1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 #include <asm/shmparam.h> 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/io_uring.h> 79 80 #include <uapi/linux/io_uring.h> 81 82 #include "io-wq.h" 83 84 #include "io_uring.h" 85 #include "opdef.h" 86 #include "refs.h" 87 #include "tctx.h" 88 #include "sqpoll.h" 89 #include "fdinfo.h" 90 #include "kbuf.h" 91 #include "rsrc.h" 92 #include "cancel.h" 93 #include "net.h" 94 #include "notif.h" 95 96 #include "timeout.h" 97 #include "poll.h" 98 #include "rw.h" 99 #include "alloc_cache.h" 100 101 #define IORING_MAX_ENTRIES 32768 102 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 103 104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 105 IORING_REGISTER_LAST + IORING_OP_LAST) 106 107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 108 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 109 110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 112 113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 115 REQ_F_ASYNC_DATA) 116 117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 118 IO_REQ_CLEAN_FLAGS) 119 120 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 121 122 #define IO_COMPL_BATCH 32 123 #define IO_REQ_ALLOC_BATCH 8 124 125 enum { 126 IO_CHECK_CQ_OVERFLOW_BIT, 127 IO_CHECK_CQ_DROPPED_BIT, 128 }; 129 130 enum { 131 IO_EVENTFD_OP_SIGNAL_BIT, 132 IO_EVENTFD_OP_FREE_BIT, 133 }; 134 135 struct io_defer_entry { 136 struct list_head list; 137 struct io_kiocb *req; 138 u32 seq; 139 }; 140 141 /* requests with any of those set should undergo io_disarm_next() */ 142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 144 145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 146 struct task_struct *task, 147 bool cancel_all); 148 149 static void io_dismantle_req(struct io_kiocb *req); 150 static void io_clean_op(struct io_kiocb *req); 151 static void io_queue_sqe(struct io_kiocb *req); 152 static void io_move_task_work_from_local(struct io_ring_ctx *ctx); 153 static void __io_submit_flush_completions(struct io_ring_ctx *ctx); 154 static __cold void io_fallback_tw(struct io_uring_task *tctx); 155 156 struct kmem_cache *req_cachep; 157 158 struct sock *io_uring_get_socket(struct file *file) 159 { 160 #if defined(CONFIG_UNIX) 161 if (io_is_uring_fops(file)) { 162 struct io_ring_ctx *ctx = file->private_data; 163 164 return ctx->ring_sock->sk; 165 } 166 #endif 167 return NULL; 168 } 169 EXPORT_SYMBOL(io_uring_get_socket); 170 171 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 172 { 173 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 174 ctx->submit_state.cqes_count) 175 __io_submit_flush_completions(ctx); 176 } 177 178 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 179 { 180 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 181 } 182 183 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 184 { 185 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 186 } 187 188 static bool io_match_linked(struct io_kiocb *head) 189 { 190 struct io_kiocb *req; 191 192 io_for_each_link(req, head) { 193 if (req->flags & REQ_F_INFLIGHT) 194 return true; 195 } 196 return false; 197 } 198 199 /* 200 * As io_match_task() but protected against racing with linked timeouts. 201 * User must not hold timeout_lock. 202 */ 203 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 204 bool cancel_all) 205 { 206 bool matched; 207 208 if (task && head->task != task) 209 return false; 210 if (cancel_all) 211 return true; 212 213 if (head->flags & REQ_F_LINK_TIMEOUT) { 214 struct io_ring_ctx *ctx = head->ctx; 215 216 /* protect against races with linked timeouts */ 217 spin_lock_irq(&ctx->timeout_lock); 218 matched = io_match_linked(head); 219 spin_unlock_irq(&ctx->timeout_lock); 220 } else { 221 matched = io_match_linked(head); 222 } 223 return matched; 224 } 225 226 static inline void req_fail_link_node(struct io_kiocb *req, int res) 227 { 228 req_set_fail(req); 229 io_req_set_res(req, res, 0); 230 } 231 232 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 233 { 234 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 235 kasan_poison_object_data(req_cachep, req); 236 } 237 238 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 239 { 240 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 241 242 complete(&ctx->ref_comp); 243 } 244 245 static __cold void io_fallback_req_func(struct work_struct *work) 246 { 247 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 248 fallback_work.work); 249 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 250 struct io_kiocb *req, *tmp; 251 struct io_tw_state ts = { .locked = true, }; 252 253 mutex_lock(&ctx->uring_lock); 254 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 255 req->io_task_work.func(req, &ts); 256 if (WARN_ON_ONCE(!ts.locked)) 257 return; 258 io_submit_flush_completions(ctx); 259 mutex_unlock(&ctx->uring_lock); 260 } 261 262 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 263 { 264 unsigned hash_buckets = 1U << bits; 265 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 266 267 table->hbs = kmalloc(hash_size, GFP_KERNEL); 268 if (!table->hbs) 269 return -ENOMEM; 270 271 table->hash_bits = bits; 272 init_hash_table(table, hash_buckets); 273 return 0; 274 } 275 276 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 277 { 278 struct io_ring_ctx *ctx; 279 int hash_bits; 280 281 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 282 if (!ctx) 283 return NULL; 284 285 xa_init(&ctx->io_bl_xa); 286 287 /* 288 * Use 5 bits less than the max cq entries, that should give us around 289 * 32 entries per hash list if totally full and uniformly spread, but 290 * don't keep too many buckets to not overconsume memory. 291 */ 292 hash_bits = ilog2(p->cq_entries) - 5; 293 hash_bits = clamp(hash_bits, 1, 8); 294 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 295 goto err; 296 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 297 goto err; 298 299 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL); 300 if (!ctx->dummy_ubuf) 301 goto err; 302 /* set invalid range, so io_import_fixed() fails meeting it */ 303 ctx->dummy_ubuf->ubuf = -1UL; 304 305 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 306 0, GFP_KERNEL)) 307 goto err; 308 309 ctx->flags = p->flags; 310 init_waitqueue_head(&ctx->sqo_sq_wait); 311 INIT_LIST_HEAD(&ctx->sqd_list); 312 INIT_LIST_HEAD(&ctx->cq_overflow_list); 313 INIT_LIST_HEAD(&ctx->io_buffers_cache); 314 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 315 sizeof(struct io_rsrc_node)); 316 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, 317 sizeof(struct async_poll)); 318 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 319 sizeof(struct io_async_msghdr)); 320 init_completion(&ctx->ref_comp); 321 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 322 mutex_init(&ctx->uring_lock); 323 init_waitqueue_head(&ctx->cq_wait); 324 init_waitqueue_head(&ctx->poll_wq); 325 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 326 spin_lock_init(&ctx->completion_lock); 327 spin_lock_init(&ctx->timeout_lock); 328 INIT_WQ_LIST(&ctx->iopoll_list); 329 INIT_LIST_HEAD(&ctx->io_buffers_pages); 330 INIT_LIST_HEAD(&ctx->io_buffers_comp); 331 INIT_LIST_HEAD(&ctx->defer_list); 332 INIT_LIST_HEAD(&ctx->timeout_list); 333 INIT_LIST_HEAD(&ctx->ltimeout_list); 334 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 335 init_llist_head(&ctx->work_llist); 336 INIT_LIST_HEAD(&ctx->tctx_list); 337 ctx->submit_state.free_list.next = NULL; 338 INIT_WQ_LIST(&ctx->locked_free_list); 339 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 340 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 341 return ctx; 342 err: 343 kfree(ctx->dummy_ubuf); 344 kfree(ctx->cancel_table.hbs); 345 kfree(ctx->cancel_table_locked.hbs); 346 kfree(ctx->io_bl); 347 xa_destroy(&ctx->io_bl_xa); 348 kfree(ctx); 349 return NULL; 350 } 351 352 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 353 { 354 struct io_rings *r = ctx->rings; 355 356 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 357 ctx->cq_extra--; 358 } 359 360 static bool req_need_defer(struct io_kiocb *req, u32 seq) 361 { 362 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 363 struct io_ring_ctx *ctx = req->ctx; 364 365 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 366 } 367 368 return false; 369 } 370 371 static inline void io_req_track_inflight(struct io_kiocb *req) 372 { 373 if (!(req->flags & REQ_F_INFLIGHT)) { 374 req->flags |= REQ_F_INFLIGHT; 375 atomic_inc(&req->task->io_uring->inflight_tracked); 376 } 377 } 378 379 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 380 { 381 if (WARN_ON_ONCE(!req->link)) 382 return NULL; 383 384 req->flags &= ~REQ_F_ARM_LTIMEOUT; 385 req->flags |= REQ_F_LINK_TIMEOUT; 386 387 /* linked timeouts should have two refs once prep'ed */ 388 io_req_set_refcount(req); 389 __io_req_set_refcount(req->link, 2); 390 return req->link; 391 } 392 393 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 394 { 395 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 396 return NULL; 397 return __io_prep_linked_timeout(req); 398 } 399 400 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 401 { 402 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 403 } 404 405 static inline void io_arm_ltimeout(struct io_kiocb *req) 406 { 407 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 408 __io_arm_ltimeout(req); 409 } 410 411 static void io_prep_async_work(struct io_kiocb *req) 412 { 413 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 414 struct io_ring_ctx *ctx = req->ctx; 415 416 if (!(req->flags & REQ_F_CREDS)) { 417 req->flags |= REQ_F_CREDS; 418 req->creds = get_current_cred(); 419 } 420 421 req->work.list.next = NULL; 422 req->work.flags = 0; 423 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 424 if (req->flags & REQ_F_FORCE_ASYNC) 425 req->work.flags |= IO_WQ_WORK_CONCURRENT; 426 427 if (req->file && !io_req_ffs_set(req)) 428 req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT; 429 430 if (req->file && (req->flags & REQ_F_ISREG)) { 431 bool should_hash = def->hash_reg_file; 432 433 /* don't serialize this request if the fs doesn't need it */ 434 if (should_hash && (req->file->f_flags & O_DIRECT) && 435 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) 436 should_hash = false; 437 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 438 io_wq_hash_work(&req->work, file_inode(req->file)); 439 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 440 if (def->unbound_nonreg_file) 441 req->work.flags |= IO_WQ_WORK_UNBOUND; 442 } 443 } 444 445 static void io_prep_async_link(struct io_kiocb *req) 446 { 447 struct io_kiocb *cur; 448 449 if (req->flags & REQ_F_LINK_TIMEOUT) { 450 struct io_ring_ctx *ctx = req->ctx; 451 452 spin_lock_irq(&ctx->timeout_lock); 453 io_for_each_link(cur, req) 454 io_prep_async_work(cur); 455 spin_unlock_irq(&ctx->timeout_lock); 456 } else { 457 io_for_each_link(cur, req) 458 io_prep_async_work(cur); 459 } 460 } 461 462 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) 463 { 464 struct io_kiocb *link = io_prep_linked_timeout(req); 465 struct io_uring_task *tctx = req->task->io_uring; 466 467 BUG_ON(!tctx); 468 BUG_ON(!tctx->io_wq); 469 470 /* init ->work of the whole link before punting */ 471 io_prep_async_link(req); 472 473 /* 474 * Not expected to happen, but if we do have a bug where this _can_ 475 * happen, catch it here and ensure the request is marked as 476 * canceled. That will make io-wq go through the usual work cancel 477 * procedure rather than attempt to run this request (or create a new 478 * worker for it). 479 */ 480 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 481 req->work.flags |= IO_WQ_WORK_CANCEL; 482 483 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 484 io_wq_enqueue(tctx->io_wq, &req->work); 485 if (link) 486 io_queue_linked_timeout(link); 487 } 488 489 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 490 { 491 while (!list_empty(&ctx->defer_list)) { 492 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 493 struct io_defer_entry, list); 494 495 if (req_need_defer(de->req, de->seq)) 496 break; 497 list_del_init(&de->list); 498 io_req_task_queue(de->req); 499 kfree(de); 500 } 501 } 502 503 504 static void io_eventfd_ops(struct rcu_head *rcu) 505 { 506 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 507 int ops = atomic_xchg(&ev_fd->ops, 0); 508 509 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 510 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 511 512 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 513 * ordering in a race but if references are 0 we know we have to free 514 * it regardless. 515 */ 516 if (atomic_dec_and_test(&ev_fd->refs)) { 517 eventfd_ctx_put(ev_fd->cq_ev_fd); 518 kfree(ev_fd); 519 } 520 } 521 522 static void io_eventfd_signal(struct io_ring_ctx *ctx) 523 { 524 struct io_ev_fd *ev_fd = NULL; 525 526 rcu_read_lock(); 527 /* 528 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 529 * and eventfd_signal 530 */ 531 ev_fd = rcu_dereference(ctx->io_ev_fd); 532 533 /* 534 * Check again if ev_fd exists incase an io_eventfd_unregister call 535 * completed between the NULL check of ctx->io_ev_fd at the start of 536 * the function and rcu_read_lock. 537 */ 538 if (unlikely(!ev_fd)) 539 goto out; 540 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 541 goto out; 542 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 543 goto out; 544 545 if (likely(eventfd_signal_allowed())) { 546 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 547 } else { 548 atomic_inc(&ev_fd->refs); 549 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 550 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 551 else 552 atomic_dec(&ev_fd->refs); 553 } 554 555 out: 556 rcu_read_unlock(); 557 } 558 559 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 560 { 561 bool skip; 562 563 spin_lock(&ctx->completion_lock); 564 565 /* 566 * Eventfd should only get triggered when at least one event has been 567 * posted. Some applications rely on the eventfd notification count 568 * only changing IFF a new CQE has been added to the CQ ring. There's 569 * no depedency on 1:1 relationship between how many times this 570 * function is called (and hence the eventfd count) and number of CQEs 571 * posted to the CQ ring. 572 */ 573 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 574 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 575 spin_unlock(&ctx->completion_lock); 576 if (skip) 577 return; 578 579 io_eventfd_signal(ctx); 580 } 581 582 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 583 { 584 if (ctx->poll_activated) 585 io_poll_wq_wake(ctx); 586 if (ctx->off_timeout_used) 587 io_flush_timeouts(ctx); 588 if (ctx->drain_active) { 589 spin_lock(&ctx->completion_lock); 590 io_queue_deferred(ctx); 591 spin_unlock(&ctx->completion_lock); 592 } 593 if (ctx->has_evfd) 594 io_eventfd_flush_signal(ctx); 595 } 596 597 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 598 __acquires(ctx->completion_lock) 599 { 600 if (!ctx->task_complete) 601 spin_lock(&ctx->completion_lock); 602 } 603 604 static inline void __io_cq_unlock(struct io_ring_ctx *ctx) 605 { 606 if (!ctx->task_complete) 607 spin_unlock(&ctx->completion_lock); 608 } 609 610 static inline void io_cq_lock(struct io_ring_ctx *ctx) 611 __acquires(ctx->completion_lock) 612 { 613 spin_lock(&ctx->completion_lock); 614 } 615 616 static inline void io_cq_unlock(struct io_ring_ctx *ctx) 617 __releases(ctx->completion_lock) 618 { 619 spin_unlock(&ctx->completion_lock); 620 } 621 622 /* keep it inlined for io_submit_flush_completions() */ 623 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 624 __releases(ctx->completion_lock) 625 { 626 io_commit_cqring(ctx); 627 __io_cq_unlock(ctx); 628 io_commit_cqring_flush(ctx); 629 io_cqring_wake(ctx); 630 } 631 632 static void __io_cq_unlock_post_flush(struct io_ring_ctx *ctx) 633 __releases(ctx->completion_lock) 634 { 635 io_commit_cqring(ctx); 636 637 if (ctx->task_complete) { 638 /* 639 * ->task_complete implies that only current might be waiting 640 * for CQEs, and obviously, we currently don't. No one is 641 * waiting, wakeups are futile, skip them. 642 */ 643 io_commit_cqring_flush(ctx); 644 } else { 645 __io_cq_unlock(ctx); 646 io_commit_cqring_flush(ctx); 647 io_cqring_wake(ctx); 648 } 649 } 650 651 void io_cq_unlock_post(struct io_ring_ctx *ctx) 652 __releases(ctx->completion_lock) 653 { 654 io_commit_cqring(ctx); 655 spin_unlock(&ctx->completion_lock); 656 io_commit_cqring_flush(ctx); 657 io_cqring_wake(ctx); 658 } 659 660 /* Returns true if there are no backlogged entries after the flush */ 661 