1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 76 #define CREATE_TRACE_POINTS 77 #include <trace/events/io_uring.h> 78 79 #include <uapi/linux/io_uring.h> 80 81 #include "io-wq.h" 82 83 #include "io_uring.h" 84 #include "opdef.h" 85 #include "refs.h" 86 #include "tctx.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 95 #include "timeout.h" 96 #include "poll.h" 97 #include "alloc_cache.h" 98 99 #define IORING_MAX_ENTRIES 32768 100 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 101 102 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 103 IORING_REGISTER_LAST + IORING_OP_LAST) 104 105 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 106 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 107 108 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 109 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 110 111 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 112 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 113 REQ_F_ASYNC_DATA) 114 115 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 116 IO_REQ_CLEAN_FLAGS) 117 118 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 119 120 #define IO_COMPL_BATCH 32 121 #define IO_REQ_ALLOC_BATCH 8 122 123 enum { 124 IO_CHECK_CQ_OVERFLOW_BIT, 125 IO_CHECK_CQ_DROPPED_BIT, 126 }; 127 128 enum { 129 IO_EVENTFD_OP_SIGNAL_BIT, 130 IO_EVENTFD_OP_FREE_BIT, 131 }; 132 133 struct io_defer_entry { 134 struct list_head list; 135 struct io_kiocb *req; 136 u32 seq; 137 }; 138 139 /* requests with any of those set should undergo io_disarm_next() */ 140 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 141 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 142 143 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 144 struct task_struct *task, 145 bool cancel_all); 146 147 static void io_dismantle_req(struct io_kiocb *req); 148 static void io_clean_op(struct io_kiocb *req); 149 static void io_queue_sqe(struct io_kiocb *req); 150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx); 151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx); 152 153 static struct kmem_cache *req_cachep; 154 155 struct sock *io_uring_get_socket(struct file *file) 156 { 157 #if defined(CONFIG_UNIX) 158 if (io_is_uring_fops(file)) { 159 struct io_ring_ctx *ctx = file->private_data; 160 161 return ctx->ring_sock->sk; 162 } 163 #endif 164 return NULL; 165 } 166 EXPORT_SYMBOL(io_uring_get_socket); 167 168 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 169 { 170 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) 171 __io_submit_flush_completions(ctx); 172 } 173 174 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 175 { 176 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 177 } 178 179 static bool io_match_linked(struct io_kiocb *head) 180 { 181 struct io_kiocb *req; 182 183 io_for_each_link(req, head) { 184 if (req->flags & REQ_F_INFLIGHT) 185 return true; 186 } 187 return false; 188 } 189 190 /* 191 * As io_match_task() but protected against racing with linked timeouts. 192 * User must not hold timeout_lock. 193 */ 194 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 195 bool cancel_all) 196 { 197 bool matched; 198 199 if (task && head->task != task) 200 return false; 201 if (cancel_all) 202 return true; 203 204 if (head->flags & REQ_F_LINK_TIMEOUT) { 205 struct io_ring_ctx *ctx = head->ctx; 206 207 /* protect against races with linked timeouts */ 208 spin_lock_irq(&ctx->timeout_lock); 209 matched = io_match_linked(head); 210 spin_unlock_irq(&ctx->timeout_lock); 211 } else { 212 matched = io_match_linked(head); 213 } 214 return matched; 215 } 216 217 static inline void req_fail_link_node(struct io_kiocb *req, int res) 218 { 219 req_set_fail(req); 220 io_req_set_res(req, res, 0); 221 } 222 223 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 224 { 225 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 226 } 227 228 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 229 { 230 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 231 232 complete(&ctx->ref_comp); 233 } 234 235 static __cold void io_fallback_req_func(struct work_struct *work) 236 { 237 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 238 fallback_work.work); 239 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 240 struct io_kiocb *req, *tmp; 241 bool locked = false; 242 243 percpu_ref_get(&ctx->refs); 244 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 245 req->io_task_work.func(req, &locked); 246 247 if (locked) { 248 io_submit_flush_completions(ctx); 249 mutex_unlock(&ctx->uring_lock); 250 } 251 percpu_ref_put(&ctx->refs); 252 } 253 254 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 255 { 256 unsigned hash_buckets = 1U << bits; 257 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 258 259 table->hbs = kmalloc(hash_size, GFP_KERNEL); 260 if (!table->hbs) 261 return -ENOMEM; 262 263 table->hash_bits = bits; 264 init_hash_table(table, hash_buckets); 265 return 0; 266 } 267 268 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 269 { 270 struct io_ring_ctx *ctx; 271 int hash_bits; 272 273 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 274 if (!ctx) 275 return NULL; 276 277 xa_init(&ctx->io_bl_xa); 278 279 /* 280 * Use 5 bits less than the max cq entries, that should give us around 281 * 32 entries per hash list if totally full and uniformly spread, but 282 * don't keep too many buckets to not overconsume memory. 283 */ 284 hash_bits = ilog2(p->cq_entries) - 5; 285 hash_bits = clamp(hash_bits, 1, 8); 286 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 287 goto err; 288 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 289 goto err; 290 291 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL); 292 if (!ctx->dummy_ubuf) 293 goto err; 294 /* set invalid range, so io_import_fixed() fails meeting it */ 295 ctx->dummy_ubuf->ubuf = -1UL; 296 297 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 298 0, GFP_KERNEL)) 299 goto err; 300 301 ctx->flags = p->flags; 302 init_waitqueue_head(&ctx->sqo_sq_wait); 303 INIT_LIST_HEAD(&ctx->sqd_list); 304 INIT_LIST_HEAD(&ctx->cq_overflow_list); 305 INIT_LIST_HEAD(&ctx->io_buffers_cache); 306 io_alloc_cache_init(&ctx->apoll_cache); 307 io_alloc_cache_init(&ctx->netmsg_cache); 308 init_completion(&ctx->ref_comp); 309 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 310 mutex_init(&ctx->uring_lock); 311 init_waitqueue_head(&ctx->cq_wait); 312 spin_lock_init(&ctx->completion_lock); 313 spin_lock_init(&ctx->timeout_lock); 314 INIT_WQ_LIST(&ctx->iopoll_list); 315 INIT_LIST_HEAD(&ctx->io_buffers_pages); 316 INIT_LIST_HEAD(&ctx->io_buffers_comp); 317 INIT_LIST_HEAD(&ctx->defer_list); 318 INIT_LIST_HEAD(&ctx->timeout_list); 319 INIT_LIST_HEAD(&ctx->ltimeout_list); 320 spin_lock_init(&ctx->rsrc_ref_lock); 321 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 322 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work); 323 init_llist_head(&ctx->rsrc_put_llist); 324 init_llist_head(&ctx->work_llist); 325 INIT_LIST_HEAD(&ctx->tctx_list); 326 ctx->submit_state.free_list.next = NULL; 327 INIT_WQ_LIST(&ctx->locked_free_list); 328 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 329 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 330 return ctx; 331 err: 332 kfree(ctx->dummy_ubuf); 333 kfree(ctx->cancel_table.hbs); 334 kfree(ctx->cancel_table_locked.hbs); 335 kfree(ctx->io_bl); 336 xa_destroy(&ctx->io_bl_xa); 337 kfree(ctx); 338 return NULL; 339 } 340 341 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 342 { 343 struct io_rings *r = ctx->rings; 344 345 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 346 ctx->cq_extra--; 347 } 348 349 static bool req_need_defer(struct io_kiocb *req, u32 seq) 350 { 351 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 352 struct io_ring_ctx *ctx = req->ctx; 353 354 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 355 } 356 357 return false; 358 } 359 360 static inline void io_req_track_inflight(struct io_kiocb *req) 361 { 362 if (!(req->flags & REQ_F_INFLIGHT)) { 363 req->flags |= REQ_F_INFLIGHT; 364 atomic_inc(&req->task->io_uring->inflight_tracked); 365 } 366 } 367 368 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 369 { 370 if (WARN_ON_ONCE(!req->link)) 371 return NULL; 372 373 req->flags &= ~REQ_F_ARM_LTIMEOUT; 374 req->flags |= REQ_F_LINK_TIMEOUT; 375 376 /* linked timeouts should have two refs once prep'ed */ 377 io_req_set_refcount(req); 378 __io_req_set_refcount(req->link, 2); 379 return req->link; 380 } 381 382 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 383 { 384 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 385 return NULL; 386 return __io_prep_linked_timeout(req); 387 } 388 389 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 390 { 391 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 392 } 393 394 static inline void io_arm_ltimeout(struct io_kiocb *req) 395 { 396 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 397 __io_arm_ltimeout(req); 398 } 399 400 static void io_prep_async_work(struct io_kiocb *req) 401 { 402 const struct io_op_def *def = &io_op_defs[req->opcode]; 403 struct io_ring_ctx *ctx = req->ctx; 404 405 if (!(req->flags & REQ_F_CREDS)) { 406 req->flags |= REQ_F_CREDS; 407 req->creds = get_current_cred(); 408 } 409 410 req->work.list.next = NULL; 411 req->work.flags = 0; 412 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 413 if (req->flags & REQ_F_FORCE_ASYNC) 414 req->work.flags |= IO_WQ_WORK_CONCURRENT; 415 416 if (req->file && !io_req_ffs_set(req)) 417 req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT; 418 419 if (req->flags & REQ_F_ISREG) { 420 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL)) 421 io_wq_hash_work(&req->work, file_inode(req->file)); 422 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 423 if (def->unbound_nonreg_file) 424 req->work.flags |= IO_WQ_WORK_UNBOUND; 425 } 426 } 427 428 static void io_prep_async_link(struct io_kiocb *req) 429 { 430 struct io_kiocb *cur; 431 432 if (req->flags & REQ_F_LINK_TIMEOUT) { 433 struct io_ring_ctx *ctx = req->ctx; 434 435 spin_lock_irq(&ctx->timeout_lock); 436 io_for_each_link(cur, req) 437 io_prep_async_work(cur); 438 spin_unlock_irq(&ctx->timeout_lock); 439 } else { 440 io_for_each_link(cur, req) 441 io_prep_async_work(cur); 442 } 443 } 444 445 void io_queue_iowq(struct io_kiocb *req, bool *dont_use) 446 { 447 struct io_kiocb *link = io_prep_linked_timeout(req); 448 struct io_uring_task *tctx = req->task->io_uring; 449 450 BUG_ON(!tctx); 451 BUG_ON(!tctx->io_wq); 452 453 /* init ->work of the whole link before punting */ 454 io_prep_async_link(req); 455 456 /* 457 * Not expected to happen, but if we do have a bug where this _can_ 458 * happen, catch it here and ensure the request is marked as 459 * canceled. That will make io-wq go through the usual work cancel 460 * procedure rather than attempt to run this request (or create a new 461 * worker for it). 462 */ 463 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 464 req->work.flags |= IO_WQ_WORK_CANCEL; 465 466 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 467 io_wq_enqueue(tctx->io_wq, &req->work); 468 if (link) 469 io_queue_linked_timeout(link); 470 } 471 472 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 473 { 474 while (!list_empty(&ctx->defer_list)) { 475 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 476 struct io_defer_entry, list); 477 478 if (req_need_defer(de->req, de->seq)) 479 break; 480 list_del_init(&de->list); 481 io_req_task_queue(de->req); 482 kfree(de); 483 } 484 } 485 486 487 static void io_eventfd_ops(struct rcu_head *rcu) 488 { 489 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 490 int ops = atomic_xchg(&ev_fd->ops, 0); 491 492 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 493 eventfd_signal(ev_fd->cq_ev_fd, 1); 494 495 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 496 * ordering in a race but if references are 0 we know we have to free 497 * it regardless. 498 */ 499 if (atomic_dec_and_test(&ev_fd->refs)) { 500 eventfd_ctx_put(ev_fd->cq_ev_fd); 501 kfree(ev_fd); 502 } 503 } 504 505 static void io_eventfd_signal(struct io_ring_ctx *ctx) 506 { 507 struct io_ev_fd *ev_fd = NULL; 508 509 rcu_read_lock(); 510 /* 511 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 512 * and eventfd_signal 513 */ 514 ev_fd = rcu_dereference(ctx->io_ev_fd); 515 516 /* 517 * Check again if ev_fd exists incase an io_eventfd_unregister call 518 * completed between the NULL check of ctx->io_ev_fd at the start of 519 * the function and rcu_read_lock. 520 */ 521 if (unlikely(!ev_fd)) 522 goto out; 523 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 524 goto out; 525 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 526 goto out; 527 528 if (likely(eventfd_signal_allowed())) { 529 eventfd_signal(ev_fd->cq_ev_fd, 1); 530 } else { 531 atomic_inc(&ev_fd->refs); 532 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 533 call_rcu(&ev_fd->rcu, io_eventfd_ops); 534 else 535 atomic_dec(&ev_fd->refs); 536 } 537 538 out: 539 rcu_read_unlock(); 540 } 541 542 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 543 { 544 bool skip; 545 546 spin_lock(&ctx->completion_lock); 547 548 /* 549 * Eventfd should only get triggered when at least one event has been 550 * posted. Some applications rely on the eventfd notification count 551 * only changing IFF a new CQE has been added to the CQ ring. There's 552 * no depedency on 1:1 relationship between how many times this 553 * function is called (and hence the eventfd count) and number of CQEs 554 * posted to the CQ ring. 555 */ 556 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 557 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 558 spin_unlock(&ctx->completion_lock); 559 if (skip) 560 return; 561 562 io_eventfd_signal(ctx); 563 } 564 565 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 566 { 567 if (ctx->off_timeout_used || ctx->drain_active) { 568 spin_lock(&ctx->completion_lock); 569 if (ctx->off_timeout_used) 570 io_flush_timeouts(ctx); 571 if (ctx->drain_active) 572 io_queue_deferred(ctx); 573 spin_unlock(&ctx->completion_lock); 574 } 575 if (ctx->has_evfd) 576 io_eventfd_flush_signal(ctx); 577 } 578 579 static inline void io_cqring_ev_posted(struct io_ring_ctx *ctx) 580 { 581 io_commit_cqring_flush(ctx); 582 io_cqring_wake(ctx); 583 } 584 585 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 586 __releases(ctx->completion_lock) 587 { 588 io_commit_cqring(ctx); 589 spin_unlock(&ctx->completion_lock); 590 io_cqring_ev_posted(ctx); 591 } 592 593 void io_cq_unlock_post(struct io_ring_ctx *ctx) 594 { 595 __io_cq_unlock_post(ctx); 596 } 597 598 /* Returns true if there are no backlogged entries after the flush */ 599 