xref: /openbmc/linux/io_uring/io_uring.c (revision a34a9f1a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 #include <asm/shmparam.h>
76 
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/io_uring.h>
79 
80 #include <uapi/linux/io_uring.h>
81 
82 #include "io-wq.h"
83 
84 #include "io_uring.h"
85 #include "opdef.h"
86 #include "refs.h"
87 #include "tctx.h"
88 #include "sqpoll.h"
89 #include "fdinfo.h"
90 #include "kbuf.h"
91 #include "rsrc.h"
92 #include "cancel.h"
93 #include "net.h"
94 #include "notif.h"
95 
96 #include "timeout.h"
97 #include "poll.h"
98 #include "rw.h"
99 #include "alloc_cache.h"
100 
101 #define IORING_MAX_ENTRIES	32768
102 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
103 
104 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
105 				 IORING_REGISTER_LAST + IORING_OP_LAST)
106 
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109 
110 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112 
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 				REQ_F_ASYNC_DATA)
116 
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 				 IO_REQ_CLEAN_FLAGS)
119 
120 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
121 
122 #define IO_COMPL_BATCH			32
123 #define IO_REQ_ALLOC_BATCH		8
124 
125 enum {
126 	IO_CHECK_CQ_OVERFLOW_BIT,
127 	IO_CHECK_CQ_DROPPED_BIT,
128 };
129 
130 enum {
131 	IO_EVENTFD_OP_SIGNAL_BIT,
132 	IO_EVENTFD_OP_FREE_BIT,
133 };
134 
135 struct io_defer_entry {
136 	struct list_head	list;
137 	struct io_kiocb		*req;
138 	u32			seq;
139 };
140 
141 /* requests with any of those set should undergo io_disarm_next() */
142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
144 
145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
146 					 struct task_struct *task,
147 					 bool cancel_all);
148 
149 static void io_queue_sqe(struct io_kiocb *req);
150 
151 struct kmem_cache *req_cachep;
152 
153 struct sock *io_uring_get_socket(struct file *file)
154 {
155 #if defined(CONFIG_UNIX)
156 	if (io_is_uring_fops(file)) {
157 		struct io_ring_ctx *ctx = file->private_data;
158 
159 		return ctx->ring_sock->sk;
160 	}
161 #endif
162 	return NULL;
163 }
164 EXPORT_SYMBOL(io_uring_get_socket);
165 
166 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
167 {
168 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
169 	    ctx->submit_state.cqes_count)
170 		__io_submit_flush_completions(ctx);
171 }
172 
173 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
174 {
175 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
176 }
177 
178 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
179 {
180 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
181 }
182 
183 static bool io_match_linked(struct io_kiocb *head)
184 {
185 	struct io_kiocb *req;
186 
187 	io_for_each_link(req, head) {
188 		if (req->flags & REQ_F_INFLIGHT)
189 			return true;
190 	}
191 	return false;
192 }
193 
194 /*
195  * As io_match_task() but protected against racing with linked timeouts.
196  * User must not hold timeout_lock.
197  */
198 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
199 			bool cancel_all)
200 {
201 	bool matched;
202 
203 	if (task && head->task != task)
204 		return false;
205 	if (cancel_all)
206 		return true;
207 
208 	if (head->flags & REQ_F_LINK_TIMEOUT) {
209 		struct io_ring_ctx *ctx = head->ctx;
210 
211 		/* protect against races with linked timeouts */
212 		spin_lock_irq(&ctx->timeout_lock);
213 		matched = io_match_linked(head);
214 		spin_unlock_irq(&ctx->timeout_lock);
215 	} else {
216 		matched = io_match_linked(head);
217 	}
218 	return matched;
219 }
220 
221 static inline void req_fail_link_node(struct io_kiocb *req, int res)
222 {
223 	req_set_fail(req);
224 	io_req_set_res(req, res, 0);
225 }
226 
227 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
228 {
229 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
230 }
231 
232 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
233 {
234 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
235 
236 	complete(&ctx->ref_comp);
237 }
238 
239 static __cold void io_fallback_req_func(struct work_struct *work)
240 {
241 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
242 						fallback_work.work);
243 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
244 	struct io_kiocb *req, *tmp;
245 	struct io_tw_state ts = { .locked = true, };
246 
247 	mutex_lock(&ctx->uring_lock);
248 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
249 		req->io_task_work.func(req, &ts);
250 	if (WARN_ON_ONCE(!ts.locked))
251 		return;
252 	io_submit_flush_completions(ctx);
253 	mutex_unlock(&ctx->uring_lock);
254 }
255 
256 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
257 {
258 	unsigned hash_buckets = 1U << bits;
259 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
260 
261 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
262 	if (!table->hbs)
263 		return -ENOMEM;
264 
265 	table->hash_bits = bits;
266 	init_hash_table(table, hash_buckets);
267 	return 0;
268 }
269 
270 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
271 {
272 	struct io_ring_ctx *ctx;
273 	int hash_bits;
274 
275 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
276 	if (!ctx)
277 		return NULL;
278 
279 	xa_init(&ctx->io_bl_xa);
280 
281 	/*
282 	 * Use 5 bits less than the max cq entries, that should give us around
283 	 * 32 entries per hash list if totally full and uniformly spread, but
284 	 * don't keep too many buckets to not overconsume memory.
285 	 */
286 	hash_bits = ilog2(p->cq_entries) - 5;
287 	hash_bits = clamp(hash_bits, 1, 8);
288 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
289 		goto err;
290 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
291 		goto err;
292 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
293 			    0, GFP_KERNEL))
294 		goto err;
295 
296 	ctx->flags = p->flags;
297 	init_waitqueue_head(&ctx->sqo_sq_wait);
298 	INIT_LIST_HEAD(&ctx->sqd_list);
299 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
300 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
301 	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
302 			    sizeof(struct io_rsrc_node));
303 	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
304 			    sizeof(struct async_poll));
305 	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
306 			    sizeof(struct io_async_msghdr));
307 	init_completion(&ctx->ref_comp);
308 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
309 	mutex_init(&ctx->uring_lock);
310 	init_waitqueue_head(&ctx->cq_wait);
311 	init_waitqueue_head(&ctx->poll_wq);
312 	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
313 	spin_lock_init(&ctx->completion_lock);
314 	spin_lock_init(&ctx->timeout_lock);
315 	INIT_WQ_LIST(&ctx->iopoll_list);
316 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
317 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
318 	INIT_LIST_HEAD(&ctx->defer_list);
319 	INIT_LIST_HEAD(&ctx->timeout_list);
320 	INIT_LIST_HEAD(&ctx->ltimeout_list);
321 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
322 	init_llist_head(&ctx->work_llist);
323 	INIT_LIST_HEAD(&ctx->tctx_list);
324 	ctx->submit_state.free_list.next = NULL;
325 	INIT_WQ_LIST(&ctx->locked_free_list);
326 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
327 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
328 	return ctx;
329 err:
330 	kfree(ctx->cancel_table.hbs);
331 	kfree(ctx->cancel_table_locked.hbs);
332 	kfree(ctx->io_bl);
333 	xa_destroy(&ctx->io_bl_xa);
334 	kfree(ctx);
335 	return NULL;
336 }
337 
338 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
339 {
340 	struct io_rings *r = ctx->rings;
341 
342 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
343 	ctx->cq_extra--;
344 }
345 
346 static bool req_need_defer(struct io_kiocb *req, u32 seq)
347 {
348 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
349 		struct io_ring_ctx *ctx = req->ctx;
350 
351 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
352 	}
353 
354 	return false;
355 }
356 
357 static void io_clean_op(struct io_kiocb *req)
358 {
359 	if (req->flags & REQ_F_BUFFER_SELECTED) {
360 		spin_lock(&req->ctx->completion_lock);
361 		io_put_kbuf_comp(req);
362 		spin_unlock(&req->ctx->completion_lock);
363 	}
364 
365 	if (req->flags & REQ_F_NEED_CLEANUP) {
366 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
367 
368 		if (def->cleanup)
369 			def->cleanup(req);
370 	}
371 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
372 		kfree(req->apoll->double_poll);
373 		kfree(req->apoll);
374 		req->apoll = NULL;
375 	}
376 	if (req->flags & REQ_F_INFLIGHT) {
377 		struct io_uring_task *tctx = req->task->io_uring;
378 
379 		atomic_dec(&tctx->inflight_tracked);
380 	}
381 	if (req->flags & REQ_F_CREDS)
382 		put_cred(req->creds);
383 	if (req->flags & REQ_F_ASYNC_DATA) {
384 		kfree(req->async_data);
385 		req->async_data = NULL;
386 	}
387 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
388 }
389 
390 static inline void io_req_track_inflight(struct io_kiocb *req)
391 {
392 	if (!(req->flags & REQ_F_INFLIGHT)) {
393 		req->flags |= REQ_F_INFLIGHT;
394 		atomic_inc(&req->task->io_uring->inflight_tracked);
395 	}
396 }
397 
398 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
399 {
400 	if (WARN_ON_ONCE(!req->link))
401 		return NULL;
402 
403 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
404 	req->flags |= REQ_F_LINK_TIMEOUT;
405 
406 	/* linked timeouts should have two refs once prep'ed */
407 	io_req_set_refcount(req);
408 	__io_req_set_refcount(req->link, 2);
409 	return req->link;
410 }
411 
412 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
413 {
414 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
415 		return NULL;
416 	return __io_prep_linked_timeout(req);
417 }
418 
419 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
420 {
421 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
422 }
423 
424 static inline void io_arm_ltimeout(struct io_kiocb *req)
425 {
426 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
427 		__io_arm_ltimeout(req);
428 }
429 
430 static void io_prep_async_work(struct io_kiocb *req)
431 {
432 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
433 	struct io_ring_ctx *ctx = req->ctx;
434 
435 	if (!(req->flags & REQ_F_CREDS)) {
436 		req->flags |= REQ_F_CREDS;
437 		req->creds = get_current_cred();
438 	}
439 
440 	req->work.list.next = NULL;
441 	req->work.flags = 0;
442 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
443 	if (req->flags & REQ_F_FORCE_ASYNC)
444 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
445 
446 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
447 		req->flags |= io_file_get_flags(req->file);
448 
449 	if (req->file && (req->flags & REQ_F_ISREG)) {
450 		bool should_hash = def->hash_reg_file;
451 
452 		/* don't serialize this request if the fs doesn't need it */
453 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
454 		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
455 			should_hash = false;
456 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
457 			io_wq_hash_work(&req->work, file_inode(req->file));
458 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
459 		if (def->unbound_nonreg_file)
460 			req->work.flags |= IO_WQ_WORK_UNBOUND;
461 	}
462 }
463 
464 static void io_prep_async_link(struct io_kiocb *req)
465 {
466 	struct io_kiocb *cur;
467 
468 	if (req->flags & REQ_F_LINK_TIMEOUT) {
469 		struct io_ring_ctx *ctx = req->ctx;
470 
471 		spin_lock_irq(&ctx->timeout_lock);
472 		io_for_each_link(cur, req)
473 			io_prep_async_work(cur);
474 		spin_unlock_irq(&ctx->timeout_lock);
475 	} else {
476 		io_for_each_link(cur, req)
477 			io_prep_async_work(cur);
478 	}
479 }
480 
481 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
482 {
483 	struct io_kiocb *link = io_prep_linked_timeout(req);
484 	struct io_uring_task *tctx = req->task->io_uring;
485 
486 	BUG_ON(!tctx);
487 	BUG_ON(!tctx->io_wq);
488 
489 	/* init ->work of the whole link before punting */
490 	io_prep_async_link(req);
491 
492 	/*
493 	 * Not expected to happen, but if we do have a bug where this _can_
494 	 * happen, catch it here and ensure the request is marked as
495 	 * canceled. That will make io-wq go through the usual work cancel
496 	 * procedure rather than attempt to run this request (or create a new
497 	 * worker for it).
498 	 */
499 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
500 		req->work.flags |= IO_WQ_WORK_CANCEL;
501 
502 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
503 	io_wq_enqueue(tctx->io_wq, &req->work);
504 	if (link)
505 		io_queue_linked_timeout(link);
506 }
507 
508 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
509 {
510 	while (!list_empty(&ctx->defer_list)) {
511 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
512 						struct io_defer_entry, list);
513 
514 		if (req_need_defer(de->req, de->seq))
515 			break;
516 		list_del_init(&de->list);
517 		io_req_task_queue(de->req);
518 		kfree(de);
519 	}
520 }
521 
522 
523 static void io_eventfd_ops(struct rcu_head *rcu)
524 {
525 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
526 	int ops = atomic_xchg(&ev_fd->ops, 0);
527 
528 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
529 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
530 
531 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
532 	 * ordering in a race but if references are 0 we know we have to free
533 	 * it regardless.
534 	 */
535 	if (atomic_dec_and_test(&ev_fd->refs)) {
536 		eventfd_ctx_put(ev_fd->cq_ev_fd);
537 		kfree(ev_fd);
538 	}
539 }
540 
541 static void io_eventfd_signal(struct io_ring_ctx *ctx)
542 {
543 	struct io_ev_fd *ev_fd = NULL;
544 
545 	rcu_read_lock();
546 	/*
547 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
548 	 * and eventfd_signal
549 	 */
550 	ev_fd = rcu_dereference(ctx->io_ev_fd);
551 
552 	/*
553 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
554 	 * completed between the NULL check of ctx->io_ev_fd at the start of
555 	 * the function and rcu_read_lock.
556 	 */
557 	if (unlikely(!ev_fd))
558 		goto out;
559 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
560 		goto out;
561 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
562 		goto out;
563 
564 	if (likely(eventfd_signal_allowed())) {
565 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
566 	} else {
567 		atomic_inc(&ev_fd->refs);
568 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
569 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
570 		else
571 			atomic_dec(&ev_fd->refs);
572 	}
573 
574 out:
575 	rcu_read_unlock();
576 }
577 
578 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
579 {
580 	bool skip;
581 
582 	spin_lock(&ctx->completion_lock);
583 
584 	/*
585 	 * Eventfd should only get triggered when at least one event has been
586 	 * posted. Some applications rely on the eventfd notification count
587 	 * only changing IFF a new CQE has been added to the CQ ring. There's
588 	 * no depedency on 1:1 relationship between how many times this
589 	 * function is called (and hence the eventfd count) and number of CQEs
590 	 * posted to the CQ ring.
