1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 #include <asm/shmparam.h> 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/io_uring.h> 79 80 #include <uapi/linux/io_uring.h> 81 82 #include "io-wq.h" 83 84 #include "io_uring.h" 85 #include "opdef.h" 86 #include "refs.h" 87 #include "tctx.h" 88 #include "sqpoll.h" 89 #include "fdinfo.h" 90 #include "kbuf.h" 91 #include "rsrc.h" 92 #include "cancel.h" 93 #include "net.h" 94 #include "notif.h" 95 96 #include "timeout.h" 97 #include "poll.h" 98 #include "rw.h" 99 #include "alloc_cache.h" 100 101 #define IORING_MAX_ENTRIES 32768 102 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 103 104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 105 IORING_REGISTER_LAST + IORING_OP_LAST) 106 107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 108 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 109 110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 112 113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 115 REQ_F_ASYNC_DATA) 116 117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 118 IO_REQ_CLEAN_FLAGS) 119 120 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 121 122 #define IO_COMPL_BATCH 32 123 #define IO_REQ_ALLOC_BATCH 8 124 125 enum { 126 IO_CHECK_CQ_OVERFLOW_BIT, 127 IO_CHECK_CQ_DROPPED_BIT, 128 }; 129 130 enum { 131 IO_EVENTFD_OP_SIGNAL_BIT, 132 IO_EVENTFD_OP_FREE_BIT, 133 }; 134 135 struct io_defer_entry { 136 struct list_head list; 137 struct io_kiocb *req; 138 u32 seq; 139 }; 140 141 /* requests with any of those set should undergo io_disarm_next() */ 142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 144 145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 146 struct task_struct *task, 147 bool cancel_all); 148 149 static void io_queue_sqe(struct io_kiocb *req); 150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx); 151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx); 152 static __cold void io_fallback_tw(struct io_uring_task *tctx); 153 154 struct kmem_cache *req_cachep; 155 156 struct sock *io_uring_get_socket(struct file *file) 157 { 158 #if defined(CONFIG_UNIX) 159 if (io_is_uring_fops(file)) { 160 struct io_ring_ctx *ctx = file->private_data; 161 162 return ctx->ring_sock->sk; 163 } 164 #endif 165 return NULL; 166 } 167 EXPORT_SYMBOL(io_uring_get_socket); 168 169 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 170 { 171 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 172 ctx->submit_state.cqes_count) 173 __io_submit_flush_completions(ctx); 174 } 175 176 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 177 { 178 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 179 } 180 181 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 182 { 183 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 184 } 185 186 static bool io_match_linked(struct io_kiocb *head) 187 { 188 struct io_kiocb *req; 189 190 io_for_each_link(req, head) { 191 if (req->flags & REQ_F_INFLIGHT) 192 return true; 193 } 194 return false; 195 } 196 197 /* 198 * As io_match_task() but protected against racing with linked timeouts. 199 * User must not hold timeout_lock. 200 */ 201 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 202 bool cancel_all) 203 { 204 bool matched; 205 206 if (task && head->task != task) 207 return false; 208 if (cancel_all) 209 return true; 210 211 if (head->flags & REQ_F_LINK_TIMEOUT) { 212 struct io_ring_ctx *ctx = head->ctx; 213 214 /* protect against races with linked timeouts */ 215 spin_lock_irq(&ctx->timeout_lock); 216 matched = io_match_linked(head); 217 spin_unlock_irq(&ctx->timeout_lock); 218 } else { 219 matched = io_match_linked(head); 220 } 221 return matched; 222 } 223 224 static inline void req_fail_link_node(struct io_kiocb *req, int res) 225 { 226 req_set_fail(req); 227 io_req_set_res(req, res, 0); 228 } 229 230 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 231 { 232 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 233 kasan_poison_object_data(req_cachep, req); 234 } 235 236 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 237 { 238 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 239 240 complete(&ctx->ref_comp); 241 } 242 243 static __cold void io_fallback_req_func(struct work_struct *work) 244 { 245 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 246 fallback_work.work); 247 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 248 struct io_kiocb *req, *tmp; 249 struct io_tw_state ts = { .locked = true, }; 250 251 mutex_lock(&ctx->uring_lock); 252 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 253 req->io_task_work.func(req, &ts); 254 if (WARN_ON_ONCE(!ts.locked)) 255 return; 256 io_submit_flush_completions(ctx); 257 mutex_unlock(&ctx->uring_lock); 258 } 259 260 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 261 { 262 unsigned hash_buckets = 1U << bits; 263 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 264 265 table->hbs = kmalloc(hash_size, GFP_KERNEL); 266 if (!table->hbs) 267 return -ENOMEM; 268 269 table->hash_bits = bits; 270 init_hash_table(table, hash_buckets); 271 return 0; 272 } 273 274 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 275 { 276 struct io_ring_ctx *ctx; 277 int hash_bits; 278 279 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 280 if (!ctx) 281 return NULL; 282 283 xa_init(&ctx->io_bl_xa); 284 285 /* 286 * Use 5 bits less than the max cq entries, that should give us around 287 * 32 entries per hash list if totally full and uniformly spread, but 288 * don't keep too many buckets to not overconsume memory. 289 */ 290 hash_bits = ilog2(p->cq_entries) - 5; 291 hash_bits = clamp(hash_bits, 1, 8); 292 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 293 goto err; 294 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 295 goto err; 296 297 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL); 298 if (!ctx->dummy_ubuf) 299 goto err; 300 /* set invalid range, so io_import_fixed() fails meeting it */ 301 ctx->dummy_ubuf->ubuf = -1UL; 302 303 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 304 0, GFP_KERNEL)) 305 goto err; 306 307 ctx->flags = p->flags; 308 init_waitqueue_head(&ctx->sqo_sq_wait); 309 INIT_LIST_HEAD(&ctx->sqd_list); 310 INIT_LIST_HEAD(&ctx->cq_overflow_list); 311 INIT_LIST_HEAD(&ctx->io_buffers_cache); 312 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 313 sizeof(struct io_rsrc_node)); 314 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, 315 sizeof(struct async_poll)); 316 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 317 sizeof(struct io_async_msghdr)); 318 init_completion(&ctx->ref_comp); 319 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 320 mutex_init(&ctx->uring_lock); 321 init_waitqueue_head(&ctx->cq_wait); 322 init_waitqueue_head(&ctx->poll_wq); 323 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 324 spin_lock_init(&ctx->completion_lock); 325 spin_lock_init(&ctx->timeout_lock); 326 INIT_WQ_LIST(&ctx->iopoll_list); 327 INIT_LIST_HEAD(&ctx->io_buffers_pages); 328 INIT_LIST_HEAD(&ctx->io_buffers_comp); 329 INIT_LIST_HEAD(&ctx->defer_list); 330 INIT_LIST_HEAD(&ctx->timeout_list); 331 INIT_LIST_HEAD(&ctx->ltimeout_list); 332 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 333 init_llist_head(&ctx->work_llist); 334 INIT_LIST_HEAD(&ctx->tctx_list); 335 ctx->submit_state.free_list.next = NULL; 336 INIT_WQ_LIST(&ctx->locked_free_list); 337 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 338 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 339 return ctx; 340 err: 341 kfree(ctx->dummy_ubuf); 342 kfree(ctx->cancel_table.hbs); 343 kfree(ctx->cancel_table_locked.hbs); 344 kfree(ctx->io_bl); 345 xa_destroy(&ctx->io_bl_xa); 346 kfree(ctx); 347 return NULL; 348 } 349 350 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 351 { 352 struct io_rings *r = ctx->rings; 353 354 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 355 ctx->cq_extra--; 356 } 357 358 static bool req_need_defer(struct io_kiocb *req, u32 seq) 359 { 360 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 361 struct io_ring_ctx *ctx = req->ctx; 362 363 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 364 } 365 366 return false; 367 } 368 369 static void io_clean_op(struct io_kiocb *req) 370 { 371 if (req->flags & REQ_F_BUFFER_SELECTED) { 372 spin_lock(&req->ctx->completion_lock); 373 io_put_kbuf_comp(req); 374 spin_unlock(&req->ctx->completion_lock); 375 } 376 377 if (req->flags & REQ_F_NEED_CLEANUP) { 378 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 379 380 if (def->cleanup) 381 def->cleanup(req); 382 } 383 if ((req->flags & REQ_F_POLLED) && req->apoll) { 384 kfree(req->apoll->double_poll); 385 kfree(req->apoll); 386 req->apoll = NULL; 387 } 388 if (req->flags & REQ_F_INFLIGHT) { 389 struct io_uring_task *tctx = req->task->io_uring; 390 391 atomic_dec(&tctx->inflight_tracked); 392 } 393 if (req->flags & REQ_F_CREDS) 394 put_cred(req->creds); 395 if (req->flags & REQ_F_ASYNC_DATA) { 396 kfree(req->async_data); 397 req->async_data = NULL; 398 } 399 req->flags &= ~IO_REQ_CLEAN_FLAGS; 400 } 401 402 static inline void io_req_track_inflight(struct io_kiocb *req) 403 { 404 if (!(req->flags & REQ_F_INFLIGHT)) { 405 req->flags |= REQ_F_INFLIGHT; 406 atomic_inc(&req->task->io_uring->inflight_tracked); 407 } 408 } 409 410 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 411 { 412 if (WARN_ON_ONCE(!req->link)) 413 return NULL; 414 415 req->flags &= ~REQ_F_ARM_LTIMEOUT; 416 req->flags |= REQ_F_LINK_TIMEOUT; 417 418 /* linked timeouts should have two refs once prep'ed */ 419 io_req_set_refcount(req); 420 __io_req_set_refcount(req->link, 2); 421 return req->link; 422 } 423 424 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 425 { 426 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 427 return NULL; 428 return __io_prep_linked_timeout(req); 429 } 430 431 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 432 { 433 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 434 } 435 436 static inline void io_arm_ltimeout(struct io_kiocb *req) 437 { 438 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 439 __io_arm_ltimeout(req); 440 } 441 442 static void io_prep_async_work(struct io_kiocb *req) 443 { 444 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 445 struct io_ring_ctx *ctx = req->ctx; 446 447 if (!(req->flags & REQ_F_CREDS)) { 448 req->flags |= REQ_F_CREDS; 449 req->creds = get_current_cred(); 450 } 451 452 req->work.list.next = NULL; 453 req->work.flags = 0; 454 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 455 if (req->flags & REQ_F_FORCE_ASYNC) 456 req->work.flags |= IO_WQ_WORK_CONCURRENT; 457 458 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 459 req->flags |= io_file_get_flags(req->file); 460 461 if (req->file && (req->flags & REQ_F_ISREG)) { 462 bool should_hash = def->hash_reg_file; 463 464 /* don't serialize this request if the fs doesn't need it */ 465 if (should_hash && (req->file->f_flags & O_DIRECT) && 466 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) 467 should_hash = false; 468 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 469 io_wq_hash_work(&req->work, file_inode(req->file)); 470 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 471 if (def->unbound_nonreg_file) 472 req->work.flags |= IO_WQ_WORK_UNBOUND; 473 } 474 } 475 476 static void io_prep_async_link(struct io_kiocb *req) 477 { 478 struct io_kiocb *cur; 479 480 if (req->flags & REQ_F_LINK_TIMEOUT) { 481 struct io_ring_ctx *ctx = req->ctx; 482 483 spin_lock_irq(&ctx->timeout_lock); 484 io_for_each_link(cur, req) 485 io_prep_async_work(cur); 486 spin_unlock_irq(&ctx->timeout_lock); 487 } else { 488 io_for_each_link(cur, req) 489 io_prep_async_work(cur); 490 } 491 } 492 493 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) 494 { 495 struct io_kiocb *link = io_prep_linked_timeout(req); 496 struct io_uring_task *tctx = req->task->io_uring; 497 498 BUG_ON(!tctx); 499 BUG_ON(!tctx->io_wq); 500 501 /* init ->work of the whole link before punting */ 502 io_prep_async_link(req); 503 504 /* 505 * Not expected to happen, but if we do have a bug where this _can_ 506 * happen, catch it here and ensure the request is marked as 507 * canceled. That will make io-wq go through the usual work cancel 508 * procedure rather than attempt to run this request (or create a new 509 * worker for it). 510 */ 511 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 512 req->work.flags |= IO_WQ_WORK_CANCEL; 513 514 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 515 io_wq_enqueue(tctx->io_wq, &req->work); 516 if (link) 517 io_queue_linked_timeout(link); 518 } 519 520 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 521 { 522 while (!list_empty(&ctx->defer_list)) { 523 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 524 struct io_defer_entry, list); 525 526 if (req_need_defer(de->req, de->seq)) 527 break; 528 list_del_init(&de->list); 529 io_req_task_queue(de->req); 530 kfree(de); 531 } 532 } 533 534 535 static void io_eventfd_ops(struct rcu_head *rcu) 536 { 537 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 538 int ops = atomic_xchg(&ev_fd->ops, 0); 539 540 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 541 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 542 543 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 544 * ordering in a race but if references are 0 we know we have to free 545 * it regardless. 546 */ 547 if (atomic_dec_and_test(&ev_fd->refs)) { 548 eventfd_ctx_put(ev_fd->cq_ev_fd); 549 kfree(ev_fd); 550 } 551 } 552 553 static void io_eventfd_signal(struct io_ring_ctx *ctx) 554 { 555 struct io_ev_fd *ev_fd = NULL; 556 557 rcu_read_lock(); 558 /* 559 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 560 * and eventfd_signal 561 */ 562 ev_fd = rcu_dereference(ctx->io_ev_fd); 563 564 /* 565 * Check again if ev_fd exists incase an io_eventfd_unregister call 566 * completed between the NULL check of ctx->io_ev_fd at the start of 567 * the function and rcu_read_lock. 568 */ 569 if (unlikely(!ev_fd)) 570 goto out; 571 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 572 goto out; 573 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 574 goto out; 575 576 if (likely(eventfd_signal_allowed())) { 577 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 578 } else { 579 atomic_inc(&ev_fd->refs); 580 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 581 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 582 else 583 atomic_dec(&ev_fd->refs); 584 } 585 586 out: 587 rcu_read_unlock(); 588 } 589 590 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 591 { 592 bool skip; 593 594 spin_lock(&ctx->completion_lock); 595 596 /* 597 * Eventfd should only get triggered when at least one event has been 598 * posted. Some applications rely on the eventfd notification count 599 * only changing IFF a new CQE has been added to the CQ ring. There's 600 * no depedency on 1:1 relationship between how many times this 601 * function is called (and hence the eventfd count) and number of CQEs 602 * posted to the CQ ring. 603 */ 604 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 605 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 606 spin_unlock(&ctx->completion_lock); 607 if (skip) 608 return; 609 610 io_eventfd_signal(ctx); 611 } 612 613 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 614 { 615 if (ctx->poll_activated) 616 io_poll_wq_wake(ctx); 617 if (ctx->off_timeout_used) 618 io_flush_timeouts(ctx); 619 if (ctx->drain_active) { 620 spin_lock(&ctx->completion_lock); 621 io_queue_deferred(ctx); 622 spin_unlock(&ctx->completion_lock); 623 } 624 if (ctx->has_evfd) 625 io_eventfd_flush_signal(ctx); 626 } 627 628 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 629 { 630 if (!ctx->task_complete) 631 spin_lock(&ctx->completion_lock); 632 } 633 634 static inline void io_cq_lock(struct io_ring_ctx *ctx) 635 __acquires(ctx->completion_lock) 636 { 637 spin_lock(&ctx->completion_lock); 638 } 639 640 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 641 { 642 io_commit_cqring(ctx); 643 644 if (ctx->task_complete) { 645 /* 646 * ->task_complete implies that only current might be waiting 647 * for CQEs, and obviously, we currently don't. No one is 648 * waiting, wakeups are futile, skip them. 649 */ 650 io_commit_cqring_flush(ctx); 651 } else { 652 spin_unlock(&ctx->completion_lock); 653 io_commit_cqring_flush(ctx); 654 