 if (should_hash && (req->file->f_flags & O_DIRECT) && 468 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) 469 should_hash = false; 470 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 471 io_wq_hash_work(&req->work, file_inode(req->file)); 472 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 473 if (def->unbound_nonreg_file) 474 req->work.flags |= IO_WQ_WORK_UNBOUND; 475 } 476 } 477 478 static void io_prep_async_link(struct io_kiocb *req) 479 { 480 struct io_kiocb *cur; 481 482 if (req->flags & REQ_F_LINK_TIMEOUT) { 483 struct io_ring_ctx *ctx = req->ctx; 484 485 spin_lock_irq(&ctx->timeout_lock); 486 io_for_each_link(cur, req) 487 io_prep_async_work(cur); 488 spin_unlock_irq(&ctx->timeout_lock); 489 } else { 490 io_for_each_link(cur, req) 491 io_prep_async_work(cur); 492 } 493 } 494 495 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) 496 { 497 struct io_kiocb *link = io_prep_linked_timeout(req); 498 struct io_uring_task *tctx = req->task->io_uring; 499 500 BUG_ON(!tctx); 501 BUG_ON(!tctx->io_wq); 502 503 /* init ->work of the whole link before punting */ 504 io_prep_async_link(req); 505 506 /* 507 * Not expected to happen, but if we do have a bug where this _can_ 508 * happen, catch it here and ensure the request is marked as 509 * canceled. That will make io-wq go through the usual work cancel 510 * procedure rather than attempt to run this request (or create a new 511 * worker for it). 512 */ 513 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 514 req->work.flags |= IO_WQ_WORK_CANCEL; 515 516 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 517 io_wq_enqueue(tctx->io_wq, &req->work); 518 if (link) 519 io_queue_linked_timeout(link); 520 } 521 522 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 523 { 524 while (!list_empty(&ctx->defer_list)) { 525 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 526 struct io_defer_entry, list); 527 528 if (req_need_defer(de->req, de->seq)) 529 break; 530 list_del_init(&de->list); 531 io_req_task_queue(de->req); 532 kfree(de); 533 } 534 } 535 536 537 static void io_eventfd_ops(struct rcu_head *rcu) 538 { 539 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 540 int ops = atomic_xchg(&ev_fd->ops, 0); 541 542 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 543 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 544 545 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 546 * ordering in a race but if references are 0 we know we have to free 547 * it regardless. 548 */ 549 if (atomic_dec_and_test(&ev_fd->refs)) { 550 eventfd_ctx_put(ev_fd->cq_ev_fd); 551 kfree(ev_fd); 552 } 553 } 554 555 static void io_eventfd_signal(struct io_ring_ctx *ctx) 556 { 557 struct io_ev_fd *ev_fd = NULL; 558 559 rcu_read_lock(); 560 /* 561 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 562 * and eventfd_signal 563 */ 564 ev_fd = rcu_dereference(ctx->io_ev_fd); 565 566 /* 567 * Check again if ev_fd exists incase an io_eventfd_unregister call 568 * completed between the NULL check of ctx->io_ev_fd at the start of 569 * the function and rcu_read_lock. 570 */ 571 if (unlikely(!ev_fd)) 572 goto out; 573 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 574 goto out; 575 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 576 goto out; 577 578 if (likely(eventfd_signal_allowed())) { 579 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 580 } else { 581 atomic_inc(&ev_fd->refs); 582 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 583 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 584 else 585 atomic_dec(&ev_fd->refs); 586 } 587 588 out: 589 rcu_read_unlock(); 590 } 591 592 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 593 { 594 bool skip; 595 596 spin_lock(&ctx->completion_lock); 597 598 /* 599 * Eventfd should only get triggered when at least one event has been 600 * posted. Some applications rely on the eventfd notification count 601 * only changing IFF a new CQE has been added to the CQ ring. There's 602 * no depedency on 1:1 relationship between how many times this 603 * function is called (and hence the eventfd count) and number of CQEs 604 * posted to the CQ ring. 605 */ 606 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 607 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 608 spin_unlock(&ctx->completion_lock); 609 if (skip) 610 return; 611 612 io_eventfd_signal(ctx); 613 } 614 615 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 616 { 617 if (ctx->poll_activated) 618 io_poll_wq_wake(ctx); 619 if (ctx->off_timeout_used) 620 io_flush_timeouts(ctx); 621 if (ctx->drain_active) { 622 spin_lock(&ctx->completion_lock); 623 io_queue_deferred(ctx); 624 spin_unlock(&ctx->completion_lock); 625 } 626 if (ctx->has_evfd) 627 io_eventfd_flush_signal(ctx); 628 } 629 630 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 631 { 632 if (!ctx->lockless_cq) 633 spin_lock(&ctx->completion_lock); 634 } 635 636 static inline void io_cq_lock(struct io_ring_ctx *ctx) 637 __acquires(ctx->completion_lock) 638 { 639 spin_lock(&ctx->completion_lock); 640 } 641 642 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 643 { 644 io_commit_cqring(ctx); 645 if (!ctx->task_complete) { 646 if (!ctx->lockless_cq) 647 spin_unlock(&ctx->completion_lock); 648 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 649 if (!ctx->syscall_iopoll) 650 io_cqring_wake(ctx); 651 } 652 io_commit_cqring_flush(ctx); 653 } 654 655 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 656 __releases(ctx->completion_lock) 657 { 658 io_commit_cqring(ctx); 659 spin_unlock(&ctx->completion_lock); 660 io_cqring_wake(ctx); 661 io_commit_cqring_flush(ctx); 662 } 663 664 /* Returns true if there are no backlogged entries after the flush */ 665 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 666 { 667 struct io_overflow_cqe *ocqe; 668 LIST_HEAD(list); 669 670 lockdep_assert_held(&ctx->uring_lock); 671 672 spin_lock(&ctx->completion_lock); 673 list_splice_init(&ctx->cq_overflow_list, &list); 674 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 675 spin_unlock(&ctx->completion_lock); 676 677 while (!list_empty(&list)) { 678 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 679 list_del(&ocqe->list); 680 kfree(ocqe); 681 } 682 } 683 684 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 685 { 686 size_t cqe_size = sizeof(struct io_uring_cqe); 687 688 lockdep_assert_held(&ctx->uring_lock); 689 690 if (__io_cqring_events(ctx) == ctx->cq_entries) 691 return; 692 693 if (ctx->flags & IORING_SETUP_CQE32) 694 cqe_size <<= 1; 695 696 io_cq_lock(ctx); 697 while (!list_empty(&ctx->cq_overflow_list)) { 698 struct io_uring_cqe *cqe; 699 struct io_overflow_cqe *ocqe; 700 701 if (!io_get_cqe_overflow(ctx, &cqe, true)) 702 break; 703 ocqe = list_first_entry(&ctx->cq_overflow_list, 704 struct io_overflow_cqe, list); 705 memcpy(cqe, &ocqe->cqe, cqe_size); 706 list_del(&ocqe->list); 707 kfree(ocqe); 708 709 /* 710 * For silly syzbot cases that deliberately overflow by huge 711 * amounts, check if we need to resched and drop and 712 * reacquire the locks if so. Nothing real would ever hit this. 713 * Ideally we'd have a non-posting unlock for this, but hard 714 * to care for a non-real case. 715 */ 716 if (need_resched()) { 717 io_cq_unlock_post(ctx); 718 mutex_unlock(&ctx->uring_lock); 719 cond_resched(); 720 mutex_lock(&ctx->uring_lock); 721 io_cq_lock(ctx); 722 } 723 } 724 725 if (list_empty(&ctx->cq_overflow_list)) { 726 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 727 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 728 } 729 io_cq_unlock_post(ctx); 730 } 731 732 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 733 { 734 mutex_lock(&ctx->uring_lock); 735 __io_cqring_overflow_flush(ctx); 736 mutex_unlock(&ctx->uring_lock); 737 } 738 739 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 740 { 741 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 742 io_cqring_do_overflow_flush(ctx); 743 } 744 745 /* can be called by any task */ 746 static void io_put_task_remote(struct task_struct *task) 747 { 748 struct io_uring_task *tctx = task->io_uring; 749 750 percpu_counter_sub(&tctx->inflight, 1); 751 if (unlikely(atomic_read(&tctx->in_cancel))) 752 wake_up(&tctx->wait); 753 put_task_struct(task); 754 } 755 756 /* used by a task to put its own references */ 757 static void io_put_task_local(struct task_struct *task) 758 { 759 task->io_uring->cached_refs++; 760 } 761 762 /* must to be called somewhat shortly after putting a request */ 763 static inline void io_put_task(struct task_struct *task) 764 { 765 if (likely(task == current)) 766 io_put_task_local(task); 767 else 768 io_put_task_remote(task); 769 } 770 771 void io_task_refs_refill(struct io_uring_task *tctx) 772 { 773 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 774 775 percpu_counter_add(&tctx->inflight, refill); 776 refcount_add(refill, ¤t->usage); 777 tctx->cached_refs += refill; 778 } 779 780 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 781 { 782 struct io_uring_task *tctx = task->io_uring; 783 unsigned int refs = tctx->cached_refs; 784 785 if (refs) { 786 tctx->cached_refs = 0; 787 percpu_counter_sub(&tctx->inflight, refs); 788 put_task_struct_many(task, refs); 789 } 790 } 791 792 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 793 s32 res, u32 cflags, u64 extra1, u64 extra2) 794 { 795 struct io_overflow_cqe *ocqe; 796 size_t ocq_size = sizeof(struct io_overflow_cqe); 797 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 798 799 lockdep_assert_held(&ctx->completion_lock); 800 801 if (is_cqe32) 802 ocq_size += sizeof(struct io_uring_cqe); 803 804 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 805 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 806 if (!ocqe) { 807 /* 808 * If we're in ring overflow flush mode, or in task cancel mode, 809 * or cannot allocate an overflow entry, then we need to drop it 810 * on the floor. 811 */ 812 io_account_cq_overflow(ctx); 813 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 814 return false; 815 } 816 if (list_empty(&ctx->cq_overflow_list)) { 817 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 818 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 819 820 } 821 ocqe->cqe.user_data = user_data; 822 ocqe->cqe.res = res; 823 ocqe->cqe.flags = cflags; 824 if (is_cqe32) { 825 ocqe->cqe.big_cqe[0] = extra1; 826 ocqe->cqe.big_cqe[1] = extra2; 827 } 828 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 829 return true; 830 } 831 832 void io_req_cqe_overflow(struct io_kiocb *req) 833 { 834 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 835 req->cqe.res, req->cqe.flags, 836 req->big_cqe.extra1, req->big_cqe.extra2); 837 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 838 } 839 840 /* 841 * writes to the cq entry need to come after reading head; the 842 * control dependency is enough as we're using WRITE_ONCE to 843 * fill the cq entry 844 */ 845 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 846 { 847 struct io_rings *rings = ctx->rings; 848 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 849 unsigned int free, queued, len; 850 851 /* 852 * Posting into the CQ when there are pending overflowed CQEs may break 853 * ordering guarantees, which will affect links, F_MORE users and more. 854 * Force overflow the completion. 855 */ 856 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 857 return false; 858 859 /* userspace may cheat modifying the tail, be safe and do min */ 860 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 861 free = ctx->cq_entries - queued; 862 /* we need a contiguous range, limit based on the current array offset */ 863 len = min(free, ctx->cq_entries - off); 864 if (!len) 865 return false; 866 867 if (ctx->flags & IORING_SETUP_CQE32) { 868 off <<= 1; 869 len <<= 1; 870 } 871 872 ctx->cqe_cached = &rings->cqes[off]; 873 ctx->cqe_sentinel = ctx->cqe_cached + len; 874 return true; 875 } 876 877 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 878 u32 cflags) 879 { 880 struct io_uring_cqe *cqe; 881 882 ctx->cq_extra++; 883 884 /* 885 * If we can't get a cq entry, userspace overflowed the 886 * submission (by quite a lot). Increment the overflow count in 887 * the ring. 888 */ 889 if (likely(io_get_cqe(ctx, &cqe))) { 890 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 891 892 WRITE_ONCE(cqe->user_data, user_data); 893 WRITE_ONCE(cqe->res, res); 894 WRITE_ONCE(cqe->flags, cflags); 895 896 if (ctx->flags & IORING_SETUP_CQE32) { 897 WRITE_ONCE(cqe->big_cqe[0], 0); 898 WRITE_ONCE(cqe->big_cqe[1], 0); 899 } 900 return true; 901 } 902 return false; 903 } 904 905 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 906 __must_hold(&ctx->uring_lock) 907 { 908 struct io_submit_state *state = &ctx->submit_state; 909 unsigned int i; 910 911 lockdep_assert_held(&ctx->uring_lock); 912 for (i = 0; i < state->cqes_count; i++) { 913 struct io_uring_cqe *cqe = &ctx->completion_cqes[i]; 914 915 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 916 if (ctx->lockless_cq) { 917 spin_lock(&ctx->completion_lock); 918 io_cqring_event_overflow(ctx, cqe->user_data, 919 cqe->res, cqe->flags, 0, 0); 920 spin_unlock(&ctx->completion_lock); 921 } else { 922 io_cqring_event_overflow(ctx, cqe->user_data, 923 cqe->res, cqe->flags, 0, 0); 924 } 925 } 926 } 927 state->cqes_count = 0; 928 } 929 930 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 931 bool allow_overflow) 932 { 933 bool filled; 934 935 io_cq_lock(ctx); 936 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 937 if (!filled && allow_overflow) 938 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 939 940 io_cq_unlock_post(ctx); 941 return filled; 942 } 943 944 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 945 { 946 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 947 } 948 949 /* 950 * A helper for multishot requests posting additional CQEs. 951 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 952 */ 953 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags) 954 { 955 struct io_ring_ctx *ctx = req->ctx; 956 u64 user_data = req->cqe.user_data; 957 struct io_uring_cqe *cqe; 958 959 if (!defer) 960 return __io_post_aux_cqe(ctx, user_data, res, cflags, false); 961 962 lockdep_assert_held(&ctx->uring_lock); 963 964 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) { 965 __io_cq_lock(ctx); 966 __io_flush_post_cqes(ctx); 967 /* no need to flush - flush is deferred */ 968 __io_cq_unlock_post(ctx); 969 } 970 971 /* For defered completions this is not as strict as it is otherwise, 972 * however it's main job is to prevent unbounded posted completions, 973 * and in that it works just as well. 974 */ 975 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 976 return false; 977 978 cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++]; 979 cqe->user_data = user_data; 980 cqe->res = res; 981 cqe->flags = cflags; 982 return true; 983 } 984 985 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 986 { 987 struct io_ring_ctx *ctx = req->ctx; 988 struct io_rsrc_node *rsrc_node = NULL; 989 990 io_cq_lock(ctx); 991 if (!(req->flags & REQ_F_CQE_SKIP)) { 992 if (!io_fill_cqe_req(ctx, req)) 993 io_req_cqe_overflow(req); 994 } 995 996 /* 997 * If we're the last reference to this request, add to our locked 998 * free_list cache. 