1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <linux/anon_inodes.h> 64 #include <linux/sched/mm.h> 65 #include <linux/uaccess.h> 66 #include <linux/nospec.h> 67 #include <linux/highmem.h> 68 #include <linux/fsnotify.h> 69 #include <linux/fadvise.h> 70 #include <linux/task_work.h> 71 #include <linux/io_uring.h> 72 #include <linux/audit.h> 73 #include <linux/security.h> 74 #include <asm/shmparam.h> 75 76 #define CREATE_TRACE_POINTS 77 #include <trace/events/io_uring.h> 78 79 #include <uapi/linux/io_uring.h> 80 81 #include "io-wq.h" 82 83 #include "io_uring.h" 84 #include "opdef.h" 85 #include "refs.h" 86 #include "tctx.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 95 #include "timeout.h" 96 #include "poll.h" 97 #include "rw.h" 98 #include "alloc_cache.h" 99 100 #define IORING_MAX_ENTRIES 32768 101 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 102 103 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 104 IORING_REGISTER_LAST + IORING_OP_LAST) 105 106 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 107 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 108 109 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 110 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 111 112 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 113 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 114 REQ_F_ASYNC_DATA) 115 116 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 117 IO_REQ_CLEAN_FLAGS) 118 119 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 120 121 #define IO_COMPL_BATCH 32 122 #define IO_REQ_ALLOC_BATCH 8 123 124 enum { 125 IO_CHECK_CQ_OVERFLOW_BIT, 126 IO_CHECK_CQ_DROPPED_BIT, 127 }; 128 129 enum { 130 IO_EVENTFD_OP_SIGNAL_BIT, 131 IO_EVENTFD_OP_FREE_BIT, 132 }; 133 134 struct io_defer_entry { 135 struct list_head list; 136 struct io_kiocb *req; 137 u32 seq; 138 }; 139 140 /* requests with any of those set should undergo io_disarm_next() */ 141 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 142 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 143 144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 145 struct task_struct *task, 146 bool cancel_all); 147 148 static void io_queue_sqe(struct io_kiocb *req); 149 150 struct kmem_cache *req_cachep; 151 152 static int __read_mostly sysctl_io_uring_disabled; 153 static int __read_mostly sysctl_io_uring_group = -1; 154 155 #ifdef CONFIG_SYSCTL 156 static struct ctl_table kernel_io_uring_disabled_table[] = { 157 { 158 .procname = "io_uring_disabled", 159 .data = &sysctl_io_uring_disabled, 160 .maxlen = sizeof(sysctl_io_uring_disabled), 161 .mode = 0644, 162 .proc_handler = proc_dointvec_minmax, 163 .extra1 = SYSCTL_ZERO, 164 .extra2 = SYSCTL_TWO, 165 }, 166 { 167 .procname = "io_uring_group", 168 .data = &sysctl_io_uring_group, 169 .maxlen = sizeof(gid_t), 170 .mode = 0644, 171 .proc_handler = proc_dointvec, 172 }, 173 {}, 174 }; 175 #endif 176 177 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 178 { 179 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 180 ctx->submit_state.cqes_count) 181 __io_submit_flush_completions(ctx); 182 } 183 184 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 185 { 186 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 187 } 188 189 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 190 { 191 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 192 } 193 194 static bool io_match_linked(struct io_kiocb *head) 195 { 196 struct io_kiocb *req; 197 198 io_for_each_link(req, head) { 199 if (req->flags & REQ_F_INFLIGHT) 200 return true; 201 } 202 return false; 203 } 204 205 /* 206 * As io_match_task() but protected against racing with linked timeouts. 207 * User must not hold timeout_lock. 208 */ 209 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 210 bool cancel_all) 211 { 212 bool matched; 213 214 if (task && head->task != task) 215 return false; 216 if (cancel_all) 217 return true; 218 219 if (head->flags & REQ_F_LINK_TIMEOUT) { 220 struct io_ring_ctx *ctx = head->ctx; 221 222 /* protect against races with linked timeouts */ 223 spin_lock_irq(&ctx->timeout_lock); 224 matched = io_match_linked(head); 225 spin_unlock_irq(&ctx->timeout_lock); 226 } else { 227 matched = io_match_linked(head); 228 } 229 return matched; 230 } 231 232 static inline void req_fail_link_node(struct io_kiocb *req, int res) 233 { 234 req_set_fail(req); 235 io_req_set_res(req, res, 0); 236 } 237 238 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 239 { 240 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 241 } 242 243 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 244 { 245 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 246 247 complete(&ctx->ref_comp); 248 } 249 250 static __cold void io_fallback_req_func(struct work_struct *work) 251 { 252 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 253 fallback_work.work); 254 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 255 struct io_kiocb *req, *tmp; 256 struct io_tw_state ts = { .locked = true, }; 257 258 percpu_ref_get(&ctx->refs); 259 mutex_lock(&ctx->uring_lock); 260 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 261 req->io_task_work.func(req, &ts); 262 if (WARN_ON_ONCE(!ts.locked)) 263 return; 264 io_submit_flush_completions(ctx); 265 mutex_unlock(&ctx->uring_lock); 266 percpu_ref_put(&ctx->refs); 267 } 268 269 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 270 { 271 unsigned hash_buckets = 1U << bits; 272 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 273 274 table->hbs = kmalloc(hash_size, GFP_KERNEL); 275 if (!table->hbs) 276 return -ENOMEM; 277 278 table->hash_bits = bits; 279 init_hash_table(table, hash_buckets); 280 return 0; 281 } 282 283 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 284 { 285 struct io_ring_ctx *ctx; 286 int hash_bits; 287 288 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 289 if (!ctx) 290 return NULL; 291 292 xa_init(&ctx->io_bl_xa); 293 294 /* 295 * Use 5 bits less than the max cq entries, that should give us around 296 * 32 entries per hash list if totally full and uniformly spread, but 297 * don't keep too many buckets to not overconsume memory. 298 */ 299 hash_bits = ilog2(p->cq_entries) - 5; 300 hash_bits = clamp(hash_bits, 1, 8); 301 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 302 goto err; 303 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 304 goto err; 305 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 306 0, GFP_KERNEL)) 307 goto err; 308 309 ctx->flags = p->flags; 310 init_waitqueue_head(&ctx->sqo_sq_wait); 311 INIT_LIST_HEAD(&ctx->sqd_list); 312 INIT_LIST_HEAD(&ctx->cq_overflow_list); 313 INIT_LIST_HEAD(&ctx->io_buffers_cache); 314 INIT_HLIST_HEAD(&ctx->io_buf_list); 315 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 316 sizeof(struct io_rsrc_node)); 317 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, 318 sizeof(struct async_poll)); 319 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 320 sizeof(struct io_async_msghdr)); 321 init_completion(&ctx->ref_comp); 322 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 323 mutex_init(&ctx->uring_lock); 324 init_waitqueue_head(&ctx->cq_wait); 325 init_waitqueue_head(&ctx->poll_wq); 326 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 327 spin_lock_init(&ctx->completion_lock); 328 spin_lock_init(&ctx->timeout_lock); 329 INIT_WQ_LIST(&ctx->iopoll_list); 330 INIT_LIST_HEAD(&ctx->io_buffers_pages); 331 INIT_LIST_HEAD(&ctx->io_buffers_comp); 332 INIT_LIST_HEAD(&ctx->defer_list); 333 INIT_LIST_HEAD(&ctx->timeout_list); 334 INIT_LIST_HEAD(&ctx->ltimeout_list); 335 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 336 init_llist_head(&ctx->work_llist); 337 INIT_LIST_HEAD(&ctx->tctx_list); 338 ctx->submit_state.free_list.next = NULL; 339 INIT_WQ_LIST(&ctx->locked_free_list); 340 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 341 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 342 return ctx; 343 err: 344 kfree(ctx->cancel_table.hbs); 345 kfree(ctx->cancel_table_locked.hbs); 346 kfree(ctx->io_bl); 347 xa_destroy(&ctx->io_bl_xa); 348 kfree(ctx); 349 return NULL; 350 } 351 352 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 353 { 354 struct io_rings *r = ctx->rings; 355 356 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 357 ctx->cq_extra--; 358 } 359 360 static bool req_need_defer(struct io_kiocb *req, u32 seq) 361 { 362 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 363 struct io_ring_ctx *ctx = req->ctx; 364 365 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 366 } 367 368 return false; 369 } 370 371 static void io_clean_op(struct io_kiocb *req) 372 { 373 if (req->flags & REQ_F_BUFFER_SELECTED) { 374 spin_lock(&req->ctx->completion_lock); 375 io_put_kbuf_comp(req); 376 spin_unlock(&req->ctx->completion_lock); 377 } 378 379 if (req->flags & REQ_F_NEED_CLEANUP) { 380 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 381 382 if (def->cleanup) 383 def->cleanup(req); 384 } 385 if ((req->flags & REQ_F_POLLED) && req->apoll) { 386 kfree(req->apoll->double_poll); 387 kfree(req->apoll); 388 req->apoll = NULL; 389 } 390 if (req->flags & REQ_F_INFLIGHT) { 391 struct io_uring_task *tctx = req->task->io_uring; 392 393 atomic_dec(&tctx->inflight_tracked); 394 } 395 if (req->flags & REQ_F_CREDS) 396 put_cred(req->creds); 397 if (req->flags & REQ_F_ASYNC_DATA) { 398 kfree(req->async_data); 399 req->async_data = NULL; 400 } 401 req->flags &= ~IO_REQ_CLEAN_FLAGS; 402 } 403 404 static inline void io_req_track_inflight(struct io_kiocb *req) 405 { 406 if (!(req->flags & REQ_F_INFLIGHT)) { 407 req->flags |= REQ_F_INFLIGHT; 408 atomic_inc(&req->task->io_uring->inflight_tracked); 409 } 410 } 411 412 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 413 { 414 if (WARN_ON_ONCE(!req->link)) 415 return NULL; 416 417 req->flags &= ~REQ_F_ARM_LTIMEOUT; 418 req->flags |= REQ_F_LINK_TIMEOUT; 419 420 /* linked timeouts should have two refs once prep'ed */ 421 io_req_set_refcount(req); 422 __io_req_set_refcount(req->link, 2); 423 return req->link; 424 } 425 426 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 427 { 428 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 429 return NULL; 430 return __io_prep_linked_timeout(req); 431 } 432 433 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 434 { 435 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 436 } 437 438 static inline void io_arm_ltimeout(struct io_kiocb *req) 439 { 440 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 441 __io_arm_ltimeout(req); 442 } 443 444 static void io_prep_async_work(struct io_kiocb *req) 445 { 446 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 447 struct io_ring_ctx *ctx = req->ctx; 448 449 if (!(req->flags & REQ_F_CREDS)) { 450 req->flags |= REQ_F_CREDS; 451 req->creds = get_current_cred(); 452 } 453 454 req->work.list.next = NULL; 455 req->work.flags = 0; 456 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 457 if (req->flags & REQ_F_FORCE_ASYNC) 458 req->work.flags |= IO_WQ_WORK_CONCURRENT; 459 460 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 461 req->flags |= io_file_get_flags(req->file); 462 463 if (req->file && (req->flags & REQ_F_ISREG)) { 464 bool should_hash = def->hash_reg_file; 465 466 /* don't serialize this request if the fs doesn't need it */ 467 if (should_hash && (req->file->f_flags & O_DIRECT) && 468 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) 469 should_hash = false; 470 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 471 io_wq_hash_work(&req->work, file_inode(req->file)); 472 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 473 if (def->unbound_nonreg_file) 474 req->work.flags |= IO_WQ_WORK_UNBOUND; 475 } 476 } 477 478 static void io_prep_async_link(struct io_kiocb *req) 479 { 480 struct io_kiocb *cur; 481 482 if (req->flags & REQ_F_LINK_TIMEOUT) { 483 struct io_ring_ctx *ctx = req->ctx; 484 485 spin_lock_irq(&ctx->timeout_lock); 486 io_for_each_link(cur, req) 487 io_prep_async_work(cur); 488 spin_unlock_irq(&ctx->timeout_lock); 489 } else { 490 io_for_each_link(cur, req) 491 io_prep_async_work(cur); 492 } 493 } 494 495 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) 496 { 497 struct io_kiocb *link = io_prep_linked_timeout(req); 498 struct io_uring_task *tctx = req->task->io_uring; 499 500 BUG_ON(!tctx); 501 BUG_ON(!tctx->io_wq); 502 503 /* init ->work of the whole link before punting */ 504 io_prep_async_link(req); 505 506 /* 507 * Not expected to happen, but if we do have a bug where this _can_ 508 * happen, catch it here and ensure the request is marked as 509 * canceled. That will make io-wq go through the usual work cancel 510 * procedure rather than attempt to run this request (or create a new 511 * worker for it). 512 */ 513 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 514 req->work.flags |= IO_WQ_WORK_CANCEL; 515 516 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 517 io_wq_enqueue(tctx->io_wq, &req->work); 518 if (link) 519 io_queue_linked_timeout(link); 520 } 521 522 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 523 { 524 while (!list_empty(&ctx->defer_list)) { 525 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 526 struct io_defer_entry, list); 527 528 if (req_need_defer(de->req, de->seq)) 529 break; 530 list_del_init(&de->list); 531 io_req_task_queue(de->req); 532 kfree(de); 533 } 534 } 535 536 537 static void io_eventfd_ops(struct rcu_head *rcu) 538 { 539 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 540 int ops = atomic_xchg(&ev_fd->ops, 0); 541 542 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 543 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 544 545 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 546 * ordering in a race but if references are 0 we know we have to free 547 * it regardless. 548 */ 549 if (atomic_dec_and_test(&ev_fd->refs)) { 550 eventfd_ctx_put(ev_fd->cq_ev_fd); 551 kfree(ev_fd); 552 } 553 } 554 555 static void io_eventfd_signal(struct io_ring_ctx *ctx) 556 { 557 struct io_ev_fd *ev_fd = NULL; 558 559 rcu_read_lock(); 560 /* 561 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 562 * and eventfd_signal 563 */ 564 ev_fd = rcu_dereference(ctx->io_ev_fd); 565 566 /* 567 * Check again if ev_fd exists incase an io_eventfd_unregister call 568 * completed between the NULL check of ctx->io_ev_fd at the start of 569 * the function and rcu_read_lock. 570 */ 571 if (unlikely(!ev_fd)) 572 goto out; 573 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 574 goto out; 575 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 576 goto out; 577 578 if (likely(eventfd_signal_allowed())) { 579 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 580 } else { 581 atomic_inc(&ev_fd->refs); 582 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 583 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 584 else 585 atomic_dec(&ev_fd->refs); 586 } 587 588 out: 589 rcu_read_unlock(); 590 } 591 592 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 593 { 594 bool skip; 595 596 spin_lock(&ctx->completion_lock); 597 598 /* 599 * Eventfd should only get triggered when at least one event has been 600 * posted. Some applications rely on the eventfd notification count 601 * only changing IFF a new CQE has been added to the CQ ring. There's 602 * no depedency on 1:1 relationship between how many times this 603 * function is called (and hence the eventfd count) and number of CQEs 604 * posted to the CQ ring. 605 */ 606 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 607 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 608 spin_unlock(&ctx->completion_lock); 609 if (skip) 610 return; 611 612 io_eventfd_signal(ctx); 613 } 614 615 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 616 { 617 if (ctx->poll_activated) 618 io_poll_wq_wake(ctx); 619 if (ctx->off_timeout_used) 620 io_flush_timeouts(ctx); 621 if (ctx->drain_active) { 622 spin_lock(&ctx->completion_lock); 623 io_queue_deferred(ctx); 624 spin_unlock(&ctx->completion_lock); 625 } 626 if (ctx->has_evfd) 627 io_eventfd_flush_signal(ctx); 628 } 629 630 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 631 { 632 if (!ctx->lockless_cq) 633 spin_lock(&ctx->completion_lock); 634 } 635 636 static inline void io_cq_lock(struct io_ring_ctx *ctx) 637 __acquires(ctx->completion_lock) 638 { 639 spin_lock(&ctx->completion_lock); 640 } 641 642 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 643 { 644 io_commit_cqring(ctx); 645 if (!ctx->task_complete) { 646 if (!ctx->lockless_cq) 647 spin_unlock(&ctx->completion_lock); 648 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 649 if (!ctx->syscall_iopoll) 650 io_cqring_wake(ctx); 651 } 652 io_commit_cqring_flush(ctx); 653 } 654 655 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 656 __releases(ctx->completion_lock) 657 { 658 io_commit_cqring(ctx); 659 