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force) 600 { 601 bool all_flushed; 602 size_t cqe_size = sizeof(struct io_uring_cqe); 603 604 if (!force && __io_cqring_events(ctx) == ctx->cq_entries) 605 return false; 606 607 if (ctx->flags & IORING_SETUP_CQE32) 608 cqe_size <<= 1; 609 610 io_cq_lock(ctx); 611 while (!list_empty(&ctx->cq_overflow_list)) { 612 struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true); 613 struct io_overflow_cqe *ocqe; 614 615 if (!cqe && !force) 616 break; 617 ocqe = list_first_entry(&ctx->cq_overflow_list, 618 struct io_overflow_cqe, list); 619 if (cqe) 620 memcpy(cqe, &ocqe->cqe, cqe_size); 621 else 622 io_account_cq_overflow(ctx); 623 624 list_del(&ocqe->list); 625 kfree(ocqe); 626 } 627 628 all_flushed = list_empty(&ctx->cq_overflow_list); 629 if (all_flushed) { 630 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 631 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 632 } 633 634 io_cq_unlock_post(ctx); 635 return all_flushed; 636 } 637 638 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx) 639 { 640 bool ret = true; 641 642 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 643 /* iopoll syncs against uring_lock, not completion_lock */ 644 if (ctx->flags & IORING_SETUP_IOPOLL) 645 mutex_lock(&ctx->uring_lock); 646 ret = __io_cqring_overflow_flush(ctx, false); 647 if (ctx->flags & IORING_SETUP_IOPOLL) 648 mutex_unlock(&ctx->uring_lock); 649 } 650 651 return ret; 652 } 653 654 void __io_put_task(struct task_struct *task, int nr) 655 { 656 struct io_uring_task *tctx = task->io_uring; 657 658 percpu_counter_sub(&tctx->inflight, nr); 659 if (unlikely(atomic_read(&tctx->in_idle))) 660 wake_up(&tctx->wait); 661 put_task_struct_many(task, nr); 662 } 663 664 void io_task_refs_refill(struct io_uring_task *tctx) 665 { 666 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 667 668 percpu_counter_add(&tctx->inflight, refill); 669 refcount_add(refill, ¤t->usage); 670 tctx->cached_refs += refill; 671 } 672 673 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 674 { 675 struct io_uring_task *tctx = task->io_uring; 676 unsigned int refs = tctx->cached_refs; 677 678 if (refs) { 679 tctx->cached_refs = 0; 680 percpu_counter_sub(&tctx->inflight, refs); 681 put_task_struct_many(task, refs); 682 } 683 } 684 685 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 686 s32 res, u32 cflags, u64 extra1, u64 extra2) 687 { 688 struct io_overflow_cqe *ocqe; 689 size_t ocq_size = sizeof(struct io_overflow_cqe); 690 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 691 692 if (is_cqe32) 693 ocq_size += sizeof(struct io_uring_cqe); 694 695 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 696 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 697 if (!ocqe) { 698 /* 699 * If we're in ring overflow flush mode, or in task cancel mode, 700 * or cannot allocate an overflow entry, then we need to drop it 701 * on the floor. 702 */ 703 io_account_cq_overflow(ctx); 704 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 705 return false; 706 } 707 if (list_empty(&ctx->cq_overflow_list)) { 708 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 709 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 710 711 } 712 ocqe->cqe.user_data = user_data; 713 ocqe->cqe.res = res; 714 ocqe->cqe.flags = cflags; 715 if (is_cqe32) { 716 ocqe->cqe.big_cqe[0] = extra1; 717 ocqe->cqe.big_cqe[1] = extra2; 718 } 719 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 720 return true; 721 } 722 723 bool io_req_cqe_overflow(struct io_kiocb *req) 724 { 725 if (!(req->flags & REQ_F_CQE32_INIT)) { 726 req->extra1 = 0; 727 req->extra2 = 0; 728 } 729 return io_cqring_event_overflow(req->ctx, req->cqe.user_data, 730 req->cqe.res, req->cqe.flags, 731 req->extra1, req->extra2); 732 } 733 734 /* 735 * writes to the cq entry need to come after reading head; the 736 * control dependency is enough as we're using WRITE_ONCE to 737 * fill the cq entry 738 */ 739 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow) 740 { 741 struct io_rings *rings = ctx->rings; 742 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 743 unsigned int free, queued, len; 744 745 /* 746 * Posting into the CQ when there are pending overflowed CQEs may break 747 * ordering guarantees, which will affect links, F_MORE users and more. 748 * Force overflow the completion. 749 */ 750 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 751 return NULL; 752 753 /* userspace may cheat modifying the tail, be safe and do min */ 754 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 755 free = ctx->cq_entries - queued; 756 /* we need a contiguous range, limit based on the current array offset */ 757 len = min(free, ctx->cq_entries - off); 758 if (!len) 759 return NULL; 760 761 if (ctx->flags & IORING_SETUP_CQE32) { 762 off <<= 1; 763 len <<= 1; 764 } 765 766 ctx->cqe_cached = &rings->cqes[off]; 767 ctx->cqe_sentinel = ctx->cqe_cached + len; 768 769 ctx->cached_cq_tail++; 770 ctx->cqe_cached++; 771 if (ctx->flags & IORING_SETUP_CQE32) 772 ctx->cqe_cached++; 773 return &rings->cqes[off]; 774 } 775 776 bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 777 bool allow_overflow) 778 { 779 struct io_uring_cqe *cqe; 780 781 ctx->cq_extra++; 782 783 /* 784 * If we can't get a cq entry, userspace overflowed the 785 * submission (by quite a lot). Increment the overflow count in 786 * the ring. 787 */ 788 cqe = io_get_cqe(ctx); 789 if (likely(cqe)) { 790 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 791 792 WRITE_ONCE(cqe->user_data, user_data); 793 WRITE_ONCE(cqe->res, res); 794 WRITE_ONCE(cqe->flags, cflags); 795 796 if (ctx->flags & IORING_SETUP_CQE32) { 797 WRITE_ONCE(cqe->big_cqe[0], 0); 798 WRITE_ONCE(cqe->big_cqe[1], 0); 799 } 800 return true; 801 } 802 803 if (allow_overflow) 804 return io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 805 806 return false; 807 } 808 809 bool io_post_aux_cqe(struct io_ring_ctx *ctx, 810 u64 user_data, s32 res, u32 cflags, 811 bool allow_overflow) 812 { 813 bool filled; 814 815 io_cq_lock(ctx); 816 filled = io_fill_cqe_aux(ctx, user_data, res, cflags, allow_overflow); 817 io_cq_unlock_post(ctx); 818 return filled; 819 } 820 821 static void __io_req_complete_put(struct io_kiocb *req) 822 { 823 /* 824 * If we're the last reference to this request, add to our locked 825 * free_list cache. 826 */ 827 if (req_ref_put_and_test(req)) { 828 struct io_ring_ctx *ctx = req->ctx; 829 830 if (req->flags & IO_REQ_LINK_FLAGS) { 831 if (req->flags & IO_DISARM_MASK) 832 io_disarm_next(req); 833 if (req->link) { 834 io_req_task_queue(req->link); 835 req->link = NULL; 836 } 837 } 838 io_req_put_rsrc(req); 839 /* 840 * Selected buffer deallocation in io_clean_op() assumes that 841 * we don't hold ->completion_lock. Clean them here to avoid 842 * deadlocks. 843 */ 844 io_put_kbuf_comp(req); 845 io_dismantle_req(req); 846 io_put_task(req->task, 1); 847 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 848 ctx->locked_free_nr++; 849 } 850 } 851 852 void __io_req_complete_post(struct io_kiocb *req) 853 { 854 if (!(req->flags & REQ_F_CQE_SKIP)) 855 __io_fill_cqe_req(req->ctx, req); 856 __io_req_complete_put(req); 857 } 858 859 void io_req_complete_post(struct io_kiocb *req) 860 { 861 struct io_ring_ctx *ctx = req->ctx; 862 863 io_cq_lock(ctx); 864 __io_req_complete_post(req); 865 io_cq_unlock_post(ctx); 866 } 867 868 inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags) 869 { 870 io_req_complete_post(req); 871 } 872 873 void io_req_complete_failed(struct io_kiocb *req, s32 res) 874 { 875 const struct io_op_def *def = &io_op_defs[req->opcode]; 876 877 req_set_fail(req); 878 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 879 if (def->fail) 880 def->fail(req); 881 io_req_complete_post(req); 882 } 883 884 /* 885 * Don't initialise the fields below on every allocation, but do that in 886 * advance and keep them valid across allocations. 887 */ 888 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 889 { 890 req->ctx = ctx; 891 req->link = NULL; 892 req->async_data = NULL; 893 /* not necessary, but safer to zero */ 894 req->cqe.res = 0; 895 } 896 897 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 898 struct io_submit_state *state) 899 { 900 spin_lock(&ctx->completion_lock); 901 wq_list_splice(&ctx->locked_free_list, &state->free_list); 902 ctx->locked_free_nr = 0; 903 spin_unlock(&ctx->completion_lock); 904 } 905 906 /* 907 * A request might get retired back into the request caches even before opcode 908 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 909 * Because of that, io_alloc_req() should be called only under ->uring_lock 910 * and with extra caution to not get a request that is still worked on. 911 */ 912 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 913 __must_hold(&ctx->uring_lock) 914 { 915 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 916 void *reqs[IO_REQ_ALLOC_BATCH]; 917 int ret, i; 918 919 /* 920 * If we have more than a batch's worth of requests in our IRQ side 921 * locked cache, grab the lock and move them over to our submission 922 * side cache. 923 */ 924 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 925 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 926 if (!io_req_cache_empty(ctx)) 927 return true; 928 } 929 930 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 931 932 /* 933 * Bulk alloc is all-or-nothing. If we fail to get a batch, 934 * retry single alloc to be on the safe side. 935 */ 936 if (unlikely(ret <= 0)) { 937 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 938 if (!reqs[0]) 939 return false; 940 ret = 1; 941 } 942 943 percpu_ref_get_many(&ctx->refs, ret); 944 for (i = 0; i < ret; i++) { 945 struct io_kiocb *req = reqs[i]; 946 947 io_preinit_req(req, ctx); 948 io_req_add_to_cache(req, ctx); 949 } 950 return true; 951 } 952 953 static inline void io_dismantle_req(struct io_kiocb *req) 954 { 955 unsigned int flags = req->flags; 956 957 if (unlikely(flags & IO_REQ_CLEAN_FLAGS)) 958 io_clean_op(req); 959 if (!(flags & REQ_F_FIXED_FILE)) 960 io_put_file(req->file); 961 } 962 963 __cold void io_free_req(struct io_kiocb *req) 964 { 965 struct io_ring_ctx *ctx = req->ctx; 966 967 io_req_put_rsrc(req); 968 io_dismantle_req(req); 969 io_put_task(req->task, 1); 970 971 spin_lock(&ctx->completion_lock); 972 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 973 ctx->locked_free_nr++; 974 spin_unlock(&ctx->completion_lock); 975 } 976 977 static void __io_req_find_next_prep(struct io_kiocb *req) 978 { 979 struct io_ring_ctx *ctx = req->ctx; 980 981 io_cq_lock(ctx); 982 io_disarm_next(req); 983 io_cq_unlock_post(ctx); 984 } 985 986 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 987 { 988 struct io_kiocb *nxt; 989 990 /* 991 * If LINK is set, we have dependent requests in this chain. If we 992 * didn't fail this request, queue the first one up, moving any other 993 * dependencies to the next request. In case of failure, fail the rest 994 * of the chain. 995 */ 996 if (unlikely(req->flags & IO_DISARM_MASK)) 997 __io_req_find_next_prep(req); 998 nxt = req->link; 999 req->link = NULL; 1000 return nxt; 1001 } 1002 1003 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked) 1004 { 1005 if (!ctx) 1006 return; 1007 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1008 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1009 if (*locked) { 1010 io_submit_flush_completions(ctx); 1011 mutex_unlock(&ctx->uring_lock); 1012 *locked = false; 1013 } 1014 percpu_ref_put(&ctx->refs); 1015 } 1016 1017 static unsigned int handle_tw_list(struct llist_node *node, 1018 struct io_ring_ctx **ctx, bool *locked, 1019 struct llist_node *last) 1020 { 1021 unsigned int count = 0; 1022 1023 while (node != last) { 1024 struct llist_node *next = node->next; 1025 struct io_kiocb *req = container_of(node, struct io_kiocb, 1026 io_task_work.node); 1027 1028 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1029 1030 if (req->ctx != *ctx) { 1031 ctx_flush_and_put(*ctx, locked); 1032 *ctx = req->ctx; 1033 /* if not contended, grab and improve batching */ 1034 *locked = mutex_trylock(&(*ctx)->uring_lock); 1035 percpu_ref_get(&(*ctx)->refs); 1036 } 1037 req->io_task_work.func(req, locked); 1038 node = next; 1039 count++; 1040 } 1041 1042 return count; 1043 } 1044 1045 /** 1046 * io_llist_xchg - swap all entries in a lock-less list 1047 * @head: the head of lock-less list to delete all entries 1048 * @new: new entry as the head of the list 1049 * 1050 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1051 * The order of entries returned is from the newest to the oldest added one. 1052 */ 1053 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1054 struct llist_node *new) 1055 { 1056 return xchg(&head->first, new); 1057 } 1058 1059 /** 1060 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1061 * @head: the head of lock-less list to delete all entries 1062 * @old: expected old value of the first entry of the list 1063 * @new: new entry as the head of the list 1064 * 1065 * perform a cmpxchg on the first entry of the list. 1066 */ 1067 1068 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1069 struct llist_node *old, 1070 struct llist_node *new) 1071 { 1072 return cmpxchg(&head->first, old, new); 1073 } 1074 1075 void tctx_task_work(struct callback_head *cb) 1076 { 1077 bool uring_locked = false; 1078 struct io_ring_ctx *ctx = NULL; 1079 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1080 task_work); 1081 struct llist_node fake = {}; 1082 struct llist_node *node = io_llist_xchg(&tctx->task_list, &fake); 1083 unsigned int loops = 1; 1084 unsigned int count = handle_tw_list(node, &ctx, &uring_locked, NULL); 1085 1086 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1087 while (node != &fake) { 1088 loops++; 1089 node = io_llist_xchg(&tctx->task_list, &fake); 1090 count += handle_tw_list(node, &ctx, &uring_locked, &fake); 1091 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1092 } 1093 1094 ctx_flush_and_put(ctx, &uring_locked); 1095 1096 /* relaxed read is enough as only the task itself sets ->in_idle */ 1097 if (unlikely(atomic_read(&tctx->in_idle))) 1098 io_uring_drop_tctx_refs(current); 1099 1100 trace_io_uring_task_work_run(tctx, count, loops); 1101 } 1102 1103 static void io_req_local_work_add(struct io_kiocb *req) 1104 { 1105 struct io_ring_ctx *ctx = req->ctx; 1106 1107 if (!llist_add(&req->io_task_work.node, &ctx->work_llist)) 1108 return; 1109 /* need it for the following io_cqring_wake() */ 1110 smp_mb__after_atomic(); 1111 1112 if (unlikely(atomic_read(&req->task->io_uring->in_idle))) { 1113 io_move_task_work_from_local(ctx); 1114 return; 1115 } 1116 1117 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1118 