999 */ 1000 if (req_ref_put_and_test(req)) { 1001 if (req->flags & IO_REQ_LINK_FLAGS) { 1002 if (req->flags & IO_DISARM_MASK) 1003 io_disarm_next(req); 1004 if (req->link) { 1005 io_req_task_queue(req->link); 1006 req->link = NULL; 1007 } 1008 } 1009 io_put_kbuf_comp(req); 1010 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1011 io_clean_op(req); 1012 io_put_file(req); 1013 1014 rsrc_node = req->rsrc_node; 1015 /* 1016 * Selected buffer deallocation in io_clean_op() assumes that 1017 * we don't hold ->completion_lock. Clean them here to avoid 1018 * deadlocks. 1019 */ 1020 io_put_task_remote(req->task); 1021 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1022 ctx->locked_free_nr++; 1023 } 1024 io_cq_unlock_post(ctx); 1025 1026 if (rsrc_node) { 1027 io_ring_submit_lock(ctx, issue_flags); 1028 io_put_rsrc_node(ctx, rsrc_node); 1029 io_ring_submit_unlock(ctx, issue_flags); 1030 } 1031 } 1032 1033 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1034 { 1035 if (req->ctx->task_complete && req->ctx->submitter_task != current) { 1036 req->io_task_work.func = io_req_task_complete; 1037 io_req_task_work_add(req); 1038 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1039 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 1040 __io_req_complete_post(req, issue_flags); 1041 } else { 1042 struct io_ring_ctx *ctx = req->ctx; 1043 1044 mutex_lock(&ctx->uring_lock); 1045 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); 1046 mutex_unlock(&ctx->uring_lock); 1047 } 1048 } 1049 1050 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1051 __must_hold(&ctx->uring_lock) 1052 { 1053 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1054 1055 lockdep_assert_held(&req->ctx->uring_lock); 1056 1057 req_set_fail(req); 1058 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1059 if (def->fail) 1060 def->fail(req); 1061 io_req_complete_defer(req); 1062 } 1063 1064 /* 1065 * Don't initialise the fields below on every allocation, but do that in 1066 * advance and keep them valid across allocations. 1067 */ 1068 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1069 { 1070 req->ctx = ctx; 1071 req->link = NULL; 1072 req->async_data = NULL; 1073 /* not necessary, but safer to zero */ 1074 memset(&req->cqe, 0, sizeof(req->cqe)); 1075 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 1076 } 1077 1078 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1079 struct io_submit_state *state) 1080 { 1081 spin_lock(&ctx->completion_lock); 1082 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1083 ctx->locked_free_nr = 0; 1084 spin_unlock(&ctx->completion_lock); 1085 } 1086 1087 /* 1088 * A request might get retired back into the request caches even before opcode 1089 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1090 * Because of that, io_alloc_req() should be called only under ->uring_lock 1091 * and with extra caution to not get a request that is still worked on. 1092 */ 1093 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1094 __must_hold(&ctx->uring_lock) 1095 { 1096 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1097 void *reqs[IO_REQ_ALLOC_BATCH]; 1098 int ret, i; 1099 1100 /* 1101 * If we have more than a batch's worth of requests in our IRQ side 1102 * locked cache, grab the lock and move them over to our submission 1103 * side cache. 1104 */ 1105 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1106 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1107 if (!io_req_cache_empty(ctx)) 1108 return true; 1109 } 1110 1111 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1112 1113 /* 1114 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1115 * retry single alloc to be on the safe side. 1116 */ 1117 if (unlikely(ret <= 0)) { 1118 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1119 if (!reqs[0]) 1120 return false; 1121 ret = 1; 1122 } 1123 1124 percpu_ref_get_many(&ctx->refs, ret); 1125 for (i = 0; i < ret; i++) { 1126 struct io_kiocb *req = reqs[i]; 1127 1128 io_preinit_req(req, ctx); 1129 io_req_add_to_cache(req, ctx); 1130 } 1131 return true; 1132 } 1133 1134 __cold void io_free_req(struct io_kiocb *req) 1135 { 1136 /* refs were already put, restore them for io_req_task_complete() */ 1137 req->flags &= ~REQ_F_REFCOUNT; 1138 /* we only want to free it, don't post CQEs */ 1139 req->flags |= REQ_F_CQE_SKIP; 1140 req->io_task_work.func = io_req_task_complete; 1141 io_req_task_work_add(req); 1142 } 1143 1144 static void __io_req_find_next_prep(struct io_kiocb *req) 1145 { 1146 struct io_ring_ctx *ctx = req->ctx; 1147 1148 spin_lock(&ctx->completion_lock); 1149 io_disarm_next(req); 1150 spin_unlock(&ctx->completion_lock); 1151 } 1152 1153 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1154 { 1155 struct io_kiocb *nxt; 1156 1157 /* 1158 * If LINK is set, we have dependent requests in this chain. If we 1159 * didn't fail this request, queue the first one up, moving any other 1160 * dependencies to the next request. In case of failure, fail the rest 1161 * of the chain. 1162 */ 1163 if (unlikely(req->flags & IO_DISARM_MASK)) 1164 __io_req_find_next_prep(req); 1165 nxt = req->link; 1166 req->link = NULL; 1167 return nxt; 1168 } 1169 1170 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1171 { 1172 if (!ctx) 1173 return; 1174 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1175 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1176 if (ts->locked) { 1177 io_submit_flush_completions(ctx); 1178 mutex_unlock(&ctx->uring_lock); 1179 ts->locked = false; 1180 } 1181 percpu_ref_put(&ctx->refs); 1182 } 1183 1184 static unsigned int handle_tw_list(struct llist_node *node, 1185 struct io_ring_ctx **ctx, 1186 struct io_tw_state *ts) 1187 { 1188 unsigned int count = 0; 1189 1190 do { 1191 struct llist_node *next = node->next; 1192 struct io_kiocb *req = container_of(node, struct io_kiocb, 1193 io_task_work.node); 1194 1195 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1196 1197 if (req->ctx != *ctx) { 1198 ctx_flush_and_put(*ctx, ts); 1199 *ctx = req->ctx; 1200 /* if not contended, grab and improve batching */ 1201 ts->locked = mutex_trylock(&(*ctx)->uring_lock); 1202 percpu_ref_get(&(*ctx)->refs); 1203 } 1204 INDIRECT_CALL_2(req->io_task_work.func, 1205 io_poll_task_func, io_req_rw_complete, 1206 req, ts); 1207 node = next; 1208 count++; 1209 if (unlikely(need_resched())) { 1210 ctx_flush_and_put(*ctx, ts); 1211 *ctx = NULL; 1212 cond_resched(); 1213 } 1214 } while (node); 1215 1216 return count; 1217 } 1218 1219 /** 1220 * io_llist_xchg - swap all entries in a lock-less list 1221 * @head: the head of lock-less list to delete all entries 1222 * @new: new entry as the head of the list 1223 * 1224 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1225 * The order of entries returned is from the newest to the oldest added one. 1226 */ 1227 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1228 struct llist_node *new) 1229 { 1230 return xchg(&head->first, new); 1231 } 1232 1233 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1234 { 1235 struct llist_node *node = llist_del_all(&tctx->task_list); 1236 struct io_ring_ctx *last_ctx = NULL; 1237 struct io_kiocb *req; 1238 1239 while (node) { 1240 req = container_of(node, struct io_kiocb, io_task_work.node); 1241 node = node->next; 1242 if (sync && last_ctx != req->ctx) { 1243 if (last_ctx) { 1244 flush_delayed_work(&last_ctx->fallback_work); 1245 percpu_ref_put(&last_ctx->refs); 1246 } 1247 last_ctx = req->ctx; 1248 percpu_ref_get(&last_ctx->refs); 1249 } 1250 if (llist_add(&req->io_task_work.node, 1251 &req->ctx->fallback_llist)) 1252 schedule_delayed_work(&req->ctx->fallback_work, 1); 1253 } 1254 1255 if (last_ctx) { 1256 flush_delayed_work(&last_ctx->fallback_work); 1257 percpu_ref_put(&last_ctx->refs); 1258 } 1259 } 1260 1261 void tctx_task_work(struct callback_head *cb) 1262 { 1263 struct io_tw_state ts = {}; 1264 struct io_ring_ctx *ctx = NULL; 1265 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1266 task_work); 1267 struct llist_node *node; 1268 unsigned int count = 0; 1269 1270 if (unlikely(current->flags & PF_EXITING)) { 1271 io_fallback_tw(tctx, true); 1272 return; 1273 } 1274 1275 node = llist_del_all(&tctx->task_list); 1276 if (node) 1277 count = handle_tw_list(node, &ctx, &ts); 1278 1279 ctx_flush_and_put(ctx, &ts); 1280 1281 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1282 if (unlikely(atomic_read(&tctx->in_cancel))) 1283 io_uring_drop_tctx_refs(current); 1284 1285 trace_io_uring_task_work_run(tctx, count, 1); 1286 } 1287 1288 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1289 { 1290 struct io_ring_ctx *ctx = req->ctx; 1291 unsigned nr_wait, nr_tw, nr_tw_prev; 1292 struct llist_node *first; 1293 1294 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1295 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1296 1297 first = READ_ONCE(ctx->work_llist.first); 1298 do { 1299 nr_tw_prev = 0; 1300 if (first) { 1301 struct io_kiocb *first_req = container_of(first, 1302 struct io_kiocb, 1303 io_task_work.node); 1304 /* 1305 * Might be executed at any moment, rely on 1306 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1307 */ 1308 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1309 } 1310 nr_tw = nr_tw_prev + 1; 1311 /* Large enough to fail the nr_wait comparison below */ 1312 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1313 nr_tw = INT_MAX; 1314 1315 req->nr_tw = nr_tw; 1316 req->io_task_work.node.next = first; 1317 } while (!try_cmpxchg(&ctx->work_llist.first, &first, 1318 &req->io_task_work.node)); 1319 1320 if (!first) { 1321 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1322 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1323 if (ctx->has_evfd) 1324 io_eventfd_signal(ctx); 1325 } 1326 1327 nr_wait = atomic_read(&ctx->cq_wait_nr); 1328 /* no one is waiting */ 1329 if (!nr_wait) 1330 return; 1331 /* either not enough or the previous add has already woken it up */ 1332 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait) 1333 return; 1334 /* pairs with set_current_state() in io_cqring_wait() */ 1335 smp_mb__after_atomic(); 1336 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1337 } 1338 1339 static void io_req_normal_work_add(struct io_kiocb *req) 1340 { 1341 struct io_uring_task *tctx = req->task->io_uring; 1342 struct io_ring_ctx *ctx = req->ctx; 1343 1344 /* task_work already pending, we're done */ 1345 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1346 return; 1347 1348 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1349 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1350 1351 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1352 return; 1353 1354 io_fallback_tw(tctx, false); 1355 } 1356 1357 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1358 { 1359 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1360 rcu_read_lock(); 1361 io_req_local_work_add(req, flags); 1362 rcu_read_unlock(); 1363 } else { 1364 io_req_normal_work_add(req); 1365 } 1366 } 1367 1368 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1369 { 1370 struct llist_node *node; 1371 1372 node = llist_del_all(&ctx->work_llist); 1373 while (node) { 1374 struct io_kiocb *req = container_of(node, struct io_kiocb, 1375 io_task_work.node); 1376 1377 node = node->next; 1378 io_req_normal_work_add(req); 1379 } 1380 } 1381 1382 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events, 1383 int min_events) 1384 { 1385 if (llist_empty(&ctx->work_llist)) 1386 return false; 1387 if (events < min_events) 1388 return true; 1389 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1390 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1391 return false; 1392 } 1393 1394 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts, 1395 int min_events) 1396 { 1397 struct llist_node *node; 1398 unsigned int loops = 0; 1399 int ret = 0; 1400 1401 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1402 return -EEXIST; 1403 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1404 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1405 again: 1406 /* 1407 * llists are in reverse order, flip it back the right way before 1408 * running the pending items. 1409 */ 1410 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1411 while (node) { 1412 struct llist_node *next = node->next; 1413 struct io_kiocb *req = container_of(node, struct io_kiocb, 1414 io_task_work.node); 1415 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1416 INDIRECT_CALL_2(req->io_task_work.func, 1417 io_poll_task_func, io_req_rw_complete, 1418 req, ts); 1419 ret++; 1420 node = next; 1421 } 1422 loops++; 1423 1424 if (io_run_local_work_continue(ctx, ret, min_events)) 1425 goto again; 1426 if (ts->locked) { 1427 io_submit_flush_completions(ctx); 1428 if (io_run_local_work_continue(ctx, ret, min_events)) 1429 goto again; 1430 } 1431 1432 trace_io_uring_local_work_run(ctx, ret, loops); 1433 return ret; 1434 } 1435 1436 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx, 1437 int min_events) 1438 { 1439 struct io_tw_state ts = { .locked = true, }; 1440 int ret; 1441 1442 if (llist_empty(&ctx->work_llist)) 1443 return 0; 1444 1445 ret = __io_run_local_work(ctx, &ts, min_events); 1446 /* shouldn't happen! */ 1447 if (WARN_ON_ONCE(!ts.locked)) 1448 mutex_lock(&ctx->uring_lock); 1449 return ret; 1450 } 1451 1452 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events) 1453 { 1454 struct io_tw_state ts = {}; 1455 int ret; 1456 1457 ts.locked = mutex_trylock(&ctx->uring_lock); 1458 ret = __io_run_local_work(ctx, &ts, min_events); 1459 if (ts.locked) 1460 mutex_unlock(&ctx->uring_lock); 1461 1462 return ret; 1463 } 1464 1465 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1466 { 1467 io_tw_lock(req->ctx, ts); 1468 io_req_defer_failed(req, req->cqe.res); 1469 } 1470 1471 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1472 { 1473 io_tw_lock(req->ctx, ts); 1474 /* req->task == current here, checking PF_EXITING is safe */ 1475 if (unlikely(req->task->flags & PF_EXITING)) 1476 io_req_defer_failed(req, -EFAULT); 1477 else if (req->flags & REQ_F_FORCE_ASYNC) 1478 io_queue_iowq(req, ts); 1479 else 1480 io_queue_sqe(req); 1481 } 1482 1483 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1484 { 1485 io_req_set_res(req, ret, 0); 1486 req->io_task_work.func = io_req_task_cancel; 1487 io_req_task_work_add(req); 1488 } 1489 1490 void io_req_task_queue(struct io_kiocb *req) 1491 { 1492 req->io_task_work.func = io_req_task_submit; 1493 io_req_task_work_add(req); 1494 } 1495 1496 void io_queue_next(struct io_kiocb *req) 1497 { 1498 struct io_kiocb *nxt = io_req_find_next(req); 1499 1500 if (nxt) 1501 io_req_task_queue(nxt); 1502 } 1503 1504 static void io_free_batch_list(struct io_ring_ctx *ctx, 1505 struct io_wq_work_node *node) 1506 __must_hold(&ctx->uring_lock) 1507 { 1508 do { 1509 struct io_kiocb *req = container_of(node, struct io_kiocb, 1510 comp_list); 1511 1512 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1513 if (req->flags & REQ_F_REFCOUNT) { 1514 node = req->comp_list.next; 1515 if (!req_ref_put_and_test(req)) 1516 continue; 1517 } 1518 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1519 struct async_poll *apoll = req->apoll; 1520 1521 if (apoll->double_poll) 1522 kfree(apoll->double_poll); 1523 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1524 kfree(apoll); 1525 req->flags &= ~REQ_F_POLLED; 1526 } 1527 if (req->flags & IO_REQ_LINK_FLAGS) 1528 io_queue_next(req); 1529 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1530 io_clean_op(req); 1531 } 1532 io_put_file(req); 1533 1534 io_req_put_rsrc_locked(req, ctx); 1535 1536 io_put_task(req->task); 1537 node = req->comp_list.next; 1538 io_req_add_to_cache(req, ctx); 1539 } while (node); 1540 } 1541 1542 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1543 __must_hold(&ctx->uring_lock) 1544 { 1545 struct io_submit_state *state = &ctx->submit_state; 1546 struct io_wq_work_node *node; 1547 1548 __io_cq_lock(ctx); 1549 /* must come first to preserve CQE ordering in failure cases */ 1550 if (state->cqes_count) 1551 __io_flush_post_cqes(ctx); 1552 __wq_list_for_each(node, &state->compl_reqs) { 1553 struct io_kiocb *req = container_of(node, struct io_kiocb, 1554 comp_list); 1555 1556 if (!