xref: /openbmc/linux/io_uring/io_uring.c (revision adb19164)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <linux/anon_inodes.h>
64 #include <linux/sched/mm.h>
65 #include <linux/uaccess.h>
66 #include <linux/nospec.h>
67 #include <linux/highmem.h>
68 #include <linux/fsnotify.h>
69 #include <linux/fadvise.h>
70 #include <linux/task_work.h>
71 #include <linux/io_uring.h>
72 #include <linux/audit.h>
73 #include <linux/security.h>
74 #include <asm/shmparam.h>
75 
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/io_uring.h>
78 
79 #include <uapi/linux/io_uring.h>
80 
81 #include "io-wq.h"
82 
83 #include "io_uring.h"
84 #include "opdef.h"
85 #include "refs.h"
86 #include "tctx.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 
95 #include "timeout.h"
96 #include "poll.h"
97 #include "rw.h"
98 #include "alloc_cache.h"
99 
100 #define IORING_MAX_ENTRIES	32768
101 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
102 
103 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
104 				 IORING_REGISTER_LAST + IORING_OP_LAST)
105 
106 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
107 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
108 
109 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
110 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
111 
112 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
113 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
114 				REQ_F_ASYNC_DATA)
115 
116 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
117 				 IO_REQ_CLEAN_FLAGS)
118 
119 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
120 
121 #define IO_COMPL_BATCH			32
122 #define IO_REQ_ALLOC_BATCH		8
123 
124 enum {
125 	IO_CHECK_CQ_OVERFLOW_BIT,
126 	IO_CHECK_CQ_DROPPED_BIT,
127 };
128 
129 enum {
130 	IO_EVENTFD_OP_SIGNAL_BIT,
131 	IO_EVENTFD_OP_FREE_BIT,
132 };
133 
134 struct io_defer_entry {
135 	struct list_head	list;
136 	struct io_kiocb		*req;
137 	u32			seq;
138 };
139 
140 /* requests with any of those set should undergo io_disarm_next() */
141 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
142 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
143 
144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
145 					 struct task_struct *task,
146 					 bool cancel_all);
147 
148 static void io_queue_sqe(struct io_kiocb *req);
149 
150 struct kmem_cache *req_cachep;
151 
152 static int __read_mostly sysctl_io_uring_disabled;
153 static int __read_mostly sysctl_io_uring_group = -1;
154 
155 #ifdef CONFIG_SYSCTL
156 static struct ctl_table kernel_io_uring_disabled_table[] = {
157 	{
158 		.procname	= "io_uring_disabled",
159 		.data		= &sysctl_io_uring_disabled,
160 		.maxlen		= sizeof(sysctl_io_uring_disabled),
161 		.mode		= 0644,
162 		.proc_handler	= proc_dointvec_minmax,
163 		.extra1		= SYSCTL_ZERO,
164 		.extra2		= SYSCTL_TWO,
165 	},
166 	{
167 		.procname	= "io_uring_group",
168 		.data		= &sysctl_io_uring_group,
169 		.maxlen		= sizeof(gid_t),
170 		.mode		= 0644,
171 		.proc_handler	= proc_dointvec,
172 	},
173 	{},
174 };
175 #endif
176 
177 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
178 {
179 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
180 	    ctx->submit_state.cqes_count)
181 		__io_submit_flush_completions(ctx);
182 }
183 
184 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
185 {
186 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
187 }
188 
189 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
190 {
191 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
192 }
193 
194 static bool io_match_linked(struct io_kiocb *head)
195 {
196 	struct io_kiocb *req;
197 
198 	io_for_each_link(req, head) {
199 		if (req->flags & REQ_F_INFLIGHT)
200 			return true;
201 	}
202 	return false;
203 }
204 
205 /*
206  * As io_match_task() but protected against racing with linked timeouts.
207  * User must not hold timeout_lock.
208  */
209 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
210 			bool cancel_all)
211 {
212 	bool matched;
213 
214 	if (task && head->task != task)
215 		return false;
216 	if (cancel_all)
217 		return true;
218 
219 	if (head->flags & REQ_F_LINK_TIMEOUT) {
220 		struct io_ring_ctx *ctx = head->ctx;
221 
222 		/* protect against races with linked timeouts */
223 		spin_lock_irq(&ctx->timeout_lock);
224 		matched = io_match_linked(head);
225 		spin_unlock_irq(&ctx->timeout_lock);
226 	} else {
227 		matched = io_match_linked(head);
228 	}
229 	return matched;
230 }
231 
232 static inline void req_fail_link_node(struct io_kiocb *req, int res)
233 {
234 	req_set_fail(req);
235 	io_req_set_res(req, res, 0);
236 }
237 
238 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
239 {
240 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
241 }
242 
243 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
244 {
245 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
246 
247 	complete(&ctx->ref_comp);
248 }
249 
250 static __cold void io_fallback_req_func(struct work_struct *work)
251 {
252 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
253 						fallback_work.work);
254 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
255 	struct io_kiocb *req, *tmp;
256 	struct io_tw_state ts = { .locked = true, };
257 
258 	percpu_ref_get(&ctx->refs);
259 	mutex_lock(&ctx->uring_lock);
260 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
261 		req->io_task_work.func(req, &ts);
262 	if (WARN_ON_ONCE(!ts.locked))
263 		return;
264 	io_submit_flush_completions(ctx);
265 	mutex_unlock(&ctx->uring_lock);
266 	percpu_ref_put(&ctx->refs);
267 }
268 
269 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
270 {
271 	unsigned hash_buckets = 1U << bits;
272 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
273 
274 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
275 	if (!table->hbs)
276 		return -ENOMEM;
277 
278 	table->hash_bits = bits;
279 	init_hash_table(table, hash_buckets);
280 	return 0;
281 }
282 
283 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
284 {
285 	struct io_ring_ctx *ctx;
286 	int hash_bits;
287 
288 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
289 	if (!ctx)
290 		return NULL;
291 
292 	xa_init(&ctx->io_bl_xa);
293 
294 	/*
295 	 * Use 5 bits less than the max cq entries, that should give us around
296 	 * 32 entries per hash list if totally full and uniformly spread, but
297 	 * don't keep too many buckets to not overconsume memory.
298 	 */
299 	hash_bits = ilog2(p->cq_entries) - 5;
300 	hash_bits = clamp(hash_bits, 1, 8);
301 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
302 		goto err;
303 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
304 		goto err;
305 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
306 			    0, GFP_KERNEL))
307 		goto err;
308 
309 	ctx->flags = p->flags;
310 	init_waitqueue_head(&ctx->sqo_sq_wait);
311 	INIT_LIST_HEAD(&ctx->sqd_list);
312 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
313 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
314 	INIT_HLIST_HEAD(&ctx->io_buf_list);
315 	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
316 			    sizeof(struct io_rsrc_node));
317 	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
318 			    sizeof(struct async_poll));
319 	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
320 			    sizeof(struct io_async_msghdr));
321 	init_completion(&ctx->ref_comp);
322 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
323 	mutex_init(&ctx->uring_lock);
324 	init_waitqueue_head(&ctx->cq_wait);
325 	init_waitqueue_head(&ctx->poll_wq);
326 	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
327 	spin_lock_init(&ctx->completion_lock);
328 	spin_lock_init(&ctx->timeout_lock);
329 	INIT_WQ_LIST(&ctx->iopoll_list);
330 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
331 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
332 	INIT_LIST_HEAD(&ctx->defer_list);
333 	INIT_LIST_HEAD(&ctx->timeout_list);
334 	INIT_LIST_HEAD(&ctx->ltimeout_list);
335 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
336 	init_llist_head(&ctx->work_llist);
337 	INIT_LIST_HEAD(&ctx->tctx_list);
338 	ctx->submit_state.free_list.next = NULL;
339 	INIT_WQ_LIST(&ctx->locked_free_list);
340 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
341 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
342 	return ctx;
343 err:
344 	kfree(ctx->cancel_table.hbs);
345 	kfree(ctx->cancel_table_locked.hbs);
346 	kfree(ctx->io_bl);
347 	xa_destroy(&ctx->io_bl_xa);
348 	kfree(ctx);
349 	return NULL;
350 }
351 
352 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
353 {
354 	struct io_rings *r = ctx->rings;
355 
356 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
357 	ctx->cq_extra--;
358 }
359 
360 static bool req_need_defer(struct io_kiocb *req, u32 seq)
361 {
362 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
363 		struct io_ring_ctx *ctx = req->ctx;
364 
365 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
366 	}
367 
368 	return false;
369 }
370 
371 static void io_clean_op(struct io_kiocb *req)
372 {
373 	if (req->flags & REQ_F_BUFFER_SELECTED) {
374 		spin_lock(&req->ctx->completion_lock);
375 		io_put_kbuf_comp(req);
376 		spin_unlock(&req->ctx->completion_lock);
377 	}
378 
379 	if (req->flags & REQ_F_NEED_CLEANUP) {
380 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
381 
382 		if (def->cleanup)
383 			def->cleanup(req);
384 	}
385 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
386 		kfree(req->apoll->double_poll);
387 		kfree(req->apoll);
388 		req->apoll = NULL;
389 	}
390 	if (req->flags & REQ_F_INFLIGHT) {
391 		struct io_uring_task *tctx = req->task->io_uring;
392 
393 		atomic_dec(&tctx->inflight_tracked);
394 	}
395 	if (req->flags & REQ_F_CREDS)
396 		put_cred(req->creds);
397 	if (req->flags & REQ_F_ASYNC_DATA) {
398 		kfree(req->async_data);
399 		req->async_data = NULL;
400 	}
401 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
402 }
403 
404 static inline void io_req_track_inflight(struct io_kiocb *req)
405 {
406 	if (!(req->flags & REQ_F_INFLIGHT)) {
407 		req->flags |= REQ_F_INFLIGHT;
408 		atomic_inc(&req->task->io_uring->inflight_tracked);
409 	}
410 }
411 
412 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
413 {
414 	if (WARN_ON_ONCE(!req->link))
415 		return NULL;
416 
417 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
418 	req->flags |= REQ_F_LINK_TIMEOUT;
419 
420 	/* linked timeouts should have two refs once prep'ed */
421 	io_req_set_refcount(req);
422 	__io_req_set_refcount(req->link, 2);
423 	return req->link;
424 }
425 
426 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
427 {
428 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
429 		return NULL;
430 	return __io_prep_linked_timeout(req);
431 }
432 
433 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
434 {
435 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
436 }
437 
438 static inline void io_arm_ltimeout(struct io_kiocb *req)
439 {
440 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
441 		__io_arm_ltimeout(req);
442 }
443 
444 static void io_prep_async_work(struct io_kiocb *req)
445 {
446 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
447 	struct io_ring_ctx *ctx = req->ctx;
448 
449 	if (!(req->flags & REQ_F_CREDS)) {
450 		req->flags |= REQ_F_CREDS;
451 		req->creds = get_current_cred();
452 	}
453 
454 	req->work.list.next = NULL;
455 	req->work.flags = 0;
456 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
457 	if (req->flags & REQ_F_FORCE_ASYNC)
458 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
459 
460 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
461 		req->flags |= io_file_get_flags(req->file);
462 
463 	if (req->file && (req->flags & REQ_F_ISREG)) {
464 		bool should_hash = def->hash_reg_file;
465 
466 		/* don't serialize this request if the fs doesn't need it */
467 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
468 		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
469 			should_hash = false;
470 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
471 			io_wq_hash_work(&req->work, file_inode(req->file));
472 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
473 		if (def->unbound_nonreg_file)
474 			req->work.flags |= IO_WQ_WORK_UNBOUND;
475 	}
476 }
477 
478 static void io_prep_async_link(struct io_kiocb *req)
479 {
480 	struct io_kiocb *cur;
481 
482 	if (req->flags & REQ_F_LINK_TIMEOUT) {
483 		struct io_ring_ctx *ctx = req->ctx;
484 
485 		spin_lock_irq(&ctx->timeout_lock);
486 		io_for_each_link(cur, req)
487 			io_prep_async_work(cur);
488 		spin_unlock_irq(&ctx->timeout_lock);
489 	} else {
490 		io_for_each_link(cur, req)
491 			io_prep_async_work(cur);
492 	}
493 }
494 
495 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
496 {
497 	struct io_kiocb *link = io_prep_linked_timeout(req);
498 	struct io_uring_task *tctx = req->task->io_uring;
499 
500 	BUG_ON(!tctx);
501 	BUG_ON(!tctx->io_wq);
502 
503 	/* init ->work of the whole link before punting */
504 	io_prep_async_link(req);
505 
506 	/*
507 	 * Not expected to happen, but if we do have a bug where this _can_
508 	 * happen, catch it here and ensure the request is marked as
509 	 * canceled. That will make io-wq go through the usual work cancel
510 	 * procedure rather than attempt to run this request (or create a new
511 	 * worker for it).
512 	 */
513 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
514 		req->work.flags |= IO_WQ_WORK_CANCEL;
515 
516 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
517 	io_wq_enqueue(tctx->io_wq, &req->work);
518 	if (link)
519 		io_queue_linked_timeout(link);
520 }
521 
522 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
523 {
524 	while (!list_empty(&ctx->defer_list)) {
525 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
526 						struct io_defer_entry, list);
527 
528 		if (req_need_defer(de->req, de->seq))
529 			break;
530 		list_del_init(&de->list);
531 		io_req_task_queue(de->req);
532 		kfree(de);
533 	}
534 }
535 
536 
537 static void io_eventfd_ops(struct rcu_head *rcu)
538 {
539 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
540 	int ops = atomic_xchg(&ev_fd->ops, 0);
541 
542 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
543 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
544 
545 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
546 	 * ordering in a race but if references are 0 we know we have to free
547 	 * it regardless.
548 	 */
549 	if (atomic_dec_and_test(&ev_fd->refs)) {
550 		eventfd_ctx_put(ev_fd->cq_ev_fd);
551 		kfree(ev_fd);
552 	}
553 }
554 
555 static void io_eventfd_signal(struct io_ring_ctx *ctx)
556 {
557 	struct io_ev_fd *ev_fd = NULL;
558 
559 	rcu_read_lock();
560 	/*
561 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
562 	 * and eventfd_signal
563 	 */
564 	ev_fd = rcu_dereference(ctx->io_ev_fd);
565 
566 	/*
567 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
568 	 * completed between the NULL check of ctx->io_ev_fd at the start of
569 	 * the function and rcu_read_lock.
570 	 */
571 	if (unlikely(!ev_fd))
572 		goto out;
573 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
574 		goto out;
575 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
576 		goto out;
577 
578 	if (likely(eventfd_signal_allowed())) {
579 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
580 	} else {
581 		atomic_inc(&ev_fd->refs);
582 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
583 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
584 		else
585 			atomic_dec(&ev_fd->refs);
586 	}
587 
588 out:
589 	rcu_read_unlock();
590 }
591 
592 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
593 {
594 	bool skip;
595 
596 	spin_lock(&ctx->completion_lock);
597 
598 	/*
599 	 * Eventfd should only get triggered when at least one event has been
600 	 * posted. Some applications rely on the eventfd notification count
601 	 * only changing IFF a new CQE has been added to the CQ ring. There's
602 	 * no depedency on 1:1 relationship between how many times this
603 	 * function is called (and hence the eventfd count) and number of CQEs
604 	 * posted to the CQ ring.