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1119 1120 if (ctx->has_evfd) 1121 io_eventfd_signal(ctx); 1122 __io_cqring_wake(ctx); 1123 } 1124 1125 static inline void __io_req_task_work_add(struct io_kiocb *req, bool allow_local) 1126 { 1127 struct io_uring_task *tctx = req->task->io_uring; 1128 struct io_ring_ctx *ctx = req->ctx; 1129 struct llist_node *node; 1130 1131 if (allow_local && ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1132 io_req_local_work_add(req); 1133 return; 1134 } 1135 1136 /* task_work already pending, we're done */ 1137 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1138 return; 1139 1140 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1141 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1142 1143 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1144 return; 1145 1146 node = llist_del_all(&tctx->task_list); 1147 1148 while (node) { 1149 req = container_of(node, struct io_kiocb, io_task_work.node); 1150 node = node->next; 1151 if (llist_add(&req->io_task_work.node, 1152 &req->ctx->fallback_llist)) 1153 schedule_delayed_work(&req->ctx->fallback_work, 1); 1154 } 1155 } 1156 1157 void io_req_task_work_add(struct io_kiocb *req) 1158 { 1159 __io_req_task_work_add(req, true); 1160 } 1161 1162 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1163 { 1164 struct llist_node *node; 1165 1166 node = llist_del_all(&ctx->work_llist); 1167 while (node) { 1168 struct io_kiocb *req = container_of(node, struct io_kiocb, 1169 io_task_work.node); 1170 1171 node = node->next; 1172 __io_req_task_work_add(req, false); 1173 } 1174 } 1175 1176 int __io_run_local_work(struct io_ring_ctx *ctx, bool locked) 1177 { 1178 struct llist_node *node; 1179 struct llist_node fake; 1180 struct llist_node *current_final = NULL; 1181 int ret; 1182 unsigned int loops = 1; 1183 1184 if (unlikely(ctx->submitter_task != current)) 1185 return -EEXIST; 1186 1187 node = io_llist_xchg(&ctx->work_llist, &fake); 1188 ret = 0; 1189 again: 1190 while (node != current_final) { 1191 struct llist_node *next = node->next; 1192 struct io_kiocb *req = container_of(node, struct io_kiocb, 1193 io_task_work.node); 1194 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1195 req->io_task_work.func(req, &locked); 1196 ret++; 1197 node = next; 1198 } 1199 1200 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1201 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1202 1203 node = io_llist_cmpxchg(&ctx->work_llist, &fake, NULL); 1204 if (node != &fake) { 1205 loops++; 1206 current_final = &fake; 1207 node = io_llist_xchg(&ctx->work_llist, &fake); 1208 goto again; 1209 } 1210 1211 if (locked) 1212 io_submit_flush_completions(ctx); 1213 trace_io_uring_local_work_run(ctx, ret, loops); 1214 return ret; 1215 1216 } 1217 1218 int io_run_local_work(struct io_ring_ctx *ctx) 1219 { 1220 bool locked; 1221 int ret; 1222 1223 if (llist_empty(&ctx->work_llist)) 1224 return 0; 1225 1226 __set_current_state(TASK_RUNNING); 1227 locked = mutex_trylock(&ctx->uring_lock); 1228 ret = __io_run_local_work(ctx, locked); 1229 if (locked) 1230 mutex_unlock(&ctx->uring_lock); 1231 1232 return ret; 1233 } 1234 1235 static void io_req_tw_post(struct io_kiocb *req, bool *locked) 1236 { 1237 io_req_complete_post(req); 1238 } 1239 1240 void io_req_tw_post_queue(struct io_kiocb *req, s32 res, u32 cflags) 1241 { 1242 io_req_set_res(req, res, cflags); 1243 req->io_task_work.func = io_req_tw_post; 1244 io_req_task_work_add(req); 1245 } 1246 1247 static void io_req_task_cancel(struct io_kiocb *req, bool *locked) 1248 { 1249 /* not needed for normal modes, but SQPOLL depends on it */ 1250 io_tw_lock(req->ctx, locked); 1251 io_req_complete_failed(req, req->cqe.res); 1252 } 1253 1254 void io_req_task_submit(struct io_kiocb *req, bool *locked) 1255 { 1256 io_tw_lock(req->ctx, locked); 1257 /* req->task == current here, checking PF_EXITING is safe */ 1258 if (likely(!(req->task->flags & PF_EXITING))) 1259 io_queue_sqe(req); 1260 else 1261 io_req_complete_failed(req, -EFAULT); 1262 } 1263 1264 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1265 { 1266 io_req_set_res(req, ret, 0); 1267 req->io_task_work.func = io_req_task_cancel; 1268 io_req_task_work_add(req); 1269 } 1270 1271 void io_req_task_queue(struct io_kiocb *req) 1272 { 1273 req->io_task_work.func = io_req_task_submit; 1274 io_req_task_work_add(req); 1275 } 1276 1277 void io_queue_next(struct io_kiocb *req) 1278 { 1279 struct io_kiocb *nxt = io_req_find_next(req); 1280 1281 if (nxt) 1282 io_req_task_queue(nxt); 1283 } 1284 1285 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node) 1286 __must_hold(&ctx->uring_lock) 1287 { 1288 struct task_struct *task = NULL; 1289 int task_refs = 0; 1290 1291 do { 1292 struct io_kiocb *req = container_of(node, struct io_kiocb, 1293 comp_list); 1294 1295 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1296 if (req->flags & REQ_F_REFCOUNT) { 1297 node = req->comp_list.next; 1298 if (!req_ref_put_and_test(req)) 1299 continue; 1300 } 1301 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1302 struct async_poll *apoll = req->apoll; 1303 1304 if (apoll->double_poll) 1305 kfree(apoll->double_poll); 1306 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1307 kfree(apoll); 1308 req->flags &= ~REQ_F_POLLED; 1309 } 1310 if (req->flags & IO_REQ_LINK_FLAGS) 1311 io_queue_next(req); 1312 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1313 io_clean_op(req); 1314 } 1315 if (!(req->flags & REQ_F_FIXED_FILE)) 1316 io_put_file(req->file); 1317 1318 io_req_put_rsrc_locked(req, ctx); 1319 1320 if (req->task != task) { 1321 if (task) 1322 io_put_task(task, task_refs); 1323 task = req->task; 1324 task_refs = 0; 1325 } 1326 task_refs++; 1327 node = req->comp_list.next; 1328 io_req_add_to_cache(req, ctx); 1329 } while (node); 1330 1331 if (task) 1332 io_put_task(task, task_refs); 1333 } 1334 1335 static void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1336 __must_hold(&ctx->uring_lock) 1337 { 1338 struct io_wq_work_node *node, *prev; 1339 struct io_submit_state *state = &ctx->submit_state; 1340 1341 io_cq_lock(ctx); 1342 wq_list_for_each(node, prev, &state->compl_reqs) { 1343 struct io_kiocb *req = container_of(node, struct io_kiocb, 1344 comp_list); 1345 1346 if (!(req->flags & REQ_F_CQE_SKIP)) 1347 __io_fill_cqe_req(ctx, req); 1348 } 1349 __io_cq_unlock_post(ctx); 1350 1351 io_free_batch_list(ctx, state->compl_reqs.first); 1352 INIT_WQ_LIST(&state->compl_reqs); 1353 } 1354 1355 /* 1356 * Drop reference to request, return next in chain (if there is one) if this 1357 * was the last reference to this request. 1358 */ 1359 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req) 1360 { 1361 struct io_kiocb *nxt = NULL; 1362 1363 if (req_ref_put_and_test(req)) { 1364 if (unlikely(req->flags & IO_REQ_LINK_FLAGS)) 1365 nxt = io_req_find_next(req); 1366 io_free_req(req); 1367 } 1368 return nxt; 1369 } 1370 1371 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1372 { 1373 /* See comment at the top of this file */ 1374 smp_rmb(); 1375 return __io_cqring_events(ctx); 1376 } 1377 1378 /* 1379 * We can't just wait for polled events to come to us, we have to actively 1380 * find and complete them. 1381 */ 1382 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1383 { 1384 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1385 return; 1386 1387 mutex_lock(&ctx->uring_lock); 1388 while (!wq_list_empty(&ctx->iopoll_list)) { 1389 /* let it sleep and repeat later if can't complete a request */ 1390 if (io_do_iopoll(ctx, true) == 0) 1391 break; 1392 /* 1393 * Ensure we allow local-to-the-cpu processing to take place, 1394 * in this case we need to ensure that we reap all events. 1395 * Also let task_work, etc. to progress by releasing the mutex 1396 */ 1397 if (need_resched()) { 1398 mutex_unlock(&ctx->uring_lock); 1399 cond_resched(); 1400 mutex_lock(&ctx->uring_lock); 1401 } 1402 } 1403 mutex_unlock(&ctx->uring_lock); 1404 } 1405 1406 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1407 { 1408 unsigned int nr_events = 0; 1409 int ret = 0; 1410 unsigned long check_cq; 1411 1412 if (!io_allowed_run_tw(ctx)) 1413 return -EEXIST; 1414 1415 check_cq = READ_ONCE(ctx->check_cq); 1416 if (unlikely(check_cq)) { 1417 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1418 __io_cqring_overflow_flush(ctx, false); 1419 /* 1420 * Similarly do not spin if we have not informed the user of any 1421 * dropped CQE. 1422 */ 1423 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1424 return -EBADR; 1425 } 1426 /* 1427 * Don't enter poll loop if we already have events pending. 1428 * If we do, we can potentially be spinning for commands that 1429 * already triggered a CQE (eg in error). 1430 */ 1431 if (io_cqring_events(ctx)) 1432 return 0; 1433 1434 do { 1435 /* 1436 * If a submit got punted to a workqueue, we can have the 1437 * application entering polling for a command before it gets 1438 * issued. That app will hold the uring_lock for the duration 1439 * of the poll right here, so we need to take a breather every 1440 * now and then to ensure that the issue has a chance to add 1441 * the poll to the issued list. Otherwise we can spin here 1442 * forever, while the workqueue is stuck trying to acquire the 1443 * very same mutex. 1444 */ 1445 if (wq_list_empty(&ctx->iopoll_list) || 1446 io_task_work_pending(ctx)) { 1447 u32 tail = ctx->cached_cq_tail; 1448 1449 if (!llist_empty(&ctx->work_llist)) 1450 __io_run_local_work(ctx, true); 1451 1452 if (task_work_pending(current) || 1453 wq_list_empty(&ctx->iopoll_list)) { 1454 mutex_unlock(&ctx->uring_lock); 1455 io_run_task_work(); 1456 mutex_lock(&ctx->uring_lock); 1457 } 1458 /* some requests don't go through iopoll_list */ 1459 if (tail != ctx->cached_cq_tail || 1460 wq_list_empty(&ctx->iopoll_list)) 1461 break; 1462 } 1463 ret = io_do_iopoll(ctx, !min); 1464 if (ret < 0) 1465 break; 1466 nr_events += ret; 1467 ret = 0; 1468 } while (nr_events < min && !need_resched()); 1469 1470 return ret; 1471 } 1472 1473 void io_req_task_complete(struct io_kiocb *req, bool *locked) 1474 { 1475 if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)) { 1476 unsigned issue_flags = *locked ? 0 : IO_URING_F_UNLOCKED; 1477 1478 req->cqe.flags |= io_put_kbuf(req, issue_flags); 1479 } 1480 1481 if (*locked) 1482 io_req_complete_defer(req); 1483 else 1484 io_req_complete_post(req); 1485 } 1486 1487 /* 1488 * After the iocb has been issued, it's safe to be found on the poll list. 1489 * Adding the kiocb to the list AFTER submission ensures that we don't 1490 * find it from a io_do_iopoll() thread before the issuer is done 1491 * accessing the kiocb cookie. 1492 */ 1493 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1494 { 1495 struct io_ring_ctx *ctx = req->ctx; 1496 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1497 1498 /* workqueue context doesn't hold uring_lock, grab it now */ 1499 if (unlikely(needs_lock)) 1500 mutex_lock(&ctx->uring_lock); 1501 1502 /* 1503 * Track whether we have multiple files in our lists. This will impact 1504 * how we do polling eventually, not spinning if we're on potentially 1505 * different devices. 1506 */ 1507 if (wq_list_empty(&ctx->iopoll_list)) { 1508 ctx->poll_multi_queue = false; 1509 } else if (!ctx->poll_multi_queue) { 1510 struct io_kiocb *list_req; 1511 1512 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1513 comp_list); 1514 if (list_req->file != req->file) 1515 ctx->poll_multi_queue = true; 1516 } 1517 1518 /* 1519 * For fast devices, IO may have already completed. If it has, add 1520 * it to the front so we find it first. 1521 */ 1522 if (READ_ONCE(req->iopoll_completed)) 1523 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1524 else 1525 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1526 1527 if (unlikely(needs_lock)) { 1528 /* 1529 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1530 * in sq thread task context or in io worker task context. If 1531 * current task context is sq thread, we don't need to check 1532 * whether should wake up sq thread. 1533 */ 1534 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1535 wq_has_sleeper(&ctx->sq_data->wait)) 1536 wake_up(&ctx->sq_data->wait); 1537 1538 mutex_unlock(&ctx->uring_lock); 1539 } 1540 } 1541 1542 static bool io_bdev_nowait(struct block_device *bdev) 1543 { 1544 return !bdev || bdev_nowait(bdev); 1545 } 1546 1547 /* 1548 * If we tracked the file through the SCM inflight mechanism, we could support 1549 * any file. For now, just ensure that anything potentially problematic is done 1550 * inline. 1551 */ 1552 static bool __io_file_supports_nowait(struct file *file, umode_t mode) 1553 { 1554 if (S_ISBLK(mode)) { 1555 if (IS_ENABLED(CONFIG_BLOCK) && 1556 io_bdev_nowait(I_BDEV(file->f_mapping->host))) 1557 return true; 1558 return false; 1559 } 1560 if (S_ISSOCK(mode)) 1561 return true; 1562 if (S_ISREG(mode)) { 1563 if (IS_ENABLED(CONFIG_BLOCK) && 1564 io_bdev_nowait(file->f_inode->i_sb->s_bdev) && 1565 !io_is_uring_fops(file)) 1566 return true; 1567 return false; 1568 } 1569 1570 /* any ->read/write should understand O_NONBLOCK */ 1571 if (file->f_flags & O_NONBLOCK) 1572 return true; 1573 return file->f_mode & FMODE_NOWAIT; 1574 } 1575 1576 /* 1577 * If we tracked the file through the SCM inflight mechanism, we could support 1578 * any file. For now, just ensure that anything potentially problematic is done 1579 * inline. 