(req->flags & REQ_F_CQE_SKIP) && 1557 unlikely(!io_fill_cqe_req(ctx, req))) { 1558 if (ctx->lockless_cq) { 1559 spin_lock(&ctx->completion_lock); 1560 io_req_cqe_overflow(req); 1561 spin_unlock(&ctx->completion_lock); 1562 } else { 1563 io_req_cqe_overflow(req); 1564 } 1565 } 1566 } 1567 __io_cq_unlock_post(ctx); 1568 1569 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1570 io_free_batch_list(ctx, state->compl_reqs.first); 1571 INIT_WQ_LIST(&state->compl_reqs); 1572 } 1573 } 1574 1575 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1576 { 1577 /* See comment at the top of this file */ 1578 smp_rmb(); 1579 return __io_cqring_events(ctx); 1580 } 1581 1582 /* 1583 * We can't just wait for polled events to come to us, we have to actively 1584 * find and complete them. 1585 */ 1586 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1587 { 1588 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1589 return; 1590 1591 mutex_lock(&ctx->uring_lock); 1592 while (!wq_list_empty(&ctx->iopoll_list)) { 1593 /* let it sleep and repeat later if can't complete a request */ 1594 if (io_do_iopoll(ctx, true) == 0) 1595 break; 1596 /* 1597 * Ensure we allow local-to-the-cpu processing to take place, 1598 * in this case we need to ensure that we reap all events. 1599 * Also let task_work, etc. to progress by releasing the mutex 1600 */ 1601 if (need_resched()) { 1602 mutex_unlock(&ctx->uring_lock); 1603 cond_resched(); 1604 mutex_lock(&ctx->uring_lock); 1605 } 1606 } 1607 mutex_unlock(&ctx->uring_lock); 1608 } 1609 1610 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1611 { 1612 unsigned int nr_events = 0; 1613 unsigned long check_cq; 1614 1615 lockdep_assert_held(&ctx->uring_lock); 1616 1617 if (!io_allowed_run_tw(ctx)) 1618 return -EEXIST; 1619 1620 check_cq = READ_ONCE(ctx->check_cq); 1621 if (unlikely(check_cq)) { 1622 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1623 __io_cqring_overflow_flush(ctx); 1624 /* 1625 * Similarly do not spin if we have not informed the user of any 1626 * dropped CQE. 1627 */ 1628 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1629 return -EBADR; 1630 } 1631 /* 1632 * Don't enter poll loop if we already have events pending. 1633 * If we do, we can potentially be spinning for commands that 1634 * already triggered a CQE (eg in error). 1635 */ 1636 if (io_cqring_events(ctx)) 1637 return 0; 1638 1639 do { 1640 int ret = 0; 1641 1642 /* 1643 * If a submit got punted to a workqueue, we can have the 1644 * application entering polling for a command before it gets 1645 * issued. That app will hold the uring_lock for the duration 1646 * of the poll right here, so we need to take a breather every 1647 * now and then to ensure that the issue has a chance to add 1648 * the poll to the issued list. Otherwise we can spin here 1649 * forever, while the workqueue is stuck trying to acquire the 1650 * very same mutex. 1651 */ 1652 if (wq_list_empty(&ctx->iopoll_list) || 1653 io_task_work_pending(ctx)) { 1654 u32 tail = ctx->cached_cq_tail; 1655 1656 (void) io_run_local_work_locked(ctx, min); 1657 1658 if (task_work_pending(current) || 1659 wq_list_empty(&ctx->iopoll_list)) { 1660 mutex_unlock(&ctx->uring_lock); 1661 io_run_task_work(); 1662 mutex_lock(&ctx->uring_lock); 1663 } 1664 /* some requests don't go through iopoll_list */ 1665 if (tail != ctx->cached_cq_tail || 1666 wq_list_empty(&ctx->iopoll_list)) 1667 break; 1668 } 1669 ret = io_do_iopoll(ctx, !min); 1670 if (unlikely(ret < 0)) 1671 return ret; 1672 1673 if (task_sigpending(current)) 1674 return -EINTR; 1675 if (need_resched()) 1676 break; 1677 1678 nr_events += ret; 1679 } while (nr_events < min); 1680 1681 return 0; 1682 } 1683 1684 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1685 { 1686 if (ts->locked) 1687 io_req_complete_defer(req); 1688 else 1689 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1690 } 1691 1692 /* 1693 * After the iocb has been issued, it's safe to be found on the poll list. 1694 * Adding the kiocb to the list AFTER submission ensures that we don't 1695 * find it from a io_do_iopoll() thread before the issuer is done 1696 * accessing the kiocb cookie. 1697 */ 1698 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1699 { 1700 struct io_ring_ctx *ctx = req->ctx; 1701 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1702 1703 /* workqueue context doesn't hold uring_lock, grab it now */ 1704 if (unlikely(needs_lock)) 1705 mutex_lock(&ctx->uring_lock); 1706 1707 /* 1708 * Track whether we have multiple files in our lists. This will impact 1709 * how we do polling eventually, not spinning if we're on potentially 1710 * different devices. 1711 */ 1712 if (wq_list_empty(&ctx->iopoll_list)) { 1713 ctx->poll_multi_queue = false; 1714 } else if (!ctx->poll_multi_queue) { 1715 struct io_kiocb *list_req; 1716 1717 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1718 comp_list); 1719 if (list_req->file != req->file) 1720 ctx->poll_multi_queue = true; 1721 } 1722 1723 /* 1724 * For fast devices, IO may have already completed. If it has, add 1725 * it to the front so we find it first. 1726 */ 1727 if (READ_ONCE(req->iopoll_completed)) 1728 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1729 else 1730 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1731 1732 if (unlikely(needs_lock)) { 1733 /* 1734 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1735 * in sq thread task context or in io worker task context. If 1736 * current task context is sq thread, we don't need to check 1737 * whether should wake up sq thread. 1738 */ 1739 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1740 wq_has_sleeper(&ctx->sq_data->wait)) 1741 wake_up(&ctx->sq_data->wait); 1742 1743 mutex_unlock(&ctx->uring_lock); 1744 } 1745 } 1746 1747 unsigned int io_file_get_flags(struct file *file) 1748 { 1749 unsigned int res = 0; 1750 1751 if (S_ISREG(file_inode(file)->i_mode)) 1752 res |= REQ_F_ISREG; 1753 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1754 res |= REQ_F_SUPPORT_NOWAIT; 1755 return res; 1756 } 1757 1758 bool io_alloc_async_data(struct io_kiocb *req) 1759 { 1760 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1761 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1762 if (req->async_data) { 1763 req->flags |= REQ_F_ASYNC_DATA; 1764 return false; 1765 } 1766 return true; 1767 } 1768 1769 int io_req_prep_async(struct io_kiocb *req) 1770 { 1771 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1772 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1773 1774 /* assign early for deferred execution for non-fixed file */ 1775 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1776 req->file = io_file_get_normal(req, req->cqe.fd); 1777 if (!cdef->prep_async) 1778 return 0; 1779 if (WARN_ON_ONCE(req_has_async_data(req))) 1780 return -EFAULT; 1781 if (!def->manual_alloc) { 1782 if (io_alloc_async_data(req)) 1783 return -EAGAIN; 1784 } 1785 return cdef->prep_async(req); 1786 } 1787 1788 static u32 io_get_sequence(struct io_kiocb *req) 1789 { 1790 u32 seq = req->ctx->cached_sq_head; 1791 struct io_kiocb *cur; 1792 1793 /* need original cached_sq_head, but it was increased for each req */ 1794 io_for_each_link(cur, req) 1795 seq--; 1796 return seq; 1797 } 1798 1799 static __cold void io_drain_req(struct io_kiocb *req) 1800 __must_hold(&ctx->uring_lock) 1801 { 1802 struct io_ring_ctx *ctx = req->ctx; 1803 struct io_defer_entry *de; 1804 int ret; 1805 u32 seq = io_get_sequence(req); 1806 1807 /* Still need defer if there is pending req in defer list. */ 1808 spin_lock(&ctx->completion_lock); 1809 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1810 spin_unlock(&ctx->completion_lock); 1811 queue: 1812 ctx->drain_active = false; 1813 io_req_task_queue(req); 1814 return; 1815 } 1816 spin_unlock(&ctx->completion_lock); 1817 1818 io_prep_async_link(req); 1819 de = kmalloc(sizeof(*de), GFP_KERNEL); 1820 if (!de) { 1821 ret = -ENOMEM; 1822 io_req_defer_failed(req, ret); 1823 return; 1824 } 1825 1826 spin_lock(&ctx->completion_lock); 1827 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1828 spin_unlock(&ctx->completion_lock); 1829 kfree(de); 1830 goto queue; 1831 } 1832 1833 trace_io_uring_defer(req); 1834 de->req = req; 1835 de->seq = seq; 1836 list_add_tail(&de->list, &ctx->defer_list); 1837 spin_unlock(&ctx->completion_lock); 1838 } 1839 1840 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1841 unsigned int issue_flags) 1842 { 1843 if (req->file || !def->needs_file) 1844 return true; 1845 1846 if (req->flags & REQ_F_FIXED_FILE) 1847 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1848 else 1849 req->file = io_file_get_normal(req, req->cqe.fd); 1850 1851 return !!req->file; 1852 } 1853 1854 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1855 { 1856 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1857 const struct cred *creds = NULL; 1858 int ret; 1859 1860 if (unlikely(!io_assign_file(req, def, issue_flags))) 1861 return -EBADF; 1862 1863 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1864 creds = override_creds(req->creds); 1865 1866 if (!def->audit_skip) 1867 audit_uring_entry(req->opcode); 1868 1869 ret = def->issue(req, issue_flags); 1870 1871 if (!def->audit_skip) 1872 audit_uring_exit(!ret, ret); 1873 1874 if (creds) 1875 revert_creds(creds); 1876 1877 if (ret == IOU_OK) { 1878 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1879 io_req_complete_defer(req); 1880 else 1881 io_req_complete_post(req, issue_flags); 1882 1883 return 0; 1884 } 1885 1886 if (ret != IOU_ISSUE_SKIP_COMPLETE) 1887 return ret; 1888 1889 /* If the op doesn't have a file, we're not polling for it */ 1890 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1891 io_iopoll_req_issued(req, issue_flags); 1892 1893 return 0; 1894 } 1895 1896 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1897 { 1898 io_tw_lock(req->ctx, ts); 1899 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1900 IO_URING_F_COMPLETE_DEFER); 1901 } 1902 1903 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1904 { 1905 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1906 struct io_kiocb *nxt = NULL; 1907 1908 if (req_ref_put_and_test(req)) { 1909 if (req->flags & IO_REQ_LINK_FLAGS) 1910 nxt = io_req_find_next(req); 1911 io_free_req(req); 1912 } 1913 return nxt ? &nxt->work : NULL; 1914 } 1915 1916 void io_wq_submit_work(struct io_wq_work *work) 1917 { 1918 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1919 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1920 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1921 bool needs_poll = false; 1922 int ret = 0, err = -ECANCELED; 1923 1924 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1925 if (!(req->flags & REQ_F_REFCOUNT)) 1926 __io_req_set_refcount(req, 2); 1927 else 1928 req_ref_get(req); 1929 1930 io_arm_ltimeout(req); 1931 1932 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1933 if (work->flags & IO_WQ_WORK_CANCEL) { 1934 fail: 1935 io_req_task_queue_fail(req, err); 1936 return; 1937 } 1938 if (!io_assign_file(req, def, issue_flags)) { 1939 err = -EBADF; 1940 work->flags |= IO_WQ_WORK_CANCEL; 1941 goto fail; 1942 } 1943 1944 if (req->flags & REQ_F_FORCE_ASYNC) { 1945 bool opcode_poll = def->pollin || def->pollout; 1946 1947 if (opcode_poll && file_can_poll(req->file)) { 1948 needs_poll = true; 1949 issue_flags |= IO_URING_F_NONBLOCK; 1950 } 1951 } 1952 1953 do { 1954 ret = io_issue_sqe(req, issue_flags); 1955 if (ret != -EAGAIN) 1956 break; 1957 1958 /* 1959 * If REQ_F_NOWAIT is set, then don't wait or retry with 1960 * poll. -EAGAIN is final for that case. 1961 */ 1962 if (req->flags & REQ_F_NOWAIT) 1963 break; 1964 1965 /* 1966 * We can get EAGAIN for iopolled IO even though we're 1967 * forcing a sync submission from here, since we can't 1968 * wait for request slots on the block side. 1969 */ 1970 if (!needs_poll) { 1971 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1972 break; 1973 if (io_wq_worker_stopped()) 1974 break; 1975 cond_resched(); 1976 continue; 1977 } 1978 1979 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1980 return; 1981 /* aborted or ready, in either case retry blocking */ 1982 needs_poll = false; 1983 issue_flags &= ~IO_URING_F_NONBLOCK; 1984 } while (1); 1985 1986 /* avoid locking problems by failing it from a clean context */ 1987 if (ret < 0) 1988 io_req_task_queue_fail(req, ret); 1989 } 1990 1991 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1992 unsigned int issue_flags) 1993 { 1994 struct io_ring_ctx *ctx = req->ctx; 1995 struct io_fixed_file *slot; 1996 struct file *file = NULL; 1997 1998 io_ring_submit_lock(ctx, issue_flags); 1999 2000 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 2001 goto out; 2002 fd = array_index_nospec(fd, ctx->nr_user_files); 2003 slot = io_fixed_file_slot(&ctx->file_table, fd); 2004 file = io_slot_file(slot); 2005 req->flags |= io_slot_flags(slot); 2006 io_req_set_rsrc_node(req, ctx, 0); 2007 out: 2008 io_ring_submit_unlock(ctx, issue_flags); 2009 return file; 2010 } 2011 2012 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 2013 { 2014 struct file *file = fget(fd); 2015 2016 trace_io_uring_file_get(req, fd); 2017 2018 /* we don't allow fixed io_uring files */ 2019 if (file && io_is_uring_fops(file)) 2020 io_req_track_inflight(req); 2021 return file; 2022 } 2023 2024 static void io_queue_async(struct io_kiocb *req, int ret) 2025 __must_hold(&req->ctx->uring_lock) 2026 { 2027 struct io_kiocb *linked_timeout; 2028 2029 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2030 io_req_defer_failed(req, ret); 2031 return; 2032 } 2033 2034 linked_timeout = io_prep_linked_timeout(req); 2035 2036 switch (io_arm_poll_handler(req, 0)) { 2037 case IO_APOLL_READY: 2038 io_kbuf_recycle(req, 0); 2039 io_req_task_queue(req); 2040 break; 2041 case IO_APOLL_ABORTED: 2042 io_kbuf_recycle(req, 0); 2043 io_queue_iowq(req, NULL); 2044 break; 2045 case IO_APOLL_OK: 2046 break; 2047 } 2048 2049 if (linked_timeout) 2050 io_queue_linked_timeout(linked_timeout); 2051 } 2052 2053 static inline void io_queue_sqe(struct io_kiocb *req) 2054 __must_hold(&req->ctx->uring_lock) 2055 { 2056 int ret; 2057 2058 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2059 2060 /* 2061 * We async punt it if the file wasn't marked NOWAIT, or if the file 2062 * doesn't support non-blocking read/write attempts 2063 */ 2064 if (likely(!ret)) 2065 io_arm_ltimeout(req); 2066 else 2067 io_queue_async(req, ret); 2068 } 2069 2070 static void io_queue_sqe_fallback(struct io_kiocb *req) 2071 __must_hold(&req->ctx->uring_lock) 2072 { 2073 if (unlikely(req->flags & REQ_F_FAIL)) { 2074 /* 2075 * We don't submit, fail them all, for that replace hardlinks 2076 * with normal links. Extra REQ_F_LINK is tolerated. 2077 */ 2078 req->flags &= ~REQ_F_HARDLINK; 2079 req->flags |= REQ_F_LINK; 2080 io_req_defer_failed(req, req->cqe.res); 2081 } else { 2082 int ret = io_req_prep_async(req); 2083 2084 if (unlikely(ret)) { 2085 io_req_defer_failed(req, ret); 2086 return; 2087 } 2088 2089 if (unlikely(req->ctx->drain_active)) 2090 io_drain_req(req); 2091 else 2092 io_queue_iowq(req, NULL); 2093 } 2094 } 2095 2096 /* 2097 * Check SQE restrictions (opcode and flags). 