xref: /openbmc/linux/io_uring/io_uring.c (revision bbaf1ff0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 #include <asm/shmparam.h>
76 
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/io_uring.h>
79 
80 #include <uapi/linux/io_uring.h>
81 
82 #include "io-wq.h"
83 
84 #include "io_uring.h"
85 #include "opdef.h"
86 #include "refs.h"
87 #include "tctx.h"
88 #include "sqpoll.h"
89 #include "fdinfo.h"
90 #include "kbuf.h"
91 #include "rsrc.h"
92 #include "cancel.h"
93 #include "net.h"
94 #include "notif.h"
95 
96 #include "timeout.h"
97 #include "poll.h"
98 #include "rw.h"
99 #include "alloc_cache.h"
100 
101 #define IORING_MAX_ENTRIES	32768
102 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
103 
104 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
105 				 IORING_REGISTER_LAST + IORING_OP_LAST)
106 
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109 
110 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112 
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 				REQ_F_ASYNC_DATA)
116 
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 				 IO_REQ_CLEAN_FLAGS)
119 
120 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
121 
122 #define IO_COMPL_BATCH			32
123 #define IO_REQ_ALLOC_BATCH		8
124 
125 enum {
126 	IO_CHECK_CQ_OVERFLOW_BIT,
127 	IO_CHECK_CQ_DROPPED_BIT,
128 };
129 
130 enum {
131 	IO_EVENTFD_OP_SIGNAL_BIT,
132 	IO_EVENTFD_OP_FREE_BIT,
133 };
134 
135 struct io_defer_entry {
136 	struct list_head	list;
137 	struct io_kiocb		*req;
138 	u32			seq;
139 };
140 
141 /* requests with any of those set should undergo io_disarm_next() */
142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
144 
145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
146 					 struct task_struct *task,
147 					 bool cancel_all);
148 
149 static void io_queue_sqe(struct io_kiocb *req);
150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx);
151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
152 static __cold void io_fallback_tw(struct io_uring_task *tctx);
153 
154 struct kmem_cache *req_cachep;
155 
156 struct sock *io_uring_get_socket(struct file *file)
157 {
158 #if defined(CONFIG_UNIX)
159 	if (io_is_uring_fops(file)) {
160 		struct io_ring_ctx *ctx = file->private_data;
161 
162 		return ctx->ring_sock->sk;
163 	}
164 #endif
165 	return NULL;
166 }
167 EXPORT_SYMBOL(io_uring_get_socket);
168 
169 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
170 {
171 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
172 	    ctx->submit_state.cqes_count)
173 		__io_submit_flush_completions(ctx);
174 }
175 
176 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
177 {
178 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
179 }
180 
181 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
182 {
183 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
184 }
185 
186 static bool io_match_linked(struct io_kiocb *head)
187 {
188 	struct io_kiocb *req;
189 
190 	io_for_each_link(req, head) {
191 		if (req->flags & REQ_F_INFLIGHT)
192 			return true;
193 	}
194 	return false;
195 }
196 
197 /*
198  * As io_match_task() but protected against racing with linked timeouts.
199  * User must not hold timeout_lock.
200  */
201 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
202 			bool cancel_all)
203 {
204 	bool matched;
205 
206 	if (task && head->task != task)
207 		return false;
208 	if (cancel_all)
209 		return true;
210 
211 	if (head->flags & REQ_F_LINK_TIMEOUT) {
212 		struct io_ring_ctx *ctx = head->ctx;
213 
214 		/* protect against races with linked timeouts */
215 		spin_lock_irq(&ctx->timeout_lock);
216 		matched = io_match_linked(head);
217 		spin_unlock_irq(&ctx->timeout_lock);
218 	} else {
219 		matched = io_match_linked(head);
220 	}
221 	return matched;
222 }
223 
224 static inline void req_fail_link_node(struct io_kiocb *req, int res)
225 {
226 	req_set_fail(req);
227 	io_req_set_res(req, res, 0);
228 }
229 
230 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
231 {
232 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
233 	kasan_poison_object_data(req_cachep, req);
234 }
235 
236 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
237 {
238 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
239 
240 	complete(&ctx->ref_comp);
241 }
242 
243 static __cold void io_fallback_req_func(struct work_struct *work)
244 {
245 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
246 						fallback_work.work);
247 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
248 	struct io_kiocb *req, *tmp;
249 	struct io_tw_state ts = { .locked = true, };
250 
251 	mutex_lock(&ctx->uring_lock);
252 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
253 		req->io_task_work.func(req, &ts);
254 	if (WARN_ON_ONCE(!ts.locked))
255 		return;
256 	io_submit_flush_completions(ctx);
257 	mutex_unlock(&ctx->uring_lock);
258 }
259 
260 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
261 {
262 	unsigned hash_buckets = 1U << bits;
263 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
264 
265 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
266 	if (!table->hbs)
267 		return -ENOMEM;
268 
269 	table->hash_bits = bits;
270 	init_hash_table(table, hash_buckets);
271 	return 0;
272 }
273 
274 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
275 {
276 	struct io_ring_ctx *ctx;
277 	int hash_bits;
278 
279 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
280 	if (!ctx)
281 		return NULL;
282 
283 	xa_init(&ctx->io_bl_xa);
284 
285 	/*
286 	 * Use 5 bits less than the max cq entries, that should give us around
287 	 * 32 entries per hash list if totally full and uniformly spread, but
288 	 * don't keep too many buckets to not overconsume memory.
289 	 */
290 	hash_bits = ilog2(p->cq_entries) - 5;
291 	hash_bits = clamp(hash_bits, 1, 8);
292 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
293 		goto err;
294 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
295 		goto err;
296 
297 	ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
298 	if (!ctx->dummy_ubuf)
299 		goto err;
300 	/* set invalid range, so io_import_fixed() fails meeting it */
301 	ctx->dummy_ubuf->ubuf = -1UL;
302 
303 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
304 			    0, GFP_KERNEL))
305 		goto err;
306 
307 	ctx->flags = p->flags;
308 	init_waitqueue_head(&ctx->sqo_sq_wait);
309 	INIT_LIST_HEAD(&ctx->sqd_list);
310 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
311 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
312 	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
313 			    sizeof(struct io_rsrc_node));
314 	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
315 			    sizeof(struct async_poll));
316 	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
317 			    sizeof(struct io_async_msghdr));
318 	init_completion(&ctx->ref_comp);
319 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
320 	mutex_init(&ctx->uring_lock);
321 	init_waitqueue_head(&ctx->cq_wait);
322 	init_waitqueue_head(&ctx->poll_wq);
323 	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
324 	spin_lock_init(&ctx->completion_lock);
325 	spin_lock_init(&ctx->timeout_lock);
326 	INIT_WQ_LIST(&ctx->iopoll_list);
327 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
328 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
329 	INIT_LIST_HEAD(&ctx->defer_list);
330 	INIT_LIST_HEAD(&ctx->timeout_list);
331 	INIT_LIST_HEAD(&ctx->ltimeout_list);
332 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
333 	init_llist_head(&ctx->work_llist);
334 	INIT_LIST_HEAD(&ctx->tctx_list);
335 	ctx->submit_state.free_list.next = NULL;
336 	INIT_WQ_LIST(&ctx->locked_free_list);
337 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
338 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
339 	return ctx;
340 err:
341 	kfree(ctx->dummy_ubuf);
342 	kfree(ctx->cancel_table.hbs);
343 	kfree(ctx->cancel_table_locked.hbs);
344 	kfree(ctx->io_bl);
345 	xa_destroy(&ctx->io_bl_xa);
346 	kfree(ctx);
347 	return NULL;
348 }
349 
350 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
351 {
352 	struct io_rings *r = ctx->rings;
353 
354 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
355 	ctx->cq_extra--;
356 }
357 
358 static bool req_need_defer(struct io_kiocb *req, u32 seq)
359 {
360 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
361 		struct io_ring_ctx *ctx = req->ctx;
362 
363 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
364 	}
365 
366 	return false;
367 }
368 
369 static void io_clean_op(struct io_kiocb *req)
370 {
371 	if (req->flags & REQ_F_BUFFER_SELECTED) {
372 		spin_lock(&req->ctx->completion_lock);
373 		io_put_kbuf_comp(req);
374 		spin_unlock(&req->ctx->completion_lock);
375 	}
376 
377 	if (req->flags & REQ_F_NEED_CLEANUP) {
378 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
379 
380 		if (def->cleanup)
381 			def->cleanup(req);
382 	}
383 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
384 		kfree(req->apoll->double_poll);
385 		kfree(req->apoll);
386 		req->apoll = NULL;
387 	}
388 	if (req->flags & REQ_F_INFLIGHT) {
389 		struct io_uring_task *tctx = req->task->io_uring;
390 
391 		atomic_dec(&tctx->inflight_tracked);
392 	}
393 	if (req->flags & REQ_F_CREDS)
394 		put_cred(req->creds);
395 	if (req->flags & REQ_F_ASYNC_DATA) {
396 		kfree(req->async_data);
397 		req->async_data = NULL;
398 	}
399 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
400 }
401 
402 static inline void io_req_track_inflight(struct io_kiocb *req)
403 {
404 	if (!(req->flags & REQ_F_INFLIGHT)) {
405 		req->flags |= REQ_F_INFLIGHT;
406 		atomic_inc(&req->task->io_uring->inflight_tracked);
407 	}
408 }
409 
410 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
411 {
412 	if (WARN_ON_ONCE(!req->link))
413 		return NULL;
414 
415 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
416 	req->flags |= REQ_F_LINK_TIMEOUT;
417 
418 	/* linked timeouts should have two refs once prep'ed */
419 	io_req_set_refcount(req);
420 	__io_req_set_refcount(req->link, 2);
421 	return req->link;
422 }
423 
424 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
425 {
426 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
427 		return NULL;
428 	return __io_prep_linked_timeout(req);
429 }
430 
431 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
432 {
433 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
434 }
435 
436 static inline void io_arm_ltimeout(struct io_kiocb *req)
437 {
438 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
439 		__io_arm_ltimeout(req);
440 }
441 
442 static void io_prep_async_work(struct io_kiocb *req)
443 {
444 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
445 	struct io_ring_ctx *ctx = req->ctx;
446 
447 	if (!(req->flags & REQ_F_CREDS)) {
448 		req->flags |= REQ_F_CREDS;
449 		req->creds = get_current_cred();
450 	}
451 
452 	req->work.list.next = NULL;
453 	req->work.flags = 0;
454 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
455 	if (req->flags & REQ_F_FORCE_ASYNC)
456 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
457 
458 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
459 		req->flags |= io_file_get_flags(req->file);
460 
461 	if (req->file && (req->flags & REQ_F_ISREG)) {
462 		bool should_hash = def->hash_reg_file;
463 
464 		/* don't serialize this request if the fs doesn't need it */
465 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
466 		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
467 			should_hash = false;
468 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
469 			io_wq_hash_work(&req->work, file_inode(req->file));
470 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
471 		if (def->unbound_nonreg_file)
472 			req->work.flags |= IO_WQ_WORK_UNBOUND;
473 	}
474 }
475 
476 static void io_prep_async_link(struct io_kiocb *req)
477 {
478 	struct io_kiocb *cur;
479 
480 	if (req->flags & REQ_F_LINK_TIMEOUT) {
481 		struct io_ring_ctx *ctx = req->ctx;
482 
483 		spin_lock_irq(&ctx->timeout_lock);
484 		io_for_each_link(cur, req)
485 			io_prep_async_work(cur);
486 		spin_unlock_irq(&ctx->timeout_lock);
487 	} else {
488 		io_for_each_link(cur, req)
489 			io_prep_async_work(cur);
490 	}
491 }
492 
493 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
494 {
495 	struct io_kiocb *link = io_prep_linked_timeout(req);
496 	struct io_uring_task *tctx = req->task->io_uring;
497 
498 	BUG_ON(!tctx);
499 	BUG_ON(!tctx->io_wq);
500 
501 	/* init ->work of the whole link before punting */
502 	io_prep_async_link(req);
503 
504 	/*
505 	 * Not expected to happen, but if we do have a bug where this _can_
506 	 * happen, catch it here and ensure the request is marked as
507 	 * canceled. That will make io-wq go through the usual work cancel
508 	 * procedure rather than attempt to run this request (or create a new
509 	 * worker for it).
510 	 */
511 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
512 		req->work.flags |= IO_WQ_WORK_CANCEL;
513 
514 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
515 	io_wq_enqueue(tctx->io_wq, &req->work);
516 	if (link)
517 		io_queue_linked_timeout(link);
518 }
519 
520 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
521 {
522 	while (!list_empty(&ctx->defer_list)) {
523 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
524 						struct io_defer_entry, list);
525 
526 		if (req_need_defer(de->req, de->seq))
527 			break;
528 		list_del_init(&de->list);
529 		io_req_task_queue(de->req);
530 		kfree(de);
531 	}
532 }
533 
534 
535 static void io_eventfd_ops(struct rcu_head *rcu)
536 {
537 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
538 	int ops = atomic_xchg(&ev_fd->ops, 0);
539 
540 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
541 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
542 
543 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
544 	 * ordering in a race but if references are 0 we know we have to free
545 	 * it regardless.
546 	 */
547 	if (atomic_dec_and_test(&ev_fd->refs)) {
548 		eventfd_ctx_put(ev_fd->cq_ev_fd);
549 		kfree(ev_fd);
550 	}
551 }
552 
553 static void io_eventfd_signal(struct io_ring_ctx *ctx)
554 {
555 	struct io_ev_fd *ev_fd = NULL;
556 
557 	rcu_read_lock();
558 	/*
559 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
560 	 * and eventfd_signal
561 	 */
562 	ev_fd = rcu_dereference(ctx->io_ev_fd);
563 
564 	/*
565 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
566 	 * completed between the NULL check of ctx->io_ev_fd at the start of
567 	 * the function and rcu_read_lock.
568 	 */
569 	if (unlikely(!ev_fd))
570 		goto out;
571 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
572 		goto out;
573 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
574 		goto out;
575 
576 	if (likely(eventfd_signal_allowed())) {
577 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
578 	} else {
579 		atomic_inc(&ev_fd->refs);
580 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
581 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
582 		else
583 			atomic_dec(&ev_fd->refs);
584 	}
585 
586 out:
587 	rcu_read_unlock();
588 }
589 
590 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
591 {
592 	bool skip;
593 
594 	spin_lock(&ctx->completion_lock);
595 
596 	/*
597 	 * Eventfd should only get triggered when at least one event has been
598 	 * posted. Some applications rely on the eventfd notification count
599 	 * only changing IFF a new CQE has been added to the CQ ring. There's
600 	 * no depedency on 1:1 relationship between how many times this
601 	 * function is called (and hence the eventfd count) and number of CQEs
602 	 * posted to the CQ ring.
603 	 */
604 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
605 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
606 	spin_unlock(&ctx->completion_lock);
607 	if (skip)
608 		return;
609 
610 	io_eventfd_signal(ctx);
611 }
612 
613 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
614 {
615 	if (ctx->poll_activated)
616 		io_poll_wq_wake(ctx);
617 	if (ctx->off_timeout_used)
618 		io_flush_timeouts(ctx);
619 	if (ctx->drain_active) {
620 		spin_lock(&ctx->completion_lock);
621 		io_queue_deferred(ctx);
622 		spin_unlock(&ctx->completion_lock);
623 	}
624 	if (ctx->has_evfd)
625 		io_eventfd_flush_signal(ctx);
626 }
627 
628 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
629 {
630 	if (!ctx->task_complete)
631 		spin_lock(&ctx->completion_lock);
632 }
633 
634 static inline void io_cq_lock(struct io_ring_ctx *ctx)
635 	__acquires(ctx->completion_lock)
636 {
637 	spin_lock(&ctx->completion_lock);
638 }
639 
640 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
641 {
642 	io_commit_cqring(ctx);
643 
644 	if (ctx->task_complete) {
645 		/*
646 		 * ->task_complete implies that only current might be waiting
647 		 * for CQEs, and obviously, we currently don't. No one is
648 		 * waiting, wakeups are futile, skip them.