605 	 */
606 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
607 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
608 	spin_unlock(&ctx->completion_lock);
609 	if (skip)
610 		return;
611 
612 	io_eventfd_signal(ctx);
613 }
614 
615 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
616 {
617 	if (ctx->poll_activated)
618 		io_poll_wq_wake(ctx);
619 	if (ctx->off_timeout_used)
620 		io_flush_timeouts(ctx);
621 	if (ctx->drain_active) {
622 		spin_lock(&ctx->completion_lock);
623 		io_queue_deferred(ctx);
624 		spin_unlock(&ctx->completion_lock);
625 	}
626 	if (ctx->has_evfd)
627 		io_eventfd_flush_signal(ctx);
628 }
629 
630 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
631 {
632 	if (!ctx->lockless_cq)
633 		spin_lock(&ctx->completion_lock);
634 }
635 
636 static inline void io_cq_lock(struct io_ring_ctx *ctx)
637 	__acquires(ctx->completion_lock)
638 {
639 	spin_lock(&ctx->completion_lock);
640 }
641 
642 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
643 {
644 	io_commit_cqring(ctx);
645 	if (!ctx->task_complete) {
646 		if (!ctx->lockless_cq)
647 			spin_unlock(&ctx->completion_lock);
648 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
649 		if (!ctx->syscall_iopoll)
650 			io_cqring_wake(ctx);
651 	}
652 	io_commit_cqring_flush(ctx);
653 }
654 
655 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
656 	__releases(ctx->completion_lock)
657 {
658 	io_commit_cqring(ctx);
659 	spin_unlock(&ctx->completion_lock);
660 	io_cqring_wake(ctx);
661 	io_commit_cqring_flush(ctx);
662 }
663 
664 /* Returns true if there are no backlogged entries after the flush */
665 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
666 {
667 	struct io_overflow_cqe *ocqe;
668 	LIST_HEAD(list);
669 
670 	spin_lock(&ctx->completion_lock);
671 	list_splice_init(&ctx->cq_overflow_list, &list);
672 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
673 	spin_unlock(&ctx->completion_lock);
674 
675 	while (!list_empty(&list)) {
676 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
677 		list_del(&ocqe->list);
678 		kfree(ocqe);
679 	}
680 }
681 
682 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
683 {
684 	size_t cqe_size = sizeof(struct io_uring_cqe);
685 
686 	if (__io_cqring_events(ctx) == ctx->cq_entries)
687 		return;
688 
689 	if (ctx->flags & IORING_SETUP_CQE32)
690 		cqe_size <<= 1;
691 
692 	io_cq_lock(ctx);
693 	while (!list_empty(&ctx->cq_overflow_list)) {
694 		struct io_uring_cqe *cqe;
695 		struct io_overflow_cqe *ocqe;
696 
697 		if (!io_get_cqe_overflow(ctx, &cqe, true))
698 			break;
699 		ocqe = list_first_entry(&ctx->cq_overflow_list,
700 					struct io_overflow_cqe, list);
701 		memcpy(cqe, &ocqe->cqe, cqe_size);
702 		list_del(&ocqe->list);
703 		kfree(ocqe);
704 	}
705 
706 	if (list_empty(&ctx->cq_overflow_list)) {
707 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
708 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
709 	}
710 	io_cq_unlock_post(ctx);
711 }
712 
713 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
714 {
715 	/* iopoll syncs against uring_lock, not completion_lock */
716 	if (ctx->flags & IORING_SETUP_IOPOLL)
717 		mutex_lock(&ctx->uring_lock);
718 	__io_cqring_overflow_flush(ctx);
719 	if (ctx->flags & IORING_SETUP_IOPOLL)
720 		mutex_unlock(&ctx->uring_lock);
721 }
722 
723 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
724 {
725 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
726 		io_cqring_do_overflow_flush(ctx);
727 }
728 
729 /* can be called by any task */
730 static void io_put_task_remote(struct task_struct *task)
731 {
732 	struct io_uring_task *tctx = task->io_uring;
733 
734 	percpu_counter_sub(&tctx->inflight, 1);
735 	if (unlikely(atomic_read(&tctx->in_cancel)))
736 		wake_up(&tctx->wait);
737 	put_task_struct(task);
738 }
739 
740 /* used by a task to put its own references */
741 static void io_put_task_local(struct task_struct *task)
742 {
743 	task->io_uring->cached_refs++;
744 }
745 
746 /* must to be called somewhat shortly after putting a request */
747 static inline void io_put_task(struct task_struct *task)
748 {
749 	if (likely(task == current))
750 		io_put_task_local(task);
751 	else
752 		io_put_task_remote(task);
753 }
754 
755 void io_task_refs_refill(struct io_uring_task *tctx)
756 {
757 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
758 
759 	percpu_counter_add(&tctx->inflight, refill);
760 	refcount_add(refill, &current->usage);
761 	tctx->cached_refs += refill;
762 }
763 
764 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
765 {
766 	struct io_uring_task *tctx = task->io_uring;
767 	unsigned int refs = tctx->cached_refs;
768 
769 	if (refs) {
770 		tctx->cached_refs = 0;
771 		percpu_counter_sub(&tctx->inflight, refs);
772 		put_task_struct_many(task, refs);
773 	}
774 }
775 
776 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
777 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
778 {
779 	struct io_overflow_cqe *ocqe;
780 	size_t ocq_size = sizeof(struct io_overflow_cqe);
781 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
782 
783 	lockdep_assert_held(&ctx->completion_lock);
784 
785 	if (is_cqe32)
786 		ocq_size += sizeof(struct io_uring_cqe);
787 
788 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
789 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
790 	if (!ocqe) {
791 		/*
792 		 * If we're in ring overflow flush mode, or in task cancel mode,
793 		 * or cannot allocate an overflow entry, then we need to drop it
794 		 * on the floor.
795 		 */
796 		io_account_cq_overflow(ctx);
797 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
798 		return false;
799 	}
800 	if (list_empty(&ctx->cq_overflow_list)) {
801 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
802 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
803 
804 	}
805 	ocqe->cqe.user_data = user_data;
806 	ocqe->cqe.res = res;
807 	ocqe->cqe.flags = cflags;
808 	if (is_cqe32) {
809 		ocqe->cqe.big_cqe[0] = extra1;
810 		ocqe->cqe.big_cqe[1] = extra2;
811 	}
812 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
813 	return true;
814 }
815 
816 void io_req_cqe_overflow(struct io_kiocb *req)
817 {
818 	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
819 				req->cqe.res, req->cqe.flags,
820 				req->big_cqe.extra1, req->big_cqe.extra2);
821 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
822 }
823 
824 /*
825  * writes to the cq entry need to come after reading head; the
826  * control dependency is enough as we're using WRITE_ONCE to
827  * fill the cq entry
828  */
829 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
830 {
831 	struct io_rings *rings = ctx->rings;
832 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
833 	unsigned int free, queued, len;
834 
835 	/*
836 	 * Posting into the CQ when there are pending overflowed CQEs may break
837 	 * ordering guarantees, which will affect links, F_MORE users and more.
838 	 * Force overflow the completion.
839 	 */
840 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
841 		return false;
842 
843 	/* userspace may cheat modifying the tail, be safe and do min */
844 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
845 	free = ctx->cq_entries - queued;
846 	/* we need a contiguous range, limit based on the current array offset */
847 	len = min(free, ctx->cq_entries - off);
848 	if (!len)
849 		return false;
850 
851 	if (ctx->flags & IORING_SETUP_CQE32) {
852 		off <<= 1;
853 		len <<= 1;
854 	}
855 
856 	ctx->cqe_cached = &rings->cqes[off];
857 	ctx->cqe_sentinel = ctx->cqe_cached + len;
858 	return true;
859 }
860 
861 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
862 			      u32 cflags)
863 {
864 	struct io_uring_cqe *cqe;
865 
866 	ctx->cq_extra++;
867 
868 	/*
869 	 * If we can't get a cq entry, userspace overflowed the
870 	 * submission (by quite a lot). Increment the overflow count in
871 	 * the ring.
872 	 */
873 	if (likely(io_get_cqe(ctx, &cqe))) {
874 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
875 
876 		WRITE_ONCE(cqe->user_data, user_data);
877 		WRITE_ONCE(cqe->res, res);
878 		WRITE_ONCE(cqe->flags, cflags);
879 
880 		if (ctx->flags & IORING_SETUP_CQE32) {
881 			WRITE_ONCE(cqe->big_cqe[0], 0);
882 			WRITE_ONCE(cqe->big_cqe[1], 0);
883 		}
884 		return true;
885 	}
886 	return false;
887 }
888 
889 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
890 	__must_hold(&ctx->uring_lock)
891 {
892 	struct io_submit_state *state = &ctx->submit_state;
893 	unsigned int i;
894 
895 	lockdep_assert_held(&ctx->uring_lock);
896 	for (i = 0; i < state->cqes_count; i++) {
897 		struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
898 
899 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
900 			if (ctx->lockless_cq) {
901 				spin_lock(&ctx->completion_lock);
902 				io_cqring_event_overflow(ctx, cqe->user_data,
903 							cqe->res, cqe->flags, 0, 0);
904 				spin_unlock(&ctx->completion_lock);
905 			} else {
906 				io_cqring_event_overflow(ctx, cqe->user_data,
907 							cqe->res, cqe->flags, 0, 0);
908 			}
909 		}
910 	}
911 	state->cqes_count = 0;
912 }
913 
914 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
915 			      bool allow_overflow)
916 {
917 	bool filled;
918 
919 	io_cq_lock(ctx);
920 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
921 	if (!filled && allow_overflow)
922 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
923 
924 	io_cq_unlock_post(ctx);
925 	return filled;
926 }
927 
928 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
929 {
930 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
931 }
932 
933 /*
934  * A helper for multishot requests posting additional CQEs.
935  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
936  */
937 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
938 {
939 	struct io_ring_ctx *ctx = req->ctx;
940 	u64 user_data = req->cqe.user_data;
941 	struct io_uring_cqe *cqe;
942 
943 	if (!defer)
944 		return __io_post_aux_cqe(ctx, user_data, res, cflags, false);
945 
946 	lockdep_assert_held(&ctx->uring_lock);
947 
948 	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
949 		__io_cq_lock(ctx);
950 		__io_flush_post_cqes(ctx);
951 		/* no need to flush - flush is deferred */
952 		__io_cq_unlock_post(ctx);
953 	}
954 
955 	/* For defered completions this is not as strict as it is otherwise,
956 	 * however it's main job is to prevent unbounded posted completions,
957 	 * and in that it works just as well.
958 	 */
959 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
960 		return false;
961 
962 	cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
963 	cqe->user_data = user_data;
964 	cqe->res = res;
965 	cqe->flags = cflags;
966 	return true;
967 }
968 
969 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
970 {
971 	struct io_ring_ctx *ctx = req->ctx;
972 	struct io_rsrc_node *rsrc_node = NULL;
973 
974 	io_cq_lock(ctx);
975 	if (!(req->flags & REQ_F_CQE_SKIP)) {
976 		if (!io_fill_cqe_req(ctx, req))
977 			io_req_cqe_overflow(req);
978 	}
979 
980 	/*
981 	 * If we're the last reference to this request, add to our locked
982 	 * free_list cache.
983 	 */
984 	if (req_ref_put_and_test(req)) {
985 		if (req->flags & IO_REQ_LINK_FLAGS) {
986 			if (req->flags & IO_DISARM_MASK)
987 				io_disarm_next(req);
988 			if (req->link) {
989 				io_req_task_queue(req->link);
990 				req->link = NULL;
991 			}
992 		}
993 		io_put_kbuf_comp(req);
994 		if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
995 			io_clean_op(req);
996 		io_put_file(req);
997 
998 		rsrc_node = req->rsrc_node;
999 		/*
1000 		 * Selected buffer deallocation in io_clean_op() assumes that
1001 		 * we don't hold ->completion_lock. Clean them here to avoid
1002 		 * deadlocks.
1003 		 */
1004 		io_put_task_remote(req->task);
1005 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1006 		ctx->locked_free_nr++;
1007 	}
1008 	io_cq_unlock_post(ctx);
1009 
1010 	if (rsrc_node) {
1011 		io_ring_submit_lock(ctx, issue_flags);
1012 		io_put_rsrc_node(ctx, rsrc_node);
1013 		io_ring_submit_unlock(ctx, issue_flags);
1014 	}
1015 }
1016 
1017 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1018 {
1019 	if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1020 		req->io_task_work.func = io_req_task_complete;
1021 		io_req_task_work_add(req);
1022 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1023 		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1024 		__io_req_complete_post(req, issue_flags);
1025 	} else {
1026 		struct io_ring_ctx *ctx = req->ctx;
1027 
1028 		mutex_lock(&ctx->uring_lock);
1029 		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1030 		mutex_unlock(&ctx->uring_lock);
1031 	}
1032 }
1033 
1034 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1035 	__must_hold(&ctx->uring_lock)
1036 {
1037 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1038 
1039 	lockdep_assert_held(&req->ctx->uring_lock);
1040 
1041 	req_set_fail(req);
1042 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1043 	if (def->fail)
1044 		def->fail(req);
1045 	io_req_complete_defer(req);
1046 }
1047 
1048 /*
1049  * Don't initialise the fields below on every allocation, but do that in
1050  * advance and keep them valid across allocations.
1051  */
1052 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1053 {
1054 	req->ctx = ctx;
1055 	req->link = NULL;
1056 	req->async_data = NULL;
1057 	/* not necessary, but safer to zero */
1058 	memset(&req->cqe, 0, sizeof(req->cqe));
1059 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1060 }
1061 
1062 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1063 					struct io_submit_state *state)
1064 {
1065 	spin_lock(&ctx->completion_lock);
1066 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1067 	ctx->locked_free_nr = 0;
1068 	spin_unlock(&ctx->completion_lock);
1069 }
1070 
1071 /*
1072  * A request might get retired back into the request caches even before opcode
1073  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1074  * Because of that, io_alloc_req() should be called only under ->uring_lock
1075  * and with extra caution to not get a request that is still worked on.
1076  */
1077 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1078 	__must_hold(&ctx->uring_lock)
1079 {
1080 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1081 	void *reqs[IO_REQ_ALLOC_BATCH];
1082 	int ret, i;
1083 
1084 	/*
1085 	 * If we have more than a batch's worth of requests in our IRQ side
1086 	 * locked cache, grab the lock and move them over to our submission
1087 	 * side cache.
1088 	 */
1089 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1090 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1091 		if (!io_req_cache_empty(ctx))
1092 			return true;
1093 	}
1094 
1095 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1096 
1097 	/*
1098 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1099 	 * retry single alloc to be on the safe side.
1100 	 */
1101 	if (unlikely(ret <= 0)) {
1102 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1103 		if (!reqs[0])
1104 			return false;
1105 		ret = 1;
1106 	}
1107 
1108 	percpu_ref_get_many(&ctx->refs, ret);
1109 	for (i = 0; i < ret; i++) {
1110 		struct io_kiocb *req = reqs[i];
1111 
1112 		io_preinit_req(req, ctx);
1113 		io_req_add_to_cache(req, ctx);
1114 	}
1115 	return true;
1116 }
1117 
1118 __cold void io_free_req(struct io_kiocb *req)
1119 {
1120 	/* refs were already put, restore them for io_req_task_complete() */
1121 	req->flags &= ~REQ_F_REFCOUNT;
1122 	/* we only want to free it, don't post CQEs */
1123 	req->flags |= REQ_F_CQE_SKIP;
1124 	req->io_task_work.func = io_req_task_complete;
1125 	io_req_task_work_add(req);
1126 }
1127 
1128 static void __io_req_find_next_prep(struct io_kiocb *req)
1129 {
1130 	struct io_ring_ctx *ctx = req->ctx;
1131 
1132 	spin_lock(&ctx->completion_lock);
1133 	io_disarm_next(req);
1134 	spin_unlock(&ctx->completion_lock);
1135 }
1136 
1137 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1138 {
1139 	struct io_kiocb *nxt;
1140 
1141 	/*
1142 	 * If LINK is set, we have dependent requests in this chain. If we
1143 	 * didn't fail this request, queue the first one up, moving any other
1144 	 * dependencies to the next request. In case of failure, fail the rest
1145 	 * of the chain.
1146 	 */
1147 	if (unlikely(req->flags & IO_DISARM_MASK))
1148 		__io_req_find_next_prep(req);
1149 	nxt = req->link;
1150 	req->link = NULL;
1151 	return nxt;
1152 }
1153 
1154 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1155 {
1156 	if (!ctx)
1157 		return;
1158 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1159 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1160 	if (ts->locked) {
1161 		io_submit_flush_completions(ctx);
1162 		mutex_unlock(&ctx->uring_lock);
1163 		ts->locked = false;
1164 	}
1165 	percpu_ref_put(&ctx->refs);
1166 }
1167 
1168 static unsigned int handle_tw_list(struct llist_node *node,
1169 				   struct io_ring_ctx **ctx,
1170 				   struct io_tw_state *ts,
1171 				   struct llist_node *last)
1172 {
1173 	unsigned int count = 0;
1174 
1175 	while (node && node != last) {
1176 		struct llist_node *next = node->next;
1177 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1178 						    io_task_work.node);
1179 
1180 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1181 
1182 		if (req->ctx != *ctx) {
1183 			ctx_flush_and_put(*ctx, ts);
1184 			*ctx = req->ctx;
1185 			/* if not contended, grab and improve batching */
1186 			ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1187 			percpu_ref_get(&(*ctx)->refs);
1188 		}
1189 		INDIRECT_CALL_2(req->io_task_work.func,
1190 				io_poll_task_func, io_req_rw_complete,
1191 				req, ts);
1192 		node = next;
1193 		count++;
1194 		if (unlikely(need_resched())) {
1195 			ctx_flush_and_put(*ctx, ts);
1196 			*ctx = NULL;
1197 			cond_resched();
1198 		}
1199 	}
1200 
1201 	return count;
1202 }
1203 
1204 /**
1205  * io_llist_xchg - swap all entries in a lock-less list
1206  * @head:	the head of lock-less list to delete all entries
1207  * @new:	new entry as the head of the list
1208  *
1209  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1210  * The order of entries returned is from the newest to the oldest added one.
1211  */
1212 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1213 					       struct llist_node *new)
1214 {
1215 	return xchg(&head->first, new);
1216 }
1217 
1218 /**
1219  * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1220  * @head:	the head of lock-less list to delete all entries
1221  * @old:	expected old value of the first entry of the list
1222  * @new:	new entry as the head of the list
1223  *
1224  * perform a cmpxchg on the first entry of the list.