2098 * 2099 * Returns 'true' if SQE is allowed, 'false' otherwise. 2100 */ 2101 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2102 struct io_kiocb *req, 2103 unsigned int sqe_flags) 2104 { 2105 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2106 return false; 2107 2108 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2109 ctx->restrictions.sqe_flags_required) 2110 return false; 2111 2112 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2113 ctx->restrictions.sqe_flags_required)) 2114 return false; 2115 2116 return true; 2117 } 2118 2119 static void io_init_req_drain(struct io_kiocb *req) 2120 { 2121 struct io_ring_ctx *ctx = req->ctx; 2122 struct io_kiocb *head = ctx->submit_state.link.head; 2123 2124 ctx->drain_active = true; 2125 if (head) { 2126 /* 2127 * If we need to drain a request in the middle of a link, drain 2128 * the head request and the next request/link after the current 2129 * link. Considering sequential execution of links, 2130 * REQ_F_IO_DRAIN will be maintained for every request of our 2131 * link. 2132 */ 2133 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2134 ctx->drain_next = true; 2135 } 2136 } 2137 2138 static __cold int io_init_fail_req(struct io_kiocb *req, int err) 2139 { 2140 /* ensure per-opcode data is cleared if we fail before prep */ 2141 memset(&req->cmd.data, 0, sizeof(req->cmd.data)); 2142 return err; 2143 } 2144 2145 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2146 const struct io_uring_sqe *sqe) 2147 __must_hold(&ctx->uring_lock) 2148 { 2149 const struct io_issue_def *def; 2150 unsigned int sqe_flags; 2151 int personality; 2152 u8 opcode; 2153 2154 /* req is partially pre-initialised, see io_preinit_req() */ 2155 req->opcode = opcode = READ_ONCE(sqe->opcode); 2156 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2157 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2158 req->cqe.user_data = READ_ONCE(sqe->user_data); 2159 req->file = NULL; 2160 req->rsrc_node = NULL; 2161 req->task = current; 2162 2163 if (unlikely(opcode >= IORING_OP_LAST)) { 2164 req->opcode = 0; 2165 return io_init_fail_req(req, -EINVAL); 2166 } 2167 def = &io_issue_defs[opcode]; 2168 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2169 /* enforce forwards compatibility on users */ 2170 if (sqe_flags & ~SQE_VALID_FLAGS) 2171 return io_init_fail_req(req, -EINVAL); 2172 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2173 if (!def->buffer_select) 2174 return io_init_fail_req(req, -EOPNOTSUPP); 2175 req->buf_index = READ_ONCE(sqe->buf_group); 2176 } 2177 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2178 ctx->drain_disabled = true; 2179 if (sqe_flags & IOSQE_IO_DRAIN) { 2180 if (ctx->drain_disabled) 2181 return io_init_fail_req(req, -EOPNOTSUPP); 2182 io_init_req_drain(req); 2183 } 2184 } 2185 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2186 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2187 return io_init_fail_req(req, -EACCES); 2188 /* knock it to the slow queue path, will be drained there */ 2189 if (ctx->drain_active) 2190 req->flags |= REQ_F_FORCE_ASYNC; 2191 /* if there is no link, we're at "next" request and need to drain */ 2192 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2193 ctx->drain_next = false; 2194 ctx->drain_active = true; 2195 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2196 } 2197 } 2198 2199 if (!def->ioprio && sqe->ioprio) 2200 return io_init_fail_req(req, -EINVAL); 2201 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2202 return io_init_fail_req(req, -EINVAL); 2203 2204 if (def->needs_file) { 2205 struct io_submit_state *state = &ctx->submit_state; 2206 2207 req->cqe.fd = READ_ONCE(sqe->fd); 2208 2209 /* 2210 * Plug now if we have more than 2 IO left after this, and the 2211 * target is potentially a read/write to block based storage. 2212 */ 2213 if (state->need_plug && def->plug) { 2214 state->plug_started = true; 2215 state->need_plug = false; 2216 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2217 } 2218 } 2219 2220 personality = READ_ONCE(sqe->personality); 2221 if (personality) { 2222 int ret; 2223 2224 req->creds = xa_load(&ctx->personalities, personality); 2225 if (!req->creds) 2226 return io_init_fail_req(req, -EINVAL); 2227 get_cred(req->creds); 2228 ret = security_uring_override_creds(req->creds); 2229 if (ret) { 2230 put_cred(req->creds); 2231 return io_init_fail_req(req, ret); 2232 } 2233 req->flags |= REQ_F_CREDS; 2234 } 2235 2236 return def->prep(req, sqe); 2237 } 2238 2239 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2240 struct io_kiocb *req, int ret) 2241 { 2242 struct io_ring_ctx *ctx = req->ctx; 2243 struct io_submit_link *link = &ctx->submit_state.link; 2244 struct io_kiocb *head = link->head; 2245 2246 trace_io_uring_req_failed(sqe, req, ret); 2247 2248 /* 2249 * Avoid breaking links in the middle as it renders links with SQPOLL 2250 * unusable. Instead of failing eagerly, continue assembling the link if 2251 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2252 * should find the flag and handle the rest. 2253 */ 2254 req_fail_link_node(req, ret); 2255 if (head && !(head->flags & REQ_F_FAIL)) 2256 req_fail_link_node(head, -ECANCELED); 2257 2258 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2259 if (head) { 2260 link->last->link = req; 2261 link->head = NULL; 2262 req = head; 2263 } 2264 io_queue_sqe_fallback(req); 2265 return ret; 2266 } 2267 2268 if (head) 2269 link->last->link = req; 2270 else 2271 link->head = req; 2272 link->last = req; 2273 return 0; 2274 } 2275 2276 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2277 const struct io_uring_sqe *sqe) 2278 __must_hold(&ctx->uring_lock) 2279 { 2280 struct io_submit_link *link = &ctx->submit_state.link; 2281 int ret; 2282 2283 ret = io_init_req(ctx, req, sqe); 2284 if (unlikely(ret)) 2285 return io_submit_fail_init(sqe, req, ret); 2286 2287 trace_io_uring_submit_req(req); 2288 2289 /* 2290 * If we already have a head request, queue this one for async 2291 * submittal once the head completes. If we don't have a head but 2292 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2293 * submitted sync once the chain is complete. If none of those 2294 * conditions are true (normal request), then just queue it. 2295 */ 2296 if (unlikely(link->head)) { 2297 ret = io_req_prep_async(req); 2298 if (unlikely(ret)) 2299 return io_submit_fail_init(sqe, req, ret); 2300 2301 trace_io_uring_link(req, link->head); 2302 link->last->link = req; 2303 link->last = req; 2304 2305 if (req->flags & IO_REQ_LINK_FLAGS) 2306 return 0; 2307 /* last request of the link, flush it */ 2308 req = link->head; 2309 link->head = NULL; 2310 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2311 goto fallback; 2312 2313 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2314 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2315 if (req->flags & IO_REQ_LINK_FLAGS) { 2316 link->head = req; 2317 link->last = req; 2318 } else { 2319 fallback: 2320 io_queue_sqe_fallback(req); 2321 } 2322 return 0; 2323 } 2324 2325 io_queue_sqe(req); 2326 return 0; 2327 } 2328 2329 /* 2330 * Batched submission is done, ensure local IO is flushed out. 2331 */ 2332 static void io_submit_state_end(struct io_ring_ctx *ctx) 2333 { 2334 struct io_submit_state *state = &ctx->submit_state; 2335 2336 if (unlikely(state->link.head)) 2337 io_queue_sqe_fallback(state->link.head); 2338 /* flush only after queuing links as they can generate completions */ 2339 io_submit_flush_completions(ctx); 2340 if (state->plug_started) 2341 blk_finish_plug(&state->plug); 2342 } 2343 2344 /* 2345 * Start submission side cache. 2346 */ 2347 static void io_submit_state_start(struct io_submit_state *state, 2348 unsigned int max_ios) 2349 { 2350 state->plug_started = false; 2351 state->need_plug = max_ios > 2; 2352 state->submit_nr = max_ios; 2353 /* set only head, no need to init link_last in advance */ 2354 state->link.head = NULL; 2355 } 2356 2357 static void io_commit_sqring(struct io_ring_ctx *ctx) 2358 { 2359 struct io_rings *rings = ctx->rings; 2360 2361 /* 2362 * Ensure any loads from the SQEs are done at this point, 2363 * since once we write the new head, the application could 2364 * write new data to them. 2365 */ 2366 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2367 } 2368 2369 /* 2370 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2371 * that is mapped by userspace. This means that care needs to be taken to 2372 * ensure that reads are stable, as we cannot rely on userspace always 2373 * being a good citizen. If members of the sqe are validated and then later 2374 * used, it's important that those reads are done through READ_ONCE() to 2375 * prevent a re-load down the line. 2376 */ 2377 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2378 { 2379 unsigned mask = ctx->sq_entries - 1; 2380 unsigned head = ctx->cached_sq_head++ & mask; 2381 2382 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) { 2383 head = READ_ONCE(ctx->sq_array[head]); 2384 if (unlikely(head >= ctx->sq_entries)) { 2385 /* drop invalid entries */ 2386 spin_lock(&ctx->completion_lock); 2387 ctx->cq_extra--; 2388 spin_unlock(&ctx->completion_lock); 2389 WRITE_ONCE(ctx->rings->sq_dropped, 2390 READ_ONCE(ctx->rings->sq_dropped) + 1); 2391 return false; 2392 } 2393 } 2394 2395 /* 2396 * The cached sq head (or cq tail) serves two purposes: 2397 * 2398 * 1) allows us to batch the cost of updating the user visible 2399 * head updates. 2400 * 2) allows the kernel side to track the head on its own, even 2401 * though the application is the one updating it. 2402 */ 2403 2404 /* double index for 128-byte SQEs, twice as long */ 2405 if (ctx->flags & IORING_SETUP_SQE128) 2406 head <<= 1; 2407 *sqe = &ctx->sq_sqes[head]; 2408 return true; 2409 } 2410 2411 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2412 __must_hold(&ctx->uring_lock) 2413 { 2414 unsigned int entries = io_sqring_entries(ctx); 2415 unsigned int left; 2416 int ret; 2417 2418 if (unlikely(!entries)) 2419 return 0; 2420 /* make sure SQ entry isn't read before tail */ 2421 ret = left = min(nr, entries); 2422 io_get_task_refs(left); 2423 io_submit_state_start(&ctx->submit_state, left); 2424 2425 do { 2426 const struct io_uring_sqe *sqe; 2427 struct io_kiocb *req; 2428 2429 if (unlikely(!io_alloc_req(ctx, &req))) 2430 break; 2431 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2432 io_req_add_to_cache(req, ctx); 2433 break; 2434 } 2435 2436 /* 2437 * Continue submitting even for sqe failure if the 2438 * ring was setup with IORING_SETUP_SUBMIT_ALL 2439 */ 2440 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2441 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2442 left--; 2443 break; 2444 } 2445 } while (--left); 2446 2447 if (unlikely(left)) { 2448 ret -= left; 2449 /* try again if it submitted nothing and can't allocate a req */ 2450 if (!ret && io_req_cache_empty(ctx)) 2451 ret = -EAGAIN; 2452 current->io_uring->cached_refs += left; 2453 } 2454 2455 io_submit_state_end(ctx); 2456 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2457 io_commit_sqring(ctx); 2458 return ret; 2459 } 2460 2461 struct io_wait_queue { 2462 struct wait_queue_entry wq; 2463 struct io_ring_ctx *ctx; 2464 unsigned cq_tail; 2465 unsigned nr_timeouts; 2466 ktime_t timeout; 2467 }; 2468 2469 static inline bool io_has_work(struct io_ring_ctx *ctx) 2470 { 2471 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2472 !llist_empty(&ctx->work_llist); 2473 } 2474 2475 static inline bool io_should_wake(struct io_wait_queue *iowq) 2476 { 2477 struct io_ring_ctx *ctx = iowq->ctx; 2478 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2479 2480 /* 2481 * Wake up if we have enough events, or if a timeout occurred since we 2482 * started waiting. For timeouts, we always want to return to userspace, 2483 * regardless of event count. 2484 */ 2485 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2486 } 2487 2488 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2489 int wake_flags, void *key) 2490 { 2491 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2492 2493 /* 2494 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2495 * the task, and the next invocation will do it. 2496 */ 2497 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2498 return autoremove_wake_function(curr, mode, wake_flags, key); 2499 return -1; 2500 } 2501 2502 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2503 { 2504 if (!llist_empty(&ctx->work_llist)) { 2505 __set_current_state(TASK_RUNNING); 2506 if (io_run_local_work(ctx, INT_MAX) > 0) 2507 return 0; 2508 } 2509 if (io_run_task_work() > 0) 2510 return 0; 2511 if (task_sigpending(current)) 2512 return -EINTR; 2513 return 0; 2514 } 2515 2516 static bool current_pending_io(void) 2517 { 2518 struct io_uring_task *tctx = current->io_uring; 2519 2520 if (!tctx) 2521 return false; 2522 return percpu_counter_read_positive(&tctx->inflight); 2523 } 2524 2525 /* when returns >0, the caller should retry */ 2526 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2527 struct io_wait_queue *iowq) 2528 { 2529 int ret; 2530 2531 if (unlikely(READ_ONCE(ctx->check_cq))) 2532 return 1; 2533 if (unlikely(!llist_empty(&ctx->work_llist))) 2534 return 1; 2535 if (unlikely(task_work_pending(current))) 2536 return 1; 2537 if (unlikely(task_sigpending(current))) 2538 return -EINTR; 2539 if (unlikely(io_should_wake(iowq))) 2540 return 0; 2541 2542 /* 2543 * Mark us as being in io_wait if we have pending requests, so cpufreq 2544 * can take into account that the task is waiting for IO - turns out 2545 * to be important for low QD IO. 2546 */ 2547 if (current_pending_io()) 2548 current->in_iowait = 1; 2549 ret = 0; 2550 if (iowq->timeout == KTIME_MAX) 2551 schedule(); 2552 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2553 ret = -ETIME; 2554 current->in_iowait = 0; 2555 return ret; 2556 } 2557 2558 /* 2559 * Wait until events become available, if we don't already have some. The 2560 * application must reap them itself, as they reside on the shared cq ring. 2561 */ 2562 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2563 const sigset_t __user *sig, size_t sigsz, 2564 struct __kernel_timespec __user *uts) 2565 { 2566 struct io_wait_queue iowq; 2567 struct io_rings *rings = ctx->rings; 2568 int ret; 2569 2570 if (!io_allowed_run_tw(ctx)) 2571 return -EEXIST; 2572 if (!llist_empty(&ctx->work_llist)) 2573 io_run_local_work(ctx, min_events); 2574 io_run_task_work(); 2575 io_cqring_overflow_flush(ctx); 2576 /* if user messes with these they will just get an early return */ 2577 if (__io_cqring_events_user(ctx) >= min_events) 2578 return 0; 2579 2580 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2581 iowq.wq.private = current; 2582 INIT_LIST_HEAD(&iowq.wq.entry); 2583 iowq.ctx = ctx; 2584 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2585 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2586 iowq.timeout = KTIME_MAX; 2587 2588 if (uts) { 2589 struct timespec64 ts; 2590 2591 if (get_timespec64(&ts, uts)) 2592 return -EFAULT; 2593 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2594 } 2595 2596 if (sig) { 2597 #ifdef CONFIG_COMPAT 2598 if (in_compat_syscall()) 2599 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2600 sigsz); 2601 else 2602 #endif 2603 ret = set_user_sigmask(sig, sigsz); 2604 2605 if (ret) 2606 return ret; 2607 } 2608 2609 trace_io_uring_cqring_wait(ctx, min_events); 2610 do { 2611 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2612 unsigned long check_cq; 2613 2614 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2615 atomic_set(&ctx->cq_wait_nr, nr_wait); 2616 set_current_state(TASK_INTERRUPTIBLE); 2617 } else { 2618 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2619 TASK_INTERRUPTIBLE); 2620 } 2621 2622 ret = io_cqring_wait_schedule(ctx, &iowq); 2623 __set_current_state(TASK_RUNNING); 2624 atomic_set(&ctx->cq_wait_nr, 0); 2625 2626 /* 2627 * Run task_work after scheduling and before io_should_wake(). 