591 	 */
592 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
593 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
594 	spin_unlock(&ctx->completion_lock);
595 	if (skip)
596 		return;
597 
598 	io_eventfd_signal(ctx);
599 }
600 
601 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
602 {
603 	if (ctx->poll_activated)
604 		io_poll_wq_wake(ctx);
605 	if (ctx->off_timeout_used)
606 		io_flush_timeouts(ctx);
607 	if (ctx->drain_active) {
608 		spin_lock(&ctx->completion_lock);
609 		io_queue_deferred(ctx);
610 		spin_unlock(&ctx->completion_lock);
611 	}
612 	if (ctx->has_evfd)
613 		io_eventfd_flush_signal(ctx);
614 }
615 
616 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
617 {
618 	if (!ctx->lockless_cq)
619 		spin_lock(&ctx->completion_lock);
620 }
621 
622 static inline void io_cq_lock(struct io_ring_ctx *ctx)
623 	__acquires(ctx->completion_lock)
624 {
625 	spin_lock(&ctx->completion_lock);
626 }
627 
628 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
629 {
630 	io_commit_cqring(ctx);
631 	if (!ctx->task_complete) {
632 		if (!ctx->lockless_cq)
633 			spin_unlock(&ctx->completion_lock);
634 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
635 		if (!ctx->syscall_iopoll)
636 			io_cqring_wake(ctx);
637 	}
638 	io_commit_cqring_flush(ctx);
639 }
640 
641 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
642 	__releases(ctx->completion_lock)
643 {
644 	io_commit_cqring(ctx);
645 	spin_unlock(&ctx->completion_lock);
646 	io_cqring_wake(ctx);
647 	io_commit_cqring_flush(ctx);
648 }
649 
650 /* Returns true if there are no backlogged entries after the flush */
651 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
652 {
653 	struct io_overflow_cqe *ocqe;
654 	LIST_HEAD(list);
655 
656 	spin_lock(&ctx->completion_lock);
657 	list_splice_init(&ctx->cq_overflow_list, &list);
658 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
659 	spin_unlock(&ctx->completion_lock);
660 
661 	while (!list_empty(&list)) {
662 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
663 		list_del(&ocqe->list);
664 		kfree(ocqe);
665 	}
666 }
667 
668 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
669 {
670 	size_t cqe_size = sizeof(struct io_uring_cqe);
671 
672 	if (__io_cqring_events(ctx) == ctx->cq_entries)
673 		return;
674 
675 	if (ctx->flags & IORING_SETUP_CQE32)
676 		cqe_size <<= 1;
677 
678 	io_cq_lock(ctx);
679 	while (!list_empty(&ctx->cq_overflow_list)) {
680 		struct io_uring_cqe *cqe;
681 		struct io_overflow_cqe *ocqe;
682 
683 		if (!io_get_cqe_overflow(ctx, &cqe, true))
684 			break;
685 		ocqe = list_first_entry(&ctx->cq_overflow_list,
686 					struct io_overflow_cqe, list);
687 		memcpy(cqe, &ocqe->cqe, cqe_size);
688 		list_del(&ocqe->list);
689 		kfree(ocqe);
690 	}
691 
692 	if (list_empty(&ctx->cq_overflow_list)) {
693 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
694 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
695 	}
696 	io_cq_unlock_post(ctx);
697 }
698 
699 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
700 {
701 	/* iopoll syncs against uring_lock, not completion_lock */
702 	if (ctx->flags & IORING_SETUP_IOPOLL)
703 		mutex_lock(&ctx->uring_lock);
704 	__io_cqring_overflow_flush(ctx);
705 	if (ctx->flags & IORING_SETUP_IOPOLL)
706 		mutex_unlock(&ctx->uring_lock);
707 }
708 
709 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
710 {
711 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
712 		io_cqring_do_overflow_flush(ctx);
713 }
714 
715 /* can be called by any task */
716 static void io_put_task_remote(struct task_struct *task)
717 {
718 	struct io_uring_task *tctx = task->io_uring;
719 
720 	percpu_counter_sub(&tctx->inflight, 1);
721 	if (unlikely(atomic_read(&tctx->in_cancel)))
722 		wake_up(&tctx->wait);
723 	put_task_struct(task);
724 }
725 
726 /* used by a task to put its own references */
727 static void io_put_task_local(struct task_struct *task)
728 {
729 	task->io_uring->cached_refs++;
730 }
731 
732 /* must to be called somewhat shortly after putting a request */
733 static inline void io_put_task(struct task_struct *task)
734 {
735 	if (likely(task == current))
736 		io_put_task_local(task);
737 	else
738 		io_put_task_remote(task);
739 }
740 
741 void io_task_refs_refill(struct io_uring_task *tctx)
742 {
743 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
744 
745 	percpu_counter_add(&tctx->inflight, refill);
746 	refcount_add(refill, &current->usage);
747 	tctx->cached_refs += refill;
748 }
749 
750 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
751 {
752 	struct io_uring_task *tctx = task->io_uring;
753 	unsigned int refs = tctx->cached_refs;
754 
755 	if (refs) {
756 		tctx->cached_refs = 0;
757 		percpu_counter_sub(&tctx->inflight, refs);
758 		put_task_struct_many(task, refs);
759 	}
760 }
761 
762 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
763 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
764 {
765 	struct io_overflow_cqe *ocqe;
766 	size_t ocq_size = sizeof(struct io_overflow_cqe);
767 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
768 
769 	lockdep_assert_held(&ctx->completion_lock);
770 
771 	if (is_cqe32)
772 		ocq_size += sizeof(struct io_uring_cqe);
773 
774 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
775 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
776 	if (!ocqe) {
777 		/*
778 		 * If we're in ring overflow flush mode, or in task cancel mode,
779 		 * or cannot allocate an overflow entry, then we need to drop it
780 		 * on the floor.
781 		 */
782 		io_account_cq_overflow(ctx);
783 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
784 		return false;
785 	}
786 	if (list_empty(&ctx->cq_overflow_list)) {
787 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
788 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
789 
790 	}
791 	ocqe->cqe.user_data = user_data;
792 	ocqe->cqe.res = res;
793 	ocqe->cqe.flags = cflags;
794 	if (is_cqe32) {
795 		ocqe->cqe.big_cqe[0] = extra1;
796 		ocqe->cqe.big_cqe[1] = extra2;
797 	}
798 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
799 	return true;
800 }
801 
802 void io_req_cqe_overflow(struct io_kiocb *req)
803 {
804 	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
805 				req->cqe.res, req->cqe.flags,
806 				req->big_cqe.extra1, req->big_cqe.extra2);
807 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
808 }
809 
810 /*
811  * writes to the cq entry need to come after reading head; the
812  * control dependency is enough as we're using WRITE_ONCE to
813  * fill the cq entry
814  */
815 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
816 {
817 	struct io_rings *rings = ctx->rings;
818 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
819 	unsigned int free, queued, len;
820 
821 	/*
822 	 * Posting into the CQ when there are pending overflowed CQEs may break
823 	 * ordering guarantees, which will affect links, F_MORE users and more.
824 	 * Force overflow the completion.
825 	 */
826 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
827 		return false;
828 
829 	/* userspace may cheat modifying the tail, be safe and do min */
830 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
831 	free = ctx->cq_entries - queued;
832 	/* we need a contiguous range, limit based on the current array offset */
833 	len = min(free, ctx->cq_entries - off);
834 	if (!len)
835 		return false;
836 
837 	if (ctx->flags & IORING_SETUP_CQE32) {
838 		off <<= 1;
839 		len <<= 1;
840 	}
841 
842 	ctx->cqe_cached = &rings->cqes[off];
843 	ctx->cqe_sentinel = ctx->cqe_cached + len;
844 	return true;
845 }
846 
847 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
848 			      u32 cflags)
849 {
850 	struct io_uring_cqe *cqe;
851 
852 	ctx->cq_extra++;
853 
854 	/*
855 	 * If we can't get a cq entry, userspace overflowed the
856 	 * submission (by quite a lot). Increment the overflow count in
857 	 * the ring.
858 	 */
859 	if (likely(io_get_cqe(ctx, &cqe))) {
860 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
861 
862 		WRITE_ONCE(cqe->user_data, user_data);
863 		WRITE_ONCE(cqe->res, res);
864 		WRITE_ONCE(cqe->flags, cflags);
865 
866 		if (ctx->flags & IORING_SETUP_CQE32) {
867 			WRITE_ONCE(cqe->big_cqe[0], 0);
868 			WRITE_ONCE(cqe->big_cqe[1], 0);
869 		}
870 		return true;
871 	}
872 	return false;
873 }
874 
875 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
876 	__must_hold(&ctx->uring_lock)
877 {
878 	struct io_submit_state *state = &ctx->submit_state;
879 	unsigned int i;
880 
881 	lockdep_assert_held(&ctx->uring_lock);
882 	for (i = 0; i < state->cqes_count; i++) {
883 		struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
884 
885 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
886 			if (ctx->task_complete) {
887 				spin_lock(&ctx->completion_lock);
888 				io_cqring_event_overflow(ctx, cqe->user_data,
889 							cqe->res, cqe->flags, 0, 0);
890 				spin_unlock(&ctx->completion_lock);
891 			} else {
892 				io_cqring_event_overflow(ctx, cqe->user_data,
893 							cqe->res, cqe->flags, 0, 0);
894 			}
895 		}
896 	}
897 	state->cqes_count = 0;
898 }
899 
900 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
901 			      bool allow_overflow)
902 {
903 	bool filled;
904 
905 	io_cq_lock(ctx);
906 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
907 	if (!filled && allow_overflow)
908 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
909 
910 	io_cq_unlock_post(ctx);
911 	return filled;
912 }
913 
914 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
915 {
916 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
917 }
918 
919 /*
920  * A helper for multishot requests posting additional CQEs.
921  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
922  */
923 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
924 {
925 	struct io_ring_ctx *ctx = req->ctx;
926 	u64 user_data = req->cqe.user_data;
927 	struct io_uring_cqe *cqe;
928 
929 	if (!defer)
930 		return __io_post_aux_cqe(ctx, user_data, res, cflags, false);
931 
932 	lockdep_assert_held(&ctx->uring_lock);
933 
934 	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
935 		__io_cq_lock(ctx);
936 		__io_flush_post_cqes(ctx);
937 		/* no need to flush - flush is deferred */
938 		__io_cq_unlock_post(ctx);
939 	}
940 
941 	/* For defered completions this is not as strict as it is otherwise,
942 	 * however it's main job is to prevent unbounded posted completions,
943 	 * and in that it works just as well.
944 	 */
945 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
946 		return false;
947 
948 	cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
949 	cqe->user_data = user_data;
950 	cqe->res = res;
951 	cqe->flags = cflags;
952 	return true;
953 }
954 
955 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
956 {
957 	struct io_ring_ctx *ctx = req->ctx;
958 	struct io_rsrc_node *rsrc_node = NULL;
959 
960 	io_cq_lock(ctx);
961 	if (!(req->flags & REQ_F_CQE_SKIP)) {
962 		if (!io_fill_cqe_req(ctx, req))
963 			io_req_cqe_overflow(req);
964 	}
965 
966 	/*
967 	 * If we're the last reference to this request, add to our locked
968 	 * free_list cache.
969 	 */
970 	if (req_ref_put_and_test(req)) {
971 		if (req->flags & IO_REQ_LINK_FLAGS) {
972 			if (req->flags & IO_DISARM_MASK)
973 				io_disarm_next(req);
974 			if (req->link) {
975 				io_req_task_queue(req->link);
976 				req->link = NULL;
977 			}
978 		}
979 		io_put_kbuf_comp(req);
980 		if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
981 			io_clean_op(req);
982 		io_put_file(req);
983 
984 		rsrc_node = req->rsrc_node;
985 		/*
986 		 * Selected buffer deallocation in io_clean_op() assumes that
987 		 * we don't hold ->completion_lock. Clean them here to avoid
988 		 * deadlocks.
989 		 */
990 		io_put_task_remote(req->task);
991 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
992 		ctx->locked_free_nr++;
993 	}
994 	io_cq_unlock_post(ctx);
995 
996 	if (rsrc_node) {
997 		io_ring_submit_lock(ctx, issue_flags);
998 		io_put_rsrc_node(ctx, rsrc_node);
999 		io_ring_submit_unlock(ctx, issue_flags);
1000 	}
1001 }
1002 
1003 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1004 {
1005 	if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1006 		req->io_task_work.func = io_req_task_complete;
1007 		io_req_task_work_add(req);
1008 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1009 		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1010 		__io_req_complete_post(req, issue_flags);
1011 	} else {
1012 		struct io_ring_ctx *ctx = req->ctx;
1013 
1014 		mutex_lock(&ctx->uring_lock);
1015 		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1016 		mutex_unlock(&ctx->uring_lock);
1017 	}
1018 }
1019 
1020 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1021 	__must_hold(&ctx->uring_lock)
1022 {
1023 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1024 
1025 	lockdep_assert_held(&req->ctx->uring_lock);
1026 
1027 	req_set_fail(req);
1028 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1029 	if (def->fail)
1030 		def->fail(req);
1031 	io_req_complete_defer(req);
1032 }
1033 
1034 /*
1035  * Don't initialise the fields below on every allocation, but do that in
1036  * advance and keep them valid across allocations.
1037  */
1038 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1039 {
1040 	req->ctx = ctx;
1041 	req->link = NULL;
1042 	req->async_data = NULL;
1043 	/* not necessary, but safer to zero */
1044 	memset(&req->cqe, 0, sizeof(req->cqe));
1045 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1046 }
1047 
1048 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1049 					struct io_submit_state *state)
1050 {
1051 	spin_lock(&ctx->completion_lock);
1052 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1053 	ctx->locked_free_nr = 0;
1054 	spin_unlock(&ctx->completion_lock);
1055 }
1056 
1057 /*
1058  * A request might get retired back into the request caches even before opcode
1059  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1060  * Because of that, io_alloc_req() should be called only under ->uring_lock
1061  * and with extra caution to not get a request that is still worked on.