spin_unlock(&ctx->completion_lock); 660 io_cqring_wake(ctx); 661 io_commit_cqring_flush(ctx); 662 } 663 664 /* Returns true if there are no backlogged entries after the flush */ 665 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 666 { 667 struct io_overflow_cqe *ocqe; 668 LIST_HEAD(list); 669 670 spin_lock(&ctx->completion_lock); 671 list_splice_init(&ctx->cq_overflow_list, &list); 672 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 673 spin_unlock(&ctx->completion_lock); 674 675 while (!list_empty(&list)) { 676 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 677 list_del(&ocqe->list); 678 kfree(ocqe); 679 } 680 } 681 682 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 683 { 684 size_t cqe_size = sizeof(struct io_uring_cqe); 685 686 if (__io_cqring_events(ctx) == ctx->cq_entries) 687 return; 688 689 if (ctx->flags & IORING_SETUP_CQE32) 690 cqe_size <<= 1; 691 692 io_cq_lock(ctx); 693 while (!list_empty(&ctx->cq_overflow_list)) { 694 struct io_uring_cqe *cqe; 695 struct io_overflow_cqe *ocqe; 696 697 if (!io_get_cqe_overflow(ctx, &cqe, true)) 698 break; 699 ocqe = list_first_entry(&ctx->cq_overflow_list, 700 struct io_overflow_cqe, list); 701 memcpy(cqe, &ocqe->cqe, cqe_size); 702 list_del(&ocqe->list); 703 kfree(ocqe); 704 } 705 706 if (list_empty(&ctx->cq_overflow_list)) { 707 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 708 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 709 } 710 io_cq_unlock_post(ctx); 711 } 712 713 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 714 { 715 /* iopoll syncs against uring_lock, not completion_lock */ 716 if (ctx->flags & IORING_SETUP_IOPOLL) 717 mutex_lock(&ctx->uring_lock); 718 __io_cqring_overflow_flush(ctx); 719 if (ctx->flags & IORING_SETUP_IOPOLL) 720 mutex_unlock(&ctx->uring_lock); 721 } 722 723 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 724 { 725 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 726 io_cqring_do_overflow_flush(ctx); 727 } 728 729 /* can be called by any task */ 730 static void io_put_task_remote(struct task_struct *task) 731 { 732 struct io_uring_task *tctx = task->io_uring; 733 734 percpu_counter_sub(&tctx->inflight, 1); 735 if (unlikely(atomic_read(&tctx->in_cancel))) 736 wake_up(&tctx->wait); 737 put_task_struct(task); 738 } 739 740 /* used by a task to put its own references */ 741 static void io_put_task_local(struct task_struct *task) 742 { 743 task->io_uring->cached_refs++; 744 } 745 746 /* must to be called somewhat shortly after putting a request */ 747 static inline void io_put_task(struct task_struct *task) 748 { 749 if (likely(task == current)) 750 io_put_task_local(task); 751 else 752 io_put_task_remote(task); 753 } 754 755 void io_task_refs_refill(struct io_uring_task *tctx) 756 { 757 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 758 759 percpu_counter_add(&tctx->inflight, refill); 760 refcount_add(refill, ¤t->usage); 761 tctx->cached_refs += refill; 762 } 763 764 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 765 { 766 struct io_uring_task *tctx = task->io_uring; 767 unsigned int refs = tctx->cached_refs; 768 769 if (refs) { 770 tctx->cached_refs = 0; 771 percpu_counter_sub(&tctx->inflight, refs); 772 put_task_struct_many(task, refs); 773 } 774 } 775 776 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 777 s32 res, u32 cflags, u64 extra1, u64 extra2) 778 { 779 struct io_overflow_cqe *ocqe; 780 size_t ocq_size = sizeof(struct io_overflow_cqe); 781 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 782 783 lockdep_assert_held(&ctx->completion_lock); 784 785 if (is_cqe32) 786 ocq_size += sizeof(struct io_uring_cqe); 787 788 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 789 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 790 if (!ocqe) { 791 /* 792 * If we're in ring overflow flush mode, or in task cancel mode, 793 * or cannot allocate an overflow entry, then we need to drop it 794 * on the floor. 795 */ 796 io_account_cq_overflow(ctx); 797 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 798 return false; 799 } 800 if (list_empty(&ctx->cq_overflow_list)) { 801 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 802 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 803 804 } 805 ocqe->cqe.user_data = user_data; 806 ocqe->cqe.res = res; 807 ocqe->cqe.flags = cflags; 808 if (is_cqe32) { 809 ocqe->cqe.big_cqe[0] = extra1; 810 ocqe->cqe.big_cqe[1] = extra2; 811 } 812 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 813 return true; 814 } 815 816 void io_req_cqe_overflow(struct io_kiocb *req) 817 { 818 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 819 req->cqe.res, req->cqe.flags, 820 req->big_cqe.extra1, req->big_cqe.extra2); 821 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 822 } 823 824 /* 825 * writes to the cq entry need to come after reading head; the 826 * control dependency is enough as we're using WRITE_ONCE to 827 * fill the cq entry 828 */ 829 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 830 { 831 struct io_rings *rings = ctx->rings; 832 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 833 unsigned int free, queued, len; 834 835 /* 836 * Posting into the CQ when there are pending overflowed CQEs may break 837 * ordering guarantees, which will affect links, F_MORE users and more. 838 * Force overflow the completion. 839 */ 840 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 841 return false; 842 843 /* userspace may cheat modifying the tail, be safe and do min */ 844 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 845 free = ctx->cq_entries - queued; 846 /* we need a contiguous range, limit based on the current array offset */ 847 len = min(free, ctx->cq_entries - off); 848 if (!len) 849 return false; 850 851 if (ctx->flags & IORING_SETUP_CQE32) { 852 off <<= 1; 853 len <<= 1; 854 } 855 856 ctx->cqe_cached = &rings->cqes[off]; 857 ctx->cqe_sentinel = ctx->cqe_cached + len; 858 return true; 859 } 860 861 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 862 u32 cflags) 863 { 864 struct io_uring_cqe *cqe; 865 866 ctx->cq_extra++; 867 868 /* 869 * If we can't get a cq entry, userspace overflowed the 870 * submission (by quite a lot). Increment the overflow count in 871 * the ring. 872 */ 873 if (likely(io_get_cqe(ctx, &cqe))) { 874 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 875 876 WRITE_ONCE(cqe->user_data, user_data); 877 WRITE_ONCE(cqe->res, res); 878 WRITE_ONCE(cqe->flags, cflags); 879 880 if (ctx->flags & IORING_SETUP_CQE32) { 881 WRITE_ONCE(cqe->big_cqe[0], 0); 882 WRITE_ONCE(cqe->big_cqe[1], 0); 883 } 884 return true; 885 } 886 return false; 887 } 888 889 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 890 __must_hold(&ctx->uring_lock) 891 { 892 struct io_submit_state *state = &ctx->submit_state; 893 unsigned int i; 894 895 lockdep_assert_held(&ctx->uring_lock); 896 for (i = 0; i < state->cqes_count; i++) { 897 struct io_uring_cqe *cqe = &ctx->completion_cqes[i]; 898 899 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 900 if (ctx->lockless_cq) { 901 spin_lock(&ctx->completion_lock); 902 io_cqring_event_overflow(ctx, cqe->user_data, 903 cqe->res, cqe->flags, 0, 0); 904 spin_unlock(&ctx->completion_lock); 905 } else { 906 io_cqring_event_overflow(ctx, cqe->user_data, 907 cqe->res, cqe->flags, 0, 0); 908 } 909 } 910 } 911 state->cqes_count = 0; 912 } 913 914 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 915 bool allow_overflow) 916 { 917 bool filled; 918 919 io_cq_lock(ctx); 920 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 921 if (!filled && allow_overflow) 922 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 923 924 io_cq_unlock_post(ctx); 925 return filled; 926 } 927 928 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 929 { 930 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 931 } 932 933 /* 934 * A helper for multishot requests posting additional CQEs. 935 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 936 */ 937 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags) 938 { 939 struct io_ring_ctx *ctx = req->ctx; 940 u64 user_data = req->cqe.user_data; 941 struct io_uring_cqe *cqe; 942 943 if (!defer) 944 return __io_post_aux_cqe(ctx, user_data, res, cflags, false); 945 946 lockdep_assert_held(&ctx->uring_lock); 947 948 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) { 949 __io_cq_lock(ctx); 950 __io_flush_post_cqes(ctx); 951 /* no need to flush - flush is deferred */ 952 __io_cq_unlock_post(ctx); 953 } 954 955 /* For defered completions this is not as strict as it is otherwise, 956 * however it's main job is to prevent unbounded posted completions, 957 * and in that it works just as well. 958 */ 959 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 960 return false; 961 962 cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++]; 963 cqe->user_data = user_data; 964 cqe->res = res; 965 cqe->flags = cflags; 966 return true; 967 } 968 969 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 970 { 971 struct io_ring_ctx *ctx = req->ctx; 972 struct io_rsrc_node *rsrc_node = NULL; 973 974 io_cq_lock(ctx); 975 if (!(req->flags & REQ_F_CQE_SKIP)) { 976 if (!io_fill_cqe_req(ctx, req)) 977 io_req_cqe_overflow(req); 978 } 979 980 /* 981 * If we're the last reference to this request, add to our locked 982 * free_list cache. 983 */ 984 if (req_ref_put_and_test(req)) { 985 if (req->flags & IO_REQ_LINK_FLAGS) { 986 if (req->flags & IO_DISARM_MASK) 987 io_disarm_next(req); 988 if (req->link) { 989 io_req_task_queue(req->link); 990 req->link = NULL; 991 } 992 } 993 io_put_kbuf_comp(req); 994 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 995 io_clean_op(req); 996 io_put_file(req); 997 998 rsrc_node = req->rsrc_node; 999 /* 1000 * Selected buffer deallocation in io_clean_op() assumes that 1001 * we don't hold ->completion_lock. Clean them here to avoid 1002 * deadlocks. 1003 */ 1004 io_put_task_remote(req->task); 1005 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1006 ctx->locked_free_nr++; 1007 } 1008 io_cq_unlock_post(ctx); 1009 1010 if (rsrc_node) { 1011 io_ring_submit_lock(ctx, issue_flags); 1012 io_put_rsrc_node(ctx, rsrc_node); 1013 io_ring_submit_unlock(ctx, issue_flags); 1014 } 1015 } 1016 1017 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1018 { 1019 if (req->ctx->task_complete && req->ctx->submitter_task != current) { 1020 req->io_task_work.func = io_req_task_complete; 1021 io_req_task_work_add(req); 1022 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1023 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 1024 __io_req_complete_post(req, issue_flags); 1025 } else { 1026 struct io_ring_ctx *ctx = req->ctx; 1027 1028 mutex_lock(&ctx->uring_lock); 1029 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); 1030 mutex_unlock(&ctx->uring_lock); 1031 } 1032 } 1033 1034 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1035 __must_hold(&ctx->uring_lock) 1036 { 1037 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1038 1039 lockdep_assert_held(&req->ctx->uring_lock); 1040 1041 req_set_fail(req); 1042 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1043 if (def->fail) 1044 def->fail(req); 1045 io_req_complete_defer(req); 1046 } 1047 1048 /* 1049 * Don't initialise the fields below on every allocation, but do that in 1050 * advance and keep them valid across allocations. 1051 */ 1052 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1053 { 1054 req->ctx = ctx; 1055 req->link = NULL; 1056 req->async_data = NULL; 1057 /* not necessary, but safer to zero */ 1058 memset(&req->cqe, 0, sizeof(req->cqe)); 1059 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 1060 } 1061 1062 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1063 struct io_submit_state *state) 1064 { 1065 spin_lock(&ctx->completion_lock); 1066 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1067 ctx->locked_free_nr = 0; 1068 spin_unlock(&ctx->completion_lock); 1069 } 1070 1071 /* 1072 * A request might get retired back into the request caches even before opcode 1073 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1074 * Because of that, io_alloc_req() should be called only under ->uring_lock 1075 * and with extra caution to not get a request that is still worked on. 1076 */ 1077 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1078 __must_hold(&ctx->uring_lock) 1079 { 1080 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1081 void *reqs[IO_REQ_ALLOC_BATCH]; 1082 int ret, i; 1083 1084 /* 1085 * If we have more than a batch's worth of requests in our IRQ side 1086 * locked cache, grab the lock and move them over to our submission 1087 * side cache. 1088 */ 1089 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1090 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1091 if (!io_req_cache_empty(ctx)) 1092 return true; 1093 } 1094 1095 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1096 1097 /* 1098 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1099 * retry single alloc to be on the safe side. 1100 */ 1101 if (unlikely(ret <= 0)) { 1102 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1103 if (!reqs[0]) 1104 return false; 1105 ret = 1; 1106 } 1107 1108 percpu_ref_get_many(&ctx->refs, ret); 1109 for (i = 0; i < ret; i++) { 1110 struct io_kiocb *req = reqs[i]; 1111 1112 io_preinit_req(req, ctx); 1113 io_req_add_to_cache(req, ctx); 1114 } 1115 return true; 1116 } 1117 1118 __cold void io_free_req(struct io_kiocb *req) 1119 { 1120 /* refs were already put, restore them for io_req_task_complete() */ 1121 req->flags &= ~REQ_F_REFCOUNT; 1122 /* we only want to free it, don't post CQEs */ 1123 req->flags |= REQ_F_CQE_SKIP; 1124 req->io_task_work.func = io_req_task_complete; 1125 io_req_task_work_add(req); 1126 } 1127 1128 static void __io_req_find_next_prep(struct io_kiocb *req) 1129 { 1130 struct io_ring_ctx *ctx = req->ctx; 1131 1132 spin_lock(&ctx->completion_lock); 1133 io_disarm_next(req); 1134 spin_unlock(&ctx->completion_lock); 1135 } 1136 1137 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1138 { 1139 struct io_kiocb *nxt; 1140 1141 /* 1142 * If LINK is set, we have dependent requests in this chain. If we 1143 * didn't fail this request, queue the first one up, moving any other 1144 * dependencies to the next request. In case of failure, fail the rest 1145 * of the chain. 