2628 * If we got woken because of task_work being processed, run it 2629 * now rather than let the caller do another wait loop. 2630 */ 2631 if (!llist_empty(&ctx->work_llist)) 2632 io_run_local_work(ctx, nr_wait); 2633 io_run_task_work(); 2634 2635 /* 2636 * Non-local task_work will be run on exit to userspace, but 2637 * if we're using DEFER_TASKRUN, then we could have waited 2638 * with a timeout for a number of requests. If the timeout 2639 * hits, we could have some requests ready to process. Ensure 2640 * this break is _after_ we have run task_work, to avoid 2641 * deferring running potentially pending requests until the 2642 * next time we wait for events. 2643 */ 2644 if (ret < 0) 2645 break; 2646 2647 check_cq = READ_ONCE(ctx->check_cq); 2648 if (unlikely(check_cq)) { 2649 /* let the caller flush overflows, retry */ 2650 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2651 io_cqring_do_overflow_flush(ctx); 2652 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2653 ret = -EBADR; 2654 break; 2655 } 2656 } 2657 2658 if (io_should_wake(&iowq)) { 2659 ret = 0; 2660 break; 2661 } 2662 cond_resched(); 2663 } while (1); 2664 2665 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2666 finish_wait(&ctx->cq_wait, &iowq.wq); 2667 restore_saved_sigmask_unless(ret == -EINTR); 2668 2669 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2670 } 2671 2672 void io_mem_free(void *ptr) 2673 { 2674 if (!ptr) 2675 return; 2676 2677 folio_put(virt_to_folio(ptr)); 2678 } 2679 2680 static void io_pages_free(struct page ***pages, int npages) 2681 { 2682 struct page **page_array; 2683 int i; 2684 2685 if (!pages) 2686 return; 2687 2688 page_array = *pages; 2689 if (!page_array) 2690 return; 2691 2692 for (i = 0; i < npages; i++) 2693 unpin_user_page(page_array[i]); 2694 kvfree(page_array); 2695 *pages = NULL; 2696 } 2697 2698 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, 2699 unsigned long uaddr, size_t size) 2700 { 2701 struct page **page_array; 2702 unsigned int nr_pages; 2703 void *page_addr; 2704 int ret, i, pinned; 2705 2706 *npages = 0; 2707 2708 if (uaddr & (PAGE_SIZE - 1) || !size) 2709 return ERR_PTR(-EINVAL); 2710 2711 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2712 if (nr_pages > USHRT_MAX) 2713 return ERR_PTR(-EINVAL); 2714 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); 2715 if (!page_array) 2716 return ERR_PTR(-ENOMEM); 2717 2718 2719 pinned = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, 2720 page_array); 2721 if (pinned != nr_pages) { 2722 ret = (pinned < 0) ? pinned : -EFAULT; 2723 goto free_pages; 2724 } 2725 2726 page_addr = page_address(page_array[0]); 2727 for (i = 0; i < nr_pages; i++) { 2728 ret = -EINVAL; 2729 2730 /* 2731 * Can't support mapping user allocated ring memory on 32-bit 2732 * archs where it could potentially reside in highmem. Just 2733 * fail those with -EINVAL, just like we did on kernels that 2734 * didn't support this feature. 2735 */ 2736 if (PageHighMem(page_array[i])) 2737 goto free_pages; 2738 2739 /* 2740 * No support for discontig pages for now, should either be a 2741 * single normal page, or a huge page. Later on we can add 2742 * support for remapping discontig pages, for now we will 2743 * just fail them with EINVAL. 2744 */ 2745 if (page_address(page_array[i]) != page_addr) 2746 goto free_pages; 2747 page_addr += PAGE_SIZE; 2748 } 2749 2750 *pages = page_array; 2751 *npages = nr_pages; 2752 return page_to_virt(page_array[0]); 2753 2754 free_pages: 2755 io_pages_free(&page_array, pinned > 0 ? pinned : 0); 2756 return ERR_PTR(ret); 2757 } 2758 2759 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2760 size_t size) 2761 { 2762 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2763 size); 2764 } 2765 2766 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2767 size_t size) 2768 { 2769 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2770 size); 2771 } 2772 2773 static void io_rings_free(struct io_ring_ctx *ctx) 2774 { 2775 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2776 io_mem_free(ctx->rings); 2777 io_mem_free(ctx->sq_sqes); 2778 } else { 2779 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2780 ctx->n_ring_pages = 0; 2781 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2782 ctx->n_sqe_pages = 0; 2783 } 2784 2785 ctx->rings = NULL; 2786 ctx->sq_sqes = NULL; 2787 } 2788 2789 void *io_mem_alloc(size_t size) 2790 { 2791 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2792 void *ret; 2793 2794 ret = (void *) __get_free_pages(gfp, get_order(size)); 2795 if (ret) 2796 return ret; 2797 return ERR_PTR(-ENOMEM); 2798 } 2799 2800 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2801 unsigned int cq_entries, size_t *sq_offset) 2802 { 2803 struct io_rings *rings; 2804 size_t off, sq_array_size; 2805 2806 off = struct_size(rings, cqes, cq_entries); 2807 if (off == SIZE_MAX) 2808 return SIZE_MAX; 2809 if (ctx->flags & IORING_SETUP_CQE32) { 2810 if (check_shl_overflow(off, 1, &off)) 2811 return SIZE_MAX; 2812 } 2813 2814 #ifdef CONFIG_SMP 2815 off = ALIGN(off, SMP_CACHE_BYTES); 2816 if (off == 0) 2817 return SIZE_MAX; 2818 #endif 2819 2820 if (ctx->flags & IORING_SETUP_NO_SQARRAY) { 2821 if (sq_offset) 2822 *sq_offset = SIZE_MAX; 2823 return off; 2824 } 2825 2826 if (sq_offset) 2827 *sq_offset = off; 2828 2829 sq_array_size = array_size(sizeof(u32), sq_entries); 2830 if (sq_array_size == SIZE_MAX) 2831 return SIZE_MAX; 2832 2833 if (check_add_overflow(off, sq_array_size, &off)) 2834 return SIZE_MAX; 2835 2836 return off; 2837 } 2838 2839 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2840 unsigned int eventfd_async) 2841 { 2842 struct io_ev_fd *ev_fd; 2843 __s32 __user *fds = arg; 2844 int fd; 2845 2846 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2847 lockdep_is_held(&ctx->uring_lock)); 2848 if (ev_fd) 2849 return -EBUSY; 2850 2851 if (copy_from_user(&fd, fds, sizeof(*fds))) 2852 return -EFAULT; 2853 2854 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2855 if (!ev_fd) 2856 return -ENOMEM; 2857 2858 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2859 if (IS_ERR(ev_fd->cq_ev_fd)) { 2860 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2861 kfree(ev_fd); 2862 return ret; 2863 } 2864 2865 spin_lock(&ctx->completion_lock); 2866 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2867 spin_unlock(&ctx->completion_lock); 2868 2869 ev_fd->eventfd_async = eventfd_async; 2870 ctx->has_evfd = true; 2871 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2872 atomic_set(&ev_fd->refs, 1); 2873 atomic_set(&ev_fd->ops, 0); 2874 return 0; 2875 } 2876 2877 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2878 { 2879 struct io_ev_fd *ev_fd; 2880 2881 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2882 lockdep_is_held(&ctx->uring_lock)); 2883 if (ev_fd) { 2884 ctx->has_evfd = false; 2885 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2886 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2887 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2888 return 0; 2889 } 2890 2891 return -ENXIO; 2892 } 2893 2894 static void io_req_caches_free(struct io_ring_ctx *ctx) 2895 { 2896 struct io_kiocb *req; 2897 int nr = 0; 2898 2899 mutex_lock(&ctx->uring_lock); 2900 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2901 2902 while (!io_req_cache_empty(ctx)) { 2903 req = io_extract_req(ctx); 2904 kmem_cache_free(req_cachep, req); 2905 nr++; 2906 } 2907 if (nr) 2908 percpu_ref_put_many(&ctx->refs, nr); 2909 mutex_unlock(&ctx->uring_lock); 2910 } 2911 2912 static void io_rsrc_node_cache_free(struct io_cache_entry *entry) 2913 { 2914 kfree(container_of(entry, struct io_rsrc_node, cache)); 2915 } 2916 2917 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2918 { 2919 io_sq_thread_finish(ctx); 2920 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2921 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2922 return; 2923 2924 mutex_lock(&ctx->uring_lock); 2925 if (ctx->buf_data) 2926 __io_sqe_buffers_unregister(ctx); 2927 if (ctx->file_data) 2928 __io_sqe_files_unregister(ctx); 2929 io_cqring_overflow_kill(ctx); 2930 io_eventfd_unregister(ctx); 2931 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2932 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2933 io_destroy_buffers(ctx); 2934 mutex_unlock(&ctx->uring_lock); 2935 if (ctx->sq_creds) 2936 put_cred(ctx->sq_creds); 2937 if (ctx->submitter_task) 2938 put_task_struct(ctx->submitter_task); 2939 2940 /* there are no registered resources left, nobody uses it */ 2941 if (ctx->rsrc_node) 2942 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2943 2944 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2945 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2946 2947 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); 2948 if (ctx->mm_account) { 2949 mmdrop(ctx->mm_account); 2950 ctx->mm_account = NULL; 2951 } 2952 io_rings_free(ctx); 2953 io_kbuf_mmap_list_free(ctx); 2954 2955 percpu_ref_exit(&ctx->refs); 2956 free_uid(ctx->user); 2957 io_req_caches_free(ctx); 2958 if (ctx->hash_map) 2959 io_wq_put_hash(ctx->hash_map); 2960 kfree(ctx->cancel_table.hbs); 2961 kfree(ctx->cancel_table_locked.hbs); 2962 xa_destroy(&ctx->io_bl_xa); 2963 kfree(ctx); 2964 } 2965 2966 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2967 { 2968 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2969 poll_wq_task_work); 2970 2971 mutex_lock(&ctx->uring_lock); 2972 ctx->poll_activated = true; 2973 mutex_unlock(&ctx->uring_lock); 2974 2975 /* 2976 * Wake ups for some events between start of polling and activation 2977 * might've been lost due to loose synchronisation. 2978 */ 2979 wake_up_all(&ctx->poll_wq); 2980 percpu_ref_put(&ctx->refs); 2981 } 2982 2983 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2984 { 2985 spin_lock(&ctx->completion_lock); 2986 /* already activated or in progress */ 2987 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2988 goto out; 2989 if (WARN_ON_ONCE(!ctx->task_complete)) 2990 goto out; 2991 if (!ctx->submitter_task) 2992 goto out; 2993 /* 2994 * with ->submitter_task only the submitter task completes requests, we 2995 * only need to sync with it, which is done by injecting a tw 2996 */ 2997 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2998 percpu_ref_get(&ctx->refs); 2999 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 3000 percpu_ref_put(&ctx->refs); 3001 out: 3002 spin_unlock(&ctx->completion_lock); 3003 } 3004 3005 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 3006 { 3007 struct io_ring_ctx *ctx = file->private_data; 3008 __poll_t mask = 0; 3009 3010 if (unlikely(!ctx->poll_activated)) 3011 io_activate_pollwq(ctx); 3012 3013 poll_wait(file, &ctx->poll_wq, wait); 3014 /* 3015 * synchronizes with barrier from wq_has_sleeper call in 3016 * io_commit_cqring 3017 */ 3018 smp_rmb(); 3019 if (!io_sqring_full(ctx)) 3020 mask |= EPOLLOUT | EPOLLWRNORM; 3021 3022 /* 3023 * Don't flush cqring overflow list here, just do a simple check. 3024 * Otherwise there could possible be ABBA deadlock: 3025 * CPU0 CPU1 3026 * ---- ---- 3027 * lock(&ctx->uring_lock); 3028 * lock(&ep->mtx); 3029 * lock(&ctx->uring_lock); 3030 * lock(&ep->mtx); 3031 * 3032 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 3033 * pushes them to do the flush. 3034 */ 3035 3036 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 3037 mask |= EPOLLIN | EPOLLRDNORM; 3038 3039 return mask; 3040 } 3041 3042 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 3043 { 3044 const struct cred *creds; 3045 3046 creds = xa_erase(&ctx->personalities, id); 3047 if (creds) { 3048 put_cred(creds); 3049 return 0; 3050 } 3051 3052 return -EINVAL; 3053 } 3054 3055 struct io_tctx_exit { 3056 struct callback_head task_work; 3057 struct completion completion; 3058 struct io_ring_ctx *ctx; 3059 }; 3060 3061 static __cold void io_tctx_exit_cb(struct callback_head *cb) 3062 { 3063 struct io_uring_task *tctx = current->io_uring; 3064 struct io_tctx_exit *work; 3065 3066 work = container_of(cb, struct io_tctx_exit, task_work); 3067 /* 3068 * When @in_cancel, we're in cancellation and it's racy to remove the 3069 * node. It'll be removed by the end of cancellation, just ignore it. 3070 * tctx can be NULL if the queueing of this task_work raced with 3071 * work cancelation off the exec path. 3072 */ 3073 if (tctx && !atomic_read(&tctx->in_cancel)) 3074 io_uring_del_tctx_node((unsigned long)work->ctx); 3075 complete(&work->completion); 3076 } 3077 3078 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 3079 { 3080 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3081 3082 return req->ctx == data; 3083 } 3084 3085 static __cold void io_ring_exit_work(struct work_struct *work) 3086 { 3087 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 3088 unsigned long timeout = jiffies + HZ * 60 * 5; 3089 unsigned long interval = HZ / 20; 3090 struct io_tctx_exit exit; 3091 struct io_tctx_node *node; 3092 int ret; 3093 3094 /* 3095 * If we're doing polled IO and end up having requests being 3096 * submitted async (out-of-line), then completions can come in while 3097 * we're waiting for refs to drop. We need to reap these manually, 3098 * as nobody else will be looking for them. 3099 */ 3100 do { 3101 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 3102 mutex_lock(&ctx->uring_lock); 3103 io_cqring_overflow_kill(ctx); 3104 mutex_unlock(&ctx->uring_lock); 3105 } 3106 3107 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3108 io_move_task_work_from_local(ctx); 3109 3110 while (io_uring_try_cancel_requests(ctx, NULL, true)) 3111 cond_resched(); 3112 3113 if (ctx->sq_data) { 3114 struct io_sq_data *sqd = ctx->sq_data; 3115 struct task_struct *tsk; 3116 3117 io_sq_thread_park(sqd); 3118 tsk = sqd->thread; 3119 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 3120 io_wq_cancel_cb(tsk->io_uring->io_wq, 3121 io_cancel_ctx_cb, ctx, true); 3122 io_sq_thread_unpark(sqd); 3123 } 3124 3125 io_req_caches_free(ctx); 3126 3127 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3128 /* there is little hope left, don't run it too often */ 3129 interval = HZ * 60; 3130 } 3131 /* 3132 * This is really an uninterruptible wait, as it has to be 3133 * complete. But it's also run from a kworker, which doesn't 3134 * take signals, so it's fine to make it interruptible. This 3135 * avoids scenarios where we knowingly can wait much longer 3136 * on completions, for example if someone does a SIGSTOP on 3137 * a task that needs to finish task_work to make this loop 3138 * complete. That's a synthetic situation that should not 3139 * cause a stuck task backtrace, and hence a potential panic 3140 * on stuck tasks if that is enabled. 