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 662 { 663 struct io_overflow_cqe *ocqe; 664 LIST_HEAD(list); 665 666 io_cq_lock(ctx); 667 list_splice_init(&ctx->cq_overflow_list, &list); 668 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 669 io_cq_unlock(ctx); 670 671 while (!list_empty(&list)) { 672 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 673 list_del(&ocqe->list); 674 kfree(ocqe); 675 } 676 } 677 678 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 679 { 680 size_t cqe_size = sizeof(struct io_uring_cqe); 681 682 if (__io_cqring_events(ctx) == ctx->cq_entries) 683 return; 684 685 if (ctx->flags & IORING_SETUP_CQE32) 686 cqe_size <<= 1; 687 688 io_cq_lock(ctx); 689 while (!list_empty(&ctx->cq_overflow_list)) { 690 struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true); 691 struct io_overflow_cqe *ocqe; 692 693 if (!cqe) 694 break; 695 ocqe = list_first_entry(&ctx->cq_overflow_list, 696 struct io_overflow_cqe, list); 697 memcpy(cqe, &ocqe->cqe, cqe_size); 698 list_del(&ocqe->list); 699 kfree(ocqe); 700 } 701 702 if (list_empty(&ctx->cq_overflow_list)) { 703 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 704 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 705 } 706 io_cq_unlock_post(ctx); 707 } 708 709 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 710 { 711 /* iopoll syncs against uring_lock, not completion_lock */ 712 if (ctx->flags & IORING_SETUP_IOPOLL) 713 mutex_lock(&ctx->uring_lock); 714 __io_cqring_overflow_flush(ctx); 715 if (ctx->flags & IORING_SETUP_IOPOLL) 716 mutex_unlock(&ctx->uring_lock); 717 } 718 719 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 720 { 721 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 722 io_cqring_do_overflow_flush(ctx); 723 } 724 725 /* can be called by any task */ 726 static void io_put_task_remote(struct task_struct *task, int nr) 727 { 728 struct io_uring_task *tctx = task->io_uring; 729 730 percpu_counter_sub(&tctx->inflight, nr); 731 if (unlikely(atomic_read(&tctx->in_cancel))) 732 wake_up(&tctx->wait); 733 put_task_struct_many(task, nr); 734 } 735 736 /* used by a task to put its own references */ 737 static void io_put_task_local(struct task_struct *task, int nr) 738 { 739 task->io_uring->cached_refs += nr; 740 } 741 742 /* must to be called somewhat shortly after putting a request */ 743 static inline void io_put_task(struct task_struct *task, int nr) 744 { 745 if (likely(task == current)) 746 io_put_task_local(task, nr); 747 else 748 io_put_task_remote(task, nr); 749 } 750 751 void io_task_refs_refill(struct io_uring_task *tctx) 752 { 753 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 754 755 percpu_counter_add(&tctx->inflight, refill); 756 refcount_add(refill, ¤t->usage); 757 tctx->cached_refs += refill; 758 } 759 760 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 761 { 762 struct io_uring_task *tctx = task->io_uring; 763 unsigned int refs = tctx->cached_refs; 764 765 if (refs) { 766 tctx->cached_refs = 0; 767 percpu_counter_sub(&tctx->inflight, refs); 768 put_task_struct_many(task, refs); 769 } 770 } 771 772 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 773 s32 res, u32 cflags, u64 extra1, u64 extra2) 774 { 775 struct io_overflow_cqe *ocqe; 776 size_t ocq_size = sizeof(struct io_overflow_cqe); 777 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 778 779 lockdep_assert_held(&ctx->completion_lock); 780 781 if (is_cqe32) 782 ocq_size += sizeof(struct io_uring_cqe); 783 784 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 785 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 786 if (!ocqe) { 787 /* 788 * If we're in ring overflow flush mode, or in task cancel mode, 789 * or cannot allocate an overflow entry, then we need to drop it 790 * on the floor. 791 */ 792 io_account_cq_overflow(ctx); 793 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 794 return false; 795 } 796 if (list_empty(&ctx->cq_overflow_list)) { 797 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 798 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 799 800 } 801 ocqe->cqe.user_data = user_data; 802 ocqe->cqe.res = res; 803 ocqe->cqe.flags = cflags; 804 if (is_cqe32) { 805 ocqe->cqe.big_cqe[0] = extra1; 806 ocqe->cqe.big_cqe[1] = extra2; 807 } 808 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 809 return true; 810 } 811 812 bool io_req_cqe_overflow(struct io_kiocb *req) 813 { 814 if (!(req->flags & REQ_F_CQE32_INIT)) { 815 req->extra1 = 0; 816 req->extra2 = 0; 817 } 818 return io_cqring_event_overflow(req->ctx, req->cqe.user_data, 819 req->cqe.res, req->cqe.flags, 820 req->extra1, req->extra2); 821 } 822 823 /* 824 * writes to the cq entry need to come after reading head; the 825 * control dependency is enough as we're using WRITE_ONCE to 826 * fill the cq entry 827 */ 828 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow) 829 { 830 struct io_rings *rings = ctx->rings; 831 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 832 unsigned int free, queued, len; 833 834 /* 835 * Posting into the CQ when there are pending overflowed CQEs may break 836 * ordering guarantees, which will affect links, F_MORE users and more. 837 * Force overflow the completion. 838 */ 839 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 840 return NULL; 841 842 /* userspace may cheat modifying the tail, be safe and do min */ 843 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 844 free = ctx->cq_entries - queued; 845 /* we need a contiguous range, limit based on the current array offset */ 846 len = min(free, ctx->cq_entries - off); 847 if (!len) 848 return NULL; 849 850 if (ctx->flags & IORING_SETUP_CQE32) { 851 off <<= 1; 852 len <<= 1; 853 } 854 855 ctx->cqe_cached = &rings->cqes[off]; 856 ctx->cqe_sentinel = ctx->cqe_cached + len; 857 858 ctx->cached_cq_tail++; 859 ctx->cqe_cached++; 860 if (ctx->flags & IORING_SETUP_CQE32) 861 ctx->cqe_cached++; 862 return &rings->cqes[off]; 863 } 864 865 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 866 u32 cflags) 867 { 868 struct io_uring_cqe *cqe; 869 870 ctx->cq_extra++; 871 872 /* 873 * If we can't get a cq entry, userspace overflowed the 874 * submission (by quite a lot). Increment the overflow count in 875 * the ring. 876 */ 877 cqe = io_get_cqe(ctx); 878 if (likely(cqe)) { 879 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 880 881 WRITE_ONCE(cqe->user_data, user_data); 882 WRITE_ONCE(cqe->res, res); 883 WRITE_ONCE(cqe->flags, cflags); 884 885 if (ctx->flags & IORING_SETUP_CQE32) { 886 WRITE_ONCE(cqe->big_cqe[0], 0); 887 WRITE_ONCE(cqe->big_cqe[1], 0); 888 } 889 return true; 890 } 891 return false; 892 } 893 894 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 895 __must_hold(&ctx->uring_lock) 896 { 897 struct io_submit_state *state = &ctx->submit_state; 898 unsigned int i; 899 900 lockdep_assert_held(&ctx->uring_lock); 901 for (i = 0; i < state->cqes_count; i++) { 902 struct io_uring_cqe *cqe = &state->cqes[i]; 903 904 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 905 if (ctx->task_complete) { 906 spin_lock(&ctx->completion_lock); 907 io_cqring_event_overflow(ctx, cqe->user_data, 908 cqe->res, cqe->flags, 0, 0); 909 spin_unlock(&ctx->completion_lock); 910 } else { 911 io_cqring_event_overflow(ctx, cqe->user_data, 912 cqe->res, cqe->flags, 0, 0); 913 } 914 } 915 } 916 state->cqes_count = 0; 917 } 918 919 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 920 bool allow_overflow) 921 { 922 bool filled; 923 924 io_cq_lock(ctx); 925 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 926 if (!filled && allow_overflow) 927 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 928 929 io_cq_unlock_post(ctx); 930 return filled; 931 } 932 933 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 934 { 935 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 936 } 937 938 bool io_aux_cqe(const struct io_kiocb *req, bool defer, s32 res, u32 cflags, 939 bool allow_overflow) 940 { 941 struct io_ring_ctx *ctx = req->ctx; 942 u64 user_data = req->cqe.user_data; 943 struct io_uring_cqe *cqe; 944 945 if (!defer) 946 return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow); 947 948 lockdep_assert_held(&ctx->uring_lock); 949 950 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->submit_state.cqes)) { 951 __io_cq_lock(ctx); 952 __io_flush_post_cqes(ctx); 953 /* no need to flush - flush is deferred */ 954 __io_cq_unlock_post(ctx); 955 } 956 957 /* For defered completions this is not as strict as it is otherwise, 958 * however it's main job is to prevent unbounded posted completions, 959 * and in that it works just as well. 960 */ 961 if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 962 return false; 963 964 cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++]; 965 cqe->user_data = user_data; 966 cqe->res = res; 967 cqe->flags = cflags; 968 return true; 969 } 970 971 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 972 { 973 struct io_ring_ctx *ctx = req->ctx; 974 struct io_rsrc_node *rsrc_node = NULL; 975 976 io_cq_lock(ctx); 977 if (!(req->flags & REQ_F_CQE_SKIP)) 978 io_fill_cqe_req(ctx, req); 979 980 /* 981 * If we're the last reference to this request, add to our locked 982 * free_list cache. 983 */ 984 if (req_ref_put_and_test(req)) { 985 if (req->flags & IO_REQ_LINK_FLAGS) { 986 if (req->flags & IO_DISARM_MASK) 987 io_disarm_next(req); 988 if (req->link) { 989 io_req_task_queue(req->link); 990 req->link = NULL; 991 } 992 } 993 io_put_kbuf_comp(req); 994 io_dismantle_req(req); 995 rsrc_node = req->rsrc_node; 996 /* 997 * Selected buffer deallocation in io_clean_op() assumes that 998 * we don't hold ->completion_lock. Clean them here to avoid 999 * deadlocks. 1000 */ 1001 io_put_task_remote(req->task, 1); 1002 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1003 ctx->locked_free_nr++; 1004 } 1005 io_cq_unlock_post(ctx); 1006 1007 if (rsrc_node) { 1008 io_ring_submit_lock(ctx, issue_flags); 1009 io_put_rsrc_node(ctx, rsrc_node); 1010 io_ring_submit_unlock(ctx, issue_flags); 1011 } 1012 } 1013 1014 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1015 { 1016 if (req->ctx->task_complete && req->ctx->submitter_task != current) { 1017 req->io_task_work.func = io_req_task_complete; 1018 io_req_task_work_add(req); 1019 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1020 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 1021 __io_req_complete_post(req, issue_flags); 1022 } else { 1023 struct io_ring_ctx *ctx = req->ctx; 1024 1025 mutex_lock(&ctx->uring_lock); 1026 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); 1027 mutex_unlock(&ctx->uring_lock); 1028 } 1029 } 1030 1031 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1032 __must_hold(&ctx->uring_lock) 1033 { 1034 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1035 1036 lockdep_assert_held(&req->ctx->uring_lock); 1037 1038 req_set_fail(req); 1039 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1040 if (def->fail) 1041 def->fail(req); 1042 io_req_complete_defer(req); 1043 } 1044 1045 /* 1046 * Don't initialise the fields below on every allocation, but do that in 1047 * advance and keep them valid across allocations. 1048 */ 1049 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1050 { 1051 req->ctx = ctx; 1052 req->link = NULL; 1053 req->async_data = NULL; 1054 /* not necessary, but safer to zero */ 1055 req->cqe.res = 0; 1056 } 1057 1058 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1059 struct io_submit_state *state) 1060 { 1061 spin_lock(&ctx->completion_lock); 1062 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1063 ctx->locked_free_nr = 0; 1064 spin_unlock(&ctx->completion_lock); 1065 } 1066 1067 /* 1068 * A request might get retired back into the request caches even before opcode 1069 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1070 * Because of that, io_alloc_req() should be called only under ->uring_lock 1071 * and with extra caution to not get a request that is still worked on. 1072 */ 1073 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1074 __must_hold(&ctx->uring_lock) 1075 { 1076 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1077 void *reqs[IO_REQ_ALLOC_BATCH]; 1078 int ret, i; 1079 1080 /* 1081 * If we have more than a batch's worth of requests in our IRQ side 1082 * locked cache, grab the lock and move them over to our submission 1083 * side cache. 1084 */ 1085 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1086 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1087 if (!io_req_cache_empty(ctx)) 1088 return true; 1089 } 1090 1091 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1092 1093 /* 1094 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1095 * retry single alloc to be on the safe side. 1096 */ 1097 if (unlikely(ret <= 0)) { 1098 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1099 if (!reqs[0]) 1100 return false; 1101 ret = 1; 1102 } 1103 1104 percpu_ref_get_many(&ctx->refs, ret); 1105 for (i = 0; i < ret; i++) { 1106 struct io_kiocb *req = reqs[i]; 1107 1108 io_preinit_req(req, ctx); 1109 io_req_add_to_cache(req, ctx); 1110 } 1111 return true; 1112 } 1113 1114 static inline void io_dismantle_req(struct io_kiocb *req) 1115 { 1116 unsigned int flags = req->flags; 1117 1118 if (unlikely(flags & IO_REQ_CLEAN_FLAGS)) 1119 io_clean_op(req); 1120 if (!(flags & REQ_F_FIXED_FILE)) 1121 io_put_file(req->file); 1122 } 1123 1124 static __cold void io_free_req_tw(struct io_kiocb *req, struct io_tw_state *ts) 1125 { 1126 struct io_ring_ctx *ctx = req->ctx; 1127 1128 if (req->rsrc_node) { 1129 io_tw_lock(ctx, ts); 1130 io_put_rsrc_node(ctx, req->rsrc_node); 1131 } 1132 io_dismantle_req(req); 1133 io_put_task_remote(req->task, 1); 1134 1135 spin_lock(&ctx->completion_lock); 1136 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1137 ctx->locked_free_nr++; 1138 spin_unlock(&ctx->completion_lock); 1139 } 1140 1141 __cold void io_free_req(struct io_kiocb *req) 1142 { 1143 req->io_task_work.func = io_free_req_tw; 1144 io_req_task_work_add(req); 1145 } 1146 1147 static void __io_req_find_next_prep(struct io_kiocb *req) 1148 { 1149 struct io_ring_ctx *ctx = req->ctx; 1150 1151 spin_lock(&ctx->completion_lock); 1152 io_disarm_next(req); 1153 spin_unlock(&ctx->completion_lock); 1154 } 1155 1156 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1157 { 1158 struct io_kiocb *nxt; 1159 1160 /* 1161 * If LINK is set, we have dependent requests in this chain. If we 1162 * didn't fail this request, queue the first one up, moving any other 1163 * dependencies to the next request. In case of failure, fail the rest 1164 * of the chain. 