1146 */ 1147 if (unlikely(req->flags & IO_DISARM_MASK)) 1148 __io_req_find_next_prep(req); 1149 nxt = req->link; 1150 req->link = NULL; 1151 return nxt; 1152 } 1153 1154 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1155 { 1156 if (!ctx) 1157 return; 1158 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1159 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1160 if (ts->locked) { 1161 io_submit_flush_completions(ctx); 1162 mutex_unlock(&ctx->uring_lock); 1163 ts->locked = false; 1164 } 1165 percpu_ref_put(&ctx->refs); 1166 } 1167 1168 static unsigned int handle_tw_list(struct llist_node *node, 1169 struct io_ring_ctx **ctx, 1170 struct io_tw_state *ts, 1171 struct llist_node *last) 1172 { 1173 unsigned int count = 0; 1174 1175 while (node && node != last) { 1176 struct llist_node *next = node->next; 1177 struct io_kiocb *req = container_of(node, struct io_kiocb, 1178 io_task_work.node); 1179 1180 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1181 1182 if (req->ctx != *ctx) { 1183 ctx_flush_and_put(*ctx, ts); 1184 *ctx = req->ctx; 1185 /* if not contended, grab and improve batching */ 1186 ts->locked = mutex_trylock(&(*ctx)->uring_lock); 1187 percpu_ref_get(&(*ctx)->refs); 1188 } 1189 INDIRECT_CALL_2(req->io_task_work.func, 1190 io_poll_task_func, io_req_rw_complete, 1191 req, ts); 1192 node = next; 1193 count++; 1194 if (unlikely(need_resched())) { 1195 ctx_flush_and_put(*ctx, ts); 1196 *ctx = NULL; 1197 cond_resched(); 1198 } 1199 } 1200 1201 return count; 1202 } 1203 1204 /** 1205 * io_llist_xchg - swap all entries in a lock-less list 1206 * @head: the head of lock-less list to delete all entries 1207 * @new: new entry as the head of the list 1208 * 1209 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1210 * The order of entries returned is from the newest to the oldest added one. 1211 */ 1212 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1213 struct llist_node *new) 1214 { 1215 return xchg(&head->first, new); 1216 } 1217 1218 /** 1219 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1220 * @head: the head of lock-less list to delete all entries 1221 * @old: expected old value of the first entry of the list 1222 * @new: new entry as the head of the list 1223 * 1224 * perform a cmpxchg on the first entry of the list. 1225 */ 1226 1227 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1228 struct llist_node *old, 1229 struct llist_node *new) 1230 { 1231 return cmpxchg(&head->first, old, new); 1232 } 1233 1234 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1235 { 1236 struct llist_node *node = llist_del_all(&tctx->task_list); 1237 struct io_ring_ctx *last_ctx = NULL; 1238 struct io_kiocb *req; 1239 1240 while (node) { 1241 req = container_of(node, struct io_kiocb, io_task_work.node); 1242 node = node->next; 1243 if (sync && last_ctx != req->ctx) { 1244 if (last_ctx) { 1245 flush_delayed_work(&last_ctx->fallback_work); 1246 percpu_ref_put(&last_ctx->refs); 1247 } 1248 last_ctx = req->ctx; 1249 percpu_ref_get(&last_ctx->refs); 1250 } 1251 if (llist_add(&req->io_task_work.node, 1252 &req->ctx->fallback_llist)) 1253 schedule_delayed_work(&req->ctx->fallback_work, 1); 1254 } 1255 1256 if (last_ctx) { 1257 flush_delayed_work(&last_ctx->fallback_work); 1258 percpu_ref_put(&last_ctx->refs); 1259 } 1260 } 1261 1262 void tctx_task_work(struct callback_head *cb) 1263 { 1264 struct io_tw_state ts = {}; 1265 struct io_ring_ctx *ctx = NULL; 1266 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1267 task_work); 1268 struct llist_node fake = {}; 1269 struct llist_node *node; 1270 unsigned int loops = 0; 1271 unsigned int count = 0; 1272 1273 if (unlikely(current->flags & PF_EXITING)) { 1274 io_fallback_tw(tctx, true); 1275 return; 1276 } 1277 1278 do { 1279 loops++; 1280 node = io_llist_xchg(&tctx->task_list, &fake); 1281 count += handle_tw_list(node, &ctx, &ts, &fake); 1282 1283 /* skip expensive cmpxchg if there are items in the list */ 1284 if (READ_ONCE(tctx->task_list.first) != &fake) 1285 continue; 1286 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) { 1287 io_submit_flush_completions(ctx); 1288 if (READ_ONCE(tctx->task_list.first) != &fake) 1289 continue; 1290 } 1291 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1292 } while (node != &fake); 1293 1294 ctx_flush_and_put(ctx, &ts); 1295 1296 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1297 if (unlikely(atomic_read(&tctx->in_cancel))) 1298 io_uring_drop_tctx_refs(current); 1299 1300 trace_io_uring_task_work_run(tctx, count, loops); 1301 } 1302 1303 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1304 { 1305 struct io_ring_ctx *ctx = req->ctx; 1306 unsigned nr_wait, nr_tw, nr_tw_prev; 1307 struct llist_node *first; 1308 1309 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1310 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1311 1312 first = READ_ONCE(ctx->work_llist.first); 1313 do { 1314 nr_tw_prev = 0; 1315 if (first) { 1316 struct io_kiocb *first_req = container_of(first, 1317 struct io_kiocb, 1318 io_task_work.node); 1319 /* 1320 * Might be executed at any moment, rely on 1321 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1322 */ 1323 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1324 } 1325 nr_tw = nr_tw_prev + 1; 1326 /* Large enough to fail the nr_wait comparison below */ 1327 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1328 nr_tw = INT_MAX; 1329 1330 req->nr_tw = nr_tw; 1331 req->io_task_work.node.next = first; 1332 } while (!try_cmpxchg(&ctx->work_llist.first, &first, 1333 &req->io_task_work.node)); 1334 1335 if (!first) { 1336 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1337 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1338 if (ctx->has_evfd) 1339 io_eventfd_signal(ctx); 1340 } 1341 1342 nr_wait = atomic_read(&ctx->cq_wait_nr); 1343 /* no one is waiting */ 1344 if (!nr_wait) 1345 return; 1346 /* either not enough or the previous add has already woken it up */ 1347 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait) 1348 return; 1349 /* pairs with set_current_state() in io_cqring_wait() */ 1350 smp_mb__after_atomic(); 1351 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1352 } 1353 1354 static void io_req_normal_work_add(struct io_kiocb *req) 1355 { 1356 struct io_uring_task *tctx = req->task->io_uring; 1357 struct io_ring_ctx *ctx = req->ctx; 1358 1359 /* task_work already pending, we're done */ 1360 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1361 return; 1362 1363 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1364 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1365 1366 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1367 return; 1368 1369 io_fallback_tw(tctx, false); 1370 } 1371 1372 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1373 { 1374 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1375 rcu_read_lock(); 1376 io_req_local_work_add(req, flags); 1377 rcu_read_unlock(); 1378 } else { 1379 io_req_normal_work_add(req); 1380 } 1381 } 1382 1383 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1384 { 1385 struct llist_node *node; 1386 1387 node = llist_del_all(&ctx->work_llist); 1388 while (node) { 1389 struct io_kiocb *req = container_of(node, struct io_kiocb, 1390 io_task_work.node); 1391 1392 node = node->next; 1393 io_req_normal_work_add(req); 1394 } 1395 } 1396 1397 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1398 { 1399 struct llist_node *node; 1400 unsigned int loops = 0; 1401 int ret = 0; 1402 1403 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1404 return -EEXIST; 1405 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1406 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1407 again: 1408 /* 1409 * llists are in reverse order, flip it back the right way before 1410 * running the pending items. 1411 */ 1412 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1413 while (node) { 1414 struct llist_node *next = node->next; 1415 struct io_kiocb *req = container_of(node, struct io_kiocb, 1416 io_task_work.node); 1417 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1418 INDIRECT_CALL_2(req->io_task_work.func, 1419 io_poll_task_func, io_req_rw_complete, 1420 req, ts); 1421 ret++; 1422 node = next; 1423 } 1424 loops++; 1425 1426 if (!llist_empty(&ctx->work_llist)) 1427 goto again; 1428 if (ts->locked) { 1429 io_submit_flush_completions(ctx); 1430 if (!llist_empty(&ctx->work_llist)) 1431 goto again; 1432 } 1433 trace_io_uring_local_work_run(ctx, ret, loops); 1434 return ret; 1435 } 1436 1437 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx) 1438 { 1439 struct io_tw_state ts = { .locked = true, }; 1440 int ret; 1441 1442 if (llist_empty(&ctx->work_llist)) 1443 return 0; 1444 1445 ret = __io_run_local_work(ctx, &ts); 1446 /* shouldn't happen! */ 1447 if (WARN_ON_ONCE(!ts.locked)) 1448 mutex_lock(&ctx->uring_lock); 1449 return ret; 1450 } 1451 1452 static int io_run_local_work(struct io_ring_ctx *ctx) 1453 { 1454 struct io_tw_state ts = {}; 1455 int ret; 1456 1457 ts.locked = mutex_trylock(&ctx->uring_lock); 1458 ret = __io_run_local_work(ctx, &ts); 1459 if (ts.locked) 1460 mutex_unlock(&ctx->uring_lock); 1461 1462 return ret; 1463 } 1464 1465 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1466 { 1467 io_tw_lock(req->ctx, ts); 1468 io_req_defer_failed(req, req->cqe.res); 1469 } 1470 1471 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1472 { 1473 io_tw_lock(req->ctx, ts); 1474 /* req->task == current here, checking PF_EXITING is safe */ 1475 if (unlikely(req->task->flags & PF_EXITING)) 1476 io_req_defer_failed(req, -EFAULT); 1477 else if (req->flags & REQ_F_FORCE_ASYNC) 1478 io_queue_iowq(req, ts); 1479 else 1480 io_queue_sqe(req); 1481 } 1482 1483 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1484 { 1485 io_req_set_res(req, ret, 0); 1486 req->io_task_work.func = io_req_task_cancel; 1487 io_req_task_work_add(req); 1488 } 1489 1490 void io_req_task_queue(struct io_kiocb *req) 1491 { 1492 req->io_task_work.func = io_req_task_submit; 1493 io_req_task_work_add(req); 1494 } 1495 1496 void io_queue_next(struct io_kiocb *req) 1497 { 1498 struct io_kiocb *nxt = io_req_find_next(req); 1499 1500 if (nxt) 1501 io_req_task_queue(nxt); 1502 } 1503 1504 static void io_free_batch_list(struct io_ring_ctx *ctx, 1505 struct io_wq_work_node *node) 1506 __must_hold(&ctx->uring_lock) 1507 { 1508 do { 1509 struct io_kiocb *req = container_of(node, struct io_kiocb, 1510 comp_list); 1511 1512 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1513 if (req->flags & REQ_F_REFCOUNT) { 1514 node = req->comp_list.next; 1515 if (!req_ref_put_and_test(req)) 1516 continue; 1517 } 1518 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1519 struct async_poll *apoll = req->apoll; 1520 1521 if (apoll->double_poll) 1522 kfree(apoll->double_poll); 1523 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1524 kfree(apoll); 1525 req->flags &= ~REQ_F_POLLED; 1526 } 1527 if (req->flags & IO_REQ_LINK_FLAGS) 1528 io_queue_next(req); 1529 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1530 io_clean_op(req); 1531 } 1532 io_put_file(req); 1533 1534 io_req_put_rsrc_locked(req, ctx); 1535 1536 io_put_task(req->task); 1537 node = req->comp_list.next; 1538 io_req_add_to_cache(req, ctx); 1539 } while (node); 1540 } 1541 1542 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1543 __must_hold(&ctx->uring_lock) 1544 { 1545 struct io_submit_state *state = &ctx->submit_state; 1546 struct io_wq_work_node *node; 1547 1548 __io_cq_lock(ctx); 1549 /* must come first to preserve CQE ordering in failure cases */ 1550 if (state->cqes_count) 1551 __io_flush_post_cqes(ctx); 1552 __wq_list_for_each(node, &state->compl_reqs) { 1553 struct io_kiocb *req = container_of(node, struct io_kiocb, 1554 comp_list); 1555 1556 if (!(req->flags & REQ_F_CQE_SKIP) && 1557 unlikely(!io_fill_cqe_req(ctx, req))) { 1558 if (ctx->lockless_cq) { 1559 spin_lock(&ctx->completion_lock); 1560 io_req_cqe_overflow(req); 1561 spin_unlock(&ctx->completion_lock); 1562 } else { 1563 io_req_cqe_overflow(req); 1564 } 1565 } 1566 } 1567 __io_cq_unlock_post(ctx); 1568 1569 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1570 io_free_batch_list(ctx, state->compl_reqs.first); 1571 INIT_WQ_LIST(&state->compl_reqs); 1572 } 1573 } 1574 1575 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1576 { 1577 /* See comment at the top of this file */ 1578 smp_rmb(); 1579 return __io_cqring_events(ctx); 1580 } 1581 1582 /* 1583 * We can't just wait for polled events to come to us, we have to actively 1584 * find and complete them. 1585 */ 1586 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1587 { 1588 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1589 return; 1590 1591 mutex_lock(&ctx->uring_lock); 1592 while (!wq_list_empty(&ctx->iopoll_list)) { 1593 /* let it sleep and repeat later if can't complete a request */ 1594 if (io_do_iopoll(ctx, true) == 0) 1595 break; 1596 /* 1597 * Ensure we allow local-to-the-cpu processing to take place, 1598 * in this case we need to ensure that we reap all events. 1599 * Also let task_work, etc. to progress by releasing the mutex 1600 */ 1601 if (need_resched()) { 1602 mutex_unlock(&ctx->uring_lock); 1603 cond_resched(); 1604 mutex_lock(&ctx->uring_lock); 1605 } 1606 } 1607 mutex_unlock(&ctx->uring_lock); 1608 } 1609 1610 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1611 { 1612 unsigned int nr_events = 0; 1613 unsigned long check_cq; 1614 1615 if (!io_allowed_run_tw(ctx)) 1616 return -EEXIST; 1617 1618 check_cq = READ_ONCE(ctx->check_cq); 1619 if (unlikely(check_cq)) { 1620 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1621 __io_cqring_overflow_flush(ctx); 1622 /* 1623 * Similarly do not spin if we have not informed the user of any 1624 * dropped CQE. 1625 */ 1626 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1627 return -EBADR; 1628 } 1629 /* 1630 * Don't enter poll loop if we already have events pending. 1631 * If we do, we can potentially be spinning for commands that 1632 * already triggered a CQE (eg in error). 1633 */ 1634 if (io_cqring_events(ctx)) 1635 return 0; 1636 1637 do { 1638 int ret = 0; 1639 1640 /* 1641 * If a submit got punted to a workqueue, we can have the 1642 * application entering polling for a command before it gets 1643 * issued. That app will hold the uring_lock for the duration 1644 * of the poll right here, so we need to take a breather every 1645 * now and then to ensure that the issue has a chance to add 1646 * the poll to the issued list. Otherwise we can spin here 1647 * forever, while the workqueue is stuck trying to acquire the 1648 * very same mutex. 1649 */ 1650 if (wq_list_empty(&ctx->iopoll_list) || 1651 io_task_work_pending(ctx)) { 1652 u32 tail = ctx->cached_cq_tail; 1653 1654 (void) io_run_local_work_locked(ctx); 1655 1656 if (task_work_pending(current) || 1657 wq_list_empty(&ctx->iopoll_list)) { 1658 mutex_unlock(&ctx->uring_lock); 1659 io_run_task_work(); 1660 mutex_lock(&ctx->uring_lock); 1661 } 1662 /* some requests don't go through iopoll_list */ 1663 if (tail != ctx->cached_cq_tail || 1664 wq_list_empty(&ctx->iopoll_list)) 1665 break; 1666 } 1667 ret = io_do_iopoll(ctx, !min); 1668 if (unlikely(ret < 0)) 1669 return ret; 1670 1671 if (task_sigpending(current)) 1672 return -EINTR; 1673 if (need_resched()) 1674 break; 1675 1676 nr_events += ret; 1677 } while (nr_events < min); 1678 1679 return 0; 1680 } 1681 1682 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1683 { 1684 if (ts->locked) 1685 io_req_complete_defer(req); 1686 else 1687 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1688 } 1689 1690 /* 1691 * After the iocb has been issued, it's safe to be found on the poll list. 1692 * Adding the kiocb to the list AFTER submission ensures that we don't 1693 * find it from a io_do_iopoll() thread before the issuer is done 1694 * accessing the kiocb cookie. 1695 */ 1696 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1697 { 1698 struct io_ring_ctx *ctx = req->ctx; 1699 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1700 1701 /* workqueue context doesn't hold uring_lock, grab it now */ 1702 if (unlikely(needs_lock)) 1703 mutex_lock(&ctx->uring_lock); 1704 1705 /* 1706 * Track whether we have multiple files in our lists. This will impact 1707 * how we do polling eventually, not spinning if we're on potentially 1708 * different devices. 1709 */ 1710 if (wq_list_empty(&ctx->iopoll_list)) { 1711 ctx->poll_multi_queue = false; 1712 } else if (!ctx->poll_multi_queue) { 1713 struct io_kiocb *list_req; 1714 1715 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1716 comp_list); 1717 if (list_req->file != req->file) 1718 ctx->poll_multi_queue = true; 1719 } 1720 1721 /* 1722 * For fast devices, IO may have already completed. If it has, add 1723 * it to the front so we find it first. 1724 */ 1725 if (READ_ONCE(req->iopoll_completed)) 1726 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1727 else 1728 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1729 1730 if (unlikely(needs_lock)) { 1731 /* 1732 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1733 * in sq thread task context or in io worker task context. If 1734 * current task context is sq thread, we don't need to check 1735 * whether should wake up sq thread. 