1062  */
1063 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1064 	__must_hold(&ctx->uring_lock)
1065 {
1066 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1067 	void *reqs[IO_REQ_ALLOC_BATCH];
1068 	int ret, i;
1069 
1070 	/*
1071 	 * If we have more than a batch's worth of requests in our IRQ side
1072 	 * locked cache, grab the lock and move them over to our submission
1073 	 * side cache.
1074 	 */
1075 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1076 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1077 		if (!io_req_cache_empty(ctx))
1078 			return true;
1079 	}
1080 
1081 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1082 
1083 	/*
1084 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1085 	 * retry single alloc to be on the safe side.
1086 	 */
1087 	if (unlikely(ret <= 0)) {
1088 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1089 		if (!reqs[0])
1090 			return false;
1091 		ret = 1;
1092 	}
1093 
1094 	percpu_ref_get_many(&ctx->refs, ret);
1095 	for (i = 0; i < ret; i++) {
1096 		struct io_kiocb *req = reqs[i];
1097 
1098 		io_preinit_req(req, ctx);
1099 		io_req_add_to_cache(req, ctx);
1100 	}
1101 	return true;
1102 }
1103 
1104 __cold void io_free_req(struct io_kiocb *req)
1105 {
1106 	/* refs were already put, restore them for io_req_task_complete() */
1107 	req->flags &= ~REQ_F_REFCOUNT;
1108 	/* we only want to free it, don't post CQEs */
1109 	req->flags |= REQ_F_CQE_SKIP;
1110 	req->io_task_work.func = io_req_task_complete;
1111 	io_req_task_work_add(req);
1112 }
1113 
1114 static void __io_req_find_next_prep(struct io_kiocb *req)
1115 {
1116 	struct io_ring_ctx *ctx = req->ctx;
1117 
1118 	spin_lock(&ctx->completion_lock);
1119 	io_disarm_next(req);
1120 	spin_unlock(&ctx->completion_lock);
1121 }
1122 
1123 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1124 {
1125 	struct io_kiocb *nxt;
1126 
1127 	/*
1128 	 * If LINK is set, we have dependent requests in this chain. If we
1129 	 * didn't fail this request, queue the first one up, moving any other
1130 	 * dependencies to the next request. In case of failure, fail the rest
1131 	 * of the chain.
1132 	 */
1133 	if (unlikely(req->flags & IO_DISARM_MASK))
1134 		__io_req_find_next_prep(req);
1135 	nxt = req->link;
1136 	req->link = NULL;
1137 	return nxt;
1138 }
1139 
1140 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1141 {
1142 	if (!ctx)
1143 		return;
1144 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1145 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1146 	if (ts->locked) {
1147 		io_submit_flush_completions(ctx);
1148 		mutex_unlock(&ctx->uring_lock);
1149 		ts->locked = false;
1150 	}
1151 	percpu_ref_put(&ctx->refs);
1152 }
1153 
1154 static unsigned int handle_tw_list(struct llist_node *node,
1155 				   struct io_ring_ctx **ctx,
1156 				   struct io_tw_state *ts,
1157 				   struct llist_node *last)
1158 {
1159 	unsigned int count = 0;
1160 
1161 	while (node && node != last) {
1162 		struct llist_node *next = node->next;
1163 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1164 						    io_task_work.node);
1165 
1166 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1167 
1168 		if (req->ctx != *ctx) {
1169 			ctx_flush_and_put(*ctx, ts);
1170 			*ctx = req->ctx;
1171 			/* if not contended, grab and improve batching */
1172 			ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1173 			percpu_ref_get(&(*ctx)->refs);
1174 		}
1175 		INDIRECT_CALL_2(req->io_task_work.func,
1176 				io_poll_task_func, io_req_rw_complete,
1177 				req, ts);
1178 		node = next;
1179 		count++;
1180 		if (unlikely(need_resched())) {
1181 			ctx_flush_and_put(*ctx, ts);
1182 			*ctx = NULL;
1183 			cond_resched();
1184 		}
1185 	}
1186 
1187 	return count;
1188 }
1189 
1190 /**
1191  * io_llist_xchg - swap all entries in a lock-less list
1192  * @head:	the head of lock-less list to delete all entries
1193  * @new:	new entry as the head of the list
1194  *
1195  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1196  * The order of entries returned is from the newest to the oldest added one.
1197  */
1198 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1199 					       struct llist_node *new)
1200 {
1201 	return xchg(&head->first, new);
1202 }
1203 
1204 /**
1205  * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1206  * @head:	the head of lock-less list to delete all entries
1207  * @old:	expected old value of the first entry of the list
1208  * @new:	new entry as the head of the list
1209  *
1210  * perform a cmpxchg on the first entry of the list.
1211  */
1212 
1213 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1214 						  struct llist_node *old,
1215 						  struct llist_node *new)
1216 {
1217 	return cmpxchg(&head->first, old, new);
1218 }
1219 
1220 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1221 {
1222 	struct llist_node *node = llist_del_all(&tctx->task_list);
1223 	struct io_ring_ctx *last_ctx = NULL;
1224 	struct io_kiocb *req;
1225 
1226 	while (node) {
1227 		req = container_of(node, struct io_kiocb, io_task_work.node);
1228 		node = node->next;
1229 		if (sync && last_ctx != req->ctx) {
1230 			if (last_ctx) {
1231 				flush_delayed_work(&last_ctx->fallback_work);
1232 				percpu_ref_put(&last_ctx->refs);
1233 			}
1234 			last_ctx = req->ctx;
1235 			percpu_ref_get(&last_ctx->refs);
1236 		}
1237 		if (llist_add(&req->io_task_work.node,
1238 			      &req->ctx->fallback_llist))
1239 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1240 	}
1241 
1242 	if (last_ctx) {
1243 		flush_delayed_work(&last_ctx->fallback_work);
1244 		percpu_ref_put(&last_ctx->refs);
1245 	}
1246 }
1247 
1248 void tctx_task_work(struct callback_head *cb)
1249 {
1250 	struct io_tw_state ts = {};
1251 	struct io_ring_ctx *ctx = NULL;
1252 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1253 						  task_work);
1254 	struct llist_node fake = {};
1255 	struct llist_node *node;
1256 	unsigned int loops = 0;
1257 	unsigned int count = 0;
1258 
1259 	if (unlikely(current->flags & PF_EXITING)) {
1260 		io_fallback_tw(tctx, true);
1261 		return;
1262 	}
1263 
1264 	do {
1265 		loops++;
1266 		node = io_llist_xchg(&tctx->task_list, &fake);
1267 		count += handle_tw_list(node, &ctx, &ts, &fake);
1268 
1269 		/* skip expensive cmpxchg if there are items in the list */
1270 		if (READ_ONCE(tctx->task_list.first) != &fake)
1271 			continue;
1272 		if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1273 			io_submit_flush_completions(ctx);
1274 			if (READ_ONCE(tctx->task_list.first) != &fake)
1275 				continue;
1276 		}
1277 		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1278 	} while (node != &fake);
1279 
1280 	ctx_flush_and_put(ctx, &ts);
1281 
1282 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1283 	if (unlikely(atomic_read(&tctx->in_cancel)))
1284 		io_uring_drop_tctx_refs(current);
1285 
1286 	trace_io_uring_task_work_run(tctx, count, loops);
1287 }
1288 
1289 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1290 {
1291 	struct io_ring_ctx *ctx = req->ctx;
1292 	unsigned nr_wait, nr_tw, nr_tw_prev;
1293 	struct llist_node *first;
1294 
1295 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1296 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1297 
1298 	first = READ_ONCE(ctx->work_llist.first);
1299 	do {
1300 		nr_tw_prev = 0;
1301 		if (first) {
1302 			struct io_kiocb *first_req = container_of(first,
1303 							struct io_kiocb,
1304 							io_task_work.node);
1305 			/*
1306 			 * Might be executed at any moment, rely on
1307 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1308 			 */
1309 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1310 		}
1311 		nr_tw = nr_tw_prev + 1;
1312 		/* Large enough to fail the nr_wait comparison below */
1313 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1314 			nr_tw = -1U;
1315 
1316 		req->nr_tw = nr_tw;
1317 		req->io_task_work.node.next = first;
1318 	} while (!try_cmpxchg(&ctx->work_llist.first, &first,
1319 			      &req->io_task_work.node));
1320 
1321 	if (!first) {
1322 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1323 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1324 		if (ctx->has_evfd)
1325 			io_eventfd_signal(ctx);
1326 	}
1327 
1328 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1329 	/* no one is waiting */
1330 	if (!nr_wait)
1331 		return;
1332 	/* either not enough or the previous add has already woken it up */
1333 	if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1334 		return;
1335 	/* pairs with set_current_state() in io_cqring_wait() */
1336 	smp_mb__after_atomic();
1337 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1338 }
1339 
1340 static void io_req_normal_work_add(struct io_kiocb *req)
1341 {
1342 	struct io_uring_task *tctx = req->task->io_uring;
1343 	struct io_ring_ctx *ctx = req->ctx;
1344 
1345 	/* task_work already pending, we're done */
1346 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1347 		return;
1348 
1349 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1350 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1351 
1352 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1353 		return;
1354 
1355 	io_fallback_tw(tctx, false);
1356 }
1357 
1358 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1359 {
1360 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1361 		rcu_read_lock();
1362 		io_req_local_work_add(req, flags);
1363 		rcu_read_unlock();
1364 	} else {
1365 		io_req_normal_work_add(req);
1366 	}
1367 }
1368 
1369 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1370 {
1371 	struct llist_node *node;
1372 
1373 	node = llist_del_all(&ctx->work_llist);
1374 	while (node) {
1375 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1376 						    io_task_work.node);
1377 
1378 		node = node->next;
1379 		io_req_normal_work_add(req);
1380 	}
1381 }
1382 
1383 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1384 {
1385 	struct llist_node *node;
1386 	unsigned int loops = 0;
1387 	int ret = 0;
1388 
1389 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1390 		return -EEXIST;
1391 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1392 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1393 again:
1394 	/*
1395 	 * llists are in reverse order, flip it back the right way before
1396 	 * running the pending items.
1397 	 */
1398 	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1399 	while (node) {
1400 		struct llist_node *next = node->next;
1401 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1402 						    io_task_work.node);
1403 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1404 		INDIRECT_CALL_2(req->io_task_work.func,
1405 				io_poll_task_func, io_req_rw_complete,
1406 				req, ts);
1407 		ret++;
1408 		node = next;
1409 	}
1410 	loops++;
1411 
1412 	if (!llist_empty(&ctx->work_llist))
1413 		goto again;
1414 	if (ts->locked) {
1415 		io_submit_flush_completions(ctx);
1416 		if (!llist_empty(&ctx->work_llist))
1417 			goto again;
1418 	}
1419 	trace_io_uring_local_work_run(ctx, ret, loops);
1420 	return ret;
1421 }
1422 
1423 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1424 {
1425 	struct io_tw_state ts = { .locked = true, };
1426 	int ret;
1427 
1428 	if (llist_empty(&ctx->work_llist))
1429 		return 0;
1430 
1431 	ret = __io_run_local_work(ctx, &ts);
1432 	/* shouldn't happen! */
1433 	if (WARN_ON_ONCE(!ts.locked))
1434 		mutex_lock(&ctx->uring_lock);
1435 	return ret;
1436 }
1437 
1438 static int io_run_local_work(struct io_ring_ctx *ctx)
1439 {
1440 	struct io_tw_state ts = {};
1441 	int ret;
1442 
1443 	ts.locked = mutex_trylock(&ctx->uring_lock);
1444 	ret = __io_run_local_work(ctx, &ts);
1445 	if (ts.locked)
1446 		mutex_unlock(&ctx->uring_lock);
1447 
1448 	return ret;
1449 }
1450 
1451 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1452 {
1453 	io_tw_lock(req->ctx, ts);
1454 	io_req_defer_failed(req, req->cqe.res);
1455 }
1456 
1457 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1458 {
1459 	io_tw_lock(req->ctx, ts);
1460 	/* req->task == current here, checking PF_EXITING is safe */
1461 	if (unlikely(req->task->flags & PF_EXITING))
1462 		io_req_defer_failed(req, -EFAULT);
1463 	else if (req->flags & REQ_F_FORCE_ASYNC)
1464 		io_queue_iowq(req, ts);
1465 	else
1466 		io_queue_sqe(req);
1467 }
1468 
1469 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1470 {
1471 	io_req_set_res(req, ret, 0);
1472 	req->io_task_work.func = io_req_task_cancel;
1473 	io_req_task_work_add(req);
1474 }
1475 
1476 void io_req_task_queue(struct io_kiocb *req)
1477 {
1478 	req->io_task_work.func = io_req_task_submit;
1479 	io_req_task_work_add(req);
1480 }
1481 
1482 void io_queue_next(struct io_kiocb *req)
1483 {
1484 	struct io_kiocb *nxt = io_req_find_next(req);
1485 
1486 	if (nxt)
1487 		io_req_task_queue(nxt);
1488 }
1489 
1490 static void io_free_batch_list(struct io_ring_ctx *ctx,
1491 			       struct io_wq_work_node *node)
1492 	__must_hold(&ctx->uring_lock)
1493 {
1494 	do {
1495 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1496 						    comp_list);
1497 
1498 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1499 			if (req->flags & REQ_F_REFCOUNT) {
1500 				node = req->comp_list.next;
1501 				if (!req_ref_put_and_test(req))
1502 					continue;
1503 			}
1504 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1505 				struct async_poll *apoll = req->apoll;
1506 
1507 				if (apoll->double_poll)
1508 					kfree(apoll->double_poll);
1509 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1510 					kfree(apoll);
1511 				req->flags &= ~REQ_F_POLLED;
1512 			}
1513 			if (req->flags & IO_REQ_LINK_FLAGS)
1514 				io_queue_next(req);
1515 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1516 				io_clean_op(req);
1517 		}
1518 		io_put_file(req);
1519 
1520 		io_req_put_rsrc_locked(req, ctx);
1521 
1522 		io_put_task(req->task);
1523 		node = req->comp_list.next;
1524 		io_req_add_to_cache(req, ctx);
1525 	} while (node);
1526 }
1527 
1528 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1529 	__must_hold(&ctx->uring_lock)
1530 {
1531 	struct io_submit_state *state = &ctx->submit_state;
1532 	struct io_wq_work_node *node;
1533 
1534 	__io_cq_lock(ctx);
1535 	/* must come first to preserve CQE ordering in failure cases */
1536 	if (state->cqes_count)
1537 		__io_flush_post_cqes(ctx);
1538 	__wq_list_for_each(node, &state->compl_reqs) {
1539 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1540 					    comp_list);
1541 
1542 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1543 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1544 			if (ctx->task_complete) {
1545 				spin_lock(&ctx->completion_lock);
1546 				io_req_cqe_overflow(req);
1547 				spin_unlock(&ctx->completion_lock);
1548 			} else {
1549 				io_req_cqe_overflow(req);
1550 			}
1551 		}
1552 	}
1553 	__io_cq_unlock_post(ctx);
1554 
1555 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1556 		io_free_batch_list(ctx, state->compl_reqs.first);
1557 		INIT_WQ_LIST(&state->compl_reqs);
1558 	}
1559 }
1560 
1561 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1562 {
1563 	/* See comment at the top of this file */
1564 	smp_rmb();
1565 	return __io_cqring_events(ctx);
1566 }
1567 
1568 /*
1569  * We can't just wait for polled events to come to us, we have to actively
1570  * find and complete them.