1165 */ 1166 if (unlikely(req->flags & IO_DISARM_MASK)) 1167 __io_req_find_next_prep(req); 1168 nxt = req->link; 1169 req->link = NULL; 1170 return nxt; 1171 } 1172 1173 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1174 { 1175 if (!ctx) 1176 return; 1177 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1178 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1179 if (ts->locked) { 1180 io_submit_flush_completions(ctx); 1181 mutex_unlock(&ctx->uring_lock); 1182 ts->locked = false; 1183 } 1184 percpu_ref_put(&ctx->refs); 1185 } 1186 1187 static unsigned int handle_tw_list(struct llist_node *node, 1188 struct io_ring_ctx **ctx, 1189 struct io_tw_state *ts, 1190 struct llist_node *last) 1191 { 1192 unsigned int count = 0; 1193 1194 while (node && node != last) { 1195 struct llist_node *next = node->next; 1196 struct io_kiocb *req = container_of(node, struct io_kiocb, 1197 io_task_work.node); 1198 1199 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1200 1201 if (req->ctx != *ctx) { 1202 ctx_flush_and_put(*ctx, ts); 1203 *ctx = req->ctx; 1204 /* if not contended, grab and improve batching */ 1205 ts->locked = mutex_trylock(&(*ctx)->uring_lock); 1206 percpu_ref_get(&(*ctx)->refs); 1207 } 1208 INDIRECT_CALL_2(req->io_task_work.func, 1209 io_poll_task_func, io_req_rw_complete, 1210 req, ts); 1211 node = next; 1212 count++; 1213 if (unlikely(need_resched())) { 1214 ctx_flush_and_put(*ctx, ts); 1215 *ctx = NULL; 1216 cond_resched(); 1217 } 1218 } 1219 1220 return count; 1221 } 1222 1223 /** 1224 * io_llist_xchg - swap all entries in a lock-less list 1225 * @head: the head of lock-less list to delete all entries 1226 * @new: new entry as the head of the list 1227 * 1228 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1229 * The order of entries returned is from the newest to the oldest added one. 1230 */ 1231 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1232 struct llist_node *new) 1233 { 1234 return xchg(&head->first, new); 1235 } 1236 1237 /** 1238 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1239 * @head: the head of lock-less list to delete all entries 1240 * @old: expected old value of the first entry of the list 1241 * @new: new entry as the head of the list 1242 * 1243 * perform a cmpxchg on the first entry of the list. 1244 */ 1245 1246 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1247 struct llist_node *old, 1248 struct llist_node *new) 1249 { 1250 return cmpxchg(&head->first, old, new); 1251 } 1252 1253 void tctx_task_work(struct callback_head *cb) 1254 { 1255 struct io_tw_state ts = {}; 1256 struct io_ring_ctx *ctx = NULL; 1257 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1258 task_work); 1259 struct llist_node fake = {}; 1260 struct llist_node *node; 1261 unsigned int loops = 0; 1262 unsigned int count = 0; 1263 1264 if (unlikely(current->flags & PF_EXITING)) { 1265 io_fallback_tw(tctx); 1266 return; 1267 } 1268 1269 do { 1270 loops++; 1271 node = io_llist_xchg(&tctx->task_list, &fake); 1272 count += handle_tw_list(node, &ctx, &ts, &fake); 1273 1274 /* skip expensive cmpxchg if there are items in the list */ 1275 if (READ_ONCE(tctx->task_list.first) != &fake) 1276 continue; 1277 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) { 1278 io_submit_flush_completions(ctx); 1279 if (READ_ONCE(tctx->task_list.first) != &fake) 1280 continue; 1281 } 1282 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1283 } while (node != &fake); 1284 1285 ctx_flush_and_put(ctx, &ts); 1286 1287 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1288 if (unlikely(atomic_read(&tctx->in_cancel))) 1289 io_uring_drop_tctx_refs(current); 1290 1291 trace_io_uring_task_work_run(tctx, count, loops); 1292 } 1293 1294 static __cold void io_fallback_tw(struct io_uring_task *tctx) 1295 { 1296 struct llist_node *node = llist_del_all(&tctx->task_list); 1297 struct io_kiocb *req; 1298 1299 while (node) { 1300 req = container_of(node, struct io_kiocb, io_task_work.node); 1301 node = node->next; 1302 if (llist_add(&req->io_task_work.node, 1303 &req->ctx->fallback_llist)) 1304 schedule_delayed_work(&req->ctx->fallback_work, 1); 1305 } 1306 } 1307 1308 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1309 { 1310 struct io_ring_ctx *ctx = req->ctx; 1311 unsigned nr_wait, nr_tw, nr_tw_prev; 1312 struct llist_node *first; 1313 1314 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1315 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1316 1317 first = READ_ONCE(ctx->work_llist.first); 1318 do { 1319 nr_tw_prev = 0; 1320 if (first) { 1321 struct io_kiocb *first_req = container_of(first, 1322 struct io_kiocb, 1323 io_task_work.node); 1324 /* 1325 * Might be executed at any moment, rely on 1326 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1327 */ 1328 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1329 } 1330 nr_tw = nr_tw_prev + 1; 1331 /* Large enough to fail the nr_wait comparison below */ 1332 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1333 nr_tw = -1U; 1334 1335 req->nr_tw = nr_tw; 1336 req->io_task_work.node.next = first; 1337 } while (!try_cmpxchg(&ctx->work_llist.first, &first, 1338 &req->io_task_work.node)); 1339 1340 if (!first) { 1341 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1342 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1343 if (ctx->has_evfd) 1344 io_eventfd_signal(ctx); 1345 } 1346 1347 nr_wait = atomic_read(&ctx->cq_wait_nr); 1348 /* no one is waiting */ 1349 if (!nr_wait) 1350 return; 1351 /* either not enough or the previous add has already woken it up */ 1352 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait) 1353 return; 1354 /* pairs with set_current_state() in io_cqring_wait() */ 1355 smp_mb__after_atomic(); 1356 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1357 } 1358 1359 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1360 { 1361 struct io_uring_task *tctx = req->task->io_uring; 1362 struct io_ring_ctx *ctx = req->ctx; 1363 1364 if (!(flags & IOU_F_TWQ_FORCE_NORMAL) && 1365 (ctx->flags & IORING_SETUP_DEFER_TASKRUN)) { 1366 rcu_read_lock(); 1367 io_req_local_work_add(req, flags); 1368 rcu_read_unlock(); 1369 return; 1370 } 1371 1372 /* task_work already pending, we're done */ 1373 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1374 return; 1375 1376 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1377 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1378 1379 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1380 return; 1381 1382 io_fallback_tw(tctx); 1383 } 1384 1385 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1386 { 1387 struct llist_node *node; 1388 1389 node = llist_del_all(&ctx->work_llist); 1390 while (node) { 1391 struct io_kiocb *req = container_of(node, struct io_kiocb, 1392 io_task_work.node); 1393 1394 node = node->next; 1395 __io_req_task_work_add(req, IOU_F_TWQ_FORCE_NORMAL); 1396 } 1397 } 1398 1399 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1400 { 1401 struct llist_node *node; 1402 unsigned int loops = 0; 1403 int ret = 0; 1404 1405 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1406 return -EEXIST; 1407 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1408 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1409 again: 1410 /* 1411 * llists are in reverse order, flip it back the right way before 1412 * running the pending items. 1413 */ 1414 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1415 while (node) { 1416 struct llist_node *next = node->next; 1417 struct io_kiocb *req = container_of(node, struct io_kiocb, 1418 io_task_work.node); 1419 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1420 INDIRECT_CALL_2(req->io_task_work.func, 1421 io_poll_task_func, io_req_rw_complete, 1422 req, ts); 1423 ret++; 1424 node = next; 1425 } 1426 loops++; 1427 1428 if (!llist_empty(&ctx->work_llist)) 1429 goto again; 1430 if (ts->locked) { 1431 io_submit_flush_completions(ctx); 1432 if (!llist_empty(&ctx->work_llist)) 1433 goto again; 1434 } 1435 trace_io_uring_local_work_run(ctx, ret, loops); 1436 return ret; 1437 } 1438 1439 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx) 1440 { 1441 struct io_tw_state ts = { .locked = true, }; 1442 int ret; 1443 1444 if (llist_empty(&ctx->work_llist)) 1445 return 0; 1446 1447 ret = __io_run_local_work(ctx, &ts); 1448 /* shouldn't happen! */ 1449 if (WARN_ON_ONCE(!ts.locked)) 1450 mutex_lock(&ctx->uring_lock); 1451 return ret; 1452 } 1453 1454 static int io_run_local_work(struct io_ring_ctx *ctx) 1455 { 1456 struct io_tw_state ts = {}; 1457 int ret; 1458 1459 ts.locked = mutex_trylock(&ctx->uring_lock); 1460 ret = __io_run_local_work(ctx, &ts); 1461 if (ts.locked) 1462 mutex_unlock(&ctx->uring_lock); 1463 1464 return ret; 1465 } 1466 1467 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1468 { 1469 io_tw_lock(req->ctx, ts); 1470 io_req_defer_failed(req, req->cqe.res); 1471 } 1472 1473 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1474 { 1475 io_tw_lock(req->ctx, ts); 1476 /* req->task == current here, checking PF_EXITING is safe */ 1477 if (unlikely(req->task->flags & PF_EXITING)) 1478 io_req_defer_failed(req, -EFAULT); 1479 else if (req->flags & REQ_F_FORCE_ASYNC) 1480 io_queue_iowq(req, ts); 1481 else 1482 io_queue_sqe(req); 1483 } 1484 1485 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1486 { 1487 io_req_set_res(req, ret, 0); 1488 req->io_task_work.func = io_req_task_cancel; 1489 io_req_task_work_add(req); 1490 } 1491 1492 void io_req_task_queue(struct io_kiocb *req) 1493 { 1494 req->io_task_work.func = io_req_task_submit; 1495 io_req_task_work_add(req); 1496 } 1497 1498 void io_queue_next(struct io_kiocb *req) 1499 { 1500 struct io_kiocb *nxt = io_req_find_next(req); 1501 1502 if (nxt) 1503 io_req_task_queue(nxt); 1504 } 1505 1506 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node) 1507 __must_hold(&ctx->uring_lock) 1508 { 1509 struct task_struct *task = NULL; 1510 int task_refs = 0; 1511 1512 do { 1513 struct io_kiocb *req = container_of(node, struct io_kiocb, 1514 comp_list); 1515 1516 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1517 if (req->flags & REQ_F_REFCOUNT) { 1518 node = req->comp_list.next; 1519 if (!req_ref_put_and_test(req)) 1520 continue; 1521 } 1522 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1523 struct async_poll *apoll = req->apoll; 1524 1525 if (apoll->double_poll) 1526 kfree(apoll->double_poll); 1527 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1528 kfree(apoll); 1529 req->flags &= ~REQ_F_POLLED; 1530 } 1531 if (req->flags & IO_REQ_LINK_FLAGS) 1532 io_queue_next(req); 1533 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1534 io_clean_op(req); 1535 } 1536 if (!(req->flags & REQ_F_FIXED_FILE)) 1537 io_put_file(req->file); 1538 1539 io_req_put_rsrc_locked(req, ctx); 1540 1541 if (req->task != task) { 1542 if (task) 1543 io_put_task(task, task_refs); 1544 task = req->task; 1545 task_refs = 0; 1546 } 1547 task_refs++; 1548 node = req->comp_list.next; 1549 io_req_add_to_cache(req, ctx); 1550 } while (node); 1551 1552 if (task) 1553 io_put_task(task, task_refs); 1554 } 1555 1556 static void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1557 __must_hold(&ctx->uring_lock) 1558 { 1559 struct io_submit_state *state = &ctx->submit_state; 1560 struct io_wq_work_node *node; 1561 1562 __io_cq_lock(ctx); 1563 /* must come first to preserve CQE ordering in failure cases */ 1564 if (state->cqes_count) 1565 __io_flush_post_cqes(ctx); 1566 __wq_list_for_each(node, &state->compl_reqs) { 1567 struct io_kiocb *req = container_of(node, struct io_kiocb, 1568 comp_list); 1569 1570 if (!(req->flags & REQ_F_CQE_SKIP) && 1571 unlikely(!__io_fill_cqe_req(ctx, req))) { 1572 if (ctx->task_complete) { 1573 spin_lock(&ctx->completion_lock); 1574 io_req_cqe_overflow(req); 1575 spin_unlock(&ctx->completion_lock); 1576 } else { 1577 io_req_cqe_overflow(req); 1578 } 1579 } 1580 } 1581 __io_cq_unlock_post_flush(ctx); 1582 1583 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1584 io_free_batch_list(ctx, state->compl_reqs.first); 1585 INIT_WQ_LIST(&state->compl_reqs); 1586 } 1587 } 1588 1589 /* 1590 * Drop reference to request, return next in chain (if there is one) if this 1591 * was the last reference to this request. 1592 */ 1593 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req) 1594 { 1595 struct io_kiocb *nxt = NULL; 1596 1597 if (req_ref_put_and_test(req)) { 1598 if (unlikely(req->flags & IO_REQ_LINK_FLAGS)) 1599 nxt = io_req_find_next(req); 1600 io_free_req(req); 1601 } 1602 return nxt; 1603 } 1604 1605 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1606 { 1607 /* See comment at the top of this file */ 1608 smp_rmb(); 1609 return __io_cqring_events(ctx); 1610 } 1611 1612 /* 1613 * We can't just wait for polled events to come to us, we have to actively 1614 * find and complete them. 1615 */ 1616 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1617 { 1618 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1619 return; 1620 1621 mutex_lock(&ctx->uring_lock); 1622 while (!wq_list_empty(&ctx->iopoll_list)) { 1623 /* let it sleep and repeat later if can't complete a request */ 1624 if (io_do_iopoll(ctx, true) == 0) 1625 break; 1626 /* 1627 * Ensure we allow local-to-the-cpu processing to take place, 1628 * in this case we need to ensure that we reap all events. 1629 * Also let task_work, etc. to progress by releasing the mutex 1630 */ 1631 if (need_resched()) { 1632 mutex_unlock(&ctx->uring_lock); 1633 cond_resched(); 1634 mutex_lock(&ctx->uring_lock); 1635 } 1636 } 1637 mutex_unlock(&ctx->uring_lock); 1638 } 1639 1640 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1641 { 1642 unsigned int nr_events = 0; 1643 int ret = 0; 1644 unsigned long check_cq; 1645 1646 if (!io_allowed_run_tw(ctx)) 1647 return -EEXIST; 1648 1649 check_cq = READ_ONCE(ctx->check_cq); 1650 if (unlikely(check_cq)) { 1651 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1652 __io_cqring_overflow_flush(ctx); 1653 /* 1654 * Similarly do not spin if we have not informed the user of any 1655 * dropped CQE. 1656 */ 1657 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1658 return -EBADR; 1659 } 1660 /* 1661 * Don't enter poll loop if we already have events pending. 1662 * If we do, we can potentially be spinning for commands that 1663 * already triggered a CQE (eg in error). 1664 */ 1665 if (io_cqring_events(ctx)) 1666 return 0; 1667 1668 do { 1669 /* 1670 * If a submit got punted to a workqueue, we can have the 1671 * application entering polling for a command before it gets 1672 * issued. That app will hold the uring_lock for the duration 1673 * of the poll right here, so we need to take a breather every 1674 * now and then to ensure that the issue has a chance to add 1675 * the poll to the issued list. Otherwise we can spin here 1676 * forever, while the workqueue is stuck trying to acquire the 1677 * very same mutex. 1678 */ 1679 if (wq_list_empty(&ctx->iopoll_list) || 1680 io_task_work_pending(ctx)) { 1681 u32 tail = ctx->cached_cq_tail; 1682 1683 (void) io_run_local_work_locked(ctx); 1684 1685 if (task_work_pending(current) || 1686 wq_list_empty(&ctx->iopoll_list)) { 1687 mutex_unlock(&ctx->uring_lock); 1688 io_run_task_work(); 1689 mutex_lock(&ctx->uring_lock); 1690 } 1691 /* some requests don't go through iopoll_list */ 1692 if (tail != ctx->cached_cq_tail || 1693 wq_list_empty(&ctx->iopoll_list)) 1694 break; 1695 } 1696 ret = io_do_iopoll(ctx, !min); 1697 if (ret < 0) 1698 break; 1699 nr_events += ret; 1700 ret = 0; 1701 } while (nr_events < min && !need_resched()); 1702 1703 return ret; 1704 } 1705 1706 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1707 { 1708 if (ts->locked) 1709 io_req_complete_defer(req); 1710 else 1711 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1712 } 1713 1714 /* 1715 * After the iocb has been issued, it's safe to be found on the poll list. 1716 * Adding the kiocb to the list AFTER submission ensures that we don't 1717 * find it from a io_do_iopoll() thread before the issuer is done 1718 * accessing the kiocb cookie. 1719 */ 1720 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1721 { 1722 struct io_ring_ctx *ctx = req->ctx; 1723 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1724 1725 /* workqueue context doesn't hold uring_lock, grab it now */ 1726 if (unlikely(needs_lock)) 1727 mutex_lock(&ctx->uring_lock); 1728 1729 /* 1730 * Track whether we have multiple files in our lists. This will impact 1731 * how we do polling eventually, not spinning if we're on potentially 1732 * different devices. 1733 */ 1734 if (wq_list_empty(&ctx->iopoll_list)) { 1735 ctx->poll_multi_queue = false; 1736 } else if (!ctx->poll_multi_queue) { 1737 struct io_kiocb *list_req; 1738 1739 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1740 comp_list); 1741 if (list_req->file != req->file) 1742 ctx->poll_multi_queue = true; 1743 } 1744 1745 /* 1746 * For fast devices, IO may have already completed. If it has, add 1747 * it to the front so we find it first. 1748 */ 1749 if (READ_ONCE(req->iopoll_completed)) 1750 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1751 else 1752 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1753 1754 if (unlikely(needs_lock)) { 1755 /* 1756 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1757 * in sq thread task context or in io worker task context. If 1758 * current task context is sq thread, we don't need to check 1759 * whether should wake up sq thread. 1760 */ 1761 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1762 wq_has_sleeper(&ctx->sq_data->wait)) 1763 wake_up(&ctx->sq_data->wait); 1764 1765 mutex_unlock(&ctx->uring_lock); 1766 } 1767 } 1768 1769 /* 1770 * If we tracked the file through the SCM inflight mechanism, we could support 1771 * any file. For now, just ensure that anything potentially problematic is done 1772 * inline. 