1580 */ 1581 unsigned int io_file_get_flags(struct file *file) 1582 { 1583 umode_t mode = file_inode(file)->i_mode; 1584 unsigned int res = 0; 1585 1586 if (S_ISREG(mode)) 1587 res |= FFS_ISREG; 1588 if (__io_file_supports_nowait(file, mode)) 1589 res |= FFS_NOWAIT; 1590 if (io_file_need_scm(file)) 1591 res |= FFS_SCM; 1592 return res; 1593 } 1594 1595 bool io_alloc_async_data(struct io_kiocb *req) 1596 { 1597 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size); 1598 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL); 1599 if (req->async_data) { 1600 req->flags |= REQ_F_ASYNC_DATA; 1601 return false; 1602 } 1603 return true; 1604 } 1605 1606 int io_req_prep_async(struct io_kiocb *req) 1607 { 1608 const struct io_op_def *def = &io_op_defs[req->opcode]; 1609 1610 /* assign early for deferred execution for non-fixed file */ 1611 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE)) 1612 req->file = io_file_get_normal(req, req->cqe.fd); 1613 if (!def->prep_async) 1614 return 0; 1615 if (WARN_ON_ONCE(req_has_async_data(req))) 1616 return -EFAULT; 1617 if (!io_op_defs[req->opcode].manual_alloc) { 1618 if (io_alloc_async_data(req)) 1619 return -EAGAIN; 1620 } 1621 return def->prep_async(req); 1622 } 1623 1624 static u32 io_get_sequence(struct io_kiocb *req) 1625 { 1626 u32 seq = req->ctx->cached_sq_head; 1627 struct io_kiocb *cur; 1628 1629 /* need original cached_sq_head, but it was increased for each req */ 1630 io_for_each_link(cur, req) 1631 seq--; 1632 return seq; 1633 } 1634 1635 static __cold void io_drain_req(struct io_kiocb *req) 1636 { 1637 struct io_ring_ctx *ctx = req->ctx; 1638 struct io_defer_entry *de; 1639 int ret; 1640 u32 seq = io_get_sequence(req); 1641 1642 /* Still need defer if there is pending req in defer list. */ 1643 spin_lock(&ctx->completion_lock); 1644 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1645 spin_unlock(&ctx->completion_lock); 1646 queue: 1647 ctx->drain_active = false; 1648 io_req_task_queue(req); 1649 return; 1650 } 1651 spin_unlock(&ctx->completion_lock); 1652 1653 ret = io_req_prep_async(req); 1654 if (ret) { 1655 fail: 1656 io_req_complete_failed(req, ret); 1657 return; 1658 } 1659 io_prep_async_link(req); 1660 de = kmalloc(sizeof(*de), GFP_KERNEL); 1661 if (!de) { 1662 ret = -ENOMEM; 1663 goto fail; 1664 } 1665 1666 spin_lock(&ctx->completion_lock); 1667 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1668 spin_unlock(&ctx->completion_lock); 1669 kfree(de); 1670 goto queue; 1671 } 1672 1673 trace_io_uring_defer(req); 1674 de->req = req; 1675 de->seq = seq; 1676 list_add_tail(&de->list, &ctx->defer_list); 1677 spin_unlock(&ctx->completion_lock); 1678 } 1679 1680 static void io_clean_op(struct io_kiocb *req) 1681 { 1682 if (req->flags & REQ_F_BUFFER_SELECTED) { 1683 spin_lock(&req->ctx->completion_lock); 1684 io_put_kbuf_comp(req); 1685 spin_unlock(&req->ctx->completion_lock); 1686 } 1687 1688 if (req->flags & REQ_F_NEED_CLEANUP) { 1689 const struct io_op_def *def = &io_op_defs[req->opcode]; 1690 1691 if (def->cleanup) 1692 def->cleanup(req); 1693 } 1694 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1695 kfree(req->apoll->double_poll); 1696 kfree(req->apoll); 1697 req->apoll = NULL; 1698 } 1699 if (req->flags & REQ_F_INFLIGHT) { 1700 struct io_uring_task *tctx = req->task->io_uring; 1701 1702 atomic_dec(&tctx->inflight_tracked); 1703 } 1704 if (req->flags & REQ_F_CREDS) 1705 put_cred(req->creds); 1706 if (req->flags & REQ_F_ASYNC_DATA) { 1707 kfree(req->async_data); 1708 req->async_data = NULL; 1709 } 1710 req->flags &= ~IO_REQ_CLEAN_FLAGS; 1711 } 1712 1713 static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags) 1714 { 1715 if (req->file || !io_op_defs[req->opcode].needs_file) 1716 return true; 1717 1718 if (req->flags & REQ_F_FIXED_FILE) 1719 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1720 else 1721 req->file = io_file_get_normal(req, req->cqe.fd); 1722 1723 return !!req->file; 1724 } 1725 1726 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1727 { 1728 const struct io_op_def *def = &io_op_defs[req->opcode]; 1729 const struct cred *creds = NULL; 1730 int ret; 1731 1732 if (unlikely(!io_assign_file(req, issue_flags))) 1733 return -EBADF; 1734 1735 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1736 creds = override_creds(req->creds); 1737 1738 if (!def->audit_skip) 1739 audit_uring_entry(req->opcode); 1740 1741 ret = def->issue(req, issue_flags); 1742 1743 if (!def->audit_skip) 1744 audit_uring_exit(!ret, ret); 1745 1746 if (creds) 1747 revert_creds(creds); 1748 1749 if (ret == IOU_OK) { 1750 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1751 io_req_complete_defer(req); 1752 else 1753 io_req_complete_post(req); 1754 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1755 return ret; 1756 1757 /* If the op doesn't have a file, we're not polling for it */ 1758 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && req->file) 1759 io_iopoll_req_issued(req, issue_flags); 1760 1761 return 0; 1762 } 1763 1764 int io_poll_issue(struct io_kiocb *req, bool *locked) 1765 { 1766 io_tw_lock(req->ctx, locked); 1767 if (unlikely(req->task->flags & PF_EXITING)) 1768 return -EFAULT; 1769 return io_issue_sqe(req, IO_URING_F_NONBLOCK); 1770 } 1771 1772 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1773 { 1774 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1775 1776 req = io_put_req_find_next(req); 1777 return req ? &req->work : NULL; 1778 } 1779 1780 void io_wq_submit_work(struct io_wq_work *work) 1781 { 1782 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1783 const struct io_op_def *def = &io_op_defs[req->opcode]; 1784 unsigned int issue_flags = IO_URING_F_UNLOCKED; 1785 bool needs_poll = false; 1786 int ret = 0, err = -ECANCELED; 1787 1788 /* one will be dropped by ->io_free_work() after returning to io-wq */ 1789 if (!(req->flags & REQ_F_REFCOUNT)) 1790 __io_req_set_refcount(req, 2); 1791 else 1792 req_ref_get(req); 1793 1794 io_arm_ltimeout(req); 1795 1796 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1797 if (work->flags & IO_WQ_WORK_CANCEL) { 1798 fail: 1799 io_req_task_queue_fail(req, err); 1800 return; 1801 } 1802 if (!io_assign_file(req, issue_flags)) { 1803 err = -EBADF; 1804 work->flags |= IO_WQ_WORK_CANCEL; 1805 goto fail; 1806 } 1807 1808 if (req->flags & REQ_F_FORCE_ASYNC) { 1809 bool opcode_poll = def->pollin || def->pollout; 1810 1811 if (opcode_poll && file_can_poll(req->file)) { 1812 needs_poll = true; 1813 issue_flags |= IO_URING_F_NONBLOCK; 1814 } 1815 } 1816 1817 do { 1818 ret = io_issue_sqe(req, issue_flags); 1819 if (ret != -EAGAIN) 1820 break; 1821 /* 1822 * We can get EAGAIN for iopolled IO even though we're 1823 * forcing a sync submission from here, since we can't 1824 * wait for request slots on the block side. 1825 */ 1826 if (!needs_poll) { 1827 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1828 break; 1829 cond_resched(); 1830 continue; 1831 } 1832 1833 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1834 return; 1835 /* aborted or ready, in either case retry blocking */ 1836 needs_poll = false; 1837 issue_flags &= ~IO_URING_F_NONBLOCK; 1838 } while (1); 1839 1840 /* avoid locking problems by failing it from a clean context */ 1841 if (ret < 0) 1842 io_req_task_queue_fail(req, ret); 1843 } 1844 1845 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1846 unsigned int issue_flags) 1847 { 1848 struct io_ring_ctx *ctx = req->ctx; 1849 struct file *file = NULL; 1850 unsigned long file_ptr; 1851 1852 io_ring_submit_lock(ctx, issue_flags); 1853 1854 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 1855 goto out; 1856 fd = array_index_nospec(fd, ctx->nr_user_files); 1857 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr; 1858 file = (struct file *) (file_ptr & FFS_MASK); 1859 file_ptr &= ~FFS_MASK; 1860 /* mask in overlapping REQ_F and FFS bits */ 1861 req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT); 1862 io_req_set_rsrc_node(req, ctx, 0); 1863 WARN_ON_ONCE(file && !test_bit(fd, ctx->file_table.bitmap)); 1864 out: 1865 io_ring_submit_unlock(ctx, issue_flags); 1866 return file; 1867 } 1868 1869 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1870 { 1871 struct file *file = fget(fd); 1872 1873 trace_io_uring_file_get(req, fd); 1874 1875 /* we don't allow fixed io_uring files */ 1876 if (file && io_is_uring_fops(file)) 1877 io_req_track_inflight(req); 1878 return file; 1879 } 1880 1881 static void io_queue_async(struct io_kiocb *req, int ret) 1882 __must_hold(&req->ctx->uring_lock) 1883 { 1884 struct io_kiocb *linked_timeout; 1885 1886 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1887 io_req_complete_failed(req, ret); 1888 return; 1889 } 1890 1891 linked_timeout = io_prep_linked_timeout(req); 1892 1893 switch (io_arm_poll_handler(req, 0)) { 1894 case IO_APOLL_READY: 1895 io_kbuf_recycle(req, 0); 1896 io_req_task_queue(req); 1897 break; 1898 case IO_APOLL_ABORTED: 1899 io_kbuf_recycle(req, 0); 1900 io_queue_iowq(req, NULL); 1901 break; 1902 case IO_APOLL_OK: 1903 break; 1904 } 1905 1906 if (linked_timeout) 1907 io_queue_linked_timeout(linked_timeout); 1908 } 1909 1910 static inline void io_queue_sqe(struct io_kiocb *req) 1911 __must_hold(&req->ctx->uring_lock) 1912 { 1913 int ret; 1914 1915 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 1916 1917 /* 1918 * We async punt it if the file wasn't marked NOWAIT, or if the file 1919 * doesn't support non-blocking read/write attempts 1920 */ 1921 if (likely(!ret)) 1922 io_arm_ltimeout(req); 1923 else 1924 io_queue_async(req, ret); 1925 } 1926 1927 static void io_queue_sqe_fallback(struct io_kiocb *req) 1928 __must_hold(&req->ctx->uring_lock) 1929 { 1930 if (unlikely(req->flags & REQ_F_FAIL)) { 1931 /* 1932 * We don't submit, fail them all, for that replace hardlinks 1933 * with normal links. Extra REQ_F_LINK is tolerated. 1934 */ 1935 req->flags &= ~REQ_F_HARDLINK; 1936 req->flags |= REQ_F_LINK; 1937 io_req_complete_failed(req, req->cqe.res); 1938 } else if (unlikely(req->ctx->drain_active)) { 1939 io_drain_req(req); 1940 } else { 1941 int ret = io_req_prep_async(req); 1942 1943 if (unlikely(ret)) 1944 io_req_complete_failed(req, ret); 1945 else 1946 io_queue_iowq(req, NULL); 1947 } 1948 } 1949 1950 /* 1951 * Check SQE restrictions (opcode and flags). 1952 * 1953 * Returns 'true' if SQE is allowed, 'false' otherwise. 1954 */ 1955 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 1956 struct io_kiocb *req, 1957 unsigned int sqe_flags) 1958 { 1959 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 1960 return false; 1961 1962 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 1963 ctx->restrictions.sqe_flags_required) 1964 return false; 1965 1966 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 1967 ctx->restrictions.sqe_flags_required)) 1968 return false; 1969 1970 return true; 1971 } 1972 1973 static void io_init_req_drain(struct io_kiocb *req) 1974 { 1975 struct io_ring_ctx *ctx = req->ctx; 1976 struct io_kiocb *head = ctx->submit_state.link.head; 1977 1978 ctx->drain_active = true; 1979 if (head) { 1980 /* 1981 * If we need to drain a request in the middle of a link, drain 1982 * the head request and the next request/link after the current 1983 * link. Considering sequential execution of links, 1984 * REQ_F_IO_DRAIN will be maintained for every request of our 1985 * link. 1986 */ 1987 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 1988 ctx->drain_next = true; 1989 } 1990 } 1991 1992 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 1993 const struct io_uring_sqe *sqe) 1994 __must_hold(&ctx->uring_lock) 1995 { 1996 const struct io_op_def *def; 1997 unsigned int sqe_flags; 1998 int personality; 1999 u8 opcode; 2000 2001 /* req is partially pre-initialised, see io_preinit_req() */ 2002 req->opcode = opcode = READ_ONCE(sqe->opcode); 2003 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2004 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2005 req->cqe.user_data = READ_ONCE(sqe->user_data); 2006 req->file = NULL; 2007 req->rsrc_node = NULL; 2008 req->task = current; 2009 2010 if (unlikely(opcode >= IORING_OP_LAST)) { 2011 req->opcode = 0; 2012 return -EINVAL; 2013 } 2014 def = &io_op_defs[opcode]; 2015 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2016 /* enforce forwards compatibility on users */ 2017 if (sqe_flags & ~SQE_VALID_FLAGS) 2018 return -EINVAL; 2019 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2020 if (!def->buffer_select) 2021 return -EOPNOTSUPP; 2022 req->buf_index = READ_ONCE(sqe->buf_group); 2023 } 2024 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2025 ctx->drain_disabled = true; 2026 if (sqe_flags & IOSQE_IO_DRAIN) { 2027 if (ctx->drain_disabled) 2028 return -EOPNOTSUPP; 2029 io_init_req_drain(req); 2030 } 2031 } 2032 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2033 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2034 return -EACCES; 2035 /* knock it to the slow queue path, will be drained there */ 2036 if (ctx->drain_active) 2037 req->flags |= REQ_F_FORCE_ASYNC; 2038 /* if there is no link, we're at "next" request and need to drain */ 2039 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2040 ctx->drain_next = false; 2041 ctx->drain_active = true; 2042 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2043 } 2044 } 2045 2046 if (!def->ioprio && sqe->ioprio) 2047 return -EINVAL; 2048 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2049 return -EINVAL; 2050 2051 if (def->needs_file) { 2052 struct io_submit_state *state = &ctx->submit_state; 2053 2054 req->cqe.fd = READ_ONCE(sqe->fd); 2055 2056 /* 2057 * Plug now if we have more than 2 IO left after this, and the 2058 * target is potentially a read/write to block based storage. 2059 */ 2060 if (state->need_plug && def->plug) { 2061 state->plug_started = true; 2062 state->need_plug = false; 2063 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2064 } 2065 } 2066 2067 personality = READ_ONCE(sqe->personality); 2068 if (personality) { 2069 int ret; 2070 2071 req->creds = xa_load(&ctx->personalities, personality); 2072 if (!req->creds) 2073 return -EINVAL; 2074 get_cred(req->creds); 2075 ret = security_uring_override_creds(req->creds); 2076 if (ret) { 2077 put_cred(req->creds); 2078 return ret; 2079 } 2080 req->flags |= REQ_F_CREDS; 2081 } 2082 2083 return def->prep(req, sqe); 2084 } 2085 2086 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2087 struct io_kiocb *req, int ret) 2088 { 2089 struct io_ring_ctx *ctx = req->ctx; 2090 struct io_submit_link *link = &ctx->submit_state.link; 2091 struct io_kiocb *head = link->head; 2092 2093 trace_io_uring_req_failed(sqe, req, ret); 2094 2095 /* 2096 * Avoid breaking links in the middle as it renders links with SQPOLL 2097 * unusable. Instead of failing eagerly, continue assembling the link if 2098 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2099 * should find the flag and handle the rest. 2100 */ 2101 req_fail_link_node(req, ret); 2102 if (head && !