io_cqring_wake(ctx); 655 } 656 } 657 658 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 659 __releases(ctx->completion_lock) 660 { 661 io_commit_cqring(ctx); 662 spin_unlock(&ctx->completion_lock); 663 io_commit_cqring_flush(ctx); 664 io_cqring_wake(ctx); 665 } 666 667 /* Returns true if there are no backlogged entries after the flush */ 668 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 669 { 670 struct io_overflow_cqe *ocqe; 671 LIST_HEAD(list); 672 673 spin_lock(&ctx->completion_lock); 674 list_splice_init(&ctx->cq_overflow_list, &list); 675 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 676 spin_unlock(&ctx->completion_lock); 677 678 while (!list_empty(&list)) { 679 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 680 list_del(&ocqe->list); 681 kfree(ocqe); 682 } 683 } 684 685 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 686 { 687 size_t cqe_size = sizeof(struct io_uring_cqe); 688 689 if (__io_cqring_events(ctx) == ctx->cq_entries) 690 return; 691 692 if (ctx->flags & IORING_SETUP_CQE32) 693 cqe_size <<= 1; 694 695 io_cq_lock(ctx); 696 while (!list_empty(&ctx->cq_overflow_list)) { 697 struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true); 698 struct io_overflow_cqe *ocqe; 699 700 if (!cqe) 701 break; 702 ocqe = list_first_entry(&ctx->cq_overflow_list, 703 struct io_overflow_cqe, list); 704 memcpy(cqe, &ocqe->cqe, cqe_size); 705 list_del(&ocqe->list); 706 kfree(ocqe); 707 } 708 709 if (list_empty(&ctx->cq_overflow_list)) { 710 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 711 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 712 } 713 io_cq_unlock_post(ctx); 714 } 715 716 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 717 { 718 /* iopoll syncs against uring_lock, not completion_lock */ 719 if (ctx->flags & IORING_SETUP_IOPOLL) 720 mutex_lock(&ctx->uring_lock); 721 __io_cqring_overflow_flush(ctx); 722 if (ctx->flags & IORING_SETUP_IOPOLL) 723 mutex_unlock(&ctx->uring_lock); 724 } 725 726 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 727 { 728 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 729 io_cqring_do_overflow_flush(ctx); 730 } 731 732 /* can be called by any task */ 733 static void io_put_task_remote(struct task_struct *task) 734 { 735 struct io_uring_task *tctx = task->io_uring; 736 737 percpu_counter_sub(&tctx->inflight, 1); 738 if (unlikely(atomic_read(&tctx->in_cancel))) 739 wake_up(&tctx->wait); 740 put_task_struct(task); 741 } 742 743 /* used by a task to put its own references */ 744 static void io_put_task_local(struct task_struct *task) 745 { 746 task->io_uring->cached_refs++; 747 } 748 749 /* must to be called somewhat shortly after putting a request */ 750 static inline void io_put_task(struct task_struct *task) 751 { 752 if (likely(task == current)) 753 io_put_task_local(task); 754 else 755 io_put_task_remote(task); 756 } 757 758 void io_task_refs_refill(struct io_uring_task *tctx) 759 { 760 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 761 762 percpu_counter_add(&tctx->inflight, refill); 763 refcount_add(refill, ¤t->usage); 764 tctx->cached_refs += refill; 765 } 766 767 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 768 { 769 struct io_uring_task *tctx = task->io_uring; 770 unsigned int refs = tctx->cached_refs; 771 772 if (refs) { 773 tctx->cached_refs = 0; 774 percpu_counter_sub(&tctx->inflight, refs); 775 put_task_struct_many(task, refs); 776 } 777 } 778 779 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 780 s32 res, u32 cflags, u64 extra1, u64 extra2) 781 { 782 struct io_overflow_cqe *ocqe; 783 size_t ocq_size = sizeof(struct io_overflow_cqe); 784 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 785 786 lockdep_assert_held(&ctx->completion_lock); 787 788 if (is_cqe32) 789 ocq_size += sizeof(struct io_uring_cqe); 790 791 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 792 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 793 if (!ocqe) { 794 /* 795 * If we're in ring overflow flush mode, or in task cancel mode, 796 * or cannot allocate an overflow entry, then we need to drop it 797 * on the floor. 798 */ 799 io_account_cq_overflow(ctx); 800 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 801 return false; 802 } 803 if (list_empty(&ctx->cq_overflow_list)) { 804 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 805 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 806 807 } 808 ocqe->cqe.user_data = user_data; 809 ocqe->cqe.res = res; 810 ocqe->cqe.flags = cflags; 811 if (is_cqe32) { 812 ocqe->cqe.big_cqe[0] = extra1; 813 ocqe->cqe.big_cqe[1] = extra2; 814 } 815 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 816 return true; 817 } 818 819 bool io_req_cqe_overflow(struct io_kiocb *req) 820 { 821 if (!(req->flags & REQ_F_CQE32_INIT)) { 822 req->extra1 = 0; 823 req->extra2 = 0; 824 } 825 return io_cqring_event_overflow(req->ctx, req->cqe.user_data, 826 req->cqe.res, req->cqe.flags, 827 req->extra1, req->extra2); 828 } 829 830 /* 831 * writes to the cq entry need to come after reading head; the 832 * control dependency is enough as we're using WRITE_ONCE to 833 * fill the cq entry 834 */ 835 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow) 836 { 837 struct io_rings *rings = ctx->rings; 838 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 839 unsigned int free, queued, len; 840 841 /* 842 * Posting into the CQ when there are pending overflowed CQEs may break 843 * ordering guarantees, which will affect links, F_MORE users and more. 844 * Force overflow the completion. 845 */ 846 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 847 return NULL; 848 849 /* userspace may cheat modifying the tail, be safe and do min */ 850 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 851 free = ctx->cq_entries - queued; 852 /* we need a contiguous range, limit based on the current array offset */ 853 len = min(free, ctx->cq_entries - off); 854 if (!len) 855 return NULL; 856 857 if (ctx->flags & IORING_SETUP_CQE32) { 858 off <<= 1; 859 len <<= 1; 860 } 861 862 ctx->cqe_cached = &rings->cqes[off]; 863 ctx->cqe_sentinel = ctx->cqe_cached + len; 864 865 ctx->cached_cq_tail++; 866 ctx->cqe_cached++; 867 if (ctx->flags & IORING_SETUP_CQE32) 868 ctx->cqe_cached++; 869 return &rings->cqes[off]; 870 } 871 872 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 873 u32 cflags) 874 { 875 struct io_uring_cqe *cqe; 876 877 ctx->cq_extra++; 878 879 /* 880 * If we can't get a cq entry, userspace overflowed the 881 * submission (by quite a lot). Increment the overflow count in 882 * the ring. 883 */ 884 cqe = io_get_cqe(ctx); 885 if (likely(cqe)) { 886 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 887 888 WRITE_ONCE(cqe->user_data, user_data); 889 WRITE_ONCE(cqe->res, res); 890 WRITE_ONCE(cqe->flags, cflags); 891 892 if (ctx->flags & IORING_SETUP_CQE32) { 893 WRITE_ONCE(cqe->big_cqe[0], 0); 894 WRITE_ONCE(cqe->big_cqe[1], 0); 895 } 896 return true; 897 } 898 return false; 899 } 900 901 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 902 __must_hold(&ctx->uring_lock) 903 { 904 struct io_submit_state *state = &ctx->submit_state; 905 unsigned int i; 906 907 lockdep_assert_held(&ctx->uring_lock); 908 for (i = 0; i < state->cqes_count; i++) { 909 struct io_uring_cqe *cqe = &state->cqes[i]; 910 911 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 912 if (ctx->task_complete) { 913 spin_lock(&ctx->completion_lock); 914 io_cqring_event_overflow(ctx, cqe->user_data, 915 cqe->res, cqe->flags, 0, 0); 916 spin_unlock(&ctx->completion_lock); 917 } else { 918 io_cqring_event_overflow(ctx, cqe->user_data, 919 cqe->res, cqe->flags, 0, 0); 920 } 921 } 922 } 923 state->cqes_count = 0; 924 } 925 926 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 927 bool allow_overflow) 928 { 929 bool filled; 930 931 io_cq_lock(ctx); 932 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 933 if (!filled && allow_overflow) 934 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 935 936 io_cq_unlock_post(ctx); 937 return filled; 938 } 939 940 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 941 { 942 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 943 } 944 945 bool io_aux_cqe(const struct io_kiocb *req, bool defer, s32 res, u32 cflags, 946 bool allow_overflow) 947 { 948 struct io_ring_ctx *ctx = req->ctx; 949 u64 user_data = req->cqe.user_data; 950 struct io_uring_cqe *cqe; 951 952 if (!defer) 953 return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow); 954 955 lockdep_assert_held(&ctx->uring_lock); 956 957 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->submit_state.cqes)) { 958 __io_cq_lock(ctx); 959 __io_flush_post_cqes(ctx); 960 /* no need to flush - flush is deferred */ 961 __io_cq_unlock_post(ctx); 962 } 963 964 /* For defered completions this is not as strict as it is otherwise, 965 * however it's main job is to prevent unbounded posted completions, 966 * and in that it works just as well. 967 */ 968 if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 969 return false; 970 971 cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++]; 972 cqe->user_data = user_data; 973 cqe->res = res; 974 cqe->flags = cflags; 975 return true; 976 } 977 978 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 979 { 980 struct io_ring_ctx *ctx = req->ctx; 981 struct io_rsrc_node *rsrc_node = NULL; 982 983 io_cq_lock(ctx); 984 if (!(req->flags & REQ_F_CQE_SKIP)) 985 io_fill_cqe_req(ctx, req); 986 987 /* 988 * If we're the last reference to this request, add to our locked 989 * free_list cache. 990 */ 991 if (req_ref_put_and_test(req)) { 992 if (req->flags & IO_REQ_LINK_FLAGS) { 993 if (req->flags & IO_DISARM_MASK) 994 io_disarm_next(req); 995 if (req->link) { 996 io_req_task_queue(req->link); 997 req->link = NULL; 998 } 999 } 1000 io_put_kbuf_comp(req); 1001 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1002 io_clean_op(req); 1003 if (!(req->flags & REQ_F_FIXED_FILE)) 1004 io_put_file(req->file); 1005 1006 rsrc_node = req->rsrc_node; 1007 /* 1008 * Selected buffer deallocation in io_clean_op() assumes that 1009 * we don't hold ->completion_lock. Clean them here to avoid 1010 * deadlocks. 1011 */ 1012 io_put_task_remote(req->task); 1013 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1014 ctx->locked_free_nr++; 1015 } 1016 io_cq_unlock_post(ctx); 1017 1018 if (rsrc_node) { 1019 io_ring_submit_lock(ctx, issue_flags); 1020 io_put_rsrc_node(ctx, rsrc_node); 1021 io_ring_submit_unlock(ctx, issue_flags); 1022 } 1023 } 1024 1025 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1026 { 1027 if (req->ctx->task_complete && req->ctx->submitter_task != current) { 1028 req->io_task_work.func = io_req_task_complete; 1029 io_req_task_work_add(req); 1030 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1031 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 1032 __io_req_complete_post(req, issue_flags); 1033 } else { 1034 struct io_ring_ctx *ctx = req->ctx; 1035 1036 mutex_lock(&ctx->uring_lock); 1037 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); 1038 mutex_unlock(&ctx->uring_lock); 1039 } 1040 } 1041 1042 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1043 __must_hold(&ctx->uring_lock) 1044 { 1045 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1046 1047 lockdep_assert_held(&req->ctx->uring_lock); 1048 1049 req_set_fail(req); 1050 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1051 if (def->fail) 1052 def->fail(req); 1053 io_req_complete_defer(req); 1054 } 1055 1056 /* 1057 * Don't initialise the fields below on every allocation, but do that in 1058 * advance and keep them valid across allocations. 1059 */ 1060 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1061 { 1062 req->ctx = ctx; 1063 req->link = NULL; 1064 req->async_data = NULL; 1065 /* not necessary, but safer to zero */ 1066 req->cqe.res = 0; 1067 } 1068 1069 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1070 struct io_submit_state *state) 1071 { 1072 spin_lock(&ctx->completion_lock); 1073 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1074 ctx->locked_free_nr = 0; 1075 spin_unlock(&ctx->completion_lock); 1076 } 1077 1078 /* 1079 * A request might get retired back into the request caches even before opcode 1080 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1081 * Because of that, io_alloc_req() should be called only under ->uring_lock 1082 * and with extra caution to not get a request that is still worked on. 1083 */ 1084 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1085 __must_hold(&ctx->uring_lock) 1086 { 1087 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1088 void *reqs[IO_REQ_ALLOC_BATCH]; 1089 int ret, i; 1090 1091 /* 1092 * If we have more than a batch's worth of requests in our IRQ side 1093 * locked cache, grab the lock and move them over to our submission 1094 * side cache. 1095 */ 1096 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1097 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1098 if (!io_req_cache_empty(ctx)) 1099 return true; 1100 } 1101 1102 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1103 1104 /* 1105 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1106 * retry single alloc to be on the safe side. 1107 */ 1108 if (unlikely(ret <= 0)) { 1109 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1110 if (!reqs[0]) 1111 return false; 1112 ret = 1; 1113 } 1114 1115 percpu_ref_get_many(&ctx->refs, ret); 1116 for (i = 0; i < ret; i++) { 1117 struct io_kiocb *req = reqs[i]; 1118 1119 io_preinit_req(req, ctx); 1120 io_req_add_to_cache(req, ctx); 1121 } 1122 return true; 1123 } 1124 1125 __cold void io_free_req(struct io_kiocb *req) 1126 { 1127 /* refs were already put, restore them for io_req_task_complete() */ 1128 req->flags &= ~REQ_F_REFCOUNT; 1129 /* we only want to free it, don't post CQEs */ 1130 req->flags |= REQ_F_CQE_SKIP; 1131 req->io_task_work.func = io_req_task_complete; 1132 io_req_task_work_add(req); 1133 } 1134 1135 static void __io_req_find_next_prep(struct io_kiocb *req) 1136 { 1137 struct io_ring_ctx *ctx = req->ctx; 1138 1139 spin_lock(&ctx->completion_lock); 1140 io_disarm_next(req); 1141 spin_unlock(&ctx->completion_lock); 1142 } 1143 1144 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1145 { 1146 struct io_kiocb *nxt; 1147 1148 /* 1149 * If LINK is set, we have dependent requests in this chain. If we 1150 * didn't fail this request, queue the first one up, moving any other 1151 * dependencies to the next request. In case of failure, fail the rest 1152 * of the chain. 