1773 */ 1774 unsigned int io_file_get_flags(struct file *file) 1775 { 1776 umode_t mode = file_inode(file)->i_mode; 1777 unsigned int res = 0; 1778 1779 if (S_ISREG(mode)) 1780 res |= FFS_ISREG; 1781 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1782 res |= FFS_NOWAIT; 1783 return res; 1784 } 1785 1786 bool io_alloc_async_data(struct io_kiocb *req) 1787 { 1788 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1789 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1790 if (req->async_data) { 1791 req->flags |= REQ_F_ASYNC_DATA; 1792 return false; 1793 } 1794 return true; 1795 } 1796 1797 int io_req_prep_async(struct io_kiocb *req) 1798 { 1799 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1800 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1801 1802 /* assign early for deferred execution for non-fixed file */ 1803 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1804 req->file = io_file_get_normal(req, req->cqe.fd); 1805 if (!cdef->prep_async) 1806 return 0; 1807 if (WARN_ON_ONCE(req_has_async_data(req))) 1808 return -EFAULT; 1809 if (!def->manual_alloc) { 1810 if (io_alloc_async_data(req)) 1811 return -EAGAIN; 1812 } 1813 return cdef->prep_async(req); 1814 } 1815 1816 static u32 io_get_sequence(struct io_kiocb *req) 1817 { 1818 u32 seq = req->ctx->cached_sq_head; 1819 struct io_kiocb *cur; 1820 1821 /* need original cached_sq_head, but it was increased for each req */ 1822 io_for_each_link(cur, req) 1823 seq--; 1824 return seq; 1825 } 1826 1827 static __cold void io_drain_req(struct io_kiocb *req) 1828 __must_hold(&ctx->uring_lock) 1829 { 1830 struct io_ring_ctx *ctx = req->ctx; 1831 struct io_defer_entry *de; 1832 int ret; 1833 u32 seq = io_get_sequence(req); 1834 1835 /* Still need defer if there is pending req in defer list. */ 1836 spin_lock(&ctx->completion_lock); 1837 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1838 spin_unlock(&ctx->completion_lock); 1839 queue: 1840 ctx->drain_active = false; 1841 io_req_task_queue(req); 1842 return; 1843 } 1844 spin_unlock(&ctx->completion_lock); 1845 1846 io_prep_async_link(req); 1847 de = kmalloc(sizeof(*de), GFP_KERNEL); 1848 if (!de) { 1849 ret = -ENOMEM; 1850 io_req_defer_failed(req, ret); 1851 return; 1852 } 1853 1854 spin_lock(&ctx->completion_lock); 1855 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1856 spin_unlock(&ctx->completion_lock); 1857 kfree(de); 1858 goto queue; 1859 } 1860 1861 trace_io_uring_defer(req); 1862 de->req = req; 1863 de->seq = seq; 1864 list_add_tail(&de->list, &ctx->defer_list); 1865 spin_unlock(&ctx->completion_lock); 1866 } 1867 1868 static void io_clean_op(struct io_kiocb *req) 1869 { 1870 if (req->flags & REQ_F_BUFFER_SELECTED) { 1871 spin_lock(&req->ctx->completion_lock); 1872 io_put_kbuf_comp(req); 1873 spin_unlock(&req->ctx->completion_lock); 1874 } 1875 1876 if (req->flags & REQ_F_NEED_CLEANUP) { 1877 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1878 1879 if (def->cleanup) 1880 def->cleanup(req); 1881 } 1882 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1883 kfree(req->apoll->double_poll); 1884 kfree(req->apoll); 1885 req->apoll = NULL; 1886 } 1887 if (req->flags & REQ_F_INFLIGHT) { 1888 struct io_uring_task *tctx = req->task->io_uring; 1889 1890 atomic_dec(&tctx->inflight_tracked); 1891 } 1892 if (req->flags & REQ_F_CREDS) 1893 put_cred(req->creds); 1894 if (req->flags & REQ_F_ASYNC_DATA) { 1895 kfree(req->async_data); 1896 req->async_data = NULL; 1897 } 1898 req->flags &= ~IO_REQ_CLEAN_FLAGS; 1899 } 1900 1901 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1902 unsigned int issue_flags) 1903 { 1904 if (req->file || !def->needs_file) 1905 return true; 1906 1907 if (req->flags & REQ_F_FIXED_FILE) 1908 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1909 else 1910 req->file = io_file_get_normal(req, req->cqe.fd); 1911 1912 return !!req->file; 1913 } 1914 1915 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1916 { 1917 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1918 const struct cred *creds = NULL; 1919 int ret; 1920 1921 if (unlikely(!io_assign_file(req, def, issue_flags))) 1922 return -EBADF; 1923 1924 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1925 creds = override_creds(req->creds); 1926 1927 if (!def->audit_skip) 1928 audit_uring_entry(req->opcode); 1929 1930 ret = def->issue(req, issue_flags); 1931 1932 if (!def->audit_skip) 1933 audit_uring_exit(!ret, ret); 1934 1935 if (creds) 1936 revert_creds(creds); 1937 1938 if (ret == IOU_OK) { 1939 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1940 io_req_complete_defer(req); 1941 else 1942 io_req_complete_post(req, issue_flags); 1943 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1944 return ret; 1945 1946 /* If the op doesn't have a file, we're not polling for it */ 1947 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1948 io_iopoll_req_issued(req, issue_flags); 1949 1950 return 0; 1951 } 1952 1953 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1954 { 1955 io_tw_lock(req->ctx, ts); 1956 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1957 IO_URING_F_COMPLETE_DEFER); 1958 } 1959 1960 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1961 { 1962 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1963 1964 req = io_put_req_find_next(req); 1965 return req ? &req->work : NULL; 1966 } 1967 1968 void io_wq_submit_work(struct io_wq_work *work) 1969 { 1970 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1971 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1972 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1973 bool needs_poll = false; 1974 int ret = 0, err = -ECANCELED; 1975 1976 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1977 if (!(req->flags & REQ_F_REFCOUNT)) 1978 __io_req_set_refcount(req, 2); 1979 else 1980 req_ref_get(req); 1981 1982 io_arm_ltimeout(req); 1983 1984 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1985 if (work->flags & IO_WQ_WORK_CANCEL) { 1986 fail: 1987 io_req_task_queue_fail(req, err); 1988 return; 1989 } 1990 if (!io_assign_file(req, def, issue_flags)) { 1991 err = -EBADF; 1992 work->flags |= IO_WQ_WORK_CANCEL; 1993 goto fail; 1994 } 1995 1996 if (req->flags & REQ_F_FORCE_ASYNC) { 1997 bool opcode_poll = def->pollin || def->pollout; 1998 1999 if (opcode_poll && file_can_poll(req->file)) { 2000 needs_poll = true; 2001 issue_flags |= IO_URING_F_NONBLOCK; 2002 } 2003 } 2004 2005 do { 2006 ret = io_issue_sqe(req, issue_flags); 2007 if (ret != -EAGAIN) 2008 break; 2009 /* 2010 * We can get EAGAIN for iopolled IO even though we're 2011 * forcing a sync submission from here, since we can't 2012 * wait for request slots on the block side. 2013 */ 2014 if (!needs_poll) { 2015 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 2016 break; 2017 cond_resched(); 2018 continue; 2019 } 2020 2021 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 2022 return; 2023 /* aborted or ready, in either case retry blocking */ 2024 needs_poll = false; 2025 issue_flags &= ~IO_URING_F_NONBLOCK; 2026 } while (1); 2027 2028 /* avoid locking problems by failing it from a clean context */ 2029 if (ret < 0) 2030 io_req_task_queue_fail(req, ret); 2031 } 2032 2033 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 2034 unsigned int issue_flags) 2035 { 2036 struct io_ring_ctx *ctx = req->ctx; 2037 struct file *file = NULL; 2038 unsigned long file_ptr; 2039 2040 io_ring_submit_lock(ctx, issue_flags); 2041 2042 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 2043 goto out; 2044 fd = array_index_nospec(fd, ctx->nr_user_files); 2045 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr; 2046 file = (struct file *) (file_ptr & FFS_MASK); 2047 file_ptr &= ~FFS_MASK; 2048 /* mask in overlapping REQ_F and FFS bits */ 2049 req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT); 2050 io_req_set_rsrc_node(req, ctx, 0); 2051 out: 2052 io_ring_submit_unlock(ctx, issue_flags); 2053 return file; 2054 } 2055 2056 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 2057 { 2058 struct file *file = fget(fd); 2059 2060 trace_io_uring_file_get(req, fd); 2061 2062 /* we don't allow fixed io_uring files */ 2063 if (file && io_is_uring_fops(file)) 2064 io_req_track_inflight(req); 2065 return file; 2066 } 2067 2068 static void io_queue_async(struct io_kiocb *req, int ret) 2069 __must_hold(&req->ctx->uring_lock) 2070 { 2071 struct io_kiocb *linked_timeout; 2072 2073 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2074 io_req_defer_failed(req, ret); 2075 return; 2076 } 2077 2078 linked_timeout = io_prep_linked_timeout(req); 2079 2080 switch (io_arm_poll_handler(req, 0)) { 2081 case IO_APOLL_READY: 2082 io_kbuf_recycle(req, 0); 2083 io_req_task_queue(req); 2084 break; 2085 case IO_APOLL_ABORTED: 2086 io_kbuf_recycle(req, 0); 2087 io_queue_iowq(req, NULL); 2088 break; 2089 case IO_APOLL_OK: 2090 break; 2091 } 2092 2093 if (linked_timeout) 2094 io_queue_linked_timeout(linked_timeout); 2095 } 2096 2097 static inline void io_queue_sqe(struct io_kiocb *req) 2098 __must_hold(&req->ctx->uring_lock) 2099 { 2100 int ret; 2101 2102 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2103 2104 /* 2105 * We async punt it if the file wasn't marked NOWAIT, or if the file 2106 * doesn't support non-blocking read/write attempts 2107 */ 2108 if (likely(!ret)) 2109 io_arm_ltimeout(req); 2110 else 2111 io_queue_async(req, ret); 2112 } 2113 2114 static void io_queue_sqe_fallback(struct io_kiocb *req) 2115 __must_hold(&req->ctx->uring_lock) 2116 { 2117 if (unlikely(req->flags & REQ_F_FAIL)) { 2118 /* 2119 * We don't submit, fail them all, for that replace hardlinks 2120 * with normal links. Extra REQ_F_LINK is tolerated. 2121 */ 2122 req->flags &= ~REQ_F_HARDLINK; 2123 req->flags |= REQ_F_LINK; 2124 io_req_defer_failed(req, req->cqe.res); 2125 } else { 2126 int ret = io_req_prep_async(req); 2127 2128 if (unlikely(ret)) { 2129 io_req_defer_failed(req, ret); 2130 return; 2131 } 2132 2133 if (unlikely(req->ctx->drain_active)) 2134 io_drain_req(req); 2135 else 2136 io_queue_iowq(req, NULL); 2137 } 2138 } 2139 2140 /* 2141 * Check SQE restrictions (opcode and flags). 2142 * 2143 * Returns 'true' if SQE is allowed, 'false' otherwise. 2144 */ 2145 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2146 struct io_kiocb *req, 2147 unsigned int sqe_flags) 2148 { 2149 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2150 return false; 2151 2152 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2153 ctx->restrictions.sqe_flags_required) 2154 return false; 2155 2156 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2157 ctx->restrictions.sqe_flags_required)) 2158 return false; 2159 2160 return true; 2161 } 2162 2163 static void io_init_req_drain(struct io_kiocb *req) 2164 { 2165 struct io_ring_ctx *ctx = req->ctx; 2166 struct io_kiocb *head = ctx->submit_state.link.head; 2167 2168 ctx->drain_active = true; 2169 if (head) { 2170 /* 2171 * If we need to drain a request in the middle of a link, drain 2172 * the head request and the next request/link after the current 2173 * link. Considering sequential execution of links, 2174 * REQ_F_IO_DRAIN will be maintained for every request of our 2175 * link. 2176 */ 2177 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2178 ctx->drain_next = true; 2179 } 2180 } 2181 2182 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2183 const struct io_uring_sqe *sqe) 2184 __must_hold(&ctx->uring_lock) 2185 { 2186 const struct io_issue_def *def; 2187 unsigned int sqe_flags; 2188 int personality; 2189 u8 opcode; 2190 2191 /* req is partially pre-initialised, see io_preinit_req() */ 2192 req->opcode = opcode = READ_ONCE(sqe->opcode); 2193 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2194 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2195 req->cqe.user_data = READ_ONCE(sqe->user_data); 2196 req->file = NULL; 2197 req->rsrc_node = NULL; 2198 req->task = current; 2199 2200 if (unlikely(opcode >= IORING_OP_LAST)) { 2201 req->opcode = 0; 2202 return -EINVAL; 2203 } 2204 def = &io_issue_defs[opcode]; 2205 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2206 /* enforce forwards compatibility on users */ 2207 if (sqe_flags & ~SQE_VALID_FLAGS) 2208 return -EINVAL; 2209 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2210 if (!def->buffer_select) 2211 return -EOPNOTSUPP; 2212 req->buf_index = READ_ONCE(sqe->buf_group); 2213 } 2214 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2215 ctx->drain_disabled = true; 2216 if (sqe_flags & IOSQE_IO_DRAIN) { 2217 if (ctx->drain_disabled) 2218 return -EOPNOTSUPP; 2219 io_init_req_drain(req); 2220 } 2221 } 2222 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2223 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2224 return -EACCES; 2225 /* knock it to the slow queue path, will be drained there */ 2226 if (ctx->drain_active) 2227 req->flags |= REQ_F_FORCE_ASYNC; 2228 /* if there is no link, we're at "next" request and need to drain */ 2229 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2230 ctx->drain_next = false; 2231 ctx->drain_active = true; 2232 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2233 } 2234 } 2235 2236 if (!def->ioprio && sqe->ioprio) 2237 return -EINVAL; 2238 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2239 return -EINVAL; 2240 2241 if (def->needs_file) { 2242 struct io_submit_state *state = &ctx->submit_state; 2243 2244 req->cqe.fd = READ_ONCE(sqe->fd); 2245 2246 /* 2247 * Plug now if we have more than 2 IO left after this, and the 2248 * target is potentially a read/write to block based storage. 2249 */ 2250 if (state->need_plug && def->plug) { 2251 state->plug_started = true; 2252 state->need_plug = false; 2253 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2254 } 2255 } 2256 2257 personality = READ_ONCE(sqe->personality); 2258 if (personality) { 2259 int ret; 2260 2261 req->creds = xa_load(&ctx->personalities, personality); 2262 if (!req->creds) 2263 return -EINVAL; 2264 get_cred(req->creds); 2265 ret = security_uring_override_creds(req->creds); 2266 if (ret) { 2267 put_cred(req->creds); 2268 return ret; 2269 } 2270 req->flags |= REQ_F_CREDS; 2271 } 2272 2273 return def->prep(req, sqe); 2274 } 2275 2276 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2277 struct io_kiocb *req, int ret) 2278 { 2279 struct io_ring_ctx *ctx = req->ctx; 2280 struct io_submit_link *link = &ctx->submit_state.link; 2281 struct io_kiocb *head = link->head; 2282 2283 trace_io_uring_req_failed(sqe, req, ret); 2284 2285 /* 2286 * Avoid breaking links in the middle as it renders links with SQPOLL 2287 * unusable. Instead of failing eagerly, continue assembling the link if 2288 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2289 * should find the flag and handle the rest. 2290 */ 2291 req_fail_link_node(req, ret); 2292 if (head && !(head->flags & REQ_F_FAIL)) 2293 req_fail_link_node(head, -ECANCELED); 2294 2295 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2296 if (head) { 2297 link->last->link = req; 2298 link->head = NULL; 2299 req = head; 2300 } 2301 io_queue_sqe_fallback(req); 2302 return ret; 2303 } 2304 2305 if (head) 2306 link->last->link = req; 2307 else 2308 link->head = req; 2309 link->last = req; 2310 return 0; 2311 } 2312 2313 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2314 const struct io_uring_sqe *sqe) 2315 __must_hold(&ctx->uring_lock) 2316 { 2317 struct io_submit_link *link = &ctx->submit_state.link; 2318 int ret; 2319 2320 ret = io_init_req(ctx, req, sqe); 2321 if (unlikely(ret)) 2322 return io_submit_fail_init(sqe, req, ret); 2323 2324 trace_io_uring_submit_req(req); 2325 2326 /* 2327 * If we already have a head request, queue this one for async 2328 * submittal once the head completes. If we don't have a head but 2329 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2330 * submitted sync once the chain is complete. If none of those 2331 * conditions are true (normal request), then just queue it. 2332 */ 2333 if (unlikely(link->head)) { 2334 ret = io_req_prep_async(req); 2335 if (unlikely(ret)) 2336 return io_submit_fail_init(sqe, req, ret); 2337 2338 trace_io_uring_link(req, link->head); 2339 link->last->link = req; 2340 link->last = req; 2341 2342 if (req->flags & IO_REQ_LINK_FLAGS) 2343 return 0; 2344 /* last request of the link, flush it */ 2345 req = link->head; 2346 link->head = NULL; 2347 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2348 goto fallback; 2349 2350 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2351 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2352 if (req->flags & IO_REQ_LINK_FLAGS) { 2353 link->head = req; 2354 link->last = req; 2355 } else { 2356 fallback: 2357 io_queue_sqe_fallback(req); 2358 } 2359 return 0; 2360 } 2361 2362 io_queue_sqe(req); 2363 return 0; 2364 } 2365 2366 /* 2367 * Batched submission is done, ensure local IO is flushed out. 2368 */ 2369 static void io_submit_state_end(struct io_ring_ctx *ctx) 2370 { 2371 struct io_submit_state *state = &ctx->submit_state; 2372 2373 if (unlikely(state->link.head)) 2374 io_queue_sqe_fallback(state->link.head); 2375 /* flush only after queuing links as they can generate completions */ 2376 io_submit_flush_completions(ctx); 2377 if (state->plug_started) 2378 blk_finish_plug(&state->plug); 2379 } 2380 2381 /* 2382 * Start submission side cache. 