649 		 */
650 		io_commit_cqring_flush(ctx);
651 	} else {
652 		spin_unlock(&ctx->completion_lock);
653 		io_commit_cqring_flush(ctx);
654 		io_cqring_wake(ctx);
655 	}
656 }
657 
658 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
659 	__releases(ctx->completion_lock)
660 {
661 	io_commit_cqring(ctx);
662 	spin_unlock(&ctx->completion_lock);
663 	io_commit_cqring_flush(ctx);
664 	io_cqring_wake(ctx);
665 }
666 
667 /* Returns true if there are no backlogged entries after the flush */
668 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
669 {
670 	struct io_overflow_cqe *ocqe;
671 	LIST_HEAD(list);
672 
673 	spin_lock(&ctx->completion_lock);
674 	list_splice_init(&ctx->cq_overflow_list, &list);
675 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
676 	spin_unlock(&ctx->completion_lock);
677 
678 	while (!list_empty(&list)) {
679 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
680 		list_del(&ocqe->list);
681 		kfree(ocqe);
682 	}
683 }
684 
685 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
686 {
687 	size_t cqe_size = sizeof(struct io_uring_cqe);
688 
689 	if (__io_cqring_events(ctx) == ctx->cq_entries)
690 		return;
691 
692 	if (ctx->flags & IORING_SETUP_CQE32)
693 		cqe_size <<= 1;
694 
695 	io_cq_lock(ctx);
696 	while (!list_empty(&ctx->cq_overflow_list)) {
697 		struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true);
698 		struct io_overflow_cqe *ocqe;
699 
700 		if (!cqe)
701 			break;
702 		ocqe = list_first_entry(&ctx->cq_overflow_list,
703 					struct io_overflow_cqe, list);
704 		memcpy(cqe, &ocqe->cqe, cqe_size);
705 		list_del(&ocqe->list);
706 		kfree(ocqe);
707 	}
708 
709 	if (list_empty(&ctx->cq_overflow_list)) {
710 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
711 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
712 	}
713 	io_cq_unlock_post(ctx);
714 }
715 
716 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
717 {
718 	/* iopoll syncs against uring_lock, not completion_lock */
719 	if (ctx->flags & IORING_SETUP_IOPOLL)
720 		mutex_lock(&ctx->uring_lock);
721 	__io_cqring_overflow_flush(ctx);
722 	if (ctx->flags & IORING_SETUP_IOPOLL)
723 		mutex_unlock(&ctx->uring_lock);
724 }
725 
726 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
727 {
728 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
729 		io_cqring_do_overflow_flush(ctx);
730 }
731 
732 /* can be called by any task */
733 static void io_put_task_remote(struct task_struct *task)
734 {
735 	struct io_uring_task *tctx = task->io_uring;
736 
737 	percpu_counter_sub(&tctx->inflight, 1);
738 	if (unlikely(atomic_read(&tctx->in_cancel)))
739 		wake_up(&tctx->wait);
740 	put_task_struct(task);
741 }
742 
743 /* used by a task to put its own references */
744 static void io_put_task_local(struct task_struct *task)
745 {
746 	task->io_uring->cached_refs++;
747 }
748 
749 /* must to be called somewhat shortly after putting a request */
750 static inline void io_put_task(struct task_struct *task)
751 {
752 	if (likely(task == current))
753 		io_put_task_local(task);
754 	else
755 		io_put_task_remote(task);
756 }
757 
758 void io_task_refs_refill(struct io_uring_task *tctx)
759 {
760 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
761 
762 	percpu_counter_add(&tctx->inflight, refill);
763 	refcount_add(refill, &current->usage);
764 	tctx->cached_refs += refill;
765 }
766 
767 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
768 {
769 	struct io_uring_task *tctx = task->io_uring;
770 	unsigned int refs = tctx->cached_refs;
771 
772 	if (refs) {
773 		tctx->cached_refs = 0;
774 		percpu_counter_sub(&tctx->inflight, refs);
775 		put_task_struct_many(task, refs);
776 	}
777 }
778 
779 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
780 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
781 {
782 	struct io_overflow_cqe *ocqe;
783 	size_t ocq_size = sizeof(struct io_overflow_cqe);
784 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
785 
786 	lockdep_assert_held(&ctx->completion_lock);
787 
788 	if (is_cqe32)
789 		ocq_size += sizeof(struct io_uring_cqe);
790 
791 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
792 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
793 	if (!ocqe) {
794 		/*
795 		 * If we're in ring overflow flush mode, or in task cancel mode,
796 		 * or cannot allocate an overflow entry, then we need to drop it
797 		 * on the floor.
798 		 */
799 		io_account_cq_overflow(ctx);
800 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
801 		return false;
802 	}
803 	if (list_empty(&ctx->cq_overflow_list)) {
804 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
805 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
806 
807 	}
808 	ocqe->cqe.user_data = user_data;
809 	ocqe->cqe.res = res;
810 	ocqe->cqe.flags = cflags;
811 	if (is_cqe32) {
812 		ocqe->cqe.big_cqe[0] = extra1;
813 		ocqe->cqe.big_cqe[1] = extra2;
814 	}
815 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
816 	return true;
817 }
818 
819 bool io_req_cqe_overflow(struct io_kiocb *req)
820 {
821 	if (!(req->flags & REQ_F_CQE32_INIT)) {
822 		req->extra1 = 0;
823 		req->extra2 = 0;
824 	}
825 	return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
826 					req->cqe.res, req->cqe.flags,
827 					req->extra1, req->extra2);
828 }
829 
830 /*
831  * writes to the cq entry need to come after reading head; the
832  * control dependency is enough as we're using WRITE_ONCE to
833  * fill the cq entry
834  */
835 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow)
836 {
837 	struct io_rings *rings = ctx->rings;
838 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
839 	unsigned int free, queued, len;
840 
841 	/*
842 	 * Posting into the CQ when there are pending overflowed CQEs may break
843 	 * ordering guarantees, which will affect links, F_MORE users and more.
844 	 * Force overflow the completion.
845 	 */
846 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
847 		return NULL;
848 
849 	/* userspace may cheat modifying the tail, be safe and do min */
850 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
851 	free = ctx->cq_entries - queued;
852 	/* we need a contiguous range, limit based on the current array offset */
853 	len = min(free, ctx->cq_entries - off);
854 	if (!len)
855 		return NULL;
856 
857 	if (ctx->flags & IORING_SETUP_CQE32) {
858 		off <<= 1;
859 		len <<= 1;
860 	}
861 
862 	ctx->cqe_cached = &rings->cqes[off];
863 	ctx->cqe_sentinel = ctx->cqe_cached + len;
864 
865 	ctx->cached_cq_tail++;
866 	ctx->cqe_cached++;
867 	if (ctx->flags & IORING_SETUP_CQE32)
868 		ctx->cqe_cached++;
869 	return &rings->cqes[off];
870 }
871 
872 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
873 			      u32 cflags)
874 {
875 	struct io_uring_cqe *cqe;
876 
877 	ctx->cq_extra++;
878 
879 	/*
880 	 * If we can't get a cq entry, userspace overflowed the
881 	 * submission (by quite a lot). Increment the overflow count in
882 	 * the ring.
883 	 */
884 	cqe = io_get_cqe(ctx);
885 	if (likely(cqe)) {
886 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
887 
888 		WRITE_ONCE(cqe->user_data, user_data);
889 		WRITE_ONCE(cqe->res, res);
890 		WRITE_ONCE(cqe->flags, cflags);
891 
892 		if (ctx->flags & IORING_SETUP_CQE32) {
893 			WRITE_ONCE(cqe->big_cqe[0], 0);
894 			WRITE_ONCE(cqe->big_cqe[1], 0);
895 		}
896 		return true;
897 	}
898 	return false;
899 }
900 
901 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
902 	__must_hold(&ctx->uring_lock)
903 {
904 	struct io_submit_state *state = &ctx->submit_state;
905 	unsigned int i;
906 
907 	lockdep_assert_held(&ctx->uring_lock);
908 	for (i = 0; i < state->cqes_count; i++) {
909 		struct io_uring_cqe *cqe = &state->cqes[i];
910 
911 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
912 			if (ctx->task_complete) {
913 				spin_lock(&ctx->completion_lock);
914 				io_cqring_event_overflow(ctx, cqe->user_data,
915 							cqe->res, cqe->flags, 0, 0);
916 				spin_unlock(&ctx->completion_lock);
917 			} else {
918 				io_cqring_event_overflow(ctx, cqe->user_data,
919 							cqe->res, cqe->flags, 0, 0);
920 			}
921 		}
922 	}
923 	state->cqes_count = 0;
924 }
925 
926 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
927 			      bool allow_overflow)
928 {
929 	bool filled;
930 
931 	io_cq_lock(ctx);
932 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
933 	if (!filled && allow_overflow)
934 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
935 
936 	io_cq_unlock_post(ctx);
937 	return filled;
938 }
939 
940 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
941 {
942 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
943 }
944 
945 bool io_aux_cqe(const struct io_kiocb *req, bool defer, s32 res, u32 cflags,
946 		bool allow_overflow)
947 {
948 	struct io_ring_ctx *ctx = req->ctx;
949 	u64 user_data = req->cqe.user_data;
950 	struct io_uring_cqe *cqe;
951 
952 	if (!defer)
953 		return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow);
954 
955 	lockdep_assert_held(&ctx->uring_lock);
956 
957 	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->submit_state.cqes)) {
958 		__io_cq_lock(ctx);
959 		__io_flush_post_cqes(ctx);
960 		/* no need to flush - flush is deferred */
961 		__io_cq_unlock_post(ctx);
962 	}
963 
964 	/* For defered completions this is not as strict as it is otherwise,
965 	 * however it's main job is to prevent unbounded posted completions,
966 	 * and in that it works just as well.
967 	 */
968 	if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
969 		return false;
970 
971 	cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++];
972 	cqe->user_data = user_data;
973 	cqe->res = res;
974 	cqe->flags = cflags;
975 	return true;
976 }
977 
978 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
979 {
980 	struct io_ring_ctx *ctx = req->ctx;
981 	struct io_rsrc_node *rsrc_node = NULL;
982 
983 	io_cq_lock(ctx);
984 	if (!(req->flags & REQ_F_CQE_SKIP))
985 		io_fill_cqe_req(ctx, req);
986 
987 	/*
988 	 * If we're the last reference to this request, add to our locked
989 	 * free_list cache.
990 	 */
991 	if (req_ref_put_and_test(req)) {
992 		if (req->flags & IO_REQ_LINK_FLAGS) {
993 			if (req->flags & IO_DISARM_MASK)
994 				io_disarm_next(req);
995 			if (req->link) {
996 				io_req_task_queue(req->link);
997 				req->link = NULL;
998 			}
999 		}
1000 		io_put_kbuf_comp(req);
1001 		if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1002 			io_clean_op(req);
1003 		if (!(req->flags & REQ_F_FIXED_FILE))
1004 			io_put_file(req->file);
1005 
1006 		rsrc_node = req->rsrc_node;
1007 		/*
1008 		 * Selected buffer deallocation in io_clean_op() assumes that
1009 		 * we don't hold ->completion_lock. Clean them here to avoid
1010 		 * deadlocks.
1011 		 */
1012 		io_put_task_remote(req->task);
1013 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1014 		ctx->locked_free_nr++;
1015 	}
1016 	io_cq_unlock_post(ctx);
1017 
1018 	if (rsrc_node) {
1019 		io_ring_submit_lock(ctx, issue_flags);
1020 		io_put_rsrc_node(ctx, rsrc_node);
1021 		io_ring_submit_unlock(ctx, issue_flags);
1022 	}
1023 }
1024 
1025 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1026 {
1027 	if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1028 		req->io_task_work.func = io_req_task_complete;
1029 		io_req_task_work_add(req);
1030 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1031 		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1032 		__io_req_complete_post(req, issue_flags);
1033 	} else {
1034 		struct io_ring_ctx *ctx = req->ctx;
1035 
1036 		mutex_lock(&ctx->uring_lock);
1037 		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1038 		mutex_unlock(&ctx->uring_lock);
1039 	}
1040 }
1041 
1042 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1043 	__must_hold(&ctx->uring_lock)
1044 {
1045 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1046 
1047 	lockdep_assert_held(&req->ctx->uring_lock);
1048 
1049 	req_set_fail(req);
1050 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1051 	if (def->fail)
1052 		def->fail(req);
1053 	io_req_complete_defer(req);
1054 }
1055 
1056 /*
1057  * Don't initialise the fields below on every allocation, but do that in
1058  * advance and keep them valid across allocations.
1059  */
1060 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1061 {
1062 	req->ctx = ctx;
1063 	req->link = NULL;
1064 	req->async_data = NULL;
1065 	/* not necessary, but safer to zero */
1066 	req->cqe.res = 0;
1067 }
1068 
1069 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1070 					struct io_submit_state *state)
1071 {
1072 	spin_lock(&ctx->completion_lock);
1073 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1074 	ctx->locked_free_nr = 0;
1075 	spin_unlock(&ctx->completion_lock);
1076 }
1077 
1078 /*
1079  * A request might get retired back into the request caches even before opcode
1080  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1081  * Because of that, io_alloc_req() should be called only under ->uring_lock
1082  * and with extra caution to not get a request that is still worked on.
1083  */
1084 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1085 	__must_hold(&ctx->uring_lock)
1086 {
1087 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1088 	void *reqs[IO_REQ_ALLOC_BATCH];
1089 	int ret, i;
1090 
1091 	/*
1092 	 * If we have more than a batch's worth of requests in our IRQ side
1093 	 * locked cache, grab the lock and move them over to our submission
1094 	 * side cache.
1095 	 */
1096 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1097 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1098 		if (!io_req_cache_empty(ctx))
1099 			return true;
1100 	}
1101 
1102 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1103 
1104 	/*
1105 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1106 	 * retry single alloc to be on the safe side.
1107 	 */
1108 	if (unlikely(ret <= 0)) {
1109 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1110 		if (!reqs[0])
1111 			return false;
1112 		ret = 1;
1113 	}
1114 
1115 	percpu_ref_get_many(&ctx->refs, ret);
1116 	for (i = 0; i < ret; i++) {
1117 		struct io_kiocb *req = reqs[i];
1118 
1119 		io_preinit_req(req, ctx);
1120 		io_req_add_to_cache(req, ctx);
1121 	}
1122 	return true;
1123 }
1124 
1125 __cold void io_free_req(struct io_kiocb *req)
1126 {
1127 	/* refs were already put, restore them for io_req_task_complete() */
1128 	req->flags &= ~REQ_F_REFCOUNT;
1129 	/* we only want to free it, don't post CQEs */
1130 	req->flags |= REQ_F_CQE_SKIP;
1131 	req->io_task_work.func = io_req_task_complete;
1132 	io_req_task_work_add(req);
1133 }
1134 
1135 static void __io_req_find_next_prep(struct io_kiocb *req)
1136 {
1137 	struct io_ring_ctx *ctx = req->ctx;
1138 
1139 	spin_lock(&ctx->completion_lock);
1140 	io_disarm_next(req);
1141 	spin_unlock(&ctx->completion_lock);
1142 }
1143 
1144 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1145 {
1146 	struct io_kiocb *nxt;
1147 
1148 	/*
1149 	 * If LINK is set, we have dependent requests in this chain. If we
1150 	 * didn't fail this request, queue the first one up, moving any other
1151 	 * dependencies to the next request. In case of failure, fail the rest
1152 	 * of the chain.
1153 	 */
1154 	if (unlikely(req->flags & IO_DISARM_MASK))
1155 		__io_req_find_next_prep(req);
1156 	nxt = req->link;
1157 	req->link = NULL;
1158 	return nxt;
1159 }
1160 
1161 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1162 {
1163 	if (!ctx)
1164 		return;
1165 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1166 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1167 	if (ts->locked) {
1168 		io_submit_flush_completions(ctx);
1169 		mutex_unlock(&ctx->uring_lock);
1170 		ts->locked = false;
1171 	}
1172 	percpu_ref_put(&ctx->refs);
1173 }
1174 
1175 static unsigned int handle_tw_list(struct llist_node *node,
1176 				   struct io_ring_ctx **ctx,
1177 				   struct io_tw_state *ts,
1178 				   struct llist_node *last)
1179 {
1180 	unsigned int count = 0;
1181 
1182 	while (node && node != last) {
1183 		struct llist_node *next = node->next;
1184 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1185 						    io_task_work.node);
1186 
1187 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1188 
1189 		if (req->ctx != *ctx) {
1190 			ctx_flush_and_put(*ctx, ts);
1191 			*ctx = req->ctx;
1192 			/* if not contended, grab and improve batching */
1193 			ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1194 			percpu_ref_get(&(*ctx)->refs);
1195 		}
1196 		INDIRECT_CALL_2(req->io_task_work.func,
1197 				io_poll_task_func, io_req_rw_complete,
1198 				req, ts);
1199 		node = next;
1200 		count++;
1201 		if (unlikely(need_resched())) {
1202 			ctx_flush_and_put(*ctx, ts);
1203 			*ctx = NULL;
1204 			cond_resched();
1205 		}
1206 	}
1207 
1208 	return count;
1209 }
1210 
1211 /**
1212  * io_llist_xchg - swap all entries in a lock-less list
1213  * @head:	the head of lock-less list to delete all entries
1214  * @new:	new entry as the head of the list
1215  *
1216  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1217  * The order of entries returned is from the newest to the oldest added one.
1218  */
1219 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1220 					       struct llist_node *new)
1221 {
1222 	return xchg(&head->first, new);
1223 }
1224 
1225 /**
1226  * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1227  * @head:	the head of lock-less list to delete all entries
1228  * @old:	expected old value of the first entry of the list
1229  * @new:	new entry as the head of the list
1230  *
1231  * perform a cmpxchg on the first entry of the list.