1153 */ 1154 if (unlikely(req->flags & IO_DISARM_MASK)) 1155 __io_req_find_next_prep(req); 1156 nxt = req->link; 1157 req->link = NULL; 1158 return nxt; 1159 } 1160 1161 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1162 { 1163 if (!ctx) 1164 return; 1165 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1166 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1167 if (ts->locked) { 1168 io_submit_flush_completions(ctx); 1169 mutex_unlock(&ctx->uring_lock); 1170 ts->locked = false; 1171 } 1172 percpu_ref_put(&ctx->refs); 1173 } 1174 1175 static unsigned int handle_tw_list(struct llist_node *node, 1176 struct io_ring_ctx **ctx, 1177 struct io_tw_state *ts, 1178 struct llist_node *last) 1179 { 1180 unsigned int count = 0; 1181 1182 while (node && node != last) { 1183 struct llist_node *next = node->next; 1184 struct io_kiocb *req = container_of(node, struct io_kiocb, 1185 io_task_work.node); 1186 1187 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1188 1189 if (req->ctx != *ctx) { 1190 ctx_flush_and_put(*ctx, ts); 1191 *ctx = req->ctx; 1192 /* if not contended, grab and improve batching */ 1193 ts->locked = mutex_trylock(&(*ctx)->uring_lock); 1194 percpu_ref_get(&(*ctx)->refs); 1195 } 1196 INDIRECT_CALL_2(req->io_task_work.func, 1197 io_poll_task_func, io_req_rw_complete, 1198 req, ts); 1199 node = next; 1200 count++; 1201 if (unlikely(need_resched())) { 1202 ctx_flush_and_put(*ctx, ts); 1203 *ctx = NULL; 1204 cond_resched(); 1205 } 1206 } 1207 1208 return count; 1209 } 1210 1211 /** 1212 * io_llist_xchg - swap all entries in a lock-less list 1213 * @head: the head of lock-less list to delete all entries 1214 * @new: new entry as the head of the list 1215 * 1216 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1217 * The order of entries returned is from the newest to the oldest added one. 1218 */ 1219 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1220 struct llist_node *new) 1221 { 1222 return xchg(&head->first, new); 1223 } 1224 1225 /** 1226 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1227 * @head: the head of lock-less list to delete all entries 1228 * @old: expected old value of the first entry of the list 1229 * @new: new entry as the head of the list 1230 * 1231 * perform a cmpxchg on the first entry of the list. 1232 */ 1233 1234 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1235 struct llist_node *old, 1236 struct llist_node *new) 1237 { 1238 return cmpxchg(&head->first, old, new); 1239 } 1240 1241 void tctx_task_work(struct callback_head *cb) 1242 { 1243 struct io_tw_state ts = {}; 1244 struct io_ring_ctx *ctx = NULL; 1245 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1246 task_work); 1247 struct llist_node fake = {}; 1248 struct llist_node *node; 1249 unsigned int loops = 0; 1250 unsigned int count = 0; 1251 1252 if (unlikely(current->flags & PF_EXITING)) { 1253 io_fallback_tw(tctx); 1254 return; 1255 } 1256 1257 do { 1258 loops++; 1259 node = io_llist_xchg(&tctx->task_list, &fake); 1260 count += handle_tw_list(node, &ctx, &ts, &fake); 1261 1262 /* skip expensive cmpxchg if there are items in the list */ 1263 if (READ_ONCE(tctx->task_list.first) != &fake) 1264 continue; 1265 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) { 1266 io_submit_flush_completions(ctx); 1267 if (READ_ONCE(tctx->task_list.first) != &fake) 1268 continue; 1269 } 1270 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1271 } while (node != &fake); 1272 1273 ctx_flush_and_put(ctx, &ts); 1274 1275 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1276 if (unlikely(atomic_read(&tctx->in_cancel))) 1277 io_uring_drop_tctx_refs(current); 1278 1279 trace_io_uring_task_work_run(tctx, count, loops); 1280 } 1281 1282 static __cold void io_fallback_tw(struct io_uring_task *tctx) 1283 { 1284 struct llist_node *node = llist_del_all(&tctx->task_list); 1285 struct io_kiocb *req; 1286 1287 while (node) { 1288 req = container_of(node, struct io_kiocb, io_task_work.node); 1289 node = node->next; 1290 if (llist_add(&req->io_task_work.node, 1291 &req->ctx->fallback_llist)) 1292 schedule_delayed_work(&req->ctx->fallback_work, 1); 1293 } 1294 } 1295 1296 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1297 { 1298 struct io_ring_ctx *ctx = req->ctx; 1299 unsigned nr_wait, nr_tw, nr_tw_prev; 1300 struct llist_node *first; 1301 1302 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1303 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1304 1305 first = READ_ONCE(ctx->work_llist.first); 1306 do { 1307 nr_tw_prev = 0; 1308 if (first) { 1309 struct io_kiocb *first_req = container_of(first, 1310 struct io_kiocb, 1311 io_task_work.node); 1312 /* 1313 * Might be executed at any moment, rely on 1314 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1315 */ 1316 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1317 } 1318 nr_tw = nr_tw_prev + 1; 1319 /* Large enough to fail the nr_wait comparison below */ 1320 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1321 nr_tw = -1U; 1322 1323 req->nr_tw = nr_tw; 1324 req->io_task_work.node.next = first; 1325 } while (!try_cmpxchg(&ctx->work_llist.first, &first, 1326 &req->io_task_work.node)); 1327 1328 if (!first) { 1329 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1330 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1331 if (ctx->has_evfd) 1332 io_eventfd_signal(ctx); 1333 } 1334 1335 nr_wait = atomic_read(&ctx->cq_wait_nr); 1336 /* no one is waiting */ 1337 if (!nr_wait) 1338 return; 1339 /* either not enough or the previous add has already woken it up */ 1340 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait) 1341 return; 1342 /* pairs with set_current_state() in io_cqring_wait() */ 1343 smp_mb__after_atomic(); 1344 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1345 } 1346 1347 static void io_req_normal_work_add(struct io_kiocb *req) 1348 { 1349 struct io_uring_task *tctx = req->task->io_uring; 1350 struct io_ring_ctx *ctx = req->ctx; 1351 1352 /* task_work already pending, we're done */ 1353 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1354 return; 1355 1356 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1357 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1358 1359 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1360 return; 1361 1362 io_fallback_tw(tctx); 1363 } 1364 1365 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1366 { 1367 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1368 rcu_read_lock(); 1369 io_req_local_work_add(req, flags); 1370 rcu_read_unlock(); 1371 } else { 1372 io_req_normal_work_add(req); 1373 } 1374 } 1375 1376 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1377 { 1378 struct llist_node *node; 1379 1380 node = llist_del_all(&ctx->work_llist); 1381 while (node) { 1382 struct io_kiocb *req = container_of(node, struct io_kiocb, 1383 io_task_work.node); 1384 1385 node = node->next; 1386 io_req_normal_work_add(req); 1387 } 1388 } 1389 1390 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1391 { 1392 struct llist_node *node; 1393 unsigned int loops = 0; 1394 int ret = 0; 1395 1396 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1397 return -EEXIST; 1398 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1399 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1400 again: 1401 /* 1402 * llists are in reverse order, flip it back the right way before 1403 * running the pending items. 1404 */ 1405 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1406 while (node) { 1407 struct llist_node *next = node->next; 1408 struct io_kiocb *req = container_of(node, struct io_kiocb, 1409 io_task_work.node); 1410 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1411 INDIRECT_CALL_2(req->io_task_work.func, 1412 io_poll_task_func, io_req_rw_complete, 1413 req, ts); 1414 ret++; 1415 node = next; 1416 } 1417 loops++; 1418 1419 if (!llist_empty(&ctx->work_llist)) 1420 goto again; 1421 if (ts->locked) { 1422 io_submit_flush_completions(ctx); 1423 if (!llist_empty(&ctx->work_llist)) 1424 goto again; 1425 } 1426 trace_io_uring_local_work_run(ctx, ret, loops); 1427 return ret; 1428 } 1429 1430 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx) 1431 { 1432 struct io_tw_state ts = { .locked = true, }; 1433 int ret; 1434 1435 if (llist_empty(&ctx->work_llist)) 1436 return 0; 1437 1438 ret = __io_run_local_work(ctx, &ts); 1439 /* shouldn't happen! */ 1440 if (WARN_ON_ONCE(!ts.locked)) 1441 mutex_lock(&ctx->uring_lock); 1442 return ret; 1443 } 1444 1445 static int io_run_local_work(struct io_ring_ctx *ctx) 1446 { 1447 struct io_tw_state ts = {}; 1448 int ret; 1449 1450 ts.locked = mutex_trylock(&ctx->uring_lock); 1451 ret = __io_run_local_work(ctx, &ts); 1452 if (ts.locked) 1453 mutex_unlock(&ctx->uring_lock); 1454 1455 return ret; 1456 } 1457 1458 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1459 { 1460 io_tw_lock(req->ctx, ts); 1461 io_req_defer_failed(req, req->cqe.res); 1462 } 1463 1464 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1465 { 1466 io_tw_lock(req->ctx, ts); 1467 /* req->task == current here, checking PF_EXITING is safe */ 1468 if (unlikely(req->task->flags & PF_EXITING)) 1469 io_req_defer_failed(req, -EFAULT); 1470 else if (req->flags & REQ_F_FORCE_ASYNC) 1471 io_queue_iowq(req, ts); 1472 else 1473 io_queue_sqe(req); 1474 } 1475 1476 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1477 { 1478 io_req_set_res(req, ret, 0); 1479 req->io_task_work.func = io_req_task_cancel; 1480 io_req_task_work_add(req); 1481 } 1482 1483 void io_req_task_queue(struct io_kiocb *req) 1484 { 1485 req->io_task_work.func = io_req_task_submit; 1486 io_req_task_work_add(req); 1487 } 1488 1489 void io_queue_next(struct io_kiocb *req) 1490 { 1491 struct io_kiocb *nxt = io_req_find_next(req); 1492 1493 if (nxt) 1494 io_req_task_queue(nxt); 1495 } 1496 1497 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node) 1498 __must_hold(&ctx->uring_lock) 1499 { 1500 do { 1501 struct io_kiocb *req = container_of(node, struct io_kiocb, 1502 comp_list); 1503 1504 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1505 if (req->flags & REQ_F_REFCOUNT) { 1506 node = req->comp_list.next; 1507 if (!req_ref_put_and_test(req)) 1508 continue; 1509 } 1510 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1511 struct async_poll *apoll = req->apoll; 1512 1513 if (apoll->double_poll) 1514 kfree(apoll->double_poll); 1515 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1516 kfree(apoll); 1517 req->flags &= ~REQ_F_POLLED; 1518 } 1519 if (req->flags & IO_REQ_LINK_FLAGS) 1520 io_queue_next(req); 1521 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1522 io_clean_op(req); 1523 } 1524 if (!(req->flags & REQ_F_FIXED_FILE)) 1525 io_put_file(req->file); 1526 1527 io_req_put_rsrc_locked(req, ctx); 1528 1529 io_put_task(req->task); 1530 node = req->comp_list.next; 1531 io_req_add_to_cache(req, ctx); 1532 } while (node); 1533 } 1534 1535 static void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1536 __must_hold(&ctx->uring_lock) 1537 { 1538 struct io_submit_state *state = &ctx->submit_state; 1539 struct io_wq_work_node *node; 1540 1541 __io_cq_lock(ctx); 1542 /* must come first to preserve CQE ordering in failure cases */ 1543 if (state->cqes_count) 1544 __io_flush_post_cqes(ctx); 1545 __wq_list_for_each(node, &state->compl_reqs) { 1546 struct io_kiocb *req = container_of(node, struct io_kiocb, 1547 comp_list); 1548 1549 if (!(req->flags & REQ_F_CQE_SKIP) && 1550 unlikely(!__io_fill_cqe_req(ctx, req))) { 1551 if (ctx->task_complete) { 1552 spin_lock(&ctx->completion_lock); 1553 io_req_cqe_overflow(req); 1554 spin_unlock(&ctx->completion_lock); 1555 } else { 1556 io_req_cqe_overflow(req); 1557 } 1558 } 1559 } 1560 __io_cq_unlock_post(ctx); 1561 1562 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1563 io_free_batch_list(ctx, state->compl_reqs.first); 1564 INIT_WQ_LIST(&state->compl_reqs); 1565 } 1566 } 1567 1568 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1569 { 1570 /* See comment at the top of this file */ 1571 smp_rmb(); 1572 return __io_cqring_events(ctx); 1573 } 1574 1575 /* 1576 * We can't just wait for polled events to come to us, we have to actively 1577 * find and complete them. 1578 */ 1579 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1580 { 1581 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1582 return; 1583 1584 mutex_lock(&ctx->uring_lock); 1585 while (!wq_list_empty(&ctx->iopoll_list)) { 1586 /* let it sleep and repeat later if can't complete a request */ 1587 if (io_do_iopoll(ctx, true) == 0) 1588 break; 1589 /* 1590 * Ensure we allow local-to-the-cpu processing to take place, 1591 * in this case we need to ensure that we reap all events. 1592 * Also let task_work, etc. to progress by releasing the mutex 1593 */ 1594 if (need_resched()) { 1595 mutex_unlock(&ctx->uring_lock); 1596 cond_resched(); 1597 mutex_lock(&ctx->uring_lock); 1598 } 1599 } 1600 mutex_unlock(&ctx->uring_lock); 1601 } 1602 1603 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1604 { 1605 unsigned int nr_events = 0; 1606 int ret = 0; 1607 unsigned long check_cq; 1608 1609 if (!io_allowed_run_tw(ctx)) 1610 return -EEXIST; 1611 1612 check_cq = READ_ONCE(ctx->check_cq); 1613 if (unlikely(check_cq)) { 1614 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1615 __io_cqring_overflow_flush(ctx); 1616 /* 1617 * Similarly do not spin if we have not informed the user of any 1618 * dropped CQE. 1619 */ 1620 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1621 return -EBADR; 1622 } 1623 /* 1624 * Don't enter poll loop if we already have events pending. 1625 * If we do, we can potentially be spinning for commands that 1626 * already triggered a CQE (eg in error). 1627 */ 1628 if (io_cqring_events(ctx)) 1629 return 0; 1630 1631 do { 1632 /* 1633 * If a submit got punted to a workqueue, we can have the 1634 * application entering polling for a command before it gets 1635 * issued. That app will hold the uring_lock for the duration 1636 * of the poll right here, so we need to take a breather every 1637 * now and then to ensure that the issue has a chance to add 1638 * the poll to the issued list. Otherwise we can spin here 1639 * forever, while the workqueue is stuck trying to acquire the 1640 * very same mutex. 1641 */ 1642 if (wq_list_empty(&ctx->iopoll_list) || 1643 io_task_work_pending(ctx)) { 1644 u32 tail = ctx->cached_cq_tail; 1645 1646 (void) io_run_local_work_locked(ctx); 1647 1648 if (task_work_pending(current) || 1649 wq_list_empty(&ctx->iopoll_list)) { 1650 mutex_unlock(&ctx->uring_lock); 1651 io_run_task_work(); 1652 mutex_lock(&ctx->uring_lock); 1653 } 1654 /* some requests don't go through iopoll_list */ 1655 if (tail != ctx->cached_cq_tail || 1656 wq_list_empty(&ctx->iopoll_list)) 1657 break; 1658 } 1659 ret = io_do_iopoll(ctx, !min); 1660 if (ret < 0) 1661 break; 1662 nr_events += ret; 1663 ret = 0; 1664 } while (nr_events < min && !need_resched()); 1665 1666 return ret; 1667 } 1668 1669 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1670 { 1671 if (ts->locked) 1672 io_req_complete_defer(req); 1673 else 1674 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1675 } 1676 1677 /* 1678 * After the iocb has been issued, it's safe to be found on the poll list. 1679 * Adding the kiocb to the list AFTER submission ensures that we don't 1680 * find it from a io_do_iopoll() thread before the issuer is done 1681 * accessing the kiocb cookie. 1682 */ 1683 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1684 { 1685 struct io_ring_ctx *ctx = req->ctx; 1686 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1687 1688 /* workqueue context doesn't hold uring_lock, grab it now */ 1689 if (unlikely(needs_lock)) 1690 mutex_lock(&ctx->uring_lock); 1691 1692 /* 1693 * Track whether we have multiple files in our lists. This will impact 1694 * how we do polling eventually, not spinning if we're on potentially 1695 * different devices. 1696 */ 1697 if (wq_list_empty(&ctx->iopoll_list)) { 1698 ctx->poll_multi_queue = false; 1699 } else if (!ctx->poll_multi_queue) { 1700 struct io_kiocb *list_req; 1701 1702 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1703 comp_list); 1704 if (list_req->file != req->file) 1705 ctx->poll_multi_queue = true; 1706 } 1707 1708 /* 1709 * For fast devices, IO may have already completed. If it has, add 1710 * it to the front so we find it first. 1711 */ 1712 if (READ_ONCE(req->iopoll_completed)) 1713 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1714 else 1715 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1716 1717 if (unlikely(needs_lock)) { 1718 /* 1719 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1720 * in sq thread task context or in io worker task context. If 1721 * current task context is sq thread, we don't need to check 1722 * whether should wake up sq thread. 