1571  */
1572 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1573 {
1574 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1575 		return;
1576 
1577 	mutex_lock(&ctx->uring_lock);
1578 	while (!wq_list_empty(&ctx->iopoll_list)) {
1579 		/* let it sleep and repeat later if can't complete a request */
1580 		if (io_do_iopoll(ctx, true) == 0)
1581 			break;
1582 		/*
1583 		 * Ensure we allow local-to-the-cpu processing to take place,
1584 		 * in this case we need to ensure that we reap all events.
1585 		 * Also let task_work, etc. to progress by releasing the mutex
1586 		 */
1587 		if (need_resched()) {
1588 			mutex_unlock(&ctx->uring_lock);
1589 			cond_resched();
1590 			mutex_lock(&ctx->uring_lock);
1591 		}
1592 	}
1593 	mutex_unlock(&ctx->uring_lock);
1594 }
1595 
1596 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1597 {
1598 	unsigned int nr_events = 0;
1599 	unsigned long check_cq;
1600 
1601 	if (!io_allowed_run_tw(ctx))
1602 		return -EEXIST;
1603 
1604 	check_cq = READ_ONCE(ctx->check_cq);
1605 	if (unlikely(check_cq)) {
1606 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1607 			__io_cqring_overflow_flush(ctx);
1608 		/*
1609 		 * Similarly do not spin if we have not informed the user of any
1610 		 * dropped CQE.
1611 		 */
1612 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1613 			return -EBADR;
1614 	}
1615 	/*
1616 	 * Don't enter poll loop if we already have events pending.
1617 	 * If we do, we can potentially be spinning for commands that
1618 	 * already triggered a CQE (eg in error).
1619 	 */
1620 	if (io_cqring_events(ctx))
1621 		return 0;
1622 
1623 	do {
1624 		int ret = 0;
1625 
1626 		/*
1627 		 * If a submit got punted to a workqueue, we can have the
1628 		 * application entering polling for a command before it gets
1629 		 * issued. That app will hold the uring_lock for the duration
1630 		 * of the poll right here, so we need to take a breather every
1631 		 * now and then to ensure that the issue has a chance to add
1632 		 * the poll to the issued list. Otherwise we can spin here
1633 		 * forever, while the workqueue is stuck trying to acquire the
1634 		 * very same mutex.
1635 		 */
1636 		if (wq_list_empty(&ctx->iopoll_list) ||
1637 		    io_task_work_pending(ctx)) {
1638 			u32 tail = ctx->cached_cq_tail;
1639 
1640 			(void) io_run_local_work_locked(ctx);
1641 
1642 			if (task_work_pending(current) ||
1643 			    wq_list_empty(&ctx->iopoll_list)) {
1644 				mutex_unlock(&ctx->uring_lock);
1645 				io_run_task_work();
1646 				mutex_lock(&ctx->uring_lock);
1647 			}
1648 			/* some requests don't go through iopoll_list */
1649 			if (tail != ctx->cached_cq_tail ||
1650 			    wq_list_empty(&ctx->iopoll_list))
1651 				break;
1652 		}
1653 		ret = io_do_iopoll(ctx, !min);
1654 		if (unlikely(ret < 0))
1655 			return ret;
1656 
1657 		if (task_sigpending(current))
1658 			return -EINTR;
1659 		if (need_resched())
1660 			break;
1661 
1662 		nr_events += ret;
1663 	} while (nr_events < min);
1664 
1665 	return 0;
1666 }
1667 
1668 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1669 {
1670 	if (ts->locked)
1671 		io_req_complete_defer(req);
1672 	else
1673 		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1674 }
1675 
1676 /*
1677  * After the iocb has been issued, it's safe to be found on the poll list.
1678  * Adding the kiocb to the list AFTER submission ensures that we don't
1679  * find it from a io_do_iopoll() thread before the issuer is done
1680  * accessing the kiocb cookie.
1681  */
1682 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1683 {
1684 	struct io_ring_ctx *ctx = req->ctx;
1685 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1686 
1687 	/* workqueue context doesn't hold uring_lock, grab it now */
1688 	if (unlikely(needs_lock))
1689 		mutex_lock(&ctx->uring_lock);
1690 
1691 	/*
1692 	 * Track whether we have multiple files in our lists. This will impact
1693 	 * how we do polling eventually, not spinning if we're on potentially
1694 	 * different devices.
1695 	 */
1696 	if (wq_list_empty(&ctx->iopoll_list)) {
1697 		ctx->poll_multi_queue = false;
1698 	} else if (!ctx->poll_multi_queue) {
1699 		struct io_kiocb *list_req;
1700 
1701 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1702 					comp_list);
1703 		if (list_req->file != req->file)
1704 			ctx->poll_multi_queue = true;
1705 	}
1706 
1707 	/*
1708 	 * For fast devices, IO may have already completed. If it has, add
1709 	 * it to the front so we find it first.
1710 	 */
1711 	if (READ_ONCE(req->iopoll_completed))
1712 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1713 	else
1714 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1715 
1716 	if (unlikely(needs_lock)) {
1717 		/*
1718 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1719 		 * in sq thread task context or in io worker task context. If
1720 		 * current task context is sq thread, we don't need to check
1721 		 * whether should wake up sq thread.
1722 		 */
1723 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1724 		    wq_has_sleeper(&ctx->sq_data->wait))
1725 			wake_up(&ctx->sq_data->wait);
1726 
1727 		mutex_unlock(&ctx->uring_lock);
1728 	}
1729 }
1730 
1731 unsigned int io_file_get_flags(struct file *file)
1732 {
1733 	unsigned int res = 0;
1734 
1735 	if (S_ISREG(file_inode(file)->i_mode))
1736 		res |= REQ_F_ISREG;
1737 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1738 		res |= REQ_F_SUPPORT_NOWAIT;
1739 	return res;
1740 }
1741 
1742 bool io_alloc_async_data(struct io_kiocb *req)
1743 {
1744 	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1745 	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1746 	if (req->async_data) {
1747 		req->flags |= REQ_F_ASYNC_DATA;
1748 		return false;
1749 	}
1750 	return true;
1751 }
1752 
1753 int io_req_prep_async(struct io_kiocb *req)
1754 {
1755 	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1756 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1757 
1758 	/* assign early for deferred execution for non-fixed file */
1759 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1760 		req->file = io_file_get_normal(req, req->cqe.fd);
1761 	if (!cdef->prep_async)
1762 		return 0;
1763 	if (WARN_ON_ONCE(req_has_async_data(req)))
1764 		return -EFAULT;
1765 	if (!def->manual_alloc) {
1766 		if (io_alloc_async_data(req))
1767 			return -EAGAIN;
1768 	}
1769 	return cdef->prep_async(req);
1770 }
1771 
1772 static u32 io_get_sequence(struct io_kiocb *req)
1773 {
1774 	u32 seq = req->ctx->cached_sq_head;
1775 	struct io_kiocb *cur;
1776 
1777 	/* need original cached_sq_head, but it was increased for each req */
1778 	io_for_each_link(cur, req)
1779 		seq--;
1780 	return seq;
1781 }
1782 
1783 static __cold void io_drain_req(struct io_kiocb *req)
1784 	__must_hold(&ctx->uring_lock)
1785 {
1786 	struct io_ring_ctx *ctx = req->ctx;
1787 	struct io_defer_entry *de;
1788 	int ret;
1789 	u32 seq = io_get_sequence(req);
1790 
1791 	/* Still need defer if there is pending req in defer list. */
1792 	spin_lock(&ctx->completion_lock);
1793 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1794 		spin_unlock(&ctx->completion_lock);
1795 queue:
1796 		ctx->drain_active = false;
1797 		io_req_task_queue(req);
1798 		return;
1799 	}
1800 	spin_unlock(&ctx->completion_lock);
1801 
1802 	io_prep_async_link(req);
1803 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1804 	if (!de) {
1805 		ret = -ENOMEM;
1806 		io_req_defer_failed(req, ret);
1807 		return;
1808 	}
1809 
1810 	spin_lock(&ctx->completion_lock);
1811 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1812 		spin_unlock(&ctx->completion_lock);
1813 		kfree(de);
1814 		goto queue;
1815 	}
1816 
1817 	trace_io_uring_defer(req);
1818 	de->req = req;
1819 	de->seq = seq;
1820 	list_add_tail(&de->list, &ctx->defer_list);
1821 	spin_unlock(&ctx->completion_lock);
1822 }
1823 
1824 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1825 			   unsigned int issue_flags)
1826 {
1827 	if (req->file || !def->needs_file)
1828 		return true;
1829 
1830 	if (req->flags & REQ_F_FIXED_FILE)
1831 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1832 	else
1833 		req->file = io_file_get_normal(req, req->cqe.fd);
1834 
1835 	return !!req->file;
1836 }
1837 
1838 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1839 {
1840 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1841 	const struct cred *creds = NULL;
1842 	int ret;
1843 
1844 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1845 		return -EBADF;
1846 
1847 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1848 		creds = override_creds(req->creds);
1849 
1850 	if (!def->audit_skip)
1851 		audit_uring_entry(req->opcode);
1852 
1853 	ret = def->issue(req, issue_flags);
1854 
1855 	if (!def->audit_skip)
1856 		audit_uring_exit(!ret, ret);
1857 
1858 	if (creds)
1859 		revert_creds(creds);
1860 
1861 	if (ret == IOU_OK) {
1862 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1863 			io_req_complete_defer(req);
1864 		else
1865 			io_req_complete_post(req, issue_flags);
1866 	} else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1867 		return ret;
1868 
1869 	/* If the op doesn't have a file, we're not polling for it */
1870 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1871 		io_iopoll_req_issued(req, issue_flags);
1872 
1873 	return 0;
1874 }
1875 
1876 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1877 {
1878 	io_tw_lock(req->ctx, ts);
1879 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1880 				 IO_URING_F_COMPLETE_DEFER);
1881 }
1882 
1883 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1884 {
1885 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1886 	struct io_kiocb *nxt = NULL;
1887 
1888 	if (req_ref_put_and_test(req)) {
1889 		if (req->flags & IO_REQ_LINK_FLAGS)
1890 			nxt = io_req_find_next(req);
1891 		io_free_req(req);
1892 	}
1893 	return nxt ? &nxt->work : NULL;
1894 }
1895 
1896 void io_wq_submit_work(struct io_wq_work *work)
1897 {
1898 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1899 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1900 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1901 	bool needs_poll = false;
1902 	int ret = 0, err = -ECANCELED;
1903 
1904 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1905 	if (!(req->flags & REQ_F_REFCOUNT))
1906 		__io_req_set_refcount(req, 2);
1907 	else
1908 		req_ref_get(req);
1909 
1910 	io_arm_ltimeout(req);
1911 
1912 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1913 	if (work->flags & IO_WQ_WORK_CANCEL) {
1914 fail:
1915 		io_req_task_queue_fail(req, err);
1916 		return;
1917 	}
1918 	if (!io_assign_file(req, def, issue_flags)) {
1919 		err = -EBADF;
1920 		work->flags |= IO_WQ_WORK_CANCEL;
1921 		goto fail;
1922 	}
1923 
1924 	if (req->flags & REQ_F_FORCE_ASYNC) {
1925 		bool opcode_poll = def->pollin || def->pollout;
1926 
1927 		if (opcode_poll && file_can_poll(req->file)) {
1928 			needs_poll = true;
1929 			issue_flags |= IO_URING_F_NONBLOCK;
1930 		}
1931 	}
1932 
1933 	do {
1934 		ret = io_issue_sqe(req, issue_flags);
1935 		if (ret != -EAGAIN)
1936 			break;
1937 
1938 		/*
1939 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1940 		 * poll. -EAGAIN is final for that case.
1941 		 */
1942 		if (req->flags & REQ_F_NOWAIT)
1943 			break;
1944 
1945 		/*
1946 		 * We can get EAGAIN for iopolled IO even though we're
1947 		 * forcing a sync submission from here, since we can't
1948 		 * wait for request slots on the block side.