1225  */
1226 
1227 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1228 						  struct llist_node *old,
1229 						  struct llist_node *new)
1230 {
1231 	return cmpxchg(&head->first, old, new);
1232 }
1233 
1234 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1235 {
1236 	struct llist_node *node = llist_del_all(&tctx->task_list);
1237 	struct io_ring_ctx *last_ctx = NULL;
1238 	struct io_kiocb *req;
1239 
1240 	while (node) {
1241 		req = container_of(node, struct io_kiocb, io_task_work.node);
1242 		node = node->next;
1243 		if (sync && last_ctx != req->ctx) {
1244 			if (last_ctx) {
1245 				flush_delayed_work(&last_ctx->fallback_work);
1246 				percpu_ref_put(&last_ctx->refs);
1247 			}
1248 			last_ctx = req->ctx;
1249 			percpu_ref_get(&last_ctx->refs);
1250 		}
1251 		if (llist_add(&req->io_task_work.node,
1252 			      &req->ctx->fallback_llist))
1253 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1254 	}
1255 
1256 	if (last_ctx) {
1257 		flush_delayed_work(&last_ctx->fallback_work);
1258 		percpu_ref_put(&last_ctx->refs);
1259 	}
1260 }
1261 
1262 void tctx_task_work(struct callback_head *cb)
1263 {
1264 	struct io_tw_state ts = {};
1265 	struct io_ring_ctx *ctx = NULL;
1266 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1267 						  task_work);
1268 	struct llist_node fake = {};
1269 	struct llist_node *node;
1270 	unsigned int loops = 0;
1271 	unsigned int count = 0;
1272 
1273 	if (unlikely(current->flags & PF_EXITING)) {
1274 		io_fallback_tw(tctx, true);
1275 		return;
1276 	}
1277 
1278 	do {
1279 		loops++;
1280 		node = io_llist_xchg(&tctx->task_list, &fake);
1281 		count += handle_tw_list(node, &ctx, &ts, &fake);
1282 
1283 		/* skip expensive cmpxchg if there are items in the list */
1284 		if (READ_ONCE(tctx->task_list.first) != &fake)
1285 			continue;
1286 		if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1287 			io_submit_flush_completions(ctx);
1288 			if (READ_ONCE(tctx->task_list.first) != &fake)
1289 				continue;
1290 		}
1291 		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1292 	} while (node != &fake);
1293 
1294 	ctx_flush_and_put(ctx, &ts);
1295 
1296 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1297 	if (unlikely(atomic_read(&tctx->in_cancel)))
1298 		io_uring_drop_tctx_refs(current);
1299 
1300 	trace_io_uring_task_work_run(tctx, count, loops);
1301 }
1302 
1303 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1304 {
1305 	struct io_ring_ctx *ctx = req->ctx;
1306 	unsigned nr_wait, nr_tw, nr_tw_prev;
1307 	struct llist_node *first;
1308 
1309 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1310 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1311 
1312 	first = READ_ONCE(ctx->work_llist.first);
1313 	do {
1314 		nr_tw_prev = 0;
1315 		if (first) {
1316 			struct io_kiocb *first_req = container_of(first,
1317 							struct io_kiocb,
1318 							io_task_work.node);
1319 			/*
1320 			 * Might be executed at any moment, rely on
1321 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1322 			 */
1323 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1324 		}
1325 		nr_tw = nr_tw_prev + 1;
1326 		/* Large enough to fail the nr_wait comparison below */
1327 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1328 			nr_tw = INT_MAX;
1329 
1330 		req->nr_tw = nr_tw;
1331 		req->io_task_work.node.next = first;
1332 	} while (!try_cmpxchg(&ctx->work_llist.first, &first,
1333 			      &req->io_task_work.node));
1334 
1335 	if (!first) {
1336 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1337 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1338 		if (ctx->has_evfd)
1339 			io_eventfd_signal(ctx);
1340 	}
1341 
1342 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1343 	/* no one is waiting */
1344 	if (!nr_wait)
1345 		return;
1346 	/* either not enough or the previous add has already woken it up */
1347 	if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1348 		return;
1349 	/* pairs with set_current_state() in io_cqring_wait() */
1350 	smp_mb__after_atomic();
1351 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1352 }
1353 
1354 static void io_req_normal_work_add(struct io_kiocb *req)
1355 {
1356 	struct io_uring_task *tctx = req->task->io_uring;
1357 	struct io_ring_ctx *ctx = req->ctx;
1358 
1359 	/* task_work already pending, we're done */
1360 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1361 		return;
1362 
1363 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1364 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1365 
1366 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1367 		return;
1368 
1369 	io_fallback_tw(tctx, false);
1370 }
1371 
1372 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1373 {
1374 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1375 		rcu_read_lock();
1376 		io_req_local_work_add(req, flags);
1377 		rcu_read_unlock();
1378 	} else {
1379 		io_req_normal_work_add(req);
1380 	}
1381 }
1382 
1383 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1384 {
1385 	struct llist_node *node;
1386 
1387 	node = llist_del_all(&ctx->work_llist);
1388 	while (node) {
1389 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1390 						    io_task_work.node);
1391 
1392 		node = node->next;
1393 		io_req_normal_work_add(req);
1394 	}
1395 }
1396 
1397 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1398 {
1399 	struct llist_node *node;
1400 	unsigned int loops = 0;
1401 	int ret = 0;
1402 
1403 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1404 		return -EEXIST;
1405 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1406 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1407 again:
1408 	/*
1409 	 * llists are in reverse order, flip it back the right way before
1410 	 * running the pending items.
1411 	 */
1412 	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1413 	while (node) {
1414 		struct llist_node *next = node->next;
1415 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1416 						    io_task_work.node);
1417 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1418 		INDIRECT_CALL_2(req->io_task_work.func,
1419 				io_poll_task_func, io_req_rw_complete,
1420 				req, ts);
1421 		ret++;
1422 		node = next;
1423 	}
1424 	loops++;
1425 
1426 	if (!llist_empty(&ctx->work_llist))
1427 		goto again;
1428 	if (ts->locked) {
1429 		io_submit_flush_completions(ctx);
1430 		if (!llist_empty(&ctx->work_llist))
1431 			goto again;
1432 	}
1433 	trace_io_uring_local_work_run(ctx, ret, loops);
1434 	return ret;
1435 }
1436 
1437 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1438 {
1439 	struct io_tw_state ts = { .locked = true, };
1440 	int ret;
1441 
1442 	if (llist_empty(&ctx->work_llist))
1443 		return 0;
1444 
1445 	ret = __io_run_local_work(ctx, &ts);
1446 	/* shouldn't happen! */
1447 	if (WARN_ON_ONCE(!ts.locked))
1448 		mutex_lock(&ctx->uring_lock);
1449 	return ret;
1450 }
1451 
1452 static int io_run_local_work(struct io_ring_ctx *ctx)
1453 {
1454 	struct io_tw_state ts = {};
1455 	int ret;
1456 
1457 	ts.locked = mutex_trylock(&ctx->uring_lock);
1458 	ret = __io_run_local_work(ctx, &ts);
1459 	if (ts.locked)
1460 		mutex_unlock(&ctx->uring_lock);
1461 
1462 	return ret;
1463 }
1464 
1465 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1466 {
1467 	io_tw_lock(req->ctx, ts);
1468 	io_req_defer_failed(req, req->cqe.res);
1469 }
1470 
1471 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1472 {
1473 	io_tw_lock(req->ctx, ts);
1474 	/* req->task == current here, checking PF_EXITING is safe */
1475 	if (unlikely(req->task->flags & PF_EXITING))
1476 		io_req_defer_failed(req, -EFAULT);
1477 	else if (req->flags & REQ_F_FORCE_ASYNC)
1478 		io_queue_iowq(req, ts);
1479 	else
1480 		io_queue_sqe(req);
1481 }
1482 
1483 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1484 {
1485 	io_req_set_res(req, ret, 0);
1486 	req->io_task_work.func = io_req_task_cancel;
1487 	io_req_task_work_add(req);
1488 }
1489 
1490 void io_req_task_queue(struct io_kiocb *req)
1491 {
1492 	req->io_task_work.func = io_req_task_submit;
1493 	io_req_task_work_add(req);
1494 }
1495 
1496 void io_queue_next(struct io_kiocb *req)
1497 {
1498 	struct io_kiocb *nxt = io_req_find_next(req);
1499 
1500 	if (nxt)
1501 		io_req_task_queue(nxt);
1502 }
1503 
1504 static void io_free_batch_list(struct io_ring_ctx *ctx,
1505 			       struct io_wq_work_node *node)
1506 	__must_hold(&ctx->uring_lock)
1507 {
1508 	do {
1509 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1510 						    comp_list);
1511 
1512 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1513 			if (req->flags & REQ_F_REFCOUNT) {
1514 				node = req->comp_list.next;
1515 				if (!req_ref_put_and_test(req))
1516 					continue;
1517 			}
1518 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1519 				struct async_poll *apoll = req->apoll;
1520 
1521 				if (apoll->double_poll)
1522 					kfree(apoll->double_poll);
1523 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1524 					kfree(apoll);
1525 				req->flags &= ~REQ_F_POLLED;
1526 			}
1527 			if (req->flags & IO_REQ_LINK_FLAGS)
1528 				io_queue_next(req);
1529 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1530 				io_clean_op(req);
1531 		}
1532 		io_put_file(req);
1533 
1534 		io_req_put_rsrc_locked(req, ctx);
1535 
1536 		io_put_task(req->task);
1537 		node = req->comp_list.next;
1538 		io_req_add_to_cache(req, ctx);
1539 	} while (node);
1540 }
1541 
1542 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1543 	__must_hold(&ctx->uring_lock)
1544 {
1545 	struct io_submit_state *state = &ctx->submit_state;
1546 	struct io_wq_work_node *node;
1547 
1548 	__io_cq_lock(ctx);
1549 	/* must come first to preserve CQE ordering in failure cases */
1550 	if (state->cqes_count)
1551 		__io_flush_post_cqes(ctx);
1552 	__wq_list_for_each(node, &state->compl_reqs) {
1553 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1554 					    comp_list);
1555 
1556 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1557 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1558 			if (ctx->lockless_cq) {
1559 				spin_lock(&ctx->completion_lock);
1560 				io_req_cqe_overflow(req);
1561 				spin_unlock(&ctx->completion_lock);
1562 			} else {
1563 				io_req_cqe_overflow(req);
1564 			}
1565 		}
1566 	}
1567 	__io_cq_unlock_post(ctx);
1568 
1569 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1570 		io_free_batch_list(ctx, state->compl_reqs.first);
1571 		INIT_WQ_LIST(&state->compl_reqs);
1572 	}
1573 }
1574 
1575 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1576 {
1577 	/* See comment at the top of this file */
1578 	smp_rmb();
1579 	return __io_cqring_events(ctx);
1580 }
1581 
1582 /*
1583  * We can't just wait for polled events to come to us, we have to actively
1584  * find and complete them.
1585  */
1586 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1587 {
1588 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1589 		return;
1590 
1591 	mutex_lock(&ctx->uring_lock);
1592 	while (!wq_list_empty(&ctx->iopoll_list)) {
1593 		/* let it sleep and repeat later if can't complete a request */
1594 		if (io_do_iopoll(ctx, true) == 0)
1595 			break;
1596 		/*
1597 		 * Ensure we allow local-to-the-cpu processing to take place,
1598 		 * in this case we need to ensure that we reap all events.
1599 		 * Also let task_work, etc. to progress by releasing the mutex
1600 		 */
1601 		if (need_resched()) {
1602 			mutex_unlock(&ctx->uring_lock);
1603 			cond_resched();
1604 			mutex_lock(&ctx->uring_lock);
1605 		}
1606 	}
1607 	mutex_unlock(&ctx->uring_lock);
1608 }
1609 
1610 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1611 {
1612 	unsigned int nr_events = 0;
1613 	unsigned long check_cq;
1614 
1615 	if (!io_allowed_run_tw(ctx))
1616 		return -EEXIST;
1617 
1618 	check_cq = READ_ONCE(ctx->check_cq);
1619 	if (unlikely(check_cq)) {
1620 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1621 			__io_cqring_overflow_flush(ctx);
1622 		/*
1623 		 * Similarly do not spin if we have not informed the user of any
1624 		 * dropped CQE.
1625 		 */
1626 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1627 			return -EBADR;
1628 	}
1629 	/*
1630 	 * Don't enter poll loop if we already have events pending.
1631 	 * If we do, we can potentially be spinning for commands that
1632 	 * already triggered a CQE (eg in error).
1633 	 */
1634 	if (io_cqring_events(ctx))
1635 		return 0;
1636 
1637 	do {
1638 		int ret = 0;
1639 
1640 		/*
1641 		 * If a submit got punted to a workqueue, we can have the
1642 		 * application entering polling for a command before it gets
1643 		 * issued. That app will hold the uring_lock for the duration
1644 		 * of the poll right here, so we need to take a breather every
1645 		 * now and then to ensure that the issue has a chance to add
1646 		 * the poll to the issued list. Otherwise we can spin here
1647 		 * forever, while the workqueue is stuck trying to acquire the
1648 		 * very same mutex.
1649 		 */
1650 		if (wq_list_empty(&ctx->iopoll_list) ||
1651 		    io_task_work_pending(ctx)) {
1652 			u32 tail = ctx->cached_cq_tail;
1653 
1654 			(void) io_run_local_work_locked(ctx);
1655 
1656 			if (task_work_pending(current) ||
1657 			    wq_list_empty(&ctx->iopoll_list)) {
1658 				mutex_unlock(&ctx->uring_lock);
1659 				io_run_task_work();
1660 				mutex_lock(&ctx->uring_lock);
1661 			}
1662 			/* some requests don't go through iopoll_list */
1663 			if (tail != ctx->cached_cq_tail ||
1664 			    wq_list_empty(&ctx->iopoll_list))
1665 				break;
1666 		}
1667 		ret = io_do_iopoll(ctx, !min);
1668 		if (unlikely(ret < 0))
1669 			return ret;
1670 
1671 		if (task_sigpending(current))
1672 			return -EINTR;
1673 		if (need_resched())
1674 			break;
1675 
1676 		nr_events += ret;
1677 	} while (nr_events < min);
1678 
1679 	return 0;
1680 }
1681 
1682 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1683 {
1684 	if (ts->locked)
1685 		io_req_complete_defer(req);
1686 	else
1687 		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1688 }
1689 
1690 /*
1691  * After the iocb has been issued, it's safe to be found on the poll list.
1692  * Adding the kiocb to the list AFTER submission ensures that we don't
1693  * find it from a io_do_iopoll() thread before the issuer is done
1694  * accessing the kiocb cookie.
1695  */
1696 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1697 {
1698 	struct io_ring_ctx *ctx = req->ctx;
1699 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1700 
1701 	/* workqueue context doesn't hold uring_lock, grab it now */
1702 	if (unlikely(needs_lock))
1703 		mutex_lock(&ctx->uring_lock);
1704 
1705 	/*
1706 	 * Track whether we have multiple files in our lists. This will impact
1707 	 * how we do polling eventually, not spinning if we're on potentially
1708 	 * different devices.
1709 	 */
1710 	if (wq_list_empty(&ctx->iopoll_list)) {
1711 		ctx->poll_multi_queue = false;
1712 	} else if (!ctx->poll_multi_queue) {
1713 		struct io_kiocb *list_req;
1714 
1715 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1716 					comp_list);
1717 		if (list_req->file != req->file)
1718 			ctx->poll_multi_queue = true;
1719 	}
1720 
1721 	/*
1722 	 * For fast devices, IO may have already completed. If it has, add
1723 	 * it to the front so we find it first.
1724 	 */
1725 	if (READ_ONCE(req->iopoll_completed))
1726 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1727 	else
1728 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1729 
1730 	if (unlikely(needs_lock)) {
1731 		/*
1732 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1733 		 * in sq thread task context or in io worker task context. If
1734 		 * current task context is sq thread, we don't need to check
1735 		 * whether should wake up sq thread.