1736 */ 1737 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1738 wq_has_sleeper(&ctx->sq_data->wait)) 1739 wake_up(&ctx->sq_data->wait); 1740 1741 mutex_unlock(&ctx->uring_lock); 1742 } 1743 } 1744 1745 unsigned int io_file_get_flags(struct file *file) 1746 { 1747 unsigned int res = 0; 1748 1749 if (S_ISREG(file_inode(file)->i_mode)) 1750 res |= REQ_F_ISREG; 1751 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1752 res |= REQ_F_SUPPORT_NOWAIT; 1753 return res; 1754 } 1755 1756 bool io_alloc_async_data(struct io_kiocb *req) 1757 { 1758 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1759 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1760 if (req->async_data) { 1761 req->flags |= REQ_F_ASYNC_DATA; 1762 return false; 1763 } 1764 return true; 1765 } 1766 1767 int io_req_prep_async(struct io_kiocb *req) 1768 { 1769 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1770 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1771 1772 /* assign early for deferred execution for non-fixed file */ 1773 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1774 req->file = io_file_get_normal(req, req->cqe.fd); 1775 if (!cdef->prep_async) 1776 return 0; 1777 if (WARN_ON_ONCE(req_has_async_data(req))) 1778 return -EFAULT; 1779 if (!def->manual_alloc) { 1780 if (io_alloc_async_data(req)) 1781 return -EAGAIN; 1782 } 1783 return cdef->prep_async(req); 1784 } 1785 1786 static u32 io_get_sequence(struct io_kiocb *req) 1787 { 1788 u32 seq = req->ctx->cached_sq_head; 1789 struct io_kiocb *cur; 1790 1791 /* need original cached_sq_head, but it was increased for each req */ 1792 io_for_each_link(cur, req) 1793 seq--; 1794 return seq; 1795 } 1796 1797 static __cold void io_drain_req(struct io_kiocb *req) 1798 __must_hold(&ctx->uring_lock) 1799 { 1800 struct io_ring_ctx *ctx = req->ctx; 1801 struct io_defer_entry *de; 1802 int ret; 1803 u32 seq = io_get_sequence(req); 1804 1805 /* Still need defer if there is pending req in defer list. */ 1806 spin_lock(&ctx->completion_lock); 1807 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1808 spin_unlock(&ctx->completion_lock); 1809 queue: 1810 ctx->drain_active = false; 1811 io_req_task_queue(req); 1812 return; 1813 } 1814 spin_unlock(&ctx->completion_lock); 1815 1816 io_prep_async_link(req); 1817 de = kmalloc(sizeof(*de), GFP_KERNEL); 1818 if (!de) { 1819 ret = -ENOMEM; 1820 io_req_defer_failed(req, ret); 1821 return; 1822 } 1823 1824 spin_lock(&ctx->completion_lock); 1825 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1826 spin_unlock(&ctx->completion_lock); 1827 kfree(de); 1828 goto queue; 1829 } 1830 1831 trace_io_uring_defer(req); 1832 de->req = req; 1833 de->seq = seq; 1834 list_add_tail(&de->list, &ctx->defer_list); 1835 spin_unlock(&ctx->completion_lock); 1836 } 1837 1838 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1839 unsigned int issue_flags) 1840 { 1841 if (req->file || !def->needs_file) 1842 return true; 1843 1844 if (req->flags & REQ_F_FIXED_FILE) 1845 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1846 else 1847 req->file = io_file_get_normal(req, req->cqe.fd); 1848 1849 return !!req->file; 1850 } 1851 1852 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1853 { 1854 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1855 const struct cred *creds = NULL; 1856 int ret; 1857 1858 if (unlikely(!io_assign_file(req, def, issue_flags))) 1859 return -EBADF; 1860 1861 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1862 creds = override_creds(req->creds); 1863 1864 if (!def->audit_skip) 1865 audit_uring_entry(req->opcode); 1866 1867 ret = def->issue(req, issue_flags); 1868 1869 if (!def->audit_skip) 1870 audit_uring_exit(!ret, ret); 1871 1872 if (creds) 1873 revert_creds(creds); 1874 1875 if (ret == IOU_OK) { 1876 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1877 io_req_complete_defer(req); 1878 else 1879 io_req_complete_post(req, issue_flags); 1880 1881 return 0; 1882 } 1883 1884 if (ret != IOU_ISSUE_SKIP_COMPLETE) 1885 return ret; 1886 1887 /* If the op doesn't have a file, we're not polling for it */ 1888 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1889 io_iopoll_req_issued(req, issue_flags); 1890 1891 return 0; 1892 } 1893 1894 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1895 { 1896 io_tw_lock(req->ctx, ts); 1897 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1898 IO_URING_F_COMPLETE_DEFER); 1899 } 1900 1901 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1902 { 1903 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1904 struct io_kiocb *nxt = NULL; 1905 1906 if (req_ref_put_and_test(req)) { 1907 if (req->flags & IO_REQ_LINK_FLAGS) 1908 nxt = io_req_find_next(req); 1909 io_free_req(req); 1910 } 1911 return nxt ? &nxt->work : NULL; 1912 } 1913 1914 void io_wq_submit_work(struct io_wq_work *work) 1915 { 1916 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1917 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1918 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1919 bool needs_poll = false; 1920 int ret = 0, err = -ECANCELED; 1921 1922 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1923 if (!(req->flags & REQ_F_REFCOUNT)) 1924 __io_req_set_refcount(req, 2); 1925 else 1926 req_ref_get(req); 1927 1928 io_arm_ltimeout(req); 1929 1930 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1931 if (work->flags & IO_WQ_WORK_CANCEL) { 1932 fail: 1933 io_req_task_queue_fail(req, err); 1934 return; 1935 } 1936 if (!io_assign_file(req, def, issue_flags)) { 1937 err = -EBADF; 1938 work->flags |= IO_WQ_WORK_CANCEL; 1939 goto fail; 1940 } 1941 1942 if (req->flags & REQ_F_FORCE_ASYNC) { 1943 bool opcode_poll = def->pollin || def->pollout; 1944 1945 if (opcode_poll && file_can_poll(req->file)) { 1946 needs_poll = true; 1947 issue_flags |= IO_URING_F_NONBLOCK; 1948 } 1949 } 1950 1951 do { 1952 ret = io_issue_sqe(req, issue_flags); 1953 if (ret != -EAGAIN) 1954 break; 1955 1956 /* 1957 * If REQ_F_NOWAIT is set, then don't wait or retry with 1958 * poll. -EAGAIN is final for that case. 1959 */ 1960 if (req->flags & REQ_F_NOWAIT) 1961 break; 1962 1963 /* 1964 * We can get EAGAIN for iopolled IO even though we're 1965 * forcing a sync submission from here, since we can't 1966 * wait for request slots on the block side. 1967 */ 1968 if (!needs_poll) { 1969 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1970 break; 1971 if (io_wq_worker_stopped()) 1972 break; 1973 cond_resched(); 1974 continue; 1975 } 1976 1977 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1978 return; 1979 /* aborted or ready, in either case retry blocking */ 1980 needs_poll = false; 1981 issue_flags &= ~IO_URING_F_NONBLOCK; 1982 } while (1); 1983 1984 /* avoid locking problems by failing it from a clean context */ 1985 if (ret < 0) 1986 io_req_task_queue_fail(req, ret); 1987 } 1988 1989 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1990 unsigned int issue_flags) 1991 { 1992 struct io_ring_ctx *ctx = req->ctx; 1993 struct io_fixed_file *slot; 1994 struct file *file = NULL; 1995 1996 io_ring_submit_lock(ctx, issue_flags); 1997 1998 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 1999 goto out; 2000 fd = array_index_nospec(fd, ctx->nr_user_files); 2001 slot = io_fixed_file_slot(&ctx->file_table, fd); 2002 file = io_slot_file(slot); 2003 req->flags |= io_slot_flags(slot); 2004 io_req_set_rsrc_node(req, ctx, 0); 2005 out: 2006 io_ring_submit_unlock(ctx, issue_flags); 2007 return file; 2008 } 2009 2010 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 2011 { 2012 struct file *file = fget(fd); 2013 2014 trace_io_uring_file_get(req, fd); 2015 2016 /* we don't allow fixed io_uring files */ 2017 if (file && io_is_uring_fops(file)) 2018 io_req_track_inflight(req); 2019 return file; 2020 } 2021 2022 static void io_queue_async(struct io_kiocb *req, int ret) 2023 __must_hold(&req->ctx->uring_lock) 2024 { 2025 struct io_kiocb *linked_timeout; 2026 2027 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2028 io_req_defer_failed(req, ret); 2029 return; 2030 } 2031 2032 linked_timeout = io_prep_linked_timeout(req); 2033 2034 switch (io_arm_poll_handler(req, 0)) { 2035 case IO_APOLL_READY: 2036 io_kbuf_recycle(req, 0); 2037 io_req_task_queue(req); 2038 break; 2039 case IO_APOLL_ABORTED: 2040 io_kbuf_recycle(req, 0); 2041 io_queue_iowq(req, NULL); 2042 break; 2043 case IO_APOLL_OK: 2044 break; 2045 } 2046 2047 if (linked_timeout) 2048 io_queue_linked_timeout(linked_timeout); 2049 } 2050 2051 static inline void io_queue_sqe(struct io_kiocb *req) 2052 __must_hold(&req->ctx->uring_lock) 2053 { 2054 int ret; 2055 2056 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2057 2058 /* 2059 * We async punt it if the file wasn't marked NOWAIT, or if the file 2060 * doesn't support non-blocking read/write attempts 2061 */ 2062 if (likely(!ret)) 2063 io_arm_ltimeout(req); 2064 else 2065 io_queue_async(req, ret); 2066 } 2067 2068 static void io_queue_sqe_fallback(struct io_kiocb *req) 2069 __must_hold(&req->ctx->uring_lock) 2070 { 2071 if (unlikely(req->flags & REQ_F_FAIL)) { 2072 /* 2073 * We don't submit, fail them all, for that replace hardlinks 2074 * with normal links. Extra REQ_F_LINK is tolerated. 2075 */ 2076 req->flags &= ~REQ_F_HARDLINK; 2077 req->flags |= REQ_F_LINK; 2078 io_req_defer_failed(req, req->cqe.res); 2079 } else { 2080 int ret = io_req_prep_async(req); 2081 2082 if (unlikely(ret)) { 2083 io_req_defer_failed(req, ret); 2084 return; 2085 } 2086 2087 if (unlikely(req->ctx->drain_active)) 2088 io_drain_req(req); 2089 else 2090 io_queue_iowq(req, NULL); 2091 } 2092 } 2093 2094 /* 2095 * Check SQE restrictions (opcode and flags). 2096 * 2097 * Returns 'true' if SQE is allowed, 'false' otherwise. 2098 */ 2099 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2100 struct io_kiocb *req, 2101 unsigned int sqe_flags) 2102 { 2103 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2104 return false; 2105 2106 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2107 ctx->restrictions.sqe_flags_required) 2108 return false; 2109 2110 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2111 ctx->restrictions.sqe_flags_required)) 2112 return false; 2113 2114 return true; 2115 } 2116 2117 static void io_init_req_drain(struct io_kiocb *req) 2118 { 2119 struct io_ring_ctx *ctx = req->ctx; 2120 struct io_kiocb *head = ctx->submit_state.link.head; 2121 2122 ctx->drain_active = true; 2123 if (head) { 2124 /* 2125 * If we need to drain a request in the middle of a link, drain 2126 * the head request and the next request/link after the current 2127 * link. Considering sequential execution of links, 2128 * REQ_F_IO_DRAIN will be maintained for every request of our 2129 * link. 2130 */ 2131 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2132 ctx->drain_next = true; 2133 } 2134 } 2135 2136 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2137 const struct io_uring_sqe *sqe) 2138 __must_hold(&ctx->uring_lock) 2139 { 2140 const struct io_issue_def *def; 2141 unsigned int sqe_flags; 2142 int personality; 2143 u8 opcode; 2144 2145 /* req is partially pre-initialised, see io_preinit_req() */ 2146 req->opcode = opcode = READ_ONCE(sqe->opcode); 2147 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2148 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2149 req->cqe.user_data = READ_ONCE(sqe->user_data); 2150 req->file = NULL; 2151 req->rsrc_node = NULL; 2152 req->task = current; 2153 2154 if (unlikely(opcode >= IORING_OP_LAST)) { 2155 req->opcode = 0; 2156 return -EINVAL; 2157 } 2158 def = &io_issue_defs[opcode]; 2159 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2160 /* enforce forwards compatibility on users */ 2161 if (sqe_flags & ~SQE_VALID_FLAGS) 2162 return -EINVAL; 2163 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2164 if (!def->buffer_select) 2165 return -EOPNOTSUPP; 2166 req->buf_index = READ_ONCE(sqe->buf_group); 2167 } 2168 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2169 ctx->drain_disabled = true; 2170 if (sqe_flags & IOSQE_IO_DRAIN) { 2171 if (ctx->drain_disabled) 2172 return -EOPNOTSUPP; 2173 io_init_req_drain(req); 2174 } 2175 } 2176 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2177 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2178 return -EACCES; 2179 /* knock it to the slow queue path, will be drained there */ 2180 if (ctx->drain_active) 2181 req->flags |= REQ_F_FORCE_ASYNC; 2182 /* if there is no link, we're at "next" request and need to drain */ 2183 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2184 ctx->drain_next = false; 2185 ctx->drain_active = true; 2186 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2187 } 2188 } 2189 2190 if (!def->ioprio && sqe->ioprio) 2191 return -EINVAL; 2192 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2193 return -EINVAL; 2194 2195 if (def->needs_file) { 2196 struct io_submit_state *state = &ctx->submit_state; 2197 2198 req->cqe.fd = READ_ONCE(sqe->fd); 2199 2200 /* 2201 * Plug now if we have more than 2 IO left after this, and the 2202 * target is potentially a read/write to block based storage. 2203 */ 2204 if (state->need_plug && def->plug) { 2205 state->plug_started = true; 2206 state->need_plug = false; 2207 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2208 } 2209 } 2210 2211 personality = READ_ONCE(sqe->personality); 2212 if (personality) { 2213 int ret; 2214 2215 req->creds = xa_load(&ctx->personalities, personality); 2216 if (!req->creds) 2217 return -EINVAL; 2218 get_cred(req->creds); 2219 ret = security_uring_override_creds(req->creds); 2220 if (ret) { 2221 put_cred(req->creds); 2222 return ret; 2223 } 2224 req->flags |= REQ_F_CREDS; 2225 } 2226 2227 return def->prep(req, sqe); 2228 } 2229 2230 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2231 struct io_kiocb *req, int ret) 2232 { 2233 struct io_ring_ctx *ctx = req->ctx; 2234 struct io_submit_link *link = &ctx->submit_state.link; 2235 struct io_kiocb *head = link->head; 2236 2237 trace_io_uring_req_failed(sqe, req, ret); 2238 2239 /* 2240 * Avoid breaking links in the middle as it renders links with SQPOLL 2241 * unusable. Instead of failing eagerly, continue assembling the link if 2242 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2243 * should find the flag and handle the rest. 2244 */ 2245 req_fail_link_node(req, ret); 2246 if (head && !(head->flags & REQ_F_FAIL)) 2247 req_fail_link_node(head, -ECANCELED); 2248 2249 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2250 if (head) { 2251 link->last->link = req; 2252 link->head = NULL; 2253 req = head; 2254 } 2255 io_queue_sqe_fallback(req); 2256 return ret; 2257 } 2258 2259 if (head) 2260 link->last->link = req; 2261 else 2262 link->head = req; 2263 link->last = req; 2264 return 0; 2265 } 2266 2267 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2268 const struct io_uring_sqe *sqe) 2269 __must_hold(&ctx->uring_lock) 2270 { 2271 struct io_submit_link *link = &ctx->submit_state.link; 2272 int ret; 2273 2274 ret = io_init_req(ctx, req, sqe); 2275 if (unlikely(ret)) 2276 return io_submit_fail_init(sqe, req, ret); 2277 2278 trace_io_uring_submit_req(req); 2279 2280 /* 2281 * If we already have a head request, queue this one for async 2282 * submittal once the head completes. If we don't have a head but 2283 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2284 * submitted sync once the chain is complete. If none of those 2285 * conditions are true (normal request), then just queue it. 2286 */ 2287 if (unlikely(link->head)) { 2288 ret = io_req_prep_async(req); 2289 if (unlikely(ret)) 2290 return io_submit_fail_init(sqe, req, ret); 2291 2292 trace_io_uring_link(req, link->head); 2293 link->last->link = req; 2294 link->last = req; 2295 2296 if (req->flags & IO_REQ_LINK_FLAGS) 2297 return 0; 2298 /* last request of the link, flush it */ 2299 req = link->head; 2300 link->head = NULL; 2301 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2302 goto fallback; 2303 2304 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2305 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2306 if (req->flags & IO_REQ_LINK_FLAGS) { 2307 link->head = req; 2308 link->last = req; 2309 } else { 2310 fallback: 2311 io_queue_sqe_fallback(req); 2312 } 2313 return 0; 2314 } 2315 2316 io_queue_sqe(req); 2317 return 0; 2318 } 2319 2320 /* 2321 * Batched submission is done, ensure local IO is flushed out. 2322 */ 2323 static void io_submit_state_end(struct io_ring_ctx *ctx) 2324 { 2325 struct io_submit_state *state = &ctx->submit_state; 2326 2327 if (unlikely(state->link.head)) 2328 io_queue_sqe_fallback(state->link.head); 2329 /* flush only after queuing links as they can generate completions */ 2330 io_submit_flush_completions(ctx); 2331 if (state->plug_started) 2332 blk_finish_plug(&state->plug); 2333 } 2334 2335 /* 2336 * Start submission side cache. 2337 */ 2338 static void io_submit_state_start(struct io_submit_state *state, 2339 unsigned int max_ios) 2340 { 2341 state->plug_started = false; 2342 state->need_plug = max_ios > 2; 2343 state->submit_nr = max_ios; 2344 /* set only head, no need to init link_last in advance */ 2345 state->link.head = NULL; 2346 } 2347 2348 static void io_commit_sqring(struct io_ring_ctx *ctx) 2349 { 2350 struct io_rings *rings = ctx->rings; 2351 2352 /* 2353 * Ensure any loads from the SQEs are done at this point, 2354 * since once we write the new head, the application could 2355 * write new data to them. 2356 */ 2357 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2358 } 2359 2360 /* 2361 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2362 * that is mapped by userspace. This means that care needs to be taken to 2363 * ensure that reads are stable, as we cannot rely on userspace always 2364 * being a good citizen. If members of the sqe are validated and then later 2365 * used, it's important that those reads are done through READ_ONCE() to 2366 * prevent a re-load down the line. 2367 */ 2368 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2369 { 2370 unsigned mask = ctx->sq_entries - 1; 2371 unsigned head = ctx->cached_sq_head++ & mask; 2372 2373 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) { 2374 head = READ_ONCE(ctx->sq_array[head]); 2375 if (unlikely(head >= ctx->sq_entries)) { 2376 /* drop invalid entries */ 2377 spin_lock(&ctx->completion_lock); 2378 ctx->cq_extra--; 2379 spin_unlock(&ctx->completion_lock); 2380 WRITE_ONCE(ctx->rings->sq_dropped, 2381 READ_ONCE(ctx->rings->sq_dropped) + 1); 2382 return false; 2383 } 2384 } 2385 2386 /* 2387 * The cached sq head (or cq tail) serves two purposes: 2388 * 2389 * 1) allows us to batch the cost of updating the user visible 2390 * head updates. 