1723 */ 1724 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1725 wq_has_sleeper(&ctx->sq_data->wait)) 1726 wake_up(&ctx->sq_data->wait); 1727 1728 mutex_unlock(&ctx->uring_lock); 1729 } 1730 } 1731 1732 unsigned int io_file_get_flags(struct file *file) 1733 { 1734 unsigned int res = 0; 1735 1736 if (S_ISREG(file_inode(file)->i_mode)) 1737 res |= REQ_F_ISREG; 1738 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1739 res |= REQ_F_SUPPORT_NOWAIT; 1740 return res; 1741 } 1742 1743 bool io_alloc_async_data(struct io_kiocb *req) 1744 { 1745 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1746 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1747 if (req->async_data) { 1748 req->flags |= REQ_F_ASYNC_DATA; 1749 return false; 1750 } 1751 return true; 1752 } 1753 1754 int io_req_prep_async(struct io_kiocb *req) 1755 { 1756 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1757 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1758 1759 /* assign early for deferred execution for non-fixed file */ 1760 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1761 req->file = io_file_get_normal(req, req->cqe.fd); 1762 if (!cdef->prep_async) 1763 return 0; 1764 if (WARN_ON_ONCE(req_has_async_data(req))) 1765 return -EFAULT; 1766 if (!def->manual_alloc) { 1767 if (io_alloc_async_data(req)) 1768 return -EAGAIN; 1769 } 1770 return cdef->prep_async(req); 1771 } 1772 1773 static u32 io_get_sequence(struct io_kiocb *req) 1774 { 1775 u32 seq = req->ctx->cached_sq_head; 1776 struct io_kiocb *cur; 1777 1778 /* need original cached_sq_head, but it was increased for each req */ 1779 io_for_each_link(cur, req) 1780 seq--; 1781 return seq; 1782 } 1783 1784 static __cold void io_drain_req(struct io_kiocb *req) 1785 __must_hold(&ctx->uring_lock) 1786 { 1787 struct io_ring_ctx *ctx = req->ctx; 1788 struct io_defer_entry *de; 1789 int ret; 1790 u32 seq = io_get_sequence(req); 1791 1792 /* Still need defer if there is pending req in defer list. */ 1793 spin_lock(&ctx->completion_lock); 1794 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1795 spin_unlock(&ctx->completion_lock); 1796 queue: 1797 ctx->drain_active = false; 1798 io_req_task_queue(req); 1799 return; 1800 } 1801 spin_unlock(&ctx->completion_lock); 1802 1803 io_prep_async_link(req); 1804 de = kmalloc(sizeof(*de), GFP_KERNEL); 1805 if (!de) { 1806 ret = -ENOMEM; 1807 io_req_defer_failed(req, ret); 1808 return; 1809 } 1810 1811 spin_lock(&ctx->completion_lock); 1812 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1813 spin_unlock(&ctx->completion_lock); 1814 kfree(de); 1815 goto queue; 1816 } 1817 1818 trace_io_uring_defer(req); 1819 de->req = req; 1820 de->seq = seq; 1821 list_add_tail(&de->list, &ctx->defer_list); 1822 spin_unlock(&ctx->completion_lock); 1823 } 1824 1825 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1826 unsigned int issue_flags) 1827 { 1828 if (req->file || !def->needs_file) 1829 return true; 1830 1831 if (req->flags & REQ_F_FIXED_FILE) 1832 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1833 else 1834 req->file = io_file_get_normal(req, req->cqe.fd); 1835 1836 return !!req->file; 1837 } 1838 1839 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1840 { 1841 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1842 const struct cred *creds = NULL; 1843 int ret; 1844 1845 if (unlikely(!io_assign_file(req, def, issue_flags))) 1846 return -EBADF; 1847 1848 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1849 creds = override_creds(req->creds); 1850 1851 if (!def->audit_skip) 1852 audit_uring_entry(req->opcode); 1853 1854 ret = def->issue(req, issue_flags); 1855 1856 if (!def->audit_skip) 1857 audit_uring_exit(!ret, ret); 1858 1859 if (creds) 1860 revert_creds(creds); 1861 1862 if (ret == IOU_OK) { 1863 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1864 io_req_complete_defer(req); 1865 else 1866 io_req_complete_post(req, issue_flags); 1867 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1868 return ret; 1869 1870 /* If the op doesn't have a file, we're not polling for it */ 1871 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1872 io_iopoll_req_issued(req, issue_flags); 1873 1874 return 0; 1875 } 1876 1877 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1878 { 1879 io_tw_lock(req->ctx, ts); 1880 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1881 IO_URING_F_COMPLETE_DEFER); 1882 } 1883 1884 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1885 { 1886 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1887 struct io_kiocb *nxt = NULL; 1888 1889 if (req_ref_put_and_test(req)) { 1890 if (req->flags & IO_REQ_LINK_FLAGS) 1891 nxt = io_req_find_next(req); 1892 io_free_req(req); 1893 } 1894 return nxt ? &nxt->work : NULL; 1895 } 1896 1897 void io_wq_submit_work(struct io_wq_work *work) 1898 { 1899 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1900 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1901 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1902 bool needs_poll = false; 1903 int ret = 0, err = -ECANCELED; 1904 1905 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1906 if (!(req->flags & REQ_F_REFCOUNT)) 1907 __io_req_set_refcount(req, 2); 1908 else 1909 req_ref_get(req); 1910 1911 io_arm_ltimeout(req); 1912 1913 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1914 if (work->flags & IO_WQ_WORK_CANCEL) { 1915 fail: 1916 io_req_task_queue_fail(req, err); 1917 return; 1918 } 1919 if (!io_assign_file(req, def, issue_flags)) { 1920 err = -EBADF; 1921 work->flags |= IO_WQ_WORK_CANCEL; 1922 goto fail; 1923 } 1924 1925 if (req->flags & REQ_F_FORCE_ASYNC) { 1926 bool opcode_poll = def->pollin || def->pollout; 1927 1928 if (opcode_poll && file_can_poll(req->file)) { 1929 needs_poll = true; 1930 issue_flags |= IO_URING_F_NONBLOCK; 1931 } 1932 } 1933 1934 do { 1935 ret = io_issue_sqe(req, issue_flags); 1936 if (ret != -EAGAIN) 1937 break; 1938 /* 1939 * We can get EAGAIN for iopolled IO even though we're 1940 * forcing a sync submission from here, since we can't 1941 * wait for request slots on the block side. 1942 */ 1943 if (!needs_poll) { 1944 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1945 break; 1946 cond_resched(); 1947 continue; 1948 } 1949 1950 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1951 return; 1952 /* aborted or ready, in either case retry blocking */ 1953 needs_poll = false; 1954 issue_flags &= ~IO_URING_F_NONBLOCK; 1955 } while (1); 1956 1957 /* avoid locking problems by failing it from a clean context */ 1958 if (ret < 0) 1959 io_req_task_queue_fail(req, ret); 1960 } 1961 1962 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1963 unsigned int issue_flags) 1964 { 1965 struct io_ring_ctx *ctx = req->ctx; 1966 struct io_fixed_file *slot; 1967 struct file *file = NULL; 1968 1969 io_ring_submit_lock(ctx, issue_flags); 1970 1971 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 1972 goto out; 1973 fd = array_index_nospec(fd, ctx->nr_user_files); 1974 slot = io_fixed_file_slot(&ctx->file_table, fd); 1975 file = io_slot_file(slot); 1976 req->flags |= io_slot_flags(slot); 1977 io_req_set_rsrc_node(req, ctx, 0); 1978 out: 1979 io_ring_submit_unlock(ctx, issue_flags); 1980 return file; 1981 } 1982 1983 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1984 { 1985 struct file *file = fget(fd); 1986 1987 trace_io_uring_file_get(req, fd); 1988 1989 /* we don't allow fixed io_uring files */ 1990 if (file && io_is_uring_fops(file)) 1991 io_req_track_inflight(req); 1992 return file; 1993 } 1994 1995 static void io_queue_async(struct io_kiocb *req, int ret) 1996 __must_hold(&req->ctx->uring_lock) 1997 { 1998 struct io_kiocb *linked_timeout; 1999 2000 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2001 io_req_defer_failed(req, ret); 2002 return; 2003 } 2004 2005 linked_timeout = io_prep_linked_timeout(req); 2006 2007 switch (io_arm_poll_handler(req, 0)) { 2008 case IO_APOLL_READY: 2009 io_kbuf_recycle(req, 0); 2010 io_req_task_queue(req); 2011 break; 2012 case IO_APOLL_ABORTED: 2013 io_kbuf_recycle(req, 0); 2014 io_queue_iowq(req, NULL); 2015 break; 2016 case IO_APOLL_OK: 2017 break; 2018 } 2019 2020 if (linked_timeout) 2021 io_queue_linked_timeout(linked_timeout); 2022 } 2023 2024 static inline void io_queue_sqe(struct io_kiocb *req) 2025 __must_hold(&req->ctx->uring_lock) 2026 { 2027 int ret; 2028 2029 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2030 2031 /* 2032 * We async punt it if the file wasn't marked NOWAIT, or if the file 2033 * doesn't support non-blocking read/write attempts 2034 */ 2035 if (likely(!ret)) 2036 io_arm_ltimeout(req); 2037 else 2038 io_queue_async(req, ret); 2039 } 2040 2041 static void io_queue_sqe_fallback(struct io_kiocb *req) 2042 __must_hold(&req->ctx->uring_lock) 2043 { 2044 if (unlikely(req->flags & REQ_F_FAIL)) { 2045 /* 2046 * We don't submit, fail them all, for that replace hardlinks 2047 * with normal links. Extra REQ_F_LINK is tolerated. 2048 */ 2049 req->flags &= ~REQ_F_HARDLINK; 2050 req->flags |= REQ_F_LINK; 2051 io_req_defer_failed(req, req->cqe.res); 2052 } else { 2053 int ret = io_req_prep_async(req); 2054 2055 if (unlikely(ret)) { 2056 io_req_defer_failed(req, ret); 2057 return; 2058 } 2059 2060 if (unlikely(req->ctx->drain_active)) 2061 io_drain_req(req); 2062 else 2063 io_queue_iowq(req, NULL); 2064 } 2065 } 2066 2067 /* 2068 * Check SQE restrictions (opcode and flags). 2069 * 2070 * Returns 'true' if SQE is allowed, 'false' otherwise. 2071 */ 2072 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2073 struct io_kiocb *req, 2074 unsigned int sqe_flags) 2075 { 2076 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2077 return false; 2078 2079 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2080 ctx->restrictions.sqe_flags_required) 2081 return false; 2082 2083 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2084 ctx->restrictions.sqe_flags_required)) 2085 return false; 2086 2087 return true; 2088 } 2089 2090 static void io_init_req_drain(struct io_kiocb *req) 2091 { 2092 struct io_ring_ctx *ctx = req->ctx; 2093 struct io_kiocb *head = ctx->submit_state.link.head; 2094 2095 ctx->drain_active = true; 2096 if (head) { 2097 /* 2098 * If we need to drain a request in the middle of a link, drain 2099 * the head request and the next request/link after the current 2100 * link. Considering sequential execution of links, 2101 * REQ_F_IO_DRAIN will be maintained for every request of our 2102 * link. 2103 */ 2104 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2105 ctx->drain_next = true; 2106 } 2107 } 2108 2109 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2110 const struct io_uring_sqe *sqe) 2111 __must_hold(&ctx->uring_lock) 2112 { 2113 const struct io_issue_def *def; 2114 unsigned int sqe_flags; 2115 int personality; 2116 u8 opcode; 2117 2118 /* req is partially pre-initialised, see io_preinit_req() */ 2119 req->opcode = opcode = READ_ONCE(sqe->opcode); 2120 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2121 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2122 req->cqe.user_data = READ_ONCE(sqe->user_data); 2123 req->file = NULL; 2124 req->rsrc_node = NULL; 2125 req->task = current; 2126 2127 if (unlikely(opcode >= IORING_OP_LAST)) { 2128 req->opcode = 0; 2129 return -EINVAL; 2130 } 2131 def = &io_issue_defs[opcode]; 2132 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2133 /* enforce forwards compatibility on users */ 2134 if (sqe_flags & ~SQE_VALID_FLAGS) 2135 return -EINVAL; 2136 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2137 if (!def->buffer_select) 2138 return -EOPNOTSUPP; 2139 req->buf_index = READ_ONCE(sqe->buf_group); 2140 } 2141 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2142 ctx->drain_disabled = true; 2143 if (sqe_flags & IOSQE_IO_DRAIN) { 2144 if (ctx->drain_disabled) 2145 return -EOPNOTSUPP; 2146 io_init_req_drain(req); 2147 } 2148 } 2149 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2150 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2151 return -EACCES; 2152 /* knock it to the slow queue path, will be drained there */ 2153 if (ctx->drain_active) 2154 req->flags |= REQ_F_FORCE_ASYNC; 2155 /* if there is no link, we're at "next" request and need to drain */ 2156 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2157 ctx->drain_next = false; 2158 ctx->drain_active = true; 2159 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2160 } 2161 } 2162 2163 if (!def->ioprio && sqe->ioprio) 2164 return -EINVAL; 2165 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2166 return -EINVAL; 2167 2168 if (def->needs_file) { 2169 struct io_submit_state *state = &ctx->submit_state; 2170 2171 req->cqe.fd = READ_ONCE(sqe->fd); 2172 2173 /* 2174 * Plug now if we have more than 2 IO left after this, and the 2175 * target is potentially a read/write to block based storage. 2176 */ 2177 if (state->need_plug && def->plug) { 2178 state->plug_started = true; 2179 state->need_plug = false; 2180 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2181 } 2182 } 2183 2184 personality = READ_ONCE(sqe->personality); 2185 if (personality) { 2186 int ret; 2187 2188 req->creds = xa_load(&ctx->personalities, personality); 2189 if (!req->creds) 2190 return -EINVAL; 2191 get_cred(req->creds); 2192 ret = security_uring_override_creds(req->creds); 2193 if (ret) { 2194 put_cred(req->creds); 2195 return ret; 2196 } 2197 req->flags |= REQ_F_CREDS; 2198 } 2199 2200 return def->prep(req, sqe); 2201 } 2202 2203 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2204 struct io_kiocb *req, int ret) 2205 { 2206 struct io_ring_ctx *ctx = req->ctx; 2207 struct io_submit_link *link = &ctx->submit_state.link; 2208 struct io_kiocb *head = link->head; 2209 2210 trace_io_uring_req_failed(sqe, req, ret); 2211 2212 /* 2213 * Avoid breaking links in the middle as it renders links with SQPOLL 2214 * unusable. Instead of failing eagerly, continue assembling the link if 2215 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2216 * should find the flag and handle the rest. 2217 */ 2218 req_fail_link_node(req, ret); 2219 if (head && !(head->flags & REQ_F_FAIL)) 2220 req_fail_link_node(head, -ECANCELED); 2221 2222 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2223 if (head) { 2224 link->last->link = req; 2225 link->head = NULL; 2226 req = head; 2227 } 2228 io_queue_sqe_fallback(req); 2229 return ret; 2230 } 2231 2232 if (head) 2233 link->last->link = req; 2234 else 2235 link->head = req; 2236 link->last = req; 2237 return 0; 2238 } 2239 2240 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2241 const struct io_uring_sqe *sqe) 2242 __must_hold(&ctx->uring_lock) 2243 { 2244 struct io_submit_link *link = &ctx->submit_state.link; 2245 int ret; 2246 2247 ret = io_init_req(ctx, req, sqe); 2248 if (unlikely(ret)) 2249 return io_submit_fail_init(sqe, req, ret); 2250 2251 trace_io_uring_submit_req(req); 2252 2253 /* 2254 * If we already have a head request, queue this one for async 2255 * submittal once the head completes. If we don't have a head but 2256 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2257 * submitted sync once the chain is complete. If none of those 2258 * conditions are true (normal request), then just queue it. 2259 */ 2260 if (unlikely(link->head)) { 2261 ret = io_req_prep_async(req); 2262 if (unlikely(ret)) 2263 return io_submit_fail_init(sqe, req, ret); 2264 2265 trace_io_uring_link(req, link->head); 2266 link->last->link = req; 2267 link->last = req; 2268 2269 if (req->flags & IO_REQ_LINK_FLAGS) 2270 return 0; 2271 /* last request of the link, flush it */ 2272 req = link->head; 2273 link->head = NULL; 2274 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2275 goto fallback; 2276 2277 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2278 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2279 if (req->flags & IO_REQ_LINK_FLAGS) { 2280 link->head = req; 2281 link->last = req; 2282 } else { 2283 fallback: 2284 io_queue_sqe_fallback(req); 2285 } 2286 return 0; 2287 } 2288 2289 io_queue_sqe(req); 2290 return 0; 2291 } 2292 2293 /* 2294 * Batched submission is done, ensure local IO is flushed out. 2295 */ 2296 static void io_submit_state_end(struct io_ring_ctx *ctx) 2297 { 2298 struct io_submit_state *state = &ctx->submit_state; 2299 2300 if (unlikely(state->link.head)) 2301 io_queue_sqe_fallback(state->link.head); 2302 /* flush only after queuing links as they can generate completions */ 2303 io_submit_flush_completions(ctx); 2304 if (state->plug_started) 2305 blk_finish_plug(&state->plug); 2306 } 2307 2308 /* 2309 * Start submission side cache. 2310 */ 2311 static void io_submit_state_start(struct io_submit_state *state, 2312 unsigned int max_ios) 2313 { 2314 state->plug_started = false; 2315 state->need_plug = max_ios > 2; 2316 state->submit_nr = max_ios; 2317 /* set only head, no need to init link_last in advance */ 2318 state->link.head = NULL; 2319 } 2320 2321 static void io_commit_sqring(struct io_ring_ctx *ctx) 2322 { 2323 struct io_rings *rings = ctx->rings; 2324 2325 /* 2326 * Ensure any loads from the SQEs are done at this point, 2327 * since once we write the new head, the application could 2328 * write new data to them. 2329 */ 2330 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2331 } 2332 2333 /* 2334 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2335 * that is mapped by userspace. This means that care needs to be taken to 2336 * ensure that reads are stable, as we cannot rely on userspace always 2337 * being a good citizen. If members of the sqe are validated and then later 2338 * used, it's important that those reads are done through READ_ONCE() to 2339 * prevent a re-load down the line. 2340 */ 2341 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2342 { 2343 unsigned head, mask = ctx->sq_entries - 1; 2344 unsigned sq_idx = ctx->cached_sq_head++ & mask; 2345 2346 /* 2347 * The cached sq head (or cq tail) serves two purposes: 2348 * 2349 * 1) allows us to batch the cost of updating the user visible 2350 * head updates. 