1232  */
1233 
1234 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1235 						  struct llist_node *old,
1236 						  struct llist_node *new)
1237 {
1238 	return cmpxchg(&head->first, old, new);
1239 }
1240 
1241 void tctx_task_work(struct callback_head *cb)
1242 {
1243 	struct io_tw_state ts = {};
1244 	struct io_ring_ctx *ctx = NULL;
1245 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1246 						  task_work);
1247 	struct llist_node fake = {};
1248 	struct llist_node *node;
1249 	unsigned int loops = 0;
1250 	unsigned int count = 0;
1251 
1252 	if (unlikely(current->flags & PF_EXITING)) {
1253 		io_fallback_tw(tctx);
1254 		return;
1255 	}
1256 
1257 	do {
1258 		loops++;
1259 		node = io_llist_xchg(&tctx->task_list, &fake);
1260 		count += handle_tw_list(node, &ctx, &ts, &fake);
1261 
1262 		/* skip expensive cmpxchg if there are items in the list */
1263 		if (READ_ONCE(tctx->task_list.first) != &fake)
1264 			continue;
1265 		if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1266 			io_submit_flush_completions(ctx);
1267 			if (READ_ONCE(tctx->task_list.first) != &fake)
1268 				continue;
1269 		}
1270 		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1271 	} while (node != &fake);
1272 
1273 	ctx_flush_and_put(ctx, &ts);
1274 
1275 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1276 	if (unlikely(atomic_read(&tctx->in_cancel)))
1277 		io_uring_drop_tctx_refs(current);
1278 
1279 	trace_io_uring_task_work_run(tctx, count, loops);
1280 }
1281 
1282 static __cold void io_fallback_tw(struct io_uring_task *tctx)
1283 {
1284 	struct llist_node *node = llist_del_all(&tctx->task_list);
1285 	struct io_kiocb *req;
1286 
1287 	while (node) {
1288 		req = container_of(node, struct io_kiocb, io_task_work.node);
1289 		node = node->next;
1290 		if (llist_add(&req->io_task_work.node,
1291 			      &req->ctx->fallback_llist))
1292 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1293 	}
1294 }
1295 
1296 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1297 {
1298 	struct io_ring_ctx *ctx = req->ctx;
1299 	unsigned nr_wait, nr_tw, nr_tw_prev;
1300 	struct llist_node *first;
1301 
1302 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1303 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1304 
1305 	first = READ_ONCE(ctx->work_llist.first);
1306 	do {
1307 		nr_tw_prev = 0;
1308 		if (first) {
1309 			struct io_kiocb *first_req = container_of(first,
1310 							struct io_kiocb,
1311 							io_task_work.node);
1312 			/*
1313 			 * Might be executed at any moment, rely on
1314 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1315 			 */
1316 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1317 		}
1318 		nr_tw = nr_tw_prev + 1;
1319 		/* Large enough to fail the nr_wait comparison below */
1320 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1321 			nr_tw = -1U;
1322 
1323 		req->nr_tw = nr_tw;
1324 		req->io_task_work.node.next = first;
1325 	} while (!try_cmpxchg(&ctx->work_llist.first, &first,
1326 			      &req->io_task_work.node));
1327 
1328 	if (!first) {
1329 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1330 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1331 		if (ctx->has_evfd)
1332 			io_eventfd_signal(ctx);
1333 	}
1334 
1335 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1336 	/* no one is waiting */
1337 	if (!nr_wait)
1338 		return;
1339 	/* either not enough or the previous add has already woken it up */
1340 	if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1341 		return;
1342 	/* pairs with set_current_state() in io_cqring_wait() */
1343 	smp_mb__after_atomic();
1344 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1345 }
1346 
1347 static void io_req_normal_work_add(struct io_kiocb *req)
1348 {
1349 	struct io_uring_task *tctx = req->task->io_uring;
1350 	struct io_ring_ctx *ctx = req->ctx;
1351 
1352 	/* task_work already pending, we're done */
1353 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1354 		return;
1355 
1356 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1357 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1358 
1359 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1360 		return;
1361 
1362 	io_fallback_tw(tctx);
1363 }
1364 
1365 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1366 {
1367 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1368 		rcu_read_lock();
1369 		io_req_local_work_add(req, flags);
1370 		rcu_read_unlock();
1371 	} else {
1372 		io_req_normal_work_add(req);
1373 	}
1374 }
1375 
1376 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1377 {
1378 	struct llist_node *node;
1379 
1380 	node = llist_del_all(&ctx->work_llist);
1381 	while (node) {
1382 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1383 						    io_task_work.node);
1384 
1385 		node = node->next;
1386 		io_req_normal_work_add(req);
1387 	}
1388 }
1389 
1390 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1391 {
1392 	struct llist_node *node;
1393 	unsigned int loops = 0;
1394 	int ret = 0;
1395 
1396 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1397 		return -EEXIST;
1398 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1399 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1400 again:
1401 	/*
1402 	 * llists are in reverse order, flip it back the right way before
1403 	 * running the pending items.
1404 	 */
1405 	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1406 	while (node) {
1407 		struct llist_node *next = node->next;
1408 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1409 						    io_task_work.node);
1410 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1411 		INDIRECT_CALL_2(req->io_task_work.func,
1412 				io_poll_task_func, io_req_rw_complete,
1413 				req, ts);
1414 		ret++;
1415 		node = next;
1416 	}
1417 	loops++;
1418 
1419 	if (!llist_empty(&ctx->work_llist))
1420 		goto again;
1421 	if (ts->locked) {
1422 		io_submit_flush_completions(ctx);
1423 		if (!llist_empty(&ctx->work_llist))
1424 			goto again;
1425 	}
1426 	trace_io_uring_local_work_run(ctx, ret, loops);
1427 	return ret;
1428 }
1429 
1430 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1431 {
1432 	struct io_tw_state ts = { .locked = true, };
1433 	int ret;
1434 
1435 	if (llist_empty(&ctx->work_llist))
1436 		return 0;
1437 
1438 	ret = __io_run_local_work(ctx, &ts);
1439 	/* shouldn't happen! */
1440 	if (WARN_ON_ONCE(!ts.locked))
1441 		mutex_lock(&ctx->uring_lock);
1442 	return ret;
1443 }
1444 
1445 static int io_run_local_work(struct io_ring_ctx *ctx)
1446 {
1447 	struct io_tw_state ts = {};
1448 	int ret;
1449 
1450 	ts.locked = mutex_trylock(&ctx->uring_lock);
1451 	ret = __io_run_local_work(ctx, &ts);
1452 	if (ts.locked)
1453 		mutex_unlock(&ctx->uring_lock);
1454 
1455 	return ret;
1456 }
1457 
1458 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1459 {
1460 	io_tw_lock(req->ctx, ts);
1461 	io_req_defer_failed(req, req->cqe.res);
1462 }
1463 
1464 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1465 {
1466 	io_tw_lock(req->ctx, ts);
1467 	/* req->task == current here, checking PF_EXITING is safe */
1468 	if (unlikely(req->task->flags & PF_EXITING))
1469 		io_req_defer_failed(req, -EFAULT);
1470 	else if (req->flags & REQ_F_FORCE_ASYNC)
1471 		io_queue_iowq(req, ts);
1472 	else
1473 		io_queue_sqe(req);
1474 }
1475 
1476 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1477 {
1478 	io_req_set_res(req, ret, 0);
1479 	req->io_task_work.func = io_req_task_cancel;
1480 	io_req_task_work_add(req);
1481 }
1482 
1483 void io_req_task_queue(struct io_kiocb *req)
1484 {
1485 	req->io_task_work.func = io_req_task_submit;
1486 	io_req_task_work_add(req);
1487 }
1488 
1489 void io_queue_next(struct io_kiocb *req)
1490 {
1491 	struct io_kiocb *nxt = io_req_find_next(req);
1492 
1493 	if (nxt)
1494 		io_req_task_queue(nxt);
1495 }
1496 
1497 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1498 	__must_hold(&ctx->uring_lock)
1499 {
1500 	do {
1501 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1502 						    comp_list);
1503 
1504 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1505 			if (req->flags & REQ_F_REFCOUNT) {
1506 				node = req->comp_list.next;
1507 				if (!req_ref_put_and_test(req))
1508 					continue;
1509 			}
1510 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1511 				struct async_poll *apoll = req->apoll;
1512 
1513 				if (apoll->double_poll)
1514 					kfree(apoll->double_poll);
1515 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1516 					kfree(apoll);
1517 				req->flags &= ~REQ_F_POLLED;
1518 			}
1519 			if (req->flags & IO_REQ_LINK_FLAGS)
1520 				io_queue_next(req);
1521 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1522 				io_clean_op(req);
1523 		}
1524 		if (!(req->flags & REQ_F_FIXED_FILE))
1525 			io_put_file(req->file);
1526 
1527 		io_req_put_rsrc_locked(req, ctx);
1528 
1529 		io_put_task(req->task);
1530 		node = req->comp_list.next;
1531 		io_req_add_to_cache(req, ctx);
1532 	} while (node);
1533 }
1534 
1535 static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1536 	__must_hold(&ctx->uring_lock)
1537 {
1538 	struct io_submit_state *state = &ctx->submit_state;
1539 	struct io_wq_work_node *node;
1540 
1541 	__io_cq_lock(ctx);
1542 	/* must come first to preserve CQE ordering in failure cases */
1543 	if (state->cqes_count)
1544 		__io_flush_post_cqes(ctx);
1545 	__wq_list_for_each(node, &state->compl_reqs) {
1546 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1547 					    comp_list);
1548 
1549 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1550 		    unlikely(!__io_fill_cqe_req(ctx, req))) {
1551 			if (ctx->task_complete) {
1552 				spin_lock(&ctx->completion_lock);
1553 				io_req_cqe_overflow(req);
1554 				spin_unlock(&ctx->completion_lock);
1555 			} else {
1556 				io_req_cqe_overflow(req);
1557 			}
1558 		}
1559 	}
1560 	__io_cq_unlock_post(ctx);
1561 
1562 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1563 		io_free_batch_list(ctx, state->compl_reqs.first);
1564 		INIT_WQ_LIST(&state->compl_reqs);
1565 	}
1566 }
1567 
1568 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1569 {
1570 	/* See comment at the top of this file */
1571 	smp_rmb();
1572 	return __io_cqring_events(ctx);
1573 }
1574 
1575 /*
1576  * We can't just wait for polled events to come to us, we have to actively
1577  * find and complete them.
1578  */
1579 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1580 {
1581 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1582 		return;
1583 
1584 	mutex_lock(&ctx->uring_lock);
1585 	while (!wq_list_empty(&ctx->iopoll_list)) {
1586 		/* let it sleep and repeat later if can't complete a request */
1587 		if (io_do_iopoll(ctx, true) == 0)
1588 			break;
1589 		/*
1590 		 * Ensure we allow local-to-the-cpu processing to take place,
1591 		 * in this case we need to ensure that we reap all events.
1592 		 * Also let task_work, etc. to progress by releasing the mutex
1593 		 */
1594 		if (need_resched()) {
1595 			mutex_unlock(&ctx->uring_lock);
1596 			cond_resched();
1597 			mutex_lock(&ctx->uring_lock);
1598 		}
1599 	}
1600 	mutex_unlock(&ctx->uring_lock);
1601 }
1602 
1603 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1604 {
1605 	unsigned int nr_events = 0;
1606 	int ret = 0;
1607 	unsigned long check_cq;
1608 
1609 	if (!io_allowed_run_tw(ctx))
1610 		return -EEXIST;
1611 
1612 	check_cq = READ_ONCE(ctx->check_cq);
1613 	if (unlikely(check_cq)) {
1614 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1615 			__io_cqring_overflow_flush(ctx);
1616 		/*
1617 		 * Similarly do not spin if we have not informed the user of any
1618 		 * dropped CQE.
1619 		 */
1620 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1621 			return -EBADR;
1622 	}
1623 	/*
1624 	 * Don't enter poll loop if we already have events pending.
1625 	 * If we do, we can potentially be spinning for commands that
1626 	 * already triggered a CQE (eg in error).
1627 	 */
1628 	if (io_cqring_events(ctx))
1629 		return 0;
1630 
1631 	do {
1632 		/*
1633 		 * If a submit got punted to a workqueue, we can have the
1634 		 * application entering polling for a command before it gets
1635 		 * issued. That app will hold the uring_lock for the duration
1636 		 * of the poll right here, so we need to take a breather every
1637 		 * now and then to ensure that the issue has a chance to add
1638 		 * the poll to the issued list. Otherwise we can spin here
1639 		 * forever, while the workqueue is stuck trying to acquire the
1640 		 * very same mutex.
1641 		 */
1642 		if (wq_list_empty(&ctx->iopoll_list) ||
1643 		    io_task_work_pending(ctx)) {
1644 			u32 tail = ctx->cached_cq_tail;
1645 
1646 			(void) io_run_local_work_locked(ctx);
1647 
1648 			if (task_work_pending(current) ||
1649 			    wq_list_empty(&ctx->iopoll_list)) {
1650 				mutex_unlock(&ctx->uring_lock);
1651 				io_run_task_work();
1652 				mutex_lock(&ctx->uring_lock);
1653 			}
1654 			/* some requests don't go through iopoll_list */
1655 			if (tail != ctx->cached_cq_tail ||
1656 			    wq_list_empty(&ctx->iopoll_list))
1657 				break;
1658 		}
1659 		ret = io_do_iopoll(ctx, !min);
1660 		if (ret < 0)
1661 			break;
1662 		nr_events += ret;
1663 		ret = 0;
1664 	} while (nr_events < min && !need_resched());
1665 
1666 	return ret;
1667 }
1668 
1669 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1670 {
1671 	if (ts->locked)
1672 		io_req_complete_defer(req);
1673 	else
1674 		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1675 }
1676 
1677 /*
1678  * After the iocb has been issued, it's safe to be found on the poll list.
1679  * Adding the kiocb to the list AFTER submission ensures that we don't
1680  * find it from a io_do_iopoll() thread before the issuer is done
1681  * accessing the kiocb cookie.
1682  */
1683 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1684 {
1685 	struct io_ring_ctx *ctx = req->ctx;
1686 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1687 
1688 	/* workqueue context doesn't hold uring_lock, grab it now */
1689 	if (unlikely(needs_lock))
1690 		mutex_lock(&ctx->uring_lock);
1691 
1692 	/*
1693 	 * Track whether we have multiple files in our lists. This will impact
1694 	 * how we do polling eventually, not spinning if we're on potentially
1695 	 * different devices.
1696 	 */
1697 	if (wq_list_empty(&ctx->iopoll_list)) {
1698 		ctx->poll_multi_queue = false;
1699 	} else if (!ctx->poll_multi_queue) {
1700 		struct io_kiocb *list_req;
1701 
1702 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1703 					comp_list);
1704 		if (list_req->file != req->file)
1705 			ctx->poll_multi_queue = true;
1706 	}
1707 
1708 	/*
1709 	 * For fast devices, IO may have already completed. If it has, add
1710 	 * it to the front so we find it first.
1711 	 */
1712 	if (READ_ONCE(req->iopoll_completed))
1713 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1714 	else
1715 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1716 
1717 	if (unlikely(needs_lock)) {
1718 		/*
1719 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1720 		 * in sq thread task context or in io worker task context. If
1721 		 * current task context is sq thread, we don't need to check
1722 		 * whether should wake up sq thread.