2383 */ 2384 static void io_submit_state_start(struct io_submit_state *state, 2385 unsigned int max_ios) 2386 { 2387 state->plug_started = false; 2388 state->need_plug = max_ios > 2; 2389 state->submit_nr = max_ios; 2390 /* set only head, no need to init link_last in advance */ 2391 state->link.head = NULL; 2392 } 2393 2394 static void io_commit_sqring(struct io_ring_ctx *ctx) 2395 { 2396 struct io_rings *rings = ctx->rings; 2397 2398 /* 2399 * Ensure any loads from the SQEs are done at this point, 2400 * since once we write the new head, the application could 2401 * write new data to them. 2402 */ 2403 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2404 } 2405 2406 /* 2407 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2408 * that is mapped by userspace. This means that care needs to be taken to 2409 * ensure that reads are stable, as we cannot rely on userspace always 2410 * being a good citizen. If members of the sqe are validated and then later 2411 * used, it's important that those reads are done through READ_ONCE() to 2412 * prevent a re-load down the line. 2413 */ 2414 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2415 { 2416 unsigned head, mask = ctx->sq_entries - 1; 2417 unsigned sq_idx = ctx->cached_sq_head++ & mask; 2418 2419 /* 2420 * The cached sq head (or cq tail) serves two purposes: 2421 * 2422 * 1) allows us to batch the cost of updating the user visible 2423 * head updates. 2424 * 2) allows the kernel side to track the head on its own, even 2425 * though the application is the one updating it. 2426 */ 2427 head = READ_ONCE(ctx->sq_array[sq_idx]); 2428 if (likely(head < ctx->sq_entries)) { 2429 /* double index for 128-byte SQEs, twice as long */ 2430 if (ctx->flags & IORING_SETUP_SQE128) 2431 head <<= 1; 2432 *sqe = &ctx->sq_sqes[head]; 2433 return true; 2434 } 2435 2436 /* drop invalid entries */ 2437 ctx->cq_extra--; 2438 WRITE_ONCE(ctx->rings->sq_dropped, 2439 READ_ONCE(ctx->rings->sq_dropped) + 1); 2440 return false; 2441 } 2442 2443 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2444 __must_hold(&ctx->uring_lock) 2445 { 2446 unsigned int entries = io_sqring_entries(ctx); 2447 unsigned int left; 2448 int ret; 2449 2450 if (unlikely(!entries)) 2451 return 0; 2452 /* make sure SQ entry isn't read before tail */ 2453 ret = left = min(nr, entries); 2454 io_get_task_refs(left); 2455 io_submit_state_start(&ctx->submit_state, left); 2456 2457 do { 2458 const struct io_uring_sqe *sqe; 2459 struct io_kiocb *req; 2460 2461 if (unlikely(!io_alloc_req(ctx, &req))) 2462 break; 2463 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2464 io_req_add_to_cache(req, ctx); 2465 break; 2466 } 2467 2468 /* 2469 * Continue submitting even for sqe failure if the 2470 * ring was setup with IORING_SETUP_SUBMIT_ALL 2471 */ 2472 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2473 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2474 left--; 2475 break; 2476 } 2477 } while (--left); 2478 2479 if (unlikely(left)) { 2480 ret -= left; 2481 /* try again if it submitted nothing and can't allocate a req */ 2482 if (!ret && io_req_cache_empty(ctx)) 2483 ret = -EAGAIN; 2484 current->io_uring->cached_refs += left; 2485 } 2486 2487 io_submit_state_end(ctx); 2488 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2489 io_commit_sqring(ctx); 2490 return ret; 2491 } 2492 2493 struct io_wait_queue { 2494 struct wait_queue_entry wq; 2495 struct io_ring_ctx *ctx; 2496 unsigned cq_tail; 2497 unsigned nr_timeouts; 2498 ktime_t timeout; 2499 }; 2500 2501 static inline bool io_has_work(struct io_ring_ctx *ctx) 2502 { 2503 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2504 !llist_empty(&ctx->work_llist); 2505 } 2506 2507 static inline bool io_should_wake(struct io_wait_queue *iowq) 2508 { 2509 struct io_ring_ctx *ctx = iowq->ctx; 2510 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2511 2512 /* 2513 * Wake up if we have enough events, or if a timeout occurred since we 2514 * started waiting. For timeouts, we always want to return to userspace, 2515 * regardless of event count. 2516 */ 2517 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2518 } 2519 2520 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2521 int wake_flags, void *key) 2522 { 2523 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2524 2525 /* 2526 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2527 * the task, and the next invocation will do it. 2528 */ 2529 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2530 return autoremove_wake_function(curr, mode, wake_flags, key); 2531 return -1; 2532 } 2533 2534 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2535 { 2536 if (!llist_empty(&ctx->work_llist)) { 2537 __set_current_state(TASK_RUNNING); 2538 if (io_run_local_work(ctx) > 0) 2539 return 1; 2540 } 2541 if (io_run_task_work() > 0) 2542 return 1; 2543 if (task_sigpending(current)) 2544 return -EINTR; 2545 return 0; 2546 } 2547 2548 /* when returns >0, the caller should retry */ 2549 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2550 struct io_wait_queue *iowq) 2551 { 2552 if (unlikely(READ_ONCE(ctx->check_cq))) 2553 return 1; 2554 if (unlikely(!llist_empty(&ctx->work_llist))) 2555 return 1; 2556 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) 2557 return 1; 2558 if (unlikely(task_sigpending(current))) 2559 return -EINTR; 2560 if (unlikely(io_should_wake(iowq))) 2561 return 0; 2562 if (iowq->timeout == KTIME_MAX) 2563 schedule(); 2564 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2565 return -ETIME; 2566 return 0; 2567 } 2568 2569 /* 2570 * Wait until events become available, if we don't already have some. The 2571 * application must reap them itself, as they reside on the shared cq ring. 2572 */ 2573 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2574 const sigset_t __user *sig, size_t sigsz, 2575 struct __kernel_timespec __user *uts) 2576 { 2577 struct io_wait_queue iowq; 2578 struct io_rings *rings = ctx->rings; 2579 int ret; 2580 2581 if (!io_allowed_run_tw(ctx)) 2582 return -EEXIST; 2583 if (!llist_empty(&ctx->work_llist)) 2584 io_run_local_work(ctx); 2585 io_run_task_work(); 2586 io_cqring_overflow_flush(ctx); 2587 /* if user messes with these they will just get an early return */ 2588 if (__io_cqring_events_user(ctx) >= min_events) 2589 return 0; 2590 2591 if (sig) { 2592 #ifdef CONFIG_COMPAT 2593 if (in_compat_syscall()) 2594 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2595 sigsz); 2596 else 2597 #endif 2598 ret = set_user_sigmask(sig, sigsz); 2599 2600 if (ret) 2601 return ret; 2602 } 2603 2604 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2605 iowq.wq.private = current; 2606 INIT_LIST_HEAD(&iowq.wq.entry); 2607 iowq.ctx = ctx; 2608 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2609 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2610 iowq.timeout = KTIME_MAX; 2611 2612 if (uts) { 2613 struct timespec64 ts; 2614 2615 if (get_timespec64(&ts, uts)) 2616 return -EFAULT; 2617 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2618 } 2619 2620 trace_io_uring_cqring_wait(ctx, min_events); 2621 do { 2622 unsigned long check_cq; 2623 2624 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2625 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2626 2627 atomic_set(&ctx->cq_wait_nr, nr_wait); 2628 set_current_state(TASK_INTERRUPTIBLE); 2629 } else { 2630 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2631 TASK_INTERRUPTIBLE); 2632 } 2633 2634 ret = io_cqring_wait_schedule(ctx, &iowq); 2635 __set_current_state(TASK_RUNNING); 2636 atomic_set(&ctx->cq_wait_nr, 0); 2637 2638 if (ret < 0) 2639 break; 2640 /* 2641 * Run task_work after scheduling and before io_should_wake(). 2642 * If we got woken because of task_work being processed, run it 2643 * now rather than let the caller do another wait loop. 2644 */ 2645 io_run_task_work(); 2646 if (!llist_empty(&ctx->work_llist)) 2647 io_run_local_work(ctx); 2648 2649 check_cq = READ_ONCE(ctx->check_cq); 2650 if (unlikely(check_cq)) { 2651 /* let the caller flush overflows, retry */ 2652 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2653 io_cqring_do_overflow_flush(ctx); 2654 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2655 ret = -EBADR; 2656 break; 2657 } 2658 } 2659 2660 if (io_should_wake(&iowq)) { 2661 ret = 0; 2662 break; 2663 } 2664 cond_resched(); 2665 } while (1); 2666 2667 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2668 finish_wait(&ctx->cq_wait, &iowq.wq); 2669 restore_saved_sigmask_unless(ret == -EINTR); 2670 2671 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2672 } 2673 2674 static void io_mem_free(void *ptr) 2675 { 2676 struct page *page; 2677 2678 if (!ptr) 2679 return; 2680 2681 page = virt_to_head_page(ptr); 2682 if (put_page_testzero(page)) 2683 free_compound_page(page); 2684 } 2685 2686 static void io_pages_free(struct page ***pages, int npages) 2687 { 2688 struct page **page_array; 2689 int i; 2690 2691 if (!pages) 2692 return; 2693 page_array = *pages; 2694 for (i = 0; i < npages; i++) 2695 unpin_user_page(page_array[i]); 2696 kvfree(page_array); 2697 *pages = NULL; 2698 } 2699 2700 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, 2701 unsigned long uaddr, size_t size) 2702 { 2703 struct page **page_array; 2704 unsigned int nr_pages; 2705 int ret; 2706 2707 *npages = 0; 2708 2709 if (uaddr & (PAGE_SIZE - 1) || !size) 2710 return ERR_PTR(-EINVAL); 2711 2712 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2713 if (nr_pages > USHRT_MAX) 2714 return ERR_PTR(-EINVAL); 2715 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); 2716 if (!page_array) 2717 return ERR_PTR(-ENOMEM); 2718 2719 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, 2720 page_array); 2721 if (ret != nr_pages) { 2722 err: 2723 io_pages_free(&page_array, ret > 0 ? ret : 0); 2724 return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT); 2725 } 2726 /* 2727 * Should be a single page. If the ring is small enough that we can 2728 * use a normal page, that is fine. If we need multiple pages, then 2729 * userspace should use a huge page. That's the only way to guarantee 2730 * that we get contigious memory, outside of just being lucky or 2731 * (currently) having low memory fragmentation. 2732 */ 2733 if (page_array[0] != page_array[ret - 1]) 2734 goto err; 2735 *pages = page_array; 2736 *npages = nr_pages; 2737 return page_to_virt(page_array[0]); 2738 } 2739 2740 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2741 size_t size) 2742 { 2743 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2744 size); 2745 } 2746 2747 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2748 size_t size) 2749 { 2750 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2751 size); 2752 } 2753 2754 static void io_rings_free(struct io_ring_ctx *ctx) 2755 { 2756 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2757 io_mem_free(ctx->rings); 2758 io_mem_free(ctx->sq_sqes); 2759 ctx->rings = NULL; 2760 ctx->sq_sqes = NULL; 2761 } else { 2762 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2763 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2764 } 2765 } 2766 2767 static void *io_mem_alloc(size_t size) 2768 { 2769 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2770 void *ret; 2771 2772 ret = (void *) __get_free_pages(gfp, get_order(size)); 2773 if (ret) 2774 return ret; 2775 return ERR_PTR(-ENOMEM); 2776 } 2777 2778 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2779 unsigned int cq_entries, size_t *sq_offset) 2780 { 2781 struct io_rings *rings; 2782 size_t off, sq_array_size; 2783 2784 off = struct_size(rings, cqes, cq_entries); 2785 if (off == SIZE_MAX) 2786 return SIZE_MAX; 2787 if (ctx->flags & IORING_SETUP_CQE32) { 2788 if (check_shl_overflow(off, 1, &off)) 2789 return SIZE_MAX; 2790 } 2791 2792 #ifdef CONFIG_SMP 2793 off = ALIGN(off, SMP_CACHE_BYTES); 2794 if (off == 0) 2795 return SIZE_MAX; 2796 #endif 2797 2798 if (sq_offset) 2799 *sq_offset = off; 2800 2801 sq_array_size = array_size(sizeof(u32), sq_entries); 2802 if (sq_array_size == SIZE_MAX) 2803 return SIZE_MAX; 2804 2805 if (check_add_overflow(off, sq_array_size, &off)) 2806 return SIZE_MAX; 2807 2808 return off; 2809 } 2810 2811 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2812 unsigned int eventfd_async) 2813 { 2814 struct io_ev_fd *ev_fd; 2815 __s32 __user *fds = arg; 2816 int fd; 2817 2818 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2819 lockdep_is_held(&ctx->uring_lock)); 2820 if (ev_fd) 2821 return -EBUSY; 2822 2823 if (copy_from_user(&fd, fds, sizeof(*fds))) 2824 return -EFAULT; 2825 2826 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2827 if (!ev_fd) 2828 return -ENOMEM; 2829 2830 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2831 if (IS_ERR(ev_fd->cq_ev_fd)) { 2832 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2833 kfree(ev_fd); 2834 return ret; 2835 } 2836 2837 spin_lock(&ctx->completion_lock); 2838 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2839 spin_unlock(&ctx->completion_lock); 2840 2841 ev_fd->eventfd_async = eventfd_async; 2842 ctx->has_evfd = true; 2843 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2844 atomic_set(&ev_fd->refs, 1); 2845 atomic_set(&ev_fd->ops, 0); 2846 return 0; 2847 } 2848 2849 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2850 { 2851 struct io_ev_fd *ev_fd; 2852 2853 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2854 lockdep_is_held(&ctx->uring_lock)); 2855 if (ev_fd) { 2856 ctx->has_evfd = false; 2857 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2858 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2859 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2860 return 0; 2861 } 2862 2863 return -ENXIO; 2864 } 2865 2866 static void io_req_caches_free(struct io_ring_ctx *ctx) 2867 { 2868 struct io_kiocb *req; 2869 int nr = 0; 2870 2871 mutex_lock(&ctx->uring_lock); 2872 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2873 2874 while (!io_req_cache_empty(ctx)) { 2875 req = io_extract_req(ctx); 2876 kmem_cache_free(req_cachep, req); 2877 nr++; 2878 } 2879 if (nr) 2880 percpu_ref_put_many(&ctx->refs, nr); 2881 mutex_unlock(&ctx->uring_lock); 2882 } 2883 2884 static void io_rsrc_node_cache_free(struct io_cache_entry *entry) 2885 { 2886 kfree(container_of(entry, struct io_rsrc_node, cache)); 2887 } 2888 2889 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2890 { 2891 io_sq_thread_finish(ctx); 2892 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2893 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2894 return; 2895 2896 mutex_lock(&ctx->uring_lock); 2897 if (ctx->buf_data) 2898 __io_sqe_buffers_unregister(ctx); 2899 if (ctx->file_data) 2900 __io_sqe_files_unregister(ctx); 2901 io_cqring_overflow_kill(ctx); 2902 io_eventfd_unregister(ctx); 2903 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2904 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2905 io_destroy_buffers(ctx); 2906 mutex_unlock(&ctx->uring_lock); 2907 if (ctx->sq_creds) 2908 put_cred(ctx->sq_creds); 2909 if (ctx->submitter_task) 2910 put_task_struct(ctx->submitter_task); 2911 2912 /* there are no registered resources left, nobody uses it */ 2913 if (ctx->rsrc_node) 2914 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2915 2916 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2917 2918 #if defined(CONFIG_UNIX) 2919 if (ctx->ring_sock) { 2920 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2921 sock_release(ctx->ring_sock); 2922 } 2923 #endif 2924 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2925 2926 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); 2927 if (ctx->mm_account) { 2928 mmdrop(ctx->mm_account); 2929 ctx->mm_account = NULL; 2930 } 2931 io_rings_free(ctx); 2932 2933 percpu_ref_exit(&ctx->refs); 2934 free_uid(ctx->user); 2935 io_req_caches_free(ctx); 2936 if (ctx->hash_map) 2937 io_wq_put_hash(ctx->hash_map); 2938 kfree(ctx->cancel_table.hbs); 2939 kfree(ctx->cancel_table_locked.hbs); 2940 kfree(ctx->dummy_ubuf); 2941 kfree(ctx->io_bl); 2942 xa_destroy(&ctx->io_bl_xa); 2943 kfree(ctx); 2944 } 2945 2946 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2947 { 2948 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2949 poll_wq_task_work); 2950 2951 mutex_lock(&ctx->uring_lock); 2952 ctx->poll_activated = true; 2953 mutex_unlock(&ctx->uring_lock); 2954 2955 /* 2956 * Wake ups for some events between start of polling and activation 2957 * might've been lost due to loose synchronisation. 