3141 */ 3142 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 3143 3144 init_completion(&exit.completion); 3145 init_task_work(&exit.task_work, io_tctx_exit_cb); 3146 exit.ctx = ctx; 3147 3148 mutex_lock(&ctx->uring_lock); 3149 while (!list_empty(&ctx->tctx_list)) { 3150 WARN_ON_ONCE(time_after(jiffies, timeout)); 3151 3152 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3153 ctx_node); 3154 /* don't spin on a single task if cancellation failed */ 3155 list_rotate_left(&ctx->tctx_list); 3156 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3157 if (WARN_ON_ONCE(ret)) 3158 continue; 3159 3160 mutex_unlock(&ctx->uring_lock); 3161 /* 3162 * See comment above for 3163 * wait_for_completion_interruptible_timeout() on why this 3164 * wait is marked as interruptible. 3165 */ 3166 wait_for_completion_interruptible(&exit.completion); 3167 mutex_lock(&ctx->uring_lock); 3168 } 3169 mutex_unlock(&ctx->uring_lock); 3170 spin_lock(&ctx->completion_lock); 3171 spin_unlock(&ctx->completion_lock); 3172 3173 /* pairs with RCU read section in io_req_local_work_add() */ 3174 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3175 synchronize_rcu(); 3176 3177 io_ring_ctx_free(ctx); 3178 } 3179 3180 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3181 { 3182 unsigned long index; 3183 struct creds *creds; 3184 3185 mutex_lock(&ctx->uring_lock); 3186 percpu_ref_kill(&ctx->refs); 3187 xa_for_each(&ctx->personalities, index, creds) 3188 io_unregister_personality(ctx, index); 3189 if (ctx->rings) 3190 io_poll_remove_all(ctx, NULL, true); 3191 mutex_unlock(&ctx->uring_lock); 3192 3193 /* 3194 * If we failed setting up the ctx, we might not have any rings 3195 * and therefore did not submit any requests 3196 */ 3197 if (ctx->rings) 3198 io_kill_timeouts(ctx, NULL, true); 3199 3200 flush_delayed_work(&ctx->fallback_work); 3201 3202 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3203 /* 3204 * Use system_unbound_wq to avoid spawning tons of event kworkers 3205 * if we're exiting a ton of rings at the same time. It just adds 3206 * noise and overhead, there's no discernable change in runtime 3207 * over using system_wq. 3208 */ 3209 queue_work(iou_wq, &ctx->exit_work); 3210 } 3211 3212 static int io_uring_release(struct inode *inode, struct file *file) 3213 { 3214 struct io_ring_ctx *ctx = file->private_data; 3215 3216 file->private_data = NULL; 3217 io_ring_ctx_wait_and_kill(ctx); 3218 return 0; 3219 } 3220 3221 struct io_task_cancel { 3222 struct task_struct *task; 3223 bool all; 3224 }; 3225 3226 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3227 { 3228 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3229 struct io_task_cancel *cancel = data; 3230 3231 return io_match_task_safe(req, cancel->task, cancel->all); 3232 } 3233 3234 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3235 struct task_struct *task, 3236 bool cancel_all) 3237 { 3238 struct io_defer_entry *de; 3239 LIST_HEAD(list); 3240 3241 spin_lock(&ctx->completion_lock); 3242 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3243 if (io_match_task_safe(de->req, task, cancel_all)) { 3244 list_cut_position(&list, &ctx->defer_list, &de->list); 3245 break; 3246 } 3247 } 3248 spin_unlock(&ctx->completion_lock); 3249 if (list_empty(&list)) 3250 return false; 3251 3252 while (!list_empty(&list)) { 3253 de = list_first_entry(&list, struct io_defer_entry, list); 3254 list_del_init(&de->list); 3255 io_req_task_queue_fail(de->req, -ECANCELED); 3256 kfree(de); 3257 } 3258 return true; 3259 } 3260 3261 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3262 { 3263 struct io_tctx_node *node; 3264 enum io_wq_cancel cret; 3265 bool ret = false; 3266 3267 mutex_lock(&ctx->uring_lock); 3268 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3269 struct io_uring_task *tctx = node->task->io_uring; 3270 3271 /* 3272 * io_wq will stay alive while we hold uring_lock, because it's 3273 * killed after ctx nodes, which requires to take the lock. 3274 */ 3275 if (!tctx || !tctx->io_wq) 3276 continue; 3277 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3278 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3279 } 3280 mutex_unlock(&ctx->uring_lock); 3281 3282 return ret; 3283 } 3284 3285 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3286 struct task_struct *task, 3287 bool cancel_all) 3288 { 3289 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3290 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3291 enum io_wq_cancel cret; 3292 bool ret = false; 3293 3294 /* set it so io_req_local_work_add() would wake us up */ 3295 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3296 atomic_set(&ctx->cq_wait_nr, 1); 3297 smp_mb(); 3298 } 3299 3300 /* failed during ring init, it couldn't have issued any requests */ 3301 if (!ctx->rings) 3302 return false; 3303 3304 if (!task) { 3305 ret |= io_uring_try_cancel_iowq(ctx); 3306 } else if (tctx && tctx->io_wq) { 3307 /* 3308 * Cancels requests of all rings, not only @ctx, but 3309 * it's fine as the task is in exit/exec. 3310 */ 3311 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3312 &cancel, true); 3313 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3314 } 3315 3316 /* SQPOLL thread does its own polling */ 3317 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3318 (ctx->sq_data && ctx->sq_data->thread == current)) { 3319 while (!wq_list_empty(&ctx->iopoll_list)) { 3320 io_iopoll_try_reap_events(ctx); 3321 ret = true; 3322 cond_resched(); 3323 } 3324 } 3325 3326 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3327 io_allowed_defer_tw_run(ctx)) 3328 ret |= io_run_local_work(ctx, INT_MAX) > 0; 3329 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3330 mutex_lock(&ctx->uring_lock); 3331 ret |= io_poll_remove_all(ctx, task, cancel_all); 3332 mutex_unlock(&ctx->uring_lock); 3333 ret |= io_kill_timeouts(ctx, task, cancel_all); 3334 if (task) 3335 ret |= io_run_task_work() > 0; 3336 return ret; 3337 } 3338 3339 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3340 { 3341 if (tracked) 3342 return atomic_read(&tctx->inflight_tracked); 3343 return percpu_counter_sum(&tctx->inflight); 3344 } 3345 3346 /* 3347 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3348 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3349 */ 3350 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3351 { 3352 struct io_uring_task *tctx = current->io_uring; 3353 struct io_ring_ctx *ctx; 3354 struct io_tctx_node *node; 3355 unsigned long index; 3356 s64 inflight; 3357 DEFINE_WAIT(wait); 3358 3359 WARN_ON_ONCE(sqd && sqd->thread != current); 3360 3361 if (!current->io_uring) 3362 return; 3363 if (tctx->io_wq) 3364 io_wq_exit_start(tctx->io_wq); 3365 3366 atomic_inc(&tctx->in_cancel); 3367 do { 3368 bool loop = false; 3369 3370 io_uring_drop_tctx_refs(current); 3371 if (!tctx_inflight(tctx, !cancel_all)) 3372 break; 3373 3374 /* read completions before cancelations */ 3375 inflight = tctx_inflight(tctx, false); 3376 if (!inflight) 3377 break; 3378 3379 if (!sqd) { 3380 xa_for_each(&tctx->xa, index, node) { 3381 /* sqpoll task will cancel all its requests */ 3382 if (node->ctx->sq_data) 3383 continue; 3384 loop |= io_uring_try_cancel_requests(node->ctx, 3385 current, cancel_all); 3386 } 3387 } else { 3388 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3389 loop |= io_uring_try_cancel_requests(ctx, 3390 current, 3391 cancel_all); 3392 } 3393 3394 if (loop) { 3395 cond_resched(); 3396 continue; 3397 } 3398 3399 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3400 io_run_task_work(); 3401 io_uring_drop_tctx_refs(current); 3402 xa_for_each(&tctx->xa, index, node) { 3403 if (!llist_empty(&node->ctx->work_llist)) { 3404 WARN_ON_ONCE(node->ctx->submitter_task && 3405 node->ctx->submitter_task != current); 3406 goto end_wait; 3407 } 3408 } 3409 /* 3410 * If we've seen completions, retry without waiting. This 3411 * avoids a race where a completion comes in before we did 3412 * prepare_to_wait(). 3413 */ 3414 if (inflight == tctx_inflight(tctx, !cancel_all)) 3415 schedule(); 3416 end_wait: 3417 finish_wait(&tctx->wait, &wait); 3418 } while (1); 3419 3420 io_uring_clean_tctx(tctx); 3421 if (cancel_all) { 3422 /* 3423 * We shouldn't run task_works after cancel, so just leave 3424 * ->in_cancel set for normal exit. 3425 */ 3426 atomic_dec(&tctx->in_cancel); 3427 /* for exec all current's requests should be gone, kill tctx */ 3428 __io_uring_free(current); 3429 } 3430 } 3431 3432 void __io_uring_cancel(bool cancel_all) 3433 { 3434 io_uring_cancel_generic(cancel_all, NULL); 3435 } 3436 3437 static void *io_uring_validate_mmap_request(struct file *file, 3438 loff_t pgoff, size_t sz) 3439 { 3440 struct io_ring_ctx *ctx = file->private_data; 3441 loff_t offset = pgoff << PAGE_SHIFT; 3442 struct page *page; 3443 void *ptr; 3444 3445 switch (offset & IORING_OFF_MMAP_MASK) { 3446 case IORING_OFF_SQ_RING: 3447 case IORING_OFF_CQ_RING: 3448 /* Don't allow mmap if the ring was setup without it */ 3449 if (ctx->flags & IORING_SETUP_NO_MMAP) 3450 return ERR_PTR(-EINVAL); 3451 ptr = ctx->rings; 3452 break; 3453 case IORING_OFF_SQES: 3454 /* Don't allow mmap if the ring was setup without it */ 3455 if (ctx->flags & IORING_SETUP_NO_MMAP) 3456 return ERR_PTR(-EINVAL); 3457 ptr = ctx->sq_sqes; 3458 break; 3459 case IORING_OFF_PBUF_RING: { 3460 struct io_buffer_list *bl; 3461 unsigned int bgid; 3462 3463 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; 3464 bl = io_pbuf_get_bl(ctx, bgid); 3465 if (IS_ERR(bl)) 3466 return bl; 3467 ptr = bl->buf_ring; 3468 io_put_bl(ctx, bl); 3469 break; 3470 } 3471 default: 3472 return ERR_PTR(-EINVAL); 3473 } 3474 3475 page = virt_to_head_page(ptr); 3476 if (sz > page_size(page)) 3477 return ERR_PTR(-EINVAL); 3478 3479 return ptr; 3480 } 3481 3482 #ifdef CONFIG_MMU 3483 3484 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3485 { 3486 size_t sz = vma->vm_end - vma->vm_start; 3487 unsigned long pfn; 3488 void *ptr; 3489 3490 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3491 if (IS_ERR(ptr)) 3492 return PTR_ERR(ptr); 3493 3494 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3495 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3496 } 3497 3498 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, 3499 unsigned long addr, unsigned long len, 3500 unsigned long pgoff, unsigned long flags) 3501 { 3502 void *ptr; 3503 3504 /* 3505 * Do not allow to map to user-provided address to avoid breaking the 3506 * aliasing rules. Userspace is not able to guess the offset address of 3507 * kernel kmalloc()ed memory area. 3508 */ 3509 if (addr) 3510 return -EINVAL; 3511 3512 ptr = io_uring_validate_mmap_request(filp, pgoff, len); 3513 if (IS_ERR(ptr)) 3514 return -ENOMEM; 3515 3516 /* 3517 * Some architectures have strong cache aliasing requirements. 3518 * For such architectures we need a coherent mapping which aliases 3519 * kernel memory *and* userspace memory. To achieve that: 3520 * - use a NULL file pointer to reference physical memory, and 3521 * - use the kernel virtual address of the shared io_uring context 3522 * (instead of the userspace-provided address, which has to be 0UL 3523 * anyway). 3524 * - use the same pgoff which the get_unmapped_area() uses to 3525 * calculate the page colouring. 3526 * For architectures without such aliasing requirements, the 3527 * architecture will return any suitable mapping because addr is 0. 3528 */ 3529 filp = NULL; 3530 flags |= MAP_SHARED; 3531 pgoff = 0; /* has been translated to ptr above */ 3532 #ifdef SHM_COLOUR 3533 addr = (uintptr_t) ptr; 3534 pgoff = addr >> PAGE_SHIFT; 3535 #else 3536 addr = 0UL; 3537 #endif 3538 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 3539 } 3540 3541 #else /* !CONFIG_MMU */ 3542 3543 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3544 { 3545 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3546 } 3547 3548 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3549 { 3550 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3551 } 3552 3553 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3554 unsigned long addr, unsigned long len, 3555 unsigned long pgoff, unsigned long flags) 3556 { 3557 void *ptr; 3558 3559 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3560 if (IS_ERR(ptr)) 3561 return PTR_ERR(ptr); 3562 3563 return (unsigned long) ptr; 3564 } 3565 3566 #endif /* !CONFIG_MMU */ 3567 3568 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3569 { 3570 if (flags & IORING_ENTER_EXT_ARG) { 3571 struct io_uring_getevents_arg arg; 3572 3573 if (argsz != sizeof(arg)) 3574 return -EINVAL; 3575 if (copy_from_user(&arg, argp, sizeof(arg))) 3576 return -EFAULT; 3577 } 3578 return 0; 3579 } 3580 3581 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3582 struct __kernel_timespec __user **ts, 3583 const sigset_t __user **sig) 3584 { 3585 struct io_uring_getevents_arg arg; 3586 3587 /* 3588 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3589 * is just a pointer to the sigset_t. 3590 */ 3591 if (!(flags & IORING_ENTER_EXT_ARG)) { 3592 *sig = (const sigset_t __user *) argp; 3593 *ts = NULL; 3594 return 0; 3595 } 3596 3597 /* 3598 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3599 * timespec and sigset_t pointers if good. 3600 */ 3601 if (*argsz != sizeof(arg)) 3602 return -EINVAL; 3603 if (copy_from_user(&arg, argp, sizeof(arg))) 3604 return -EFAULT; 3605 if (arg.pad) 3606 return -EINVAL; 3607 *sig = u64_to_user_ptr(arg.sigmask); 3608 *argsz = arg.sigmask_sz; 3609 *ts = u64_to_user_ptr(arg.ts); 3610 return 0; 3611 } 3612 3613 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3614 u32, min_complete, u32, flags, const void __user *, argp, 3615 size_t, argsz) 3616 { 3617 struct io_ring_ctx *ctx; 3618 struct file *file; 3619 long ret; 3620 3621 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3622 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3623 IORING_ENTER_REGISTERED_RING))) 3624 return -EINVAL; 3625 3626 /* 3627 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3628 * need only dereference our task private array to find it. 3629 */ 3630 if (flags & IORING_ENTER_REGISTERED_RING) { 3631 struct io_uring_task *tctx = current->io_uring; 3632 3633 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3634 return -EINVAL; 3635 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3636 file = tctx->registered_rings[fd]; 3637 if (unlikely(!file)) 3638 return -EBADF; 3639 } else { 3640 file = fget(fd); 3641 if (unlikely(!file)) 3642 return -EBADF; 3643 ret = -EOPNOTSUPP; 3644 if (unlikely(!io_is_uring_fops(file))) 3645 goto out; 3646 } 3647 3648 ctx = file->private_data; 3649 ret = -EBADFD; 3650 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3651 goto out; 3652 3653 /* 3654 * For SQ polling, the thread will do all submissions and completions. 3655 * Just return the requested submit count, and wake the thread if 3656 * we were asked to. 3657 */ 3658 ret = 0; 3659 if (ctx->flags & IORING_SETUP_SQPOLL) { 3660 io_cqring_overflow_flush(ctx); 3661 3662 if (unlikely(ctx->sq_data->thread == NULL)) { 3663 ret = -EOWNERDEAD; 3664 goto out; 3665 } 3666 if (flags & IORING_ENTER_SQ_WAKEUP) 3667 wake_up(&ctx->sq_data->wait); 3668 if (flags & IORING_ENTER_SQ_WAIT) 3669 io_sqpoll_wait_sq(ctx); 3670 3671 ret = to_submit; 3672 } else if (to_submit) { 3673 ret = io_uring_add_tctx_node(ctx); 3674 if (unlikely(ret)) 3675 goto out; 3676 3677 mutex_lock(&ctx->uring_lock); 3678 ret = io_submit_sqes(ctx, to_submit); 3679 if (ret != to_submit) { 3680 mutex_unlock(&ctx->uring_lock); 3681 goto out; 3682 } 3683 if (flags & IORING_ENTER_GETEVENTS) { 3684 if (ctx->syscall_iopoll) 3685 goto iopoll_locked; 3686 /* 3687 * Ignore errors, we'll soon call io_cqring_wait() and 3688 * it should handle ownership problems if any. 3689 */ 3690 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3691 (void)io_run_local_work_locked(ctx, min_complete); 3692 } 3693 mutex_unlock(&ctx->uring_lock); 3694 } 3695 3696 if (flags & IORING_ENTER_GETEVENTS) { 3697 int ret2; 3698 3699 if (ctx->syscall_iopoll) { 3700 /* 3701 * We disallow the app entering submit/complete with 3702 * polling, but we still need to lock the ring to 3703 * prevent racing with polled issue that got punted to 3704 * a workqueue. 