1723 		 */
1724 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1725 		    wq_has_sleeper(&ctx->sq_data->wait))
1726 			wake_up(&ctx->sq_data->wait);
1727 
1728 		mutex_unlock(&ctx->uring_lock);
1729 	}
1730 }
1731 
1732 unsigned int io_file_get_flags(struct file *file)
1733 {
1734 	unsigned int res = 0;
1735 
1736 	if (S_ISREG(file_inode(file)->i_mode))
1737 		res |= REQ_F_ISREG;
1738 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1739 		res |= REQ_F_SUPPORT_NOWAIT;
1740 	return res;
1741 }
1742 
1743 bool io_alloc_async_data(struct io_kiocb *req)
1744 {
1745 	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1746 	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1747 	if (req->async_data) {
1748 		req->flags |= REQ_F_ASYNC_DATA;
1749 		return false;
1750 	}
1751 	return true;
1752 }
1753 
1754 int io_req_prep_async(struct io_kiocb *req)
1755 {
1756 	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1757 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1758 
1759 	/* assign early for deferred execution for non-fixed file */
1760 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1761 		req->file = io_file_get_normal(req, req->cqe.fd);
1762 	if (!cdef->prep_async)
1763 		return 0;
1764 	if (WARN_ON_ONCE(req_has_async_data(req)))
1765 		return -EFAULT;
1766 	if (!def->manual_alloc) {
1767 		if (io_alloc_async_data(req))
1768 			return -EAGAIN;
1769 	}
1770 	return cdef->prep_async(req);
1771 }
1772 
1773 static u32 io_get_sequence(struct io_kiocb *req)
1774 {
1775 	u32 seq = req->ctx->cached_sq_head;
1776 	struct io_kiocb *cur;
1777 
1778 	/* need original cached_sq_head, but it was increased for each req */
1779 	io_for_each_link(cur, req)
1780 		seq--;
1781 	return seq;
1782 }
1783 
1784 static __cold void io_drain_req(struct io_kiocb *req)
1785 	__must_hold(&ctx->uring_lock)
1786 {
1787 	struct io_ring_ctx *ctx = req->ctx;
1788 	struct io_defer_entry *de;
1789 	int ret;
1790 	u32 seq = io_get_sequence(req);
1791 
1792 	/* Still need defer if there is pending req in defer list. */
1793 	spin_lock(&ctx->completion_lock);
1794 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1795 		spin_unlock(&ctx->completion_lock);
1796 queue:
1797 		ctx->drain_active = false;
1798 		io_req_task_queue(req);
1799 		return;
1800 	}
1801 	spin_unlock(&ctx->completion_lock);
1802 
1803 	io_prep_async_link(req);
1804 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1805 	if (!de) {
1806 		ret = -ENOMEM;
1807 		io_req_defer_failed(req, ret);
1808 		return;
1809 	}
1810 
1811 	spin_lock(&ctx->completion_lock);
1812 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1813 		spin_unlock(&ctx->completion_lock);
1814 		kfree(de);
1815 		goto queue;
1816 	}
1817 
1818 	trace_io_uring_defer(req);
1819 	de->req = req;
1820 	de->seq = seq;
1821 	list_add_tail(&de->list, &ctx->defer_list);
1822 	spin_unlock(&ctx->completion_lock);
1823 }
1824 
1825 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1826 			   unsigned int issue_flags)
1827 {
1828 	if (req->file || !def->needs_file)
1829 		return true;
1830 
1831 	if (req->flags & REQ_F_FIXED_FILE)
1832 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1833 	else
1834 		req->file = io_file_get_normal(req, req->cqe.fd);
1835 
1836 	return !!req->file;
1837 }
1838 
1839 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1840 {
1841 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1842 	const struct cred *creds = NULL;
1843 	int ret;
1844 
1845 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1846 		return -EBADF;
1847 
1848 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1849 		creds = override_creds(req->creds);
1850 
1851 	if (!def->audit_skip)
1852 		audit_uring_entry(req->opcode);
1853 
1854 	ret = def->issue(req, issue_flags);
1855 
1856 	if (!def->audit_skip)
1857 		audit_uring_exit(!ret, ret);
1858 
1859 	if (creds)
1860 		revert_creds(creds);
1861 
1862 	if (ret == IOU_OK) {
1863 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1864 			io_req_complete_defer(req);
1865 		else
1866 			io_req_complete_post(req, issue_flags);
1867 	} else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1868 		return ret;
1869 
1870 	/* If the op doesn't have a file, we're not polling for it */
1871 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1872 		io_iopoll_req_issued(req, issue_flags);
1873 
1874 	return 0;
1875 }
1876 
1877 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1878 {
1879 	io_tw_lock(req->ctx, ts);
1880 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1881 				 IO_URING_F_COMPLETE_DEFER);
1882 }
1883 
1884 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1885 {
1886 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1887 	struct io_kiocb *nxt = NULL;
1888 
1889 	if (req_ref_put_and_test(req)) {
1890 		if (req->flags & IO_REQ_LINK_FLAGS)
1891 			nxt = io_req_find_next(req);
1892 		io_free_req(req);
1893 	}
1894 	return nxt ? &nxt->work : NULL;
1895 }
1896 
1897 void io_wq_submit_work(struct io_wq_work *work)
1898 {
1899 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1900 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1901 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1902 	bool needs_poll = false;
1903 	int ret = 0, err = -ECANCELED;
1904 
1905 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1906 	if (!(req->flags & REQ_F_REFCOUNT))
1907 		__io_req_set_refcount(req, 2);
1908 	else
1909 		req_ref_get(req);
1910 
1911 	io_arm_ltimeout(req);
1912 
1913 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1914 	if (work->flags & IO_WQ_WORK_CANCEL) {
1915 fail:
1916 		io_req_task_queue_fail(req, err);
1917 		return;
1918 	}
1919 	if (!io_assign_file(req, def, issue_flags)) {
1920 		err = -EBADF;
1921 		work->flags |= IO_WQ_WORK_CANCEL;
1922 		goto fail;
1923 	}
1924 
1925 	if (req->flags & REQ_F_FORCE_ASYNC) {
1926 		bool opcode_poll = def->pollin || def->pollout;
1927 
1928 		if (opcode_poll && file_can_poll(req->file)) {
1929 			needs_poll = true;
1930 			issue_flags |= IO_URING_F_NONBLOCK;
1931 		}
1932 	}
1933 
1934 	do {
1935 		ret = io_issue_sqe(req, issue_flags);
1936 		if (ret != -EAGAIN)
1937 			break;
1938 		/*
1939 		 * We can get EAGAIN for iopolled IO even though we're
1940 		 * forcing a sync submission from here, since we can't
1941 		 * wait for request slots on the block side.
1942 		 */
1943 		if (!needs_poll) {
1944 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1945 				break;
1946 			cond_resched();
1947 			continue;
1948 		}
1949 
1950 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1951 			return;
1952 		/* aborted or ready, in either case retry blocking */
1953 		needs_poll = false;
1954 		issue_flags &= ~IO_URING_F_NONBLOCK;
1955 	} while (1);
1956 
1957 	/* avoid locking problems by failing it from a clean context */
1958 	if (ret < 0)
1959 		io_req_task_queue_fail(req, ret);
1960 }
1961 
1962 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1963 				      unsigned int issue_flags)
1964 {
1965 	struct io_ring_ctx *ctx = req->ctx;
1966 	struct io_fixed_file *slot;
1967 	struct file *file = NULL;
1968 
1969 	io_ring_submit_lock(ctx, issue_flags);
1970 
1971 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1972 		goto out;
1973 	fd = array_index_nospec(fd, ctx->nr_user_files);
1974 	slot = io_fixed_file_slot(&ctx->file_table, fd);
1975 	file = io_slot_file(slot);
1976 	req->flags |= io_slot_flags(slot);
1977 	io_req_set_rsrc_node(req, ctx, 0);
1978 out:
1979 	io_ring_submit_unlock(ctx, issue_flags);
1980 	return file;
1981 }
1982 
1983 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1984 {
1985 	struct file *file = fget(fd);
1986 
1987 	trace_io_uring_file_get(req, fd);
1988 
1989 	/* we don't allow fixed io_uring files */
1990 	if (file && io_is_uring_fops(file))
1991 		io_req_track_inflight(req);
1992 	return file;
1993 }
1994 
1995 static void io_queue_async(struct io_kiocb *req, int ret)
1996 	__must_hold(&req->ctx->uring_lock)
1997 {
1998 	struct io_kiocb *linked_timeout;
1999 
2000 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2001 		io_req_defer_failed(req, ret);
2002 		return;
2003 	}
2004 
2005 	linked_timeout = io_prep_linked_timeout(req);
2006 
2007 	switch (io_arm_poll_handler(req, 0)) {
2008 	case IO_APOLL_READY:
2009 		io_kbuf_recycle(req, 0);
2010 		io_req_task_queue(req);
2011 		break;
2012 	case IO_APOLL_ABORTED:
2013 		io_kbuf_recycle(req, 0);
2014 		io_queue_iowq(req, NULL);
2015 		break;
2016 	case IO_APOLL_OK:
2017 		break;
2018 	}
2019 
2020 	if (linked_timeout)
2021 		io_queue_linked_timeout(linked_timeout);
2022 }
2023 
2024 static inline void io_queue_sqe(struct io_kiocb *req)
2025 	__must_hold(&req->ctx->uring_lock)
2026 {
2027 	int ret;
2028 
2029 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2030 
2031 	/*
2032 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2033 	 * doesn't support non-blocking read/write attempts
2034 	 */
2035 	if (likely(!ret))
2036 		io_arm_ltimeout(req);
2037 	else
2038 		io_queue_async(req, ret);
2039 }
2040 
2041 static void io_queue_sqe_fallback(struct io_kiocb *req)
2042 	__must_hold(&req->ctx->uring_lock)
2043 {
2044 	if (unlikely(req->flags & REQ_F_FAIL)) {
2045 		/*
2046 		 * We don't submit, fail them all, for that replace hardlinks
2047 		 * with normal links. Extra REQ_F_LINK is tolerated.
2048 		 */
2049 		req->flags &= ~REQ_F_HARDLINK;
2050 		req->flags |= REQ_F_LINK;
2051 		io_req_defer_failed(req, req->cqe.res);
2052 	} else {
2053 		int ret = io_req_prep_async(req);
2054 
2055 		if (unlikely(ret)) {
2056 			io_req_defer_failed(req, ret);
2057 			return;
2058 		}
2059 
2060 		if (unlikely(req->ctx->drain_active))
2061 			io_drain_req(req);
2062 		else
2063 			io_queue_iowq(req, NULL);
2064 	}
2065 }
2066 
2067 /*
2068  * Check SQE restrictions (opcode and flags).
2069  *
2070  * Returns 'true' if SQE is allowed, 'false' otherwise.
2071  */
2072 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2073 					struct io_kiocb *req,
2074 					unsigned int sqe_flags)
2075 {
2076 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2077 		return false;
2078 
2079 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2080 	    ctx->restrictions.sqe_flags_required)
2081 		return false;
2082 
2083 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2084 			  ctx->restrictions.sqe_flags_required))
2085 		return false;
2086 
2087 	return true;
2088 }
2089 
2090 static void io_init_req_drain(struct io_kiocb *req)
2091 {
2092 	struct io_ring_ctx *ctx = req->ctx;
2093 	struct io_kiocb *head = ctx->submit_state.link.head;
2094 
2095 	ctx->drain_active = true;
2096 	if (head) {
2097 		/*
2098 		 * If we need to drain a request in the middle of a link, drain
2099 		 * the head request and the next request/link after the current
2100 		 * link. Considering sequential execution of links,
2101 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2102 		 * link.
2103 		 */
2104 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2105 		ctx->drain_next = true;
2106 	}
2107 }
2108 
2109 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2110 		       const struct io_uring_sqe *sqe)
2111 	__must_hold(&ctx->uring_lock)
2112 {
2113 	const struct io_issue_def *def;
2114 	unsigned int sqe_flags;
2115 	int personality;
2116 	u8 opcode;
2117 
2118 	/* req is partially pre-initialised, see io_preinit_req() */
2119 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2120 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2121 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2122 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2123 	req->file = NULL;
2124 	req->rsrc_node = NULL;
2125 	req->task = current;
2126 
2127 	if (unlikely(opcode >= IORING_OP_LAST)) {
2128 		req->opcode = 0;
2129 		return -EINVAL;
2130 	}
2131 	def = &io_issue_defs[opcode];
2132 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2133 		/* enforce forwards compatibility on users */
2134 		if (sqe_flags & ~SQE_VALID_FLAGS)
2135 			return -EINVAL;
2136 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2137 			if (!def->buffer_select)
2138 				return -EOPNOTSUPP;
2139 			req->buf_index = READ_ONCE(sqe->buf_group);
2140 		}
2141 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2142 			ctx->drain_disabled = true;
2143 		if (sqe_flags & IOSQE_IO_DRAIN) {
2144 			if (ctx->drain_disabled)
2145 				return -EOPNOTSUPP;
2146 			io_init_req_drain(req);
2147 		}
2148 	}
2149 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2150 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2151 			return -EACCES;
2152 		/* knock it to the slow queue path, will be drained there */
2153 		if (ctx->drain_active)
2154 			req->flags |= REQ_F_FORCE_ASYNC;
2155 		/* if there is no link, we're at "next" request and need to drain */
2156 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2157 			ctx->drain_next = false;
2158 			ctx->drain_active = true;
2159 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2160 		}
2161 	}
2162 
2163 	if (!def->ioprio && sqe->ioprio)
2164 		return -EINVAL;
2165 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2166 		return -EINVAL;
2167 
2168 	if (def->needs_file) {
2169 		struct io_submit_state *state = &ctx->submit_state;
2170 
2171 		req->cqe.fd = READ_ONCE(sqe->fd);
2172 
2173 		/*
2174 		 * Plug now if we have more than 2 IO left after this, and the
2175 		 * target is potentially a read/write to block based storage.
2176 		 */
2177 		if (state->need_plug && def->plug) {
2178 			state->plug_started = true;
2179 			state->need_plug = false;
2180 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2181 		}
2182 	}
2183 
2184 	personality = READ_ONCE(sqe->personality);
2185 	if (personality) {
2186 		int ret;
2187 
2188 		req->creds = xa_load(&ctx->personalities, personality);
2189 		if (!req->creds)
2190 			return -EINVAL;
2191 		get_cred(req->creds);
2192 		ret = security_uring_override_creds(req->creds);
2193 		if (ret) {
2194 			put_cred(req->creds);
2195 			return ret;
2196 		}
2197 		req->flags |= REQ_F_CREDS;
2198 	}
2199 
2200 	return def->prep(req, sqe);
2201 }
2202 
2203 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2204 				      struct io_kiocb *req, int ret)
2205 {
2206 	struct io_ring_ctx *ctx = req->ctx;
2207 	struct io_submit_link *link = &ctx->submit_state.link;
2208 	struct io_kiocb *head = link->head;
2209 
2210 	trace_io_uring_req_failed(sqe, req, ret);
2211 
2212 	/*
2213 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2214 	 * unusable. Instead of failing eagerly, continue assembling the link if
2215 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2216 	 * should find the flag and handle the rest.
2217 	 */
2218 	req_fail_link_node(req, ret);
2219 	if (head && !(head->flags & REQ_F_FAIL))
2220 		req_fail_link_node(head, -ECANCELED);
2221 
2222 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2223 		if (head) {
2224 			link->last->link = req;
2225 			link->head = NULL;
2226 			req = head;
2227 		}
2228 		io_queue_sqe_fallback(req);
2229 		return ret;
2230 	}
2231 
2232 	if (head)
2233 		link->last->link = req;
2234 	else
2235 		link->head = req;
2236 	link->last = req;
2237 	return 0;
2238 }
2239 
2240 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2241 			 const struct io_uring_sqe *sqe)
2242 	__must_hold(&ctx->uring_lock)
2243 {
2244 	struct io_submit_link *link = &ctx->submit_state.link;
2245 	int ret;
2246 
2247 	ret = io_init_req(ctx, req, sqe);
2248 	if (unlikely(ret))
2249 		return io_submit_fail_init(sqe, req, ret);
2250 
2251 	trace_io_uring_submit_req(req);
2252 
2253 	/*
2254 	 * If we already have a head request, queue this one for async
2255 	 * submittal once the head completes. If we don't have a head but
2256 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2257 	 * submitted sync once the chain is complete. If none of those
2258 	 * conditions are true (normal request), then just queue it.
2259 	 */
2260 	if (unlikely(link->head)) {
2261 		ret = io_req_prep_async(req);
2262 		if (unlikely(ret))
2263 			return io_submit_fail_init(sqe, req, ret);
2264 
2265 		trace_io_uring_link(req, link->head);
2266 		link->last->link = req;
2267 		link->last = req;
2268 
2269 		if (req->flags & IO_REQ_LINK_FLAGS)
2270 			return 0;
2271 		/* last request of the link, flush it */
2272 		req = link->head;
2273 		link->head = NULL;
2274 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2275 			goto fallback;
2276 
2277 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2278 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2279 		if (req->flags & IO_REQ_LINK_FLAGS) {
2280 			link->head = req;
2281 			link->last = req;
2282 		} else {
2283 fallback:
2284 			io_queue_sqe_fallback(req);
2285 		}
2286 		return 0;
2287 	}
2288 
2289 	io_queue_sqe(req);
2290 	return 0;
2291 }
2292 
2293 /*
2294  * Batched submission is done, ensure local IO is flushed out.
2295  */
2296 static void io_submit_state_end(struct io_ring_ctx *ctx)
2297 {
2298 	struct io_submit_state *state = &ctx->submit_state;
2299 
2300 	if (unlikely(state->link.head))
2301 		io_queue_sqe_fallback(state->link.head);
2302 	/* flush only after queuing links as they can generate completions */
2303 	io_submit_flush_completions(ctx);
2304 	if (state->plug_started)
2305 		blk_finish_plug(&state->plug);
2306 }
2307 
2308 /*
2309  * Start submission side cache.
2310  */
2311 static void io_submit_state_start(struct io_submit_state *state,
2312 				  unsigned int max_ios)
2313 {
2314 	state->plug_started = false;
2315 	state->need_plug = max_ios > 2;
2316 	state->submit_nr = max_ios;
2317 	/* set only head, no need to init link_last in advance */
2318 	state->link.head = NULL;
2319 }
2320 
2321 static void io_commit_sqring(struct io_ring_ctx *ctx)
2322 {
2323 	struct io_rings *rings = ctx->rings;
2324 
2325 	/*
2326 	 * Ensure any loads from the SQEs are done at this point,
2327 	 * since once we write the new head, the application could
2328 	 * write new data to them.