2351 * 2) allows the kernel side to track the head on its own, even 2352 * though the application is the one updating it. 2353 */ 2354 head = READ_ONCE(ctx->sq_array[sq_idx]); 2355 if (likely(head < ctx->sq_entries)) { 2356 /* double index for 128-byte SQEs, twice as long */ 2357 if (ctx->flags & IORING_SETUP_SQE128) 2358 head <<= 1; 2359 *sqe = &ctx->sq_sqes[head]; 2360 return true; 2361 } 2362 2363 /* drop invalid entries */ 2364 ctx->cq_extra--; 2365 WRITE_ONCE(ctx->rings->sq_dropped, 2366 READ_ONCE(ctx->rings->sq_dropped) + 1); 2367 return false; 2368 } 2369 2370 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2371 __must_hold(&ctx->uring_lock) 2372 { 2373 unsigned int entries = io_sqring_entries(ctx); 2374 unsigned int left; 2375 int ret; 2376 2377 if (unlikely(!entries)) 2378 return 0; 2379 /* make sure SQ entry isn't read before tail */ 2380 ret = left = min(nr, entries); 2381 io_get_task_refs(left); 2382 io_submit_state_start(&ctx->submit_state, left); 2383 2384 do { 2385 const struct io_uring_sqe *sqe; 2386 struct io_kiocb *req; 2387 2388 if (unlikely(!io_alloc_req(ctx, &req))) 2389 break; 2390 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2391 io_req_add_to_cache(req, ctx); 2392 break; 2393 } 2394 2395 /* 2396 * Continue submitting even for sqe failure if the 2397 * ring was setup with IORING_SETUP_SUBMIT_ALL 2398 */ 2399 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2400 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2401 left--; 2402 break; 2403 } 2404 } while (--left); 2405 2406 if (unlikely(left)) { 2407 ret -= left; 2408 /* try again if it submitted nothing and can't allocate a req */ 2409 if (!ret && io_req_cache_empty(ctx)) 2410 ret = -EAGAIN; 2411 current->io_uring->cached_refs += left; 2412 } 2413 2414 io_submit_state_end(ctx); 2415 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2416 io_commit_sqring(ctx); 2417 return ret; 2418 } 2419 2420 struct io_wait_queue { 2421 struct wait_queue_entry wq; 2422 struct io_ring_ctx *ctx; 2423 unsigned cq_tail; 2424 unsigned nr_timeouts; 2425 ktime_t timeout; 2426 }; 2427 2428 static inline bool io_has_work(struct io_ring_ctx *ctx) 2429 { 2430 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2431 !llist_empty(&ctx->work_llist); 2432 } 2433 2434 static inline bool io_should_wake(struct io_wait_queue *iowq) 2435 { 2436 struct io_ring_ctx *ctx = iowq->ctx; 2437 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2438 2439 /* 2440 * Wake up if we have enough events, or if a timeout occurred since we 2441 * started waiting. For timeouts, we always want to return to userspace, 2442 * regardless of event count. 2443 */ 2444 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2445 } 2446 2447 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2448 int wake_flags, void *key) 2449 { 2450 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2451 2452 /* 2453 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2454 * the task, and the next invocation will do it. 2455 */ 2456 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2457 return autoremove_wake_function(curr, mode, wake_flags, key); 2458 return -1; 2459 } 2460 2461 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2462 { 2463 if (!llist_empty(&ctx->work_llist)) { 2464 __set_current_state(TASK_RUNNING); 2465 if (io_run_local_work(ctx) > 0) 2466 return 1; 2467 } 2468 if (io_run_task_work() > 0) 2469 return 1; 2470 if (task_sigpending(current)) 2471 return -EINTR; 2472 return 0; 2473 } 2474 2475 /* when returns >0, the caller should retry */ 2476 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2477 struct io_wait_queue *iowq) 2478 { 2479 if (unlikely(READ_ONCE(ctx->check_cq))) 2480 return 1; 2481 if (unlikely(!llist_empty(&ctx->work_llist))) 2482 return 1; 2483 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) 2484 return 1; 2485 if (unlikely(task_sigpending(current))) 2486 return -EINTR; 2487 if (unlikely(io_should_wake(iowq))) 2488 return 0; 2489 if (iowq->timeout == KTIME_MAX) 2490 schedule(); 2491 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2492 return -ETIME; 2493 return 0; 2494 } 2495 2496 /* 2497 * Wait until events become available, if we don't already have some. The 2498 * application must reap them itself, as they reside on the shared cq ring. 2499 */ 2500 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2501 const sigset_t __user *sig, size_t sigsz, 2502 struct __kernel_timespec __user *uts) 2503 { 2504 struct io_wait_queue iowq; 2505 struct io_rings *rings = ctx->rings; 2506 int ret; 2507 2508 if (!io_allowed_run_tw(ctx)) 2509 return -EEXIST; 2510 if (!llist_empty(&ctx->work_llist)) 2511 io_run_local_work(ctx); 2512 io_run_task_work(); 2513 io_cqring_overflow_flush(ctx); 2514 /* if user messes with these they will just get an early return */ 2515 if (__io_cqring_events_user(ctx) >= min_events) 2516 return 0; 2517 2518 if (sig) { 2519 #ifdef CONFIG_COMPAT 2520 if (in_compat_syscall()) 2521 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2522 sigsz); 2523 else 2524 #endif 2525 ret = set_user_sigmask(sig, sigsz); 2526 2527 if (ret) 2528 return ret; 2529 } 2530 2531 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2532 iowq.wq.private = current; 2533 INIT_LIST_HEAD(&iowq.wq.entry); 2534 iowq.ctx = ctx; 2535 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2536 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2537 iowq.timeout = KTIME_MAX; 2538 2539 if (uts) { 2540 struct timespec64 ts; 2541 2542 if (get_timespec64(&ts, uts)) 2543 return -EFAULT; 2544 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2545 } 2546 2547 trace_io_uring_cqring_wait(ctx, min_events); 2548 do { 2549 unsigned long check_cq; 2550 2551 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2552 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2553 2554 atomic_set(&ctx->cq_wait_nr, nr_wait); 2555 set_current_state(TASK_INTERRUPTIBLE); 2556 } else { 2557 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2558 TASK_INTERRUPTIBLE); 2559 } 2560 2561 ret = io_cqring_wait_schedule(ctx, &iowq); 2562 __set_current_state(TASK_RUNNING); 2563 atomic_set(&ctx->cq_wait_nr, 0); 2564 2565 if (ret < 0) 2566 break; 2567 /* 2568 * Run task_work after scheduling and before io_should_wake(). 2569 * If we got woken because of task_work being processed, run it 2570 * now rather than let the caller do another wait loop. 2571 */ 2572 io_run_task_work(); 2573 if (!llist_empty(&ctx->work_llist)) 2574 io_run_local_work(ctx); 2575 2576 check_cq = READ_ONCE(ctx->check_cq); 2577 if (unlikely(check_cq)) { 2578 /* let the caller flush overflows, retry */ 2579 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2580 io_cqring_do_overflow_flush(ctx); 2581 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2582 ret = -EBADR; 2583 break; 2584 } 2585 } 2586 2587 if (io_should_wake(&iowq)) { 2588 ret = 0; 2589 break; 2590 } 2591 cond_resched(); 2592 } while (1); 2593 2594 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2595 finish_wait(&ctx->cq_wait, &iowq.wq); 2596 restore_saved_sigmask_unless(ret == -EINTR); 2597 2598 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2599 } 2600 2601 static void io_mem_free(void *ptr) 2602 { 2603 struct page *page; 2604 2605 if (!ptr) 2606 return; 2607 2608 page = virt_to_head_page(ptr); 2609 if (put_page_testzero(page)) 2610 free_compound_page(page); 2611 } 2612 2613 static void io_pages_free(struct page ***pages, int npages) 2614 { 2615 struct page **page_array; 2616 int i; 2617 2618 if (!pages) 2619 return; 2620 page_array = *pages; 2621 for (i = 0; i < npages; i++) 2622 unpin_user_page(page_array[i]); 2623 kvfree(page_array); 2624 *pages = NULL; 2625 } 2626 2627 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, 2628 unsigned long uaddr, size_t size) 2629 { 2630 struct page **page_array; 2631 unsigned int nr_pages; 2632 int ret; 2633 2634 *npages = 0; 2635 2636 if (uaddr & (PAGE_SIZE - 1) || !size) 2637 return ERR_PTR(-EINVAL); 2638 2639 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2640 if (nr_pages > USHRT_MAX) 2641 return ERR_PTR(-EINVAL); 2642 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); 2643 if (!page_array) 2644 return ERR_PTR(-ENOMEM); 2645 2646 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, 2647 page_array); 2648 if (ret != nr_pages) { 2649 err: 2650 io_pages_free(&page_array, ret > 0 ? ret : 0); 2651 return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT); 2652 } 2653 /* 2654 * Should be a single page. If the ring is small enough that we can 2655 * use a normal page, that is fine. If we need multiple pages, then 2656 * userspace should use a huge page. That's the only way to guarantee 2657 * that we get contigious memory, outside of just being lucky or 2658 * (currently) having low memory fragmentation. 2659 */ 2660 if (page_array[0] != page_array[ret - 1]) 2661 goto err; 2662 *pages = page_array; 2663 *npages = nr_pages; 2664 return page_to_virt(page_array[0]); 2665 } 2666 2667 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2668 size_t size) 2669 { 2670 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2671 size); 2672 } 2673 2674 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2675 size_t size) 2676 { 2677 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2678 size); 2679 } 2680 2681 static void io_rings_free(struct io_ring_ctx *ctx) 2682 { 2683 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2684 io_mem_free(ctx->rings); 2685 io_mem_free(ctx->sq_sqes); 2686 ctx->rings = NULL; 2687 ctx->sq_sqes = NULL; 2688 } else { 2689 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2690 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2691 } 2692 } 2693 2694 static void *io_mem_alloc(size_t size) 2695 { 2696 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2697 void *ret; 2698 2699 ret = (void *) __get_free_pages(gfp, get_order(size)); 2700 if (ret) 2701 return ret; 2702 return ERR_PTR(-ENOMEM); 2703 } 2704 2705 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2706 unsigned int cq_entries, size_t *sq_offset) 2707 { 2708 struct io_rings *rings; 2709 size_t off, sq_array_size; 2710 2711 off = struct_size(rings, cqes, cq_entries); 2712 if (off == SIZE_MAX) 2713 return SIZE_MAX; 2714 if (ctx->flags & IORING_SETUP_CQE32) { 2715 if (check_shl_overflow(off, 1, &off)) 2716 return SIZE_MAX; 2717 } 2718 2719 #ifdef CONFIG_SMP 2720 off = ALIGN(off, SMP_CACHE_BYTES); 2721 if (off == 0) 2722 return SIZE_MAX; 2723 #endif 2724 2725 if (sq_offset) 2726 *sq_offset = off; 2727 2728 sq_array_size = array_size(sizeof(u32), sq_entries); 2729 if (sq_array_size == SIZE_MAX) 2730 return SIZE_MAX; 2731 2732 if (check_add_overflow(off, sq_array_size, &off)) 2733 return SIZE_MAX; 2734 2735 return off; 2736 } 2737 2738 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2739 unsigned int eventfd_async) 2740 { 2741 struct io_ev_fd *ev_fd; 2742 __s32 __user *fds = arg; 2743 int fd; 2744 2745 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2746 lockdep_is_held(&ctx->uring_lock)); 2747 if (ev_fd) 2748 return -EBUSY; 2749 2750 if (copy_from_user(&fd, fds, sizeof(*fds))) 2751 return -EFAULT; 2752 2753 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2754 if (!ev_fd) 2755 return -ENOMEM; 2756 2757 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2758 if (IS_ERR(ev_fd->cq_ev_fd)) { 2759 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2760 kfree(ev_fd); 2761 return ret; 2762 } 2763 2764 spin_lock(&ctx->completion_lock); 2765 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2766 spin_unlock(&ctx->completion_lock); 2767 2768 ev_fd->eventfd_async = eventfd_async; 2769 ctx->has_evfd = true; 2770 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2771 atomic_set(&ev_fd->refs, 1); 2772 atomic_set(&ev_fd->ops, 0); 2773 return 0; 2774 } 2775 2776 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2777 { 2778 struct io_ev_fd *ev_fd; 2779 2780 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2781 lockdep_is_held(&ctx->uring_lock)); 2782 if (ev_fd) { 2783 ctx->has_evfd = false; 2784 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2785 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2786 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2787 return 0; 2788 } 2789 2790 return -ENXIO; 2791 } 2792 2793 static void io_req_caches_free(struct io_ring_ctx *ctx) 2794 { 2795 struct io_kiocb *req; 2796 int nr = 0; 2797 2798 mutex_lock(&ctx->uring_lock); 2799 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2800 2801 while (!io_req_cache_empty(ctx)) { 2802 req = io_extract_req(ctx); 2803 kmem_cache_free(req_cachep, req); 2804 nr++; 2805 } 2806 if (nr) 2807 percpu_ref_put_many(&ctx->refs, nr); 2808 mutex_unlock(&ctx->uring_lock); 2809 } 2810 2811 static void io_rsrc_node_cache_free(struct io_cache_entry *entry) 2812 { 2813 kfree(container_of(entry, struct io_rsrc_node, cache)); 2814 } 2815 2816 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2817 { 2818 io_sq_thread_finish(ctx); 2819 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2820 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2821 return; 2822 2823 mutex_lock(&ctx->uring_lock); 2824 if (ctx->buf_data) 2825 __io_sqe_buffers_unregister(ctx); 2826 if (ctx->file_data) 2827 __io_sqe_files_unregister(ctx); 2828 io_cqring_overflow_kill(ctx); 2829 io_eventfd_unregister(ctx); 2830 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2831 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2832 io_destroy_buffers(ctx); 2833 mutex_unlock(&ctx->uring_lock); 2834 if (ctx->sq_creds) 2835 put_cred(ctx->sq_creds); 2836 if (ctx->submitter_task) 2837 put_task_struct(ctx->submitter_task); 2838 2839 /* there are no registered resources left, nobody uses it */ 2840 if (ctx->rsrc_node) 2841 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2842 2843 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2844 2845 #if defined(CONFIG_UNIX) 2846 if (ctx->ring_sock) { 2847 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2848 sock_release(ctx->ring_sock); 2849 } 2850 #endif 2851 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2852 2853 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); 2854 if (ctx->mm_account) { 2855 mmdrop(ctx->mm_account); 2856 ctx->mm_account = NULL; 2857 } 2858 io_rings_free(ctx); 2859 2860 percpu_ref_exit(&ctx->refs); 2861 free_uid(ctx->user); 2862 io_req_caches_free(ctx); 2863 if (ctx->hash_map) 2864 io_wq_put_hash(ctx->hash_map); 2865 kfree(ctx->cancel_table.hbs); 2866 kfree(ctx->cancel_table_locked.hbs); 2867 kfree(ctx->dummy_ubuf); 2868 kfree(ctx->io_bl); 2869 xa_destroy(&ctx->io_bl_xa); 2870 kfree(ctx); 2871 } 2872 2873 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2874 { 2875 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2876 poll_wq_task_work); 2877 2878 mutex_lock(&ctx->uring_lock); 2879 ctx->poll_activated = true; 2880 mutex_unlock(&ctx->uring_lock); 2881 2882 /* 2883 * Wake ups for some events between start of polling and activation 2884 * might've been lost due to loose synchronisation. 2885 */ 2886 wake_up_all(&ctx->poll_wq); 2887 percpu_ref_put(&ctx->refs); 2888 } 2889 2890 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2891 { 2892 spin_lock(&ctx->completion_lock); 2893 /* already activated or in progress */ 2894 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2895 goto out; 2896 if (WARN_ON_ONCE(!ctx->task_complete)) 2897 goto out; 2898 if (!ctx->submitter_task) 2899 goto out; 2900 /* 2901 * with ->submitter_task only the submitter task completes requests, we 2902 * only need to sync with it, which is done by injecting a tw 2903 */ 2904 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2905 percpu_ref_get(&ctx->refs); 2906 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2907 percpu_ref_put(&ctx->refs); 2908 out: 2909 spin_unlock(&ctx->completion_lock); 2910 } 2911 2912 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2913 { 2914 struct io_ring_ctx *ctx = file->private_data; 2915 __poll_t mask = 0; 2916 2917 if (unlikely(!ctx->poll_activated)) 2918 io_activate_pollwq(ctx); 2919 2920 poll_wait(file, &ctx->poll_wq, wait); 2921 /* 2922 * synchronizes with barrier from wq_has_sleeper call in 2923 * io_commit_cqring 2924 */ 2925 smp_rmb(); 2926 if (!io_sqring_full(ctx)) 2927 mask |= EPOLLOUT | EPOLLWRNORM; 2928 2929 /* 2930 * Don't flush cqring overflow list here, just do a simple check. 