1949 		 */
1950 		if (!needs_poll) {
1951 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1952 				break;
1953 			cond_resched();
1954 			continue;
1955 		}
1956 
1957 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1958 			return;
1959 		/* aborted or ready, in either case retry blocking */
1960 		needs_poll = false;
1961 		issue_flags &= ~IO_URING_F_NONBLOCK;
1962 	} while (1);
1963 
1964 	/* avoid locking problems by failing it from a clean context */
1965 	if (ret < 0)
1966 		io_req_task_queue_fail(req, ret);
1967 }
1968 
1969 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1970 				      unsigned int issue_flags)
1971 {
1972 	struct io_ring_ctx *ctx = req->ctx;
1973 	struct io_fixed_file *slot;
1974 	struct file *file = NULL;
1975 
1976 	io_ring_submit_lock(ctx, issue_flags);
1977 
1978 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1979 		goto out;
1980 	fd = array_index_nospec(fd, ctx->nr_user_files);
1981 	slot = io_fixed_file_slot(&ctx->file_table, fd);
1982 	file = io_slot_file(slot);
1983 	req->flags |= io_slot_flags(slot);
1984 	io_req_set_rsrc_node(req, ctx, 0);
1985 out:
1986 	io_ring_submit_unlock(ctx, issue_flags);
1987 	return file;
1988 }
1989 
1990 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1991 {
1992 	struct file *file = fget(fd);
1993 
1994 	trace_io_uring_file_get(req, fd);
1995 
1996 	/* we don't allow fixed io_uring files */
1997 	if (file && io_is_uring_fops(file))
1998 		io_req_track_inflight(req);
1999 	return file;
2000 }
2001 
2002 static void io_queue_async(struct io_kiocb *req, int ret)
2003 	__must_hold(&req->ctx->uring_lock)
2004 {
2005 	struct io_kiocb *linked_timeout;
2006 
2007 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2008 		io_req_defer_failed(req, ret);
2009 		return;
2010 	}
2011 
2012 	linked_timeout = io_prep_linked_timeout(req);
2013 
2014 	switch (io_arm_poll_handler(req, 0)) {
2015 	case IO_APOLL_READY:
2016 		io_kbuf_recycle(req, 0);
2017 		io_req_task_queue(req);
2018 		break;
2019 	case IO_APOLL_ABORTED:
2020 		io_kbuf_recycle(req, 0);
2021 		io_queue_iowq(req, NULL);
2022 		break;
2023 	case IO_APOLL_OK:
2024 		break;
2025 	}
2026 
2027 	if (linked_timeout)
2028 		io_queue_linked_timeout(linked_timeout);
2029 }
2030 
2031 static inline void io_queue_sqe(struct io_kiocb *req)
2032 	__must_hold(&req->ctx->uring_lock)
2033 {
2034 	int ret;
2035 
2036 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2037 
2038 	/*
2039 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2040 	 * doesn't support non-blocking read/write attempts
2041 	 */
2042 	if (likely(!ret))
2043 		io_arm_ltimeout(req);
2044 	else
2045 		io_queue_async(req, ret);
2046 }
2047 
2048 static void io_queue_sqe_fallback(struct io_kiocb *req)
2049 	__must_hold(&req->ctx->uring_lock)
2050 {
2051 	if (unlikely(req->flags & REQ_F_FAIL)) {
2052 		/*
2053 		 * We don't submit, fail them all, for that replace hardlinks
2054 		 * with normal links. Extra REQ_F_LINK is tolerated.
2055 		 */
2056 		req->flags &= ~REQ_F_HARDLINK;
2057 		req->flags |= REQ_F_LINK;
2058 		io_req_defer_failed(req, req->cqe.res);
2059 	} else {
2060 		int ret = io_req_prep_async(req);
2061 
2062 		if (unlikely(ret)) {
2063 			io_req_defer_failed(req, ret);
2064 			return;
2065 		}
2066 
2067 		if (unlikely(req->ctx->drain_active))
2068 			io_drain_req(req);
2069 		else
2070 			io_queue_iowq(req, NULL);
2071 	}
2072 }
2073 
2074 /*
2075  * Check SQE restrictions (opcode and flags).
2076  *
2077  * Returns 'true' if SQE is allowed, 'false' otherwise.
2078  */
2079 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2080 					struct io_kiocb *req,
2081 					unsigned int sqe_flags)
2082 {
2083 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2084 		return false;
2085 
2086 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2087 	    ctx->restrictions.sqe_flags_required)
2088 		return false;
2089 
2090 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2091 			  ctx->restrictions.sqe_flags_required))
2092 		return false;
2093 
2094 	return true;
2095 }
2096 
2097 static void io_init_req_drain(struct io_kiocb *req)
2098 {
2099 	struct io_ring_ctx *ctx = req->ctx;
2100 	struct io_kiocb *head = ctx->submit_state.link.head;
2101 
2102 	ctx->drain_active = true;
2103 	if (head) {
2104 		/*
2105 		 * If we need to drain a request in the middle of a link, drain
2106 		 * the head request and the next request/link after the current
2107 		 * link. Considering sequential execution of links,
2108 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2109 		 * link.
2110 		 */
2111 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2112 		ctx->drain_next = true;
2113 	}
2114 }
2115 
2116 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2117 		       const struct io_uring_sqe *sqe)
2118 	__must_hold(&ctx->uring_lock)
2119 {
2120 	const struct io_issue_def *def;
2121 	unsigned int sqe_flags;
2122 	int personality;
2123 	u8 opcode;
2124 
2125 	/* req is partially pre-initialised, see io_preinit_req() */
2126 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2127 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2128 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2129 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2130 	req->file = NULL;
2131 	req->rsrc_node = NULL;
2132 	req->task = current;
2133 
2134 	if (unlikely(opcode >= IORING_OP_LAST)) {
2135 		req->opcode = 0;
2136 		return -EINVAL;
2137 	}
2138 	def = &io_issue_defs[opcode];
2139 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2140 		/* enforce forwards compatibility on users */
2141 		if (sqe_flags & ~SQE_VALID_FLAGS)
2142 			return -EINVAL;
2143 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2144 			if (!def->buffer_select)
2145 				return -EOPNOTSUPP;
2146 			req->buf_index = READ_ONCE(sqe->buf_group);
2147 		}
2148 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2149 			ctx->drain_disabled = true;
2150 		if (sqe_flags & IOSQE_IO_DRAIN) {
2151 			if (ctx->drain_disabled)
2152 				return -EOPNOTSUPP;
2153 			io_init_req_drain(req);
2154 		}
2155 	}
2156 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2157 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2158 			return -EACCES;
2159 		/* knock it to the slow queue path, will be drained there */
2160 		if (ctx->drain_active)
2161 			req->flags |= REQ_F_FORCE_ASYNC;
2162 		/* if there is no link, we're at "next" request and need to drain */
2163 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2164 			ctx->drain_next = false;
2165 			ctx->drain_active = true;
2166 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2167 		}
2168 	}
2169 
2170 	if (!def->ioprio && sqe->ioprio)
2171 		return -EINVAL;
2172 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2173 		return -EINVAL;
2174 
2175 	if (def->needs_file) {
2176 		struct io_submit_state *state = &ctx->submit_state;
2177 
2178 		req->cqe.fd = READ_ONCE(sqe->fd);
2179 
2180 		/*
2181 		 * Plug now if we have more than 2 IO left after this, and the
2182 		 * target is potentially a read/write to block based storage.
2183 		 */
2184 		if (state->need_plug && def->plug) {
2185 			state->plug_started = true;
2186 			state->need_plug = false;
2187 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2188 		}
2189 	}
2190 
2191 	personality = READ_ONCE(sqe->personality);
2192 	if (personality) {
2193 		int ret;
2194 
2195 		req->creds = xa_load(&ctx->personalities, personality);
2196 		if (!req->creds)
2197 			return -EINVAL;
2198 		get_cred(req->creds);
2199 		ret = security_uring_override_creds(req->creds);
2200 		if (ret) {
2201 			put_cred(req->creds);
2202 			return ret;
2203 		}
2204 		req->flags |= REQ_F_CREDS;
2205 	}
2206 
2207 	return def->prep(req, sqe);
2208 }
2209 
2210 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2211 				      struct io_kiocb *req, int ret)
2212 {
2213 	struct io_ring_ctx *ctx = req->ctx;
2214 	struct io_submit_link *link = &ctx->submit_state.link;
2215 	struct io_kiocb *head = link->head;
2216 
2217 	trace_io_uring_req_failed(sqe, req, ret);
2218 
2219 	/*
2220 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2221 	 * unusable. Instead of failing eagerly, continue assembling the link if
2222 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2223 	 * should find the flag and handle the rest.
2224 	 */
2225 	req_fail_link_node(req, ret);
2226 	if (head && !(head->flags & REQ_F_FAIL))
2227 		req_fail_link_node(head, -ECANCELED);
2228 
2229 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2230 		if (head) {
2231 			link->last->link = req;
2232 			link->head = NULL;
2233 			req = head;
2234 		}
2235 		io_queue_sqe_fallback(req);
2236 		return ret;
2237 	}
2238 
2239 	if (head)
2240 		link->last->link = req;
2241 	else
2242 		link->head = req;
2243 	link->last = req;
2244 	return 0;
2245 }
2246 
2247 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2248 			 const struct io_uring_sqe *sqe)
2249 	__must_hold(&ctx->uring_lock)
2250 {
2251 	struct io_submit_link *link = &ctx->submit_state.link;
2252 	int ret;
2253 
2254 	ret = io_init_req(ctx, req, sqe);
2255 	if (unlikely(ret))
2256 		return io_submit_fail_init(sqe, req, ret);
2257 
2258 	trace_io_uring_submit_req(req);
2259 
2260 	/*
2261 	 * If we already have a head request, queue this one for async
2262 	 * submittal once the head completes. If we don't have a head but
2263 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2264 	 * submitted sync once the chain is complete. If none of those
2265 	 * conditions are true (normal request), then just queue it.
2266 	 */
2267 	if (unlikely(link->head)) {
2268 		ret = io_req_prep_async(req);
2269 		if (unlikely(ret))
2270 			return io_submit_fail_init(sqe, req, ret);
2271 
2272 		trace_io_uring_link(req, link->head);
2273 		link->last->link = req;
2274 		link->last = req;
2275 
2276 		if (req->flags & IO_REQ_LINK_FLAGS)
2277 			return 0;
2278 		/* last request of the link, flush it */
2279 		req = link->head;
2280 		link->head = NULL;
2281 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2282 			goto fallback;
2283 
2284 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2285 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2286 		if (req->flags & IO_REQ_LINK_FLAGS) {
2287 			link->head = req;
2288 			link->last = req;
2289 		} else {
2290 fallback:
2291 			io_queue_sqe_fallback(req);
2292 		}
2293 		return 0;
2294 	}
2295 
2296 	io_queue_sqe(req);
2297 	return 0;
2298 }
2299 
2300 /*
2301  * Batched submission is done, ensure local IO is flushed out.
2302  */
2303 static void io_submit_state_end(struct io_ring_ctx *ctx)
2304 {
2305 	struct io_submit_state *state = &ctx->submit_state;
2306 
2307 	if (unlikely(state->link.head))
2308 		io_queue_sqe_fallback(state->link.head);
2309 	/* flush only after queuing links as they can generate completions */
2310 	io_submit_flush_completions(ctx);
2311 	if (state->plug_started)
2312 		blk_finish_plug(&state->plug);
2313 }
2314 
2315 /*
2316  * Start submission side cache.
2317  */
2318 static void io_submit_state_start(struct io_submit_state *state,
2319 				  unsigned int max_ios)
2320 {
2321 	state->plug_started = false;
2322 	state->need_plug = max_ios > 2;
2323 	state->submit_nr = max_ios;
2324 	/* set only head, no need to init link_last in advance */
2325 	state->link.head = NULL;
2326 }
2327 
2328 static void io_commit_sqring(struct io_ring_ctx *ctx)
2329 {
2330 	struct io_rings *rings = ctx->rings;
2331 
2332 	/*
2333 	 * Ensure any loads from the SQEs are done at this point,
2334 	 * since once we write the new head, the application could
2335 	 * write new data to them.
2336 	 */
2337 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2338 }
2339 
2340 /*
2341  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2342  * that is mapped by userspace. This means that care needs to be taken to
2343  * ensure that reads are stable, as we cannot rely on userspace always
2344  * being a good citizen. If members of the sqe are validated and then later
2345  * used, it's important that those reads are done through READ_ONCE() to
2346  * prevent a re-load down the line.
2347  */
2348 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2349 {
2350 	unsigned mask = ctx->sq_entries - 1;
2351 	unsigned head = ctx->cached_sq_head++ & mask;
2352 
2353 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2354 		head = READ_ONCE(ctx->sq_array[head]);
2355 		if (unlikely(head >= ctx->sq_entries)) {
2356 			/* drop invalid entries */
2357 			spin_lock(&ctx->completion_lock);
2358 			ctx->cq_extra--;
2359 			spin_unlock(&ctx->completion_lock);
2360 			WRITE_ONCE(ctx->rings->sq_dropped,
2361 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2362 			return false;
2363 		}
2364 	}
2365 
2366 	/*
2367 	 * The cached sq head (or cq tail) serves two purposes:
2368 	 *
2369 	 * 1) allows us to batch the cost of updating the user visible
2370 	 *    head updates.
2371 	 * 2) allows the kernel side to track the head on its own, even
2372 	 *    though the application is the one updating it.
2373 	 */
2374 
2375 	/* double index for 128-byte SQEs, twice as long */
2376 	if (ctx->flags & IORING_SETUP_SQE128)
2377 		head <<= 1;
2378 	*sqe = &ctx->sq_sqes[head];
2379 	return true;
2380 }
2381 
2382 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2383 	__must_hold(&ctx->uring_lock)
2384 {
2385 	unsigned int entries = io_sqring_entries(ctx);
2386 	unsigned int left;
2387 	int ret;
2388 
2389 	if (unlikely(!entries))
2390 		return 0;
2391 	/* make sure SQ entry isn't read before tail */
2392 	ret = left = min(nr, entries);
2393 	io_get_task_refs(left);
2394 	io_submit_state_start(&ctx->submit_state, left);
2395 
2396 	do {
2397 		const struct io_uring_sqe *sqe;
2398 		struct io_kiocb *req;
2399 
2400 		if (unlikely(!io_alloc_req(ctx, &req)))
2401 			break;
2402 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2403 			io_req_add_to_cache(req, ctx);
2404 			break;
2405 		}
2406 
2407 		/*
2408 		 * Continue submitting even for sqe failure if the
2409 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2410 		 */
2411 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2412 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2413 			left--;
2414 			break;
2415 		}
2416 	} while (--left);
2417 
2418 	if (unlikely(left)) {
2419 		ret -= left;
2420 		/* try again if it submitted nothing and can't allocate a req */
2421 		if (!ret && io_req_cache_empty(ctx))
2422 			ret = -EAGAIN;
2423 		current->io_uring->cached_refs += left;
2424 	}
2425 
2426 	io_submit_state_end(ctx);
2427 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2428 	io_commit_sqring(ctx);
2429 	return ret;
2430 }
2431 
2432 struct io_wait_queue {
2433 	struct wait_queue_entry wq;
2434 	struct io_ring_ctx *ctx;
2435 	unsigned cq_tail;
2436 	unsigned nr_timeouts;
2437 	ktime_t timeout;
2438 };
2439 
2440 static inline bool io_has_work(struct io_ring_ctx *ctx)
2441 {
2442 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2443 	       !llist_empty(&ctx->work_llist);
2444 }
2445 
2446 static inline bool io_should_wake(struct io_wait_queue *iowq)
2447 {
2448 	struct io_ring_ctx *ctx = iowq->ctx;
2449 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2450 
2451 	/*
2452 	 * Wake up if we have enough events, or if a timeout occurred since we
2453 	 * started waiting. For timeouts, we always want to return to userspace,
2454 	 * regardless of event count.