1736 		 */
1737 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1738 		    wq_has_sleeper(&ctx->sq_data->wait))
1739 			wake_up(&ctx->sq_data->wait);
1740 
1741 		mutex_unlock(&ctx->uring_lock);
1742 	}
1743 }
1744 
1745 unsigned int io_file_get_flags(struct file *file)
1746 {
1747 	unsigned int res = 0;
1748 
1749 	if (S_ISREG(file_inode(file)->i_mode))
1750 		res |= REQ_F_ISREG;
1751 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1752 		res |= REQ_F_SUPPORT_NOWAIT;
1753 	return res;
1754 }
1755 
1756 bool io_alloc_async_data(struct io_kiocb *req)
1757 {
1758 	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1759 	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1760 	if (req->async_data) {
1761 		req->flags |= REQ_F_ASYNC_DATA;
1762 		return false;
1763 	}
1764 	return true;
1765 }
1766 
1767 int io_req_prep_async(struct io_kiocb *req)
1768 {
1769 	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1770 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1771 
1772 	/* assign early for deferred execution for non-fixed file */
1773 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1774 		req->file = io_file_get_normal(req, req->cqe.fd);
1775 	if (!cdef->prep_async)
1776 		return 0;
1777 	if (WARN_ON_ONCE(req_has_async_data(req)))
1778 		return -EFAULT;
1779 	if (!def->manual_alloc) {
1780 		if (io_alloc_async_data(req))
1781 			return -EAGAIN;
1782 	}
1783 	return cdef->prep_async(req);
1784 }
1785 
1786 static u32 io_get_sequence(struct io_kiocb *req)
1787 {
1788 	u32 seq = req->ctx->cached_sq_head;
1789 	struct io_kiocb *cur;
1790 
1791 	/* need original cached_sq_head, but it was increased for each req */
1792 	io_for_each_link(cur, req)
1793 		seq--;
1794 	return seq;
1795 }
1796 
1797 static __cold void io_drain_req(struct io_kiocb *req)
1798 	__must_hold(&ctx->uring_lock)
1799 {
1800 	struct io_ring_ctx *ctx = req->ctx;
1801 	struct io_defer_entry *de;
1802 	int ret;
1803 	u32 seq = io_get_sequence(req);
1804 
1805 	/* Still need defer if there is pending req in defer list. */
1806 	spin_lock(&ctx->completion_lock);
1807 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1808 		spin_unlock(&ctx->completion_lock);
1809 queue:
1810 		ctx->drain_active = false;
1811 		io_req_task_queue(req);
1812 		return;
1813 	}
1814 	spin_unlock(&ctx->completion_lock);
1815 
1816 	io_prep_async_link(req);
1817 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1818 	if (!de) {
1819 		ret = -ENOMEM;
1820 		io_req_defer_failed(req, ret);
1821 		return;
1822 	}
1823 
1824 	spin_lock(&ctx->completion_lock);
1825 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1826 		spin_unlock(&ctx->completion_lock);
1827 		kfree(de);
1828 		goto queue;
1829 	}
1830 
1831 	trace_io_uring_defer(req);
1832 	de->req = req;
1833 	de->seq = seq;
1834 	list_add_tail(&de->list, &ctx->defer_list);
1835 	spin_unlock(&ctx->completion_lock);
1836 }
1837 
1838 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1839 			   unsigned int issue_flags)
1840 {
1841 	if (req->file || !def->needs_file)
1842 		return true;
1843 
1844 	if (req->flags & REQ_F_FIXED_FILE)
1845 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1846 	else
1847 		req->file = io_file_get_normal(req, req->cqe.fd);
1848 
1849 	return !!req->file;
1850 }
1851 
1852 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1853 {
1854 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1855 	const struct cred *creds = NULL;
1856 	int ret;
1857 
1858 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1859 		return -EBADF;
1860 
1861 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1862 		creds = override_creds(req->creds);
1863 
1864 	if (!def->audit_skip)
1865 		audit_uring_entry(req->opcode);
1866 
1867 	ret = def->issue(req, issue_flags);
1868 
1869 	if (!def->audit_skip)
1870 		audit_uring_exit(!ret, ret);
1871 
1872 	if (creds)
1873 		revert_creds(creds);
1874 
1875 	if (ret == IOU_OK) {
1876 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1877 			io_req_complete_defer(req);
1878 		else
1879 			io_req_complete_post(req, issue_flags);
1880 
1881 		return 0;
1882 	}
1883 
1884 	if (ret != IOU_ISSUE_SKIP_COMPLETE)
1885 		return ret;
1886 
1887 	/* If the op doesn't have a file, we're not polling for it */
1888 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1889 		io_iopoll_req_issued(req, issue_flags);
1890 
1891 	return 0;
1892 }
1893 
1894 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1895 {
1896 	io_tw_lock(req->ctx, ts);
1897 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1898 				 IO_URING_F_COMPLETE_DEFER);
1899 }
1900 
1901 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1902 {
1903 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1904 	struct io_kiocb *nxt = NULL;
1905 
1906 	if (req_ref_put_and_test(req)) {
1907 		if (req->flags & IO_REQ_LINK_FLAGS)
1908 			nxt = io_req_find_next(req);
1909 		io_free_req(req);
1910 	}
1911 	return nxt ? &nxt->work : NULL;
1912 }
1913 
1914 void io_wq_submit_work(struct io_wq_work *work)
1915 {
1916 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1917 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1918 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1919 	bool needs_poll = false;
1920 	int ret = 0, err = -ECANCELED;
1921 
1922 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1923 	if (!(req->flags & REQ_F_REFCOUNT))
1924 		__io_req_set_refcount(req, 2);
1925 	else
1926 		req_ref_get(req);
1927 
1928 	io_arm_ltimeout(req);
1929 
1930 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1931 	if (work->flags & IO_WQ_WORK_CANCEL) {
1932 fail:
1933 		io_req_task_queue_fail(req, err);
1934 		return;
1935 	}
1936 	if (!io_assign_file(req, def, issue_flags)) {
1937 		err = -EBADF;
1938 		work->flags |= IO_WQ_WORK_CANCEL;
1939 		goto fail;
1940 	}
1941 
1942 	if (req->flags & REQ_F_FORCE_ASYNC) {
1943 		bool opcode_poll = def->pollin || def->pollout;
1944 
1945 		if (opcode_poll && file_can_poll(req->file)) {
1946 			needs_poll = true;
1947 			issue_flags |= IO_URING_F_NONBLOCK;
1948 		}
1949 	}
1950 
1951 	do {
1952 		ret = io_issue_sqe(req, issue_flags);
1953 		if (ret != -EAGAIN)
1954 			break;
1955 
1956 		/*
1957 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1958 		 * poll. -EAGAIN is final for that case.
1959 		 */
1960 		if (req->flags & REQ_F_NOWAIT)
1961 			break;
1962 
1963 		/*
1964 		 * We can get EAGAIN for iopolled IO even though we're
1965 		 * forcing a sync submission from here, since we can't
1966 		 * wait for request slots on the block side.
1967 		 */
1968 		if (!needs_poll) {
1969 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1970 				break;
1971 			if (io_wq_worker_stopped())
1972 				break;
1973 			cond_resched();
1974 			continue;
1975 		}
1976 
1977 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1978 			return;
1979 		/* aborted or ready, in either case retry blocking */
1980 		needs_poll = false;
1981 		issue_flags &= ~IO_URING_F_NONBLOCK;
1982 	} while (1);
1983 
1984 	/* avoid locking problems by failing it from a clean context */
1985 	if (ret < 0)
1986 		io_req_task_queue_fail(req, ret);
1987 }
1988 
1989 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1990 				      unsigned int issue_flags)
1991 {
1992 	struct io_ring_ctx *ctx = req->ctx;
1993 	struct io_fixed_file *slot;
1994 	struct file *file = NULL;
1995 
1996 	io_ring_submit_lock(ctx, issue_flags);
1997 
1998 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1999 		goto out;
2000 	fd = array_index_nospec(fd, ctx->nr_user_files);
2001 	slot = io_fixed_file_slot(&ctx->file_table, fd);
2002 	file = io_slot_file(slot);
2003 	req->flags |= io_slot_flags(slot);
2004 	io_req_set_rsrc_node(req, ctx, 0);
2005 out:
2006 	io_ring_submit_unlock(ctx, issue_flags);
2007 	return file;
2008 }
2009 
2010 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2011 {
2012 	struct file *file = fget(fd);
2013 
2014 	trace_io_uring_file_get(req, fd);
2015 
2016 	/* we don't allow fixed io_uring files */
2017 	if (file && io_is_uring_fops(file))
2018 		io_req_track_inflight(req);
2019 	return file;
2020 }
2021 
2022 static void io_queue_async(struct io_kiocb *req, int ret)
2023 	__must_hold(&req->ctx->uring_lock)
2024 {
2025 	struct io_kiocb *linked_timeout;
2026 
2027 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2028 		io_req_defer_failed(req, ret);
2029 		return;
2030 	}
2031 
2032 	linked_timeout = io_prep_linked_timeout(req);
2033 
2034 	switch (io_arm_poll_handler(req, 0)) {
2035 	case IO_APOLL_READY:
2036 		io_kbuf_recycle(req, 0);
2037 		io_req_task_queue(req);
2038 		break;
2039 	case IO_APOLL_ABORTED:
2040 		io_kbuf_recycle(req, 0);
2041 		io_queue_iowq(req, NULL);
2042 		break;
2043 	case IO_APOLL_OK:
2044 		break;
2045 	}
2046 
2047 	if (linked_timeout)
2048 		io_queue_linked_timeout(linked_timeout);
2049 }
2050 
2051 static inline void io_queue_sqe(struct io_kiocb *req)
2052 	__must_hold(&req->ctx->uring_lock)
2053 {
2054 	int ret;
2055 
2056 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2057 
2058 	/*
2059 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2060 	 * doesn't support non-blocking read/write attempts
2061 	 */
2062 	if (likely(!ret))
2063 		io_arm_ltimeout(req);
2064 	else
2065 		io_queue_async(req, ret);
2066 }
2067 
2068 static void io_queue_sqe_fallback(struct io_kiocb *req)
2069 	__must_hold(&req->ctx->uring_lock)
2070 {
2071 	if (unlikely(req->flags & REQ_F_FAIL)) {
2072 		/*
2073 		 * We don't submit, fail them all, for that replace hardlinks
2074 		 * with normal links. Extra REQ_F_LINK is tolerated.
2075 		 */
2076 		req->flags &= ~REQ_F_HARDLINK;
2077 		req->flags |= REQ_F_LINK;
2078 		io_req_defer_failed(req, req->cqe.res);
2079 	} else {
2080 		int ret = io_req_prep_async(req);
2081 
2082 		if (unlikely(ret)) {
2083 			io_req_defer_failed(req, ret);
2084 			return;
2085 		}
2086 
2087 		if (unlikely(req->ctx->drain_active))
2088 			io_drain_req(req);
2089 		else
2090 			io_queue_iowq(req, NULL);
2091 	}
2092 }
2093 
2094 /*
2095  * Check SQE restrictions (opcode and flags).
2096  *
2097  * Returns 'true' if SQE is allowed, 'false' otherwise.
2098  */
2099 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2100 					struct io_kiocb *req,
2101 					unsigned int sqe_flags)
2102 {
2103 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2104 		return false;
2105 
2106 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2107 	    ctx->restrictions.sqe_flags_required)
2108 		return false;
2109 
2110 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2111 			  ctx->restrictions.sqe_flags_required))
2112 		return false;
2113 
2114 	return true;
2115 }
2116 
2117 static void io_init_req_drain(struct io_kiocb *req)
2118 {
2119 	struct io_ring_ctx *ctx = req->ctx;
2120 	struct io_kiocb *head = ctx->submit_state.link.head;
2121 
2122 	ctx->drain_active = true;
2123 	if (head) {
2124 		/*
2125 		 * If we need to drain a request in the middle of a link, drain
2126 		 * the head request and the next request/link after the current
2127 		 * link. Considering sequential execution of links,
2128 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2129 		 * link.
2130 		 */
2131 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2132 		ctx->drain_next = true;
2133 	}
2134 }
2135 
2136 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2137 		       const struct io_uring_sqe *sqe)
2138 	__must_hold(&ctx->uring_lock)
2139 {
2140 	const struct io_issue_def *def;
2141 	unsigned int sqe_flags;
2142 	int personality;
2143 	u8 opcode;
2144 
2145 	/* req is partially pre-initialised, see io_preinit_req() */
2146 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2147 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2148 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2149 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2150 	req->file = NULL;
2151 	req->rsrc_node = NULL;
2152 	req->task = current;
2153 
2154 	if (unlikely(opcode >= IORING_OP_LAST)) {
2155 		req->opcode = 0;
2156 		return -EINVAL;
2157 	}
2158 	def = &io_issue_defs[opcode];
2159 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2160 		/* enforce forwards compatibility on users */
2161 		if (sqe_flags & ~SQE_VALID_FLAGS)
2162 			return -EINVAL;
2163 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2164 			if (!def->buffer_select)
2165 				return -EOPNOTSUPP;
2166 			req->buf_index = READ_ONCE(sqe->buf_group);
2167 		}
2168 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2169 			ctx->drain_disabled = true;
2170 		if (sqe_flags & IOSQE_IO_DRAIN) {
2171 			if (ctx->drain_disabled)
2172 				return -EOPNOTSUPP;
2173 			io_init_req_drain(req);
2174 		}
2175 	}
2176 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2177 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2178 			return -EACCES;
2179 		/* knock it to the slow queue path, will be drained there */
2180 		if (ctx->drain_active)
2181 			req->flags |= REQ_F_FORCE_ASYNC;
2182 		/* if there is no link, we're at "next" request and need to drain */
2183 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2184 			ctx->drain_next = false;
2185 			ctx->drain_active = true;
2186 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2187 		}
2188 	}
2189 
2190 	if (!def->ioprio && sqe->ioprio)
2191 		return -EINVAL;
2192 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2193 		return -EINVAL;
2194 
2195 	if (def->needs_file) {
2196 		struct io_submit_state *state = &ctx->submit_state;
2197 
2198 		req->cqe.fd = READ_ONCE(sqe->fd);
2199 
2200 		/*
2201 		 * Plug now if we have more than 2 IO left after this, and the
2202 		 * target is potentially a read/write to block based storage.
2203 		 */
2204 		if (state->need_plug && def->plug) {
2205 			state->plug_started = true;
2206 			state->need_plug = false;
2207 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2208 		}
2209 	}
2210 
2211 	personality = READ_ONCE(sqe->personality);
2212 	if (personality) {
2213 		int ret;
2214 
2215 		req->creds = xa_load(&ctx->personalities, personality);
2216 		if (!req->creds)
2217 			return -EINVAL;
2218 		get_cred(req->creds);
2219 		ret = security_uring_override_creds(req->creds);
2220 		if (ret) {
2221 			put_cred(req->creds);
2222 			return ret;
2223 		}
2224 		req->flags |= REQ_F_CREDS;
2225 	}
2226 
2227 	return def->prep(req, sqe);
2228 }
2229 
2230 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2231 				      struct io_kiocb *req, int ret)
2232 {
2233 	struct io_ring_ctx *ctx = req->ctx;
2234 	struct io_submit_link *link = &ctx->submit_state.link;
2235 	struct io_kiocb *head = link->head;
2236 
2237 	trace_io_uring_req_failed(sqe, req, ret);
2238 
2239 	/*
2240 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2241 	 * unusable. Instead of failing eagerly, continue assembling the link if
2242 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2243 	 * should find the flag and handle the rest.
2244 	 */
2245 	req_fail_link_node(req, ret);
2246 	if (head && !(head->flags & REQ_F_FAIL))
2247 		req_fail_link_node(head, -ECANCELED);
2248 
2249 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2250 		if (head) {
2251 			link->last->link = req;
2252 			link->head = NULL;
2253 			req = head;
2254 		}
2255 		io_queue_sqe_fallback(req);
2256 		return ret;
2257 	}
2258 
2259 	if (head)
2260 		link->last->link = req;
2261 	else
2262 		link->head = req;
2263 	link->last = req;
2264 	return 0;
2265 }
2266 
2267 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2268 			 const struct io_uring_sqe *sqe)
2269 	__must_hold(&ctx->uring_lock)
2270 {
2271 	struct io_submit_link *link = &ctx->submit_state.link;
2272 	int ret;
2273 
2274 	ret = io_init_req(ctx, req, sqe);
2275 	if (unlikely(ret))
2276 		return io_submit_fail_init(sqe, req, ret);
2277 
2278 	trace_io_uring_submit_req(req);
2279 
2280 	/*
2281 	 * If we already have a head request, queue this one for async
2282 	 * submittal once the head completes. If we don't have a head but
2283 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2284 	 * submitted sync once the chain is complete. If none of those
2285 	 * conditions are true (normal request), then just queue it.
2286 	 */
2287 	if (unlikely(link->head)) {
2288 		ret = io_req_prep_async(req);
2289 		if (unlikely(ret))
2290 			return io_submit_fail_init(sqe, req, ret);
2291 
2292 		trace_io_uring_link(req, link->head);
2293 		link->last->link = req;
2294 		link->last = req;
2295 
2296 		if (req->flags & IO_REQ_LINK_FLAGS)
2297 			return 0;
2298 		/* last request of the link, flush it */
2299 		req = link->head;
2300 		link->head = NULL;
2301 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2302 			goto fallback;
2303 
2304 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2305 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2306 		if (req->flags & IO_REQ_LINK_FLAGS) {
2307 			link->head = req;
2308 			link->last = req;
2309 		} else {
2310 fallback:
2311 			io_queue_sqe_fallback(req);
2312 		}
2313 		return 0;
2314 	}
2315 
2316 	io_queue_sqe(req);
2317 	return 0;
2318 }
2319 
2320 /*
2321  * Batched submission is done, ensure local IO is flushed out.
2322  */
2323 static void io_submit_state_end(struct io_ring_ctx *ctx)
2324 {
2325 	struct io_submit_state *state = &ctx->submit_state;
2326 
2327 	if (unlikely(state->link.head))
2328 		io_queue_sqe_fallback(state->link.head);
2329 	/* flush only after queuing links as they can generate completions */
2330 	io_submit_flush_completions(ctx);
2331 	if (state->plug_started)
2332 		blk_finish_plug(&state->plug);
2333 }
2334 
2335 /*
2336  * Start submission side cache.
2337  */
2338 static void io_submit_state_start(struct io_submit_state *state,
2339 				  unsigned int max_ios)
2340 {
2341 	state->plug_started = false;
2342 	state->need_plug = max_ios > 2;
2343 	state->submit_nr = max_ios;
2344 	/* set only head, no need to init link_last in advance */
2345 	state->link.head = NULL;
2346 }
2347 
2348 static void io_commit_sqring(struct io_ring_ctx *ctx)
2349 {
2350 	struct io_rings *rings = ctx->rings;
2351 
2352 	/*
2353 	 * Ensure any loads from the SQEs are done at this point,
2354 	 * since once we write the new head, the application could
2355 	 * write new data to them.
2356 	 */
2357 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2358 }
2359 
2360 /*
2361  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2362  * that is mapped by userspace. This means that care needs to be taken to
2363  * ensure that reads are stable, as we cannot rely on userspace always
2364  * being a good citizen. If members of the sqe are validated and then later
2365  * used, it's important that those reads are done through READ_ONCE() to
2366  * prevent a re-load down the line.