2931 * Otherwise there could possible be ABBA deadlock: 2932 * CPU0 CPU1 2933 * ---- ---- 2934 * lock(&ctx->uring_lock); 2935 * lock(&ep->mtx); 2936 * lock(&ctx->uring_lock); 2937 * lock(&ep->mtx); 2938 * 2939 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2940 * pushes them to do the flush. 2941 */ 2942 2943 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2944 mask |= EPOLLIN | EPOLLRDNORM; 2945 2946 return mask; 2947 } 2948 2949 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 2950 { 2951 const struct cred *creds; 2952 2953 creds = xa_erase(&ctx->personalities, id); 2954 if (creds) { 2955 put_cred(creds); 2956 return 0; 2957 } 2958 2959 return -EINVAL; 2960 } 2961 2962 struct io_tctx_exit { 2963 struct callback_head task_work; 2964 struct completion completion; 2965 struct io_ring_ctx *ctx; 2966 }; 2967 2968 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2969 { 2970 struct io_uring_task *tctx = current->io_uring; 2971 struct io_tctx_exit *work; 2972 2973 work = container_of(cb, struct io_tctx_exit, task_work); 2974 /* 2975 * When @in_cancel, we're in cancellation and it's racy to remove the 2976 * node. It'll be removed by the end of cancellation, just ignore it. 2977 * tctx can be NULL if the queueing of this task_work raced with 2978 * work cancelation off the exec path. 2979 */ 2980 if (tctx && !atomic_read(&tctx->in_cancel)) 2981 io_uring_del_tctx_node((unsigned long)work->ctx); 2982 complete(&work->completion); 2983 } 2984 2985 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2986 { 2987 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2988 2989 return req->ctx == data; 2990 } 2991 2992 static __cold void io_ring_exit_work(struct work_struct *work) 2993 { 2994 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2995 unsigned long timeout = jiffies + HZ * 60 * 5; 2996 unsigned long interval = HZ / 20; 2997 struct io_tctx_exit exit; 2998 struct io_tctx_node *node; 2999 int ret; 3000 3001 /* 3002 * If we're doing polled IO and end up having requests being 3003 * submitted async (out-of-line), then completions can come in while 3004 * we're waiting for refs to drop. We need to reap these manually, 3005 * as nobody else will be looking for them. 3006 */ 3007 do { 3008 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 3009 mutex_lock(&ctx->uring_lock); 3010 io_cqring_overflow_kill(ctx); 3011 mutex_unlock(&ctx->uring_lock); 3012 } 3013 3014 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3015 io_move_task_work_from_local(ctx); 3016 3017 while (io_uring_try_cancel_requests(ctx, NULL, true)) 3018 cond_resched(); 3019 3020 if (ctx->sq_data) { 3021 struct io_sq_data *sqd = ctx->sq_data; 3022 struct task_struct *tsk; 3023 3024 io_sq_thread_park(sqd); 3025 tsk = sqd->thread; 3026 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 3027 io_wq_cancel_cb(tsk->io_uring->io_wq, 3028 io_cancel_ctx_cb, ctx, true); 3029 io_sq_thread_unpark(sqd); 3030 } 3031 3032 io_req_caches_free(ctx); 3033 3034 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3035 /* there is little hope left, don't run it too often */ 3036 interval = HZ * 60; 3037 } 3038 /* 3039 * This is really an uninterruptible wait, as it has to be 3040 * complete. But it's also run from a kworker, which doesn't 3041 * take signals, so it's fine to make it interruptible. This 3042 * avoids scenarios where we knowingly can wait much longer 3043 * on completions, for example if someone does a SIGSTOP on 3044 * a task that needs to finish task_work to make this loop 3045 * complete. That's a synthetic situation that should not 3046 * cause a stuck task backtrace, and hence a potential panic 3047 * on stuck tasks if that is enabled. 3048 */ 3049 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 3050 3051 init_completion(&exit.completion); 3052 init_task_work(&exit.task_work, io_tctx_exit_cb); 3053 exit.ctx = ctx; 3054 /* 3055 * Some may use context even when all refs and requests have been put, 3056 * and they are free to do so while still holding uring_lock or 3057 * completion_lock, see io_req_task_submit(). Apart from other work, 3058 * this lock/unlock section also waits them to finish. 3059 */ 3060 mutex_lock(&ctx->uring_lock); 3061 while (!list_empty(&ctx->tctx_list)) { 3062 WARN_ON_ONCE(time_after(jiffies, timeout)); 3063 3064 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3065 ctx_node); 3066 /* don't spin on a single task if cancellation failed */ 3067 list_rotate_left(&ctx->tctx_list); 3068 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3069 if (WARN_ON_ONCE(ret)) 3070 continue; 3071 3072 mutex_unlock(&ctx->uring_lock); 3073 /* 3074 * See comment above for 3075 * wait_for_completion_interruptible_timeout() on why this 3076 * wait is marked as interruptible. 3077 */ 3078 wait_for_completion_interruptible(&exit.completion); 3079 mutex_lock(&ctx->uring_lock); 3080 } 3081 mutex_unlock(&ctx->uring_lock); 3082 spin_lock(&ctx->completion_lock); 3083 spin_unlock(&ctx->completion_lock); 3084 3085 /* pairs with RCU read section in io_req_local_work_add() */ 3086 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3087 synchronize_rcu(); 3088 3089 io_ring_ctx_free(ctx); 3090 } 3091 3092 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3093 { 3094 unsigned long index; 3095 struct creds *creds; 3096 3097 mutex_lock(&ctx->uring_lock); 3098 percpu_ref_kill(&ctx->refs); 3099 xa_for_each(&ctx->personalities, index, creds) 3100 io_unregister_personality(ctx, index); 3101 if (ctx->rings) 3102 io_poll_remove_all(ctx, NULL, true); 3103 mutex_unlock(&ctx->uring_lock); 3104 3105 /* 3106 * If we failed setting up the ctx, we might not have any rings 3107 * and therefore did not submit any requests 3108 */ 3109 if (ctx->rings) 3110 io_kill_timeouts(ctx, NULL, true); 3111 3112 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3113 /* 3114 * Use system_unbound_wq to avoid spawning tons of event kworkers 3115 * if we're exiting a ton of rings at the same time. It just adds 3116 * noise and overhead, there's no discernable change in runtime 3117 * over using system_wq. 3118 */ 3119 queue_work(system_unbound_wq, &ctx->exit_work); 3120 } 3121 3122 static int io_uring_release(struct inode *inode, struct file *file) 3123 { 3124 struct io_ring_ctx *ctx = file->private_data; 3125 3126 file->private_data = NULL; 3127 io_ring_ctx_wait_and_kill(ctx); 3128 return 0; 3129 } 3130 3131 struct io_task_cancel { 3132 struct task_struct *task; 3133 bool all; 3134 }; 3135 3136 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3137 { 3138 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3139 struct io_task_cancel *cancel = data; 3140 3141 return io_match_task_safe(req, cancel->task, cancel->all); 3142 } 3143 3144 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3145 struct task_struct *task, 3146 bool cancel_all) 3147 { 3148 struct io_defer_entry *de; 3149 LIST_HEAD(list); 3150 3151 spin_lock(&ctx->completion_lock); 3152 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3153 if (io_match_task_safe(de->req, task, cancel_all)) { 3154 list_cut_position(&list, &ctx->defer_list, &de->list); 3155 break; 3156 } 3157 } 3158 spin_unlock(&ctx->completion_lock); 3159 if (list_empty(&list)) 3160 return false; 3161 3162 while (!list_empty(&list)) { 3163 de = list_first_entry(&list, struct io_defer_entry, list); 3164 list_del_init(&de->list); 3165 io_req_task_queue_fail(de->req, -ECANCELED); 3166 kfree(de); 3167 } 3168 return true; 3169 } 3170 3171 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3172 { 3173 struct io_tctx_node *node; 3174 enum io_wq_cancel cret; 3175 bool ret = false; 3176 3177 mutex_lock(&ctx->uring_lock); 3178 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3179 struct io_uring_task *tctx = node->task->io_uring; 3180 3181 /* 3182 * io_wq will stay alive while we hold uring_lock, because it's 3183 * killed after ctx nodes, which requires to take the lock. 3184 */ 3185 if (!tctx || !tctx->io_wq) 3186 continue; 3187 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3188 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3189 } 3190 mutex_unlock(&ctx->uring_lock); 3191 3192 return ret; 3193 } 3194 3195 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3196 struct task_struct *task, 3197 bool cancel_all) 3198 { 3199 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3200 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3201 enum io_wq_cancel cret; 3202 bool ret = false; 3203 3204 /* set it so io_req_local_work_add() would wake us up */ 3205 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3206 atomic_set(&ctx->cq_wait_nr, 1); 3207 smp_mb(); 3208 } 3209 3210 /* failed during ring init, it couldn't have issued any requests */ 3211 if (!ctx->rings) 3212 return false; 3213 3214 if (!task) { 3215 ret |= io_uring_try_cancel_iowq(ctx); 3216 } else if (tctx && tctx->io_wq) { 3217 /* 3218 * Cancels requests of all rings, not only @ctx, but 3219 * it's fine as the task is in exit/exec. 3220 */ 3221 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3222 &cancel, true); 3223 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3224 } 3225 3226 /* SQPOLL thread does its own polling */ 3227 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3228 (ctx->sq_data && ctx->sq_data->thread == current)) { 3229 while (!wq_list_empty(&ctx->iopoll_list)) { 3230 io_iopoll_try_reap_events(ctx); 3231 ret = true; 3232 cond_resched(); 3233 } 3234 } 3235 3236 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3237 io_allowed_defer_tw_run(ctx)) 3238 ret |= io_run_local_work(ctx) > 0; 3239 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3240 mutex_lock(&ctx->uring_lock); 3241 ret |= io_poll_remove_all(ctx, task, cancel_all); 3242 mutex_unlock(&ctx->uring_lock); 3243 ret |= io_kill_timeouts(ctx, task, cancel_all); 3244 if (task) 3245 ret |= io_run_task_work() > 0; 3246 return ret; 3247 } 3248 3249 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3250 { 3251 if (tracked) 3252 return atomic_read(&tctx->inflight_tracked); 3253 return percpu_counter_sum(&tctx->inflight); 3254 } 3255 3256 /* 3257 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3258 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3259 */ 3260 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3261 { 3262 struct io_uring_task *tctx = current->io_uring; 3263 struct io_ring_ctx *ctx; 3264 struct io_tctx_node *node; 3265 unsigned long index; 3266 s64 inflight; 3267 DEFINE_WAIT(wait); 3268 3269 WARN_ON_ONCE(sqd && sqd->thread != current); 3270 3271 if (!current->io_uring) 3272 return; 3273 if (tctx->io_wq) 3274 io_wq_exit_start(tctx->io_wq); 3275 3276 atomic_inc(&tctx->in_cancel); 3277 do { 3278 bool loop = false; 3279 3280 io_uring_drop_tctx_refs(current); 3281 /* read completions before cancelations */ 3282 inflight = tctx_inflight(tctx, !cancel_all); 3283 if (!inflight) 3284 break; 3285 3286 if (!sqd) { 3287 xa_for_each(&tctx->xa, index, node) { 3288 /* sqpoll task will cancel all its requests */ 3289 if (node->ctx->sq_data) 3290 continue; 3291 loop |= io_uring_try_cancel_requests(node->ctx, 3292 current, cancel_all); 3293 } 3294 } else { 3295 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3296 loop |= io_uring_try_cancel_requests(ctx, 3297 current, 3298 cancel_all); 3299 } 3300 3301 if (loop) { 3302 cond_resched(); 3303 continue; 3304 } 3305 3306 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3307 io_run_task_work(); 3308 io_uring_drop_tctx_refs(current); 3309 xa_for_each(&tctx->xa, index, node) { 3310 if (!llist_empty(&node->ctx->work_llist)) { 3311 WARN_ON_ONCE(node->ctx->submitter_task && 3312 node->ctx->submitter_task != current); 3313 goto end_wait; 3314 } 3315 } 3316 /* 3317 * If we've seen completions, retry without waiting. This 3318 * avoids a race where a completion comes in before we did 3319 * prepare_to_wait(). 3320 */ 3321 if (inflight == tctx_inflight(tctx, !cancel_all)) 3322 schedule(); 3323 end_wait: 3324 finish_wait(&tctx->wait, &wait); 3325 } while (1); 3326 3327 io_uring_clean_tctx(tctx); 3328 if (cancel_all) { 3329 /* 3330 * We shouldn't run task_works after cancel, so just leave 3331 * ->in_cancel set for normal exit. 3332 */ 3333 atomic_dec(&tctx->in_cancel); 3334 /* for exec all current's requests should be gone, kill tctx */ 3335 __io_uring_free(current); 3336 } 3337 } 3338 3339 void __io_uring_cancel(bool cancel_all) 3340 { 3341 io_uring_cancel_generic(cancel_all, NULL); 3342 } 3343 3344 static void *io_uring_validate_mmap_request(struct file *file, 3345 loff_t pgoff, size_t sz) 3346 { 3347 struct io_ring_ctx *ctx = file->private_data; 3348 loff_t offset = pgoff << PAGE_SHIFT; 3349 struct page *page; 3350 void *ptr; 3351 3352 /* Don't allow mmap if the ring was setup without it */ 3353 if (ctx->flags & IORING_SETUP_NO_MMAP) 3354 return ERR_PTR(-EINVAL); 3355 3356 switch (offset & IORING_OFF_MMAP_MASK) { 3357 case IORING_OFF_SQ_RING: 3358 case IORING_OFF_CQ_RING: 3359 ptr = ctx->rings; 3360 break; 3361 case IORING_OFF_SQES: 3362 ptr = ctx->sq_sqes; 3363 break; 3364 case IORING_OFF_PBUF_RING: { 3365 unsigned int bgid; 3366 3367 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; 3368 mutex_lock(&ctx->uring_lock); 3369 ptr = io_pbuf_get_address(ctx, bgid); 3370 mutex_unlock(&ctx->uring_lock); 3371 if (!ptr) 3372 return ERR_PTR(-EINVAL); 3373 break; 3374 } 3375 default: 3376 return ERR_PTR(-EINVAL); 3377 } 3378 3379 page = virt_to_head_page(ptr); 3380 if (sz > page_size(page)) 3381 return ERR_PTR(-EINVAL); 3382 3383 return ptr; 3384 } 3385 3386 #ifdef CONFIG_MMU 3387 3388 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3389 { 3390 size_t sz = vma->vm_end - vma->vm_start; 3391 unsigned long pfn; 3392 void *ptr; 3393 3394 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3395 if (IS_ERR(ptr)) 3396 return PTR_ERR(ptr); 3397 3398 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3399 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3400 } 3401 3402 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, 3403 unsigned long addr, unsigned long len, 3404 unsigned long pgoff, unsigned long flags) 3405 { 3406 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 3407 struct vm_unmapped_area_info info; 3408 void *ptr; 3409 3410 /* 3411 * Do not allow to map to user-provided address to avoid breaking the 3412 * aliasing rules. Userspace is not able to guess the offset address of 3413 * kernel kmalloc()ed memory area. 3414 */ 3415 if (addr) 3416 return -EINVAL; 3417 3418 ptr = io_uring_validate_mmap_request(filp, pgoff, len); 3419 if (IS_ERR(ptr)) 3420 return -ENOMEM; 3421 3422 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 3423 info.length = len; 3424 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 3425 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base); 3426 #ifdef SHM_COLOUR 3427 info.align_mask = PAGE_MASK & (SHM_COLOUR - 1UL); 3428 #else 3429 info.align_mask = PAGE_MASK & (SHMLBA - 1UL); 3430 #endif 3431 info.align_offset = (unsigned long) ptr; 3432 3433 /* 3434 * A failed mmap() very likely causes application failure, 3435 * so fall back to the bottom-up function here. This scenario 3436 * can happen with large stack limits and large mmap() 3437 * allocations. 3438 */ 3439 addr = vm_unmapped_area(&info); 3440 if (offset_in_page(addr)) { 3441 info.flags = 0; 3442 info.low_limit = TASK_UNMAPPED_BASE; 3443 info.high_limit = mmap_end; 3444 addr = vm_unmapped_area(&info); 3445 } 3446 3447 return addr; 3448 } 3449 3450 #else /* !CONFIG_MMU */ 3451 3452 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3453 { 3454 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3455 } 3456 3457 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3458 { 3459 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3460 } 3461 3462 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3463 unsigned long addr, unsigned long len, 3464 unsigned long pgoff, unsigned long flags) 3465 { 3466 void *ptr; 3467 3468 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3469 if (IS_ERR(ptr)) 3470 return PTR_ERR(ptr); 3471 3472 return (unsigned long) ptr; 3473 } 3474 3475 #endif /* !CONFIG_MMU */ 3476 3477 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3478 { 3479 if (flags & IORING_ENTER_EXT_ARG) { 3480 struct io_uring_getevents_arg arg; 3481 3482 if (argsz != sizeof(arg)) 3483 return -EINVAL; 3484 if (copy_from_user(&arg, argp, sizeof(arg))) 3485 return -EFAULT; 3486 } 3487 return 0; 3488 } 3489 3490 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3491 struct __kernel_timespec __user **ts, 3492 const sigset_t __user **sig) 3493 { 3494 struct io_uring_getevents_arg arg; 3495 3496 /* 3497 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3498 * is just a pointer to the sigset_t. 3499 */ 3500 if (!