2455 	 */
2456 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2457 }
2458 
2459 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2460 			    int wake_flags, void *key)
2461 {
2462 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2463 
2464 	/*
2465 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2466 	 * the task, and the next invocation will do it.
2467 	 */
2468 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2469 		return autoremove_wake_function(curr, mode, wake_flags, key);
2470 	return -1;
2471 }
2472 
2473 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2474 {
2475 	if (!llist_empty(&ctx->work_llist)) {
2476 		__set_current_state(TASK_RUNNING);
2477 		if (io_run_local_work(ctx) > 0)
2478 			return 0;
2479 	}
2480 	if (io_run_task_work() > 0)
2481 		return 0;
2482 	if (task_sigpending(current))
2483 		return -EINTR;
2484 	return 0;
2485 }
2486 
2487 static bool current_pending_io(void)
2488 {
2489 	struct io_uring_task *tctx = current->io_uring;
2490 
2491 	if (!tctx)
2492 		return false;
2493 	return percpu_counter_read_positive(&tctx->inflight);
2494 }
2495 
2496 /* when returns >0, the caller should retry */
2497 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2498 					  struct io_wait_queue *iowq)
2499 {
2500 	int io_wait, ret;
2501 
2502 	if (unlikely(READ_ONCE(ctx->check_cq)))
2503 		return 1;
2504 	if (unlikely(!llist_empty(&ctx->work_llist)))
2505 		return 1;
2506 	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2507 		return 1;
2508 	if (unlikely(task_sigpending(current)))
2509 		return -EINTR;
2510 	if (unlikely(io_should_wake(iowq)))
2511 		return 0;
2512 
2513 	/*
2514 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2515 	 * can take into account that the task is waiting for IO - turns out
2516 	 * to be important for low QD IO.
2517 	 */
2518 	io_wait = current->in_iowait;
2519 	if (current_pending_io())
2520 		current->in_iowait = 1;
2521 	ret = 0;
2522 	if (iowq->timeout == KTIME_MAX)
2523 		schedule();
2524 	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2525 		ret = -ETIME;
2526 	current->in_iowait = io_wait;
2527 	return ret;
2528 }
2529 
2530 /*
2531  * Wait until events become available, if we don't already have some. The
2532  * application must reap them itself, as they reside on the shared cq ring.
2533  */
2534 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2535 			  const sigset_t __user *sig, size_t sigsz,
2536 			  struct __kernel_timespec __user *uts)
2537 {
2538 	struct io_wait_queue iowq;
2539 	struct io_rings *rings = ctx->rings;
2540 	int ret;
2541 
2542 	if (!io_allowed_run_tw(ctx))
2543 		return -EEXIST;
2544 	if (!llist_empty(&ctx->work_llist))
2545 		io_run_local_work(ctx);
2546 	io_run_task_work();
2547 	io_cqring_overflow_flush(ctx);
2548 	/* if user messes with these they will just get an early return */
2549 	if (__io_cqring_events_user(ctx) >= min_events)
2550 		return 0;
2551 
2552 	if (sig) {
2553 #ifdef CONFIG_COMPAT
2554 		if (in_compat_syscall())
2555 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2556 						      sigsz);
2557 		else
2558 #endif
2559 			ret = set_user_sigmask(sig, sigsz);
2560 
2561 		if (ret)
2562 			return ret;
2563 	}
2564 
2565 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2566 	iowq.wq.private = current;
2567 	INIT_LIST_HEAD(&iowq.wq.entry);
2568 	iowq.ctx = ctx;
2569 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2570 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2571 	iowq.timeout = KTIME_MAX;
2572 
2573 	if (uts) {
2574 		struct timespec64 ts;
2575 
2576 		if (get_timespec64(&ts, uts))
2577 			return -EFAULT;
2578 		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2579 	}
2580 
2581 	trace_io_uring_cqring_wait(ctx, min_events);
2582 	do {
2583 		unsigned long check_cq;
2584 
2585 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2586 			int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2587 
2588 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2589 			set_current_state(TASK_INTERRUPTIBLE);
2590 		} else {
2591 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2592 							TASK_INTERRUPTIBLE);
2593 		}
2594 
2595 		ret = io_cqring_wait_schedule(ctx, &iowq);
2596 		__set_current_state(TASK_RUNNING);
2597 		atomic_set(&ctx->cq_wait_nr, 0);
2598 
2599 		if (ret < 0)
2600 			break;
2601 		/*
2602 		 * Run task_work after scheduling and before io_should_wake().
2603 		 * If we got woken because of task_work being processed, run it
2604 		 * now rather than let the caller do another wait loop.
2605 		 */
2606 		io_run_task_work();
2607 		if (!llist_empty(&ctx->work_llist))
2608 			io_run_local_work(ctx);
2609 
2610 		check_cq = READ_ONCE(ctx->check_cq);
2611 		if (unlikely(check_cq)) {
2612 			/* let the caller flush overflows, retry */
2613 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2614 				io_cqring_do_overflow_flush(ctx);
2615 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2616 				ret = -EBADR;
2617 				break;
2618 			}
2619 		}
2620 
2621 		if (io_should_wake(&iowq)) {
2622 			ret = 0;
2623 			break;
2624 		}
2625 		cond_resched();
2626 	} while (1);
2627 
2628 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2629 		finish_wait(&ctx->cq_wait, &iowq.wq);
2630 	restore_saved_sigmask_unless(ret == -EINTR);
2631 
2632 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2633 }
2634 
2635 static void io_mem_free(void *ptr)
2636 {
2637 	if (!ptr)
2638 		return;
2639 
2640 	folio_put(virt_to_folio(ptr));
2641 }
2642 
2643 static void io_pages_free(struct page ***pages, int npages)
2644 {
2645 	struct page **page_array;
2646 	int i;
2647 
2648 	if (!pages)
2649 		return;
2650 	page_array = *pages;
2651 	for (i = 0; i < npages; i++)
2652 		unpin_user_page(page_array[i]);
2653 	kvfree(page_array);
2654 	*pages = NULL;
2655 }
2656 
2657 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2658 			    unsigned long uaddr, size_t size)
2659 {
2660 	struct page **page_array;
2661 	unsigned int nr_pages;
2662 	int ret;
2663 
2664 	*npages = 0;
2665 
2666 	if (uaddr & (PAGE_SIZE - 1) || !size)
2667 		return ERR_PTR(-EINVAL);
2668 
2669 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2670 	if (nr_pages > USHRT_MAX)
2671 		return ERR_PTR(-EINVAL);
2672 	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2673 	if (!page_array)
2674 		return ERR_PTR(-ENOMEM);
2675 
2676 	ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2677 					page_array);
2678 	if (ret != nr_pages) {
2679 err:
2680 		io_pages_free(&page_array, ret > 0 ? ret : 0);
2681 		return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT);
2682 	}
2683 	/*
2684 	 * Should be a single page. If the ring is small enough that we can
2685 	 * use a normal page, that is fine. If we need multiple pages, then
2686 	 * userspace should use a huge page. That's the only way to guarantee
2687 	 * that we get contigious memory, outside of just being lucky or
2688 	 * (currently) having low memory fragmentation.
2689 	 */
2690 	if (page_array[0] != page_array[ret - 1])
2691 		goto err;
2692 	*pages = page_array;
2693 	*npages = nr_pages;
2694 	return page_to_virt(page_array[0]);
2695 }
2696 
2697 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2698 			  size_t size)
2699 {
2700 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2701 				size);
2702 }
2703 
2704 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2705 			 size_t size)
2706 {
2707 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2708 				size);
2709 }
2710 
2711 static void io_rings_free(struct io_ring_ctx *ctx)
2712 {
2713 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2714 		io_mem_free(ctx->rings);
2715 		io_mem_free(ctx->sq_sqes);
2716 		ctx->rings = NULL;
2717 		ctx->sq_sqes = NULL;
2718 	} else {
2719 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2720 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2721 	}
2722 }
2723 
2724 static void *io_mem_alloc(size_t size)
2725 {
2726 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2727 	void *ret;
2728 
2729 	ret = (void *) __get_free_pages(gfp, get_order(size));
2730 	if (ret)
2731 		return ret;
2732 	return ERR_PTR(-ENOMEM);
2733 }
2734 
2735 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2736 				unsigned int cq_entries, size_t *sq_offset)
2737 {
2738 	struct io_rings *rings;
2739 	size_t off, sq_array_size;
2740 
2741 	off = struct_size(rings, cqes, cq_entries);
2742 	if (off == SIZE_MAX)
2743 		return SIZE_MAX;
2744 	if (ctx->flags & IORING_SETUP_CQE32) {
2745 		if (check_shl_overflow(off, 1, &off))
2746 			return SIZE_MAX;
2747 	}
2748 
2749 #ifdef CONFIG_SMP
2750 	off = ALIGN(off, SMP_CACHE_BYTES);
2751 	if (off == 0)
2752 		return SIZE_MAX;
2753 #endif
2754 
2755 	if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2756 		if (sq_offset)
2757 			*sq_offset = SIZE_MAX;
2758 		return off;
2759 	}
2760 
2761 	if (sq_offset)
2762 		*sq_offset = off;
2763 
2764 	sq_array_size = array_size(sizeof(u32), sq_entries);
2765 	if (sq_array_size == SIZE_MAX)
2766 		return SIZE_MAX;
2767 
2768 	if (check_add_overflow(off, sq_array_size, &off))
2769 		return SIZE_MAX;
2770 
2771 	return off;
2772 }
2773 
2774 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2775 			       unsigned int eventfd_async)
2776 {
2777 	struct io_ev_fd *ev_fd;
2778 	__s32 __user *fds = arg;
2779 	int fd;
2780 
2781 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2782 					lockdep_is_held(&ctx->uring_lock));
2783 	if (ev_fd)
2784 		return -EBUSY;
2785 
2786 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2787 		return -EFAULT;
2788 
2789 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2790 	if (!ev_fd)
2791 		return -ENOMEM;
2792 
2793 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2794 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2795 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2796 		kfree(ev_fd);
2797 		return ret;
2798 	}
2799 
2800 	spin_lock(&ctx->completion_lock);
2801 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2802 	spin_unlock(&ctx->completion_lock);
2803 
2804 	ev_fd->eventfd_async = eventfd_async;
2805 	ctx->has_evfd = true;
2806 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2807 	atomic_set(&ev_fd->refs, 1);
2808 	atomic_set(&ev_fd->ops, 0);
2809 	return 0;
2810 }
2811 
2812 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2813 {
2814 	struct io_ev_fd *ev_fd;
2815 
2816 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2817 					lockdep_is_held(&ctx->uring_lock));
2818 	if (ev_fd) {
2819 		ctx->has_evfd = false;
2820 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2821 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2822 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2823 		return 0;
2824 	}
2825 
2826 	return -ENXIO;
2827 }
2828 
2829 static void io_req_caches_free(struct io_ring_ctx *ctx)
2830 {
2831 	struct io_kiocb *req;
2832 	int nr = 0;
2833 
2834 	mutex_lock(&ctx->uring_lock);
2835 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2836 
2837 	while (!io_req_cache_empty(ctx)) {
2838 		req = io_extract_req(ctx);
2839 		kmem_cache_free(req_cachep, req);
2840 		nr++;
2841 	}
2842 	if (nr)
2843 		percpu_ref_put_many(&ctx->refs, nr);
2844 	mutex_unlock(&ctx->uring_lock);
2845 }
2846 
2847 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2848 {
2849 	kfree(container_of(entry, struct io_rsrc_node, cache));
2850 }
2851 
2852 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2853 {
2854 	io_sq_thread_finish(ctx);
2855 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2856 	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2857 		return;
2858 
2859 	mutex_lock(&ctx->uring_lock);
2860 	if (ctx->buf_data)
2861 		__io_sqe_buffers_unregister(ctx);
2862 	if (ctx->file_data)
2863 		__io_sqe_files_unregister(ctx);
2864 	io_cqring_overflow_kill(ctx);
2865 	io_eventfd_unregister(ctx);
2866 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2867 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2868 	io_destroy_buffers(ctx);
2869 	mutex_unlock(&ctx->uring_lock);
2870 	if (ctx->sq_creds)
2871 		put_cred(ctx->sq_creds);
2872 	if (ctx->submitter_task)
2873 		put_task_struct(ctx->submitter_task);
2874 
2875 	/* there are no registered resources left, nobody uses it */
2876 	if (ctx->rsrc_node)
2877 		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2878 
2879 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2880 
2881 #if defined(CONFIG_UNIX)
2882 	if (ctx->ring_sock) {
2883 		ctx->ring_sock->file = NULL; /* so that iput() is called */
2884 		sock_release(ctx->ring_sock);
2885 	}
2886 #endif
2887 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2888 
2889 	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2890 	if (ctx->mm_account) {
2891 		mmdrop(ctx->mm_account);
2892 		ctx->mm_account = NULL;
2893 	}
2894 	io_rings_free(ctx);
2895 
2896 	percpu_ref_exit(&ctx->refs);
2897 	free_uid(ctx->user);
2898 	io_req_caches_free(ctx);
2899 	if (ctx->hash_map)
2900 		io_wq_put_hash(ctx->hash_map);
2901 	kfree(ctx->cancel_table.hbs);
2902 	kfree(ctx->cancel_table_locked.hbs);
2903 	kfree(ctx->io_bl);
2904 	xa_destroy(&ctx->io_bl_xa);
2905 	kfree(ctx);
2906 }
2907 
2908 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2909 {
2910 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2911 					       poll_wq_task_work);
2912 
2913 	mutex_lock(&ctx->uring_lock);
2914 	ctx->poll_activated = true;
2915 	mutex_unlock(&ctx->uring_lock);
2916 
2917 	/*
2918 	 * Wake ups for some events between start of polling and activation
2919 	 * might've been lost due to loose synchronisation.