2329 	 */
2330 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2331 }
2332 
2333 /*
2334  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2335  * that is mapped by userspace. This means that care needs to be taken to
2336  * ensure that reads are stable, as we cannot rely on userspace always
2337  * being a good citizen. If members of the sqe are validated and then later
2338  * used, it's important that those reads are done through READ_ONCE() to
2339  * prevent a re-load down the line.
2340  */
2341 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2342 {
2343 	unsigned head, mask = ctx->sq_entries - 1;
2344 	unsigned sq_idx = ctx->cached_sq_head++ & mask;
2345 
2346 	/*
2347 	 * The cached sq head (or cq tail) serves two purposes:
2348 	 *
2349 	 * 1) allows us to batch the cost of updating the user visible
2350 	 *    head updates.
2351 	 * 2) allows the kernel side to track the head on its own, even
2352 	 *    though the application is the one updating it.
2353 	 */
2354 	head = READ_ONCE(ctx->sq_array[sq_idx]);
2355 	if (likely(head < ctx->sq_entries)) {
2356 		/* double index for 128-byte SQEs, twice as long */
2357 		if (ctx->flags & IORING_SETUP_SQE128)
2358 			head <<= 1;
2359 		*sqe = &ctx->sq_sqes[head];
2360 		return true;
2361 	}
2362 
2363 	/* drop invalid entries */
2364 	ctx->cq_extra--;
2365 	WRITE_ONCE(ctx->rings->sq_dropped,
2366 		   READ_ONCE(ctx->rings->sq_dropped) + 1);
2367 	return false;
2368 }
2369 
2370 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2371 	__must_hold(&ctx->uring_lock)
2372 {
2373 	unsigned int entries = io_sqring_entries(ctx);
2374 	unsigned int left;
2375 	int ret;
2376 
2377 	if (unlikely(!entries))
2378 		return 0;
2379 	/* make sure SQ entry isn't read before tail */
2380 	ret = left = min(nr, entries);
2381 	io_get_task_refs(left);
2382 	io_submit_state_start(&ctx->submit_state, left);
2383 
2384 	do {
2385 		const struct io_uring_sqe *sqe;
2386 		struct io_kiocb *req;
2387 
2388 		if (unlikely(!io_alloc_req(ctx, &req)))
2389 			break;
2390 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2391 			io_req_add_to_cache(req, ctx);
2392 			break;
2393 		}
2394 
2395 		/*
2396 		 * Continue submitting even for sqe failure if the
2397 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2398 		 */
2399 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2400 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2401 			left--;
2402 			break;
2403 		}
2404 	} while (--left);
2405 
2406 	if (unlikely(left)) {
2407 		ret -= left;
2408 		/* try again if it submitted nothing and can't allocate a req */
2409 		if (!ret && io_req_cache_empty(ctx))
2410 			ret = -EAGAIN;
2411 		current->io_uring->cached_refs += left;
2412 	}
2413 
2414 	io_submit_state_end(ctx);
2415 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2416 	io_commit_sqring(ctx);
2417 	return ret;
2418 }
2419 
2420 struct io_wait_queue {
2421 	struct wait_queue_entry wq;
2422 	struct io_ring_ctx *ctx;
2423 	unsigned cq_tail;
2424 	unsigned nr_timeouts;
2425 	ktime_t timeout;
2426 };
2427 
2428 static inline bool io_has_work(struct io_ring_ctx *ctx)
2429 {
2430 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2431 	       !llist_empty(&ctx->work_llist);
2432 }
2433 
2434 static inline bool io_should_wake(struct io_wait_queue *iowq)
2435 {
2436 	struct io_ring_ctx *ctx = iowq->ctx;
2437 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2438 
2439 	/*
2440 	 * Wake up if we have enough events, or if a timeout occurred since we
2441 	 * started waiting. For timeouts, we always want to return to userspace,
2442 	 * regardless of event count.
2443 	 */
2444 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2445 }
2446 
2447 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2448 			    int wake_flags, void *key)
2449 {
2450 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2451 
2452 	/*
2453 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2454 	 * the task, and the next invocation will do it.
2455 	 */
2456 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2457 		return autoremove_wake_function(curr, mode, wake_flags, key);
2458 	return -1;
2459 }
2460 
2461 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2462 {
2463 	if (!llist_empty(&ctx->work_llist)) {
2464 		__set_current_state(TASK_RUNNING);
2465 		if (io_run_local_work(ctx) > 0)
2466 			return 1;
2467 	}
2468 	if (io_run_task_work() > 0)
2469 		return 1;
2470 	if (task_sigpending(current))
2471 		return -EINTR;
2472 	return 0;
2473 }
2474 
2475 /* when returns >0, the caller should retry */
2476 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2477 					  struct io_wait_queue *iowq)
2478 {
2479 	if (unlikely(READ_ONCE(ctx->check_cq)))
2480 		return 1;
2481 	if (unlikely(!llist_empty(&ctx->work_llist)))
2482 		return 1;
2483 	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2484 		return 1;
2485 	if (unlikely(task_sigpending(current)))
2486 		return -EINTR;
2487 	if (unlikely(io_should_wake(iowq)))
2488 		return 0;
2489 	if (iowq->timeout == KTIME_MAX)
2490 		schedule();
2491 	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2492 		return -ETIME;
2493 	return 0;
2494 }
2495 
2496 /*
2497  * Wait until events become available, if we don't already have some. The
2498  * application must reap them itself, as they reside on the shared cq ring.
2499  */
2500 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2501 			  const sigset_t __user *sig, size_t sigsz,
2502 			  struct __kernel_timespec __user *uts)
2503 {
2504 	struct io_wait_queue iowq;
2505 	struct io_rings *rings = ctx->rings;
2506 	int ret;
2507 
2508 	if (!io_allowed_run_tw(ctx))
2509 		return -EEXIST;
2510 	if (!llist_empty(&ctx->work_llist))
2511 		io_run_local_work(ctx);
2512 	io_run_task_work();
2513 	io_cqring_overflow_flush(ctx);
2514 	/* if user messes with these they will just get an early return */
2515 	if (__io_cqring_events_user(ctx) >= min_events)
2516 		return 0;
2517 
2518 	if (sig) {
2519 #ifdef CONFIG_COMPAT
2520 		if (in_compat_syscall())
2521 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2522 						      sigsz);
2523 		else
2524 #endif
2525 			ret = set_user_sigmask(sig, sigsz);
2526 
2527 		if (ret)
2528 			return ret;
2529 	}
2530 
2531 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2532 	iowq.wq.private = current;
2533 	INIT_LIST_HEAD(&iowq.wq.entry);
2534 	iowq.ctx = ctx;
2535 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2536 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2537 	iowq.timeout = KTIME_MAX;
2538 
2539 	if (uts) {
2540 		struct timespec64 ts;
2541 
2542 		if (get_timespec64(&ts, uts))
2543 			return -EFAULT;
2544 		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2545 	}
2546 
2547 	trace_io_uring_cqring_wait(ctx, min_events);
2548 	do {
2549 		unsigned long check_cq;
2550 
2551 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2552 			int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2553 
2554 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2555 			set_current_state(TASK_INTERRUPTIBLE);
2556 		} else {
2557 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2558 							TASK_INTERRUPTIBLE);
2559 		}
2560 
2561 		ret = io_cqring_wait_schedule(ctx, &iowq);
2562 		__set_current_state(TASK_RUNNING);
2563 		atomic_set(&ctx->cq_wait_nr, 0);
2564 
2565 		if (ret < 0)
2566 			break;
2567 		/*
2568 		 * Run task_work after scheduling and before io_should_wake().
2569 		 * If we got woken because of task_work being processed, run it
2570 		 * now rather than let the caller do another wait loop.
2571 		 */
2572 		io_run_task_work();
2573 		if (!llist_empty(&ctx->work_llist))
2574 			io_run_local_work(ctx);
2575 
2576 		check_cq = READ_ONCE(ctx->check_cq);
2577 		if (unlikely(check_cq)) {
2578 			/* let the caller flush overflows, retry */
2579 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2580 				io_cqring_do_overflow_flush(ctx);
2581 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2582 				ret = -EBADR;
2583 				break;
2584 			}
2585 		}
2586 
2587 		if (io_should_wake(&iowq)) {
2588 			ret = 0;
2589 			break;
2590 		}
2591 		cond_resched();
2592 	} while (1);
2593 
2594 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2595 		finish_wait(&ctx->cq_wait, &iowq.wq);
2596 	restore_saved_sigmask_unless(ret == -EINTR);
2597 
2598 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2599 }
2600 
2601 static void io_mem_free(void *ptr)
2602 {
2603 	struct page *page;
2604 
2605 	if (!ptr)
2606 		return;
2607 
2608 	page = virt_to_head_page(ptr);
2609 	if (put_page_testzero(page))
2610 		free_compound_page(page);
2611 }
2612 
2613 static void io_pages_free(struct page ***pages, int npages)
2614 {
2615 	struct page **page_array;
2616 	int i;
2617 
2618 	if (!pages)
2619 		return;
2620 	page_array = *pages;
2621 	for (i = 0; i < npages; i++)
2622 		unpin_user_page(page_array[i]);
2623 	kvfree(page_array);
2624 	*pages = NULL;
2625 }
2626 
2627 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2628 			    unsigned long uaddr, size_t size)
2629 {
2630 	struct page **page_array;
2631 	unsigned int nr_pages;
2632 	int ret;
2633 
2634 	*npages = 0;
2635 
2636 	if (uaddr & (PAGE_SIZE - 1) || !size)
2637 		return ERR_PTR(-EINVAL);
2638 
2639 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2640 	if (nr_pages > USHRT_MAX)
2641 		return ERR_PTR(-EINVAL);
2642 	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2643 	if (!page_array)
2644 		return ERR_PTR(-ENOMEM);
2645 
2646 	ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2647 					page_array);
2648 	if (ret != nr_pages) {
2649 err:
2650 		io_pages_free(&page_array, ret > 0 ? ret : 0);
2651 		return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT);
2652 	}
2653 	/*
2654 	 * Should be a single page. If the ring is small enough that we can
2655 	 * use a normal page, that is fine. If we need multiple pages, then
2656 	 * userspace should use a huge page. That's the only way to guarantee
2657 	 * that we get contigious memory, outside of just being lucky or
2658 	 * (currently) having low memory fragmentation.
2659 	 */
2660 	if (page_array[0] != page_array[ret - 1])
2661 		goto err;
2662 	*pages = page_array;
2663 	*npages = nr_pages;
2664 	return page_to_virt(page_array[0]);
2665 }
2666 
2667 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2668 			  size_t size)
2669 {
2670 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2671 				size);
2672 }
2673 
2674 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2675 			 size_t size)
2676 {
2677 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2678 				size);
2679 }
2680 
2681 static void io_rings_free(struct io_ring_ctx *ctx)
2682 {
2683 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2684 		io_mem_free(ctx->rings);
2685 		io_mem_free(ctx->sq_sqes);
2686 		ctx->rings = NULL;
2687 		ctx->sq_sqes = NULL;
2688 	} else {
2689 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2690 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2691 	}
2692 }
2693 
2694 static void *io_mem_alloc(size_t size)
2695 {
2696 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2697 	void *ret;
2698 
2699 	ret = (void *) __get_free_pages(gfp, get_order(size));
2700 	if (ret)
2701 		return ret;
2702 	return ERR_PTR(-ENOMEM);
2703 }
2704 
2705 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2706 				unsigned int cq_entries, size_t *sq_offset)
2707 {
2708 	struct io_rings *rings;
2709 	size_t off, sq_array_size;
2710 
2711 	off = struct_size(rings, cqes, cq_entries);
2712 	if (off == SIZE_MAX)
2713 		return SIZE_MAX;
2714 	if (ctx->flags & IORING_SETUP_CQE32) {
2715 		if (check_shl_overflow(off, 1, &off))
2716 			return SIZE_MAX;
2717 	}
2718 
2719 #ifdef CONFIG_SMP
2720 	off = ALIGN(off, SMP_CACHE_BYTES);
2721 	if (off == 0)
2722 		return SIZE_MAX;
2723 #endif
2724 
2725 	if (sq_offset)
2726 		*sq_offset = off;
2727 
2728 	sq_array_size = array_size(sizeof(u32), sq_entries);
2729 	if (sq_array_size == SIZE_MAX)
2730 		return SIZE_MAX;
2731 
2732 	if (check_add_overflow(off, sq_array_size, &off))
2733 		return SIZE_MAX;
2734 
2735 	return off;
2736 }
2737 
2738 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2739 			       unsigned int eventfd_async)
2740 {
2741 	struct io_ev_fd *ev_fd;
2742 	__s32 __user *fds = arg;
2743 	int fd;
2744 
2745 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2746 					lockdep_is_held(&ctx->uring_lock));
2747 	if (ev_fd)
2748 		return -EBUSY;
2749 
2750 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2751 		return -EFAULT;
2752 
2753 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2754 	if (!ev_fd)
2755 		return -ENOMEM;
2756 
2757 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2758 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2759 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2760 		kfree(ev_fd);
2761 		return ret;
2762 	}
2763 
2764 	spin_lock(&ctx->completion_lock);
2765 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2766 	spin_unlock(&ctx->completion_lock);
2767 
2768 	ev_fd->eventfd_async = eventfd_async;
2769 	ctx->has_evfd = true;
2770 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2771 	atomic_set(&ev_fd->refs, 1);
2772 	atomic_set(&ev_fd->ops, 0);
2773 	return 0;
2774 }
2775 
2776 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2777 {
2778 	struct io_ev_fd *ev_fd;
2779 
2780 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2781 					lockdep_is_held(&ctx->uring_lock));
2782 	if (ev_fd) {
2783 		ctx->has_evfd = false;
2784 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2785 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2786 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2787 		return 0;
2788 	}
2789 
2790 	return -ENXIO;
2791 }
2792 
2793 static void io_req_caches_free(struct io_ring_ctx *ctx)
2794 {
2795 	struct io_kiocb *req;
2796 	int nr = 0;
2797 
2798 	mutex_lock(&ctx->uring_lock);
2799 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2800 
2801 	while (!io_req_cache_empty(ctx)) {
2802 		req = io_extract_req(ctx);
2803 		kmem_cache_free(req_cachep, req);
2804 		nr++;
2805 	}
2806 	if (nr)
2807 		percpu_ref_put_many(&ctx->refs, nr);
2808 	mutex_unlock(&ctx->uring_lock);
2809 }
2810 
2811 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2812 {
2813 	kfree(container_of(entry, struct io_rsrc_node, cache));
2814 }
2815 
2816 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2817 {
2818 	io_sq_thread_finish(ctx);
2819 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2820 	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2821 		return;
2822 
2823 	mutex_lock(&ctx->uring_lock);
2824 	if (ctx->buf_data)
2825 		__io_sqe_buffers_unregister(ctx);
2826 	if (ctx->file_data)
2827 		__io_sqe_files_unregister(ctx);
2828 	io_cqring_overflow_kill(ctx);
2829 	io_eventfd_unregister(ctx);
2830 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2831 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2832 	io_destroy_buffers(ctx);
2833 	mutex_unlock(&ctx->uring_lock);
2834 	if (ctx->sq_creds)
2835 		put_cred(ctx->sq_creds);
2836 	if (ctx->submitter_task)
2837 		put_task_struct(ctx->submitter_task);
2838 
2839 	/* there are no registered resources left, nobody uses it */
2840 	if (ctx->rsrc_node)
2841 		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2842 
2843 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2844 
2845 #if defined(CONFIG_UNIX)
2846 	if (ctx->ring_sock) {
2847 		ctx->ring_sock->file = NULL; /* so that iput() is called */
2848 		sock_release(ctx->ring_sock);
2849 	}
2850 #endif
2851 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2852 
2853 	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2854 	if (ctx->mm_account) {
2855 		mmdrop(ctx->mm_account);
2856 		ctx->mm_account = NULL;
2857 	}
2858 	io_rings_free(ctx);
2859 
2860 	percpu_ref_exit(&ctx->refs);
2861 	free_uid(ctx->user);
2862 	io_req_caches_free(ctx);
2863 	if (ctx->hash_map)
2864 		io_wq_put_hash(ctx->hash_map);
2865 	kfree(ctx->cancel_table.hbs);
2866 	kfree(ctx->cancel_table_locked.hbs);
2867 	kfree(ctx->dummy_ubuf);
2868 	kfree(ctx->io_bl);
2869 	xa_destroy(&ctx->io_bl_xa);
2870 	kfree(ctx);
2871 }
2872 
2873 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2874 {
2875 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2876 					       poll_wq_task_work);
2877 
2878 	mutex_lock(&ctx->uring_lock);
2879 	ctx->poll_activated = true;
2880 	mutex_unlock(&ctx->uring_lock);
2881 
2882 	/*
2883 	 * Wake ups for some events between start of polling and activation
2884 	 * might've been lost due to loose synchronisation.