(head->flags & REQ_F_FAIL)) 2103 req_fail_link_node(head, -ECANCELED); 2104 2105 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2106 if (head) { 2107 link->last->link = req; 2108 link->head = NULL; 2109 req = head; 2110 } 2111 io_queue_sqe_fallback(req); 2112 return ret; 2113 } 2114 2115 if (head) 2116 link->last->link = req; 2117 else 2118 link->head = req; 2119 link->last = req; 2120 return 0; 2121 } 2122 2123 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2124 const struct io_uring_sqe *sqe) 2125 __must_hold(&ctx->uring_lock) 2126 { 2127 struct io_submit_link *link = &ctx->submit_state.link; 2128 int ret; 2129 2130 ret = io_init_req(ctx, req, sqe); 2131 if (unlikely(ret)) 2132 return io_submit_fail_init(sqe, req, ret); 2133 2134 /* don't need @sqe from now on */ 2135 trace_io_uring_submit_sqe(req, true); 2136 2137 /* 2138 * If we already have a head request, queue this one for async 2139 * submittal once the head completes. If we don't have a head but 2140 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2141 * submitted sync once the chain is complete. If none of those 2142 * conditions are true (normal request), then just queue it. 2143 */ 2144 if (unlikely(link->head)) { 2145 ret = io_req_prep_async(req); 2146 if (unlikely(ret)) 2147 return io_submit_fail_init(sqe, req, ret); 2148 2149 trace_io_uring_link(req, link->head); 2150 link->last->link = req; 2151 link->last = req; 2152 2153 if (req->flags & IO_REQ_LINK_FLAGS) 2154 return 0; 2155 /* last request of the link, flush it */ 2156 req = link->head; 2157 link->head = NULL; 2158 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2159 goto fallback; 2160 2161 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2162 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2163 if (req->flags & IO_REQ_LINK_FLAGS) { 2164 link->head = req; 2165 link->last = req; 2166 } else { 2167 fallback: 2168 io_queue_sqe_fallback(req); 2169 } 2170 return 0; 2171 } 2172 2173 io_queue_sqe(req); 2174 return 0; 2175 } 2176 2177 /* 2178 * Batched submission is done, ensure local IO is flushed out. 2179 */ 2180 static void io_submit_state_end(struct io_ring_ctx *ctx) 2181 { 2182 struct io_submit_state *state = &ctx->submit_state; 2183 2184 if (unlikely(state->link.head)) 2185 io_queue_sqe_fallback(state->link.head); 2186 /* flush only after queuing links as they can generate completions */ 2187 io_submit_flush_completions(ctx); 2188 if (state->plug_started) 2189 blk_finish_plug(&state->plug); 2190 } 2191 2192 /* 2193 * Start submission side cache. 2194 */ 2195 static void io_submit_state_start(struct io_submit_state *state, 2196 unsigned int max_ios) 2197 { 2198 state->plug_started = false; 2199 state->need_plug = max_ios > 2; 2200 state->submit_nr = max_ios; 2201 /* set only head, no need to init link_last in advance */ 2202 state->link.head = NULL; 2203 } 2204 2205 static void io_commit_sqring(struct io_ring_ctx *ctx) 2206 { 2207 struct io_rings *rings = ctx->rings; 2208 2209 /* 2210 * Ensure any loads from the SQEs are done at this point, 2211 * since once we write the new head, the application could 2212 * write new data to them. 2213 */ 2214 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2215 } 2216 2217 /* 2218 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2219 * that is mapped by userspace. This means that care needs to be taken to 2220 * ensure that reads are stable, as we cannot rely on userspace always 2221 * being a good citizen. If members of the sqe are validated and then later 2222 * used, it's important that those reads are done through READ_ONCE() to 2223 * prevent a re-load down the line. 2224 */ 2225 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx) 2226 { 2227 unsigned head, mask = ctx->sq_entries - 1; 2228 unsigned sq_idx = ctx->cached_sq_head++ & mask; 2229 2230 /* 2231 * The cached sq head (or cq tail) serves two purposes: 2232 * 2233 * 1) allows us to batch the cost of updating the user visible 2234 * head updates. 2235 * 2) allows the kernel side to track the head on its own, even 2236 * though the application is the one updating it. 2237 */ 2238 head = READ_ONCE(ctx->sq_array[sq_idx]); 2239 if (likely(head < ctx->sq_entries)) { 2240 /* double index for 128-byte SQEs, twice as long */ 2241 if (ctx->flags & IORING_SETUP_SQE128) 2242 head <<= 1; 2243 return &ctx->sq_sqes[head]; 2244 } 2245 2246 /* drop invalid entries */ 2247 ctx->cq_extra--; 2248 WRITE_ONCE(ctx->rings->sq_dropped, 2249 READ_ONCE(ctx->rings->sq_dropped) + 1); 2250 return NULL; 2251 } 2252 2253 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2254 __must_hold(&ctx->uring_lock) 2255 { 2256 unsigned int entries = io_sqring_entries(ctx); 2257 unsigned int left; 2258 int ret; 2259 2260 if (unlikely(!entries)) 2261 return 0; 2262 /* make sure SQ entry isn't read before tail */ 2263 ret = left = min3(nr, ctx->sq_entries, entries); 2264 io_get_task_refs(left); 2265 io_submit_state_start(&ctx->submit_state, left); 2266 2267 do { 2268 const struct io_uring_sqe *sqe; 2269 struct io_kiocb *req; 2270 2271 if (unlikely(!io_alloc_req_refill(ctx))) 2272 break; 2273 req = io_alloc_req(ctx); 2274 sqe = io_get_sqe(ctx); 2275 if (unlikely(!sqe)) { 2276 io_req_add_to_cache(req, ctx); 2277 break; 2278 } 2279 2280 /* 2281 * Continue submitting even for sqe failure if the 2282 * ring was setup with IORING_SETUP_SUBMIT_ALL 2283 */ 2284 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2285 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2286 left--; 2287 break; 2288 } 2289 } while (--left); 2290 2291 if (unlikely(left)) { 2292 ret -= left; 2293 /* try again if it submitted nothing and can't allocate a req */ 2294 if (!ret && io_req_cache_empty(ctx)) 2295 ret = -EAGAIN; 2296 current->io_uring->cached_refs += left; 2297 } 2298 2299 io_submit_state_end(ctx); 2300 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2301 io_commit_sqring(ctx); 2302 return ret; 2303 } 2304 2305 struct io_wait_queue { 2306 struct wait_queue_entry wq; 2307 struct io_ring_ctx *ctx; 2308 unsigned cq_tail; 2309 unsigned nr_timeouts; 2310 }; 2311 2312 static inline bool io_has_work(struct io_ring_ctx *ctx) 2313 { 2314 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2315 ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 2316 !llist_empty(&ctx->work_llist)); 2317 } 2318 2319 static inline bool io_should_wake(struct io_wait_queue *iowq) 2320 { 2321 struct io_ring_ctx *ctx = iowq->ctx; 2322 int dist = ctx->cached_cq_tail - (int) iowq->cq_tail; 2323 2324 /* 2325 * Wake up if we have enough events, or if a timeout occurred since we 2326 * started waiting. For timeouts, we always want to return to userspace, 2327 * regardless of event count. 2328 */ 2329 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2330 } 2331 2332 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2333 int wake_flags, void *key) 2334 { 2335 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, 2336 wq); 2337 struct io_ring_ctx *ctx = iowq->ctx; 2338 2339 /* 2340 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2341 * the task, and the next invocation will do it. 2342 */ 2343 if (io_should_wake(iowq) || io_has_work(ctx)) 2344 return autoremove_wake_function(curr, mode, wake_flags, key); 2345 return -1; 2346 } 2347 2348 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2349 { 2350 if (io_run_task_work_ctx(ctx) > 0) 2351 return 1; 2352 if (task_sigpending(current)) 2353 return -EINTR; 2354 return 0; 2355 } 2356 2357 /* when returns >0, the caller should retry */ 2358 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2359 struct io_wait_queue *iowq, 2360 ktime_t timeout) 2361 { 2362 int ret; 2363 unsigned long check_cq; 2364 2365 /* make sure we run task_work before checking for signals */ 2366 ret = io_run_task_work_sig(ctx); 2367 if (ret || io_should_wake(iowq)) 2368 return ret; 2369 2370 check_cq = READ_ONCE(ctx->check_cq); 2371 if (unlikely(check_cq)) { 2372 /* let the caller flush overflows, retry */ 2373 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2374 return 1; 2375 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 2376 return -EBADR; 2377 } 2378 if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS)) 2379 return -ETIME; 2380 return 1; 2381 } 2382 2383 /* 2384 * Wait until events become available, if we don't already have some. The 2385 * application must reap them itself, as they reside on the shared cq ring. 2386 */ 2387 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2388 const sigset_t __user *sig, size_t sigsz, 2389 struct __kernel_timespec __user *uts) 2390 { 2391 struct io_wait_queue iowq; 2392 struct io_rings *rings = ctx->rings; 2393 ktime_t timeout = KTIME_MAX; 2394 int ret; 2395 2396 if (!io_allowed_run_tw(ctx)) 2397 return -EEXIST; 2398 2399 do { 2400 /* always run at least 1 task work to process local work */ 2401 ret = io_run_task_work_ctx(ctx); 2402 if (ret < 0) 2403 return ret; 2404 io_cqring_overflow_flush(ctx); 2405 2406 if (io_cqring_events(ctx) >= min_events) 2407 return 0; 2408 } while (ret > 0); 2409 2410 if (sig) { 2411 #ifdef CONFIG_COMPAT 2412 if (in_compat_syscall()) 2413 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2414 sigsz); 2415 else 2416 #endif 2417 ret = set_user_sigmask(sig, sigsz); 2418 2419 if (ret) 2420 return ret; 2421 } 2422 2423 if (uts) { 2424 struct timespec64 ts; 2425 2426 if (get_timespec64(&ts, uts)) 2427 return -EFAULT; 2428 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2429 } 2430 2431 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2432 iowq.wq.private = current; 2433 INIT_LIST_HEAD(&iowq.wq.entry); 2434 iowq.ctx = ctx; 2435 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2436 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2437 2438 trace_io_uring_cqring_wait(ctx, min_events); 2439 do { 2440 /* if we can't even flush overflow, don't wait for more */ 2441 if (!io_cqring_overflow_flush(ctx)) { 2442 ret = -EBUSY; 2443 break; 2444 } 2445 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2446 TASK_INTERRUPTIBLE); 2447 ret = io_cqring_wait_schedule(ctx, &iowq, timeout); 2448 cond_resched(); 2449 } while (ret > 0); 2450 2451 finish_wait(&ctx->cq_wait, &iowq.wq); 2452 restore_saved_sigmask_unless(ret == -EINTR); 2453 2454 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2455 } 2456 2457 static void io_mem_free(void *ptr) 2458 { 2459 struct page *page; 2460 2461 if (!ptr) 2462 return; 2463 2464 page = virt_to_head_page(ptr); 2465 if (put_page_testzero(page)) 2466 free_compound_page(page); 2467 } 2468 2469 static void *io_mem_alloc(size_t size) 2470 { 2471 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2472 2473 return (void *) __get_free_pages(gfp, get_order(size)); 2474 } 2475 2476 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2477 unsigned int cq_entries, size_t *sq_offset) 2478 { 2479 struct io_rings *rings; 2480 size_t off, sq_array_size; 2481 2482 off = struct_size(rings, cqes, cq_entries); 2483 if (off == SIZE_MAX) 2484 return SIZE_MAX; 2485 if (ctx->flags & IORING_SETUP_CQE32) { 2486 if (check_shl_overflow(off, 1, &off)) 2487 return SIZE_MAX; 2488 } 2489 2490 #ifdef CONFIG_SMP 2491 off = ALIGN(off, SMP_CACHE_BYTES); 2492 if (off == 0) 2493 return SIZE_MAX; 2494 #endif 2495 2496 if (sq_offset) 2497 *sq_offset = off; 2498 2499 sq_array_size = array_size(sizeof(u32), sq_entries); 2500 if (sq_array_size == SIZE_MAX) 2501 return SIZE_MAX; 2502 2503 if (check_add_overflow(off, sq_array_size, &off)) 2504 return SIZE_MAX; 2505 2506 return off; 2507 } 2508 2509 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2510 unsigned int eventfd_async) 2511 { 2512 struct io_ev_fd *ev_fd; 2513 __s32 __user *fds = arg; 2514 int fd; 2515 2516 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2517 lockdep_is_held(&ctx->uring_lock)); 2518 if (ev_fd) 2519 return -EBUSY; 2520 2521 if (copy_from_user(&fd, fds, sizeof(*fds))) 2522 return -EFAULT; 2523 2524 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2525 if (!ev_fd) 2526 return -ENOMEM; 2527 2528 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2529 if (IS_ERR(ev_fd->cq_ev_fd)) { 2530 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2531 kfree(ev_fd); 2532 return ret; 2533 } 2534 2535 spin_lock(&ctx->completion_lock); 2536 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2537 spin_unlock(&ctx->completion_lock); 2538 2539 ev_fd->eventfd_async = eventfd_async; 2540 ctx->has_evfd = true; 2541 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2542 atomic_set(&ev_fd->refs, 1); 2543 atomic_set(&ev_fd->ops, 0); 2544 return 0; 2545 } 2546 2547 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2548 { 2549 struct io_ev_fd *ev_fd; 2550 2551 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2552 lockdep_is_held(&ctx->uring_lock)); 2553 if (ev_fd) { 2554 ctx->has_evfd = false; 2555 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2556 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2557 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2558 return 0; 2559 } 2560 2561 return -ENXIO; 2562 } 2563 2564 static void io_req_caches_free(struct io_ring_ctx *ctx) 2565 { 2566 struct io_submit_state *state = &ctx->submit_state; 2567 int nr = 0; 2568 2569 mutex_lock(&ctx->uring_lock); 2570 io_flush_cached_locked_reqs(ctx, state); 2571 2572 while (!io_req_cache_empty(ctx)) { 2573 struct io_wq_work_node *node; 2574 struct io_kiocb *req; 2575 2576 node = wq_stack_extract(&state->free_list); 2577 req = container_of(node, struct io_kiocb, comp_list); 2578 kmem_cache_free(req_cachep, req); 2579 nr++; 2580 } 2581 if (nr) 2582 percpu_ref_put_many(&ctx->refs, nr); 2583 mutex_unlock(&ctx->uring_lock); 2584 } 2585 2586 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2587 { 2588 io_sq_thread_finish(ctx); 2589 io_rsrc_refs_drop(ctx); 2590 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2591 io_wait_rsrc_data(ctx->buf_data); 2592 io_wait_rsrc_data(ctx->file_data); 2593 2594 mutex_lock(&ctx->uring_lock); 2595 if (ctx->buf_data) 2596 __io_sqe_buffers_unregister(ctx); 2597 if (ctx->file_data) 2598 __io_sqe_files_unregister(ctx); 2599 if (ctx->rings) 2600 __io_cqring_overflow_flush(ctx, true); 2601 io_eventfd_unregister(ctx); 2602 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2603 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2604 mutex_unlock(&ctx->uring_lock); 2605 io_destroy_buffers(ctx); 2606 if (ctx->sq_creds) 2607 put_cred(ctx->sq_creds); 2608 if (ctx->submitter_task) 2609 put_task_struct(ctx->submitter_task); 2610 2611 /* there are no registered resources left, nobody uses it */ 2612 if (ctx->rsrc_node) 2613 io_rsrc_node_destroy(ctx->rsrc_node); 2614 if (ctx->rsrc_backup_node) 2615 io_rsrc_node_destroy(ctx->rsrc_backup_node); 2616 flush_delayed_work(&ctx->rsrc_put_work); 2617 flush_delayed_work(&ctx->fallback_work); 2618 2619 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2620 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist)); 2621 2622 #if defined(CONFIG_UNIX) 2623 if (ctx->ring_sock) { 2624 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2625 sock_release(ctx->ring_sock); 2626 } 2627 #endif 2628 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2629 2630 if (ctx->mm_account) { 2631 mmdrop(ctx->mm_account); 2632 ctx->mm_account = NULL; 2633 } 2634 io_mem_free(ctx->rings); 2635 io_mem_free(ctx->sq_sqes); 2636 2637 percpu_ref_exit(&ctx->refs); 2638 free_uid(ctx->user); 2639 io_req_caches_free(ctx); 2640 if (ctx->hash_map) 2641 io_wq_put_hash(ctx->hash_map); 2642 kfree(ctx->cancel_table.hbs); 2643 kfree(ctx->cancel_table_locked.hbs); 2644 kfree(ctx->dummy_ubuf); 2645 kfree(ctx->io_bl); 2646 xa_destroy(&ctx->io_bl_xa); 2647 kfree(ctx); 2648 } 2649 2650 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2651 { 2652 struct io_ring_ctx *ctx = file->private_data; 2653 __poll_t mask = 0; 2654 2655 poll_wait(file, &ctx->cq_wait, wait); 2656 /* 2657 * synchronizes with barrier from wq_has_sleeper call in 2658 * io_commit_cqring 2659 */ 2660 smp_rmb(); 2661 if (!io_sqring_full(ctx)) 2662 mask |= EPOLLOUT | EPOLLWRNORM; 2663 2664 /* 2665 * Don't flush cqring overflow list here, just do a simple check. 