2920 	 */
2921 	wake_up_all(&ctx->poll_wq);
2922 	percpu_ref_put(&ctx->refs);
2923 }
2924 
2925 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2926 {
2927 	spin_lock(&ctx->completion_lock);
2928 	/* already activated or in progress */
2929 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2930 		goto out;
2931 	if (WARN_ON_ONCE(!ctx->task_complete))
2932 		goto out;
2933 	if (!ctx->submitter_task)
2934 		goto out;
2935 	/*
2936 	 * with ->submitter_task only the submitter task completes requests, we
2937 	 * only need to sync with it, which is done by injecting a tw
2938 	 */
2939 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2940 	percpu_ref_get(&ctx->refs);
2941 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2942 		percpu_ref_put(&ctx->refs);
2943 out:
2944 	spin_unlock(&ctx->completion_lock);
2945 }
2946 
2947 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2948 {
2949 	struct io_ring_ctx *ctx = file->private_data;
2950 	__poll_t mask = 0;
2951 
2952 	if (unlikely(!ctx->poll_activated))
2953 		io_activate_pollwq(ctx);
2954 
2955 	poll_wait(file, &ctx->poll_wq, wait);
2956 	/*
2957 	 * synchronizes with barrier from wq_has_sleeper call in
2958 	 * io_commit_cqring
2959 	 */
2960 	smp_rmb();
2961 	if (!io_sqring_full(ctx))
2962 		mask |= EPOLLOUT | EPOLLWRNORM;
2963 
2964 	/*
2965 	 * Don't flush cqring overflow list here, just do a simple check.
2966 	 * Otherwise there could possible be ABBA deadlock:
2967 	 *      CPU0                    CPU1
2968 	 *      ----                    ----
2969 	 * lock(&ctx->uring_lock);
2970 	 *                              lock(&ep->mtx);
2971 	 *                              lock(&ctx->uring_lock);
2972 	 * lock(&ep->mtx);
2973 	 *
2974 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2975 	 * pushes them to do the flush.
2976 	 */
2977 
2978 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2979 		mask |= EPOLLIN | EPOLLRDNORM;
2980 
2981 	return mask;
2982 }
2983 
2984 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2985 {
2986 	const struct cred *creds;
2987 
2988 	creds = xa_erase(&ctx->personalities, id);
2989 	if (creds) {
2990 		put_cred(creds);
2991 		return 0;
2992 	}
2993 
2994 	return -EINVAL;
2995 }
2996 
2997 struct io_tctx_exit {
2998 	struct callback_head		task_work;
2999 	struct completion		completion;
3000 	struct io_ring_ctx		*ctx;
3001 };
3002 
3003 static __cold void io_tctx_exit_cb(struct callback_head *cb)
3004 {
3005 	struct io_uring_task *tctx = current->io_uring;
3006 	struct io_tctx_exit *work;
3007 
3008 	work = container_of(cb, struct io_tctx_exit, task_work);
3009 	/*
3010 	 * When @in_cancel, we're in cancellation and it's racy to remove the
3011 	 * node. It'll be removed by the end of cancellation, just ignore it.
3012 	 * tctx can be NULL if the queueing of this task_work raced with
3013 	 * work cancelation off the exec path.
3014 	 */
3015 	if (tctx && !atomic_read(&tctx->in_cancel))
3016 		io_uring_del_tctx_node((unsigned long)work->ctx);
3017 	complete(&work->completion);
3018 }
3019 
3020 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3021 {
3022 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3023 
3024 	return req->ctx == data;
3025 }
3026 
3027 static __cold void io_ring_exit_work(struct work_struct *work)
3028 {
3029 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3030 	unsigned long timeout = jiffies + HZ * 60 * 5;
3031 	unsigned long interval = HZ / 20;
3032 	struct io_tctx_exit exit;
3033 	struct io_tctx_node *node;
3034 	int ret;
3035 
3036 	/*
3037 	 * If we're doing polled IO and end up having requests being
3038 	 * submitted async (out-of-line), then completions can come in while
3039 	 * we're waiting for refs to drop. We need to reap these manually,
3040 	 * as nobody else will be looking for them.
3041 	 */
3042 	do {
3043 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3044 			mutex_lock(&ctx->uring_lock);
3045 			io_cqring_overflow_kill(ctx);
3046 			mutex_unlock(&ctx->uring_lock);
3047 		}
3048 
3049 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3050 			io_move_task_work_from_local(ctx);
3051 
3052 		while (io_uring_try_cancel_requests(ctx, NULL, true))
3053 			cond_resched();
3054 
3055 		if (ctx->sq_data) {
3056 			struct io_sq_data *sqd = ctx->sq_data;
3057 			struct task_struct *tsk;
3058 
3059 			io_sq_thread_park(sqd);
3060 			tsk = sqd->thread;
3061 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3062 				io_wq_cancel_cb(tsk->io_uring->io_wq,
3063 						io_cancel_ctx_cb, ctx, true);
3064 			io_sq_thread_unpark(sqd);
3065 		}
3066 
3067 		io_req_caches_free(ctx);
3068 
3069 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3070 			/* there is little hope left, don't run it too often */
3071 			interval = HZ * 60;
3072 		}
3073 		/*
3074 		 * This is really an uninterruptible wait, as it has to be
3075 		 * complete. But it's also run from a kworker, which doesn't
3076 		 * take signals, so it's fine to make it interruptible. This
3077 		 * avoids scenarios where we knowingly can wait much longer
3078 		 * on completions, for example if someone does a SIGSTOP on
3079 		 * a task that needs to finish task_work to make this loop
3080 		 * complete. That's a synthetic situation that should not
3081 		 * cause a stuck task backtrace, and hence a potential panic
3082 		 * on stuck tasks if that is enabled.
3083 		 */
3084 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3085 
3086 	init_completion(&exit.completion);
3087 	init_task_work(&exit.task_work, io_tctx_exit_cb);
3088 	exit.ctx = ctx;
3089 	/*
3090 	 * Some may use context even when all refs and requests have been put,
3091 	 * and they are free to do so while still holding uring_lock or
3092 	 * completion_lock, see io_req_task_submit(). Apart from other work,
3093 	 * this lock/unlock section also waits them to finish.
3094 	 */
3095 	mutex_lock(&ctx->uring_lock);
3096 	while (!list_empty(&ctx->tctx_list)) {
3097 		WARN_ON_ONCE(time_after(jiffies, timeout));
3098 
3099 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3100 					ctx_node);
3101 		/* don't spin on a single task if cancellation failed */
3102 		list_rotate_left(&ctx->tctx_list);
3103 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3104 		if (WARN_ON_ONCE(ret))
3105 			continue;
3106 
3107 		mutex_unlock(&ctx->uring_lock);
3108 		/*
3109 		 * See comment above for
3110 		 * wait_for_completion_interruptible_timeout() on why this
3111 		 * wait is marked as interruptible.
3112 		 */
3113 		wait_for_completion_interruptible(&exit.completion);
3114 		mutex_lock(&ctx->uring_lock);
3115 	}
3116 	mutex_unlock(&ctx->uring_lock);
3117 	spin_lock(&ctx->completion_lock);
3118 	spin_unlock(&ctx->completion_lock);
3119 
3120 	/* pairs with RCU read section in io_req_local_work_add() */
3121 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3122 		synchronize_rcu();
3123 
3124 	io_ring_ctx_free(ctx);
3125 }
3126 
3127 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3128 {
3129 	unsigned long index;
3130 	struct creds *creds;
3131 
3132 	mutex_lock(&ctx->uring_lock);
3133 	percpu_ref_kill(&ctx->refs);
3134 	xa_for_each(&ctx->personalities, index, creds)
3135 		io_unregister_personality(ctx, index);
3136 	if (ctx->rings)
3137 		io_poll_remove_all(ctx, NULL, true);
3138 	mutex_unlock(&ctx->uring_lock);
3139 
3140 	/*
3141 	 * If we failed setting up the ctx, we might not have any rings
3142 	 * and therefore did not submit any requests
3143 	 */
3144 	if (ctx->rings)
3145 		io_kill_timeouts(ctx, NULL, true);
3146 
3147 	flush_delayed_work(&ctx->fallback_work);
3148 
3149 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3150 	/*
3151 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3152 	 * if we're exiting a ton of rings at the same time. It just adds
3153 	 * noise and overhead, there's no discernable change in runtime
3154 	 * over using system_wq.
3155 	 */
3156 	queue_work(system_unbound_wq, &ctx->exit_work);
3157 }
3158 
3159 static int io_uring_release(struct inode *inode, struct file *file)
3160 {
3161 	struct io_ring_ctx *ctx = file->private_data;
3162 
3163 	file->private_data = NULL;
3164 	io_ring_ctx_wait_and_kill(ctx);
3165 	return 0;
3166 }
3167 
3168 struct io_task_cancel {
3169 	struct task_struct *task;
3170 	bool all;
3171 };
3172 
3173 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3174 {
3175 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3176 	struct io_task_cancel *cancel = data;
3177 
3178 	return io_match_task_safe(req, cancel->task, cancel->all);
3179 }
3180 
3181 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3182 					 struct task_struct *task,
3183 					 bool cancel_all)
3184 {
3185 	struct io_defer_entry *de;
3186 	LIST_HEAD(list);
3187 
3188 	spin_lock(&ctx->completion_lock);
3189 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3190 		if (io_match_task_safe(de->req, task, cancel_all)) {
3191 			list_cut_position(&list, &ctx->defer_list, &de->list);
3192 			break;
3193 		}
3194 	}
3195 	spin_unlock(&ctx->completion_lock);
3196 	if (list_empty(&list))
3197 		return false;
3198 
3199 	while (!list_empty(&list)) {
3200 		de = list_first_entry(&list, struct io_defer_entry, list);
3201 		list_del_init(&de->list);
3202 		io_req_task_queue_fail(de->req, -ECANCELED);
3203 		kfree(de);
3204 	}
3205 	return true;
3206 }
3207 
3208 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3209 {
3210 	struct io_tctx_node *node;
3211 	enum io_wq_cancel cret;
3212 	bool ret = false;
3213 
3214 	mutex_lock(&ctx->uring_lock);
3215 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3216 		struct io_uring_task *tctx = node->task->io_uring;
3217 
3218 		/*
3219 		 * io_wq will stay alive while we hold uring_lock, because it's
3220 		 * killed after ctx nodes, which requires to take the lock.
3221 		 */
3222 		if (!tctx || !tctx->io_wq)
3223 			continue;
3224 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3225 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3226 	}
3227 	mutex_unlock(&ctx->uring_lock);
3228 
3229 	return ret;
3230 }
3231 
3232 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3233 						struct task_struct *task,
3234 						bool cancel_all)
3235 {
3236 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3237 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3238 	enum io_wq_cancel cret;
3239 	bool ret = false;
3240 
3241 	/* set it so io_req_local_work_add() would wake us up */
3242 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3243 		atomic_set(&ctx->cq_wait_nr, 1);
3244 		smp_mb();
3245 	}
3246 
3247 	/* failed during ring init, it couldn't have issued any requests */
3248 	if (!ctx->rings)
3249 		return false;
3250 
3251 	if (!task) {
3252 		ret |= io_uring_try_cancel_iowq(ctx);
3253 	} else if (tctx && tctx->io_wq) {
3254 		/*
3255 		 * Cancels requests of all rings, not only @ctx, but
3256 		 * it's fine as the task is in exit/exec.
3257 		 */
3258 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3259 				       &cancel, true);
3260 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3261 	}
3262 
3263 	/* SQPOLL thread does its own polling */
3264 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3265 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3266 		while (!wq_list_empty(&ctx->iopoll_list)) {
3267 			io_iopoll_try_reap_events(ctx);
3268 			ret = true;
3269 			cond_resched();
3270 		}
3271 	}
3272 
3273 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3274 	    io_allowed_defer_tw_run(ctx))
3275 		ret |= io_run_local_work(ctx) > 0;
3276 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3277 	mutex_lock(&ctx->uring_lock);
3278 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3279 	mutex_unlock(&ctx->uring_lock);
3280 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3281 	if (task)
3282 		ret |= io_run_task_work() > 0;
3283 	return ret;
3284 }
3285 
3286 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3287 {
3288 	if (tracked)
3289 		return atomic_read(&tctx->inflight_tracked);
3290 	return percpu_counter_sum(&tctx->inflight);
3291 }
3292 
3293 /*
3294  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3295  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3296  */
3297 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3298 {
3299 	struct io_uring_task *tctx = current->io_uring;
3300 	struct io_ring_ctx *ctx;
3301 	struct io_tctx_node *node;
3302 	unsigned long index;
3303 	s64 inflight;
3304 	DEFINE_WAIT(wait);
3305 
3306 	WARN_ON_ONCE(sqd && sqd->thread != current);
3307 
3308 	if (!current->io_uring)
3309 		return;
3310 	if (tctx->io_wq)
3311 		io_wq_exit_start(tctx->io_wq);
3312 
3313 	atomic_inc(&tctx->in_cancel);
3314 	do {
3315 		bool loop = false;
3316 
3317 		io_uring_drop_tctx_refs(current);
3318 		/* read completions before cancelations */
3319 		inflight = tctx_inflight(tctx, !cancel_all);
3320 		if (!inflight)
3321 			break;
3322 
3323 		if (!sqd) {
3324 			xa_for_each(&tctx->xa, index, node) {
3325 				/* sqpoll task will cancel all its requests */
3326 				if (node->ctx->sq_data)
3327 					continue;
3328 				loop |= io_uring_try_cancel_requests(node->ctx,
3329 							current, cancel_all);
3330 			}
3331 		} else {
3332 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3333 				loop |= io_uring_try_cancel_requests(ctx,
3334 								     current,
3335 								     cancel_all);
3336 		}
3337 
3338 		if (loop) {
3339 			cond_resched();
3340 			continue;
3341 		}
3342 
3343 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3344 		io_run_task_work();
3345 		io_uring_drop_tctx_refs(current);
3346 		xa_for_each(&tctx->xa, index, node) {
3347 			if (!llist_empty(&node->ctx->work_llist)) {
3348 				WARN_ON_ONCE(node->ctx->submitter_task &&
3349 					     node->ctx->submitter_task != current);
3350 				goto end_wait;
3351 			}
3352 		}
3353 		/*
3354 		 * If we've seen completions, retry without waiting. This
3355 		 * avoids a race where a completion comes in before we did
3356 		 * prepare_to_wait().