2958 */ 2959 wake_up_all(&ctx->poll_wq); 2960 percpu_ref_put(&ctx->refs); 2961 } 2962 2963 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2964 { 2965 spin_lock(&ctx->completion_lock); 2966 /* already activated or in progress */ 2967 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2968 goto out; 2969 if (WARN_ON_ONCE(!ctx->task_complete)) 2970 goto out; 2971 if (!ctx->submitter_task) 2972 goto out; 2973 /* 2974 * with ->submitter_task only the submitter task completes requests, we 2975 * only need to sync with it, which is done by injecting a tw 2976 */ 2977 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2978 percpu_ref_get(&ctx->refs); 2979 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2980 percpu_ref_put(&ctx->refs); 2981 out: 2982 spin_unlock(&ctx->completion_lock); 2983 } 2984 2985 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2986 { 2987 struct io_ring_ctx *ctx = file->private_data; 2988 __poll_t mask = 0; 2989 2990 if (unlikely(!ctx->poll_activated)) 2991 io_activate_pollwq(ctx); 2992 2993 poll_wait(file, &ctx->poll_wq, wait); 2994 /* 2995 * synchronizes with barrier from wq_has_sleeper call in 2996 * io_commit_cqring 2997 */ 2998 smp_rmb(); 2999 if (!io_sqring_full(ctx)) 3000 mask |= EPOLLOUT | EPOLLWRNORM; 3001 3002 /* 3003 * Don't flush cqring overflow list here, just do a simple check. 3004 * Otherwise there could possible be ABBA deadlock: 3005 * CPU0 CPU1 3006 * ---- ---- 3007 * lock(&ctx->uring_lock); 3008 * lock(&ep->mtx); 3009 * lock(&ctx->uring_lock); 3010 * lock(&ep->mtx); 3011 * 3012 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 3013 * pushes them to do the flush. 3014 */ 3015 3016 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 3017 mask |= EPOLLIN | EPOLLRDNORM; 3018 3019 return mask; 3020 } 3021 3022 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 3023 { 3024 const struct cred *creds; 3025 3026 creds = xa_erase(&ctx->personalities, id); 3027 if (creds) { 3028 put_cred(creds); 3029 return 0; 3030 } 3031 3032 return -EINVAL; 3033 } 3034 3035 struct io_tctx_exit { 3036 struct callback_head task_work; 3037 struct completion completion; 3038 struct io_ring_ctx *ctx; 3039 }; 3040 3041 static __cold void io_tctx_exit_cb(struct callback_head *cb) 3042 { 3043 struct io_uring_task *tctx = current->io_uring; 3044 struct io_tctx_exit *work; 3045 3046 work = container_of(cb, struct io_tctx_exit, task_work); 3047 /* 3048 * When @in_cancel, we're in cancellation and it's racy to remove the 3049 * node. It'll be removed by the end of cancellation, just ignore it. 3050 * tctx can be NULL if the queueing of this task_work raced with 3051 * work cancelation off the exec path. 3052 */ 3053 if (tctx && !atomic_read(&tctx->in_cancel)) 3054 io_uring_del_tctx_node((unsigned long)work->ctx); 3055 complete(&work->completion); 3056 } 3057 3058 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 3059 { 3060 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3061 3062 return req->ctx == data; 3063 } 3064 3065 static __cold void io_ring_exit_work(struct work_struct *work) 3066 { 3067 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 3068 unsigned long timeout = jiffies + HZ * 60 * 5; 3069 unsigned long interval = HZ / 20; 3070 struct io_tctx_exit exit; 3071 struct io_tctx_node *node; 3072 int ret; 3073 3074 /* 3075 * If we're doing polled IO and end up having requests being 3076 * submitted async (out-of-line), then completions can come in while 3077 * we're waiting for refs to drop. We need to reap these manually, 3078 * as nobody else will be looking for them. 3079 */ 3080 do { 3081 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 3082 mutex_lock(&ctx->uring_lock); 3083 io_cqring_overflow_kill(ctx); 3084 mutex_unlock(&ctx->uring_lock); 3085 } 3086 3087 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3088 io_move_task_work_from_local(ctx); 3089 3090 while (io_uring_try_cancel_requests(ctx, NULL, true)) 3091 cond_resched(); 3092 3093 if (ctx->sq_data) { 3094 struct io_sq_data *sqd = ctx->sq_data; 3095 struct task_struct *tsk; 3096 3097 io_sq_thread_park(sqd); 3098 tsk = sqd->thread; 3099 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 3100 io_wq_cancel_cb(tsk->io_uring->io_wq, 3101 io_cancel_ctx_cb, ctx, true); 3102 io_sq_thread_unpark(sqd); 3103 } 3104 3105 io_req_caches_free(ctx); 3106 3107 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3108 /* there is little hope left, don't run it too often */ 3109 interval = HZ * 60; 3110 } 3111 /* 3112 * This is really an uninterruptible wait, as it has to be 3113 * complete. But it's also run from a kworker, which doesn't 3114 * take signals, so it's fine to make it interruptible. This 3115 * avoids scenarios where we knowingly can wait much longer 3116 * on completions, for example if someone does a SIGSTOP on 3117 * a task that needs to finish task_work to make this loop 3118 * complete. That's a synthetic situation that should not 3119 * cause a stuck task backtrace, and hence a potential panic 3120 * on stuck tasks if that is enabled. 3121 */ 3122 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 3123 3124 init_completion(&exit.completion); 3125 init_task_work(&exit.task_work, io_tctx_exit_cb); 3126 exit.ctx = ctx; 3127 /* 3128 * Some may use context even when all refs and requests have been put, 3129 * and they are free to do so while still holding uring_lock or 3130 * completion_lock, see io_req_task_submit(). Apart from other work, 3131 * this lock/unlock section also waits them to finish. 3132 */ 3133 mutex_lock(&ctx->uring_lock); 3134 while (!list_empty(&ctx->tctx_list)) { 3135 WARN_ON_ONCE(time_after(jiffies, timeout)); 3136 3137 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3138 ctx_node); 3139 /* don't spin on a single task if cancellation failed */ 3140 list_rotate_left(&ctx->tctx_list); 3141 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3142 if (WARN_ON_ONCE(ret)) 3143 continue; 3144 3145 mutex_unlock(&ctx->uring_lock); 3146 /* 3147 * See comment above for 3148 * wait_for_completion_interruptible_timeout() on why this 3149 * wait is marked as interruptible. 3150 */ 3151 wait_for_completion_interruptible(&exit.completion); 3152 mutex_lock(&ctx->uring_lock); 3153 } 3154 mutex_unlock(&ctx->uring_lock); 3155 spin_lock(&ctx->completion_lock); 3156 spin_unlock(&ctx->completion_lock); 3157 3158 /* pairs with RCU read section in io_req_local_work_add() */ 3159 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3160 synchronize_rcu(); 3161 3162 io_ring_ctx_free(ctx); 3163 } 3164 3165 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3166 { 3167 unsigned long index; 3168 struct creds *creds; 3169 3170 mutex_lock(&ctx->uring_lock); 3171 percpu_ref_kill(&ctx->refs); 3172 xa_for_each(&ctx->personalities, index, creds) 3173 io_unregister_personality(ctx, index); 3174 if (ctx->rings) 3175 io_poll_remove_all(ctx, NULL, true); 3176 mutex_unlock(&ctx->uring_lock); 3177 3178 /* 3179 * If we failed setting up the ctx, we might not have any rings 3180 * and therefore did not submit any requests 3181 */ 3182 if (ctx->rings) 3183 io_kill_timeouts(ctx, NULL, true); 3184 3185 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3186 /* 3187 * Use system_unbound_wq to avoid spawning tons of event kworkers 3188 * if we're exiting a ton of rings at the same time. It just adds 3189 * noise and overhead, there's no discernable change in runtime 3190 * over using system_wq. 3191 */ 3192 queue_work(system_unbound_wq, &ctx->exit_work); 3193 } 3194 3195 static int io_uring_release(struct inode *inode, struct file *file) 3196 { 3197 struct io_ring_ctx *ctx = file->private_data; 3198 3199 file->private_data = NULL; 3200 io_ring_ctx_wait_and_kill(ctx); 3201 return 0; 3202 } 3203 3204 struct io_task_cancel { 3205 struct task_struct *task; 3206 bool all; 3207 }; 3208 3209 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3210 { 3211 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3212 struct io_task_cancel *cancel = data; 3213 3214 return io_match_task_safe(req, cancel->task, cancel->all); 3215 } 3216 3217 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3218 struct task_struct *task, 3219 bool cancel_all) 3220 { 3221 struct io_defer_entry *de; 3222 LIST_HEAD(list); 3223 3224 spin_lock(&ctx->completion_lock); 3225 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3226 if (io_match_task_safe(de->req, task, cancel_all)) { 3227 list_cut_position(&list, &ctx->defer_list, &de->list); 3228 break; 3229 } 3230 } 3231 spin_unlock(&ctx->completion_lock); 3232 if (list_empty(&list)) 3233 return false; 3234 3235 while (!list_empty(&list)) { 3236 de = list_first_entry(&list, struct io_defer_entry, list); 3237 list_del_init(&de->list); 3238 io_req_task_queue_fail(de->req, -ECANCELED); 3239 kfree(de); 3240 } 3241 return true; 3242 } 3243 3244 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3245 { 3246 struct io_tctx_node *node; 3247 enum io_wq_cancel cret; 3248 bool ret = false; 3249 3250 mutex_lock(&ctx->uring_lock); 3251 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3252 struct io_uring_task *tctx = node->task->io_uring; 3253 3254 /* 3255 * io_wq will stay alive while we hold uring_lock, because it's 3256 * killed after ctx nodes, which requires to take the lock. 3257 */ 3258 if (!tctx || !tctx->io_wq) 3259 continue; 3260 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3261 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3262 } 3263 mutex_unlock(&ctx->uring_lock); 3264 3265 return ret; 3266 } 3267 3268 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3269 struct task_struct *task, 3270 bool cancel_all) 3271 { 3272 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3273 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3274 enum io_wq_cancel cret; 3275 bool ret = false; 3276 3277 /* set it so io_req_local_work_add() would wake us up */ 3278 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3279 atomic_set(&ctx->cq_wait_nr, 1); 3280 smp_mb(); 3281 } 3282 3283 /* failed during ring init, it couldn't have issued any requests */ 3284 if (!ctx->rings) 3285 return false; 3286 3287 if (!task) { 3288 ret |= io_uring_try_cancel_iowq(ctx); 3289 } else if (tctx && tctx->io_wq) { 3290 /* 3291 * Cancels requests of all rings, not only @ctx, but 3292 * it's fine as the task is in exit/exec. 3293 */ 3294 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3295 &cancel, true); 3296 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3297 } 3298 3299 /* SQPOLL thread does its own polling */ 3300 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3301 (ctx->sq_data && ctx->sq_data->thread == current)) { 3302 while (!wq_list_empty(&ctx->iopoll_list)) { 3303 io_iopoll_try_reap_events(ctx); 3304 ret = true; 3305 cond_resched(); 3306 } 3307 } 3308 3309 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3310 io_allowed_defer_tw_run(ctx)) 3311 ret |= io_run_local_work(ctx) > 0; 3312 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3313 mutex_lock(&ctx->uring_lock); 3314 ret |= io_poll_remove_all(ctx, task, cancel_all); 3315 mutex_unlock(&ctx->uring_lock); 3316 ret |= io_kill_timeouts(ctx, task, cancel_all); 3317 if (task) 3318 ret |= io_run_task_work() > 0; 3319 return ret; 3320 } 3321 3322 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3323 { 3324 if (tracked) 3325 return atomic_read(&tctx->inflight_tracked); 3326 return percpu_counter_sum(&tctx->inflight); 3327 } 3328 3329 /* 3330 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3331 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3332 */ 3333 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3334 { 3335 struct io_uring_task *tctx = current->io_uring; 3336 struct io_ring_ctx *ctx; 3337 struct io_tctx_node *node; 3338 unsigned long index; 3339 s64 inflight; 3340 DEFINE_WAIT(wait); 3341 3342 WARN_ON_ONCE(sqd && sqd->thread != current); 3343 3344 if (!current->io_uring) 3345 return; 3346 if (tctx->io_wq) 3347 io_wq_exit_start(tctx->io_wq); 3348 3349 atomic_inc(&tctx->in_cancel); 3350 do { 3351 bool loop = false; 3352 3353 io_uring_drop_tctx_refs(current); 3354 /* read completions before cancelations */ 3355 inflight = tctx_inflight(tctx, !cancel_all); 3356 if (!inflight) 3357 break; 3358 3359 if (!sqd) { 3360 xa_for_each(&tctx->xa, index, node) { 3361 /* sqpoll task will cancel all its requests */ 3362 if (node->ctx->sq_data) 3363 continue; 3364 loop |= io_uring_try_cancel_requests(node->ctx, 3365 current, cancel_all); 3366 } 3367 } else { 3368 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3369 loop |= io_uring_try_cancel_requests(ctx, 3370 current, 3371 cancel_all); 3372 } 3373 3374 if (loop) { 3375 cond_resched(); 3376 continue; 3377 } 3378 3379 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3380 io_run_task_work(); 3381 io_uring_drop_tctx_refs(current); 3382 xa_for_each(&tctx->xa, index, node) { 3383 if (!llist_empty(&node->ctx->work_llist)) { 3384 WARN_ON_ONCE(node->ctx->submitter_task && 3385 node->ctx->submitter_task != current); 3386 goto end_wait; 3387 } 3388 } 3389 /* 3390 * If we've seen completions, retry without waiting. This 3391 * avoids a race where a completion comes in before we did 3392 * prepare_to_wait(). 3393 */ 3394 if (inflight == tctx_inflight(tctx, !cancel_all)) 3395 schedule(); 3396 end_wait: 3397 finish_wait(&tctx->wait, &wait); 3398 } while (1); 3399 3400 io_uring_clean_tctx(tctx); 3401 if (cancel_all) { 3402 /* 3403 * We shouldn't run task_works after cancel, so just leave 3404 * ->in_cancel set for normal exit. 3405 */ 3406 atomic_dec(&tctx->in_cancel); 3407 /* for exec all current's requests should be gone, kill tctx */ 3408 __io_uring_free(current); 3409 } 3410 } 3411 3412 void __io_uring_cancel(bool cancel_all) 3413 { 3414 io_uring_cancel_generic(cancel_all, NULL); 3415 } 3416 3417 static void *io_uring_validate_mmap_request(struct file *file, 3418 loff_t pgoff, size_t sz) 3419 { 3420 struct io_ring_ctx *ctx = file->private_data; 3421 loff_t offset = pgoff << PAGE_SHIFT; 3422 struct page *page; 3423 void *ptr; 3424 3425 /* Don't allow mmap if the ring was setup without it */ 3426 if (ctx->flags & IORING_SETUP_NO_MMAP) 3427 return ERR_PTR(-EINVAL); 3428 3429 switch (offset & IORING_OFF_MMAP_MASK) { 3430 case IORING_OFF_SQ_RING: 3431 case IORING_OFF_CQ_RING: 3432 ptr = ctx->rings; 3433 break; 3434 case IORING_OFF_SQES: 3435 ptr = ctx->sq_sqes; 3436 break; 3437 case IORING_OFF_PBUF_RING: { 3438 unsigned int bgid; 3439 3440 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; 3441 mutex_lock(&ctx->uring_lock); 3442 ptr = io_pbuf_get_address(ctx, bgid); 3443 mutex_unlock(&ctx->uring_lock); 3444 if (!ptr) 3445 return ERR_PTR(-EINVAL); 3446 break; 3447 } 3448 default: 3449 return ERR_PTR(-EINVAL); 3450 } 3451 3452 page = virt_to_head_page(ptr); 3453 if (sz > page_size(page)) 3454 return ERR_PTR(-EINVAL); 3455 3456 return ptr; 3457 } 3458 3459 #ifdef CONFIG_MMU 3460 3461 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3462 { 3463 size_t sz = vma->vm_end - vma->vm_start; 3464 unsigned long pfn; 3465 void *ptr; 3466 3467 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3468 if (IS_ERR(ptr)) 3469 return PTR_ERR(ptr); 3470 3471 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3472 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3473 } 3474 3475 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, 3476 unsigned long addr, unsigned long len, 3477 unsigned long pgoff, unsigned long flags) 3478 { 3479 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 3480 struct vm_unmapped_area_info info; 3481 void *ptr; 3482 3483 /* 3484 * Do not allow to map to user-provided address to avoid breaking the 3485 * aliasing rules. Userspace is not able to guess the offset address of 3486 * kernel kmalloc()ed memory area. 3487 */ 3488 if (addr) 3489 return -EINVAL; 3490 3491 ptr = io_uring_validate_mmap_request(filp, pgoff, len); 3492 if (IS_ERR(ptr)) 3493 return -ENOMEM; 3494 3495 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 3496 info.length = len; 3497 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 3498 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base); 3499 #ifdef SHM_COLOUR 3500 info.align_mask = PAGE_MASK & (SHM_COLOUR - 1UL); 3501 #else 3502 info.align_mask = PAGE_MASK & (SHMLBA - 1UL); 3503 #endif 3504 info.align_offset = (unsigned long) ptr; 3505 3506 /* 3507 * A failed mmap() very likely causes application failure, 3508 * so fall back to the bottom-up function here. This scenario 3509 * can happen with large stack limits and large mmap() 3510 * allocations. 