(flags & IORING_ENTER_EXT_ARG)) { 3501 *sig = (const sigset_t __user *) argp; 3502 *ts = NULL; 3503 return 0; 3504 } 3505 3506 /* 3507 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3508 * timespec and sigset_t pointers if good. 3509 */ 3510 if (*argsz != sizeof(arg)) 3511 return -EINVAL; 3512 if (copy_from_user(&arg, argp, sizeof(arg))) 3513 return -EFAULT; 3514 if (arg.pad) 3515 return -EINVAL; 3516 *sig = u64_to_user_ptr(arg.sigmask); 3517 *argsz = arg.sigmask_sz; 3518 *ts = u64_to_user_ptr(arg.ts); 3519 return 0; 3520 } 3521 3522 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3523 u32, min_complete, u32, flags, const void __user *, argp, 3524 size_t, argsz) 3525 { 3526 struct io_ring_ctx *ctx; 3527 struct fd f; 3528 long ret; 3529 3530 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3531 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3532 IORING_ENTER_REGISTERED_RING))) 3533 return -EINVAL; 3534 3535 /* 3536 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3537 * need only dereference our task private array to find it. 3538 */ 3539 if (flags & IORING_ENTER_REGISTERED_RING) { 3540 struct io_uring_task *tctx = current->io_uring; 3541 3542 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3543 return -EINVAL; 3544 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3545 f.file = tctx->registered_rings[fd]; 3546 f.flags = 0; 3547 if (unlikely(!f.file)) 3548 return -EBADF; 3549 } else { 3550 f = fdget(fd); 3551 if (unlikely(!f.file)) 3552 return -EBADF; 3553 ret = -EOPNOTSUPP; 3554 if (unlikely(!io_is_uring_fops(f.file))) 3555 goto out; 3556 } 3557 3558 ctx = f.file->private_data; 3559 ret = -EBADFD; 3560 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3561 goto out; 3562 3563 /* 3564 * For SQ polling, the thread will do all submissions and completions. 3565 * Just return the requested submit count, and wake the thread if 3566 * we were asked to. 3567 */ 3568 ret = 0; 3569 if (ctx->flags & IORING_SETUP_SQPOLL) { 3570 io_cqring_overflow_flush(ctx); 3571 3572 if (unlikely(ctx->sq_data->thread == NULL)) { 3573 ret = -EOWNERDEAD; 3574 goto out; 3575 } 3576 if (flags & IORING_ENTER_SQ_WAKEUP) 3577 wake_up(&ctx->sq_data->wait); 3578 if (flags & IORING_ENTER_SQ_WAIT) 3579 io_sqpoll_wait_sq(ctx); 3580 3581 ret = to_submit; 3582 } else if (to_submit) { 3583 ret = io_uring_add_tctx_node(ctx); 3584 if (unlikely(ret)) 3585 goto out; 3586 3587 mutex_lock(&ctx->uring_lock); 3588 ret = io_submit_sqes(ctx, to_submit); 3589 if (ret != to_submit) { 3590 mutex_unlock(&ctx->uring_lock); 3591 goto out; 3592 } 3593 if (flags & IORING_ENTER_GETEVENTS) { 3594 if (ctx->syscall_iopoll) 3595 goto iopoll_locked; 3596 /* 3597 * Ignore errors, we'll soon call io_cqring_wait() and 3598 * it should handle ownership problems if any. 3599 */ 3600 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3601 (void)io_run_local_work_locked(ctx); 3602 } 3603 mutex_unlock(&ctx->uring_lock); 3604 } 3605 3606 if (flags & IORING_ENTER_GETEVENTS) { 3607 int ret2; 3608 3609 if (ctx->syscall_iopoll) { 3610 /* 3611 * We disallow the app entering submit/complete with 3612 * polling, but we still need to lock the ring to 3613 * prevent racing with polled issue that got punted to 3614 * a workqueue. 3615 */ 3616 mutex_lock(&ctx->uring_lock); 3617 iopoll_locked: 3618 ret2 = io_validate_ext_arg(flags, argp, argsz); 3619 if (likely(!ret2)) { 3620 min_complete = min(min_complete, 3621 ctx->cq_entries); 3622 ret2 = io_iopoll_check(ctx, min_complete); 3623 } 3624 mutex_unlock(&ctx->uring_lock); 3625 } else { 3626 const sigset_t __user *sig; 3627 struct __kernel_timespec __user *ts; 3628 3629 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3630 if (likely(!ret2)) { 3631 min_complete = min(min_complete, 3632 ctx->cq_entries); 3633 ret2 = io_cqring_wait(ctx, min_complete, sig, 3634 argsz, ts); 3635 } 3636 } 3637 3638 if (!ret) { 3639 ret = ret2; 3640 3641 /* 3642 * EBADR indicates that one or more CQE were dropped. 3643 * Once the user has been informed we can clear the bit 3644 * as they are obviously ok with those drops. 3645 */ 3646 if (unlikely(ret2 == -EBADR)) 3647 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3648 &ctx->check_cq); 3649 } 3650 } 3651 out: 3652 fdput(f); 3653 return ret; 3654 } 3655 3656 static const struct file_operations io_uring_fops = { 3657 .release = io_uring_release, 3658 .mmap = io_uring_mmap, 3659 #ifndef CONFIG_MMU 3660 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3661 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3662 #else 3663 .get_unmapped_area = io_uring_mmu_get_unmapped_area, 3664 #endif 3665 .poll = io_uring_poll, 3666 #ifdef CONFIG_PROC_FS 3667 .show_fdinfo = io_uring_show_fdinfo, 3668 #endif 3669 }; 3670 3671 bool io_is_uring_fops(struct file *file) 3672 { 3673 return file->f_op == &io_uring_fops; 3674 } 3675 3676 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3677 struct io_uring_params *p) 3678 { 3679 struct io_rings *rings; 3680 size_t size, sq_array_offset; 3681 void *ptr; 3682 3683 /* make sure these are sane, as we already accounted them */ 3684 ctx->sq_entries = p->sq_entries; 3685 ctx->cq_entries = p->cq_entries; 3686 3687 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3688 if (size == SIZE_MAX) 3689 return -EOVERFLOW; 3690 3691 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3692 rings = io_mem_alloc(size); 3693 else 3694 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3695 3696 if (IS_ERR(rings)) 3697 return PTR_ERR(rings); 3698 3699 ctx->rings = rings; 3700 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3701 rings->sq_ring_mask = p->sq_entries - 1; 3702 rings->cq_ring_mask = p->cq_entries - 1; 3703 rings->sq_ring_entries = p->sq_entries; 3704 rings->cq_ring_entries = p->cq_entries; 3705 3706 if (p->flags & IORING_SETUP_SQE128) 3707 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3708 else 3709 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3710 if (size == SIZE_MAX) { 3711 io_rings_free(ctx); 3712 return -EOVERFLOW; 3713 } 3714 3715 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3716 ptr = io_mem_alloc(size); 3717 else 3718 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3719 3720 if (IS_ERR(ptr)) { 3721 io_rings_free(ctx); 3722 return PTR_ERR(ptr); 3723 } 3724 3725 ctx->sq_sqes = ptr; 3726 return 0; 3727 } 3728 3729 static int io_uring_install_fd(struct file *file) 3730 { 3731 int fd; 3732 3733 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3734 if (fd < 0) 3735 return fd; 3736 fd_install(fd, file); 3737 return fd; 3738 } 3739 3740 /* 3741 * Allocate an anonymous fd, this is what constitutes the application 3742 * visible backing of an io_uring instance. The application mmaps this 3743 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3744 * we have to tie this fd to a socket for file garbage collection purposes. 3745 */ 3746 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3747 { 3748 struct file *file; 3749 #if defined(CONFIG_UNIX) 3750 int ret; 3751 3752 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3753 &ctx->ring_sock); 3754 if (ret) 3755 return ERR_PTR(ret); 3756 #endif 3757 3758 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3759 O_RDWR | O_CLOEXEC, NULL); 3760 #if defined(CONFIG_UNIX) 3761 if (IS_ERR(file)) { 3762 sock_release(ctx->ring_sock); 3763 ctx->ring_sock = NULL; 3764 } else { 3765 ctx->ring_sock->file = file; 3766 } 3767 #endif 3768 return file; 3769 } 3770 3771 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3772 struct io_uring_params __user *params) 3773 { 3774 struct io_ring_ctx *ctx; 3775 struct io_uring_task *tctx; 3776 struct file *file; 3777 int ret; 3778 3779 if (!entries) 3780 return -EINVAL; 3781 if (entries > IORING_MAX_ENTRIES) { 3782 if (!(p->flags & IORING_SETUP_CLAMP)) 3783 return -EINVAL; 3784 entries = IORING_MAX_ENTRIES; 3785 } 3786 3787 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3788 && !(p->flags & IORING_SETUP_NO_MMAP)) 3789 return -EINVAL; 3790 3791 /* 3792 * Use twice as many entries for the CQ ring. It's possible for the 3793 * application to drive a higher depth than the size of the SQ ring, 3794 * since the sqes are only used at submission time. This allows for 3795 * some flexibility in overcommitting a bit. If the application has 3796 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3797 * of CQ ring entries manually. 3798 */ 3799 p->sq_entries = roundup_pow_of_two(entries); 3800 if (p->flags & IORING_SETUP_CQSIZE) { 3801 /* 3802 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3803 * to a power-of-two, if it isn't already. We do NOT impose 3804 * any cq vs sq ring sizing. 3805 */ 3806 if (!p->cq_entries) 3807 return -EINVAL; 3808 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3809 if (!(p->flags & IORING_SETUP_CLAMP)) 3810 return -EINVAL; 3811 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3812 } 3813 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3814 if (p->cq_entries < p->sq_entries) 3815 return -EINVAL; 3816 } else { 3817 p->cq_entries = 2 * p->sq_entries; 3818 } 3819 3820 ctx = io_ring_ctx_alloc(p); 3821 if (!ctx) 3822 return -ENOMEM; 3823 3824 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3825 !(ctx->flags & IORING_SETUP_IOPOLL) && 3826 !(ctx->flags & IORING_SETUP_SQPOLL)) 3827 ctx->task_complete = true; 3828 3829 /* 3830 * lazy poll_wq activation relies on ->task_complete for synchronisation 3831 * purposes, see io_activate_pollwq() 3832 */ 3833 if (!ctx->task_complete) 3834 ctx->poll_activated = true; 3835 3836 /* 3837 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3838 * space applications don't need to do io completion events 3839 * polling again, they can rely on io_sq_thread to do polling 3840 * work, which can reduce cpu usage and uring_lock contention. 3841 */ 3842 if (ctx->flags & IORING_SETUP_IOPOLL && 3843 !(ctx->flags & IORING_SETUP_SQPOLL)) 3844 ctx->syscall_iopoll = 1; 3845 3846 ctx->compat = in_compat_syscall(); 3847 if (!capable(CAP_IPC_LOCK)) 3848 ctx->user = get_uid(current_user()); 3849 3850 /* 3851 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3852 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3853 */ 3854 ret = -EINVAL; 3855 if (ctx->flags & IORING_SETUP_SQPOLL) { 3856 /* IPI related flags don't make sense with SQPOLL */ 3857 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3858 IORING_SETUP_TASKRUN_FLAG | 3859 IORING_SETUP_DEFER_TASKRUN)) 3860 goto err; 3861 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3862 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3863 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3864 } else { 3865 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3866 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3867 goto err; 3868 ctx->notify_method = TWA_SIGNAL; 3869 } 3870 3871 /* 3872 * For DEFER_TASKRUN we require the completion task to be the same as the 3873 * submission task. This implies that there is only one submitter, so enforce 3874 * that. 3875 */ 3876 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3877 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3878 goto err; 3879 } 3880 3881 /* 3882 * This is just grabbed for accounting purposes. When a process exits, 3883 * the mm is exited and dropped before the files, hence we need to hang 3884 * on to this mm purely for the purposes of being able to unaccount 3885 * memory (locked/pinned vm). It's not used for anything else. 3886 */ 3887 mmgrab(current->mm); 3888 ctx->mm_account = current->mm; 3889 3890 ret = io_allocate_scq_urings(ctx, p); 3891 if (ret) 3892 goto err; 3893 3894 ret = io_sq_offload_create(ctx, p); 3895 if (ret) 3896 goto err; 3897 3898 ret = io_rsrc_init(ctx); 3899 if (ret) 3900 goto err; 3901 3902 p->sq_off.head = offsetof(struct io_rings, sq.head); 3903 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3904 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3905 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3906 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3907 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3908 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3909 p->sq_off.resv1 = 0; 3910 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3911 p->sq_off.user_addr = 0; 3912 3913 p->cq_off.head = offsetof(struct io_rings, cq.head); 3914 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3915 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3916 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3917 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3918 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3919 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3920 p->cq_off.resv1 = 0; 3921 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3922 p->cq_off.user_addr = 0; 3923 3924 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3925 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3926 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3927 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3928 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3929 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3930 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 3931 3932 if (copy_to_user(params, p, sizeof(*p))) { 3933 ret = -EFAULT; 3934 goto err; 3935 } 3936 3937 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3938 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3939 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3940 3941 file = io_uring_get_file(ctx); 3942 if (IS_ERR(file)) { 3943 ret = PTR_ERR(file); 3944 goto err; 3945 } 3946 3947 ret = __io_uring_add_tctx_node(ctx); 3948 if (ret) 3949 goto err_fput; 3950 tctx = current->io_uring; 3951 3952 /* 3953 * Install ring fd as the very last thing, so we don't risk someone 3954 * having closed it before we finish setup 3955 */ 3956 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3957 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3958 else 3959 ret = io_uring_install_fd(file); 3960 if (ret < 0) 3961 goto err_fput; 3962 3963 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3964 return ret; 3965 err: 3966 io_ring_ctx_wait_and_kill(ctx); 3967 return ret; 3968 err_fput: 3969 fput(file); 3970 return ret; 3971 } 3972 3973 /* 3974 * Sets up an aio uring context, and returns the fd. Applications asks for a 3975 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3976 * params structure passed in. 3977 */ 3978 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3979 { 3980 struct io_uring_params p; 3981 int i; 3982 3983 if (copy_from_user(&p, params, sizeof(p))) 3984 return -EFAULT; 3985 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3986 if (p.resv[i]) 3987 return -EINVAL; 3988 } 3989 3990 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3991 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3992 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3993 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3994 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3995 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3996 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 3997 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY)) 3998 return -EINVAL; 3999 4000 return io_uring_create(entries, &p, params); 4001 } 4002 4003 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 4004 struct io_uring_params __user *, params) 4005 { 4006 return io_uring_setup(entries, params); 4007 } 4008 4009 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 4010 unsigned nr_args) 4011 { 4012 struct io_uring_probe *p; 4013 size_t size; 4014 int i, ret; 4015 4016 size = struct_size(p, ops, nr_args); 4017 if (size == SIZE_MAX) 4018 return -EOVERFLOW; 4019 p = kzalloc(size, GFP_KERNEL); 4020 if (!p) 4021 return -ENOMEM; 4022 4023 ret = -EFAULT; 4024 if (copy_from_user(p, arg, size)) 4025 goto out; 4026 ret = -EINVAL; 4027 if (memchr_inv(p, 0, size)) 4028 goto out; 4029 4030 