2367  */
2368 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2369 {
2370 	unsigned mask = ctx->sq_entries - 1;
2371 	unsigned head = ctx->cached_sq_head++ & mask;
2372 
2373 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2374 		head = READ_ONCE(ctx->sq_array[head]);
2375 		if (unlikely(head >= ctx->sq_entries)) {
2376 			/* drop invalid entries */
2377 			spin_lock(&ctx->completion_lock);
2378 			ctx->cq_extra--;
2379 			spin_unlock(&ctx->completion_lock);
2380 			WRITE_ONCE(ctx->rings->sq_dropped,
2381 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2382 			return false;
2383 		}
2384 	}
2385 
2386 	/*
2387 	 * The cached sq head (or cq tail) serves two purposes:
2388 	 *
2389 	 * 1) allows us to batch the cost of updating the user visible
2390 	 *    head updates.
2391 	 * 2) allows the kernel side to track the head on its own, even
2392 	 *    though the application is the one updating it.
2393 	 */
2394 
2395 	/* double index for 128-byte SQEs, twice as long */
2396 	if (ctx->flags & IORING_SETUP_SQE128)
2397 		head <<= 1;
2398 	*sqe = &ctx->sq_sqes[head];
2399 	return true;
2400 }
2401 
2402 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2403 	__must_hold(&ctx->uring_lock)
2404 {
2405 	unsigned int entries = io_sqring_entries(ctx);
2406 	unsigned int left;
2407 	int ret;
2408 
2409 	if (unlikely(!entries))
2410 		return 0;
2411 	/* make sure SQ entry isn't read before tail */
2412 	ret = left = min(nr, entries);
2413 	io_get_task_refs(left);
2414 	io_submit_state_start(&ctx->submit_state, left);
2415 
2416 	do {
2417 		const struct io_uring_sqe *sqe;
2418 		struct io_kiocb *req;
2419 
2420 		if (unlikely(!io_alloc_req(ctx, &req)))
2421 			break;
2422 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2423 			io_req_add_to_cache(req, ctx);
2424 			break;
2425 		}
2426 
2427 		/*
2428 		 * Continue submitting even for sqe failure if the
2429 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2430 		 */
2431 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2432 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2433 			left--;
2434 			break;
2435 		}
2436 	} while (--left);
2437 
2438 	if (unlikely(left)) {
2439 		ret -= left;
2440 		/* try again if it submitted nothing and can't allocate a req */
2441 		if (!ret && io_req_cache_empty(ctx))
2442 			ret = -EAGAIN;
2443 		current->io_uring->cached_refs += left;
2444 	}
2445 
2446 	io_submit_state_end(ctx);
2447 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2448 	io_commit_sqring(ctx);
2449 	return ret;
2450 }
2451 
2452 struct io_wait_queue {
2453 	struct wait_queue_entry wq;
2454 	struct io_ring_ctx *ctx;
2455 	unsigned cq_tail;
2456 	unsigned nr_timeouts;
2457 	ktime_t timeout;
2458 };
2459 
2460 static inline bool io_has_work(struct io_ring_ctx *ctx)
2461 {
2462 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2463 	       !llist_empty(&ctx->work_llist);
2464 }
2465 
2466 static inline bool io_should_wake(struct io_wait_queue *iowq)
2467 {
2468 	struct io_ring_ctx *ctx = iowq->ctx;
2469 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2470 
2471 	/*
2472 	 * Wake up if we have enough events, or if a timeout occurred since we
2473 	 * started waiting. For timeouts, we always want to return to userspace,
2474 	 * regardless of event count.
2475 	 */
2476 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2477 }
2478 
2479 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2480 			    int wake_flags, void *key)
2481 {
2482 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2483 
2484 	/*
2485 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2486 	 * the task, and the next invocation will do it.
2487 	 */
2488 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2489 		return autoremove_wake_function(curr, mode, wake_flags, key);
2490 	return -1;
2491 }
2492 
2493 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2494 {
2495 	if (!llist_empty(&ctx->work_llist)) {
2496 		__set_current_state(TASK_RUNNING);
2497 		if (io_run_local_work(ctx) > 0)
2498 			return 0;
2499 	}
2500 	if (io_run_task_work() > 0)
2501 		return 0;
2502 	if (task_sigpending(current))
2503 		return -EINTR;
2504 	return 0;
2505 }
2506 
2507 static bool current_pending_io(void)
2508 {
2509 	struct io_uring_task *tctx = current->io_uring;
2510 
2511 	if (!tctx)
2512 		return false;
2513 	return percpu_counter_read_positive(&tctx->inflight);
2514 }
2515 
2516 /* when returns >0, the caller should retry */
2517 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2518 					  struct io_wait_queue *iowq)
2519 {
2520 	int io_wait, ret;
2521 
2522 	if (unlikely(READ_ONCE(ctx->check_cq)))
2523 		return 1;
2524 	if (unlikely(!llist_empty(&ctx->work_llist)))
2525 		return 1;
2526 	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2527 		return 1;
2528 	if (unlikely(task_sigpending(current)))
2529 		return -EINTR;
2530 	if (unlikely(io_should_wake(iowq)))
2531 		return 0;
2532 
2533 	/*
2534 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2535 	 * can take into account that the task is waiting for IO - turns out
2536 	 * to be important for low QD IO.
2537 	 */
2538 	io_wait = current->in_iowait;
2539 	if (current_pending_io())
2540 		current->in_iowait = 1;
2541 	ret = 0;
2542 	if (iowq->timeout == KTIME_MAX)
2543 		schedule();
2544 	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2545 		ret = -ETIME;
2546 	current->in_iowait = io_wait;
2547 	return ret;
2548 }
2549 
2550 /*
2551  * Wait until events become available, if we don't already have some. The
2552  * application must reap them itself, as they reside on the shared cq ring.
2553  */
2554 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2555 			  const sigset_t __user *sig, size_t sigsz,
2556 			  struct __kernel_timespec __user *uts)
2557 {
2558 	struct io_wait_queue iowq;
2559 	struct io_rings *rings = ctx->rings;
2560 	int ret;
2561 
2562 	if (!io_allowed_run_tw(ctx))
2563 		return -EEXIST;
2564 	if (!llist_empty(&ctx->work_llist))
2565 		io_run_local_work(ctx);
2566 	io_run_task_work();
2567 	io_cqring_overflow_flush(ctx);
2568 	/* if user messes with these they will just get an early return */
2569 	if (__io_cqring_events_user(ctx) >= min_events)
2570 		return 0;
2571 
2572 	if (sig) {
2573 #ifdef CONFIG_COMPAT
2574 		if (in_compat_syscall())
2575 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2576 						      sigsz);
2577 		else
2578 #endif
2579 			ret = set_user_sigmask(sig, sigsz);
2580 
2581 		if (ret)
2582 			return ret;
2583 	}
2584 
2585 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2586 	iowq.wq.private = current;
2587 	INIT_LIST_HEAD(&iowq.wq.entry);
2588 	iowq.ctx = ctx;
2589 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2590 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2591 	iowq.timeout = KTIME_MAX;
2592 
2593 	if (uts) {
2594 		struct timespec64 ts;
2595 
2596 		if (get_timespec64(&ts, uts))
2597 			return -EFAULT;
2598 		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2599 	}
2600 
2601 	trace_io_uring_cqring_wait(ctx, min_events);
2602 	do {
2603 		unsigned long check_cq;
2604 
2605 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2606 			int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2607 
2608 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2609 			set_current_state(TASK_INTERRUPTIBLE);
2610 		} else {
2611 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2612 							TASK_INTERRUPTIBLE);
2613 		}
2614 
2615 		ret = io_cqring_wait_schedule(ctx, &iowq);
2616 		__set_current_state(TASK_RUNNING);
2617 		atomic_set(&ctx->cq_wait_nr, 0);
2618 
2619 		/*
2620 		 * Run task_work after scheduling and before io_should_wake().
2621 		 * If we got woken because of task_work being processed, run it
2622 		 * now rather than let the caller do another wait loop.
2623 		 */
2624 		io_run_task_work();
2625 		if (!llist_empty(&ctx->work_llist))
2626 			io_run_local_work(ctx);
2627 
2628 		/*
2629 		 * Non-local task_work will be run on exit to userspace, but
2630 		 * if we're using DEFER_TASKRUN, then we could have waited
2631 		 * with a timeout for a number of requests. If the timeout
2632 		 * hits, we could have some requests ready to process. Ensure
2633 		 * this break is _after_ we have run task_work, to avoid
2634 		 * deferring running potentially pending requests until the
2635 		 * next time we wait for events.
2636 		 */
2637 		if (ret < 0)
2638 			break;
2639 
2640 		check_cq = READ_ONCE(ctx->check_cq);
2641 		if (unlikely(check_cq)) {
2642 			/* let the caller flush overflows, retry */
2643 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2644 				io_cqring_do_overflow_flush(ctx);
2645 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2646 				ret = -EBADR;
2647 				break;
2648 			}
2649 		}
2650 
2651 		if (io_should_wake(&iowq)) {
2652 			ret = 0;
2653 			break;
2654 		}
2655 		cond_resched();
2656 	} while (1);
2657 
2658 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2659 		finish_wait(&ctx->cq_wait, &iowq.wq);
2660 	restore_saved_sigmask_unless(ret == -EINTR);
2661 
2662 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2663 }
2664 
2665 void io_mem_free(void *ptr)
2666 {
2667 	if (!ptr)
2668 		return;
2669 
2670 	folio_put(virt_to_folio(ptr));
2671 }
2672 
2673 static void io_pages_free(struct page ***pages, int npages)
2674 {
2675 	struct page **page_array;
2676 	int i;
2677 
2678 	if (!pages)
2679 		return;
2680 
2681 	page_array = *pages;
2682 	if (!page_array)
2683 		return;
2684 
2685 	for (i = 0; i < npages; i++)
2686 		unpin_user_page(page_array[i]);
2687 	kvfree(page_array);
2688 	*pages = NULL;
2689 }
2690 
2691 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2692 			    unsigned long uaddr, size_t size)
2693 {
2694 	struct page **page_array;
2695 	unsigned int nr_pages;
2696 	void *page_addr;
2697 	int ret, i;
2698 
2699 	*npages = 0;
2700 
2701 	if (uaddr & (PAGE_SIZE - 1) || !size)
2702 		return ERR_PTR(-EINVAL);
2703 
2704 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2705 	if (nr_pages > USHRT_MAX)
2706 		return ERR_PTR(-EINVAL);
2707 	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2708 	if (!page_array)
2709 		return ERR_PTR(-ENOMEM);
2710 
2711 	ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2712 					page_array);
2713 	if (ret != nr_pages) {
2714 err:
2715 		io_pages_free(&page_array, ret > 0 ? ret : 0);
2716 		return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT);
2717 	}
2718 
2719 	page_addr = page_address(page_array[0]);
2720 	for (i = 0; i < nr_pages; i++) {
2721 		ret = -EINVAL;
2722 
2723 		/*
2724 		 * Can't support mapping user allocated ring memory on 32-bit
2725 		 * archs where it could potentially reside in highmem. Just
2726 		 * fail those with -EINVAL, just like we did on kernels that
2727 		 * didn't support this feature.
2728 		 */
2729 		if (PageHighMem(page_array[i]))
2730 			goto err;
2731 
2732 		/*
2733 		 * No support for discontig pages for now, should either be a
2734 		 * single normal page, or a huge page. Later on we can add
2735 		 * support for remapping discontig pages, for now we will
2736 		 * just fail them with EINVAL.
2737 		 */
2738 		if (page_address(page_array[i]) != page_addr)
2739 			goto err;
2740 		page_addr += PAGE_SIZE;
2741 	}
2742 
2743 	*pages = page_array;
2744 	*npages = nr_pages;
2745 	return page_to_virt(page_array[0]);
2746 }
2747 
2748 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2749 			  size_t size)
2750 {
2751 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2752 				size);
2753 }
2754 
2755 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2756 			 size_t size)
2757 {
2758 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2759 				size);
2760 }
2761 
2762 static void io_rings_free(struct io_ring_ctx *ctx)
2763 {
2764 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2765 		io_mem_free(ctx->rings);
2766 		io_mem_free(ctx->sq_sqes);
2767 		ctx->rings = NULL;
2768 		ctx->sq_sqes = NULL;
2769 	} else {
2770 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2771 		ctx->n_ring_pages = 0;
2772 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2773 		ctx->n_sqe_pages = 0;
2774 	}
2775 }
2776 
2777 void *io_mem_alloc(size_t size)
2778 {
2779 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2780 	void *ret;
2781 
2782 	ret = (void *) __get_free_pages(gfp, get_order(size));
2783 	if (ret)
2784 		return ret;
2785 	return ERR_PTR(-ENOMEM);
2786 }
2787 
2788 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2789 				unsigned int cq_entries, size_t *sq_offset)
2790 {
2791 	struct io_rings *rings;
2792 	size_t off, sq_array_size;
2793 
2794 	off = struct_size(rings, cqes, cq_entries);
2795 	if (off == SIZE_MAX)
2796 		return SIZE_MAX;
2797 	if (ctx->flags & IORING_SETUP_CQE32) {
2798 		if (check_shl_overflow(off, 1, &off))
2799 			return SIZE_MAX;
2800 	}
2801 
2802 #ifdef CONFIG_SMP
2803 	off = ALIGN(off, SMP_CACHE_BYTES);
2804 	if (off == 0)
2805 		return SIZE_MAX;
2806 #endif
2807 
2808 	if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2809 		if (sq_offset)
2810 			*sq_offset = SIZE_MAX;
2811 		return off;
2812 	}
2813 
2814 	if (sq_offset)
2815 		*sq_offset = off;
2816 
2817 	sq_array_size = array_size(sizeof(u32), sq_entries);
2818 	if (sq_array_size == SIZE_MAX)
2819 		return SIZE_MAX;
2820 
2821 	if (check_add_overflow(off, sq_array_size, &off))
2822 		return SIZE_MAX;
2823 
2824 	return off;
2825 }
2826 
2827 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2828 			       unsigned int eventfd_async)
2829 {
2830 	struct io_ev_fd *ev_fd;
2831 	__s32 __user *fds = arg;
2832 	int fd;
2833 
2834 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2835 					lockdep_is_held(&ctx->uring_lock));
2836 	if (ev_fd)
2837 		return -EBUSY;
2838 
2839 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2840 		return -EFAULT;
2841 
2842 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2843 	if (!ev_fd)
2844 		return -ENOMEM;
2845 
2846 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2847 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2848 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2849 		kfree(ev_fd);
2850 		return ret;
2851 	}
2852 
2853 	spin_lock(&ctx->completion_lock);
2854 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2855 	spin_unlock(&ctx->completion_lock);
2856 
2857 	ev_fd->eventfd_async = eventfd_async;
2858 	ctx->has_evfd = true;
2859 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2860 	atomic_set(&ev_fd->refs, 1);
2861 	atomic_set(&ev_fd->ops, 0);
2862 	return 0;
2863 }
2864 
2865 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2866 {
2867 	struct io_ev_fd *ev_fd;
2868 
2869 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2870 					lockdep_is_held(&ctx->uring_lock));
2871 	if (ev_fd) {
2872 		ctx->has_evfd = false;
2873 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2874 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2875 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2876 		return 0;
2877 	}
2878 
2879 	return -ENXIO;
2880 }
2881 
2882 static void io_req_caches_free(struct io_ring_ctx *ctx)
2883 {
2884 	struct io_kiocb *req;
2885 	int nr = 0;
2886 
2887 	mutex_lock(&ctx->uring_lock);
2888 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2889 
2890 	while (!io_req_cache_empty(ctx)) {
2891 		req = io_extract_req(ctx);
2892 		kmem_cache_free(req_cachep, req);
2893 		nr++;
2894 	}
2895 	if (nr)
2896 		percpu_ref_put_many(&ctx->refs, nr);
2897 	mutex_unlock(&ctx->uring_lock);
2898 }
2899 
2900 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2901 {
2902 	kfree(container_of(entry, struct io_rsrc_node, cache));
2903 }
2904 
2905 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2906 {
2907 	io_sq_thread_finish(ctx);
2908 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2909 	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2910 		return;
2911 
2912 	mutex_lock(&ctx->uring_lock);
2913 	if (ctx->buf_data)
2914 		__io_sqe_buffers_unregister(ctx);
2915 	if (ctx->file_data)
2916 		__io_sqe_files_unregister(ctx);
2917 	io_cqring_overflow_kill(ctx);
2918 	io_eventfd_unregister(ctx);
2919 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2920 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2921 	io_destroy_buffers(ctx);
2922 	mutex_unlock(&ctx->uring_lock);
2923 	if (ctx->sq_creds)
2924 		put_cred(ctx->sq_creds);
2925 	if (ctx->submitter_task)
2926 		put_task_struct(ctx->submitter_task);
2927 
2928 	/* there are no registered resources left, nobody uses it */
2929 	if (ctx->rsrc_node)
2930 		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2931 
2932 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2933 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2934 
2935 	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2936 	if (ctx->mm_account) {
2937 		mmdrop(ctx->mm_account);
2938 		ctx->mm_account = NULL;
2939 	}
2940 	io_rings_free(ctx);
2941 	io_kbuf_mmap_list_free(ctx);
2942 
2943 	percpu_ref_exit(&ctx->refs);
2944 	free_uid(ctx->user);
2945 	io_req_caches_free(ctx);
2946 	if (ctx->hash_map)
2947 		io_wq_put_hash(ctx->hash_map);
2948 	kfree(ctx->cancel_table.hbs);
2949 	kfree(ctx->cancel_table_locked.hbs);
2950 	kfree(ctx->io_bl);
2951 	xa_destroy(&ctx->io_bl_xa);
2952 	kfree(ctx);
2953 }
2954 
2955 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2956 {
2957 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2958 					       poll_wq_task_work);
2959 
2960 	mutex_lock(&ctx->uring_lock);
2961 	ctx->poll_activated = true;
2962 	mutex_unlock(&ctx->uring_lock);
2963 
2964 	/*
2965 	 * Wake ups for some events between start of polling and activation
2966 	 * might've been lost due to loose synchronisation.