3705 */ 3706 mutex_lock(&ctx->uring_lock); 3707 iopoll_locked: 3708 ret2 = io_validate_ext_arg(flags, argp, argsz); 3709 if (likely(!ret2)) { 3710 min_complete = min(min_complete, 3711 ctx->cq_entries); 3712 ret2 = io_iopoll_check(ctx, min_complete); 3713 } 3714 mutex_unlock(&ctx->uring_lock); 3715 } else { 3716 const sigset_t __user *sig; 3717 struct __kernel_timespec __user *ts; 3718 3719 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3720 if (likely(!ret2)) { 3721 min_complete = min(min_complete, 3722 ctx->cq_entries); 3723 ret2 = io_cqring_wait(ctx, min_complete, sig, 3724 argsz, ts); 3725 } 3726 } 3727 3728 if (!ret) { 3729 ret = ret2; 3730 3731 /* 3732 * EBADR indicates that one or more CQE were dropped. 3733 * Once the user has been informed we can clear the bit 3734 * as they are obviously ok with those drops. 3735 */ 3736 if (unlikely(ret2 == -EBADR)) 3737 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3738 &ctx->check_cq); 3739 } 3740 } 3741 out: 3742 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3743 fput(file); 3744 return ret; 3745 } 3746 3747 static const struct file_operations io_uring_fops = { 3748 .release = io_uring_release, 3749 .mmap = io_uring_mmap, 3750 #ifndef CONFIG_MMU 3751 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3752 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3753 #else 3754 .get_unmapped_area = io_uring_mmu_get_unmapped_area, 3755 #endif 3756 .poll = io_uring_poll, 3757 #ifdef CONFIG_PROC_FS 3758 .show_fdinfo = io_uring_show_fdinfo, 3759 #endif 3760 }; 3761 3762 bool io_is_uring_fops(struct file *file) 3763 { 3764 return file->f_op == &io_uring_fops; 3765 } 3766 3767 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3768 struct io_uring_params *p) 3769 { 3770 struct io_rings *rings; 3771 size_t size, sq_array_offset; 3772 void *ptr; 3773 3774 /* make sure these are sane, as we already accounted them */ 3775 ctx->sq_entries = p->sq_entries; 3776 ctx->cq_entries = p->cq_entries; 3777 3778 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3779 if (size == SIZE_MAX) 3780 return -EOVERFLOW; 3781 3782 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3783 rings = io_mem_alloc(size); 3784 else 3785 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3786 3787 if (IS_ERR(rings)) 3788 return PTR_ERR(rings); 3789 3790 ctx->rings = rings; 3791 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3792 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3793 rings->sq_ring_mask = p->sq_entries - 1; 3794 rings->cq_ring_mask = p->cq_entries - 1; 3795 rings->sq_ring_entries = p->sq_entries; 3796 rings->cq_ring_entries = p->cq_entries; 3797 3798 if (p->flags & IORING_SETUP_SQE128) 3799 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3800 else 3801 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3802 if (size == SIZE_MAX) { 3803 io_rings_free(ctx); 3804 return -EOVERFLOW; 3805 } 3806 3807 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3808 ptr = io_mem_alloc(size); 3809 else 3810 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3811 3812 if (IS_ERR(ptr)) { 3813 io_rings_free(ctx); 3814 return PTR_ERR(ptr); 3815 } 3816 3817 ctx->sq_sqes = ptr; 3818 return 0; 3819 } 3820 3821 static int io_uring_install_fd(struct file *file) 3822 { 3823 int fd; 3824 3825 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3826 if (fd < 0) 3827 return fd; 3828 fd_install(fd, file); 3829 return fd; 3830 } 3831 3832 /* 3833 * Allocate an anonymous fd, this is what constitutes the application 3834 * visible backing of an io_uring instance. The application mmaps this 3835 * fd to gain access to the SQ/CQ ring details. 3836 */ 3837 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3838 { 3839 return anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3840 O_RDWR | O_CLOEXEC, NULL); 3841 } 3842 3843 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3844 struct io_uring_params __user *params) 3845 { 3846 struct io_ring_ctx *ctx; 3847 struct io_uring_task *tctx; 3848 struct file *file; 3849 int ret; 3850 3851 if (!entries) 3852 return -EINVAL; 3853 if (entries > IORING_MAX_ENTRIES) { 3854 if (!(p->flags & IORING_SETUP_CLAMP)) 3855 return -EINVAL; 3856 entries = IORING_MAX_ENTRIES; 3857 } 3858 3859 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3860 && !(p->flags & IORING_SETUP_NO_MMAP)) 3861 return -EINVAL; 3862 3863 /* 3864 * Use twice as many entries for the CQ ring. It's possible for the 3865 * application to drive a higher depth than the size of the SQ ring, 3866 * since the sqes are only used at submission time. This allows for 3867 * some flexibility in overcommitting a bit. If the application has 3868 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3869 * of CQ ring entries manually. 3870 */ 3871 p->sq_entries = roundup_pow_of_two(entries); 3872 if (p->flags & IORING_SETUP_CQSIZE) { 3873 /* 3874 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3875 * to a power-of-two, if it isn't already. We do NOT impose 3876 * any cq vs sq ring sizing. 3877 */ 3878 if (!p->cq_entries) 3879 return -EINVAL; 3880 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3881 if (!(p->flags & IORING_SETUP_CLAMP)) 3882 return -EINVAL; 3883 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3884 } 3885 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3886 if (p->cq_entries < p->sq_entries) 3887 return -EINVAL; 3888 } else { 3889 p->cq_entries = 2 * p->sq_entries; 3890 } 3891 3892 ctx = io_ring_ctx_alloc(p); 3893 if (!ctx) 3894 return -ENOMEM; 3895 3896 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3897 !(ctx->flags & IORING_SETUP_IOPOLL) && 3898 !(ctx->flags & IORING_SETUP_SQPOLL)) 3899 ctx->task_complete = true; 3900 3901 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3902 ctx->lockless_cq = true; 3903 3904 /* 3905 * lazy poll_wq activation relies on ->task_complete for synchronisation 3906 * purposes, see io_activate_pollwq() 3907 */ 3908 if (!ctx->task_complete) 3909 ctx->poll_activated = true; 3910 3911 /* 3912 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3913 * space applications don't need to do io completion events 3914 * polling again, they can rely on io_sq_thread to do polling 3915 * work, which can reduce cpu usage and uring_lock contention. 3916 */ 3917 if (ctx->flags & IORING_SETUP_IOPOLL && 3918 !(ctx->flags & IORING_SETUP_SQPOLL)) 3919 ctx->syscall_iopoll = 1; 3920 3921 ctx->compat = in_compat_syscall(); 3922 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3923 ctx->user = get_uid(current_user()); 3924 3925 /* 3926 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3927 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3928 */ 3929 ret = -EINVAL; 3930 if (ctx->flags & IORING_SETUP_SQPOLL) { 3931 /* IPI related flags don't make sense with SQPOLL */ 3932 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3933 IORING_SETUP_TASKRUN_FLAG | 3934 IORING_SETUP_DEFER_TASKRUN)) 3935 goto err; 3936 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3937 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3938 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3939 } else { 3940 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3941 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3942 goto err; 3943 ctx->notify_method = TWA_SIGNAL; 3944 } 3945 3946 /* 3947 * For DEFER_TASKRUN we require the completion task to be the same as the 3948 * submission task. This implies that there is only one submitter, so enforce 3949 * that. 3950 */ 3951 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3952 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3953 goto err; 3954 } 3955 3956 /* 3957 * This is just grabbed for accounting purposes. When a process exits, 3958 * the mm is exited and dropped before the files, hence we need to hang 3959 * on to this mm purely for the purposes of being able to unaccount 3960 * memory (locked/pinned vm). It's not used for anything else. 3961 */ 3962 mmgrab(current->mm); 3963 ctx->mm_account = current->mm; 3964 3965 ret = io_allocate_scq_urings(ctx, p); 3966 if (ret) 3967 goto err; 3968 3969 ret = io_sq_offload_create(ctx, p); 3970 if (ret) 3971 goto err; 3972 3973 ret = io_rsrc_init(ctx); 3974 if (ret) 3975 goto err; 3976 3977 p->sq_off.head = offsetof(struct io_rings, sq.head); 3978 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3979 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3980 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3981 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3982 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3983 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3984 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3985 p->sq_off.resv1 = 0; 3986 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3987 p->sq_off.user_addr = 0; 3988 3989 p->cq_off.head = offsetof(struct io_rings, cq.head); 3990 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3991 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3992 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3993 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3994 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3995 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3996 p->cq_off.resv1 = 0; 3997 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3998 p->cq_off.user_addr = 0; 3999 4000 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 4001 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 4002 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 4003 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 4004 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 4005 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 4006 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 4007 4008 if (copy_to_user(params, p, sizeof(*p))) { 4009 ret = -EFAULT; 4010 goto err; 4011 } 4012 4013 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 4014 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 4015 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4016 4017 file = io_uring_get_file(ctx); 4018 if (IS_ERR(file)) { 4019 ret = PTR_ERR(file); 4020 goto err; 4021 } 4022 4023 ret = __io_uring_add_tctx_node(ctx); 4024 if (ret) 4025 goto err_fput; 4026 tctx = current->io_uring; 4027 4028 /* 4029 * Install ring fd as the very last thing, so we don't risk someone 4030 * having closed it before we finish setup 4031 */ 4032 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 4033 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 4034 else 4035 ret = io_uring_install_fd(file); 4036 if (ret < 0) 4037 goto err_fput; 4038 4039 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 4040 return ret; 4041 err: 4042 io_ring_ctx_wait_and_kill(ctx); 4043 return ret; 4044 err_fput: 4045 fput(file); 4046 return ret; 4047 } 4048 4049 /* 4050 * Sets up an aio uring context, and returns the fd. Applications asks for a 4051 * ring size, we return the actual sq/cq ring sizes (among other things) in the 4052 * params structure passed in. 4053 */ 4054 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 4055 { 4056 struct io_uring_params p; 4057 int i; 4058 4059 if (copy_from_user(&p, params, sizeof(p))) 4060 return -EFAULT; 4061 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 4062 if (p.resv[i]) 4063 return -EINVAL; 4064 } 4065 4066 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 4067 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 4068 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 4069 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 4070 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 4071 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 4072 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 4073 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 4074 IORING_SETUP_NO_SQARRAY)) 4075 return -EINVAL; 4076 4077 return io_uring_create(entries, &p, params); 4078 } 4079 4080 static inline bool io_uring_allowed(void) 4081 { 4082 int disabled = READ_ONCE(sysctl_io_uring_disabled); 4083 kgid_t io_uring_group; 4084 4085 if (disabled == 2) 4086 return false; 4087 4088 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 4089 return true; 4090 4091 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 4092 if (!gid_valid(io_uring_group)) 4093 return false; 4094 4095 return in_group_p(io_uring_group); 4096 } 4097 4098 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 4099 struct io_uring_params __user *, params) 4100 { 4101 if (!io_uring_allowed()) 4102 return -EPERM; 4103 4104 return io_uring_setup(entries, params); 4105 } 4106 4107 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 4108 unsigned nr_args) 4109 { 4110 struct io_uring_probe *p; 4111 size_t size; 4112 int i, ret; 4113 4114 size = struct_size(p, ops, nr_args); 4115 if (size == SIZE_MAX) 4116 return -EOVERFLOW; 4117 p = kzalloc(size, GFP_KERNEL); 4118 if (!p) 4119 return -ENOMEM; 4120 4121 ret = -EFAULT; 4122 if (copy_from_user(p, arg, size)) 4123 goto out; 4124 ret = -EINVAL; 4125 if (memchr_inv(p, 0, size)) 4126 goto out; 4127 4128 p->last_op = IORING_OP_LAST - 1; 4129 if (nr_args > IORING_OP_LAST) 4130 nr_args = IORING_OP_LAST; 4131 4132 for (i = 0; i < nr_args; i++) { 4133 p->ops[i].op = i; 4134 if (!io_issue_defs[i].not_supported) 4135 p->ops[i].flags = IO_URING_OP_SUPPORTED; 4136 } 4137 p->ops_len = i; 4138 4139 ret = 0; 4140 if (copy_to_user(arg, p, size)) 4141 ret = -EFAULT; 4142 out: 4143 kfree(p); 4144 return ret; 4145 } 4146 4147 static int io_register_personality(struct io_ring_ctx *ctx) 4148 { 4149 const struct cred *creds; 4150 u32 id; 4151 int ret; 4152 4153 creds = get_current_cred(); 4154 4155 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 4156 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 4157 if (ret < 0) { 4158 put_cred(creds); 4159 return ret; 4160 } 4161 return id; 4162 } 4163 4164 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 4165 void __user *arg, unsigned int nr_args) 4166 { 4167 struct io_uring_restriction *res; 4168 size_t size; 4169 int i, ret; 4170 4171 /* Restrictions allowed only if rings started disabled */ 4172 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4173 return -EBADFD; 4174 4175 /* We allow only a single restrictions registration */ 4176 if (ctx->restrictions.registered) 4177 return -EBUSY; 4178 4179 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 4180 return -EINVAL; 4181 4182 size = array_size(nr_args, sizeof(*res)); 4183 if (size == SIZE_MAX) 4184 return -EOVERFLOW; 4185 4186 res = memdup_user(arg, size); 4187 if (IS_ERR(res)) 4188 return PTR_ERR(res); 4189 4190 ret = 0; 4191 4192 for (i = 0; i < nr_args; i++) { 4193 switch (res[i].opcode) { 4194 case IORING_RESTRICTION_REGISTER_OP: 4195 if (res[i].register_op >= IORING_REGISTER_LAST) { 4196 ret = -EINVAL; 4197 goto out; 4198 } 4199 4200 __set_bit(res[i].register_op, 4201 ctx->restrictions.register_op); 4202 break; 4203 case IORING_RESTRICTION_SQE_OP: 4204 if (res[i].sqe_op >= IORING_OP_LAST) { 4205 ret = -EINVAL; 4206 goto out; 4207 } 4208 4209 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 4210 break; 4211 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 4212 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 4213 break; 4214 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 4215 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 4216 break; 4217 default: 4218 ret = -EINVAL; 4219 goto out; 4220 } 4221 } 4222 4223 out: 4224 /* Reset all restrictions if an error happened */ 4225 if (ret != 0) 4226 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 4227 else 4228 ctx->restrictions.registered = true; 4229 4230 kfree(res); 4231 return ret; 4232 } 4233 4234 static int io_register_enable_rings(struct io_ring_ctx *ctx) 4235 { 4236 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4237 return -EBADFD; 4238 4239 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) { 4240 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4241 /* 4242 * Lazy activation attempts would fail if it was polled before 4243 * submitter_task is set. 4244 */ 4245 if (wq_has_sleeper(&ctx->poll_wq)) 4246 io_activate_pollwq(ctx); 4247 } 4248 4249 if (ctx->restrictions.registered) 4250 ctx->restricted = 1; 4251 4252 ctx->flags &= ~IORING_SETUP_R_DISABLED; 4253 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 4254 wake_up(&ctx->sq_data->wait); 4255 return 0; 4256 } 4257 4258 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx, 4259 cpumask_var_t new_mask) 4260 { 4261 int ret; 4262 4263 if (!