2666 * Otherwise there could possible be ABBA deadlock: 2667 * CPU0 CPU1 2668 * ---- ---- 2669 * lock(&ctx->uring_lock); 2670 * lock(&ep->mtx); 2671 * lock(&ctx->uring_lock); 2672 * lock(&ep->mtx); 2673 * 2674 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2675 * pushs them to do the flush. 2676 */ 2677 2678 if (io_cqring_events(ctx) || io_has_work(ctx)) 2679 mask |= EPOLLIN | EPOLLRDNORM; 2680 2681 return mask; 2682 } 2683 2684 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 2685 { 2686 const struct cred *creds; 2687 2688 creds = xa_erase(&ctx->personalities, id); 2689 if (creds) { 2690 put_cred(creds); 2691 return 0; 2692 } 2693 2694 return -EINVAL; 2695 } 2696 2697 struct io_tctx_exit { 2698 struct callback_head task_work; 2699 struct completion completion; 2700 struct io_ring_ctx *ctx; 2701 }; 2702 2703 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2704 { 2705 struct io_uring_task *tctx = current->io_uring; 2706 struct io_tctx_exit *work; 2707 2708 work = container_of(cb, struct io_tctx_exit, task_work); 2709 /* 2710 * When @in_idle, we're in cancellation and it's racy to remove the 2711 * node. It'll be removed by the end of cancellation, just ignore it. 2712 */ 2713 if (!atomic_read(&tctx->in_idle)) 2714 io_uring_del_tctx_node((unsigned long)work->ctx); 2715 complete(&work->completion); 2716 } 2717 2718 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2719 { 2720 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2721 2722 return req->ctx == data; 2723 } 2724 2725 static __cold void io_ring_exit_work(struct work_struct *work) 2726 { 2727 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2728 unsigned long timeout = jiffies + HZ * 60 * 5; 2729 unsigned long interval = HZ / 20; 2730 struct io_tctx_exit exit; 2731 struct io_tctx_node *node; 2732 int ret; 2733 2734 /* 2735 * If we're doing polled IO and end up having requests being 2736 * submitted async (out-of-line), then completions can come in while 2737 * we're waiting for refs to drop. We need to reap these manually, 2738 * as nobody else will be looking for them. 2739 */ 2740 do { 2741 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2742 io_move_task_work_from_local(ctx); 2743 2744 while (io_uring_try_cancel_requests(ctx, NULL, true)) 2745 cond_resched(); 2746 2747 if (ctx->sq_data) { 2748 struct io_sq_data *sqd = ctx->sq_data; 2749 struct task_struct *tsk; 2750 2751 io_sq_thread_park(sqd); 2752 tsk = sqd->thread; 2753 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2754 io_wq_cancel_cb(tsk->io_uring->io_wq, 2755 io_cancel_ctx_cb, ctx, true); 2756 io_sq_thread_unpark(sqd); 2757 } 2758 2759 io_req_caches_free(ctx); 2760 2761 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2762 /* there is little hope left, don't run it too often */ 2763 interval = HZ * 60; 2764 } 2765 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval)); 2766 2767 init_completion(&exit.completion); 2768 init_task_work(&exit.task_work, io_tctx_exit_cb); 2769 exit.ctx = ctx; 2770 /* 2771 * Some may use context even when all refs and requests have been put, 2772 * and they are free to do so while still holding uring_lock or 2773 * completion_lock, see io_req_task_submit(). Apart from other work, 2774 * this lock/unlock section also waits them to finish. 2775 */ 2776 mutex_lock(&ctx->uring_lock); 2777 while (!list_empty(&ctx->tctx_list)) { 2778 WARN_ON_ONCE(time_after(jiffies, timeout)); 2779 2780 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 2781 ctx_node); 2782 /* don't spin on a single task if cancellation failed */ 2783 list_rotate_left(&ctx->tctx_list); 2784 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 2785 if (WARN_ON_ONCE(ret)) 2786 continue; 2787 2788 mutex_unlock(&ctx->uring_lock); 2789 wait_for_completion(&exit.completion); 2790 mutex_lock(&ctx->uring_lock); 2791 } 2792 mutex_unlock(&ctx->uring_lock); 2793 spin_lock(&ctx->completion_lock); 2794 spin_unlock(&ctx->completion_lock); 2795 2796 io_ring_ctx_free(ctx); 2797 } 2798 2799 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 2800 { 2801 unsigned long index; 2802 struct creds *creds; 2803 2804 mutex_lock(&ctx->uring_lock); 2805 percpu_ref_kill(&ctx->refs); 2806 if (ctx->rings) 2807 __io_cqring_overflow_flush(ctx, true); 2808 xa_for_each(&ctx->personalities, index, creds) 2809 io_unregister_personality(ctx, index); 2810 if (ctx->rings) 2811 io_poll_remove_all(ctx, NULL, true); 2812 mutex_unlock(&ctx->uring_lock); 2813 2814 /* failed during ring init, it couldn't have issued any requests */ 2815 if (ctx->rings) { 2816 io_kill_timeouts(ctx, NULL, true); 2817 /* if we failed setting up the ctx, we might not have any rings */ 2818 io_iopoll_try_reap_events(ctx); 2819 /* drop cached put refs after potentially doing completions */ 2820 if (current->io_uring) 2821 io_uring_drop_tctx_refs(current); 2822 } 2823 2824 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 2825 /* 2826 * Use system_unbound_wq to avoid spawning tons of event kworkers 2827 * if we're exiting a ton of rings at the same time. It just adds 2828 * noise and overhead, there's no discernable change in runtime 2829 * over using system_wq. 2830 */ 2831 queue_work(system_unbound_wq, &ctx->exit_work); 2832 } 2833 2834 static int io_uring_release(struct inode *inode, struct file *file) 2835 { 2836 struct io_ring_ctx *ctx = file->private_data; 2837 2838 file->private_data = NULL; 2839 io_ring_ctx_wait_and_kill(ctx); 2840 return 0; 2841 } 2842 2843 struct io_task_cancel { 2844 struct task_struct *task; 2845 bool all; 2846 }; 2847 2848 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 2849 { 2850 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2851 struct io_task_cancel *cancel = data; 2852 2853 return io_match_task_safe(req, cancel->task, cancel->all); 2854 } 2855 2856 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 2857 struct task_struct *task, 2858 bool cancel_all) 2859 { 2860 struct io_defer_entry *de; 2861 LIST_HEAD(list); 2862 2863 spin_lock(&ctx->completion_lock); 2864 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 2865 if (io_match_task_safe(de->req, task, cancel_all)) { 2866 list_cut_position(&list, &ctx->defer_list, &de->list); 2867 break; 2868 } 2869 } 2870 spin_unlock(&ctx->completion_lock); 2871 if (list_empty(&list)) 2872 return false; 2873 2874 while (!list_empty(&list)) { 2875 de = list_first_entry(&list, struct io_defer_entry, list); 2876 list_del_init(&de->list); 2877 io_req_complete_failed(de->req, -ECANCELED); 2878 kfree(de); 2879 } 2880 return true; 2881 } 2882 2883 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 2884 { 2885 struct io_tctx_node *node; 2886 enum io_wq_cancel cret; 2887 bool ret = false; 2888 2889 mutex_lock(&ctx->uring_lock); 2890 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 2891 struct io_uring_task *tctx = node->task->io_uring; 2892 2893 /* 2894 * io_wq will stay alive while we hold uring_lock, because it's 2895 * killed after ctx nodes, which requires to take the lock. 2896 */ 2897 if (!tctx || !tctx->io_wq) 2898 continue; 2899 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 2900 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 2901 } 2902 mutex_unlock(&ctx->uring_lock); 2903 2904 return ret; 2905 } 2906 2907 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 2908 struct task_struct *task, 2909 bool cancel_all) 2910 { 2911 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 2912 struct io_uring_task *tctx = task ? task->io_uring : NULL; 2913 enum io_wq_cancel cret; 2914 bool ret = false; 2915 2916 /* failed during ring init, it couldn't have issued any requests */ 2917 if (!ctx->rings) 2918 return false; 2919 2920 if (!task) { 2921 ret |= io_uring_try_cancel_iowq(ctx); 2922 } else if (tctx && tctx->io_wq) { 2923 /* 2924 * Cancels requests of all rings, not only @ctx, but 2925 * it's fine as the task is in exit/exec. 2926 */ 2927 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 2928 &cancel, true); 2929 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 2930 } 2931 2932 /* SQPOLL thread does its own polling */ 2933 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 2934 (ctx->sq_data && ctx->sq_data->thread == current)) { 2935 while (!wq_list_empty(&ctx->iopoll_list)) { 2936 io_iopoll_try_reap_events(ctx); 2937 ret = true; 2938 } 2939 } 2940 2941 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2942 ret |= io_run_local_work(ctx) > 0; 2943 ret |= io_cancel_defer_files(ctx, task, cancel_all); 2944 mutex_lock(&ctx->uring_lock); 2945 ret |= io_poll_remove_all(ctx, task, cancel_all); 2946 mutex_unlock(&ctx->uring_lock); 2947 ret |= io_kill_timeouts(ctx, task, cancel_all); 2948 if (task) 2949 ret |= io_run_task_work() > 0; 2950 return ret; 2951 } 2952 2953 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 2954 { 2955 if (tracked) 2956 return atomic_read(&tctx->inflight_tracked); 2957 return percpu_counter_sum(&tctx->inflight); 2958 } 2959 2960 /* 2961 * Find any io_uring ctx that this task has registered or done IO on, and cancel 2962 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 2963 */ 2964 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 2965 { 2966 struct io_uring_task *tctx = current->io_uring; 2967 struct io_ring_ctx *ctx; 2968 s64 inflight; 2969 DEFINE_WAIT(wait); 2970 2971 WARN_ON_ONCE(sqd && sqd->thread != current); 2972 2973 if (!current->io_uring) 2974 return; 2975 if (tctx->io_wq) 2976 io_wq_exit_start(tctx->io_wq); 2977 2978 atomic_inc(&tctx->in_idle); 2979 do { 2980 bool loop = false; 2981 2982 io_uring_drop_tctx_refs(current); 2983 /* read completions before cancelations */ 2984 inflight = tctx_inflight(tctx, !cancel_all); 2985 if (!inflight) 2986 break; 2987 2988 if (!sqd) { 2989 struct io_tctx_node *node; 2990 unsigned long index; 2991 2992 xa_for_each(&tctx->xa, index, node) { 2993 /* sqpoll task will cancel all its requests */ 2994 if (node->ctx->sq_data) 2995 continue; 2996 loop |= io_uring_try_cancel_requests(node->ctx, 2997 current, cancel_all); 2998 } 2999 } else { 3000 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3001 loop |= io_uring_try_cancel_requests(ctx, 3002 current, 3003 cancel_all); 3004 } 3005 3006 if (loop) { 3007 cond_resched(); 3008 continue; 3009 } 3010 3011 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3012 io_run_task_work(); 3013 io_uring_drop_tctx_refs(current); 3014 3015 /* 3016 * If we've seen completions, retry without waiting. This 3017 * avoids a race where a completion comes in before we did 3018 * prepare_to_wait(). 3019 */ 3020 if (inflight == tctx_inflight(tctx, !cancel_all)) 3021 schedule(); 3022 finish_wait(&tctx->wait, &wait); 3023 } while (1); 3024 3025 io_uring_clean_tctx(tctx); 3026 if (cancel_all) { 3027 /* 3028 * We shouldn't run task_works after cancel, so just leave 3029 * ->in_idle set for normal exit. 3030 */ 3031 atomic_dec(&tctx->in_idle); 3032 /* for exec all current's requests should be gone, kill tctx */ 3033 __io_uring_free(current); 3034 } 3035 } 3036 3037 void __io_uring_cancel(bool cancel_all) 3038 { 3039 io_uring_cancel_generic(cancel_all, NULL); 3040 } 3041 3042 static void *io_uring_validate_mmap_request(struct file *file, 3043 loff_t pgoff, size_t sz) 3044 { 3045 struct io_ring_ctx *ctx = file->private_data; 3046 loff_t offset = pgoff << PAGE_SHIFT; 3047 struct page *page; 3048 void *ptr; 3049 3050 switch (offset) { 3051 case IORING_OFF_SQ_RING: 3052 case IORING_OFF_CQ_RING: 3053 ptr = ctx->rings; 3054 break; 3055 case IORING_OFF_SQES: 3056 ptr = ctx->sq_sqes; 3057 break; 3058 default: 3059 return ERR_PTR(-EINVAL); 3060 } 3061 3062 page = virt_to_head_page(ptr); 3063 if (sz > page_size(page)) 3064 return ERR_PTR(-EINVAL); 3065 3066 return ptr; 3067 } 3068 3069 #ifdef CONFIG_MMU 3070 3071 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3072 { 3073 size_t sz = vma->vm_end - vma->vm_start; 3074 unsigned long pfn; 3075 void *ptr; 3076 3077 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3078 if (IS_ERR(ptr)) 3079 return PTR_ERR(ptr); 3080 3081 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3082 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3083 } 3084 3085 #else /* !CONFIG_MMU */ 3086 3087 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3088 { 3089 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL; 3090 } 3091 3092 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3093 { 3094 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3095 } 3096 3097 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3098 unsigned long addr, unsigned long len, 3099 unsigned long pgoff, unsigned long flags) 3100 { 3101 void *ptr; 3102 3103 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3104 if (IS_ERR(ptr)) 3105 return PTR_ERR(ptr); 3106 3107 return (unsigned long) ptr; 3108 } 3109 3110 #endif /* !CONFIG_MMU */ 3111 3112 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3113 { 3114 if (flags & IORING_ENTER_EXT_ARG) { 3115 struct io_uring_getevents_arg arg; 3116 3117 if (argsz != sizeof(arg)) 3118 return -EINVAL; 3119 if (copy_from_user(&arg, argp, sizeof(arg))) 3120 return -EFAULT; 3121 } 3122 return 0; 3123 } 3124 3125 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3126 struct __kernel_timespec __user **ts, 3127 const sigset_t __user **sig) 3128 { 3129 struct io_uring_getevents_arg arg; 3130 3131 /* 3132 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3133 * is just a pointer to the sigset_t. 3134 */ 3135 if (!(flags & IORING_ENTER_EXT_ARG)) { 3136 *sig = (const sigset_t __user *) argp; 3137 *ts = NULL; 3138 return 0; 3139 } 3140 3141 /* 3142 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3143 * timespec and sigset_t pointers if good. 3144 */ 3145 if (*argsz != sizeof(arg)) 3146 return -EINVAL; 3147 if (copy_from_user(&arg, argp, sizeof(arg))) 3148 return -EFAULT; 3149 if (arg.pad) 3150 return -EINVAL; 3151 *sig = u64_to_user_ptr(arg.sigmask); 3152 *argsz = arg.sigmask_sz; 3153 *ts = u64_to_user_ptr(arg.ts); 3154 return 0; 3155 } 3156 3157 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3158 u32, min_complete, u32, flags, const void __user *, argp, 3159 size_t, argsz) 3160 { 3161 struct io_ring_ctx *ctx; 3162 struct fd f; 3163 long ret; 3164 3165 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3166 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3167 IORING_ENTER_REGISTERED_RING))) 3168 return -EINVAL; 3169 3170 /* 3171 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3172 * need only dereference our task private array to find it. 3173 */ 3174 if (flags & IORING_ENTER_REGISTERED_RING) { 3175 struct io_uring_task *tctx = current->io_uring; 3176 3177 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3178 return -EINVAL; 3179 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3180 f.file = tctx->registered_rings[fd]; 3181 f.flags = 0; 3182 if (unlikely(!f.file)) 3183 return -EBADF; 3184 } else { 3185 f = fdget(fd); 3186 if (unlikely(!f.file)) 3187 return -EBADF; 3188 ret = -EOPNOTSUPP; 3189 if (unlikely(!io_is_uring_fops(f.file))) 3190 goto out; 3191 } 3192 3193 ctx = f.file->private_data; 3194 ret = -EBADFD; 3195 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3196 goto out; 3197 3198 /* 3199 * For SQ polling, the thread will do all submissions and completions. 