2391 * 2) allows the kernel side to track the head on its own, even 2392 * though the application is the one updating it. 2393 */ 2394 2395 /* double index for 128-byte SQEs, twice as long */ 2396 if (ctx->flags & IORING_SETUP_SQE128) 2397 head <<= 1; 2398 *sqe = &ctx->sq_sqes[head]; 2399 return true; 2400 } 2401 2402 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2403 __must_hold(&ctx->uring_lock) 2404 { 2405 unsigned int entries = io_sqring_entries(ctx); 2406 unsigned int left; 2407 int ret; 2408 2409 if (unlikely(!entries)) 2410 return 0; 2411 /* make sure SQ entry isn't read before tail */ 2412 ret = left = min(nr, entries); 2413 io_get_task_refs(left); 2414 io_submit_state_start(&ctx->submit_state, left); 2415 2416 do { 2417 const struct io_uring_sqe *sqe; 2418 struct io_kiocb *req; 2419 2420 if (unlikely(!io_alloc_req(ctx, &req))) 2421 break; 2422 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2423 io_req_add_to_cache(req, ctx); 2424 break; 2425 } 2426 2427 /* 2428 * Continue submitting even for sqe failure if the 2429 * ring was setup with IORING_SETUP_SUBMIT_ALL 2430 */ 2431 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2432 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2433 left--; 2434 break; 2435 } 2436 } while (--left); 2437 2438 if (unlikely(left)) { 2439 ret -= left; 2440 /* try again if it submitted nothing and can't allocate a req */ 2441 if (!ret && io_req_cache_empty(ctx)) 2442 ret = -EAGAIN; 2443 current->io_uring->cached_refs += left; 2444 } 2445 2446 io_submit_state_end(ctx); 2447 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2448 io_commit_sqring(ctx); 2449 return ret; 2450 } 2451 2452 struct io_wait_queue { 2453 struct wait_queue_entry wq; 2454 struct io_ring_ctx *ctx; 2455 unsigned cq_tail; 2456 unsigned nr_timeouts; 2457 ktime_t timeout; 2458 }; 2459 2460 static inline bool io_has_work(struct io_ring_ctx *ctx) 2461 { 2462 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2463 !llist_empty(&ctx->work_llist); 2464 } 2465 2466 static inline bool io_should_wake(struct io_wait_queue *iowq) 2467 { 2468 struct io_ring_ctx *ctx = iowq->ctx; 2469 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2470 2471 /* 2472 * Wake up if we have enough events, or if a timeout occurred since we 2473 * started waiting. For timeouts, we always want to return to userspace, 2474 * regardless of event count. 2475 */ 2476 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2477 } 2478 2479 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2480 int wake_flags, void *key) 2481 { 2482 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2483 2484 /* 2485 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2486 * the task, and the next invocation will do it. 2487 */ 2488 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2489 return autoremove_wake_function(curr, mode, wake_flags, key); 2490 return -1; 2491 } 2492 2493 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2494 { 2495 if (!llist_empty(&ctx->work_llist)) { 2496 __set_current_state(TASK_RUNNING); 2497 if (io_run_local_work(ctx) > 0) 2498 return 0; 2499 } 2500 if (io_run_task_work() > 0) 2501 return 0; 2502 if (task_sigpending(current)) 2503 return -EINTR; 2504 return 0; 2505 } 2506 2507 static bool current_pending_io(void) 2508 { 2509 struct io_uring_task *tctx = current->io_uring; 2510 2511 if (!tctx) 2512 return false; 2513 return percpu_counter_read_positive(&tctx->inflight); 2514 } 2515 2516 /* when returns >0, the caller should retry */ 2517 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2518 struct io_wait_queue *iowq) 2519 { 2520 int io_wait, ret; 2521 2522 if (unlikely(READ_ONCE(ctx->check_cq))) 2523 return 1; 2524 if (unlikely(!llist_empty(&ctx->work_llist))) 2525 return 1; 2526 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) 2527 return 1; 2528 if (unlikely(task_sigpending(current))) 2529 return -EINTR; 2530 if (unlikely(io_should_wake(iowq))) 2531 return 0; 2532 2533 /* 2534 * Mark us as being in io_wait if we have pending requests, so cpufreq 2535 * can take into account that the task is waiting for IO - turns out 2536 * to be important for low QD IO. 2537 */ 2538 io_wait = current->in_iowait; 2539 if (current_pending_io()) 2540 current->in_iowait = 1; 2541 ret = 0; 2542 if (iowq->timeout == KTIME_MAX) 2543 schedule(); 2544 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2545 ret = -ETIME; 2546 current->in_iowait = io_wait; 2547 return ret; 2548 } 2549 2550 /* 2551 * Wait until events become available, if we don't already have some. The 2552 * application must reap them itself, as they reside on the shared cq ring. 2553 */ 2554 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2555 const sigset_t __user *sig, size_t sigsz, 2556 struct __kernel_timespec __user *uts) 2557 { 2558 struct io_wait_queue iowq; 2559 struct io_rings *rings = ctx->rings; 2560 int ret; 2561 2562 if (!io_allowed_run_tw(ctx)) 2563 return -EEXIST; 2564 if (!llist_empty(&ctx->work_llist)) 2565 io_run_local_work(ctx); 2566 io_run_task_work(); 2567 io_cqring_overflow_flush(ctx); 2568 /* if user messes with these they will just get an early return */ 2569 if (__io_cqring_events_user(ctx) >= min_events) 2570 return 0; 2571 2572 if (sig) { 2573 #ifdef CONFIG_COMPAT 2574 if (in_compat_syscall()) 2575 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2576 sigsz); 2577 else 2578 #endif 2579 ret = set_user_sigmask(sig, sigsz); 2580 2581 if (ret) 2582 return ret; 2583 } 2584 2585 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2586 iowq.wq.private = current; 2587 INIT_LIST_HEAD(&iowq.wq.entry); 2588 iowq.ctx = ctx; 2589 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2590 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2591 iowq.timeout = KTIME_MAX; 2592 2593 if (uts) { 2594 struct timespec64 ts; 2595 2596 if (get_timespec64(&ts, uts)) 2597 return -EFAULT; 2598 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2599 } 2600 2601 trace_io_uring_cqring_wait(ctx, min_events); 2602 do { 2603 unsigned long check_cq; 2604 2605 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2606 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2607 2608 atomic_set(&ctx->cq_wait_nr, nr_wait); 2609 set_current_state(TASK_INTERRUPTIBLE); 2610 } else { 2611 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2612 TASK_INTERRUPTIBLE); 2613 } 2614 2615 ret = io_cqring_wait_schedule(ctx, &iowq); 2616 __set_current_state(TASK_RUNNING); 2617 atomic_set(&ctx->cq_wait_nr, 0); 2618 2619 /* 2620 * Run task_work after scheduling and before io_should_wake(). 2621 * If we got woken because of task_work being processed, run it 2622 * now rather than let the caller do another wait loop. 2623 */ 2624 io_run_task_work(); 2625 if (!llist_empty(&ctx->work_llist)) 2626 io_run_local_work(ctx); 2627 2628 /* 2629 * Non-local task_work will be run on exit to userspace, but 2630 * if we're using DEFER_TASKRUN, then we could have waited 2631 * with a timeout for a number of requests. If the timeout 2632 * hits, we could have some requests ready to process. Ensure 2633 * this break is _after_ we have run task_work, to avoid 2634 * deferring running potentially pending requests until the 2635 * next time we wait for events. 2636 */ 2637 if (ret < 0) 2638 break; 2639 2640 check_cq = READ_ONCE(ctx->check_cq); 2641 if (unlikely(check_cq)) { 2642 /* let the caller flush overflows, retry */ 2643 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2644 io_cqring_do_overflow_flush(ctx); 2645 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2646 ret = -EBADR; 2647 break; 2648 } 2649 } 2650 2651 if (io_should_wake(&iowq)) { 2652 ret = 0; 2653 break; 2654 } 2655 cond_resched(); 2656 } while (1); 2657 2658 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2659 finish_wait(&ctx->cq_wait, &iowq.wq); 2660 restore_saved_sigmask_unless(ret == -EINTR); 2661 2662 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2663 } 2664 2665 void io_mem_free(void *ptr) 2666 { 2667 if (!ptr) 2668 return; 2669 2670 folio_put(virt_to_folio(ptr)); 2671 } 2672 2673 static void io_pages_free(struct page ***pages, int npages) 2674 { 2675 struct page **page_array; 2676 int i; 2677 2678 if (!pages) 2679 return; 2680 2681 page_array = *pages; 2682 if (!page_array) 2683 return; 2684 2685 for (i = 0; i < npages; i++) 2686 unpin_user_page(page_array[i]); 2687 kvfree(page_array); 2688 *pages = NULL; 2689 } 2690 2691 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, 2692 unsigned long uaddr, size_t size) 2693 { 2694 struct page **page_array; 2695 unsigned int nr_pages; 2696 void *page_addr; 2697 int ret, i; 2698 2699 *npages = 0; 2700 2701 if (uaddr & (PAGE_SIZE - 1) || !size) 2702 return ERR_PTR(-EINVAL); 2703 2704 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2705 if (nr_pages > USHRT_MAX) 2706 return ERR_PTR(-EINVAL); 2707 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); 2708 if (!page_array) 2709 return ERR_PTR(-ENOMEM); 2710 2711 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, 2712 page_array); 2713 if (ret != nr_pages) { 2714 err: 2715 io_pages_free(&page_array, ret > 0 ? ret : 0); 2716 return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT); 2717 } 2718 2719 page_addr = page_address(page_array[0]); 2720 for (i = 0; i < nr_pages; i++) { 2721 ret = -EINVAL; 2722 2723 /* 2724 * Can't support mapping user allocated ring memory on 32-bit 2725 * archs where it could potentially reside in highmem. Just 2726 * fail those with -EINVAL, just like we did on kernels that 2727 * didn't support this feature. 2728 */ 2729 if (PageHighMem(page_array[i])) 2730 goto err; 2731 2732 /* 2733 * No support for discontig pages for now, should either be a 2734 * single normal page, or a huge page. Later on we can add 2735 * support for remapping discontig pages, for now we will 2736 * just fail them with EINVAL. 2737 */ 2738 if (page_address(page_array[i]) != page_addr) 2739 goto err; 2740 page_addr += PAGE_SIZE; 2741 } 2742 2743 *pages = page_array; 2744 *npages = nr_pages; 2745 return page_to_virt(page_array[0]); 2746 } 2747 2748 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2749 size_t size) 2750 { 2751 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2752 size); 2753 } 2754 2755 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2756 size_t size) 2757 { 2758 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2759 size); 2760 } 2761 2762 static void io_rings_free(struct io_ring_ctx *ctx) 2763 { 2764 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2765 io_mem_free(ctx->rings); 2766 io_mem_free(ctx->sq_sqes); 2767 ctx->rings = NULL; 2768 ctx->sq_sqes = NULL; 2769 } else { 2770 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2771 ctx->n_ring_pages = 0; 2772 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2773 ctx->n_sqe_pages = 0; 2774 } 2775 } 2776 2777 void *io_mem_alloc(size_t size) 2778 { 2779 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2780 void *ret; 2781 2782 ret = (void *) __get_free_pages(gfp, get_order(size)); 2783 if (ret) 2784 return ret; 2785 return ERR_PTR(-ENOMEM); 2786 } 2787 2788 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2789 unsigned int cq_entries, size_t *sq_offset) 2790 { 2791 struct io_rings *rings; 2792 size_t off, sq_array_size; 2793 2794 off = struct_size(rings, cqes, cq_entries); 2795 if (off == SIZE_MAX) 2796 return SIZE_MAX; 2797 if (ctx->flags & IORING_SETUP_CQE32) { 2798 if (check_shl_overflow(off, 1, &off)) 2799 return SIZE_MAX; 2800 } 2801 2802 #ifdef CONFIG_SMP 2803 off = ALIGN(off, SMP_CACHE_BYTES); 2804 if (off == 0) 2805 return SIZE_MAX; 2806 #endif 2807 2808 if (ctx->flags & IORING_SETUP_NO_SQARRAY) { 2809 if (sq_offset) 2810 *sq_offset = SIZE_MAX; 2811 return off; 2812 } 2813 2814 if (sq_offset) 2815 *sq_offset = off; 2816 2817 sq_array_size = array_size(sizeof(u32), sq_entries); 2818 if (sq_array_size == SIZE_MAX) 2819 return SIZE_MAX; 2820 2821 if (check_add_overflow(off, sq_array_size, &off)) 2822 return SIZE_MAX; 2823 2824 return off; 2825 } 2826 2827 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2828 unsigned int eventfd_async) 2829 { 2830 struct io_ev_fd *ev_fd; 2831 __s32 __user *fds = arg; 2832 int fd; 2833 2834 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2835 lockdep_is_held(&ctx->uring_lock)); 2836 if (ev_fd) 2837 return -EBUSY; 2838 2839 if (copy_from_user(&fd, fds, sizeof(*fds))) 2840 return -EFAULT; 2841 2842 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2843 if (!ev_fd) 2844 return -ENOMEM; 2845 2846 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2847 if (IS_ERR(ev_fd->cq_ev_fd)) { 2848 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2849 kfree(ev_fd); 2850 return ret; 2851 } 2852 2853 spin_lock(&ctx->completion_lock); 2854 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2855 spin_unlock(&ctx->completion_lock); 2856 2857 ev_fd->eventfd_async = eventfd_async; 2858 ctx->has_evfd = true; 2859 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2860 atomic_set(&ev_fd->refs, 1); 2861 atomic_set(&ev_fd->ops, 0); 2862 return 0; 2863 } 2864 2865 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2866 { 2867 struct io_ev_fd *ev_fd; 2868 2869 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2870 lockdep_is_held(&ctx->uring_lock)); 2871 if (ev_fd) { 2872 ctx->has_evfd = false; 2873 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2874 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2875 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2876 return 0; 2877 } 2878 2879 return -ENXIO; 2880 } 2881 2882 static void io_req_caches_free(struct io_ring_ctx *ctx) 2883 { 2884 struct io_kiocb *req; 2885 int nr = 0; 2886 2887 mutex_lock(&ctx->uring_lock); 2888 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2889 2890 while (!io_req_cache_empty(ctx)) { 2891 req = io_extract_req(ctx); 2892 kmem_cache_free(req_cachep, req); 2893 nr++; 2894 } 2895 if (nr) 2896 percpu_ref_put_many(&ctx->refs, nr); 2897 mutex_unlock(&ctx->uring_lock); 2898 } 2899 2900 static void io_rsrc_node_cache_free(struct io_cache_entry *entry) 2901 { 2902 kfree(container_of(entry, struct io_rsrc_node, cache)); 2903 } 2904 2905 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2906 { 2907 io_sq_thread_finish(ctx); 2908 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2909 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2910 return; 2911 2912 mutex_lock(&ctx->uring_lock); 2913 if (ctx->buf_data) 2914 __io_sqe_buffers_unregister(ctx); 2915 if (ctx->file_data) 2916 __io_sqe_files_unregister(ctx); 2917 io_cqring_overflow_kill(ctx); 2918 io_eventfd_unregister(ctx); 2919 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2920 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2921 io_destroy_buffers(ctx); 2922 mutex_unlock(&ctx->uring_lock); 2923 if (ctx->sq_creds) 2924 put_cred(ctx->sq_creds); 2925 if (ctx->submitter_task) 2926 put_task_struct(ctx->submitter_task); 2927 2928 /* there are no registered resources left, nobody uses it */ 2929 if (ctx->rsrc_node) 2930 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2931 2932 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2933 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2934 2935 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); 2936 if (ctx->mm_account) { 2937 mmdrop(ctx->mm_account); 2938 ctx->mm_account = NULL; 2939 } 2940 io_rings_free(ctx); 2941 io_kbuf_mmap_list_free(ctx); 2942 2943 percpu_ref_exit(&ctx->refs); 2944 free_uid(ctx->user); 2945 io_req_caches_free(ctx); 2946 if (ctx->hash_map) 2947 io_wq_put_hash(ctx->hash_map); 2948 kfree(ctx->cancel_table.hbs); 2949 kfree(ctx->cancel_table_locked.hbs); 2950 kfree(ctx->io_bl); 2951 xa_destroy(&ctx->io_bl_xa); 2952 kfree(ctx); 2953 } 2954 2955 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2956 { 2957 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2958 poll_wq_task_work); 2959 2960 mutex_lock(&ctx->uring_lock); 2961 ctx->poll_activated = true; 2962 mutex_unlock(&ctx->uring_lock); 2963 2964 /* 2965 * Wake ups for some events between start of polling and activation 2966 * might've been lost due to loose synchronisation. 2967 */ 2968 wake_up_all(&ctx->poll_wq); 2969 percpu_ref_put(&ctx->refs); 2970 } 2971 2972 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2973 { 2974 spin_lock(&ctx->completion_lock); 2975 /* already activated or in progress */ 2976 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2977 goto out; 2978 if (WARN_ON_ONCE(!ctx->task_complete)) 2979 goto out; 2980 if (!ctx->submitter_task) 2981 goto out; 2982 /* 2983 * with ->submitter_task only the submitter task completes requests, we 2984 * only need to sync with it, which is done by injecting a tw 2985 */ 2986 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2987 percpu_ref_get(&ctx->refs); 2988 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2989 percpu_ref_put(&ctx->refs); 2990 out: 2991 spin_unlock(&ctx->completion_lock); 2992 } 2993 2994 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2995 { 2996 struct io_ring_ctx *ctx = file->private_data; 2997 __poll_t mask = 0; 2998 2999 if (unlikely(!ctx->poll_activated)) 3000 io_activate_pollwq(ctx); 3001 3002 poll_wait(file, &ctx->poll_wq, wait); 3003 /* 3004 * synchronizes with barrier from wq_has_sleeper call in 3005 * io_commit_cqring 3006 */ 3007 smp_rmb(); 3008 if (!io_sqring_full(ctx)) 3009 mask |= EPOLLOUT | EPOLLWRNORM; 3010 3011 /* 3012 * Don't flush cqring overflow list here, just do a simple check. 