2885 	 */
2886 	wake_up_all(&ctx->poll_wq);
2887 	percpu_ref_put(&ctx->refs);
2888 }
2889 
2890 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2891 {
2892 	spin_lock(&ctx->completion_lock);
2893 	/* already activated or in progress */
2894 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2895 		goto out;
2896 	if (WARN_ON_ONCE(!ctx->task_complete))
2897 		goto out;
2898 	if (!ctx->submitter_task)
2899 		goto out;
2900 	/*
2901 	 * with ->submitter_task only the submitter task completes requests, we
2902 	 * only need to sync with it, which is done by injecting a tw
2903 	 */
2904 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2905 	percpu_ref_get(&ctx->refs);
2906 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2907 		percpu_ref_put(&ctx->refs);
2908 out:
2909 	spin_unlock(&ctx->completion_lock);
2910 }
2911 
2912 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2913 {
2914 	struct io_ring_ctx *ctx = file->private_data;
2915 	__poll_t mask = 0;
2916 
2917 	if (unlikely(!ctx->poll_activated))
2918 		io_activate_pollwq(ctx);
2919 
2920 	poll_wait(file, &ctx->poll_wq, wait);
2921 	/*
2922 	 * synchronizes with barrier from wq_has_sleeper call in
2923 	 * io_commit_cqring
2924 	 */
2925 	smp_rmb();
2926 	if (!io_sqring_full(ctx))
2927 		mask |= EPOLLOUT | EPOLLWRNORM;
2928 
2929 	/*
2930 	 * Don't flush cqring overflow list here, just do a simple check.
2931 	 * Otherwise there could possible be ABBA deadlock:
2932 	 *      CPU0                    CPU1
2933 	 *      ----                    ----
2934 	 * lock(&ctx->uring_lock);
2935 	 *                              lock(&ep->mtx);
2936 	 *                              lock(&ctx->uring_lock);
2937 	 * lock(&ep->mtx);
2938 	 *
2939 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2940 	 * pushes them to do the flush.
2941 	 */
2942 
2943 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2944 		mask |= EPOLLIN | EPOLLRDNORM;
2945 
2946 	return mask;
2947 }
2948 
2949 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2950 {
2951 	const struct cred *creds;
2952 
2953 	creds = xa_erase(&ctx->personalities, id);
2954 	if (creds) {
2955 		put_cred(creds);
2956 		return 0;
2957 	}
2958 
2959 	return -EINVAL;
2960 }
2961 
2962 struct io_tctx_exit {
2963 	struct callback_head		task_work;
2964 	struct completion		completion;
2965 	struct io_ring_ctx		*ctx;
2966 };
2967 
2968 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2969 {
2970 	struct io_uring_task *tctx = current->io_uring;
2971 	struct io_tctx_exit *work;
2972 
2973 	work = container_of(cb, struct io_tctx_exit, task_work);
2974 	/*
2975 	 * When @in_cancel, we're in cancellation and it's racy to remove the
2976 	 * node. It'll be removed by the end of cancellation, just ignore it.
2977 	 * tctx can be NULL if the queueing of this task_work raced with
2978 	 * work cancelation off the exec path.
2979 	 */
2980 	if (tctx && !atomic_read(&tctx->in_cancel))
2981 		io_uring_del_tctx_node((unsigned long)work->ctx);
2982 	complete(&work->completion);
2983 }
2984 
2985 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2986 {
2987 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2988 
2989 	return req->ctx == data;
2990 }
2991 
2992 static __cold void io_ring_exit_work(struct work_struct *work)
2993 {
2994 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2995 	unsigned long timeout = jiffies + HZ * 60 * 5;
2996 	unsigned long interval = HZ / 20;
2997 	struct io_tctx_exit exit;
2998 	struct io_tctx_node *node;
2999 	int ret;
3000 
3001 	/*
3002 	 * If we're doing polled IO and end up having requests being
3003 	 * submitted async (out-of-line), then completions can come in while
3004 	 * we're waiting for refs to drop. We need to reap these manually,
3005 	 * as nobody else will be looking for them.
3006 	 */
3007 	do {
3008 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3009 			mutex_lock(&ctx->uring_lock);
3010 			io_cqring_overflow_kill(ctx);
3011 			mutex_unlock(&ctx->uring_lock);
3012 		}
3013 
3014 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3015 			io_move_task_work_from_local(ctx);
3016 
3017 		while (io_uring_try_cancel_requests(ctx, NULL, true))
3018 			cond_resched();
3019 
3020 		if (ctx->sq_data) {
3021 			struct io_sq_data *sqd = ctx->sq_data;
3022 			struct task_struct *tsk;
3023 
3024 			io_sq_thread_park(sqd);
3025 			tsk = sqd->thread;
3026 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3027 				io_wq_cancel_cb(tsk->io_uring->io_wq,
3028 						io_cancel_ctx_cb, ctx, true);
3029 			io_sq_thread_unpark(sqd);
3030 		}
3031 
3032 		io_req_caches_free(ctx);
3033 
3034 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3035 			/* there is little hope left, don't run it too often */
3036 			interval = HZ * 60;
3037 		}
3038 		/*
3039 		 * This is really an uninterruptible wait, as it has to be
3040 		 * complete. But it's also run from a kworker, which doesn't
3041 		 * take signals, so it's fine to make it interruptible. This
3042 		 * avoids scenarios where we knowingly can wait much longer
3043 		 * on completions, for example if someone does a SIGSTOP on
3044 		 * a task that needs to finish task_work to make this loop
3045 		 * complete. That's a synthetic situation that should not
3046 		 * cause a stuck task backtrace, and hence a potential panic
3047 		 * on stuck tasks if that is enabled.
3048 		 */
3049 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3050 
3051 	init_completion(&exit.completion);
3052 	init_task_work(&exit.task_work, io_tctx_exit_cb);
3053 	exit.ctx = ctx;
3054 	/*
3055 	 * Some may use context even when all refs and requests have been put,
3056 	 * and they are free to do so while still holding uring_lock or
3057 	 * completion_lock, see io_req_task_submit(). Apart from other work,
3058 	 * this lock/unlock section also waits them to finish.
3059 	 */
3060 	mutex_lock(&ctx->uring_lock);
3061 	while (!list_empty(&ctx->tctx_list)) {
3062 		WARN_ON_ONCE(time_after(jiffies, timeout));
3063 
3064 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3065 					ctx_node);
3066 		/* don't spin on a single task if cancellation failed */
3067 		list_rotate_left(&ctx->tctx_list);
3068 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3069 		if (WARN_ON_ONCE(ret))
3070 			continue;
3071 
3072 		mutex_unlock(&ctx->uring_lock);
3073 		/*
3074 		 * See comment above for
3075 		 * wait_for_completion_interruptible_timeout() on why this
3076 		 * wait is marked as interruptible.
3077 		 */
3078 		wait_for_completion_interruptible(&exit.completion);
3079 		mutex_lock(&ctx->uring_lock);
3080 	}
3081 	mutex_unlock(&ctx->uring_lock);
3082 	spin_lock(&ctx->completion_lock);
3083 	spin_unlock(&ctx->completion_lock);
3084 
3085 	/* pairs with RCU read section in io_req_local_work_add() */
3086 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3087 		synchronize_rcu();
3088 
3089 	io_ring_ctx_free(ctx);
3090 }
3091 
3092 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3093 {
3094 	unsigned long index;
3095 	struct creds *creds;
3096 
3097 	mutex_lock(&ctx->uring_lock);
3098 	percpu_ref_kill(&ctx->refs);
3099 	xa_for_each(&ctx->personalities, index, creds)
3100 		io_unregister_personality(ctx, index);
3101 	if (ctx->rings)
3102 		io_poll_remove_all(ctx, NULL, true);
3103 	mutex_unlock(&ctx->uring_lock);
3104 
3105 	/*
3106 	 * If we failed setting up the ctx, we might not have any rings
3107 	 * and therefore did not submit any requests
3108 	 */
3109 	if (ctx->rings)
3110 		io_kill_timeouts(ctx, NULL, true);
3111 
3112 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3113 	/*
3114 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3115 	 * if we're exiting a ton of rings at the same time. It just adds
3116 	 * noise and overhead, there's no discernable change in runtime
3117 	 * over using system_wq.
3118 	 */
3119 	queue_work(system_unbound_wq, &ctx->exit_work);
3120 }
3121 
3122 static int io_uring_release(struct inode *inode, struct file *file)
3123 {
3124 	struct io_ring_ctx *ctx = file->private_data;
3125 
3126 	file->private_data = NULL;
3127 	io_ring_ctx_wait_and_kill(ctx);
3128 	return 0;
3129 }
3130 
3131 struct io_task_cancel {
3132 	struct task_struct *task;
3133 	bool all;
3134 };
3135 
3136 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3137 {
3138 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3139 	struct io_task_cancel *cancel = data;
3140 
3141 	return io_match_task_safe(req, cancel->task, cancel->all);
3142 }
3143 
3144 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3145 					 struct task_struct *task,
3146 					 bool cancel_all)
3147 {
3148 	struct io_defer_entry *de;
3149 	LIST_HEAD(list);
3150 
3151 	spin_lock(&ctx->completion_lock);
3152 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3153 		if (io_match_task_safe(de->req, task, cancel_all)) {
3154 			list_cut_position(&list, &ctx->defer_list, &de->list);
3155 			break;
3156 		}
3157 	}
3158 	spin_unlock(&ctx->completion_lock);
3159 	if (list_empty(&list))
3160 		return false;
3161 
3162 	while (!list_empty(&list)) {
3163 		de = list_first_entry(&list, struct io_defer_entry, list);
3164 		list_del_init(&de->list);
3165 		io_req_task_queue_fail(de->req, -ECANCELED);
3166 		kfree(de);
3167 	}
3168 	return true;
3169 }
3170 
3171 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3172 {
3173 	struct io_tctx_node *node;
3174 	enum io_wq_cancel cret;
3175 	bool ret = false;
3176 
3177 	mutex_lock(&ctx->uring_lock);
3178 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3179 		struct io_uring_task *tctx = node->task->io_uring;
3180 
3181 		/*
3182 		 * io_wq will stay alive while we hold uring_lock, because it's
3183 		 * killed after ctx nodes, which requires to take the lock.
3184 		 */
3185 		if (!tctx || !tctx->io_wq)
3186 			continue;
3187 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3188 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3189 	}
3190 	mutex_unlock(&ctx->uring_lock);
3191 
3192 	return ret;
3193 }
3194 
3195 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3196 						struct task_struct *task,
3197 						bool cancel_all)
3198 {
3199 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3200 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3201 	enum io_wq_cancel cret;
3202 	bool ret = false;
3203 
3204 	/* set it so io_req_local_work_add() would wake us up */
3205 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3206 		atomic_set(&ctx->cq_wait_nr, 1);
3207 		smp_mb();
3208 	}
3209 
3210 	/* failed during ring init, it couldn't have issued any requests */
3211 	if (!ctx->rings)
3212 		return false;
3213 
3214 	if (!task) {
3215 		ret |= io_uring_try_cancel_iowq(ctx);
3216 	} else if (tctx && tctx->io_wq) {
3217 		/*
3218 		 * Cancels requests of all rings, not only @ctx, but
3219 		 * it's fine as the task is in exit/exec.
3220 		 */
3221 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3222 				       &cancel, true);
3223 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3224 	}
3225 
3226 	/* SQPOLL thread does its own polling */
3227 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3228 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3229 		while (!wq_list_empty(&ctx->iopoll_list)) {
3230 			io_iopoll_try_reap_events(ctx);
3231 			ret = true;
3232 			cond_resched();
3233 		}
3234 	}
3235 
3236 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3237 	    io_allowed_defer_tw_run(ctx))
3238 		ret |= io_run_local_work(ctx) > 0;
3239 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3240 	mutex_lock(&ctx->uring_lock);
3241 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3242 	mutex_unlock(&ctx->uring_lock);
3243 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3244 	if (task)
3245 		ret |= io_run_task_work() > 0;
3246 	return ret;
3247 }
3248 
3249 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3250 {
3251 	if (tracked)
3252 		return atomic_read(&tctx->inflight_tracked);
3253 	return percpu_counter_sum(&tctx->inflight);
3254 }
3255 
3256 /*
3257  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3258  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3259  */
3260 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3261 {
3262 	struct io_uring_task *tctx = current->io_uring;
3263 	struct io_ring_ctx *ctx;
3264 	struct io_tctx_node *node;
3265 	unsigned long index;
3266 	s64 inflight;
3267 	DEFINE_WAIT(wait);
3268 
3269 	WARN_ON_ONCE(sqd && sqd->thread != current);
3270 
3271 	if (!current->io_uring)
3272 		return;
3273 	if (tctx->io_wq)
3274 		io_wq_exit_start(tctx->io_wq);
3275 
3276 	atomic_inc(&tctx->in_cancel);
3277 	do {
3278 		bool loop = false;
3279 
3280 		io_uring_drop_tctx_refs(current);
3281 		/* read completions before cancelations */
3282 		inflight = tctx_inflight(tctx, !cancel_all);
3283 		if (!inflight)
3284 			break;
3285 
3286 		if (!sqd) {
3287 			xa_for_each(&tctx->xa, index, node) {
3288 				/* sqpoll task will cancel all its requests */
3289 				if (node->ctx->sq_data)
3290 					continue;
3291 				loop |= io_uring_try_cancel_requests(node->ctx,
3292 							current, cancel_all);
3293 			}
3294 		} else {
3295 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3296 				loop |= io_uring_try_cancel_requests(ctx,
3297 								     current,
3298 								     cancel_all);
3299 		}
3300 
3301 		if (loop) {
3302 			cond_resched();
3303 			continue;
3304 		}
3305 
3306 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3307 		io_run_task_work();
3308 		io_uring_drop_tctx_refs(current);
3309 		xa_for_each(&tctx->xa, index, node) {
3310 			if (!llist_empty(&node->ctx->work_llist)) {
3311 				WARN_ON_ONCE(node->ctx->submitter_task &&
3312 					     node->ctx->submitter_task != current);
3313 				goto end_wait;
3314 			}
3315 		}
3316 		/*
3317 		 * If we've seen completions, retry without waiting. This
3318 		 * avoids a race where a completion comes in before we did
3319 		 * prepare_to_wait().
3320 		 */
3321 		if (inflight == tctx_inflight(tctx, !cancel_all))
3322 			schedule();
3323 end_wait:
3324 		finish_wait(&tctx->wait, &wait);
3325 	} while (1);
3326 
3327 	io_uring_clean_tctx(tctx);
3328 	if (cancel_all) {
3329 		/*
3330 		 * We shouldn't run task_works after cancel, so just leave
3331 		 * ->in_cancel set for normal exit.
3332 		 */
3333 		atomic_dec(&tctx->in_cancel);
3334 		/* for exec all current's requests should be gone, kill tctx */
3335 		__io_uring_free(current);
3336 	}
3337 }
3338 
3339 void __io_uring_cancel(bool cancel_all)
3340 {
3341 	io_uring_cancel_generic(cancel_all, NULL);
3342 }
3343 
3344 static void *io_uring_validate_mmap_request(struct file *file,
3345 					    loff_t pgoff, size_t sz)
3346 {
3347 	struct io_ring_ctx *ctx = file->private_data;
3348 	loff_t offset = pgoff << PAGE_SHIFT;
3349 	struct page *page;
3350 	void *ptr;
3351 
3352 	/* Don't allow mmap if the ring was setup without it */
3353 	if (ctx->flags & IORING_SETUP_NO_MMAP)
3354 		return ERR_PTR(-EINVAL);
3355 
3356 	switch (offset & IORING_OFF_MMAP_MASK) {
3357 	case IORING_OFF_SQ_RING:
3358 	case IORING_OFF_CQ_RING:
3359 		ptr = ctx->rings;
3360 		break;
3361 	case IORING_OFF_SQES:
3362 		ptr = ctx->sq_sqes;
3363 		break;
3364 	case IORING_OFF_PBUF_RING: {
3365 		unsigned int bgid;
3366 
3367 		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3368 		mutex_lock(&ctx->uring_lock);
3369 		ptr = io_pbuf_get_address(ctx, bgid);
3370 		mutex_unlock(&ctx->uring_lock);
3371 		if (!ptr)
3372 			return ERR_PTR(-EINVAL);
3373 		break;
3374 		}
3375 	default:
3376 		return ERR_PTR(-EINVAL);
3377 	}
3378 
3379 	page = virt_to_head_page(ptr);
3380 	if (sz > page_size(page))
3381 		return ERR_PTR(-EINVAL);
3382 
3383 	return ptr;
3384 }
3385 
3386 #ifdef CONFIG_MMU
3387 
3388 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3389 {
3390 	size_t sz = vma->vm_end - vma->vm_start;
3391 	unsigned long pfn;
3392 	void *ptr;
3393 
3394 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3395 	if (IS_ERR(ptr))
3396 		return PTR_ERR(ptr);
3397 
3398 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3399 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3400 }
3401 
3402 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3403 			unsigned long addr, unsigned long len,
3404 			unsigned long pgoff, unsigned long flags)
3405 {
3406 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
3407 	struct vm_unmapped_area_info info;
3408 	void *ptr;
3409 
3410 	/*
3411 	 * Do not allow to map to user-provided address to avoid breaking the
3412 	 * aliasing rules. Userspace is not able to guess the offset address of
3413 	 * kernel kmalloc()ed memory area.