2967 	 */
2968 	wake_up_all(&ctx->poll_wq);
2969 	percpu_ref_put(&ctx->refs);
2970 }
2971 
2972 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2973 {
2974 	spin_lock(&ctx->completion_lock);
2975 	/* already activated or in progress */
2976 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2977 		goto out;
2978 	if (WARN_ON_ONCE(!ctx->task_complete))
2979 		goto out;
2980 	if (!ctx->submitter_task)
2981 		goto out;
2982 	/*
2983 	 * with ->submitter_task only the submitter task completes requests, we
2984 	 * only need to sync with it, which is done by injecting a tw
2985 	 */
2986 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2987 	percpu_ref_get(&ctx->refs);
2988 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2989 		percpu_ref_put(&ctx->refs);
2990 out:
2991 	spin_unlock(&ctx->completion_lock);
2992 }
2993 
2994 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2995 {
2996 	struct io_ring_ctx *ctx = file->private_data;
2997 	__poll_t mask = 0;
2998 
2999 	if (unlikely(!ctx->poll_activated))
3000 		io_activate_pollwq(ctx);
3001 
3002 	poll_wait(file, &ctx->poll_wq, wait);
3003 	/*
3004 	 * synchronizes with barrier from wq_has_sleeper call in
3005 	 * io_commit_cqring
3006 	 */
3007 	smp_rmb();
3008 	if (!io_sqring_full(ctx))
3009 		mask |= EPOLLOUT | EPOLLWRNORM;
3010 
3011 	/*
3012 	 * Don't flush cqring overflow list here, just do a simple check.
3013 	 * Otherwise there could possible be ABBA deadlock:
3014 	 *      CPU0                    CPU1
3015 	 *      ----                    ----
3016 	 * lock(&ctx->uring_lock);
3017 	 *                              lock(&ep->mtx);
3018 	 *                              lock(&ctx->uring_lock);
3019 	 * lock(&ep->mtx);
3020 	 *
3021 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
3022 	 * pushes them to do the flush.
3023 	 */
3024 
3025 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
3026 		mask |= EPOLLIN | EPOLLRDNORM;
3027 
3028 	return mask;
3029 }
3030 
3031 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
3032 {
3033 	const struct cred *creds;
3034 
3035 	creds = xa_erase(&ctx->personalities, id);
3036 	if (creds) {
3037 		put_cred(creds);
3038 		return 0;
3039 	}
3040 
3041 	return -EINVAL;
3042 }
3043 
3044 struct io_tctx_exit {
3045 	struct callback_head		task_work;
3046 	struct completion		completion;
3047 	struct io_ring_ctx		*ctx;
3048 };
3049 
3050 static __cold void io_tctx_exit_cb(struct callback_head *cb)
3051 {
3052 	struct io_uring_task *tctx = current->io_uring;
3053 	struct io_tctx_exit *work;
3054 
3055 	work = container_of(cb, struct io_tctx_exit, task_work);
3056 	/*
3057 	 * When @in_cancel, we're in cancellation and it's racy to remove the
3058 	 * node. It'll be removed by the end of cancellation, just ignore it.
3059 	 * tctx can be NULL if the queueing of this task_work raced with
3060 	 * work cancelation off the exec path.
3061 	 */
3062 	if (tctx && !atomic_read(&tctx->in_cancel))
3063 		io_uring_del_tctx_node((unsigned long)work->ctx);
3064 	complete(&work->completion);
3065 }
3066 
3067 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3068 {
3069 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3070 
3071 	return req->ctx == data;
3072 }
3073 
3074 static __cold void io_ring_exit_work(struct work_struct *work)
3075 {
3076 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3077 	unsigned long timeout = jiffies + HZ * 60 * 5;
3078 	unsigned long interval = HZ / 20;
3079 	struct io_tctx_exit exit;
3080 	struct io_tctx_node *node;
3081 	int ret;
3082 
3083 	/*
3084 	 * If we're doing polled IO and end up having requests being
3085 	 * submitted async (out-of-line), then completions can come in while
3086 	 * we're waiting for refs to drop. We need to reap these manually,
3087 	 * as nobody else will be looking for them.
3088 	 */
3089 	do {
3090 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3091 			mutex_lock(&ctx->uring_lock);
3092 			io_cqring_overflow_kill(ctx);
3093 			mutex_unlock(&ctx->uring_lock);
3094 		}
3095 
3096 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3097 			io_move_task_work_from_local(ctx);
3098 
3099 		while (io_uring_try_cancel_requests(ctx, NULL, true))
3100 			cond_resched();
3101 
3102 		if (ctx->sq_data) {
3103 			struct io_sq_data *sqd = ctx->sq_data;
3104 			struct task_struct *tsk;
3105 
3106 			io_sq_thread_park(sqd);
3107 			tsk = sqd->thread;
3108 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3109 				io_wq_cancel_cb(tsk->io_uring->io_wq,
3110 						io_cancel_ctx_cb, ctx, true);
3111 			io_sq_thread_unpark(sqd);
3112 		}
3113 
3114 		io_req_caches_free(ctx);
3115 
3116 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3117 			/* there is little hope left, don't run it too often */
3118 			interval = HZ * 60;
3119 		}
3120 		/*
3121 		 * This is really an uninterruptible wait, as it has to be
3122 		 * complete. But it's also run from a kworker, which doesn't
3123 		 * take signals, so it's fine to make it interruptible. This
3124 		 * avoids scenarios where we knowingly can wait much longer
3125 		 * on completions, for example if someone does a SIGSTOP on
3126 		 * a task that needs to finish task_work to make this loop
3127 		 * complete. That's a synthetic situation that should not
3128 		 * cause a stuck task backtrace, and hence a potential panic
3129 		 * on stuck tasks if that is enabled.
3130 		 */
3131 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3132 
3133 	init_completion(&exit.completion);
3134 	init_task_work(&exit.task_work, io_tctx_exit_cb);
3135 	exit.ctx = ctx;
3136 
3137 	mutex_lock(&ctx->uring_lock);
3138 	while (!list_empty(&ctx->tctx_list)) {
3139 		WARN_ON_ONCE(time_after(jiffies, timeout));
3140 
3141 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3142 					ctx_node);
3143 		/* don't spin on a single task if cancellation failed */
3144 		list_rotate_left(&ctx->tctx_list);
3145 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3146 		if (WARN_ON_ONCE(ret))
3147 			continue;
3148 
3149 		mutex_unlock(&ctx->uring_lock);
3150 		/*
3151 		 * See comment above for
3152 		 * wait_for_completion_interruptible_timeout() on why this
3153 		 * wait is marked as interruptible.
3154 		 */
3155 		wait_for_completion_interruptible(&exit.completion);
3156 		mutex_lock(&ctx->uring_lock);
3157 	}
3158 	mutex_unlock(&ctx->uring_lock);
3159 	spin_lock(&ctx->completion_lock);
3160 	spin_unlock(&ctx->completion_lock);
3161 
3162 	/* pairs with RCU read section in io_req_local_work_add() */
3163 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3164 		synchronize_rcu();
3165 
3166 	io_ring_ctx_free(ctx);
3167 }
3168 
3169 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3170 {
3171 	unsigned long index;
3172 	struct creds *creds;
3173 
3174 	mutex_lock(&ctx->uring_lock);
3175 	percpu_ref_kill(&ctx->refs);
3176 	xa_for_each(&ctx->personalities, index, creds)
3177 		io_unregister_personality(ctx, index);
3178 	if (ctx->rings)
3179 		io_poll_remove_all(ctx, NULL, true);
3180 	mutex_unlock(&ctx->uring_lock);
3181 
3182 	/*
3183 	 * If we failed setting up the ctx, we might not have any rings
3184 	 * and therefore did not submit any requests
3185 	 */
3186 	if (ctx->rings)
3187 		io_kill_timeouts(ctx, NULL, true);
3188 
3189 	flush_delayed_work(&ctx->fallback_work);
3190 
3191 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3192 	/*
3193 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3194 	 * if we're exiting a ton of rings at the same time. It just adds
3195 	 * noise and overhead, there's no discernable change in runtime
3196 	 * over using system_wq.
3197 	 */
3198 	queue_work(system_unbound_wq, &ctx->exit_work);
3199 }
3200 
3201 static int io_uring_release(struct inode *inode, struct file *file)
3202 {
3203 	struct io_ring_ctx *ctx = file->private_data;
3204 
3205 	file->private_data = NULL;
3206 	io_ring_ctx_wait_and_kill(ctx);
3207 	return 0;
3208 }
3209 
3210 struct io_task_cancel {
3211 	struct task_struct *task;
3212 	bool all;
3213 };
3214 
3215 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3216 {
3217 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3218 	struct io_task_cancel *cancel = data;
3219 
3220 	return io_match_task_safe(req, cancel->task, cancel->all);
3221 }
3222 
3223 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3224 					 struct task_struct *task,
3225 					 bool cancel_all)
3226 {
3227 	struct io_defer_entry *de;
3228 	LIST_HEAD(list);
3229 
3230 	spin_lock(&ctx->completion_lock);
3231 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3232 		if (io_match_task_safe(de->req, task, cancel_all)) {
3233 			list_cut_position(&list, &ctx->defer_list, &de->list);
3234 			break;
3235 		}
3236 	}
3237 	spin_unlock(&ctx->completion_lock);
3238 	if (list_empty(&list))
3239 		return false;
3240 
3241 	while (!list_empty(&list)) {
3242 		de = list_first_entry(&list, struct io_defer_entry, list);
3243 		list_del_init(&de->list);
3244 		io_req_task_queue_fail(de->req, -ECANCELED);
3245 		kfree(de);
3246 	}
3247 	return true;
3248 }
3249 
3250 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3251 {
3252 	struct io_tctx_node *node;
3253 	enum io_wq_cancel cret;
3254 	bool ret = false;
3255 
3256 	mutex_lock(&ctx->uring_lock);
3257 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3258 		struct io_uring_task *tctx = node->task->io_uring;
3259 
3260 		/*
3261 		 * io_wq will stay alive while we hold uring_lock, because it's
3262 		 * killed after ctx nodes, which requires to take the lock.
3263 		 */
3264 		if (!tctx || !tctx->io_wq)
3265 			continue;
3266 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3267 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3268 	}
3269 	mutex_unlock(&ctx->uring_lock);
3270 
3271 	return ret;
3272 }
3273 
3274 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3275 						struct task_struct *task,
3276 						bool cancel_all)
3277 {
3278 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3279 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3280 	enum io_wq_cancel cret;
3281 	bool ret = false;
3282 
3283 	/* set it so io_req_local_work_add() would wake us up */
3284 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3285 		atomic_set(&ctx->cq_wait_nr, 1);
3286 		smp_mb();
3287 	}
3288 
3289 	/* failed during ring init, it couldn't have issued any requests */
3290 	if (!ctx->rings)
3291 		return false;
3292 
3293 	if (!task) {
3294 		ret |= io_uring_try_cancel_iowq(ctx);
3295 	} else if (tctx && tctx->io_wq) {
3296 		/*
3297 		 * Cancels requests of all rings, not only @ctx, but
3298 		 * it's fine as the task is in exit/exec.
3299 		 */
3300 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3301 				       &cancel, true);
3302 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3303 	}
3304 
3305 	/* SQPOLL thread does its own polling */
3306 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3307 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3308 		while (!wq_list_empty(&ctx->iopoll_list)) {
3309 			io_iopoll_try_reap_events(ctx);
3310 			ret = true;
3311 			cond_resched();
3312 		}
3313 	}
3314 
3315 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3316 	    io_allowed_defer_tw_run(ctx))
3317 		ret |= io_run_local_work(ctx) > 0;
3318 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3319 	mutex_lock(&ctx->uring_lock);
3320 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3321 	mutex_unlock(&ctx->uring_lock);
3322 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3323 	if (task)
3324 		ret |= io_run_task_work() > 0;
3325 	return ret;
3326 }
3327 
3328 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3329 {
3330 	if (tracked)
3331 		return atomic_read(&tctx->inflight_tracked);
3332 	return percpu_counter_sum(&tctx->inflight);
3333 }
3334 
3335 /*
3336  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3337  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3338  */
3339 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3340 {
3341 	struct io_uring_task *tctx = current->io_uring;
3342 	struct io_ring_ctx *ctx;
3343 	struct io_tctx_node *node;
3344 	unsigned long index;
3345 	s64 inflight;
3346 	DEFINE_WAIT(wait);
3347 
3348 	WARN_ON_ONCE(sqd && sqd->thread != current);
3349 
3350 	if (!current->io_uring)
3351 		return;
3352 	if (tctx->io_wq)
3353 		io_wq_exit_start(tctx->io_wq);
3354 
3355 	atomic_inc(&tctx->in_cancel);
3356 	do {
3357 		bool loop = false;
3358 
3359 		io_uring_drop_tctx_refs(current);
3360 		/* read completions before cancelations */
3361 		inflight = tctx_inflight(tctx, !cancel_all);
3362 		if (!inflight)
3363 			break;
3364 
3365 		if (!sqd) {
3366 			xa_for_each(&tctx->xa, index, node) {
3367 				/* sqpoll task will cancel all its requests */
3368 				if (node->ctx->sq_data)
3369 					continue;
3370 				loop |= io_uring_try_cancel_requests(node->ctx,
3371 							current, cancel_all);
3372 			}
3373 		} else {
3374 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3375 				loop |= io_uring_try_cancel_requests(ctx,
3376 								     current,
3377 								     cancel_all);
3378 		}
3379 
3380 		if (loop) {
3381 			cond_resched();
3382 			continue;
3383 		}
3384 
3385 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3386 		io_run_task_work();
3387 		io_uring_drop_tctx_refs(current);
3388 		xa_for_each(&tctx->xa, index, node) {
3389 			if (!llist_empty(&node->ctx->work_llist)) {
3390 				WARN_ON_ONCE(node->ctx->submitter_task &&
3391 					     node->ctx->submitter_task != current);
3392 				goto end_wait;
3393 			}
3394 		}
3395 		/*
3396 		 * If we've seen completions, retry without waiting. This
3397 		 * avoids a race where a completion comes in before we did
3398 		 * prepare_to_wait().
3399 		 */
3400 		if (inflight == tctx_inflight(tctx, !cancel_all))
3401 			schedule();
3402 end_wait:
3403 		finish_wait(&tctx->wait, &wait);
3404 	} while (1);
3405 
3406 	io_uring_clean_tctx(tctx);
3407 	if (cancel_all) {
3408 		/*
3409 		 * We shouldn't run task_works after cancel, so just leave
3410 		 * ->in_cancel set for normal exit.
3411 		 */
3412 		atomic_dec(&tctx->in_cancel);
3413 		/* for exec all current's requests should be gone, kill tctx */
3414 		__io_uring_free(current);
3415 	}
3416 }
3417 
3418 void __io_uring_cancel(bool cancel_all)
3419 {
3420 	io_uring_cancel_generic(cancel_all, NULL);
3421 }
3422 
3423 static void *io_uring_validate_mmap_request(struct file *file,
3424 					    loff_t pgoff, size_t sz)
3425 {
3426 	struct io_ring_ctx *ctx = file->private_data;
3427 	loff_t offset = pgoff << PAGE_SHIFT;
3428 	struct page *page;
3429 	void *ptr;
3430 
3431 	switch (offset & IORING_OFF_MMAP_MASK) {
3432 	case IORING_OFF_SQ_RING:
3433 	case IORING_OFF_CQ_RING:
3434 		/* Don't allow mmap if the ring was setup without it */
3435 		if (ctx->flags & IORING_SETUP_NO_MMAP)
3436 			return ERR_PTR(-EINVAL);
3437 		ptr = ctx->rings;
3438 		break;
3439 	case IORING_OFF_SQES:
3440 		/* Don't allow mmap if the ring was setup without it */
3441 		if (ctx->flags & IORING_SETUP_NO_MMAP)
3442 			return ERR_PTR(-EINVAL);
3443 		ptr = ctx->sq_sqes;
3444 		break;
3445 	case IORING_OFF_PBUF_RING: {
3446 		unsigned int bgid;
3447 
3448 		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3449 		rcu_read_lock();
3450 		ptr = io_pbuf_get_address(ctx, bgid);
3451 		rcu_read_unlock();
3452 		if (!ptr)
3453 			return ERR_PTR(-EINVAL);
3454 		break;
3455 		}
3456 	default:
3457 		return ERR_PTR(-EINVAL);
3458 	}
3459 
3460 	page = virt_to_head_page(ptr);
3461 	if (sz > page_size(page))
3462 		return ERR_PTR(-EINVAL);
3463 
3464 	return ptr;
3465 }
3466 
3467 #ifdef CONFIG_MMU
3468 
3469 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3470 {
3471 	size_t sz = vma->vm_end - vma->vm_start;
3472 	unsigned long pfn;
3473 	void *ptr;
3474 
3475 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3476 	if (IS_ERR(ptr))
3477 		return PTR_ERR(ptr);
3478 
3479 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3480 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3481 }
3482 
3483 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3484 			unsigned long addr, unsigned long len,
3485 			unsigned long pgoff, unsigned long flags)
3486 {
3487 	void *ptr;
3488 
3489 	/*
3490 	 * Do not allow to map to user-provided address to avoid breaking the
3491 	 * aliasing rules. Userspace is not able to guess the offset address of
3492 	 * kernel kmalloc()ed memory area.