3013 * Otherwise there could possible be ABBA deadlock: 3014 * CPU0 CPU1 3015 * ---- ---- 3016 * lock(&ctx->uring_lock); 3017 * lock(&ep->mtx); 3018 * lock(&ctx->uring_lock); 3019 * lock(&ep->mtx); 3020 * 3021 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 3022 * pushes them to do the flush. 3023 */ 3024 3025 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 3026 mask |= EPOLLIN | EPOLLRDNORM; 3027 3028 return mask; 3029 } 3030 3031 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 3032 { 3033 const struct cred *creds; 3034 3035 creds = xa_erase(&ctx->personalities, id); 3036 if (creds) { 3037 put_cred(creds); 3038 return 0; 3039 } 3040 3041 return -EINVAL; 3042 } 3043 3044 struct io_tctx_exit { 3045 struct callback_head task_work; 3046 struct completion completion; 3047 struct io_ring_ctx *ctx; 3048 }; 3049 3050 static __cold void io_tctx_exit_cb(struct callback_head *cb) 3051 { 3052 struct io_uring_task *tctx = current->io_uring; 3053 struct io_tctx_exit *work; 3054 3055 work = container_of(cb, struct io_tctx_exit, task_work); 3056 /* 3057 * When @in_cancel, we're in cancellation and it's racy to remove the 3058 * node. It'll be removed by the end of cancellation, just ignore it. 3059 * tctx can be NULL if the queueing of this task_work raced with 3060 * work cancelation off the exec path. 3061 */ 3062 if (tctx && !atomic_read(&tctx->in_cancel)) 3063 io_uring_del_tctx_node((unsigned long)work->ctx); 3064 complete(&work->completion); 3065 } 3066 3067 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 3068 { 3069 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3070 3071 return req->ctx == data; 3072 } 3073 3074 static __cold void io_ring_exit_work(struct work_struct *work) 3075 { 3076 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 3077 unsigned long timeout = jiffies + HZ * 60 * 5; 3078 unsigned long interval = HZ / 20; 3079 struct io_tctx_exit exit; 3080 struct io_tctx_node *node; 3081 int ret; 3082 3083 /* 3084 * If we're doing polled IO and end up having requests being 3085 * submitted async (out-of-line), then completions can come in while 3086 * we're waiting for refs to drop. We need to reap these manually, 3087 * as nobody else will be looking for them. 3088 */ 3089 do { 3090 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 3091 mutex_lock(&ctx->uring_lock); 3092 io_cqring_overflow_kill(ctx); 3093 mutex_unlock(&ctx->uring_lock); 3094 } 3095 3096 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3097 io_move_task_work_from_local(ctx); 3098 3099 while (io_uring_try_cancel_requests(ctx, NULL, true)) 3100 cond_resched(); 3101 3102 if (ctx->sq_data) { 3103 struct io_sq_data *sqd = ctx->sq_data; 3104 struct task_struct *tsk; 3105 3106 io_sq_thread_park(sqd); 3107 tsk = sqd->thread; 3108 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 3109 io_wq_cancel_cb(tsk->io_uring->io_wq, 3110 io_cancel_ctx_cb, ctx, true); 3111 io_sq_thread_unpark(sqd); 3112 } 3113 3114 io_req_caches_free(ctx); 3115 3116 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3117 /* there is little hope left, don't run it too often */ 3118 interval = HZ * 60; 3119 } 3120 /* 3121 * This is really an uninterruptible wait, as it has to be 3122 * complete. But it's also run from a kworker, which doesn't 3123 * take signals, so it's fine to make it interruptible. This 3124 * avoids scenarios where we knowingly can wait much longer 3125 * on completions, for example if someone does a SIGSTOP on 3126 * a task that needs to finish task_work to make this loop 3127 * complete. That's a synthetic situation that should not 3128 * cause a stuck task backtrace, and hence a potential panic 3129 * on stuck tasks if that is enabled. 3130 */ 3131 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 3132 3133 init_completion(&exit.completion); 3134 init_task_work(&exit.task_work, io_tctx_exit_cb); 3135 exit.ctx = ctx; 3136 3137 mutex_lock(&ctx->uring_lock); 3138 while (!list_empty(&ctx->tctx_list)) { 3139 WARN_ON_ONCE(time_after(jiffies, timeout)); 3140 3141 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3142 ctx_node); 3143 /* don't spin on a single task if cancellation failed */ 3144 list_rotate_left(&ctx->tctx_list); 3145 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3146 if (WARN_ON_ONCE(ret)) 3147 continue; 3148 3149 mutex_unlock(&ctx->uring_lock); 3150 /* 3151 * See comment above for 3152 * wait_for_completion_interruptible_timeout() on why this 3153 * wait is marked as interruptible. 3154 */ 3155 wait_for_completion_interruptible(&exit.completion); 3156 mutex_lock(&ctx->uring_lock); 3157 } 3158 mutex_unlock(&ctx->uring_lock); 3159 spin_lock(&ctx->completion_lock); 3160 spin_unlock(&ctx->completion_lock); 3161 3162 /* pairs with RCU read section in io_req_local_work_add() */ 3163 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3164 synchronize_rcu(); 3165 3166 io_ring_ctx_free(ctx); 3167 } 3168 3169 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3170 { 3171 unsigned long index; 3172 struct creds *creds; 3173 3174 mutex_lock(&ctx->uring_lock); 3175 percpu_ref_kill(&ctx->refs); 3176 xa_for_each(&ctx->personalities, index, creds) 3177 io_unregister_personality(ctx, index); 3178 if (ctx->rings) 3179 io_poll_remove_all(ctx, NULL, true); 3180 mutex_unlock(&ctx->uring_lock); 3181 3182 /* 3183 * If we failed setting up the ctx, we might not have any rings 3184 * and therefore did not submit any requests 3185 */ 3186 if (ctx->rings) 3187 io_kill_timeouts(ctx, NULL, true); 3188 3189 flush_delayed_work(&ctx->fallback_work); 3190 3191 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3192 /* 3193 * Use system_unbound_wq to avoid spawning tons of event kworkers 3194 * if we're exiting a ton of rings at the same time. It just adds 3195 * noise and overhead, there's no discernable change in runtime 3196 * over using system_wq. 3197 */ 3198 queue_work(system_unbound_wq, &ctx->exit_work); 3199 } 3200 3201 static int io_uring_release(struct inode *inode, struct file *file) 3202 { 3203 struct io_ring_ctx *ctx = file->private_data; 3204 3205 file->private_data = NULL; 3206 io_ring_ctx_wait_and_kill(ctx); 3207 return 0; 3208 } 3209 3210 struct io_task_cancel { 3211 struct task_struct *task; 3212 bool all; 3213 }; 3214 3215 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3216 { 3217 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3218 struct io_task_cancel *cancel = data; 3219 3220 return io_match_task_safe(req, cancel->task, cancel->all); 3221 } 3222 3223 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3224 struct task_struct *task, 3225 bool cancel_all) 3226 { 3227 struct io_defer_entry *de; 3228 LIST_HEAD(list); 3229 3230 spin_lock(&ctx->completion_lock); 3231 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3232 if (io_match_task_safe(de->req, task, cancel_all)) { 3233 list_cut_position(&list, &ctx->defer_list, &de->list); 3234 break; 3235 } 3236 } 3237 spin_unlock(&ctx->completion_lock); 3238 if (list_empty(&list)) 3239 return false; 3240 3241 while (!list_empty(&list)) { 3242 de = list_first_entry(&list, struct io_defer_entry, list); 3243 list_del_init(&de->list); 3244 io_req_task_queue_fail(de->req, -ECANCELED); 3245 kfree(de); 3246 } 3247 return true; 3248 } 3249 3250 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3251 { 3252 struct io_tctx_node *node; 3253 enum io_wq_cancel cret; 3254 bool ret = false; 3255 3256 mutex_lock(&ctx->uring_lock); 3257 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3258 struct io_uring_task *tctx = node->task->io_uring; 3259 3260 /* 3261 * io_wq will stay alive while we hold uring_lock, because it's 3262 * killed after ctx nodes, which requires to take the lock. 3263 */ 3264 if (!tctx || !tctx->io_wq) 3265 continue; 3266 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3267 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3268 } 3269 mutex_unlock(&ctx->uring_lock); 3270 3271 return ret; 3272 } 3273 3274 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3275 struct task_struct *task, 3276 bool cancel_all) 3277 { 3278 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3279 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3280 enum io_wq_cancel cret; 3281 bool ret = false; 3282 3283 /* set it so io_req_local_work_add() would wake us up */ 3284 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3285 atomic_set(&ctx->cq_wait_nr, 1); 3286 smp_mb(); 3287 } 3288 3289 /* failed during ring init, it couldn't have issued any requests */ 3290 if (!ctx->rings) 3291 return false; 3292 3293 if (!task) { 3294 ret |= io_uring_try_cancel_iowq(ctx); 3295 } else if (tctx && tctx->io_wq) { 3296 /* 3297 * Cancels requests of all rings, not only @ctx, but 3298 * it's fine as the task is in exit/exec. 3299 */ 3300 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3301 &cancel, true); 3302 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3303 } 3304 3305 /* SQPOLL thread does its own polling */ 3306 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3307 (ctx->sq_data && ctx->sq_data->thread == current)) { 3308 while (!wq_list_empty(&ctx->iopoll_list)) { 3309 io_iopoll_try_reap_events(ctx); 3310 ret = true; 3311 cond_resched(); 3312 } 3313 } 3314 3315 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3316 io_allowed_defer_tw_run(ctx)) 3317 ret |= io_run_local_work(ctx) > 0; 3318 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3319 mutex_lock(&ctx->uring_lock); 3320 ret |= io_poll_remove_all(ctx, task, cancel_all); 3321 mutex_unlock(&ctx->uring_lock); 3322 ret |= io_kill_timeouts(ctx, task, cancel_all); 3323 if (task) 3324 ret |= io_run_task_work() > 0; 3325 return ret; 3326 } 3327 3328 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3329 { 3330 if (tracked) 3331 return atomic_read(&tctx->inflight_tracked); 3332 return percpu_counter_sum(&tctx->inflight); 3333 } 3334 3335 /* 3336 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3337 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3338 */ 3339 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3340 { 3341 struct io_uring_task *tctx = current->io_uring; 3342 struct io_ring_ctx *ctx; 3343 struct io_tctx_node *node; 3344 unsigned long index; 3345 s64 inflight; 3346 DEFINE_WAIT(wait); 3347 3348 WARN_ON_ONCE(sqd && sqd->thread != current); 3349 3350 if (!current->io_uring) 3351 return; 3352 if (tctx->io_wq) 3353 io_wq_exit_start(tctx->io_wq); 3354 3355 atomic_inc(&tctx->in_cancel); 3356 do { 3357 bool loop = false; 3358 3359 io_uring_drop_tctx_refs(current); 3360 /* read completions before cancelations */ 3361 inflight = tctx_inflight(tctx, !cancel_all); 3362 if (!inflight) 3363 break; 3364 3365 if (!sqd) { 3366 xa_for_each(&tctx->xa, index, node) { 3367 /* sqpoll task will cancel all its requests */ 3368 if (node->ctx->sq_data) 3369 continue; 3370 loop |= io_uring_try_cancel_requests(node->ctx, 3371 current, cancel_all); 3372 } 3373 } else { 3374 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3375 loop |= io_uring_try_cancel_requests(ctx, 3376 current, 3377 cancel_all); 3378 } 3379 3380 if (loop) { 3381 cond_resched(); 3382 continue; 3383 } 3384 3385 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3386 io_run_task_work(); 3387 io_uring_drop_tctx_refs(current); 3388 xa_for_each(&tctx->xa, index, node) { 3389 if (!llist_empty(&node->ctx->work_llist)) { 3390 WARN_ON_ONCE(node->ctx->submitter_task && 3391 node->ctx->submitter_task != current); 3392 goto end_wait; 3393 } 3394 } 3395 /* 3396 * If we've seen completions, retry without waiting. This 3397 * avoids a race where a completion comes in before we did 3398 * prepare_to_wait(). 3399 */ 3400 if (inflight == tctx_inflight(tctx, !cancel_all)) 3401 schedule(); 3402 end_wait: 3403 finish_wait(&tctx->wait, &wait); 3404 } while (1); 3405 3406 io_uring_clean_tctx(tctx); 3407 if (cancel_all) { 3408 /* 3409 * We shouldn't run task_works after cancel, so just leave 3410 * ->in_cancel set for normal exit. 3411 */ 3412 atomic_dec(&tctx->in_cancel); 3413 /* for exec all current's requests should be gone, kill tctx */ 3414 __io_uring_free(current); 3415 } 3416 } 3417 3418 void __io_uring_cancel(bool cancel_all) 3419 { 3420 io_uring_cancel_generic(cancel_all, NULL); 3421 } 3422 3423 static void *io_uring_validate_mmap_request(struct file *file, 3424 loff_t pgoff, size_t sz) 3425 { 3426 struct io_ring_ctx *ctx = file->private_data; 3427 loff_t offset = pgoff << PAGE_SHIFT; 3428 struct page *page; 3429 void *ptr; 3430 3431 switch (offset & IORING_OFF_MMAP_MASK) { 3432 case IORING_OFF_SQ_RING: 3433 case IORING_OFF_CQ_RING: 3434 /* Don't allow mmap if the ring was setup without it */ 3435 if (ctx->flags & IORING_SETUP_NO_MMAP) 3436 return ERR_PTR(-EINVAL); 3437 ptr = ctx->rings; 3438 break; 3439 case IORING_OFF_SQES: 3440 /* Don't allow mmap if the ring was setup without it */ 3441 if (ctx->flags & IORING_SETUP_NO_MMAP) 3442 return ERR_PTR(-EINVAL); 3443 ptr = ctx->sq_sqes; 3444 break; 3445 case IORING_OFF_PBUF_RING: { 3446 unsigned int bgid; 3447 3448 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; 3449 rcu_read_lock(); 3450 ptr = io_pbuf_get_address(ctx, bgid); 3451 rcu_read_unlock(); 3452 if (!ptr) 3453 return ERR_PTR(-EINVAL); 3454 break; 3455 } 3456 default: 3457 return ERR_PTR(-EINVAL); 3458 } 3459 3460 page = virt_to_head_page(ptr); 3461 if (sz > page_size(page)) 3462 return ERR_PTR(-EINVAL); 3463 3464 return ptr; 3465 } 3466 3467 #ifdef CONFIG_MMU 3468 3469 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3470 { 3471 size_t sz = vma->vm_end - vma->vm_start; 3472 unsigned long pfn; 3473 void *ptr; 3474 3475 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3476 if (IS_ERR(ptr)) 3477 return PTR_ERR(ptr); 3478 3479 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3480 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3481 } 3482 3483 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, 3484 unsigned long addr, unsigned long len, 3485 unsigned long pgoff, unsigned long flags) 3486 { 3487 void *ptr; 3488 3489 /* 3490 * Do not allow to map to user-provided address to avoid breaking the 3491 * aliasing rules. Userspace is not able to guess the offset address of 3492 * kernel kmalloc()ed memory area. 3493 */ 3494 if (addr) 3495 return -EINVAL; 3496 3497 ptr = io_uring_validate_mmap_request(filp, pgoff, len); 3498 if (IS_ERR(ptr)) 3499 return -ENOMEM; 3500 3501 /* 3502 * Some architectures have strong cache aliasing requirements. 3503 * For such architectures we need a coherent mapping which aliases 3504 * kernel memory *and* userspace memory. To achieve that: 3505 * - use a NULL file pointer to reference physical memory, and 3506 * - use the kernel virtual address of the shared io_uring context 3507 * (instead of the userspace-provided address, which has to be 0UL 3508 * anyway). 3509 * - use the same pgoff which the get_unmapped_area() uses to 3510 * calculate the page colouring. 3511 * For architectures without such aliasing requirements, the 3512 * architecture will return any suitable mapping because addr is 0. 3513 */ 3514 filp = NULL; 3515 flags |= MAP_SHARED; 3516 pgoff = 0; /* has been translated to ptr above */ 3517 #ifdef SHM_COLOUR 3518 addr = (uintptr_t) ptr; 3519 pgoff = addr >> PAGE_SHIFT; 3520 #else 3521 addr = 0UL; 3522 #endif 3523 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 3524 } 3525 3526 #else /* !CONFIG_MMU */ 3527 3528 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3529 { 3530 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3531 } 3532 3533 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3534 { 3535 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3536 } 3537 3538 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3539 unsigned long addr, unsigned long len, 3540 unsigned long pgoff, unsigned long flags) 3541 { 3542 void *ptr; 3543 3544 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3545 if (IS_ERR(ptr)) 3546 return PTR_ERR(ptr); 3547 3548 return (unsigned long) ptr; 3549 } 3550 3551 #endif /* !CONFIG_MMU */ 3552 3553 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3554 { 3555 if (flags & IORING_ENTER_EXT_ARG) { 3556 struct io_uring_getevents_arg arg; 3557 3558 if (argsz != sizeof(arg)) 3559 return -EINVAL; 3560 if (copy_from_user(&arg, argp, sizeof(arg))) 3561 return -EFAULT; 3562 } 3563 return 0; 3564 } 3565 3566 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3567 struct __kernel_timespec __user **ts, 3568 const sigset_t __user **sig) 3569 { 3570 struct io_uring_getevents_arg arg; 3571 3572 /* 3573 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3574 * is just a pointer to the sigset_t. 3575 */ 3576 if (!