p->last_op = IORING_OP_LAST - 1; 4031 if (nr_args > IORING_OP_LAST) 4032 nr_args = IORING_OP_LAST; 4033 4034 for (i = 0; i < nr_args; i++) { 4035 p->ops[i].op = i; 4036 if (!io_issue_defs[i].not_supported) 4037 p->ops[i].flags = IO_URING_OP_SUPPORTED; 4038 } 4039 p->ops_len = i; 4040 4041 ret = 0; 4042 if (copy_to_user(arg, p, size)) 4043 ret = -EFAULT; 4044 out: 4045 kfree(p); 4046 return ret; 4047 } 4048 4049 static int io_register_personality(struct io_ring_ctx *ctx) 4050 { 4051 const struct cred *creds; 4052 u32 id; 4053 int ret; 4054 4055 creds = get_current_cred(); 4056 4057 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 4058 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 4059 if (ret < 0) { 4060 put_cred(creds); 4061 return ret; 4062 } 4063 return id; 4064 } 4065 4066 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 4067 void __user *arg, unsigned int nr_args) 4068 { 4069 struct io_uring_restriction *res; 4070 size_t size; 4071 int i, ret; 4072 4073 /* Restrictions allowed only if rings started disabled */ 4074 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4075 return -EBADFD; 4076 4077 /* We allow only a single restrictions registration */ 4078 if (ctx->restrictions.registered) 4079 return -EBUSY; 4080 4081 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 4082 return -EINVAL; 4083 4084 size = array_size(nr_args, sizeof(*res)); 4085 if (size == SIZE_MAX) 4086 return -EOVERFLOW; 4087 4088 res = memdup_user(arg, size); 4089 if (IS_ERR(res)) 4090 return PTR_ERR(res); 4091 4092 ret = 0; 4093 4094 for (i = 0; i < nr_args; i++) { 4095 switch (res[i].opcode) { 4096 case IORING_RESTRICTION_REGISTER_OP: 4097 if (res[i].register_op >= IORING_REGISTER_LAST) { 4098 ret = -EINVAL; 4099 goto out; 4100 } 4101 4102 __set_bit(res[i].register_op, 4103 ctx->restrictions.register_op); 4104 break; 4105 case IORING_RESTRICTION_SQE_OP: 4106 if (res[i].sqe_op >= IORING_OP_LAST) { 4107 ret = -EINVAL; 4108 goto out; 4109 } 4110 4111 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 4112 break; 4113 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 4114 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 4115 break; 4116 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 4117 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 4118 break; 4119 default: 4120 ret = -EINVAL; 4121 goto out; 4122 } 4123 } 4124 4125 out: 4126 /* Reset all restrictions if an error happened */ 4127 if (ret != 0) 4128 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 4129 else 4130 ctx->restrictions.registered = true; 4131 4132 kfree(res); 4133 return ret; 4134 } 4135 4136 static int io_register_enable_rings(struct io_ring_ctx *ctx) 4137 { 4138 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4139 return -EBADFD; 4140 4141 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) { 4142 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4143 /* 4144 * Lazy activation attempts would fail if it was polled before 4145 * submitter_task is set. 4146 */ 4147 if (wq_has_sleeper(&ctx->poll_wq)) 4148 io_activate_pollwq(ctx); 4149 } 4150 4151 if (ctx->restrictions.registered) 4152 ctx->restricted = 1; 4153 4154 ctx->flags &= ~IORING_SETUP_R_DISABLED; 4155 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 4156 wake_up(&ctx->sq_data->wait); 4157 return 0; 4158 } 4159 4160 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 4161 void __user *arg, unsigned len) 4162 { 4163 struct io_uring_task *tctx = current->io_uring; 4164 cpumask_var_t new_mask; 4165 int ret; 4166 4167 if (!tctx || !tctx->io_wq) 4168 return -EINVAL; 4169 4170 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4171 return -ENOMEM; 4172 4173 cpumask_clear(new_mask); 4174 if (len > cpumask_size()) 4175 len = cpumask_size(); 4176 4177 if (in_compat_syscall()) { 4178 ret = compat_get_bitmap(cpumask_bits(new_mask), 4179 (const compat_ulong_t __user *)arg, 4180 len * 8 /* CHAR_BIT */); 4181 } else { 4182 ret = copy_from_user(new_mask, arg, len); 4183 } 4184 4185 if (ret) { 4186 free_cpumask_var(new_mask); 4187 return -EFAULT; 4188 } 4189 4190 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask); 4191 free_cpumask_var(new_mask); 4192 return ret; 4193 } 4194 4195 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 4196 { 4197 struct io_uring_task *tctx = current->io_uring; 4198 4199 if (!tctx || !tctx->io_wq) 4200 return -EINVAL; 4201 4202 return io_wq_cpu_affinity(tctx->io_wq, NULL); 4203 } 4204 4205 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 4206 void __user *arg) 4207 __must_hold(&ctx->uring_lock) 4208 { 4209 struct io_tctx_node *node; 4210 struct io_uring_task *tctx = NULL; 4211 struct io_sq_data *sqd = NULL; 4212 __u32 new_count[2]; 4213 int i, ret; 4214 4215 if (copy_from_user(new_count, arg, sizeof(new_count))) 4216 return -EFAULT; 4217 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4218 if (new_count[i] > INT_MAX) 4219 return -EINVAL; 4220 4221 if (ctx->flags & IORING_SETUP_SQPOLL) { 4222 sqd = ctx->sq_data; 4223 if (sqd) { 4224 /* 4225 * Observe the correct sqd->lock -> ctx->uring_lock 4226 * ordering. Fine to drop uring_lock here, we hold 4227 * a ref to the ctx. 4228 */ 4229 refcount_inc(&sqd->refs); 4230 mutex_unlock(&ctx->uring_lock); 4231 mutex_lock(&sqd->lock); 4232 mutex_lock(&ctx->uring_lock); 4233 if (sqd->thread) 4234 tctx = sqd->thread->io_uring; 4235 } 4236 } else { 4237 tctx = current->io_uring; 4238 } 4239 4240 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 4241 4242 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4243 if (new_count[i]) 4244 ctx->iowq_limits[i] = new_count[i]; 4245 ctx->iowq_limits_set = true; 4246 4247 if (tctx && tctx->io_wq) { 4248 ret = io_wq_max_workers(tctx->io_wq, new_count); 4249 if (ret) 4250 goto err; 4251 } else { 4252 memset(new_count, 0, sizeof(new_count)); 4253 } 4254 4255 if (sqd) { 4256 mutex_unlock(&sqd->lock); 4257 io_put_sq_data(sqd); 4258 } 4259 4260 if (copy_to_user(arg, new_count, sizeof(new_count))) 4261 return -EFAULT; 4262 4263 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 4264 if (sqd) 4265 return 0; 4266 4267 /* now propagate the restriction to all registered users */ 4268 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 4269 struct io_uring_task *tctx = node->task->io_uring; 4270 4271 if (WARN_ON_ONCE(!tctx->io_wq)) 4272 continue; 4273 4274 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4275 new_count[i] = ctx->iowq_limits[i]; 4276 /* ignore errors, it always returns zero anyway */ 4277 (void)io_wq_max_workers(tctx->io_wq, new_count); 4278 } 4279 return 0; 4280 err: 4281 if (sqd) { 4282 mutex_unlock(&sqd->lock); 4283 io_put_sq_data(sqd); 4284 } 4285 return ret; 4286 } 4287 4288 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4289 void __user *arg, unsigned nr_args) 4290 __releases(ctx->uring_lock) 4291 __acquires(ctx->uring_lock) 4292 { 4293 int ret; 4294 4295 /* 4296 * We don't quiesce the refs for register anymore and so it can't be 4297 * dying as we're holding a file ref here. 4298 */ 4299 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4300 return -ENXIO; 4301 4302 if (ctx->submitter_task && ctx->submitter_task != current) 4303 return -EEXIST; 4304 4305 if (ctx->restricted) { 4306 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4307 if (!test_bit(opcode, ctx->restrictions.register_op)) 4308 return -EACCES; 4309 } 4310 4311 switch (opcode) { 4312 case IORING_REGISTER_BUFFERS: 4313 ret = -EFAULT; 4314 if (!arg) 4315 break; 4316 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4317 break; 4318 case IORING_UNREGISTER_BUFFERS: 4319 ret = -EINVAL; 4320 if (arg || nr_args) 4321 break; 4322 ret = io_sqe_buffers_unregister(ctx); 4323 break; 4324 case IORING_REGISTER_FILES: 4325 ret = -EFAULT; 4326 if (!arg) 4327 break; 4328 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4329 break; 4330 case IORING_UNREGISTER_FILES: 4331 ret = -EINVAL; 4332 if (arg || nr_args) 4333 break; 4334 ret = io_sqe_files_unregister(ctx); 4335 break; 4336 case IORING_REGISTER_FILES_UPDATE: 4337 ret = io_register_files_update(ctx, arg, nr_args); 4338 break; 4339 case IORING_REGISTER_EVENTFD: 4340 ret = -EINVAL; 4341 if (nr_args != 1) 4342 break; 4343 ret = io_eventfd_register(ctx, arg, 0); 4344 break; 4345 case IORING_REGISTER_EVENTFD_ASYNC: 4346 ret = -EINVAL; 4347 if (nr_args != 1) 4348 break; 4349 ret = io_eventfd_register(ctx, arg, 1); 4350 break; 4351 case IORING_UNREGISTER_EVENTFD: 4352 ret = -EINVAL; 4353 if (arg || nr_args) 4354 break; 4355 ret = io_eventfd_unregister(ctx); 4356 break; 4357 case IORING_REGISTER_PROBE: 4358 ret = -EINVAL; 4359 if (!arg || nr_args > 256) 4360 break; 4361 ret = io_probe(ctx, arg, nr_args); 4362 break; 4363 case IORING_REGISTER_PERSONALITY: 4364 ret = -EINVAL; 4365 if (arg || nr_args) 4366 break; 4367 ret = io_register_personality(ctx); 4368 break; 4369 case IORING_UNREGISTER_PERSONALITY: 4370 ret = -EINVAL; 4371 if (arg) 4372 break; 4373 ret = io_unregister_personality(ctx, nr_args); 4374 break; 4375 case IORING_REGISTER_ENABLE_RINGS: 4376 ret = -EINVAL; 4377 if (arg || nr_args) 4378 break; 4379 ret = io_register_enable_rings(ctx); 4380 break; 4381 case IORING_REGISTER_RESTRICTIONS: 4382 ret = io_register_restrictions(ctx, arg, nr_args); 4383 break; 4384 case IORING_REGISTER_FILES2: 4385 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4386 break; 4387 case IORING_REGISTER_FILES_UPDATE2: 4388 ret = io_register_rsrc_update(ctx, arg, nr_args, 4389 IORING_RSRC_FILE); 4390 break; 4391 case IORING_REGISTER_BUFFERS2: 4392 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4393 break; 4394 case IORING_REGISTER_BUFFERS_UPDATE: 4395 ret = io_register_rsrc_update(ctx, arg, nr_args, 4396 IORING_RSRC_BUFFER); 4397 break; 4398 case IORING_REGISTER_IOWQ_AFF: 4399 ret = -EINVAL; 4400 if (!arg || !nr_args) 4401 break; 4402 ret = io_register_iowq_aff(ctx, arg, nr_args); 4403 break; 4404 case IORING_UNREGISTER_IOWQ_AFF: 4405 ret = -EINVAL; 4406 if (arg || nr_args) 4407 break; 4408 ret = io_unregister_iowq_aff(ctx); 4409 break; 4410 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4411 ret = -EINVAL; 4412 if (!arg || nr_args != 2) 4413 break; 4414 ret = io_register_iowq_max_workers(ctx, arg); 4415 break; 4416 case IORING_REGISTER_RING_FDS: 4417 ret = io_ringfd_register(ctx, arg, nr_args); 4418 break; 4419 case IORING_UNREGISTER_RING_FDS: 4420 ret = io_ringfd_unregister(ctx, arg, nr_args); 4421 break; 4422 case IORING_REGISTER_PBUF_RING: 4423 ret = -EINVAL; 4424 if (!arg || nr_args != 1) 4425 break; 4426 ret = io_register_pbuf_ring(ctx, arg); 4427 break; 4428 case IORING_UNREGISTER_PBUF_RING: 4429 ret = -EINVAL; 4430 if (!arg || nr_args != 1) 4431 break; 4432 ret = io_unregister_pbuf_ring(ctx, arg); 4433 break; 4434 case IORING_REGISTER_SYNC_CANCEL: 4435 ret = -EINVAL; 4436 if (!arg || nr_args != 1) 4437 break; 4438 ret = io_sync_cancel(ctx, arg); 4439 break; 4440 case IORING_REGISTER_FILE_ALLOC_RANGE: 4441 ret = -EINVAL; 4442 if (!arg || nr_args) 4443 break; 4444 ret = io_register_file_alloc_range(ctx, arg); 4445 break; 4446 default: 4447 ret = -EINVAL; 4448 break; 4449 } 4450 4451 return ret; 4452 } 4453 4454 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4455 void __user *, arg, unsigned int, nr_args) 4456 { 4457 struct io_ring_ctx *ctx; 4458 long ret = -EBADF; 4459 struct fd f; 4460 bool use_registered_ring; 4461 4462 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING); 4463 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING; 4464 4465 if (opcode >= IORING_REGISTER_LAST) 4466 return -EINVAL; 4467 4468 if (use_registered_ring) { 4469 /* 4470 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 4471 * need only dereference our task private array to find it. 4472 */ 4473 struct io_uring_task *tctx = current->io_uring; 4474 4475 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 4476 return -EINVAL; 4477 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 4478 f.file = tctx->registered_rings[fd]; 4479 f.flags = 0; 4480 if (unlikely(!f.file)) 4481 return -EBADF; 4482 } else { 4483 f = fdget(fd); 4484 if (unlikely(!f.file)) 4485 return -EBADF; 4486 ret = -EOPNOTSUPP; 4487 if (!io_is_uring_fops(f.file)) 4488 goto out_fput; 4489 } 4490 4491 ctx = f.file->private_data; 4492 4493 mutex_lock(&ctx->uring_lock); 4494 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4495 mutex_unlock(&ctx->uring_lock); 4496 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4497 out_fput: 4498 fdput(f); 4499 return ret; 4500 } 4501 4502 static int __init io_uring_init(void) 4503 { 4504 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4505 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4506 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4507 } while (0) 4508 4509 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4510 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4511 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4512 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4513 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4514 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4515 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4516 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4517 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4518 BUILD_BUG_SQE_ELEM(8, __u64, off); 4519 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4520 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4521 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4522 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4523 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4524 BUILD_BUG_SQE_ELEM(24, __u32, len); 4525 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4526 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4527 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4528 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4529 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4530 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4531 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4532 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4533 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4534 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4535 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4536 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4537 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4538 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4539 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4540 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4541 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4542 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4543 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4544 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4545 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4546 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4547 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4548 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4549 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4550 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4551 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4552 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4553 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4554 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4555 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4556 4557 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4558 sizeof(struct io_uring_rsrc_update)); 4559 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4560 sizeof(struct io_uring_rsrc_update2)); 4561 4562 /* ->buf_index is u16 */ 4563 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4564 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4565 offsetof(struct io_uring_buf_ring, tail)); 4566 4567 /* should fit into one byte */ 4568 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4569 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4570 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4571 4572 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4573 4574 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4575 4576 io_uring_optable_init(); 4577 4578 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4579 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU); 4580 return 0; 4581 }; 4582 __initcall(io_uring_init); 4583