(ctx->flags & IORING_SETUP_SQPOLL)) { 4264 ret = io_wq_cpu_affinity(current->io_uring, new_mask); 4265 } else { 4266 mutex_unlock(&ctx->uring_lock); 4267 ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask); 4268 mutex_lock(&ctx->uring_lock); 4269 } 4270 4271 return ret; 4272 } 4273 4274 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 4275 void __user *arg, unsigned len) 4276 { 4277 cpumask_var_t new_mask; 4278 int ret; 4279 4280 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4281 return -ENOMEM; 4282 4283 cpumask_clear(new_mask); 4284 if (len > cpumask_size()) 4285 len = cpumask_size(); 4286 4287 if (in_compat_syscall()) { 4288 ret = compat_get_bitmap(cpumask_bits(new_mask), 4289 (const compat_ulong_t __user *)arg, 4290 len * 8 /* CHAR_BIT */); 4291 } else { 4292 ret = copy_from_user(new_mask, arg, len); 4293 } 4294 4295 if (ret) { 4296 free_cpumask_var(new_mask); 4297 return -EFAULT; 4298 } 4299 4300 ret = __io_register_iowq_aff(ctx, new_mask); 4301 free_cpumask_var(new_mask); 4302 return ret; 4303 } 4304 4305 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 4306 { 4307 return __io_register_iowq_aff(ctx, NULL); 4308 } 4309 4310 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 4311 void __user *arg) 4312 __must_hold(&ctx->uring_lock) 4313 { 4314 struct io_tctx_node *node; 4315 struct io_uring_task *tctx = NULL; 4316 struct io_sq_data *sqd = NULL; 4317 __u32 new_count[2]; 4318 int i, ret; 4319 4320 if (copy_from_user(new_count, arg, sizeof(new_count))) 4321 return -EFAULT; 4322 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4323 if (new_count[i] > INT_MAX) 4324 return -EINVAL; 4325 4326 if (ctx->flags & IORING_SETUP_SQPOLL) { 4327 sqd = ctx->sq_data; 4328 if (sqd) { 4329 /* 4330 * Observe the correct sqd->lock -> ctx->uring_lock 4331 * ordering. Fine to drop uring_lock here, we hold 4332 * a ref to the ctx. 4333 */ 4334 refcount_inc(&sqd->refs); 4335 mutex_unlock(&ctx->uring_lock); 4336 mutex_lock(&sqd->lock); 4337 mutex_lock(&ctx->uring_lock); 4338 if (sqd->thread) 4339 tctx = sqd->thread->io_uring; 4340 } 4341 } else { 4342 tctx = current->io_uring; 4343 } 4344 4345 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 4346 4347 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4348 if (new_count[i]) 4349 ctx->iowq_limits[i] = new_count[i]; 4350 ctx->iowq_limits_set = true; 4351 4352 if (tctx && tctx->io_wq) { 4353 ret = io_wq_max_workers(tctx->io_wq, new_count); 4354 if (ret) 4355 goto err; 4356 } else { 4357 memset(new_count, 0, sizeof(new_count)); 4358 } 4359 4360 if (sqd) { 4361 mutex_unlock(&ctx->uring_lock); 4362 mutex_unlock(&sqd->lock); 4363 io_put_sq_data(sqd); 4364 mutex_lock(&ctx->uring_lock); 4365 } 4366 4367 if (copy_to_user(arg, new_count, sizeof(new_count))) 4368 return -EFAULT; 4369 4370 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 4371 if (sqd) 4372 return 0; 4373 4374 /* now propagate the restriction to all registered users */ 4375 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 4376 struct io_uring_task *tctx = node->task->io_uring; 4377 4378 if (WARN_ON_ONCE(!tctx->io_wq)) 4379 continue; 4380 4381 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4382 new_count[i] = ctx->iowq_limits[i]; 4383 /* ignore errors, it always returns zero anyway */ 4384 (void)io_wq_max_workers(tctx->io_wq, new_count); 4385 } 4386 return 0; 4387 err: 4388 if (sqd) { 4389 mutex_unlock(&ctx->uring_lock); 4390 mutex_unlock(&sqd->lock); 4391 io_put_sq_data(sqd); 4392 mutex_lock(&ctx->uring_lock); 4393 4394 } 4395 return ret; 4396 } 4397 4398 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4399 void __user *arg, unsigned nr_args) 4400 __releases(ctx->uring_lock) 4401 __acquires(ctx->uring_lock) 4402 { 4403 int ret; 4404 4405 /* 4406 * We don't quiesce the refs for register anymore and so it can't be 4407 * dying as we're holding a file ref here. 4408 */ 4409 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4410 return -ENXIO; 4411 4412 if (ctx->submitter_task && ctx->submitter_task != current) 4413 return -EEXIST; 4414 4415 if (ctx->restricted) { 4416 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4417 if (!test_bit(opcode, ctx->restrictions.register_op)) 4418 return -EACCES; 4419 } 4420 4421 switch (opcode) { 4422 case IORING_REGISTER_BUFFERS: 4423 ret = -EFAULT; 4424 if (!arg) 4425 break; 4426 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4427 break; 4428 case IORING_UNREGISTER_BUFFERS: 4429 ret = -EINVAL; 4430 if (arg || nr_args) 4431 break; 4432 ret = io_sqe_buffers_unregister(ctx); 4433 break; 4434 case IORING_REGISTER_FILES: 4435 ret = -EFAULT; 4436 if (!arg) 4437 break; 4438 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4439 break; 4440 case IORING_UNREGISTER_FILES: 4441 ret = -EINVAL; 4442 if (arg || nr_args) 4443 break; 4444 ret = io_sqe_files_unregister(ctx); 4445 break; 4446 case IORING_REGISTER_FILES_UPDATE: 4447 ret = io_register_files_update(ctx, arg, nr_args); 4448 break; 4449 case IORING_REGISTER_EVENTFD: 4450 ret = -EINVAL; 4451 if (nr_args != 1) 4452 break; 4453 ret = io_eventfd_register(ctx, arg, 0); 4454 break; 4455 case IORING_REGISTER_EVENTFD_ASYNC: 4456 ret = -EINVAL; 4457 if (nr_args != 1) 4458 break; 4459 ret = io_eventfd_register(ctx, arg, 1); 4460 break; 4461 case IORING_UNREGISTER_EVENTFD: 4462 ret = -EINVAL; 4463 if (arg || nr_args) 4464 break; 4465 ret = io_eventfd_unregister(ctx); 4466 break; 4467 case IORING_REGISTER_PROBE: 4468 ret = -EINVAL; 4469 if (!arg || nr_args > 256) 4470 break; 4471 ret = io_probe(ctx, arg, nr_args); 4472 break; 4473 case IORING_REGISTER_PERSONALITY: 4474 ret = -EINVAL; 4475 if (arg || nr_args) 4476 break; 4477 ret = io_register_personality(ctx); 4478 break; 4479 case IORING_UNREGISTER_PERSONALITY: 4480 ret = -EINVAL; 4481 if (arg) 4482 break; 4483 ret = io_unregister_personality(ctx, nr_args); 4484 break; 4485 case IORING_REGISTER_ENABLE_RINGS: 4486 ret = -EINVAL; 4487 if (arg || nr_args) 4488 break; 4489 ret = io_register_enable_rings(ctx); 4490 break; 4491 case IORING_REGISTER_RESTRICTIONS: 4492 ret = io_register_restrictions(ctx, arg, nr_args); 4493 break; 4494 case IORING_REGISTER_FILES2: 4495 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4496 break; 4497 case IORING_REGISTER_FILES_UPDATE2: 4498 ret = io_register_rsrc_update(ctx, arg, nr_args, 4499 IORING_RSRC_FILE); 4500 break; 4501 case IORING_REGISTER_BUFFERS2: 4502 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4503 break; 4504 case IORING_REGISTER_BUFFERS_UPDATE: 4505 ret = io_register_rsrc_update(ctx, arg, nr_args, 4506 IORING_RSRC_BUFFER); 4507 break; 4508 case IORING_REGISTER_IOWQ_AFF: 4509 ret = -EINVAL; 4510 if (!arg || !nr_args) 4511 break; 4512 ret = io_register_iowq_aff(ctx, arg, nr_args); 4513 break; 4514 case IORING_UNREGISTER_IOWQ_AFF: 4515 ret = -EINVAL; 4516 if (arg || nr_args) 4517 break; 4518 ret = io_unregister_iowq_aff(ctx); 4519 break; 4520 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4521 ret = -EINVAL; 4522 if (!arg || nr_args != 2) 4523 break; 4524 ret = io_register_iowq_max_workers(ctx, arg); 4525 break; 4526 case IORING_REGISTER_RING_FDS: 4527 ret = io_ringfd_register(ctx, arg, nr_args); 4528 break; 4529 case IORING_UNREGISTER_RING_FDS: 4530 ret = io_ringfd_unregister(ctx, arg, nr_args); 4531 break; 4532 case IORING_REGISTER_PBUF_RING: 4533 ret = -EINVAL; 4534 if (!arg || nr_args != 1) 4535 break; 4536 ret = io_register_pbuf_ring(ctx, arg); 4537 break; 4538 case IORING_UNREGISTER_PBUF_RING: 4539 ret = -EINVAL; 4540 if (!arg || nr_args != 1) 4541 break; 4542 ret = io_unregister_pbuf_ring(ctx, arg); 4543 break; 4544 case IORING_REGISTER_SYNC_CANCEL: 4545 ret = -EINVAL; 4546 if (!arg || nr_args != 1) 4547 break; 4548 ret = io_sync_cancel(ctx, arg); 4549 break; 4550 case IORING_REGISTER_FILE_ALLOC_RANGE: 4551 ret = -EINVAL; 4552 if (!arg || nr_args) 4553 break; 4554 ret = io_register_file_alloc_range(ctx, arg); 4555 break; 4556 default: 4557 ret = -EINVAL; 4558 break; 4559 } 4560 4561 return ret; 4562 } 4563 4564 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4565 void __user *, arg, unsigned int, nr_args) 4566 { 4567 struct io_ring_ctx *ctx; 4568 long ret = -EBADF; 4569 struct file *file; 4570 bool use_registered_ring; 4571 4572 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING); 4573 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING; 4574 4575 if (opcode >= IORING_REGISTER_LAST) 4576 return -EINVAL; 4577 4578 if (use_registered_ring) { 4579 /* 4580 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 4581 * need only dereference our task private array to find it. 4582 */ 4583 struct io_uring_task *tctx = current->io_uring; 4584 4585 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 4586 return -EINVAL; 4587 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 4588 file = tctx->registered_rings[fd]; 4589 if (unlikely(!file)) 4590 return -EBADF; 4591 } else { 4592 file = fget(fd); 4593 if (unlikely(!file)) 4594 return -EBADF; 4595 ret = -EOPNOTSUPP; 4596 if (!io_is_uring_fops(file)) 4597 goto out_fput; 4598 } 4599 4600 ctx = file->private_data; 4601 4602 mutex_lock(&ctx->uring_lock); 4603 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4604 mutex_unlock(&ctx->uring_lock); 4605 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4606 out_fput: 4607 if (!use_registered_ring) 4608 fput(file); 4609 return ret; 4610 } 4611 4612 static int __init io_uring_init(void) 4613 { 4614 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4615 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4616 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4617 } while (0) 4618 4619 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4620 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4621 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4622 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4623 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4624 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4625 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4626 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4627 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4628 BUILD_BUG_SQE_ELEM(8, __u64, off); 4629 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4630 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4631 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4632 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4633 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4634 BUILD_BUG_SQE_ELEM(24, __u32, len); 4635 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4636 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4637 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4638 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4639 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4640 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4641 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4642 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4643 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4644 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4645 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4646 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4647 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4648 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4649 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4650 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4651 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4652 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4653 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4654 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4655 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4656 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4657 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4658 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4659 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4660 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4661 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4662 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4663 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4664 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4665 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4666 4667 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4668 sizeof(struct io_uring_rsrc_update)); 4669 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4670 sizeof(struct io_uring_rsrc_update2)); 4671 4672 /* ->buf_index is u16 */ 4673 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4674 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4675 offsetof(struct io_uring_buf_ring, tail)); 4676 4677 /* should fit into one byte */ 4678 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4679 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4680 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4681 4682 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4683 4684 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4685 4686 io_uring_optable_init(); 4687 4688 /* 4689 * Allow user copy in the per-command field, which starts after the 4690 * file in io_kiocb and until the opcode field. The openat2 handling 4691 * requires copying in user memory into the io_kiocb object in that 4692 * range, and HARDENED_USERCOPY will complain if we haven't 4693 * correctly annotated this range. 4694 */ 4695 req_cachep = kmem_cache_create_usercopy("io_kiocb", 4696 sizeof(struct io_kiocb), 0, 4697 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4698 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU, 4699 offsetof(struct io_kiocb, cmd.data), 4700 sizeof_field(struct io_kiocb, cmd.data), NULL); 4701 4702 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64); 4703 4704 #ifdef CONFIG_SYSCTL 4705 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 4706 #endif 4707 4708 return 0; 4709 }; 4710 __initcall(io_uring_init); 4711