(flags & IORING_ENTER_EXT_ARG)) { 3577 *sig = (const sigset_t __user *) argp; 3578 *ts = NULL; 3579 return 0; 3580 } 3581 3582 /* 3583 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3584 * timespec and sigset_t pointers if good. 3585 */ 3586 if (*argsz != sizeof(arg)) 3587 return -EINVAL; 3588 if (copy_from_user(&arg, argp, sizeof(arg))) 3589 return -EFAULT; 3590 if (arg.pad) 3591 return -EINVAL; 3592 *sig = u64_to_user_ptr(arg.sigmask); 3593 *argsz = arg.sigmask_sz; 3594 *ts = u64_to_user_ptr(arg.ts); 3595 return 0; 3596 } 3597 3598 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3599 u32, min_complete, u32, flags, const void __user *, argp, 3600 size_t, argsz) 3601 { 3602 struct io_ring_ctx *ctx; 3603 struct file *file; 3604 long ret; 3605 3606 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3607 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3608 IORING_ENTER_REGISTERED_RING))) 3609 return -EINVAL; 3610 3611 /* 3612 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3613 * need only dereference our task private array to find it. 3614 */ 3615 if (flags & IORING_ENTER_REGISTERED_RING) { 3616 struct io_uring_task *tctx = current->io_uring; 3617 3618 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3619 return -EINVAL; 3620 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3621 file = tctx->registered_rings[fd]; 3622 if (unlikely(!file)) 3623 return -EBADF; 3624 } else { 3625 file = fget(fd); 3626 if (unlikely(!file)) 3627 return -EBADF; 3628 ret = -EOPNOTSUPP; 3629 if (unlikely(!io_is_uring_fops(file))) 3630 goto out; 3631 } 3632 3633 ctx = file->private_data; 3634 ret = -EBADFD; 3635 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3636 goto out; 3637 3638 /* 3639 * For SQ polling, the thread will do all submissions and completions. 3640 * Just return the requested submit count, and wake the thread if 3641 * we were asked to. 3642 */ 3643 ret = 0; 3644 if (ctx->flags & IORING_SETUP_SQPOLL) { 3645 io_cqring_overflow_flush(ctx); 3646 3647 if (unlikely(ctx->sq_data->thread == NULL)) { 3648 ret = -EOWNERDEAD; 3649 goto out; 3650 } 3651 if (flags & IORING_ENTER_SQ_WAKEUP) 3652 wake_up(&ctx->sq_data->wait); 3653 if (flags & IORING_ENTER_SQ_WAIT) 3654 io_sqpoll_wait_sq(ctx); 3655 3656 ret = to_submit; 3657 } else if (to_submit) { 3658 ret = io_uring_add_tctx_node(ctx); 3659 if (unlikely(ret)) 3660 goto out; 3661 3662 mutex_lock(&ctx->uring_lock); 3663 ret = io_submit_sqes(ctx, to_submit); 3664 if (ret != to_submit) { 3665 mutex_unlock(&ctx->uring_lock); 3666 goto out; 3667 } 3668 if (flags & IORING_ENTER_GETEVENTS) { 3669 if (ctx->syscall_iopoll) 3670 goto iopoll_locked; 3671 /* 3672 * Ignore errors, we'll soon call io_cqring_wait() and 3673 * it should handle ownership problems if any. 3674 */ 3675 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3676 (void)io_run_local_work_locked(ctx); 3677 } 3678 mutex_unlock(&ctx->uring_lock); 3679 } 3680 3681 if (flags & IORING_ENTER_GETEVENTS) { 3682 int ret2; 3683 3684 if (ctx->syscall_iopoll) { 3685 /* 3686 * We disallow the app entering submit/complete with 3687 * polling, but we still need to lock the ring to 3688 * prevent racing with polled issue that got punted to 3689 * a workqueue. 3690 */ 3691 mutex_lock(&ctx->uring_lock); 3692 iopoll_locked: 3693 ret2 = io_validate_ext_arg(flags, argp, argsz); 3694 if (likely(!ret2)) { 3695 min_complete = min(min_complete, 3696 ctx->cq_entries); 3697 ret2 = io_iopoll_check(ctx, min_complete); 3698 } 3699 mutex_unlock(&ctx->uring_lock); 3700 } else { 3701 const sigset_t __user *sig; 3702 struct __kernel_timespec __user *ts; 3703 3704 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3705 if (likely(!ret2)) { 3706 min_complete = min(min_complete, 3707 ctx->cq_entries); 3708 ret2 = io_cqring_wait(ctx, min_complete, sig, 3709 argsz, ts); 3710 } 3711 } 3712 3713 if (!ret) { 3714 ret = ret2; 3715 3716 /* 3717 * EBADR indicates that one or more CQE were dropped. 3718 * Once the user has been informed we can clear the bit 3719 * as they are obviously ok with those drops. 3720 */ 3721 if (unlikely(ret2 == -EBADR)) 3722 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3723 &ctx->check_cq); 3724 } 3725 } 3726 out: 3727 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3728 fput(file); 3729 return ret; 3730 } 3731 3732 static const struct file_operations io_uring_fops = { 3733 .release = io_uring_release, 3734 .mmap = io_uring_mmap, 3735 #ifndef CONFIG_MMU 3736 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3737 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3738 #else 3739 .get_unmapped_area = io_uring_mmu_get_unmapped_area, 3740 #endif 3741 .poll = io_uring_poll, 3742 #ifdef CONFIG_PROC_FS 3743 .show_fdinfo = io_uring_show_fdinfo, 3744 #endif 3745 }; 3746 3747 bool io_is_uring_fops(struct file *file) 3748 { 3749 return file->f_op == &io_uring_fops; 3750 } 3751 3752 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3753 struct io_uring_params *p) 3754 { 3755 struct io_rings *rings; 3756 size_t size, sq_array_offset; 3757 void *ptr; 3758 3759 /* make sure these are sane, as we already accounted them */ 3760 ctx->sq_entries = p->sq_entries; 3761 ctx->cq_entries = p->cq_entries; 3762 3763 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3764 if (size == SIZE_MAX) 3765 return -EOVERFLOW; 3766 3767 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3768 rings = io_mem_alloc(size); 3769 else 3770 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3771 3772 if (IS_ERR(rings)) 3773 return PTR_ERR(rings); 3774 3775 ctx->rings = rings; 3776 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3777 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3778 rings->sq_ring_mask = p->sq_entries - 1; 3779 rings->cq_ring_mask = p->cq_entries - 1; 3780 rings->sq_ring_entries = p->sq_entries; 3781 rings->cq_ring_entries = p->cq_entries; 3782 3783 if (p->flags & IORING_SETUP_SQE128) 3784 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3785 else 3786 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3787 if (size == SIZE_MAX) { 3788 io_rings_free(ctx); 3789 return -EOVERFLOW; 3790 } 3791 3792 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3793 ptr = io_mem_alloc(size); 3794 else 3795 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3796 3797 if (IS_ERR(ptr)) { 3798 io_rings_free(ctx); 3799 return PTR_ERR(ptr); 3800 } 3801 3802 ctx->sq_sqes = ptr; 3803 return 0; 3804 } 3805 3806 static int io_uring_install_fd(struct file *file) 3807 { 3808 int fd; 3809 3810 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3811 if (fd < 0) 3812 return fd; 3813 fd_install(fd, file); 3814 return fd; 3815 } 3816 3817 /* 3818 * Allocate an anonymous fd, this is what constitutes the application 3819 * visible backing of an io_uring instance. The application mmaps this 3820 * fd to gain access to the SQ/CQ ring details. 3821 */ 3822 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3823 { 3824 return anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3825 O_RDWR | O_CLOEXEC, NULL); 3826 } 3827 3828 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3829 struct io_uring_params __user *params) 3830 { 3831 struct io_ring_ctx *ctx; 3832 struct io_uring_task *tctx; 3833 struct file *file; 3834 int ret; 3835 3836 if (!entries) 3837 return -EINVAL; 3838 if (entries > IORING_MAX_ENTRIES) { 3839 if (!(p->flags & IORING_SETUP_CLAMP)) 3840 return -EINVAL; 3841 entries = IORING_MAX_ENTRIES; 3842 } 3843 3844 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3845 && !(p->flags & IORING_SETUP_NO_MMAP)) 3846 return -EINVAL; 3847 3848 /* 3849 * Use twice as many entries for the CQ ring. It's possible for the 3850 * application to drive a higher depth than the size of the SQ ring, 3851 * since the sqes are only used at submission time. This allows for 3852 * some flexibility in overcommitting a bit. If the application has 3853 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3854 * of CQ ring entries manually. 3855 */ 3856 p->sq_entries = roundup_pow_of_two(entries); 3857 if (p->flags & IORING_SETUP_CQSIZE) { 3858 /* 3859 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3860 * to a power-of-two, if it isn't already. We do NOT impose 3861 * any cq vs sq ring sizing. 3862 */ 3863 if (!p->cq_entries) 3864 return -EINVAL; 3865 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3866 if (!(p->flags & IORING_SETUP_CLAMP)) 3867 return -EINVAL; 3868 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3869 } 3870 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3871 if (p->cq_entries < p->sq_entries) 3872 return -EINVAL; 3873 } else { 3874 p->cq_entries = 2 * p->sq_entries; 3875 } 3876 3877 ctx = io_ring_ctx_alloc(p); 3878 if (!ctx) 3879 return -ENOMEM; 3880 3881 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3882 !(ctx->flags & IORING_SETUP_IOPOLL) && 3883 !(ctx->flags & IORING_SETUP_SQPOLL)) 3884 ctx->task_complete = true; 3885 3886 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3887 ctx->lockless_cq = true; 3888 3889 /* 3890 * lazy poll_wq activation relies on ->task_complete for synchronisation 3891 * purposes, see io_activate_pollwq() 3892 */ 3893 if (!ctx->task_complete) 3894 ctx->poll_activated = true; 3895 3896 /* 3897 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3898 * space applications don't need to do io completion events 3899 * polling again, they can rely on io_sq_thread to do polling 3900 * work, which can reduce cpu usage and uring_lock contention. 3901 */ 3902 if (ctx->flags & IORING_SETUP_IOPOLL && 3903 !(ctx->flags & IORING_SETUP_SQPOLL)) 3904 ctx->syscall_iopoll = 1; 3905 3906 ctx->compat = in_compat_syscall(); 3907 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3908 ctx->user = get_uid(current_user()); 3909 3910 /* 3911 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3912 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3913 */ 3914 ret = -EINVAL; 3915 if (ctx->flags & IORING_SETUP_SQPOLL) { 3916 /* IPI related flags don't make sense with SQPOLL */ 3917 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3918 IORING_SETUP_TASKRUN_FLAG | 3919 IORING_SETUP_DEFER_TASKRUN)) 3920 goto err; 3921 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3922 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3923 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3924 } else { 3925 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3926 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3927 goto err; 3928 ctx->notify_method = TWA_SIGNAL; 3929 } 3930 3931 /* 3932 * For DEFER_TASKRUN we require the completion task to be the same as the 3933 * submission task. This implies that there is only one submitter, so enforce 3934 * that. 3935 */ 3936 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3937 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3938 goto err; 3939 } 3940 3941 /* 3942 * This is just grabbed for accounting purposes. When a process exits, 3943 * the mm is exited and dropped before the files, hence we need to hang 3944 * on to this mm purely for the purposes of being able to unaccount 3945 * memory (locked/pinned vm). It's not used for anything else. 3946 */ 3947 mmgrab(current->mm); 3948 ctx->mm_account = current->mm; 3949 3950 ret = io_allocate_scq_urings(ctx, p); 3951 if (ret) 3952 goto err; 3953 3954 ret = io_sq_offload_create(ctx, p); 3955 if (ret) 3956 goto err; 3957 3958 ret = io_rsrc_init(ctx); 3959 if (ret) 3960 goto err; 3961 3962 p->sq_off.head = offsetof(struct io_rings, sq.head); 3963 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3964 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3965 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3966 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3967 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3968 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3969 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3970 p->sq_off.resv1 = 0; 3971 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3972 p->sq_off.user_addr = 0; 3973 3974 p->cq_off.head = offsetof(struct io_rings, cq.head); 3975 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3976 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3977 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3978 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3979 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3980 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3981 p->cq_off.resv1 = 0; 3982 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3983 p->cq_off.user_addr = 0; 3984 3985 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3986 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3987 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3988 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3989 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3990 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3991 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 3992 3993 if (copy_to_user(params, p, sizeof(*p))) { 3994 ret = -EFAULT; 3995 goto err; 3996 } 3997 3998 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3999 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 4000 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4001 4002 file = io_uring_get_file(ctx); 4003 if (IS_ERR(file)) { 4004 ret = PTR_ERR(file); 4005 goto err; 4006 } 4007 4008 ret = __io_uring_add_tctx_node(ctx); 4009 if (ret) 4010 goto err_fput; 4011 tctx = current->io_uring; 4012 4013 /* 4014 * Install ring fd as the very last thing, so we don't risk someone 4015 * having closed it before we finish setup 4016 */ 4017 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 4018 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 4019 else 4020 ret = io_uring_install_fd(file); 4021 if (ret < 0) 4022 goto err_fput; 4023 4024 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 4025 return ret; 4026 err: 4027 io_ring_ctx_wait_and_kill(ctx); 4028 return ret; 4029 err_fput: 4030 fput(file); 4031 return ret; 4032 } 4033 4034 /* 4035 * Sets up an aio uring context, and returns the fd. Applications asks for a 4036 * ring size, we return the actual sq/cq ring sizes (among other things) in the 4037 * params structure passed in. 4038 */ 4039 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 4040 { 4041 struct io_uring_params p; 4042 int i; 4043 4044 if (copy_from_user(&p, params, sizeof(p))) 4045 return -EFAULT; 4046 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 4047 if (p.resv[i]) 4048 return -EINVAL; 4049 } 4050 4051 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 4052 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 4053 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 4054 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 4055 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 4056 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 4057 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 4058 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 4059 IORING_SETUP_NO_SQARRAY)) 4060 return -EINVAL; 4061 4062 return io_uring_create(entries, &p, params); 4063 } 4064 4065 static inline bool io_uring_allowed(void) 4066 { 4067 int disabled = READ_ONCE(sysctl_io_uring_disabled); 4068 kgid_t io_uring_group; 4069 4070 if (disabled == 2) 4071 return false; 4072 4073 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 4074 return true; 4075 4076 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 4077 if (!gid_valid(io_uring_group)) 4078 return false; 4079 4080 return in_group_p(io_uring_group); 4081 } 4082 4083 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 4084 struct io_uring_params __user *, params) 4085 { 4086 if (!io_uring_allowed()) 4087 return -EPERM; 4088 4089 return io_uring_setup(entries, params); 4090 } 4091 4092 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 4093 unsigned nr_args) 4094 { 4095 struct io_uring_probe *p; 4096 size_t size; 4097 int i, ret; 4098 4099 size = struct_size(p, ops, nr_args); 4100 if (size == SIZE_MAX) 4101 return -EOVERFLOW; 4102 p = kzalloc(size, GFP_KERNEL); 4103 if (!p) 4104 return -ENOMEM; 4105 4106 ret = -EFAULT; 4107 if (copy_from_user(p, arg, size)) 4108 goto out; 4109 ret = -EINVAL; 4110 if (memchr_inv(p, 0, size)) 4111 goto out; 4112 4113 p->last_op = IORING_OP_LAST - 1; 4114 if (nr_args > IORING_OP_LAST) 4115 nr_args = IORING_OP_LAST; 4116 4117 for (i = 0; i < nr_args; i++) { 4118 p->ops[i].op = i; 4119 if (!io_issue_defs[i].not_supported) 4120 p->ops[i].flags = IO_URING_OP_SUPPORTED; 4121 } 4122 p->ops_len = i; 4123 4124 ret = 0; 4125 if (copy_to_user(arg, p, size)) 4126 ret = -EFAULT; 4127 out: 4128 