3414 	 */
3415 	if (addr)
3416 		return -EINVAL;
3417 
3418 	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3419 	if (IS_ERR(ptr))
3420 		return -ENOMEM;
3421 
3422 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
3423 	info.length = len;
3424 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
3425 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
3426 #ifdef SHM_COLOUR
3427 	info.align_mask = PAGE_MASK & (SHM_COLOUR - 1UL);
3428 #else
3429 	info.align_mask = PAGE_MASK & (SHMLBA - 1UL);
3430 #endif
3431 	info.align_offset = (unsigned long) ptr;
3432 
3433 	/*
3434 	 * A failed mmap() very likely causes application failure,
3435 	 * so fall back to the bottom-up function here. This scenario
3436 	 * can happen with large stack limits and large mmap()
3437 	 * allocations.
3438 	 */
3439 	addr = vm_unmapped_area(&info);
3440 	if (offset_in_page(addr)) {
3441 		info.flags = 0;
3442 		info.low_limit = TASK_UNMAPPED_BASE;
3443 		info.high_limit = mmap_end;
3444 		addr = vm_unmapped_area(&info);
3445 	}
3446 
3447 	return addr;
3448 }
3449 
3450 #else /* !CONFIG_MMU */
3451 
3452 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3453 {
3454 	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3455 }
3456 
3457 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3458 {
3459 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3460 }
3461 
3462 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3463 	unsigned long addr, unsigned long len,
3464 	unsigned long pgoff, unsigned long flags)
3465 {
3466 	void *ptr;
3467 
3468 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3469 	if (IS_ERR(ptr))
3470 		return PTR_ERR(ptr);
3471 
3472 	return (unsigned long) ptr;
3473 }
3474 
3475 #endif /* !CONFIG_MMU */
3476 
3477 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3478 {
3479 	if (flags & IORING_ENTER_EXT_ARG) {
3480 		struct io_uring_getevents_arg arg;
3481 
3482 		if (argsz != sizeof(arg))
3483 			return -EINVAL;
3484 		if (copy_from_user(&arg, argp, sizeof(arg)))
3485 			return -EFAULT;
3486 	}
3487 	return 0;
3488 }
3489 
3490 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3491 			  struct __kernel_timespec __user **ts,
3492 			  const sigset_t __user **sig)
3493 {
3494 	struct io_uring_getevents_arg arg;
3495 
3496 	/*
3497 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3498 	 * is just a pointer to the sigset_t.
3499 	 */
3500 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3501 		*sig = (const sigset_t __user *) argp;
3502 		*ts = NULL;
3503 		return 0;
3504 	}
3505 
3506 	/*
3507 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3508 	 * timespec and sigset_t pointers if good.
3509 	 */
3510 	if (*argsz != sizeof(arg))
3511 		return -EINVAL;
3512 	if (copy_from_user(&arg, argp, sizeof(arg)))
3513 		return -EFAULT;
3514 	if (arg.pad)
3515 		return -EINVAL;
3516 	*sig = u64_to_user_ptr(arg.sigmask);
3517 	*argsz = arg.sigmask_sz;
3518 	*ts = u64_to_user_ptr(arg.ts);
3519 	return 0;
3520 }
3521 
3522 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3523 		u32, min_complete, u32, flags, const void __user *, argp,
3524 		size_t, argsz)
3525 {
3526 	struct io_ring_ctx *ctx;
3527 	struct fd f;
3528 	long ret;
3529 
3530 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3531 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3532 			       IORING_ENTER_REGISTERED_RING)))
3533 		return -EINVAL;
3534 
3535 	/*
3536 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3537 	 * need only dereference our task private array to find it.
3538 	 */
3539 	if (flags & IORING_ENTER_REGISTERED_RING) {
3540 		struct io_uring_task *tctx = current->io_uring;
3541 
3542 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3543 			return -EINVAL;
3544 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3545 		f.file = tctx->registered_rings[fd];
3546 		f.flags = 0;
3547 		if (unlikely(!f.file))
3548 			return -EBADF;
3549 	} else {
3550 		f = fdget(fd);
3551 		if (unlikely(!f.file))
3552 			return -EBADF;
3553 		ret = -EOPNOTSUPP;
3554 		if (unlikely(!io_is_uring_fops(f.file)))
3555 			goto out;
3556 	}
3557 
3558 	ctx = f.file->private_data;
3559 	ret = -EBADFD;
3560 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3561 		goto out;
3562 
3563 	/*
3564 	 * For SQ polling, the thread will do all submissions and completions.
3565 	 * Just return the requested submit count, and wake the thread if
3566 	 * we were asked to.
3567 	 */
3568 	ret = 0;
3569 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3570 		io_cqring_overflow_flush(ctx);
3571 
3572 		if (unlikely(ctx->sq_data->thread == NULL)) {
3573 			ret = -EOWNERDEAD;
3574 			goto out;
3575 		}
3576 		if (flags & IORING_ENTER_SQ_WAKEUP)
3577 			wake_up(&ctx->sq_data->wait);
3578 		if (flags & IORING_ENTER_SQ_WAIT)
3579 			io_sqpoll_wait_sq(ctx);
3580 
3581 		ret = to_submit;
3582 	} else if (to_submit) {
3583 		ret = io_uring_add_tctx_node(ctx);
3584 		if (unlikely(ret))
3585 			goto out;
3586 
3587 		mutex_lock(&ctx->uring_lock);
3588 		ret = io_submit_sqes(ctx, to_submit);
3589 		if (ret != to_submit) {
3590 			mutex_unlock(&ctx->uring_lock);
3591 			goto out;
3592 		}
3593 		if (flags & IORING_ENTER_GETEVENTS) {
3594 			if (ctx->syscall_iopoll)
3595 				goto iopoll_locked;
3596 			/*
3597 			 * Ignore errors, we'll soon call io_cqring_wait() and
3598 			 * it should handle ownership problems if any.
3599 			 */
3600 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3601 				(void)io_run_local_work_locked(ctx);
3602 		}
3603 		mutex_unlock(&ctx->uring_lock);
3604 	}
3605 
3606 	if (flags & IORING_ENTER_GETEVENTS) {
3607 		int ret2;
3608 
3609 		if (ctx->syscall_iopoll) {
3610 			/*
3611 			 * We disallow the app entering submit/complete with
3612 			 * polling, but we still need to lock the ring to
3613 			 * prevent racing with polled issue that got punted to
3614 			 * a workqueue.
3615 			 */
3616 			mutex_lock(&ctx->uring_lock);
3617 iopoll_locked:
3618 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3619 			if (likely(!ret2)) {
3620 				min_complete = min(min_complete,
3621 						   ctx->cq_entries);
3622 				ret2 = io_iopoll_check(ctx, min_complete);
3623 			}
3624 			mutex_unlock(&ctx->uring_lock);
3625 		} else {
3626 			const sigset_t __user *sig;
3627 			struct __kernel_timespec __user *ts;
3628 
3629 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3630 			if (likely(!ret2)) {
3631 				min_complete = min(min_complete,
3632 						   ctx->cq_entries);
3633 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3634 						      argsz, ts);
3635 			}
3636 		}
3637 
3638 		if (!ret) {
3639 			ret = ret2;
3640 
3641 			/*
3642 			 * EBADR indicates that one or more CQE were dropped.
3643 			 * Once the user has been informed we can clear the bit
3644 			 * as they are obviously ok with those drops.
3645 			 */
3646 			if (unlikely(ret2 == -EBADR))
3647 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3648 					  &ctx->check_cq);
3649 		}
3650 	}
3651 out:
3652 	fdput(f);
3653 	return ret;
3654 }
3655 
3656 static const struct file_operations io_uring_fops = {
3657 	.release	= io_uring_release,
3658 	.mmap		= io_uring_mmap,
3659 #ifndef CONFIG_MMU
3660 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3661 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3662 #else
3663 	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3664 #endif
3665 	.poll		= io_uring_poll,
3666 #ifdef CONFIG_PROC_FS
3667 	.show_fdinfo	= io_uring_show_fdinfo,
3668 #endif
3669 };
3670 
3671 bool io_is_uring_fops(struct file *file)
3672 {
3673 	return file->f_op == &io_uring_fops;
3674 }
3675 
3676 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3677 					 struct io_uring_params *p)
3678 {
3679 	struct io_rings *rings;
3680 	size_t size, sq_array_offset;
3681 	void *ptr;
3682 
3683 	/* make sure these are sane, as we already accounted them */
3684 	ctx->sq_entries = p->sq_entries;
3685 	ctx->cq_entries = p->cq_entries;
3686 
3687 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3688 	if (size == SIZE_MAX)
3689 		return -EOVERFLOW;
3690 
3691 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3692 		rings = io_mem_alloc(size);
3693 	else
3694 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3695 
3696 	if (IS_ERR(rings))
3697 		return PTR_ERR(rings);
3698 
3699 	ctx->rings = rings;
3700 	ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3701 	rings->sq_ring_mask = p->sq_entries - 1;
3702 	rings->cq_ring_mask = p->cq_entries - 1;
3703 	rings->sq_ring_entries = p->sq_entries;
3704 	rings->cq_ring_entries = p->cq_entries;
3705 
3706 	if (p->flags & IORING_SETUP_SQE128)
3707 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3708 	else
3709 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3710 	if (size == SIZE_MAX) {
3711 		io_rings_free(ctx);
3712 		return -EOVERFLOW;
3713 	}
3714 
3715 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3716 		ptr = io_mem_alloc(size);
3717 	else
3718 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3719 
3720 	if (IS_ERR(ptr)) {
3721 		io_rings_free(ctx);
3722 		return PTR_ERR(ptr);
3723 	}
3724 
3725 	ctx->sq_sqes = ptr;
3726 	return 0;
3727 }
3728 
3729 static int io_uring_install_fd(struct file *file)
3730 {
3731 	int fd;
3732 
3733 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3734 	if (fd < 0)
3735 		return fd;
3736 	fd_install(fd, file);
3737 	return fd;
3738 }
3739 
3740 /*
3741  * Allocate an anonymous fd, this is what constitutes the application
3742  * visible backing of an io_uring instance. The application mmaps this
3743  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3744  * we have to tie this fd to a socket for file garbage collection purposes.
3745  */
3746 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3747 {
3748 	struct file *file;
3749 #if defined(CONFIG_UNIX)
3750 	int ret;
3751 
3752 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3753 				&ctx->ring_sock);
3754 	if (ret)
3755 		return ERR_PTR(ret);
3756 #endif
3757 
3758 	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3759 					 O_RDWR | O_CLOEXEC, NULL);
3760 #if defined(CONFIG_UNIX)
3761 	if (IS_ERR(file)) {
3762 		sock_release(ctx->ring_sock);
3763 		ctx->ring_sock = NULL;
3764 	} else {
3765 		ctx->ring_sock->file = file;
3766 	}
3767 #endif
3768 	return file;
3769 }
3770 
3771 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3772 				  struct io_uring_params __user *params)
3773 {
3774 	struct io_ring_ctx *ctx;
3775 	struct io_uring_task *tctx;
3776 	struct file *file;
3777 	int ret;
3778 
3779 	if (!entries)
3780 		return -EINVAL;
3781 	if (entries > IORING_MAX_ENTRIES) {
3782 		if (!(p->flags & IORING_SETUP_CLAMP))
3783 			return -EINVAL;
3784 		entries = IORING_MAX_ENTRIES;
3785 	}
3786 
3787 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3788 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3789 		return -EINVAL;
3790 
3791 	/*
3792 	 * Use twice as many entries for the CQ ring. It's possible for the
3793 	 * application to drive a higher depth than the size of the SQ ring,
3794 	 * since the sqes are only used at submission time. This allows for
3795 	 * some flexibility in overcommitting a bit. If the application has
3796 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3797 	 * of CQ ring entries manually.
3798 	 */
3799 	p->sq_entries = roundup_pow_of_two(entries);
3800 	if (p->flags & IORING_SETUP_CQSIZE) {
3801 		/*
3802 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3803 		 * to a power-of-two, if it isn't already. We do NOT impose
3804 		 * any cq vs sq ring sizing.
3805 		 */
3806 		if (!p->cq_entries)
3807 			return -EINVAL;
3808 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3809 			if (!(p->flags & IORING_SETUP_CLAMP))
3810 				return -EINVAL;
3811 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3812 		}
3813 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3814 		if (p->cq_entries < p->sq_entries)
3815 			return -EINVAL;
3816 	} else {
3817 		p->cq_entries = 2 * p->sq_entries;
3818 	}
3819 
3820 	ctx = io_ring_ctx_alloc(p);
3821 	if (!ctx)
3822 		return -ENOMEM;
3823 
3824 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3825 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3826 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3827 		ctx->task_complete = true;
3828 
3829 	/*
3830 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3831 	 * purposes, see io_activate_pollwq()
3832 	 */
3833 	if (!ctx->task_complete)
3834 		ctx->poll_activated = true;
3835 
3836 	/*
3837 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3838 	 * space applications don't need to do io completion events
3839 	 * polling again, they can rely on io_sq_thread to do polling
3840 	 * work, which can reduce cpu usage and uring_lock contention.
3841 	 */
3842 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3843 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3844 		ctx->syscall_iopoll = 1;
3845 
3846 	ctx->compat = in_compat_syscall();
3847 	if (!capable(CAP_IPC_LOCK))
3848 		ctx->user = get_uid(current_user());
3849 
3850 	/*
3851 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3852 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3853 	 */
3854 	ret = -EINVAL;
3855 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3856 		/* IPI related flags don't make sense with SQPOLL */
3857 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3858 				  IORING_SETUP_TASKRUN_FLAG |
3859 				  IORING_SETUP_DEFER_TASKRUN))
3860 			goto err;
3861 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3862 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3863 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3864 	} else {
3865 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3866 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3867 			goto err;
3868 		ctx->notify_method = TWA_SIGNAL;
3869 	}
3870 
3871 	/*
3872 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3873 	 * submission task. This implies that there is only one submitter, so enforce
3874 	 * that.
3875 	 */
3876 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3877 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3878 		goto err;
3879 	}
3880 
3881 	/*
3882 	 * This is just grabbed for accounting purposes. When a process exits,
3883 	 * the mm is exited and dropped before the files, hence we need to hang
3884 	 * on to this mm purely for the purposes of being able to unaccount
3885 	 * memory (locked/pinned vm). It's not used for anything else.
3886 	 */
3887 	mmgrab(current->mm);
3888 	ctx->mm_account = current->mm;
3889 
3890 	ret = io_allocate_scq_urings(ctx, p);
3891 	if (ret)
3892 		goto err;
3893 
3894 	ret = io_sq_offload_create(ctx, p);
3895 	if (ret)
3896 		goto err;
3897 
3898 	ret = io_rsrc_init(ctx);
3899 	if (ret)
3900 		goto err;
3901 
3902 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3903 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3904 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3905 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3906 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3907 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3908 	p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3909 	p->sq_off.resv1 = 0;
3910 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3911 		p->sq_off.user_addr = 0;
3912 
3913 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3914 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3915 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3916 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3917 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3918 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3919 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3920 	p->cq_off.resv1 = 0;
3921 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3922 		p->cq_off.user_addr = 0;
3923 
3924 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3925 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3926 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3927 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3928 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3929 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3930 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
3931 
3932 	if (copy_to_user(params, p, sizeof(*p))) {
3933 		ret = -EFAULT;
3934 		goto err;
3935 	}
3936 
3937 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3938 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3939 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3940 
3941 	file = io_uring_get_file(ctx);
3942 	if (IS_ERR(file)) {
3943 		ret = PTR_ERR(file);
3944 		goto err;
3945 	}
3946 
3947 	ret = __io_uring_add_tctx_node(ctx);
3948 	if (ret)
3949 		goto err_fput;
3950 	tctx = current->io_uring;
3951 
3952 	/*
3953 	 * Install ring fd as the very last thing, so we don't risk someone
3954 	 * having closed it before we finish setup
3955 	 */
3956 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3957 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3958 	else
3959 		ret = io_uring_install_fd(file);
3960 	if (ret < 0)
3961 		goto err_fput;
3962 
3963 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3964 	return ret;
3965 err:
3966 	io_ring_ctx_wait_and_kill(ctx);
3967 	return ret;
3968 err_fput:
3969 	fput(file);
3970 	return ret;
3971 }
3972 
3973 /*
3974  * Sets up an aio uring context, and returns the fd. Applications asks for a
3975  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3976  * params structure passed in.