3511 */ 3512 addr = vm_unmapped_area(&info); 3513 if (offset_in_page(addr)) { 3514 info.flags = 0; 3515 info.low_limit = TASK_UNMAPPED_BASE; 3516 info.high_limit = mmap_end; 3517 addr = vm_unmapped_area(&info); 3518 } 3519 3520 return addr; 3521 } 3522 3523 #else /* !CONFIG_MMU */ 3524 3525 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3526 { 3527 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3528 } 3529 3530 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3531 { 3532 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3533 } 3534 3535 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3536 unsigned long addr, unsigned long len, 3537 unsigned long pgoff, unsigned long flags) 3538 { 3539 void *ptr; 3540 3541 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3542 if (IS_ERR(ptr)) 3543 return PTR_ERR(ptr); 3544 3545 return (unsigned long) ptr; 3546 } 3547 3548 #endif /* !CONFIG_MMU */ 3549 3550 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3551 { 3552 if (flags & IORING_ENTER_EXT_ARG) { 3553 struct io_uring_getevents_arg arg; 3554 3555 if (argsz != sizeof(arg)) 3556 return -EINVAL; 3557 if (copy_from_user(&arg, argp, sizeof(arg))) 3558 return -EFAULT; 3559 } 3560 return 0; 3561 } 3562 3563 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3564 struct __kernel_timespec __user **ts, 3565 const sigset_t __user **sig) 3566 { 3567 struct io_uring_getevents_arg arg; 3568 3569 /* 3570 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3571 * is just a pointer to the sigset_t. 3572 */ 3573 if (!(flags & IORING_ENTER_EXT_ARG)) { 3574 *sig = (const sigset_t __user *) argp; 3575 *ts = NULL; 3576 return 0; 3577 } 3578 3579 /* 3580 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3581 * timespec and sigset_t pointers if good. 3582 */ 3583 if (*argsz != sizeof(arg)) 3584 return -EINVAL; 3585 if (copy_from_user(&arg, argp, sizeof(arg))) 3586 return -EFAULT; 3587 if (arg.pad) 3588 return -EINVAL; 3589 *sig = u64_to_user_ptr(arg.sigmask); 3590 *argsz = arg.sigmask_sz; 3591 *ts = u64_to_user_ptr(arg.ts); 3592 return 0; 3593 } 3594 3595 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3596 u32, min_complete, u32, flags, const void __user *, argp, 3597 size_t, argsz) 3598 { 3599 struct io_ring_ctx *ctx; 3600 struct fd f; 3601 long ret; 3602 3603 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3604 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3605 IORING_ENTER_REGISTERED_RING))) 3606 return -EINVAL; 3607 3608 /* 3609 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3610 * need only dereference our task private array to find it. 3611 */ 3612 if (flags & IORING_ENTER_REGISTERED_RING) { 3613 struct io_uring_task *tctx = current->io_uring; 3614 3615 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3616 return -EINVAL; 3617 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3618 f.file = tctx->registered_rings[fd]; 3619 f.flags = 0; 3620 if (unlikely(!f.file)) 3621 return -EBADF; 3622 } else { 3623 f = fdget(fd); 3624 if (unlikely(!f.file)) 3625 return -EBADF; 3626 ret = -EOPNOTSUPP; 3627 if (unlikely(!io_is_uring_fops(f.file))) 3628 goto out; 3629 } 3630 3631 ctx = f.file->private_data; 3632 ret = -EBADFD; 3633 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3634 goto out; 3635 3636 /* 3637 * For SQ polling, the thread will do all submissions and completions. 3638 * Just return the requested submit count, and wake the thread if 3639 * we were asked to. 3640 */ 3641 ret = 0; 3642 if (ctx->flags & IORING_SETUP_SQPOLL) { 3643 io_cqring_overflow_flush(ctx); 3644 3645 if (unlikely(ctx->sq_data->thread == NULL)) { 3646 ret = -EOWNERDEAD; 3647 goto out; 3648 } 3649 if (flags & IORING_ENTER_SQ_WAKEUP) 3650 wake_up(&ctx->sq_data->wait); 3651 if (flags & IORING_ENTER_SQ_WAIT) 3652 io_sqpoll_wait_sq(ctx); 3653 3654 ret = to_submit; 3655 } else if (to_submit) { 3656 ret = io_uring_add_tctx_node(ctx); 3657 if (unlikely(ret)) 3658 goto out; 3659 3660 mutex_lock(&ctx->uring_lock); 3661 ret = io_submit_sqes(ctx, to_submit); 3662 if (ret != to_submit) { 3663 mutex_unlock(&ctx->uring_lock); 3664 goto out; 3665 } 3666 if (flags & IORING_ENTER_GETEVENTS) { 3667 if (ctx->syscall_iopoll) 3668 goto iopoll_locked; 3669 /* 3670 * Ignore errors, we'll soon call io_cqring_wait() and 3671 * it should handle ownership problems if any. 3672 */ 3673 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3674 (void)io_run_local_work_locked(ctx); 3675 } 3676 mutex_unlock(&ctx->uring_lock); 3677 } 3678 3679 if (flags & IORING_ENTER_GETEVENTS) { 3680 int ret2; 3681 3682 if (ctx->syscall_iopoll) { 3683 /* 3684 * We disallow the app entering submit/complete with 3685 * polling, but we still need to lock the ring to 3686 * prevent racing with polled issue that got punted to 3687 * a workqueue. 3688 */ 3689 mutex_lock(&ctx->uring_lock); 3690 iopoll_locked: 3691 ret2 = io_validate_ext_arg(flags, argp, argsz); 3692 if (likely(!ret2)) { 3693 min_complete = min(min_complete, 3694 ctx->cq_entries); 3695 ret2 = io_iopoll_check(ctx, min_complete); 3696 } 3697 mutex_unlock(&ctx->uring_lock); 3698 } else { 3699 const sigset_t __user *sig; 3700 struct __kernel_timespec __user *ts; 3701 3702 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3703 if (likely(!ret2)) { 3704 min_complete = min(min_complete, 3705 ctx->cq_entries); 3706 ret2 = io_cqring_wait(ctx, min_complete, sig, 3707 argsz, ts); 3708 } 3709 } 3710 3711 if (!ret) { 3712 ret = ret2; 3713 3714 /* 3715 * EBADR indicates that one or more CQE were dropped. 3716 * Once the user has been informed we can clear the bit 3717 * as they are obviously ok with those drops. 3718 */ 3719 if (unlikely(ret2 == -EBADR)) 3720 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3721 &ctx->check_cq); 3722 } 3723 } 3724 out: 3725 fdput(f); 3726 return ret; 3727 } 3728 3729 static const struct file_operations io_uring_fops = { 3730 .release = io_uring_release, 3731 .mmap = io_uring_mmap, 3732 #ifndef CONFIG_MMU 3733 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3734 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3735 #else 3736 .get_unmapped_area = io_uring_mmu_get_unmapped_area, 3737 #endif 3738 .poll = io_uring_poll, 3739 #ifdef CONFIG_PROC_FS 3740 .show_fdinfo = io_uring_show_fdinfo, 3741 #endif 3742 }; 3743 3744 bool io_is_uring_fops(struct file *file) 3745 { 3746 return file->f_op == &io_uring_fops; 3747 } 3748 3749 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3750 struct io_uring_params *p) 3751 { 3752 struct io_rings *rings; 3753 size_t size, sq_array_offset; 3754 void *ptr; 3755 3756 /* make sure these are sane, as we already accounted them */ 3757 ctx->sq_entries = p->sq_entries; 3758 ctx->cq_entries = p->cq_entries; 3759 3760 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3761 if (size == SIZE_MAX) 3762 return -EOVERFLOW; 3763 3764 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3765 rings = io_mem_alloc(size); 3766 else 3767 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3768 3769 if (IS_ERR(rings)) 3770 return PTR_ERR(rings); 3771 3772 ctx->rings = rings; 3773 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3774 rings->sq_ring_mask = p->sq_entries - 1; 3775 rings->cq_ring_mask = p->cq_entries - 1; 3776 rings->sq_ring_entries = p->sq_entries; 3777 rings->cq_ring_entries = p->cq_entries; 3778 3779 if (p->flags & IORING_SETUP_SQE128) 3780 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3781 else 3782 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3783 if (size == SIZE_MAX) { 3784 io_rings_free(ctx); 3785 return -EOVERFLOW; 3786 } 3787 3788 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3789 ptr = io_mem_alloc(size); 3790 else 3791 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3792 3793 if (IS_ERR(ptr)) { 3794 io_rings_free(ctx); 3795 return PTR_ERR(ptr); 3796 } 3797 3798 ctx->sq_sqes = ptr; 3799 return 0; 3800 } 3801 3802 static int io_uring_install_fd(struct file *file) 3803 { 3804 int fd; 3805 3806 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3807 if (fd < 0) 3808 return fd; 3809 fd_install(fd, file); 3810 return fd; 3811 } 3812 3813 /* 3814 * Allocate an anonymous fd, this is what constitutes the application 3815 * visible backing of an io_uring instance. The application mmaps this 3816 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3817 * we have to tie this fd to a socket for file garbage collection purposes. 3818 */ 3819 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3820 { 3821 struct file *file; 3822 #if defined(CONFIG_UNIX) 3823 int ret; 3824 3825 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3826 &ctx->ring_sock); 3827 if (ret) 3828 return ERR_PTR(ret); 3829 #endif 3830 3831 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3832 O_RDWR | O_CLOEXEC, NULL); 3833 #if defined(CONFIG_UNIX) 3834 if (IS_ERR(file)) { 3835 sock_release(ctx->ring_sock); 3836 ctx->ring_sock = NULL; 3837 } else { 3838 ctx->ring_sock->file = file; 3839 } 3840 #endif 3841 return file; 3842 } 3843 3844 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3845 struct io_uring_params __user *params) 3846 { 3847 struct io_ring_ctx *ctx; 3848 struct io_uring_task *tctx; 3849 struct file *file; 3850 int ret; 3851 3852 if (!entries) 3853 return -EINVAL; 3854 if (entries > IORING_MAX_ENTRIES) { 3855 if (!(p->flags & IORING_SETUP_CLAMP)) 3856 return -EINVAL; 3857 entries = IORING_MAX_ENTRIES; 3858 } 3859 3860 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3861 && !(p->flags & IORING_SETUP_NO_MMAP)) 3862 return -EINVAL; 3863 3864 /* 3865 * Use twice as many entries for the CQ ring. It's possible for the 3866 * application to drive a higher depth than the size of the SQ ring, 3867 * since the sqes are only used at submission time. This allows for 3868 * some flexibility in overcommitting a bit. If the application has 3869 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3870 * of CQ ring entries manually. 3871 */ 3872 p->sq_entries = roundup_pow_of_two(entries); 3873 if (p->flags & IORING_SETUP_CQSIZE) { 3874 /* 3875 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3876 * to a power-of-two, if it isn't already. We do NOT impose 3877 * any cq vs sq ring sizing. 3878 */ 3879 if (!p->cq_entries) 3880 return -EINVAL; 3881 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3882 if (!(p->flags & IORING_SETUP_CLAMP)) 3883 return -EINVAL; 3884 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3885 } 3886 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3887 if (p->cq_entries < p->sq_entries) 3888 return -EINVAL; 3889 } else { 3890 p->cq_entries = 2 * p->sq_entries; 3891 } 3892 3893 ctx = io_ring_ctx_alloc(p); 3894 if (!ctx) 3895 return -ENOMEM; 3896 3897 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3898 !(ctx->flags & IORING_SETUP_IOPOLL) && 3899 !(ctx->flags & IORING_SETUP_SQPOLL)) 3900 ctx->task_complete = true; 3901 3902 /* 3903 * lazy poll_wq activation relies on ->task_complete for synchronisation 3904 * purposes, see io_activate_pollwq() 3905 */ 3906 if (!ctx->task_complete) 3907 ctx->poll_activated = true; 3908 3909 /* 3910 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3911 * space applications don't need to do io completion events 3912 * polling again, they can rely on io_sq_thread to do polling 3913 * work, which can reduce cpu usage and uring_lock contention. 3914 */ 3915 if (ctx->flags & IORING_SETUP_IOPOLL && 3916 !(ctx->flags & IORING_SETUP_SQPOLL)) 3917 ctx->syscall_iopoll = 1; 3918 3919 ctx->compat = in_compat_syscall(); 3920 if (!capable(CAP_IPC_LOCK)) 3921 ctx->user = get_uid(current_user()); 3922 3923 /* 3924 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3925 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3926 */ 3927 ret = -EINVAL; 3928 if (ctx->flags & IORING_SETUP_SQPOLL) { 3929 /* IPI related flags don't make sense with SQPOLL */ 3930 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3931 IORING_SETUP_TASKRUN_FLAG | 3932 IORING_SETUP_DEFER_TASKRUN)) 3933 goto err; 3934 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3935 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3936 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3937 } else { 3938 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3939 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3940 goto err; 3941 ctx->notify_method = TWA_SIGNAL; 3942 } 3943 3944 /* 3945 * For DEFER_TASKRUN we require the completion task to be the same as the 3946 * submission task. This implies that there is only one submitter, so enforce 3947 * that. 3948 */ 3949 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3950 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3951 goto err; 3952 } 3953 3954 /* 3955 * This is just grabbed for accounting purposes. When a process exits, 3956 * the mm is exited and dropped before the files, hence we need to hang 3957 * on to this mm purely for the purposes of being able to unaccount 3958 * memory (locked/pinned vm). It's not used for anything else. 3959 */ 3960 mmgrab(current->mm); 3961 ctx->mm_account = current->mm; 3962 3963 ret = io_allocate_scq_urings(ctx, p); 3964 if (ret) 3965 goto err; 3966 3967 ret = io_sq_offload_create(ctx, p); 3968 if (ret) 3969 goto err; 3970 3971 ret = io_rsrc_init(ctx); 3972 if (ret) 3973 goto err; 3974 3975 p->sq_off.head = offsetof(struct io_rings, sq.head); 3976 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3977 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3978 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3979 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3980 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3981 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3982 p->sq_off.resv1 = 0; 3983 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3984 p->sq_off.user_addr = 0; 3985 3986 p->cq_off.head = offsetof(struct io_rings, cq.head); 3987 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3988 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3989 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3990 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3991 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3992 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3993 p->cq_off.resv1 = 0; 3994 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3995 p->cq_off.user_addr = 0; 3996 3997 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3998 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3999 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 4000 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 4001 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 4002 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 4003 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 4004 4005 if (copy_to_user(params, p, sizeof(*p))) { 4006 ret = -EFAULT; 4007 goto err; 4008 } 4009 4010 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 4011 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 4012 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4013 4014 file = io_uring_get_file(ctx); 4015 if (IS_ERR(file)) { 4016 ret = PTR_ERR(file); 4017 goto err; 4018 } 4019 4020 ret = __io_uring_add_tctx_node(ctx); 4021 if (ret) 4022 goto err_fput; 4023 tctx = current->io_uring; 4024 4025 /* 4026 * Install ring fd as the very last thing, so we don't risk someone 4027 * having closed it before we finish setup 4028 */ 4029 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 4030 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 4031 else 4032 ret = io_uring_install_fd(file); 4033 if (ret < 0) 4034 goto err_fput; 4035 4036 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 4037 return ret; 4038 err: 4039 io_ring_ctx_wait_and_kill(ctx); 4040 return ret; 4041 err_fput: 4042 fput(file); 4043 return ret; 4044 } 4045 4046 /* 4047 * Sets up an aio uring context, and returns the fd. Applications asks for a 4048 * ring size, we return the actual sq/cq ring sizes (among other things) in the 4049 * params structure passed in. 4050 */ 4051 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 4052 { 4053 struct io_uring_params p; 4054 int i; 4055 4056 if (copy_from_user(&p, params, sizeof(p))) 4057 return -EFAULT; 4058 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 4059 if (p.resv[i]) 4060 return -EINVAL; 4061 } 4062 4063 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 4064 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 4065 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 4066 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 4067 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 4068 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 4069 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 4070 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY)) 4071 return -EINVAL; 4072 4073 return io_uring_create(entries, &p, params); 4074 } 4075 4076 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 4077 struct io_uring_params __user *, params) 4078 { 4079 return io_uring_setup(entries, params); 4080 } 4081 4082 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 4083 unsigned nr_args) 4084 { 4085 struct io_uring_probe *p; 4086 size_t size; 4087 int i, ret; 4088 4089 size = struct_size(p, ops, nr_args); 4090 if (size == SIZE_MAX) 4091 return -EOVERFLOW; 4092 p = kzalloc(size, GFP_KERNEL); 4093 if (!p) 4094 return -ENOMEM; 4095 4096 ret = -EFAULT; 4097 if (copy_from_user(p, arg, size)) 4098 goto out; 4099 ret = -EINVAL; 4100 if (memchr_inv(p, 0, size)) 4101 goto out; 4102 4103 p->last_op = IORING_OP_LAST - 1; 4104 if (nr_args > IORING_OP_LAST) 4105 nr_args = IORING_OP_LAST; 4106 4107 for (i = 0; i < nr_args; i++) { 4108 p->ops[i].op = i; 4109 if (!io_issue_defs[i].not_supported) 4110 p->ops[i].flags = IO_URING_OP_SUPPORTED; 4111 } 4112 p->ops_len = i; 4113 4114 ret = 0; 4115 if (copy_to_user(arg, p, size)) 4116 ret = -EFAULT; 4117 out: 4118 kfree(p); 4119 return ret; 4120 } 4121 4122 static int io_register_personality(struct io_ring_ctx *ctx) 4123 { 4124 const struct cred *creds; 4125 u32 id; 4126 int ret; 4127 4128 creds = get_current_cred(); 4129 4130 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 4131 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 4132 if (ret < 0) { 4133 put_cred(creds); 4134 return ret; 4135 } 4136 return id; 4137 } 4138 4139 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 4140 void __user *arg, unsigned int nr_args) 4141 { 4142 struct io_uring_restriction *res; 4143 size_t size; 4144 int i, ret; 4145 4146 /* Restrictions allowed only if rings started disabled */ 4147 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4148 return -EBADFD; 4149 4150 /* We allow only a single restrictions registration */ 4151 if (ctx->restrictions.registered) 4152 return -EBUSY; 4153 4154 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 4155 return -EINVAL; 4156 4157 size = array_size(nr_args, sizeof(*res)); 4158 if (size == SIZE_MAX) 4159 return -EOVERFLOW; 4160 4161 res = memdup_user(arg, size); 4162 if (IS_ERR(res)) 4163 return PTR_ERR(res); 4164 4165 ret = 0; 4166 4167 for (i = 0; i < nr_args; i++) { 4168 switch (res[i].opcode) { 4169 case IORING_RESTRICTION_REGISTER_OP: 4170 if (res[i].register_op >= IORING_REGISTER_LAST) { 4171 ret = -EINVAL; 4172 goto out; 4173 } 4174 4175 __set_bit(res[i].register_op, 4176 ctx->restrictions.register_op); 4177 break; 4178 case IORING_RESTRICTION_SQE_OP: 4179 if (res[i].sqe_op >= IORING_OP_LAST) { 4180 ret = -EINVAL; 4181 goto out; 4182 } 4183 4184 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 4185 break; 4186 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 4187 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 4188 break; 4189 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 4190 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 4191 break; 4192 default: 4193 ret = -EINVAL; 4194 goto out; 4195 } 4196 } 4197 4198 out: 4199 /* Reset all restrictions if an error happened */ 4200 if (ret != 0) 4201 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 4202 else 4203 ctx->restrictions.registered = true; 4204 4205 kfree(res); 4206 return ret; 4207 } 4208 4209 static int io_register_enable_rings(struct io_ring_ctx *ctx) 4210 { 4211 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4212 return -EBADFD; 4213 4214 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) { 4215 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4216 /* 4217 * Lazy activation attempts would fail if it was polled before 4218 * submitter_task is set. 4219 */ 4220 if (wq_has_sleeper(&ctx->poll_wq)) 4221 io_activate_pollwq(ctx); 4222 } 4223 4224 if (ctx->restrictions.registered) 4225 ctx->restricted = 1; 4226 4227 ctx->flags &= ~IORING_SETUP_R_DISABLED; 4228 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 4229 wake_up(&ctx->sq_data->wait); 4230 return 0; 4231 } 4232 4233 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 4234 void __user *arg, unsigned len) 4235 { 4236 struct io_uring_task *tctx = current->io_uring; 4237 cpumask_var_t new_mask; 4238 int ret; 4239 4240 if (!tctx || !tctx->io_wq) 4241 return -EINVAL; 4242 4243 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4244 return -ENOMEM; 4245 4246 cpumask_clear(new_mask); 4247 if (len > cpumask_size()) 4248 len = cpumask_size(); 4249 4250 if (in_compat_syscall()) { 4251 ret = compat_get_bitmap(cpumask_bits(new_mask), 4252 (const compat_ulong_t __user *)arg, 4253 len * 8 /* CHAR_BIT */); 4254 } else { 4255 ret = copy_from_user(new_mask, arg, len); 4256 } 4257 4258 if (ret) { 4259 free_cpumask_var(new_mask); 4260 return -EFAULT; 4261 } 4262 4263 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask); 4264 free_cpumask_var(new_mask); 4265 return ret; 4266 } 4267 4268 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 4269 { 4270 struct io_uring_task *tctx = current->io_uring; 4271 4272 if (!tctx || !tctx->io_wq) 4273 return -EINVAL; 4274 4275 return io_wq_cpu_affinity(tctx->io_wq, NULL); 4276 } 4277 4278 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 4279 void __user *arg) 4280 __must_hold(&ctx->uring_lock) 4281 { 4282 struct io_tctx_node *node; 4283 struct io_uring_task *tctx = NULL; 4284 struct io_sq_data *sqd = NULL; 4285 __u32 new_count[2]; 4286 int i, ret; 4287 4288 if (copy_from_user(new_count, arg, sizeof(new_count))) 4289 return -EFAULT; 4290 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4291 if (new_count[i] > INT_MAX) 4292 return -EINVAL; 4293 4294 if (ctx->flags & IORING_SETUP_SQPOLL) { 4295 sqd = ctx->sq_data; 4296 if (sqd) { 4297 /* 4298 * Observe the correct sqd->lock -> ctx->uring_lock 4299 * ordering. Fine to drop uring_lock here, we hold 4300 * a ref to the ctx. 4301 */ 4302 refcount_inc(&sqd->refs); 4303 mutex_unlock(&ctx->uring_lock); 4304 mutex_lock(&sqd->lock); 4305 mutex_lock(&ctx->uring_lock); 4306 if (sqd->thread) 4307 tctx = sqd->thread->io_uring; 4308 } 4309 } else { 4310 tctx = current->io_uring; 4311 } 4312 4313 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 4314 4315 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4316 if (new_count[i]) 4317 ctx->iowq_limits[i] = new_count[i]; 4318 ctx->iowq_limits_set = true; 4319 4320 if (tctx && tctx->io_wq) { 4321 ret = io_wq_max_workers(tctx->io_wq, new_count); 4322 if (ret) 4323 goto err; 4324 } else { 4325 memset(new_count, 0, sizeof(new_count)); 4326 } 4327 4328 if (sqd) { 4329 mutex_unlock(&sqd->lock); 4330 io_put_sq_data(sqd); 4331 } 4332 4333 if (copy_to_user(arg, new_count, sizeof(new_count))) 4334 return -EFAULT; 4335 4336 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 4337 if (sqd) 4338 return 0; 4339 4340 /* now propagate the restriction to all registered users */ 4341 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 4342 struct io_uring_task *tctx = node->task->io_uring; 4343 4344 if (WARN_ON_ONCE(!tctx->io_wq)) 4345 continue; 4346 4347 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4348 new_count[i] = ctx->iowq_limits[i]; 4349 /* ignore errors, it always returns zero anyway */ 4350 (void)io_wq_max_workers(tctx->io_wq, new_count); 4351 } 4352 return 0; 4353 err: 4354 if (sqd) { 4355 mutex_unlock(&sqd->lock); 4356 io_put_sq_data(sqd); 4357 } 4358 return ret; 4359 } 4360 4361 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4362 void __user *arg, unsigned nr_args) 4363 __releases(ctx->uring_lock) 4364 __acquires(ctx->uring_lock) 4365 { 4366 int ret; 4367 4368 /* 4369 * We don't quiesce the refs for register anymore and so it can't be 4370 * dying as we're holding a file ref here. 4371 */ 4372 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4373 return -ENXIO; 4374 4375 if (ctx->submitter_task && ctx->submitter_task != current) 4376 return -EEXIST; 4377 4378 if (ctx->restricted) { 4379 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4380 if (!test_bit(opcode, ctx->restrictions.register_op)) 4381 return -EACCES; 4382 } 4383 4384 switch (opcode) { 4385 case IORING_REGISTER_BUFFERS: 4386 ret = -EFAULT; 4387 if (!arg) 4388 break; 4389 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4390 break; 4391 case IORING_UNREGISTER_BUFFERS: 4392 ret = -EINVAL; 4393 if (arg || nr_args) 4394 break; 4395 ret = io_sqe_buffers_unregister(ctx); 4396 break; 4397 case IORING_REGISTER_FILES: 4398 ret = -EFAULT; 4399 if (!arg) 4400 break; 4401 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4402 break; 4403 case IORING_UNREGISTER_FILES: 4404 ret = -EINVAL; 4405 if (arg || nr_args) 4406 break; 4407 ret = io_sqe_files_unregister(ctx); 4408 break; 4409 case IORING_REGISTER_FILES_UPDATE: 4410 ret = io_register_files_update(ctx, arg, nr_args); 4411 break; 4412 case IORING_REGISTER_EVENTFD: 4413 ret = -EINVAL; 4414 if (nr_args != 1) 4415 break; 4416 ret = io_eventfd_register(ctx, arg, 0); 4417 break; 4418 case IORING_REGISTER_EVENTFD_ASYNC: 4419 ret = -EINVAL; 4420 if (nr_args != 1) 4421 break; 4422 ret = io_eventfd_register(ctx, arg, 1); 4423 break; 4424 case IORING_UNREGISTER_EVENTFD: 4425 ret = -EINVAL; 4426 if (arg || nr_args) 4427 break; 4428 ret = io_eventfd_unregister(ctx); 4429 break; 4430 case IORING_REGISTER_PROBE: 4431 ret = -EINVAL; 4432 if (!arg || nr_args > 256) 4433 break; 4434 ret = io_probe(ctx, arg, nr_args); 4435 break; 4436 case IORING_REGISTER_PERSONALITY: 4437 ret = -EINVAL; 4438 if (arg || nr_args) 4439 break; 4440 ret = io_register_personality(ctx); 4441 break; 4442 case IORING_UNREGISTER_PERSONALITY: 4443 ret = -EINVAL; 4444 if (arg) 4445 break; 4446 ret = io_unregister_personality(ctx, nr_args); 4447 break; 4448 case IORING_REGISTER_ENABLE_RINGS: 4449 ret = -EINVAL; 4450 if (arg || nr_args) 4451 break; 4452 ret = io_register_enable_rings(ctx); 4453 break; 4454 case IORING_REGISTER_RESTRICTIONS: 4455 ret = io_register_restrictions(ctx, arg, nr_args); 4456 break; 4457 case IORING_REGISTER_FILES2: 4458 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4459 break; 4460 case IORING_REGISTER_FILES_UPDATE2: 4461 ret = io_register_rsrc_update(ctx, arg, nr_args, 4462 IORING_RSRC_FILE); 4463 break; 4464 case IORING_REGISTER_BUFFERS2: 4465 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4466 break; 4467 case IORING_REGISTER_BUFFERS_UPDATE: 4468 ret = io_register_rsrc_update(ctx, arg, nr_args, 4469 IORING_RSRC_BUFFER); 4470 break; 4471 case IORING_REGISTER_IOWQ_AFF: 4472 ret = -EINVAL; 4473 if (!arg || !nr_args) 4474 break; 4475 ret = io_register_iowq_aff(ctx, arg, nr_args); 4476 break; 4477 case IORING_UNREGISTER_IOWQ_AFF: 4478 ret = -EINVAL; 4479 if (arg || nr_args) 4480 break; 4481 ret = io_unregister_iowq_aff(ctx); 4482 break; 4483 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4484 ret = -EINVAL; 4485 if (!arg || nr_args != 2) 4486 break; 4487 ret = io_register_iowq_max_workers(ctx, arg); 4488 break; 4489 case IORING_REGISTER_RING_FDS: 4490 ret = io_ringfd_register(ctx, arg, nr_args); 4491 break; 4492 case IORING_UNREGISTER_RING_FDS: 4493 ret = io_ringfd_unregister(ctx, arg, nr_args); 4494 break; 4495 case IORING_REGISTER_PBUF_RING: 4496 ret = -EINVAL; 4497 if (!arg || nr_args != 1) 4498 break; 4499 ret = io_register_pbuf_ring(ctx, arg); 4500 break; 4501 case IORING_UNREGISTER_PBUF_RING: 4502 ret = -EINVAL; 4503 if (!arg || nr_args != 1) 4504 break; 4505 ret = io_unregister_pbuf_ring(ctx, arg); 4506 break; 4507 case IORING_REGISTER_SYNC_CANCEL: 4508 ret = -EINVAL; 4509 if (!arg || nr_args != 1) 4510 break; 4511 ret = io_sync_cancel(ctx, arg); 4512 break; 4513 case IORING_REGISTER_FILE_ALLOC_RANGE: 4514 ret = -EINVAL; 4515 if (!arg || nr_args) 4516 break; 4517 ret = io_register_file_alloc_range(ctx, arg); 4518 break; 4519 default: 4520 ret = -EINVAL; 4521 break; 4522 } 4523 4524 return ret; 4525 } 4526 4527 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4528 void __user *, arg, unsigned int, nr_args) 4529 { 4530 struct io_ring_ctx *ctx; 4531 long ret = -EBADF; 4532 struct fd f; 4533 bool use_registered_ring; 4534 4535 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING); 4536 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING; 4537 4538 if (opcode >= IORING_REGISTER_LAST) 4539 return -EINVAL; 4540 4541 if (use_registered_ring) { 4542 /* 4543 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 4544 * need only dereference our task private array to find it. 4545 */ 4546 struct io_uring_task *tctx = current->io_uring; 4547 4548 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 4549 return -EINVAL; 4550 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 4551 f.file = tctx->registered_rings[fd]; 4552 f.flags = 0; 4553 if (unlikely(!f.file)) 4554 return -EBADF; 4555 } else { 4556 f = fdget(fd); 4557 if (unlikely(!f.file)) 4558 return -EBADF; 4559 ret = -EOPNOTSUPP; 4560 if (!io_is_uring_fops(f.file)) 4561 goto out_fput; 4562 } 4563 4564 ctx = f.file->private_data; 4565 4566 mutex_lock(&ctx->uring_lock); 4567 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4568 mutex_unlock(&ctx->uring_lock); 4569 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4570 out_fput: 4571 fdput(f); 4572 return ret; 4573 } 4574 4575 static int __init io_uring_init(void) 4576 { 4577 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4578 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4579 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4580 } while (0) 4581 4582 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4583 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4584 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4585 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4586 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4587 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4588 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4589 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4590 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4591 BUILD_BUG_SQE_ELEM(8, __u64, off); 4592 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4593 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4594 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4595 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4596 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4597 BUILD_BUG_SQE_ELEM(24, __u32, len); 4598 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4599 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4600 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4601 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4602 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4603 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4604 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4605 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4606 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4607 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4608 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4609 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4610 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4611 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4612 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4613 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4614 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4615 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4616 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4617 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4618 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4619 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4620 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4621 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4622 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4623 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4624 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4625 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4626 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4627 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4628 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4629 4630 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4631 sizeof(struct io_uring_rsrc_update)); 4632 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4633 sizeof(struct io_uring_rsrc_update2)); 4634 4635 /* ->buf_index is u16 */ 4636 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4637 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4638 offsetof(struct io_uring_buf_ring, tail)); 4639 4640 /* should fit into one byte */ 4641 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4642 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4643 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4644 4645 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4646 4647 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4648 4649 io_uring_optable_init(); 4650 4651 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4652 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU); 4653 return 0; 4654 }; 4655 __initcall(io_uring_init); 4656