3493 	 */
3494 	if (addr)
3495 		return -EINVAL;
3496 
3497 	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3498 	if (IS_ERR(ptr))
3499 		return -ENOMEM;
3500 
3501 	/*
3502 	 * Some architectures have strong cache aliasing requirements.
3503 	 * For such architectures we need a coherent mapping which aliases
3504 	 * kernel memory *and* userspace memory. To achieve that:
3505 	 * - use a NULL file pointer to reference physical memory, and
3506 	 * - use the kernel virtual address of the shared io_uring context
3507 	 *   (instead of the userspace-provided address, which has to be 0UL
3508 	 *   anyway).
3509 	 * - use the same pgoff which the get_unmapped_area() uses to
3510 	 *   calculate the page colouring.
3511 	 * For architectures without such aliasing requirements, the
3512 	 * architecture will return any suitable mapping because addr is 0.
3513 	 */
3514 	filp = NULL;
3515 	flags |= MAP_SHARED;
3516 	pgoff = 0;	/* has been translated to ptr above */
3517 #ifdef SHM_COLOUR
3518 	addr = (uintptr_t) ptr;
3519 	pgoff = addr >> PAGE_SHIFT;
3520 #else
3521 	addr = 0UL;
3522 #endif
3523 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3524 }
3525 
3526 #else /* !CONFIG_MMU */
3527 
3528 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3529 {
3530 	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3531 }
3532 
3533 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3534 {
3535 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3536 }
3537 
3538 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3539 	unsigned long addr, unsigned long len,
3540 	unsigned long pgoff, unsigned long flags)
3541 {
3542 	void *ptr;
3543 
3544 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3545 	if (IS_ERR(ptr))
3546 		return PTR_ERR(ptr);
3547 
3548 	return (unsigned long) ptr;
3549 }
3550 
3551 #endif /* !CONFIG_MMU */
3552 
3553 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3554 {
3555 	if (flags & IORING_ENTER_EXT_ARG) {
3556 		struct io_uring_getevents_arg arg;
3557 
3558 		if (argsz != sizeof(arg))
3559 			return -EINVAL;
3560 		if (copy_from_user(&arg, argp, sizeof(arg)))
3561 			return -EFAULT;
3562 	}
3563 	return 0;
3564 }
3565 
3566 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3567 			  struct __kernel_timespec __user **ts,
3568 			  const sigset_t __user **sig)
3569 {
3570 	struct io_uring_getevents_arg arg;
3571 
3572 	/*
3573 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3574 	 * is just a pointer to the sigset_t.
3575 	 */
3576 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3577 		*sig = (const sigset_t __user *) argp;
3578 		*ts = NULL;
3579 		return 0;
3580 	}
3581 
3582 	/*
3583 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3584 	 * timespec and sigset_t pointers if good.
3585 	 */
3586 	if (*argsz != sizeof(arg))
3587 		return -EINVAL;
3588 	if (copy_from_user(&arg, argp, sizeof(arg)))
3589 		return -EFAULT;
3590 	if (arg.pad)
3591 		return -EINVAL;
3592 	*sig = u64_to_user_ptr(arg.sigmask);
3593 	*argsz = arg.sigmask_sz;
3594 	*ts = u64_to_user_ptr(arg.ts);
3595 	return 0;
3596 }
3597 
3598 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3599 		u32, min_complete, u32, flags, const void __user *, argp,
3600 		size_t, argsz)
3601 {
3602 	struct io_ring_ctx *ctx;
3603 	struct file *file;
3604 	long ret;
3605 
3606 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3607 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3608 			       IORING_ENTER_REGISTERED_RING)))
3609 		return -EINVAL;
3610 
3611 	/*
3612 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3613 	 * need only dereference our task private array to find it.
3614 	 */
3615 	if (flags & IORING_ENTER_REGISTERED_RING) {
3616 		struct io_uring_task *tctx = current->io_uring;
3617 
3618 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3619 			return -EINVAL;
3620 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3621 		file = tctx->registered_rings[fd];
3622 		if (unlikely(!file))
3623 			return -EBADF;
3624 	} else {
3625 		file = fget(fd);
3626 		if (unlikely(!file))
3627 			return -EBADF;
3628 		ret = -EOPNOTSUPP;
3629 		if (unlikely(!io_is_uring_fops(file)))
3630 			goto out;
3631 	}
3632 
3633 	ctx = file->private_data;
3634 	ret = -EBADFD;
3635 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3636 		goto out;
3637 
3638 	/*
3639 	 * For SQ polling, the thread will do all submissions and completions.
3640 	 * Just return the requested submit count, and wake the thread if
3641 	 * we were asked to.
3642 	 */
3643 	ret = 0;
3644 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3645 		io_cqring_overflow_flush(ctx);
3646 
3647 		if (unlikely(ctx->sq_data->thread == NULL)) {
3648 			ret = -EOWNERDEAD;
3649 			goto out;
3650 		}
3651 		if (flags & IORING_ENTER_SQ_WAKEUP)
3652 			wake_up(&ctx->sq_data->wait);
3653 		if (flags & IORING_ENTER_SQ_WAIT)
3654 			io_sqpoll_wait_sq(ctx);
3655 
3656 		ret = to_submit;
3657 	} else if (to_submit) {
3658 		ret = io_uring_add_tctx_node(ctx);
3659 		if (unlikely(ret))
3660 			goto out;
3661 
3662 		mutex_lock(&ctx->uring_lock);
3663 		ret = io_submit_sqes(ctx, to_submit);
3664 		if (ret != to_submit) {
3665 			mutex_unlock(&ctx->uring_lock);
3666 			goto out;
3667 		}
3668 		if (flags & IORING_ENTER_GETEVENTS) {
3669 			if (ctx->syscall_iopoll)
3670 				goto iopoll_locked;
3671 			/*
3672 			 * Ignore errors, we'll soon call io_cqring_wait() and
3673 			 * it should handle ownership problems if any.
3674 			 */
3675 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3676 				(void)io_run_local_work_locked(ctx);
3677 		}
3678 		mutex_unlock(&ctx->uring_lock);
3679 	}
3680 
3681 	if (flags & IORING_ENTER_GETEVENTS) {
3682 		int ret2;
3683 
3684 		if (ctx->syscall_iopoll) {
3685 			/*
3686 			 * We disallow the app entering submit/complete with
3687 			 * polling, but we still need to lock the ring to
3688 			 * prevent racing with polled issue that got punted to
3689 			 * a workqueue.
3690 			 */
3691 			mutex_lock(&ctx->uring_lock);
3692 iopoll_locked:
3693 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3694 			if (likely(!ret2)) {
3695 				min_complete = min(min_complete,
3696 						   ctx->cq_entries);
3697 				ret2 = io_iopoll_check(ctx, min_complete);
3698 			}
3699 			mutex_unlock(&ctx->uring_lock);
3700 		} else {
3701 			const sigset_t __user *sig;
3702 			struct __kernel_timespec __user *ts;
3703 
3704 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3705 			if (likely(!ret2)) {
3706 				min_complete = min(min_complete,
3707 						   ctx->cq_entries);
3708 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3709 						      argsz, ts);
3710 			}
3711 		}
3712 
3713 		if (!ret) {
3714 			ret = ret2;
3715 
3716 			/*
3717 			 * EBADR indicates that one or more CQE were dropped.
3718 			 * Once the user has been informed we can clear the bit
3719 			 * as they are obviously ok with those drops.
3720 			 */
3721 			if (unlikely(ret2 == -EBADR))
3722 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3723 					  &ctx->check_cq);
3724 		}
3725 	}
3726 out:
3727 	if (!(flags & IORING_ENTER_REGISTERED_RING))
3728 		fput(file);
3729 	return ret;
3730 }
3731 
3732 static const struct file_operations io_uring_fops = {
3733 	.release	= io_uring_release,
3734 	.mmap		= io_uring_mmap,
3735 #ifndef CONFIG_MMU
3736 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3737 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3738 #else
3739 	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3740 #endif
3741 	.poll		= io_uring_poll,
3742 #ifdef CONFIG_PROC_FS
3743 	.show_fdinfo	= io_uring_show_fdinfo,
3744 #endif
3745 };
3746 
3747 bool io_is_uring_fops(struct file *file)
3748 {
3749 	return file->f_op == &io_uring_fops;
3750 }
3751 
3752 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3753 					 struct io_uring_params *p)
3754 {
3755 	struct io_rings *rings;
3756 	size_t size, sq_array_offset;
3757 	void *ptr;
3758 
3759 	/* make sure these are sane, as we already accounted them */
3760 	ctx->sq_entries = p->sq_entries;
3761 	ctx->cq_entries = p->cq_entries;
3762 
3763 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3764 	if (size == SIZE_MAX)
3765 		return -EOVERFLOW;
3766 
3767 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3768 		rings = io_mem_alloc(size);
3769 	else
3770 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3771 
3772 	if (IS_ERR(rings))
3773 		return PTR_ERR(rings);
3774 
3775 	ctx->rings = rings;
3776 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3777 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3778 	rings->sq_ring_mask = p->sq_entries - 1;
3779 	rings->cq_ring_mask = p->cq_entries - 1;
3780 	rings->sq_ring_entries = p->sq_entries;
3781 	rings->cq_ring_entries = p->cq_entries;
3782 
3783 	if (p->flags & IORING_SETUP_SQE128)
3784 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3785 	else
3786 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3787 	if (size == SIZE_MAX) {
3788 		io_rings_free(ctx);
3789 		return -EOVERFLOW;
3790 	}
3791 
3792 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3793 		ptr = io_mem_alloc(size);
3794 	else
3795 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3796 
3797 	if (IS_ERR(ptr)) {
3798 		io_rings_free(ctx);
3799 		return PTR_ERR(ptr);
3800 	}
3801 
3802 	ctx->sq_sqes = ptr;
3803 	return 0;
3804 }
3805 
3806 static int io_uring_install_fd(struct file *file)
3807 {
3808 	int fd;
3809 
3810 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3811 	if (fd < 0)
3812 		return fd;
3813 	fd_install(fd, file);
3814 	return fd;
3815 }
3816 
3817 /*
3818  * Allocate an anonymous fd, this is what constitutes the application
3819  * visible backing of an io_uring instance. The application mmaps this
3820  * fd to gain access to the SQ/CQ ring details.
3821  */
3822 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3823 {
3824 	return anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3825 					 O_RDWR | O_CLOEXEC, NULL);
3826 }
3827 
3828 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3829 				  struct io_uring_params __user *params)
3830 {
3831 	struct io_ring_ctx *ctx;
3832 	struct io_uring_task *tctx;
3833 	struct file *file;
3834 	int ret;
3835 
3836 	if (!entries)
3837 		return -EINVAL;
3838 	if (entries > IORING_MAX_ENTRIES) {
3839 		if (!(p->flags & IORING_SETUP_CLAMP))
3840 			return -EINVAL;
3841 		entries = IORING_MAX_ENTRIES;
3842 	}
3843 
3844 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3845 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3846 		return -EINVAL;
3847 
3848 	/*
3849 	 * Use twice as many entries for the CQ ring. It's possible for the
3850 	 * application to drive a higher depth than the size of the SQ ring,
3851 	 * since the sqes are only used at submission time. This allows for
3852 	 * some flexibility in overcommitting a bit. If the application has
3853 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3854 	 * of CQ ring entries manually.
3855 	 */
3856 	p->sq_entries = roundup_pow_of_two(entries);
3857 	if (p->flags & IORING_SETUP_CQSIZE) {
3858 		/*
3859 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3860 		 * to a power-of-two, if it isn't already. We do NOT impose
3861 		 * any cq vs sq ring sizing.
3862 		 */
3863 		if (!p->cq_entries)
3864 			return -EINVAL;
3865 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3866 			if (!(p->flags & IORING_SETUP_CLAMP))
3867 				return -EINVAL;
3868 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3869 		}
3870 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3871 		if (p->cq_entries < p->sq_entries)
3872 			return -EINVAL;
3873 	} else {
3874 		p->cq_entries = 2 * p->sq_entries;
3875 	}
3876 
3877 	ctx = io_ring_ctx_alloc(p);
3878 	if (!ctx)
3879 		return -ENOMEM;
3880 
3881 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3882 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3883 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3884 		ctx->task_complete = true;
3885 
3886 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3887 		ctx->lockless_cq = true;
3888 
3889 	/*
3890 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3891 	 * purposes, see io_activate_pollwq()
3892 	 */
3893 	if (!ctx->task_complete)
3894 		ctx->poll_activated = true;
3895 
3896 	/*
3897 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3898 	 * space applications don't need to do io completion events
3899 	 * polling again, they can rely on io_sq_thread to do polling
3900 	 * work, which can reduce cpu usage and uring_lock contention.
3901 	 */
3902 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3903 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3904 		ctx->syscall_iopoll = 1;
3905 
3906 	ctx->compat = in_compat_syscall();
3907 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3908 		ctx->user = get_uid(current_user());
3909 
3910 	/*
3911 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3912 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3913 	 */
3914 	ret = -EINVAL;
3915 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3916 		/* IPI related flags don't make sense with SQPOLL */
3917 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3918 				  IORING_SETUP_TASKRUN_FLAG |
3919 				  IORING_SETUP_DEFER_TASKRUN))
3920 			goto err;
3921 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3922 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3923 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3924 	} else {
3925 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3926 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3927 			goto err;
3928 		ctx->notify_method = TWA_SIGNAL;
3929 	}
3930 
3931 	/*
3932 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3933 	 * submission task. This implies that there is only one submitter, so enforce
3934 	 * that.
3935 	 */
3936 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3937 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3938 		goto err;
3939 	}
3940 
3941 	/*
3942 	 * This is just grabbed for accounting purposes. When a process exits,
3943 	 * the mm is exited and dropped before the files, hence we need to hang
3944 	 * on to this mm purely for the purposes of being able to unaccount
3945 	 * memory (locked/pinned vm). It's not used for anything else.
3946 	 */
3947 	mmgrab(current->mm);
3948 	ctx->mm_account = current->mm;
3949 
3950 	ret = io_allocate_scq_urings(ctx, p);
3951 	if (ret)
3952 		goto err;
3953 
3954 	ret = io_sq_offload_create(ctx, p);
3955 	if (ret)
3956 		goto err;
3957 
3958 	ret = io_rsrc_init(ctx);
3959 	if (ret)
3960 		goto err;
3961 
3962 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3963 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3964 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3965 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3966 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3967 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3968 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3969 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3970 	p->sq_off.resv1 = 0;
3971 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3972 		p->sq_off.user_addr = 0;
3973 
3974 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3975 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3976 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3977 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3978 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3979 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3980 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3981 	p->cq_off.resv1 = 0;
3982 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3983 		p->cq_off.user_addr = 0;
3984 
3985 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3986 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3987 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3988 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3989 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3990 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3991 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
3992 
3993 	if (copy_to_user(params, p, sizeof(*p))) {
3994 		ret = -EFAULT;
3995 		goto err;
3996 	}
3997 
3998 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3999 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
4000 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4001 
4002 	file = io_uring_get_file(ctx);
4003 	if (IS_ERR(file)) {
4004 		ret = PTR_ERR(file);
4005 		goto err;
4006 	}
4007 
4008 	ret = __io_uring_add_tctx_node(ctx);
4009 	if (ret)
4010 		goto err_fput;
4011 	tctx = current->io_uring;
4012 
4013 	/*
4014 	 * Install ring fd as the very last thing, so we don't risk someone
4015 	 * having closed it before we finish setup
4016 	 */
4017 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
4018 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
4019 	else
4020 		ret = io_uring_install_fd(file);
4021 	if (ret < 0)
4022 		goto err_fput;
4023 
4024 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4025 	return ret;
4026 err:
4027 	io_ring_ctx_wait_and_kill(ctx);
4028 	return ret;
4029 err_fput:
4030 	fput(file);
4031 	return ret;
4032 }
4033 
4034 /*
4035  * Sets up an aio uring context, and returns the fd. Applications asks for a
4036  * ring size, we return the actual sq/cq ring sizes (among other things) in the
4037  * params structure passed in.