3200 * Just return the requested submit count, and wake the thread if 3201 * we were asked to. 3202 */ 3203 ret = 0; 3204 if (ctx->flags & IORING_SETUP_SQPOLL) { 3205 io_cqring_overflow_flush(ctx); 3206 3207 if (unlikely(ctx->sq_data->thread == NULL)) { 3208 ret = -EOWNERDEAD; 3209 goto out; 3210 } 3211 if (flags & IORING_ENTER_SQ_WAKEUP) 3212 wake_up(&ctx->sq_data->wait); 3213 if (flags & IORING_ENTER_SQ_WAIT) { 3214 ret = io_sqpoll_wait_sq(ctx); 3215 if (ret) 3216 goto out; 3217 } 3218 ret = to_submit; 3219 } else if (to_submit) { 3220 ret = io_uring_add_tctx_node(ctx); 3221 if (unlikely(ret)) 3222 goto out; 3223 3224 mutex_lock(&ctx->uring_lock); 3225 ret = io_submit_sqes(ctx, to_submit); 3226 if (ret != to_submit) { 3227 mutex_unlock(&ctx->uring_lock); 3228 goto out; 3229 } 3230 if (flags & IORING_ENTER_GETEVENTS) { 3231 if (ctx->syscall_iopoll) 3232 goto iopoll_locked; 3233 /* 3234 * Ignore errors, we'll soon call io_cqring_wait() and 3235 * it should handle ownership problems if any. 3236 */ 3237 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3238 (void)io_run_local_work_locked(ctx); 3239 } 3240 mutex_unlock(&ctx->uring_lock); 3241 } 3242 3243 if (flags & IORING_ENTER_GETEVENTS) { 3244 int ret2; 3245 3246 if (ctx->syscall_iopoll) { 3247 /* 3248 * We disallow the app entering submit/complete with 3249 * polling, but we still need to lock the ring to 3250 * prevent racing with polled issue that got punted to 3251 * a workqueue. 3252 */ 3253 mutex_lock(&ctx->uring_lock); 3254 iopoll_locked: 3255 ret2 = io_validate_ext_arg(flags, argp, argsz); 3256 if (likely(!ret2)) { 3257 min_complete = min(min_complete, 3258 ctx->cq_entries); 3259 ret2 = io_iopoll_check(ctx, min_complete); 3260 } 3261 mutex_unlock(&ctx->uring_lock); 3262 } else { 3263 const sigset_t __user *sig; 3264 struct __kernel_timespec __user *ts; 3265 3266 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3267 if (likely(!ret2)) { 3268 min_complete = min(min_complete, 3269 ctx->cq_entries); 3270 ret2 = io_cqring_wait(ctx, min_complete, sig, 3271 argsz, ts); 3272 } 3273 } 3274 3275 if (!ret) { 3276 ret = ret2; 3277 3278 /* 3279 * EBADR indicates that one or more CQE were dropped. 3280 * Once the user has been informed we can clear the bit 3281 * as they are obviously ok with those drops. 3282 */ 3283 if (unlikely(ret2 == -EBADR)) 3284 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3285 &ctx->check_cq); 3286 } 3287 } 3288 out: 3289 fdput(f); 3290 return ret; 3291 } 3292 3293 static const struct file_operations io_uring_fops = { 3294 .release = io_uring_release, 3295 .mmap = io_uring_mmap, 3296 #ifndef CONFIG_MMU 3297 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3298 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3299 #endif 3300 .poll = io_uring_poll, 3301 #ifdef CONFIG_PROC_FS 3302 .show_fdinfo = io_uring_show_fdinfo, 3303 #endif 3304 }; 3305 3306 bool io_is_uring_fops(struct file *file) 3307 { 3308 return file->f_op == &io_uring_fops; 3309 } 3310 3311 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3312 struct io_uring_params *p) 3313 { 3314 struct io_rings *rings; 3315 size_t size, sq_array_offset; 3316 3317 /* make sure these are sane, as we already accounted them */ 3318 ctx->sq_entries = p->sq_entries; 3319 ctx->cq_entries = p->cq_entries; 3320 3321 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3322 if (size == SIZE_MAX) 3323 return -EOVERFLOW; 3324 3325 rings = io_mem_alloc(size); 3326 if (!rings) 3327 return -ENOMEM; 3328 3329 ctx->rings = rings; 3330 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3331 rings->sq_ring_mask = p->sq_entries - 1; 3332 rings->cq_ring_mask = p->cq_entries - 1; 3333 rings->sq_ring_entries = p->sq_entries; 3334 rings->cq_ring_entries = p->cq_entries; 3335 3336 if (p->flags & IORING_SETUP_SQE128) 3337 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3338 else 3339 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3340 if (size == SIZE_MAX) { 3341 io_mem_free(ctx->rings); 3342 ctx->rings = NULL; 3343 return -EOVERFLOW; 3344 } 3345 3346 ctx->sq_sqes = io_mem_alloc(size); 3347 if (!ctx->sq_sqes) { 3348 io_mem_free(ctx->rings); 3349 ctx->rings = NULL; 3350 return -ENOMEM; 3351 } 3352 3353 return 0; 3354 } 3355 3356 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file) 3357 { 3358 int ret, fd; 3359 3360 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3361 if (fd < 0) 3362 return fd; 3363 3364 ret = __io_uring_add_tctx_node(ctx); 3365 if (ret) { 3366 put_unused_fd(fd); 3367 return ret; 3368 } 3369 fd_install(fd, file); 3370 return fd; 3371 } 3372 3373 /* 3374 * Allocate an anonymous fd, this is what constitutes the application 3375 * visible backing of an io_uring instance. The application mmaps this 3376 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3377 * we have to tie this fd to a socket for file garbage collection purposes. 3378 */ 3379 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3380 { 3381 struct file *file; 3382 #if defined(CONFIG_UNIX) 3383 int ret; 3384 3385 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3386 &ctx->ring_sock); 3387 if (ret) 3388 return ERR_PTR(ret); 3389 #endif 3390 3391 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3392 O_RDWR | O_CLOEXEC, NULL); 3393 #if defined(CONFIG_UNIX) 3394 if (IS_ERR(file)) { 3395 sock_release(ctx->ring_sock); 3396 ctx->ring_sock = NULL; 3397 } else { 3398 ctx->ring_sock->file = file; 3399 } 3400 #endif 3401 return file; 3402 } 3403 3404 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3405 struct io_uring_params __user *params) 3406 { 3407 struct io_ring_ctx *ctx; 3408 struct file *file; 3409 int ret; 3410 3411 if (!entries) 3412 return -EINVAL; 3413 if (entries > IORING_MAX_ENTRIES) { 3414 if (!(p->flags & IORING_SETUP_CLAMP)) 3415 return -EINVAL; 3416 entries = IORING_MAX_ENTRIES; 3417 } 3418 3419 /* 3420 * Use twice as many entries for the CQ ring. It's possible for the 3421 * application to drive a higher depth than the size of the SQ ring, 3422 * since the sqes are only used at submission time. This allows for 3423 * some flexibility in overcommitting a bit. If the application has 3424 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3425 * of CQ ring entries manually. 3426 */ 3427 p->sq_entries = roundup_pow_of_two(entries); 3428 if (p->flags & IORING_SETUP_CQSIZE) { 3429 /* 3430 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3431 * to a power-of-two, if it isn't already. We do NOT impose 3432 * any cq vs sq ring sizing. 3433 */ 3434 if (!p->cq_entries) 3435 return -EINVAL; 3436 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3437 if (!(p->flags & IORING_SETUP_CLAMP)) 3438 return -EINVAL; 3439 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3440 } 3441 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3442 if (p->cq_entries < p->sq_entries) 3443 return -EINVAL; 3444 } else { 3445 p->cq_entries = 2 * p->sq_entries; 3446 } 3447 3448 ctx = io_ring_ctx_alloc(p); 3449 if (!ctx) 3450 return -ENOMEM; 3451 3452 /* 3453 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3454 * space applications don't need to do io completion events 3455 * polling again, they can rely on io_sq_thread to do polling 3456 * work, which can reduce cpu usage and uring_lock contention. 3457 */ 3458 if (ctx->flags & IORING_SETUP_IOPOLL && 3459 !(ctx->flags & IORING_SETUP_SQPOLL)) 3460 ctx->syscall_iopoll = 1; 3461 3462 ctx->compat = in_compat_syscall(); 3463 if (!capable(CAP_IPC_LOCK)) 3464 ctx->user = get_uid(current_user()); 3465 3466 /* 3467 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3468 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3469 */ 3470 ret = -EINVAL; 3471 if (ctx->flags & IORING_SETUP_SQPOLL) { 3472 /* IPI related flags don't make sense with SQPOLL */ 3473 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3474 IORING_SETUP_TASKRUN_FLAG | 3475 IORING_SETUP_DEFER_TASKRUN)) 3476 goto err; 3477 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3478 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3479 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3480 } else { 3481 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3482 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3483 goto err; 3484 ctx->notify_method = TWA_SIGNAL; 3485 } 3486 3487 /* 3488 * For DEFER_TASKRUN we require the completion task to be the same as the 3489 * submission task. This implies that there is only one submitter, so enforce 3490 * that. 3491 */ 3492 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3493 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3494 goto err; 3495 } 3496 3497 /* 3498 * This is just grabbed for accounting purposes. When a process exits, 3499 * the mm is exited and dropped before the files, hence we need to hang 3500 * on to this mm purely for the purposes of being able to unaccount 3501 * memory (locked/pinned vm). It's not used for anything else. 3502 */ 3503 mmgrab(current->mm); 3504 ctx->mm_account = current->mm; 3505 3506 ret = io_allocate_scq_urings(ctx, p); 3507 if (ret) 3508 goto err; 3509 3510 ret = io_sq_offload_create(ctx, p); 3511 if (ret) 3512 goto err; 3513 /* always set a rsrc node */ 3514 ret = io_rsrc_node_switch_start(ctx); 3515 if (ret) 3516 goto err; 3517 io_rsrc_node_switch(ctx, NULL); 3518 3519 memset(&p->sq_off, 0, sizeof(p->sq_off)); 3520 p->sq_off.head = offsetof(struct io_rings, sq.head); 3521 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3522 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3523 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3524 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3525 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3526 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3527 3528 memset(&p->cq_off, 0, sizeof(p->cq_off)); 3529 p->cq_off.head = offsetof(struct io_rings, cq.head); 3530 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3531 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3532 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3533 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3534 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3535 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3536 3537 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3538 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3539 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3540 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3541 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3542 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3543 IORING_FEAT_LINKED_FILE; 3544 3545 if (copy_to_user(params, p, sizeof(*p))) { 3546 ret = -EFAULT; 3547 goto err; 3548 } 3549 3550 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3551 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3552 ctx->submitter_task = get_task_struct(current); 3553 3554 file = io_uring_get_file(ctx); 3555 if (IS_ERR(file)) { 3556 ret = PTR_ERR(file); 3557 goto err; 3558 } 3559 3560 /* 3561 * Install ring fd as the very last thing, so we don't risk someone 3562 * having closed it before we finish setup 3563 */ 3564 ret = io_uring_install_fd(ctx, file); 3565 if (ret < 0) { 3566 /* fput will clean it up */ 3567 fput(file); 3568 return ret; 3569 } 3570 3571 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3572 return ret; 3573 err: 3574 io_ring_ctx_wait_and_kill(ctx); 3575 return ret; 3576 } 3577 3578 /* 3579 * Sets up an aio uring context, and returns the fd. Applications asks for a 3580 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3581 * params structure passed in. 3582 */ 3583 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3584 { 3585 struct io_uring_params p; 3586 int i; 3587 3588 if (copy_from_user(&p, params, sizeof(p))) 3589 return -EFAULT; 3590 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3591 if (p.resv[i]) 3592 return -EINVAL; 3593 } 3594 3595 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3596 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3597 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3598 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3599 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3600 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3601 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN)) 3602 return -EINVAL; 3603 3604 return io_uring_create(entries, &p, params); 3605 } 3606 3607 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3608 struct io_uring_params __user *, params) 3609 { 3610 return io_uring_setup(entries, params); 3611 } 3612 3613 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 3614 unsigned nr_args) 3615 { 3616 struct io_uring_probe *p; 3617 size_t size; 3618 int i, ret; 3619 3620 size = struct_size(p, ops, nr_args); 3621 if (size == SIZE_MAX) 3622 return -EOVERFLOW; 3623 p = kzalloc(size, GFP_KERNEL); 3624 if (!p) 3625 return -ENOMEM; 3626 3627 ret = -EFAULT; 3628 if (copy_from_user(p, arg, size)) 3629 goto out; 3630 ret = -EINVAL; 3631 if (memchr_inv(p, 0, size)) 3632 goto out; 3633 3634 p->last_op = IORING_OP_LAST - 1; 3635 if (nr_args > IORING_OP_LAST) 3636 nr_args = IORING_OP_LAST; 3637 3638 for (i = 0; i < nr_args; i++) { 3639 p->ops[i].op = i; 3640 if (!io_op_defs[i].not_supported) 3641 p->ops[i].flags = IO_URING_OP_SUPPORTED; 3642 } 3643 p->ops_len = i; 3644 3645 ret = 0; 3646 if (copy_to_user(arg, p, size)) 3647 ret = -EFAULT; 3648 out: 3649 kfree(p); 3650 return ret; 3651 } 3652 3653 static int io_register_personality(struct io_ring_ctx *ctx) 3654 { 3655 const struct cred *creds; 3656 u32 id; 3657 int ret; 3658 3659 creds = get_current_cred(); 3660 3661 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 3662 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 3663 if (ret < 0) { 3664 put_cred(creds); 3665 return ret; 3666 } 3667 return id; 3668 } 3669 3670 