3977  */
3978 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3979 {
3980 	struct io_uring_params p;
3981 	int i;
3982 
3983 	if (copy_from_user(&p, params, sizeof(p)))
3984 		return -EFAULT;
3985 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3986 		if (p.resv[i])
3987 			return -EINVAL;
3988 	}
3989 
3990 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3991 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3992 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3993 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3994 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3995 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3996 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3997 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY))
3998 		return -EINVAL;
3999 
4000 	return io_uring_create(entries, &p, params);
4001 }
4002 
4003 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4004 		struct io_uring_params __user *, params)
4005 {
4006 	return io_uring_setup(entries, params);
4007 }
4008 
4009 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4010 			   unsigned nr_args)
4011 {
4012 	struct io_uring_probe *p;
4013 	size_t size;
4014 	int i, ret;
4015 
4016 	size = struct_size(p, ops, nr_args);
4017 	if (size == SIZE_MAX)
4018 		return -EOVERFLOW;
4019 	p = kzalloc(size, GFP_KERNEL);
4020 	if (!p)
4021 		return -ENOMEM;
4022 
4023 	ret = -EFAULT;
4024 	if (copy_from_user(p, arg, size))
4025 		goto out;
4026 	ret = -EINVAL;
4027 	if (memchr_inv(p, 0, size))
4028 		goto out;
4029 
4030 	p->last_op = IORING_OP_LAST - 1;
4031 	if (nr_args > IORING_OP_LAST)
4032 		nr_args = IORING_OP_LAST;
4033 
4034 	for (i = 0; i < nr_args; i++) {
4035 		p->ops[i].op = i;
4036 		if (!io_issue_defs[i].not_supported)
4037 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
4038 	}
4039 	p->ops_len = i;
4040 
4041 	ret = 0;
4042 	if (copy_to_user(arg, p, size))
4043 		ret = -EFAULT;
4044 out:
4045 	kfree(p);
4046 	return ret;
4047 }
4048 
4049 static int io_register_personality(struct io_ring_ctx *ctx)
4050 {
4051 	const struct cred *creds;
4052 	u32 id;
4053 	int ret;
4054 
4055 	creds = get_current_cred();
4056 
4057 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4058 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4059 	if (ret < 0) {
4060 		put_cred(creds);
4061 		return ret;
4062 	}
4063 	return id;
4064 }
4065 
4066 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4067 					   void __user *arg, unsigned int nr_args)
4068 {
4069 	struct io_uring_restriction *res;
4070 	size_t size;
4071 	int i, ret;
4072 
4073 	/* Restrictions allowed only if rings started disabled */
4074 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4075 		return -EBADFD;
4076 
4077 	/* We allow only a single restrictions registration */
4078 	if (ctx->restrictions.registered)
4079 		return -EBUSY;
4080 
4081 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4082 		return -EINVAL;
4083 
4084 	size = array_size(nr_args, sizeof(*res));
4085 	if (size == SIZE_MAX)
4086 		return -EOVERFLOW;
4087 
4088 	res = memdup_user(arg, size);
4089 	if (IS_ERR(res))
4090 		return PTR_ERR(res);
4091 
4092 	ret = 0;
4093 
4094 	for (i = 0; i < nr_args; i++) {
4095 		switch (res[i].opcode) {
4096 		case IORING_RESTRICTION_REGISTER_OP:
4097 			if (res[i].register_op >= IORING_REGISTER_LAST) {
4098 				ret = -EINVAL;
4099 				goto out;
4100 			}
4101 
4102 			__set_bit(res[i].register_op,
4103 				  ctx->restrictions.register_op);
4104 			break;
4105 		case IORING_RESTRICTION_SQE_OP:
4106 			if (res[i].sqe_op >= IORING_OP_LAST) {
4107 				ret = -EINVAL;
4108 				goto out;
4109 			}
4110 
4111 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4112 			break;
4113 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4114 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4115 			break;
4116 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4117 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4118 			break;
4119 		default:
4120 			ret = -EINVAL;
4121 			goto out;
4122 		}
4123 	}
4124 
4125 out:
4126 	/* Reset all restrictions if an error happened */
4127 	if (ret != 0)
4128 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4129 	else
4130 		ctx->restrictions.registered = true;
4131 
4132 	kfree(res);
4133 	return ret;
4134 }
4135 
4136 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4137 {
4138 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4139 		return -EBADFD;
4140 
4141 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4142 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4143 		/*
4144 		 * Lazy activation attempts would fail if it was polled before
4145 		 * submitter_task is set.
4146 		 */
4147 		if (wq_has_sleeper(&ctx->poll_wq))
4148 			io_activate_pollwq(ctx);
4149 	}
4150 
4151 	if (ctx->restrictions.registered)
4152 		ctx->restricted = 1;
4153 
4154 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
4155 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4156 		wake_up(&ctx->sq_data->wait);
4157 	return 0;
4158 }
4159 
4160 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4161 				       void __user *arg, unsigned len)
4162 {
4163 	struct io_uring_task *tctx = current->io_uring;
4164 	cpumask_var_t new_mask;
4165 	int ret;
4166 
4167 	if (!tctx || !tctx->io_wq)
4168 		return -EINVAL;
4169 
4170 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4171 		return -ENOMEM;
4172 
4173 	cpumask_clear(new_mask);
4174 	if (len > cpumask_size())
4175 		len = cpumask_size();
4176 
4177 	if (in_compat_syscall()) {
4178 		ret = compat_get_bitmap(cpumask_bits(new_mask),
4179 					(const compat_ulong_t __user *)arg,
4180 					len * 8 /* CHAR_BIT */);
4181 	} else {
4182 		ret = copy_from_user(new_mask, arg, len);
4183 	}
4184 
4185 	if (ret) {
4186 		free_cpumask_var(new_mask);
4187 		return -EFAULT;
4188 	}
4189 
4190 	ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
4191 	free_cpumask_var(new_mask);
4192 	return ret;
4193 }
4194 
4195 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4196 {
4197 	struct io_uring_task *tctx = current->io_uring;
4198 
4199 	if (!tctx || !tctx->io_wq)
4200 		return -EINVAL;
4201 
4202 	return io_wq_cpu_affinity(tctx->io_wq, NULL);
4203 }
4204 
4205 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4206 					       void __user *arg)
4207 	__must_hold(&ctx->uring_lock)
4208 {
4209 	struct io_tctx_node *node;
4210 	struct io_uring_task *tctx = NULL;
4211 	struct io_sq_data *sqd = NULL;
4212 	__u32 new_count[2];
4213 	int i, ret;
4214 
4215 	if (copy_from_user(new_count, arg, sizeof(new_count)))
4216 		return -EFAULT;
4217 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4218 		if (new_count[i] > INT_MAX)
4219 			return -EINVAL;
4220 
4221 	if (ctx->flags & IORING_SETUP_SQPOLL) {
4222 		sqd = ctx->sq_data;
4223 		if (sqd) {
4224 			/*
4225 			 * Observe the correct sqd->lock -> ctx->uring_lock
4226 			 * ordering. Fine to drop uring_lock here, we hold
4227 			 * a ref to the ctx.
4228 			 */
4229 			refcount_inc(&sqd->refs);
4230 			mutex_unlock(&ctx->uring_lock);
4231 			mutex_lock(&sqd->lock);
4232 			mutex_lock(&ctx->uring_lock);
4233 			if (sqd->thread)
4234 				tctx = sqd->thread->io_uring;
4235 		}
4236 	} else {
4237 		tctx = current->io_uring;
4238 	}
4239 
4240 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4241 
4242 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4243 		if (new_count[i])
4244 			ctx->iowq_limits[i] = new_count[i];
4245 	ctx->iowq_limits_set = true;
4246 
4247 	if (tctx && tctx->io_wq) {
4248 		ret = io_wq_max_workers(tctx->io_wq, new_count);
4249 		if (ret)
4250 			goto err;
4251 	} else {
4252 		memset(new_count, 0, sizeof(new_count));
4253 	}
4254 
4255 	if (sqd) {
4256 		mutex_unlock(&sqd->lock);
4257 		io_put_sq_data(sqd);
4258 	}
4259 
4260 	if (copy_to_user(arg, new_count, sizeof(new_count)))
4261 		return -EFAULT;
4262 
4263 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
4264 	if (sqd)
4265 		return 0;
4266 
4267 	/* now propagate the restriction to all registered users */
4268 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4269 		struct io_uring_task *tctx = node->task->io_uring;
4270 
4271 		if (WARN_ON_ONCE(!tctx->io_wq))
4272 			continue;
4273 
4274 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
4275 			new_count[i] = ctx->iowq_limits[i];
4276 		/* ignore errors, it always returns zero anyway */
4277 		(void)io_wq_max_workers(tctx->io_wq, new_count);
4278 	}
4279 	return 0;
4280 err:
4281 	if (sqd) {
4282 		mutex_unlock(&sqd->lock);
4283 		io_put_sq_data(sqd);
4284 	}
4285 	return ret;
4286 }
4287 
4288 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4289 			       void __user *arg, unsigned nr_args)
4290 	__releases(ctx->uring_lock)
4291 	__acquires(ctx->uring_lock)
4292 {
4293 	int ret;
4294 
4295 	/*
4296 	 * We don't quiesce the refs for register anymore and so it can't be
4297 	 * dying as we're holding a file ref here.
4298 	 */
4299 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4300 		return -ENXIO;
4301 
4302 	if (ctx->submitter_task && ctx->submitter_task != current)
4303 		return -EEXIST;
4304 
4305 	if (ctx->restricted) {
4306 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4307 		if (!test_bit(opcode, ctx->restrictions.register_op))
4308 			return -EACCES;
4309 	}
4310 
4311 	switch (opcode) {
4312 	case IORING_REGISTER_BUFFERS:
4313 		ret = -EFAULT;
4314 		if (!arg)
4315 			break;
4316 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4317 		break;
4318 	case IORING_UNREGISTER_BUFFERS:
4319 		ret = -EINVAL;
4320 		if (arg || nr_args)
4321 			break;
4322 		ret = io_sqe_buffers_unregister(ctx);
4323 		break;
4324 	case IORING_REGISTER_FILES:
4325 		ret = -EFAULT;
4326 		if (!arg)
4327 			break;
4328 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4329 		break;
4330 	case IORING_UNREGISTER_FILES:
4331 		ret = -EINVAL;
4332 		if (arg || nr_args)
4333 			break;
4334 		ret = io_sqe_files_unregister(ctx);
4335 		break;
4336 	case IORING_REGISTER_FILES_UPDATE:
4337 		ret = io_register_files_update(ctx, arg, nr_args);
4338 		break;
4339 	case IORING_REGISTER_EVENTFD:
4340 		ret = -EINVAL;
4341 		if (nr_args != 1)
4342 			break;
4343 		ret = io_eventfd_register(ctx, arg, 0);
4344 		break;
4345 	case IORING_REGISTER_EVENTFD_ASYNC:
4346 		ret = -EINVAL;
4347 		if (nr_args != 1)
4348 			break;
4349 		ret = io_eventfd_register(ctx, arg, 1);
4350 		break;
4351 	case IORING_UNREGISTER_EVENTFD:
4352 		ret = -EINVAL;
4353 		if (arg || nr_args)
4354 			break;
4355 		ret = io_eventfd_unregister(ctx);
4356 		break;
4357 	case IORING_REGISTER_PROBE:
4358 		ret = -EINVAL;
4359 		if (!arg || nr_args > 256)
4360 			break;
4361 		ret = io_probe(ctx, arg, nr_args);
4362 		break;
4363 	case IORING_REGISTER_PERSONALITY:
4364 		ret = -EINVAL;
4365 		if (arg || nr_args)
4366 			break;
4367 		ret = io_register_personality(ctx);
4368 		break;
4369 	case IORING_UNREGISTER_PERSONALITY:
4370 		ret = -EINVAL;
4371 		if (arg)
4372 			break;
4373 		ret = io_unregister_personality(ctx, nr_args);
4374 		break;
4375 	case IORING_REGISTER_ENABLE_RINGS:
4376 		ret = -EINVAL;
4377 		if (arg || nr_args)
4378 			break;
4379 		ret = io_register_enable_rings(ctx);
4380 		break;
4381 	case IORING_REGISTER_RESTRICTIONS:
4382 		ret = io_register_restrictions(ctx, arg, nr_args);
4383 		break;
4384 	case IORING_REGISTER_FILES2:
4385 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4386 		break;
4387 	case IORING_REGISTER_FILES_UPDATE2:
4388 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4389 					      IORING_RSRC_FILE);
4390 		break;
4391 	case IORING_REGISTER_BUFFERS2:
4392 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4393 		break;
4394 	case IORING_REGISTER_BUFFERS_UPDATE:
4395 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4396 					      IORING_RSRC_BUFFER);
4397 		break;
4398 	case IORING_REGISTER_IOWQ_AFF:
4399 		ret = -EINVAL;
4400 		if (!arg || !nr_args)
4401 			break;
4402 		ret = io_register_iowq_aff(ctx, arg, nr_args);
4403 		break;
4404 	case IORING_UNREGISTER_IOWQ_AFF:
4405 		ret = -EINVAL;
4406 		if (arg || nr_args)
4407 			break;
4408 		ret = io_unregister_iowq_aff(ctx);
4409 		break;
4410 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4411 		ret = -EINVAL;
4412 		if (!arg || nr_args != 2)
4413 			break;
4414 		ret = io_register_iowq_max_workers(ctx, arg);
4415 		break;
4416 	case IORING_REGISTER_RING_FDS:
4417 		ret = io_ringfd_register(ctx, arg, nr_args);
4418 		break;
4419 	case IORING_UNREGISTER_RING_FDS:
4420 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4421 		break;
4422 	case IORING_REGISTER_PBUF_RING:
4423 		ret = -EINVAL;
4424 		if (!arg || nr_args != 1)
4425 			break;
4426 		ret = io_register_pbuf_ring(ctx, arg);
4427 		break;
4428 	case IORING_UNREGISTER_PBUF_RING:
4429 		ret = -EINVAL;
4430 		if (!arg || nr_args != 1)
4431 			break;
4432 		ret = io_unregister_pbuf_ring(ctx, arg);
4433 		break;
4434 	case IORING_REGISTER_SYNC_CANCEL:
4435 		ret = -EINVAL;
4436 		if (!arg || nr_args != 1)
4437 			break;
4438 		ret = io_sync_cancel(ctx, arg);
4439 		break;
4440 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4441 		ret = -EINVAL;
4442 		if (!arg || nr_args)
4443 			break;
4444 		ret = io_register_file_alloc_range(ctx, arg);
4445 		break;
4446 	default:
4447 		ret = -EINVAL;
4448 		break;
4449 	}
4450 
4451 	return ret;
4452 }
4453 
4454 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4455 		void __user *, arg, unsigned int, nr_args)
4456 {
4457 	struct io_ring_ctx *ctx;
4458 	long ret = -EBADF;
4459 	struct fd f;
4460 	bool use_registered_ring;
4461 
4462 	use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4463 	opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4464 
4465 	if (opcode >= IORING_REGISTER_LAST)
4466 		return -EINVAL;
4467 
4468 	if (use_registered_ring) {
4469 		/*
4470 		 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4471 		 * need only dereference our task private array to find it.
4472 		 */
4473 		struct io_uring_task *tctx = current->io_uring;
4474 
4475 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4476 			return -EINVAL;
4477 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4478 		f.file = tctx->registered_rings[fd];
4479 		f.flags = 0;
4480 		if (unlikely(!f.file))
4481 			return -EBADF;
4482 	} else {
4483 		f = fdget(fd);
4484 		if (unlikely(!f.file))
4485 			return -EBADF;
4486 		ret = -EOPNOTSUPP;
4487 		if (!io_is_uring_fops(f.file))
4488 			goto out_fput;
4489 	}
4490 
4491 	ctx = f.file->private_data;
4492 
4493 	mutex_lock(&ctx->uring_lock);
4494 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4495 	mutex_unlock(&ctx->uring_lock);
4496 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4497 out_fput:
4498 	fdput(f);
4499 	return ret;
4500 }
4501 
4502 static int __init io_uring_init(void)
4503 {
4504 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4505 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4506 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4507 } while (0)
4508 
4509 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4510 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4511 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4512 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4513 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4514 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4515 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4516 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4517 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4518 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4519 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4520 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4521 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4522 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4523 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4524 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4525 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4526 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4527 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4528 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4529 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4530 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4531 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4532 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4533 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4534 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4535 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4536 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4537 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4538 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4539 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4540 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4541 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4542 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4543 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4544 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4545 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4546 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4547 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4548 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4549 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4550 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4551 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4552 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4553 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4554 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4555 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4556 
4557 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4558 		     sizeof(struct io_uring_rsrc_update));
4559 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4560 		     sizeof(struct io_uring_rsrc_update2));
4561 
4562 	/* ->buf_index is u16 */
4563 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4564 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4565 		     offsetof(struct io_uring_buf_ring, tail));
4566 
4567 	/* should fit into one byte */
4568 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4569 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4570 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4571 
4572 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4573 
4574 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4575 
4576 	io_uring_optable_init();
4577 
4578 	req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4579 				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU);
4580 	return 0;
4581 };
4582 __initcall(io_uring_init);
4583