4038  */
4039 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4040 {
4041 	struct io_uring_params p;
4042 	int i;
4043 
4044 	if (copy_from_user(&p, params, sizeof(p)))
4045 		return -EFAULT;
4046 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4047 		if (p.resv[i])
4048 			return -EINVAL;
4049 	}
4050 
4051 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4052 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4053 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4054 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4055 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4056 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4057 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4058 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4059 			IORING_SETUP_NO_SQARRAY))
4060 		return -EINVAL;
4061 
4062 	return io_uring_create(entries, &p, params);
4063 }
4064 
4065 static inline bool io_uring_allowed(void)
4066 {
4067 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
4068 	kgid_t io_uring_group;
4069 
4070 	if (disabled == 2)
4071 		return false;
4072 
4073 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
4074 		return true;
4075 
4076 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
4077 	if (!gid_valid(io_uring_group))
4078 		return false;
4079 
4080 	return in_group_p(io_uring_group);
4081 }
4082 
4083 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4084 		struct io_uring_params __user *, params)
4085 {
4086 	if (!io_uring_allowed())
4087 		return -EPERM;
4088 
4089 	return io_uring_setup(entries, params);
4090 }
4091 
4092 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4093 			   unsigned nr_args)
4094 {
4095 	struct io_uring_probe *p;
4096 	size_t size;
4097 	int i, ret;
4098 
4099 	size = struct_size(p, ops, nr_args);
4100 	if (size == SIZE_MAX)
4101 		return -EOVERFLOW;
4102 	p = kzalloc(size, GFP_KERNEL);
4103 	if (!p)
4104 		return -ENOMEM;
4105 
4106 	ret = -EFAULT;
4107 	if (copy_from_user(p, arg, size))
4108 		goto out;
4109 	ret = -EINVAL;
4110 	if (memchr_inv(p, 0, size))
4111 		goto out;
4112 
4113 	p->last_op = IORING_OP_LAST - 1;
4114 	if (nr_args > IORING_OP_LAST)
4115 		nr_args = IORING_OP_LAST;
4116 
4117 	for (i = 0; i < nr_args; i++) {
4118 		p->ops[i].op = i;
4119 		if (!io_issue_defs[i].not_supported)
4120 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
4121 	}
4122 	p->ops_len = i;
4123 
4124 	ret = 0;
4125 	if (copy_to_user(arg, p, size))
4126 		ret = -EFAULT;
4127 out:
4128 	kfree(p);
4129 	return ret;
4130 }
4131 
4132 static int io_register_personality(struct io_ring_ctx *ctx)
4133 {
4134 	const struct cred *creds;
4135 	u32 id;
4136 	int ret;
4137 
4138 	creds = get_current_cred();
4139 
4140 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4141 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4142 	if (ret < 0) {
4143 		put_cred(creds);
4144 		return ret;
4145 	}
4146 	return id;
4147 }
4148 
4149 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4150 					   void __user *arg, unsigned int nr_args)
4151 {
4152 	struct io_uring_restriction *res;
4153 	size_t size;
4154 	int i, ret;
4155 
4156 	/* Restrictions allowed only if rings started disabled */
4157 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4158 		return -EBADFD;
4159 
4160 	/* We allow only a single restrictions registration */
4161 	if (ctx->restrictions.registered)
4162 		return -EBUSY;
4163 
4164 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4165 		return -EINVAL;
4166 
4167 	size = array_size(nr_args, sizeof(*res));
4168 	if (size == SIZE_MAX)
4169 		return -EOVERFLOW;
4170 
4171 	res = memdup_user(arg, size);
4172 	if (IS_ERR(res))
4173 		return PTR_ERR(res);
4174 
4175 	ret = 0;
4176 
4177 	for (i = 0; i < nr_args; i++) {
4178 		switch (res[i].opcode) {
4179 		case IORING_RESTRICTION_REGISTER_OP:
4180 			if (res[i].register_op >= IORING_REGISTER_LAST) {
4181 				ret = -EINVAL;
4182 				goto out;
4183 			}
4184 
4185 			__set_bit(res[i].register_op,
4186 				  ctx->restrictions.register_op);
4187 			break;
4188 		case IORING_RESTRICTION_SQE_OP:
4189 			if (res[i].sqe_op >= IORING_OP_LAST) {
4190 				ret = -EINVAL;
4191 				goto out;
4192 			}
4193 
4194 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4195 			break;
4196 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4197 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4198 			break;
4199 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4200 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4201 			break;
4202 		default:
4203 			ret = -EINVAL;
4204 			goto out;
4205 		}
4206 	}
4207 
4208 out:
4209 	/* Reset all restrictions if an error happened */
4210 	if (ret != 0)
4211 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4212 	else
4213 		ctx->restrictions.registered = true;
4214 
4215 	kfree(res);
4216 	return ret;
4217 }
4218 
4219 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4220 {
4221 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4222 		return -EBADFD;
4223 
4224 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4225 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4226 		/*
4227 		 * Lazy activation attempts would fail if it was polled before
4228 		 * submitter_task is set.
4229 		 */
4230 		if (wq_has_sleeper(&ctx->poll_wq))
4231 			io_activate_pollwq(ctx);
4232 	}
4233 
4234 	if (ctx->restrictions.registered)
4235 		ctx->restricted = 1;
4236 
4237 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
4238 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4239 		wake_up(&ctx->sq_data->wait);
4240 	return 0;
4241 }
4242 
4243 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx,
4244 					 cpumask_var_t new_mask)
4245 {
4246 	int ret;
4247 
4248 	if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
4249 		ret = io_wq_cpu_affinity(current->io_uring, new_mask);
4250 	} else {
4251 		mutex_unlock(&ctx->uring_lock);
4252 		ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask);
4253 		mutex_lock(&ctx->uring_lock);
4254 	}
4255 
4256 	return ret;
4257 }
4258 
4259 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4260 				       void __user *arg, unsigned len)
4261 {
4262 	cpumask_var_t new_mask;
4263 	int ret;
4264 
4265 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4266 		return -ENOMEM;
4267 
4268 	cpumask_clear(new_mask);
4269 	if (len > cpumask_size())
4270 		len = cpumask_size();
4271 
4272 	if (in_compat_syscall()) {
4273 		ret = compat_get_bitmap(cpumask_bits(new_mask),
4274 					(const compat_ulong_t __user *)arg,
4275 					len * 8 /* CHAR_BIT */);
4276 	} else {
4277 		ret = copy_from_user(new_mask, arg, len);
4278 	}
4279 
4280 	if (ret) {
4281 		free_cpumask_var(new_mask);
4282 		return -EFAULT;
4283 	}
4284 
4285 	ret = __io_register_iowq_aff(ctx, new_mask);
4286 	free_cpumask_var(new_mask);
4287 	return ret;
4288 }
4289 
4290 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4291 {
4292 	return __io_register_iowq_aff(ctx, NULL);
4293 }
4294 
4295 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4296 					       void __user *arg)
4297 	__must_hold(&ctx->uring_lock)
4298 {
4299 	struct io_tctx_node *node;
4300 	struct io_uring_task *tctx = NULL;
4301 	struct io_sq_data *sqd = NULL;
4302 	__u32 new_count[2];
4303 	int i, ret;
4304 
4305 	if (copy_from_user(new_count, arg, sizeof(new_count)))
4306 		return -EFAULT;
4307 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4308 		if (new_count[i] > INT_MAX)
4309 			return -EINVAL;
4310 
4311 	if (ctx->flags & IORING_SETUP_SQPOLL) {
4312 		sqd = ctx->sq_data;
4313 		if (sqd) {
4314 			/*
4315 			 * Observe the correct sqd->lock -> ctx->uring_lock
4316 			 * ordering. Fine to drop uring_lock here, we hold
4317 			 * a ref to the ctx.
4318 			 */
4319 			refcount_inc(&sqd->refs);
4320 			mutex_unlock(&ctx->uring_lock);
4321 			mutex_lock(&sqd->lock);
4322 			mutex_lock(&ctx->uring_lock);
4323 			if (sqd->thread)
4324 				tctx = sqd->thread->io_uring;
4325 		}
4326 	} else {
4327 		tctx = current->io_uring;
4328 	}
4329 
4330 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4331 
4332 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4333 		if (new_count[i])
4334 			ctx->iowq_limits[i] = new_count[i];
4335 	ctx->iowq_limits_set = true;
4336 
4337 	if (tctx && tctx->io_wq) {
4338 		ret = io_wq_max_workers(tctx->io_wq, new_count);
4339 		if (ret)
4340 			goto err;
4341 	} else {
4342 		memset(new_count, 0, sizeof(new_count));
4343 	}
4344 
4345 	if (sqd) {
4346 		mutex_unlock(&sqd->lock);
4347 		io_put_sq_data(sqd);
4348 	}
4349 
4350 	if (copy_to_user(arg, new_count, sizeof(new_count)))
4351 		return -EFAULT;
4352 
4353 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
4354 	if (sqd)
4355 		return 0;
4356 
4357 	/* now propagate the restriction to all registered users */
4358 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4359 		struct io_uring_task *tctx = node->task->io_uring;
4360 
4361 		if (WARN_ON_ONCE(!tctx->io_wq))
4362 			continue;
4363 
4364 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
4365 			new_count[i] = ctx->iowq_limits[i];
4366 		/* ignore errors, it always returns zero anyway */
4367 		(void)io_wq_max_workers(tctx->io_wq, new_count);
4368 	}
4369 	return 0;
4370 err:
4371 	if (sqd) {
4372 		mutex_unlock(&sqd->lock);
4373 		io_put_sq_data(sqd);
4374 	}
4375 	return ret;
4376 }
4377 
4378 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4379 			       void __user *arg, unsigned nr_args)
4380 	__releases(ctx->uring_lock)
4381 	__acquires(ctx->uring_lock)
4382 {
4383 	int ret;
4384 
4385 	/*
4386 	 * We don't quiesce the refs for register anymore and so it can't be
4387 	 * dying as we're holding a file ref here.
4388 	 */
4389 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4390 		return -ENXIO;
4391 
4392 	if (ctx->submitter_task && ctx->submitter_task != current)
4393 		return -EEXIST;
4394 
4395 	if (ctx->restricted) {
4396 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4397 		if (!test_bit(opcode, ctx->restrictions.register_op))
4398 			return -EACCES;
4399 	}
4400 
4401 	switch (opcode) {
4402 	case IORING_REGISTER_BUFFERS:
4403 		ret = -EFAULT;
4404 		if (!arg)
4405 			break;
4406 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4407 		break;
4408 	case IORING_UNREGISTER_BUFFERS:
4409 		ret = -EINVAL;
4410 		if (arg || nr_args)
4411 			break;
4412 		ret = io_sqe_buffers_unregister(ctx);
4413 		break;
4414 	case IORING_REGISTER_FILES:
4415 		ret = -EFAULT;
4416 		if (!arg)
4417 			break;
4418 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4419 		break;
4420 	case IORING_UNREGISTER_FILES:
4421 		ret = -EINVAL;
4422 		if (arg || nr_args)
4423 			break;
4424 		ret = io_sqe_files_unregister(ctx);
4425 		break;
4426 	case IORING_REGISTER_FILES_UPDATE:
4427 		ret = io_register_files_update(ctx, arg, nr_args);
4428 		break;
4429 	case IORING_REGISTER_EVENTFD:
4430 		ret = -EINVAL;
4431 		if (nr_args != 1)
4432 			break;
4433 		ret = io_eventfd_register(ctx, arg, 0);
4434 		break;
4435 	case IORING_REGISTER_EVENTFD_ASYNC:
4436 		ret = -EINVAL;
4437 		if (nr_args != 1)
4438 			break;
4439 		ret = io_eventfd_register(ctx, arg, 1);
4440 		break;
4441 	case IORING_UNREGISTER_EVENTFD:
4442 		ret = -EINVAL;
4443 		if (arg || nr_args)
4444 			break;
4445 		ret = io_eventfd_unregister(ctx);
4446 		break;
4447 	case IORING_REGISTER_PROBE:
4448 		ret = -EINVAL;
4449 		if (!arg || nr_args > 256)
4450 			break;
4451 		ret = io_probe(ctx, arg, nr_args);
4452 		break;
4453 	case IORING_REGISTER_PERSONALITY:
4454 		ret = -EINVAL;
4455 		if (arg || nr_args)
4456 			break;
4457 		ret = io_register_personality(ctx);
4458 		break;
4459 	case IORING_UNREGISTER_PERSONALITY:
4460 		ret = -EINVAL;
4461 		if (arg)
4462 			break;
4463 		ret = io_unregister_personality(ctx, nr_args);
4464 		break;
4465 	case IORING_REGISTER_ENABLE_RINGS:
4466 		ret = -EINVAL;
4467 		if (arg || nr_args)
4468 			break;
4469 		ret = io_register_enable_rings(ctx);
4470 		break;
4471 	case IORING_REGISTER_RESTRICTIONS:
4472 		ret = io_register_restrictions(ctx, arg, nr_args);
4473 		break;
4474 	case IORING_REGISTER_FILES2:
4475 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4476 		break;
4477 	case IORING_REGISTER_FILES_UPDATE2:
4478 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4479 					      IORING_RSRC_FILE);
4480 		break;
4481 	case IORING_REGISTER_BUFFERS2:
4482 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4483 		break;
4484 	case IORING_REGISTER_BUFFERS_UPDATE:
4485 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4486 					      IORING_RSRC_BUFFER);
4487 		break;
4488 	case IORING_REGISTER_IOWQ_AFF:
4489 		ret = -EINVAL;
4490 		if (!arg || !nr_args)
4491 			break;
4492 		ret = io_register_iowq_aff(ctx, arg, nr_args);
4493 		break;
4494 	case IORING_UNREGISTER_IOWQ_AFF:
4495 		ret = -EINVAL;
4496 		if (arg || nr_args)
4497 			break;
4498 		ret = io_unregister_iowq_aff(ctx);
4499 		break;
4500 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4501 		ret = -EINVAL;
4502 		if (!arg || nr_args != 2)
4503 			break;
4504 		ret = io_register_iowq_max_workers(ctx, arg);
4505 		break;
4506 	case IORING_REGISTER_RING_FDS:
4507 		ret = io_ringfd_register(ctx, arg, nr_args);
4508 		break;
4509 	case IORING_UNREGISTER_RING_FDS:
4510 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4511 		break;
4512 	case IORING_REGISTER_PBUF_RING:
4513 		ret = -EINVAL;
4514 		if (!arg || nr_args != 1)
4515 			break;
4516 		ret = io_register_pbuf_ring(ctx, arg);
4517 		break;
4518 	case IORING_UNREGISTER_PBUF_RING:
4519 		ret = -EINVAL;
4520 		if (!arg || nr_args != 1)
4521 			break;
4522 		ret = io_unregister_pbuf_ring(ctx, arg);
4523 		break;
4524 	case IORING_REGISTER_SYNC_CANCEL:
4525 		ret = -EINVAL;
4526 		if (!arg || nr_args != 1)
4527 			break;
4528 		ret = io_sync_cancel(ctx, arg);
4529 		break;
4530 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4531 		ret = -EINVAL;
4532 		if (!arg || nr_args)
4533 			break;
4534 		ret = io_register_file_alloc_range(ctx, arg);
4535 		break;
4536 	default:
4537 		ret = -EINVAL;
4538 		break;
4539 	}
4540 
4541 	return ret;
4542 }
4543 
4544 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4545 		void __user *, arg, unsigned int, nr_args)
4546 {
4547 	struct io_ring_ctx *ctx;
4548 	long ret = -EBADF;
4549 	struct file *file;
4550 	bool use_registered_ring;
4551 
4552 	use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4553 	opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4554 
4555 	if (opcode >= IORING_REGISTER_LAST)
4556 		return -EINVAL;
4557 
4558 	if (use_registered_ring) {
4559 		/*
4560 		 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4561 		 * need only dereference our task private array to find it.
4562 		 */
4563 		struct io_uring_task *tctx = current->io_uring;
4564 
4565 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4566 			return -EINVAL;
4567 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4568 		file = tctx->registered_rings[fd];
4569 		if (unlikely(!file))
4570 			return -EBADF;
4571 	} else {
4572 		file = fget(fd);
4573 		if (unlikely(!file))
4574 			return -EBADF;
4575 		ret = -EOPNOTSUPP;
4576 		if (!io_is_uring_fops(file))
4577 			goto out_fput;
4578 	}
4579 
4580 	ctx = file->private_data;
4581 
4582 	mutex_lock(&ctx->uring_lock);
4583 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4584 	mutex_unlock(&ctx->uring_lock);
4585 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4586 out_fput:
4587 	if (!use_registered_ring)
4588 		fput(file);
4589 	return ret;
4590 }
4591 
4592 static int __init io_uring_init(void)
4593 {
4594 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4595 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4596 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4597 } while (0)
4598 
4599 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4600 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4601 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4602 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4603 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4604 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4605 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4606 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4607 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4608 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4609 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4610 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4611 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4612 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4613 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4614 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4615 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4616 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4617 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4618 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4619 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4620 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4621 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4622 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4623 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4624 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4625 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4626 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4627 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4628 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4629 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4630 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4631 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4632 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4633 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4634 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4635 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4636 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4637 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4638 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4639 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4640 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4641 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4642 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4643 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4644 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4645 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4646 
4647 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4648 		     sizeof(struct io_uring_rsrc_update));
4649 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4650 		     sizeof(struct io_uring_rsrc_update2));
4651 
4652 	/* ->buf_index is u16 */
4653 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4654 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4655 		     offsetof(struct io_uring_buf_ring, tail));
4656 
4657 	/* should fit into one byte */
4658 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4659 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4660 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4661 
4662 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4663 
4664 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4665 
4666 	io_uring_optable_init();
4667 
4668 	/*
4669 	 * Allow user copy in the per-command field, which starts after the
4670 	 * file in io_kiocb and until the opcode field. The openat2 handling
4671 	 * requires copying in user memory into the io_kiocb object in that
4672 	 * range, and HARDENED_USERCOPY will complain if we haven't
4673 	 * correctly annotated this range.
4674 	 */
4675 	req_cachep = kmem_cache_create_usercopy("io_kiocb",
4676 				sizeof(struct io_kiocb), 0,
4677 				SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4678 				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4679 				offsetof(struct io_kiocb, cmd.data),
4680 				sizeof_field(struct io_kiocb, cmd.data), NULL);
4681 
4682 #ifdef CONFIG_SYSCTL
4683 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4684 #endif
4685 
4686 	return 0;
4687 };
4688 __initcall(io_uring_init);
4689