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 3671 void __user *arg, unsigned int nr_args) 3672 { 3673 struct io_uring_restriction *res; 3674 size_t size; 3675 int i, ret; 3676 3677 /* Restrictions allowed only if rings started disabled */ 3678 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 3679 return -EBADFD; 3680 3681 /* We allow only a single restrictions registration */ 3682 if (ctx->restrictions.registered) 3683 return -EBUSY; 3684 3685 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 3686 return -EINVAL; 3687 3688 size = array_size(nr_args, sizeof(*res)); 3689 if (size == SIZE_MAX) 3690 return -EOVERFLOW; 3691 3692 res = memdup_user(arg, size); 3693 if (IS_ERR(res)) 3694 return PTR_ERR(res); 3695 3696 ret = 0; 3697 3698 for (i = 0; i < nr_args; i++) { 3699 switch (res[i].opcode) { 3700 case IORING_RESTRICTION_REGISTER_OP: 3701 if (res[i].register_op >= IORING_REGISTER_LAST) { 3702 ret = -EINVAL; 3703 goto out; 3704 } 3705 3706 __set_bit(res[i].register_op, 3707 ctx->restrictions.register_op); 3708 break; 3709 case IORING_RESTRICTION_SQE_OP: 3710 if (res[i].sqe_op >= IORING_OP_LAST) { 3711 ret = -EINVAL; 3712 goto out; 3713 } 3714 3715 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 3716 break; 3717 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 3718 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 3719 break; 3720 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 3721 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 3722 break; 3723 default: 3724 ret = -EINVAL; 3725 goto out; 3726 } 3727 } 3728 3729 out: 3730 /* Reset all restrictions if an error happened */ 3731 if (ret != 0) 3732 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 3733 else 3734 ctx->restrictions.registered = true; 3735 3736 kfree(res); 3737 return ret; 3738 } 3739 3740 static int io_register_enable_rings(struct io_ring_ctx *ctx) 3741 { 3742 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 3743 return -EBADFD; 3744 3745 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) 3746 ctx->submitter_task = get_task_struct(current); 3747 3748 if (ctx->restrictions.registered) 3749 ctx->restricted = 1; 3750 3751 ctx->flags &= ~IORING_SETUP_R_DISABLED; 3752 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 3753 wake_up(&ctx->sq_data->wait); 3754 return 0; 3755 } 3756 3757 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 3758 void __user *arg, unsigned len) 3759 { 3760 struct io_uring_task *tctx = current->io_uring; 3761 cpumask_var_t new_mask; 3762 int ret; 3763 3764 if (!tctx || !tctx->io_wq) 3765 return -EINVAL; 3766 3767 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 3768 return -ENOMEM; 3769 3770 cpumask_clear(new_mask); 3771 if (len > cpumask_size()) 3772 len = cpumask_size(); 3773 3774 if (in_compat_syscall()) { 3775 ret = compat_get_bitmap(cpumask_bits(new_mask), 3776 (const compat_ulong_t __user *)arg, 3777 len * 8 /* CHAR_BIT */); 3778 } else { 3779 ret = copy_from_user(new_mask, arg, len); 3780 } 3781 3782 if (ret) { 3783 free_cpumask_var(new_mask); 3784 return -EFAULT; 3785 } 3786 3787 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask); 3788 free_cpumask_var(new_mask); 3789 return ret; 3790 } 3791 3792 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 3793 { 3794 struct io_uring_task *tctx = current->io_uring; 3795 3796 if (!tctx || !tctx->io_wq) 3797 return -EINVAL; 3798 3799 return io_wq_cpu_affinity(tctx->io_wq, NULL); 3800 } 3801 3802 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 3803 void __user *arg) 3804 __must_hold(&ctx->uring_lock) 3805 { 3806 struct io_tctx_node *node; 3807 struct io_uring_task *tctx = NULL; 3808 struct io_sq_data *sqd = NULL; 3809 __u32 new_count[2]; 3810 int i, ret; 3811 3812 if (copy_from_user(new_count, arg, sizeof(new_count))) 3813 return -EFAULT; 3814 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3815 if (new_count[i] > INT_MAX) 3816 return -EINVAL; 3817 3818 if (ctx->flags & IORING_SETUP_SQPOLL) { 3819 sqd = ctx->sq_data; 3820 if (sqd) { 3821 /* 3822 * Observe the correct sqd->lock -> ctx->uring_lock 3823 * ordering. Fine to drop uring_lock here, we hold 3824 * a ref to the ctx. 3825 */ 3826 refcount_inc(&sqd->refs); 3827 mutex_unlock(&ctx->uring_lock); 3828 mutex_lock(&sqd->lock); 3829 mutex_lock(&ctx->uring_lock); 3830 if (sqd->thread) 3831 tctx = sqd->thread->io_uring; 3832 } 3833 } else { 3834 tctx = current->io_uring; 3835 } 3836 3837 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 3838 3839 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3840 if (new_count[i]) 3841 ctx->iowq_limits[i] = new_count[i]; 3842 ctx->iowq_limits_set = true; 3843 3844 if (tctx && tctx->io_wq) { 3845 ret = io_wq_max_workers(tctx->io_wq, new_count); 3846 if (ret) 3847 goto err; 3848 } else { 3849 memset(new_count, 0, sizeof(new_count)); 3850 } 3851 3852 if (sqd) { 3853 mutex_unlock(&sqd->lock); 3854 io_put_sq_data(sqd); 3855 } 3856 3857 if (copy_to_user(arg, new_count, sizeof(new_count))) 3858 return -EFAULT; 3859 3860 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 3861 if (sqd) 3862 return 0; 3863 3864 /* now propagate the restriction to all registered users */ 3865 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3866 struct io_uring_task *tctx = node->task->io_uring; 3867 3868 if (WARN_ON_ONCE(!tctx->io_wq)) 3869 continue; 3870 3871 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3872 new_count[i] = ctx->iowq_limits[i]; 3873 /* ignore errors, it always returns zero anyway */ 3874 (void)io_wq_max_workers(tctx->io_wq, new_count); 3875 } 3876 return 0; 3877 err: 3878 if (sqd) { 3879 mutex_unlock(&sqd->lock); 3880 io_put_sq_data(sqd); 3881 } 3882 return ret; 3883 } 3884 3885 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 3886 void __user *arg, unsigned nr_args) 3887 __releases(ctx->uring_lock) 3888 __acquires(ctx->uring_lock) 3889 { 3890 int ret; 3891 3892 /* 3893 * We don't quiesce the refs for register anymore and so it can't be 3894 * dying as we're holding a file ref here. 3895 */ 3896 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 3897 return -ENXIO; 3898 3899 if (ctx->submitter_task && ctx->submitter_task != current) 3900 return -EEXIST; 3901 3902 if (ctx->restricted) { 3903 if (opcode >= IORING_REGISTER_LAST) 3904 return -EINVAL; 3905 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 3906 if (!test_bit(opcode, ctx->restrictions.register_op)) 3907 return -EACCES; 3908 } 3909 3910 switch (opcode) { 3911 case IORING_REGISTER_BUFFERS: 3912 ret = -EFAULT; 3913 if (!arg) 3914 break; 3915 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 3916 break; 3917 case IORING_UNREGISTER_BUFFERS: 3918 ret = -EINVAL; 3919 if (arg || nr_args) 3920 break; 3921 ret = io_sqe_buffers_unregister(ctx); 3922 break; 3923 case IORING_REGISTER_FILES: 3924 ret = -EFAULT; 3925 if (!arg) 3926 break; 3927 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 3928 break; 3929 case IORING_UNREGISTER_FILES: 3930 ret = -EINVAL; 3931 if (arg || nr_args) 3932 break; 3933 ret = io_sqe_files_unregister(ctx); 3934 break; 3935 case IORING_REGISTER_FILES_UPDATE: 3936 ret = io_register_files_update(ctx, arg, nr_args); 3937 break; 3938 case IORING_REGISTER_EVENTFD: 3939 ret = -EINVAL; 3940 if (nr_args != 1) 3941 break; 3942 ret = io_eventfd_register(ctx, arg, 0); 3943 break; 3944 case IORING_REGISTER_EVENTFD_ASYNC: 3945 ret = -EINVAL; 3946 if (nr_args != 1) 3947 break; 3948 ret = io_eventfd_register(ctx, arg, 1); 3949 break; 3950 case IORING_UNREGISTER_EVENTFD: 3951 ret = -EINVAL; 3952 if (arg || nr_args) 3953 break; 3954 ret = io_eventfd_unregister(ctx); 3955 break; 3956 case IORING_REGISTER_PROBE: 3957 ret = -EINVAL; 3958 if (!arg || nr_args > 256) 3959 break; 3960 ret = io_probe(ctx, arg, nr_args); 3961 break; 3962 case IORING_REGISTER_PERSONALITY: 3963 ret = -EINVAL; 3964 if (arg || nr_args) 3965 break; 3966 ret = io_register_personality(ctx); 3967 break; 3968 case IORING_UNREGISTER_PERSONALITY: 3969 ret = -EINVAL; 3970 if (arg) 3971 break; 3972 ret = io_unregister_personality(ctx, nr_args); 3973 break; 3974 case IORING_REGISTER_ENABLE_RINGS: 3975 ret = -EINVAL; 3976 if (arg || nr_args) 3977 break; 3978 ret = io_register_enable_rings(ctx); 3979 break; 3980 case IORING_REGISTER_RESTRICTIONS: 3981 ret = io_register_restrictions(ctx, arg, nr_args); 3982 break; 3983 case IORING_REGISTER_FILES2: 3984 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 3985 break; 3986 case IORING_REGISTER_FILES_UPDATE2: 3987 ret = io_register_rsrc_update(ctx, arg, nr_args, 3988 IORING_RSRC_FILE); 3989 break; 3990 case IORING_REGISTER_BUFFERS2: 3991 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 3992 break; 3993 case IORING_REGISTER_BUFFERS_UPDATE: 3994 ret = io_register_rsrc_update(ctx, arg, nr_args, 3995 IORING_RSRC_BUFFER); 3996 break; 3997 case IORING_REGISTER_IOWQ_AFF: 3998 ret = -EINVAL; 3999 if (!arg || !nr_args) 4000 break; 4001 ret = io_register_iowq_aff(ctx, arg, nr_args); 4002 break; 4003 case IORING_UNREGISTER_IOWQ_AFF: 4004 ret = -EINVAL; 4005 if (arg || nr_args) 4006 break; 4007 ret = io_unregister_iowq_aff(ctx); 4008 break; 4009 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4010 ret = -EINVAL; 4011 if (!arg || nr_args != 2) 4012 break; 4013 ret = io_register_iowq_max_workers(ctx, arg); 4014 break; 4015 case IORING_REGISTER_RING_FDS: 4016 ret = io_ringfd_register(ctx, arg, nr_args); 4017 break; 4018 case IORING_UNREGISTER_RING_FDS: 4019 ret = io_ringfd_unregister(ctx, arg, nr_args); 4020 break; 4021 case IORING_REGISTER_PBUF_RING: 4022 ret = -EINVAL; 4023 if (!arg || nr_args != 1) 4024 break; 4025 ret = io_register_pbuf_ring(ctx, arg); 4026 break; 4027 case IORING_UNREGISTER_PBUF_RING: 4028 ret = -EINVAL; 4029 if (!arg || nr_args != 1) 4030 break; 4031 ret = io_unregister_pbuf_ring(ctx, arg); 4032 break; 4033 case IORING_REGISTER_SYNC_CANCEL: 4034 ret = -EINVAL; 4035 if (!arg || nr_args != 1) 4036 break; 4037 ret = io_sync_cancel(ctx, arg); 4038 break; 4039 case IORING_REGISTER_FILE_ALLOC_RANGE: 4040 ret = -EINVAL; 4041 if (!arg || nr_args) 4042 break; 4043 ret = io_register_file_alloc_range(ctx, arg); 4044 break; 4045 default: 4046 ret = -EINVAL; 4047 break; 4048 } 4049 4050 return ret; 4051 } 4052 4053 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4054 void __user *, arg, unsigned int, nr_args) 4055 { 4056 struct io_ring_ctx *ctx; 4057 long ret = -EBADF; 4058 struct fd f; 4059 4060 f = fdget(fd); 4061 if (!f.file) 4062 return -EBADF; 4063 4064 ret = -EOPNOTSUPP; 4065 if (!io_is_uring_fops(f.file)) 4066 goto out_fput; 4067 4068 ctx = f.file->private_data; 4069 4070 io_run_task_work_ctx(ctx); 4071 4072 mutex_lock(&ctx->uring_lock); 4073 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4074 mutex_unlock(&ctx->uring_lock); 4075 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4076 out_fput: 4077 fdput(f); 4078 return ret; 4079 } 4080 4081 static int __init io_uring_init(void) 4082 { 4083 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4084 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4085 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4086 } while (0) 4087 4088 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4089 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4090 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4091 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4092 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4093 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4094 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4095 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4096 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4097 BUILD_BUG_SQE_ELEM(8, __u64, off); 4098 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4099 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4100 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4101 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4102 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4103 BUILD_BUG_SQE_ELEM(24, __u32, len); 4104 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4105 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4106 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4107 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4108 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4109 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4110 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4111 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4112 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4113 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4114 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4115 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4116 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4117 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4118 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4119 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4120 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4121 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4122 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4123 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4124 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4125 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4126 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4127 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4128 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4129 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4130 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4131 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4132 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4133 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4134 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4135 4136 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4137 sizeof(struct io_uring_rsrc_update)); 4138 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4139 sizeof(struct io_uring_rsrc_update2)); 4140 4141 /* ->buf_index is u16 */ 4142 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4143 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4144 offsetof(struct io_uring_buf_ring, tail)); 4145 4146 /* should fit into one byte */ 4147 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4148 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4149 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4150 4151 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4152 4153 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4154 4155 io_uring_optable_init(); 4156 4157 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4158 SLAB_ACCOUNT); 4159 return 0; 4160 }; 4161 __initcall(io_uring_init); 4162