kfree(p); 4129 return ret; 4130 } 4131 4132 static int io_register_personality(struct io_ring_ctx *ctx) 4133 { 4134 const struct cred *creds; 4135 u32 id; 4136 int ret; 4137 4138 creds = get_current_cred(); 4139 4140 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 4141 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 4142 if (ret < 0) { 4143 put_cred(creds); 4144 return ret; 4145 } 4146 return id; 4147 } 4148 4149 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 4150 void __user *arg, unsigned int nr_args) 4151 { 4152 struct io_uring_restriction *res; 4153 size_t size; 4154 int i, ret; 4155 4156 /* Restrictions allowed only if rings started disabled */ 4157 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4158 return -EBADFD; 4159 4160 /* We allow only a single restrictions registration */ 4161 if (ctx->restrictions.registered) 4162 return -EBUSY; 4163 4164 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 4165 return -EINVAL; 4166 4167 size = array_size(nr_args, sizeof(*res)); 4168 if (size == SIZE_MAX) 4169 return -EOVERFLOW; 4170 4171 res = memdup_user(arg, size); 4172 if (IS_ERR(res)) 4173 return PTR_ERR(res); 4174 4175 ret = 0; 4176 4177 for (i = 0; i < nr_args; i++) { 4178 switch (res[i].opcode) { 4179 case IORING_RESTRICTION_REGISTER_OP: 4180 if (res[i].register_op >= IORING_REGISTER_LAST) { 4181 ret = -EINVAL; 4182 goto out; 4183 } 4184 4185 __set_bit(res[i].register_op, 4186 ctx->restrictions.register_op); 4187 break; 4188 case IORING_RESTRICTION_SQE_OP: 4189 if (res[i].sqe_op >= IORING_OP_LAST) { 4190 ret = -EINVAL; 4191 goto out; 4192 } 4193 4194 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 4195 break; 4196 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 4197 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 4198 break; 4199 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 4200 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 4201 break; 4202 default: 4203 ret = -EINVAL; 4204 goto out; 4205 } 4206 } 4207 4208 out: 4209 /* Reset all restrictions if an error happened */ 4210 if (ret != 0) 4211 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 4212 else 4213 ctx->restrictions.registered = true; 4214 4215 kfree(res); 4216 return ret; 4217 } 4218 4219 static int io_register_enable_rings(struct io_ring_ctx *ctx) 4220 { 4221 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4222 return -EBADFD; 4223 4224 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) { 4225 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4226 /* 4227 * Lazy activation attempts would fail if it was polled before 4228 * submitter_task is set. 4229 */ 4230 if (wq_has_sleeper(&ctx->poll_wq)) 4231 io_activate_pollwq(ctx); 4232 } 4233 4234 if (ctx->restrictions.registered) 4235 ctx->restricted = 1; 4236 4237 ctx->flags &= ~IORING_SETUP_R_DISABLED; 4238 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 4239 wake_up(&ctx->sq_data->wait); 4240 return 0; 4241 } 4242 4243 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx, 4244 cpumask_var_t new_mask) 4245 { 4246 int ret; 4247 4248 if (!(ctx->flags & IORING_SETUP_SQPOLL)) { 4249 ret = io_wq_cpu_affinity(current->io_uring, new_mask); 4250 } else { 4251 mutex_unlock(&ctx->uring_lock); 4252 ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask); 4253 mutex_lock(&ctx->uring_lock); 4254 } 4255 4256 return ret; 4257 } 4258 4259 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 4260 void __user *arg, unsigned len) 4261 { 4262 cpumask_var_t new_mask; 4263 int ret; 4264 4265 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4266 return -ENOMEM; 4267 4268 cpumask_clear(new_mask); 4269 if (len > cpumask_size()) 4270 len = cpumask_size(); 4271 4272 if (in_compat_syscall()) { 4273 ret = compat_get_bitmap(cpumask_bits(new_mask), 4274 (const compat_ulong_t __user *)arg, 4275 len * 8 /* CHAR_BIT */); 4276 } else { 4277 ret = copy_from_user(new_mask, arg, len); 4278 } 4279 4280 if (ret) { 4281 free_cpumask_var(new_mask); 4282 return -EFAULT; 4283 } 4284 4285 ret = __io_register_iowq_aff(ctx, new_mask); 4286 free_cpumask_var(new_mask); 4287 return ret; 4288 } 4289 4290 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 4291 { 4292 return __io_register_iowq_aff(ctx, NULL); 4293 } 4294 4295 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 4296 void __user *arg) 4297 __must_hold(&ctx->uring_lock) 4298 { 4299 struct io_tctx_node *node; 4300 struct io_uring_task *tctx = NULL; 4301 struct io_sq_data *sqd = NULL; 4302 __u32 new_count[2]; 4303 int i, ret; 4304 4305 if (copy_from_user(new_count, arg, sizeof(new_count))) 4306 return -EFAULT; 4307 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4308 if (new_count[i] > INT_MAX) 4309 return -EINVAL; 4310 4311 if (ctx->flags & IORING_SETUP_SQPOLL) { 4312 sqd = ctx->sq_data; 4313 if (sqd) { 4314 /* 4315 * Observe the correct sqd->lock -> ctx->uring_lock 4316 * ordering. Fine to drop uring_lock here, we hold 4317 * a ref to the ctx. 4318 */ 4319 refcount_inc(&sqd->refs); 4320 mutex_unlock(&ctx->uring_lock); 4321 mutex_lock(&sqd->lock); 4322 mutex_lock(&ctx->uring_lock); 4323 if (sqd->thread) 4324 tctx = sqd->thread->io_uring; 4325 } 4326 } else { 4327 tctx = current->io_uring; 4328 } 4329 4330 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 4331 4332 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4333 if (new_count[i]) 4334 ctx->iowq_limits[i] = new_count[i]; 4335 ctx->iowq_limits_set = true; 4336 4337 if (tctx && tctx->io_wq) { 4338 ret = io_wq_max_workers(tctx->io_wq, new_count); 4339 if (ret) 4340 goto err; 4341 } else { 4342 memset(new_count, 0, sizeof(new_count)); 4343 } 4344 4345 if (sqd) { 4346 mutex_unlock(&sqd->lock); 4347 io_put_sq_data(sqd); 4348 } 4349 4350 if (copy_to_user(arg, new_count, sizeof(new_count))) 4351 return -EFAULT; 4352 4353 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 4354 if (sqd) 4355 return 0; 4356 4357 /* now propagate the restriction to all registered users */ 4358 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 4359 struct io_uring_task *tctx = node->task->io_uring; 4360 4361 if (WARN_ON_ONCE(!tctx->io_wq)) 4362 continue; 4363 4364 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4365 new_count[i] = ctx->iowq_limits[i]; 4366 /* ignore errors, it always returns zero anyway */ 4367 (void)io_wq_max_workers(tctx->io_wq, new_count); 4368 } 4369 return 0; 4370 err: 4371 if (sqd) { 4372 mutex_unlock(&sqd->lock); 4373 io_put_sq_data(sqd); 4374 } 4375 return ret; 4376 } 4377 4378 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4379 void __user *arg, unsigned nr_args) 4380 __releases(ctx->uring_lock) 4381 __acquires(ctx->uring_lock) 4382 { 4383 int ret; 4384 4385 /* 4386 * We don't quiesce the refs for register anymore and so it can't be 4387 * dying as we're holding a file ref here. 4388 */ 4389 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4390 return -ENXIO; 4391 4392 if (ctx->submitter_task && ctx->submitter_task != current) 4393 return -EEXIST; 4394 4395 if (ctx->restricted) { 4396 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4397 if (!test_bit(opcode, ctx->restrictions.register_op)) 4398 return -EACCES; 4399 } 4400 4401 switch (opcode) { 4402 case IORING_REGISTER_BUFFERS: 4403 ret = -EFAULT; 4404 if (!arg) 4405 break; 4406 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4407 break; 4408 case IORING_UNREGISTER_BUFFERS: 4409 ret = -EINVAL; 4410 if (arg || nr_args) 4411 break; 4412 ret = io_sqe_buffers_unregister(ctx); 4413 break; 4414 case IORING_REGISTER_FILES: 4415 ret = -EFAULT; 4416 if (!arg) 4417 break; 4418 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4419 break; 4420 case IORING_UNREGISTER_FILES: 4421 ret = -EINVAL; 4422 if (arg || nr_args) 4423 break; 4424 ret = io_sqe_files_unregister(ctx); 4425 break; 4426 case IORING_REGISTER_FILES_UPDATE: 4427 ret = io_register_files_update(ctx, arg, nr_args); 4428 break; 4429 case IORING_REGISTER_EVENTFD: 4430 ret = -EINVAL; 4431 if (nr_args != 1) 4432 break; 4433 ret = io_eventfd_register(ctx, arg, 0); 4434 break; 4435 case IORING_REGISTER_EVENTFD_ASYNC: 4436 ret = -EINVAL; 4437 if (nr_args != 1) 4438 break; 4439 ret = io_eventfd_register(ctx, arg, 1); 4440 break; 4441 case IORING_UNREGISTER_EVENTFD: 4442 ret = -EINVAL; 4443 if (arg || nr_args) 4444 break; 4445 ret = io_eventfd_unregister(ctx); 4446 break; 4447 case IORING_REGISTER_PROBE: 4448 ret = -EINVAL; 4449 if (!arg || nr_args > 256) 4450 break; 4451 ret = io_probe(ctx, arg, nr_args); 4452 break; 4453 case IORING_REGISTER_PERSONALITY: 4454 ret = -EINVAL; 4455 if (arg || nr_args) 4456 break; 4457 ret = io_register_personality(ctx); 4458 break; 4459 case IORING_UNREGISTER_PERSONALITY: 4460 ret = -EINVAL; 4461 if (arg) 4462 break; 4463 ret = io_unregister_personality(ctx, nr_args); 4464 break; 4465 case IORING_REGISTER_ENABLE_RINGS: 4466 ret = -EINVAL; 4467 if (arg || nr_args) 4468 break; 4469 ret = io_register_enable_rings(ctx); 4470 break; 4471 case IORING_REGISTER_RESTRICTIONS: 4472 ret = io_register_restrictions(ctx, arg, nr_args); 4473 break; 4474 case IORING_REGISTER_FILES2: 4475 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4476 break; 4477 case IORING_REGISTER_FILES_UPDATE2: 4478 ret = io_register_rsrc_update(ctx, arg, nr_args, 4479 IORING_RSRC_FILE); 4480 break; 4481 case IORING_REGISTER_BUFFERS2: 4482 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4483 break; 4484 case IORING_REGISTER_BUFFERS_UPDATE: 4485 ret = io_register_rsrc_update(ctx, arg, nr_args, 4486 IORING_RSRC_BUFFER); 4487 break; 4488 case IORING_REGISTER_IOWQ_AFF: 4489 ret = -EINVAL; 4490 if (!arg || !nr_args) 4491 break; 4492 ret = io_register_iowq_aff(ctx, arg, nr_args); 4493 break; 4494 case IORING_UNREGISTER_IOWQ_AFF: 4495 ret = -EINVAL; 4496 if (arg || nr_args) 4497 break; 4498 ret = io_unregister_iowq_aff(ctx); 4499 break; 4500 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4501 ret = -EINVAL; 4502 if (!arg || nr_args != 2) 4503 break; 4504 ret = io_register_iowq_max_workers(ctx, arg); 4505 break; 4506 case IORING_REGISTER_RING_FDS: 4507 ret = io_ringfd_register(ctx, arg, nr_args); 4508 break; 4509 case IORING_UNREGISTER_RING_FDS: 4510 ret = io_ringfd_unregister(ctx, arg, nr_args); 4511 break; 4512 case IORING_REGISTER_PBUF_RING: 4513 ret = -EINVAL; 4514 if (!arg || nr_args != 1) 4515 break; 4516 ret = io_register_pbuf_ring(ctx, arg); 4517 break; 4518 case IORING_UNREGISTER_PBUF_RING: 4519 ret = -EINVAL; 4520 if (!arg || nr_args != 1) 4521 break; 4522 ret = io_unregister_pbuf_ring(ctx, arg); 4523 break; 4524 case IORING_REGISTER_SYNC_CANCEL: 4525 ret = -EINVAL; 4526 if (!arg || nr_args != 1) 4527 break; 4528 ret = io_sync_cancel(ctx, arg); 4529 break; 4530 case IORING_REGISTER_FILE_ALLOC_RANGE: 4531 ret = -EINVAL; 4532 if (!arg || nr_args) 4533 break; 4534 ret = io_register_file_alloc_range(ctx, arg); 4535 break; 4536 default: 4537 ret = -EINVAL; 4538 break; 4539 } 4540 4541 return ret; 4542 } 4543 4544 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4545 void __user *, arg, unsigned int, nr_args) 4546 { 4547 struct io_ring_ctx *ctx; 4548 long ret = -EBADF; 4549 struct file *file; 4550 bool use_registered_ring; 4551 4552 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING); 4553 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING; 4554 4555 if (opcode >= IORING_REGISTER_LAST) 4556 return -EINVAL; 4557 4558 if (use_registered_ring) { 4559 /* 4560 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 4561 * need only dereference our task private array to find it. 4562 */ 4563 struct io_uring_task *tctx = current->io_uring; 4564 4565 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 4566 return -EINVAL; 4567 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 4568 file = tctx->registered_rings[fd]; 4569 if (unlikely(!file)) 4570 return -EBADF; 4571 } else { 4572 file = fget(fd); 4573 if (unlikely(!file)) 4574 return -EBADF; 4575 ret = -EOPNOTSUPP; 4576 if (!io_is_uring_fops(file)) 4577 goto out_fput; 4578 } 4579 4580 ctx = file->private_data; 4581 4582 mutex_lock(&ctx->uring_lock); 4583 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4584 mutex_unlock(&ctx->uring_lock); 4585 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4586 out_fput: 4587 if (!use_registered_ring) 4588 fput(file); 4589 return ret; 4590 } 4591 4592 static int __init io_uring_init(void) 4593 { 4594 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4595 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4596 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4597 } while (0) 4598 4599 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4600 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4601 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4602 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4603 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4604 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4605 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4606 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4607 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4608 BUILD_BUG_SQE_ELEM(8, __u64, off); 4609 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4610 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4611 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4612 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4613 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4614 BUILD_BUG_SQE_ELEM(24, __u32, len); 4615 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4616 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4617 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4618 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4619 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4620 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4621 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4622 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4623 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4624 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4625 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4626 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4627 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4628 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4629 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4630 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4631 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4632 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4633 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4634 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4635 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4636 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4637 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4638 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4639 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4640 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4641 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4642 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4643 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4644 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4645 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4646 4647 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4648 sizeof(struct io_uring_rsrc_update)); 4649 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4650 sizeof(struct io_uring_rsrc_update2)); 4651 4652 /* ->buf_index is u16 */ 4653 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4654 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4655 offsetof(struct io_uring_buf_ring, tail)); 4656 4657 /* should fit into one byte */ 4658 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4659 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4660 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4661 4662 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4663 4664 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4665 4666 io_uring_optable_init(); 4667 4668 /* 4669 * Allow user copy in the per-command field, which starts after the 4670 * file in io_kiocb and until the opcode field. The openat2 handling 4671 * requires copying in user memory into the io_kiocb object in that 4672 * range, and HARDENED_USERCOPY will complain if we haven't 4673 * correctly annotated this range. 4674 */ 4675 req_cachep = kmem_cache_create_usercopy("io_kiocb", 4676 sizeof(struct io_kiocb), 0, 4677 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4678 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU, 4679 offsetof(struct io_kiocb, cmd.data), 4680 sizeof_field(struct io_kiocb, cmd.data), NULL); 4681 4682 #ifdef CONFIG_SYSCTL 4683 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 4684 #endif 4685 4686 return 0; 4687 }; 4688 __initcall(io_uring_init); 4689