3357 		 */
3358 		if (inflight == tctx_inflight(tctx, !cancel_all))
3359 			schedule();
3360 end_wait:
3361 		finish_wait(&tctx->wait, &wait);
3362 	} while (1);
3363 
3364 	io_uring_clean_tctx(tctx);
3365 	if (cancel_all) {
3366 		/*
3367 		 * We shouldn't run task_works after cancel, so just leave
3368 		 * ->in_cancel set for normal exit.
3369 		 */
3370 		atomic_dec(&tctx->in_cancel);
3371 		/* for exec all current's requests should be gone, kill tctx */
3372 		__io_uring_free(current);
3373 	}
3374 }
3375 
3376 void __io_uring_cancel(bool cancel_all)
3377 {
3378 	io_uring_cancel_generic(cancel_all, NULL);
3379 }
3380 
3381 static void *io_uring_validate_mmap_request(struct file *file,
3382 					    loff_t pgoff, size_t sz)
3383 {
3384 	struct io_ring_ctx *ctx = file->private_data;
3385 	loff_t offset = pgoff << PAGE_SHIFT;
3386 	struct page *page;
3387 	void *ptr;
3388 
3389 	/* Don't allow mmap if the ring was setup without it */
3390 	if (ctx->flags & IORING_SETUP_NO_MMAP)
3391 		return ERR_PTR(-EINVAL);
3392 
3393 	switch (offset & IORING_OFF_MMAP_MASK) {
3394 	case IORING_OFF_SQ_RING:
3395 	case IORING_OFF_CQ_RING:
3396 		ptr = ctx->rings;
3397 		break;
3398 	case IORING_OFF_SQES:
3399 		ptr = ctx->sq_sqes;
3400 		break;
3401 	case IORING_OFF_PBUF_RING: {
3402 		unsigned int bgid;
3403 
3404 		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3405 		mutex_lock(&ctx->uring_lock);
3406 		ptr = io_pbuf_get_address(ctx, bgid);
3407 		mutex_unlock(&ctx->uring_lock);
3408 		if (!ptr)
3409 			return ERR_PTR(-EINVAL);
3410 		break;
3411 		}
3412 	default:
3413 		return ERR_PTR(-EINVAL);
3414 	}
3415 
3416 	page = virt_to_head_page(ptr);
3417 	if (sz > page_size(page))
3418 		return ERR_PTR(-EINVAL);
3419 
3420 	return ptr;
3421 }
3422 
3423 #ifdef CONFIG_MMU
3424 
3425 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3426 {
3427 	size_t sz = vma->vm_end - vma->vm_start;
3428 	unsigned long pfn;
3429 	void *ptr;
3430 
3431 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3432 	if (IS_ERR(ptr))
3433 		return PTR_ERR(ptr);
3434 
3435 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3436 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3437 }
3438 
3439 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3440 			unsigned long addr, unsigned long len,
3441 			unsigned long pgoff, unsigned long flags)
3442 {
3443 	void *ptr;
3444 
3445 	/*
3446 	 * Do not allow to map to user-provided address to avoid breaking the
3447 	 * aliasing rules. Userspace is not able to guess the offset address of
3448 	 * kernel kmalloc()ed memory area.
3449 	 */
3450 	if (addr)
3451 		return -EINVAL;
3452 
3453 	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3454 	if (IS_ERR(ptr))
3455 		return -ENOMEM;
3456 
3457 	/*
3458 	 * Some architectures have strong cache aliasing requirements.
3459 	 * For such architectures we need a coherent mapping which aliases
3460 	 * kernel memory *and* userspace memory. To achieve that:
3461 	 * - use a NULL file pointer to reference physical memory, and
3462 	 * - use the kernel virtual address of the shared io_uring context
3463 	 *   (instead of the userspace-provided address, which has to be 0UL
3464 	 *   anyway).
3465 	 * - use the same pgoff which the get_unmapped_area() uses to
3466 	 *   calculate the page colouring.
3467 	 * For architectures without such aliasing requirements, the
3468 	 * architecture will return any suitable mapping because addr is 0.
3469 	 */
3470 	filp = NULL;
3471 	flags |= MAP_SHARED;
3472 	pgoff = 0;	/* has been translated to ptr above */
3473 #ifdef SHM_COLOUR
3474 	addr = (uintptr_t) ptr;
3475 	pgoff = addr >> PAGE_SHIFT;
3476 #else
3477 	addr = 0UL;
3478 #endif
3479 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3480 }
3481 
3482 #else /* !CONFIG_MMU */
3483 
3484 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3485 {
3486 	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3487 }
3488 
3489 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3490 {
3491 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3492 }
3493 
3494 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3495 	unsigned long addr, unsigned long len,
3496 	unsigned long pgoff, unsigned long flags)
3497 {
3498 	void *ptr;
3499 
3500 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3501 	if (IS_ERR(ptr))
3502 		return PTR_ERR(ptr);
3503 
3504 	return (unsigned long) ptr;
3505 }
3506 
3507 #endif /* !CONFIG_MMU */
3508 
3509 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3510 {
3511 	if (flags & IORING_ENTER_EXT_ARG) {
3512 		struct io_uring_getevents_arg arg;
3513 
3514 		if (argsz != sizeof(arg))
3515 			return -EINVAL;
3516 		if (copy_from_user(&arg, argp, sizeof(arg)))
3517 			return -EFAULT;
3518 	}
3519 	return 0;
3520 }
3521 
3522 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3523 			  struct __kernel_timespec __user **ts,
3524 			  const sigset_t __user **sig)
3525 {
3526 	struct io_uring_getevents_arg arg;
3527 
3528 	/*
3529 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3530 	 * is just a pointer to the sigset_t.
3531 	 */
3532 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3533 		*sig = (const sigset_t __user *) argp;
3534 		*ts = NULL;
3535 		return 0;
3536 	}
3537 
3538 	/*
3539 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3540 	 * timespec and sigset_t pointers if good.
3541 	 */
3542 	if (*argsz != sizeof(arg))
3543 		return -EINVAL;
3544 	if (copy_from_user(&arg, argp, sizeof(arg)))
3545 		return -EFAULT;
3546 	if (arg.pad)
3547 		return -EINVAL;
3548 	*sig = u64_to_user_ptr(arg.sigmask);
3549 	*argsz = arg.sigmask_sz;
3550 	*ts = u64_to_user_ptr(arg.ts);
3551 	return 0;
3552 }
3553 
3554 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3555 		u32, min_complete, u32, flags, const void __user *, argp,
3556 		size_t, argsz)
3557 {
3558 	struct io_ring_ctx *ctx;
3559 	struct fd f;
3560 	long ret;
3561 
3562 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3563 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3564 			       IORING_ENTER_REGISTERED_RING)))
3565 		return -EINVAL;
3566 
3567 	/*
3568 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3569 	 * need only dereference our task private array to find it.
3570 	 */
3571 	if (flags & IORING_ENTER_REGISTERED_RING) {
3572 		struct io_uring_task *tctx = current->io_uring;
3573 
3574 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3575 			return -EINVAL;
3576 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3577 		f.file = tctx->registered_rings[fd];
3578 		f.flags = 0;
3579 		if (unlikely(!f.file))
3580 			return -EBADF;
3581 	} else {
3582 		f = fdget(fd);
3583 		if (unlikely(!f.file))
3584 			return -EBADF;
3585 		ret = -EOPNOTSUPP;
3586 		if (unlikely(!io_is_uring_fops(f.file)))
3587 			goto out;
3588 	}
3589 
3590 	ctx = f.file->private_data;
3591 	ret = -EBADFD;
3592 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3593 		goto out;
3594 
3595 	/*
3596 	 * For SQ polling, the thread will do all submissions and completions.
3597 	 * Just return the requested submit count, and wake the thread if
3598 	 * we were asked to.
3599 	 */
3600 	ret = 0;
3601 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3602 		io_cqring_overflow_flush(ctx);
3603 
3604 		if (unlikely(ctx->sq_data->thread == NULL)) {
3605 			ret = -EOWNERDEAD;
3606 			goto out;
3607 		}
3608 		if (flags & IORING_ENTER_SQ_WAKEUP)
3609 			wake_up(&ctx->sq_data->wait);
3610 		if (flags & IORING_ENTER_SQ_WAIT)
3611 			io_sqpoll_wait_sq(ctx);
3612 
3613 		ret = to_submit;
3614 	} else if (to_submit) {
3615 		ret = io_uring_add_tctx_node(ctx);
3616 		if (unlikely(ret))
3617 			goto out;
3618 
3619 		mutex_lock(&ctx->uring_lock);
3620 		ret = io_submit_sqes(ctx, to_submit);
3621 		if (ret != to_submit) {
3622 			mutex_unlock(&ctx->uring_lock);
3623 			goto out;
3624 		}
3625 		if (flags & IORING_ENTER_GETEVENTS) {
3626 			if (ctx->syscall_iopoll)
3627 				goto iopoll_locked;
3628 			/*
3629 			 * Ignore errors, we'll soon call io_cqring_wait() and
3630 			 * it should handle ownership problems if any.
3631 			 */
3632 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3633 				(void)io_run_local_work_locked(ctx);
3634 		}
3635 		mutex_unlock(&ctx->uring_lock);
3636 	}
3637 
3638 	if (flags & IORING_ENTER_GETEVENTS) {
3639 		int ret2;
3640 
3641 		if (ctx->syscall_iopoll) {
3642 			/*
3643 			 * We disallow the app entering submit/complete with
3644 			 * polling, but we still need to lock the ring to
3645 			 * prevent racing with polled issue that got punted to
3646 			 * a workqueue.
3647 			 */
3648 			mutex_lock(&ctx->uring_lock);
3649 iopoll_locked:
3650 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3651 			if (likely(!ret2)) {
3652 				min_complete = min(min_complete,
3653 						   ctx->cq_entries);
3654 				ret2 = io_iopoll_check(ctx, min_complete);
3655 			}
3656 			mutex_unlock(&ctx->uring_lock);
3657 		} else {
3658 			const sigset_t __user *sig;
3659 			struct __kernel_timespec __user *ts;
3660 
3661 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3662 			if (likely(!ret2)) {
3663 				min_complete = min(min_complete,
3664 						   ctx->cq_entries);
3665 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3666 						      argsz, ts);
3667 			}
3668 		}
3669 
3670 		if (!ret) {
3671 			ret = ret2;
3672 
3673 			/*
3674 			 * EBADR indicates that one or more CQE were dropped.
3675 			 * Once the user has been informed we can clear the bit
3676 			 * as they are obviously ok with those drops.
3677 			 */
3678 			if (unlikely(ret2 == -EBADR))
3679 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3680 					  &ctx->check_cq);
3681 		}
3682 	}
3683 out:
3684 	fdput(f);
3685 	return ret;
3686 }
3687 
3688 static const struct file_operations io_uring_fops = {
3689 	.release	= io_uring_release,
3690 	.mmap		= io_uring_mmap,
3691 #ifndef CONFIG_MMU
3692 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3693 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3694 #else
3695 	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3696 #endif
3697 	.poll		= io_uring_poll,
3698 #ifdef CONFIG_PROC_FS
3699 	.show_fdinfo	= io_uring_show_fdinfo,
3700 #endif
3701 };
3702 
3703 bool io_is_uring_fops(struct file *file)
3704 {
3705 	return file->f_op == &io_uring_fops;
3706 }
3707 
3708 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3709 					 struct io_uring_params *p)
3710 {
3711 	struct io_rings *rings;
3712 	size_t size, sq_array_offset;
3713 	void *ptr;
3714 
3715 	/* make sure these are sane, as we already accounted them */
3716 	ctx->sq_entries = p->sq_entries;
3717 	ctx->cq_entries = p->cq_entries;
3718 
3719 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3720 	if (size == SIZE_MAX)
3721 		return -EOVERFLOW;
3722 
3723 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3724 		rings = io_mem_alloc(size);
3725 	else
3726 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3727 
3728 	if (IS_ERR(rings))
3729 		return PTR_ERR(rings);
3730 
3731 	ctx->rings = rings;
3732 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3733 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3734 	rings->sq_ring_mask = p->sq_entries - 1;
3735 	rings->cq_ring_mask = p->cq_entries - 1;
3736 	rings->sq_ring_entries = p->sq_entries;
3737 	rings->cq_ring_entries = p->cq_entries;
3738 
3739 	if (p->flags & IORING_SETUP_SQE128)
3740 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3741 	else
3742 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3743 	if (size == SIZE_MAX) {
3744 		io_rings_free(ctx);
3745 		return -EOVERFLOW;
3746 	}
3747 
3748 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3749 		ptr = io_mem_alloc(size);
3750 	else
3751 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3752 
3753 	if (IS_ERR(ptr)) {
3754 		io_rings_free(ctx);
3755 		return PTR_ERR(ptr);
3756 	}
3757 
3758 	ctx->sq_sqes = ptr;
3759 	return 0;
3760 }
3761 
3762 static int io_uring_install_fd(struct file *file)
3763 {
3764 	int fd;
3765 
3766 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3767 	if (fd < 0)
3768 		return fd;
3769 	fd_install(fd, file);
3770 	return fd;
3771 }
3772 
3773 /*
3774  * Allocate an anonymous fd, this is what constitutes the application
3775  * visible backing of an io_uring instance. The application mmaps this
3776  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3777  * we have to tie this fd to a socket for file garbage collection purposes.
3778  */
3779 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3780 {
3781 	struct file *file;
3782 #if defined(CONFIG_UNIX)
3783 	int ret;
3784 
3785 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3786 				&ctx->ring_sock);
3787 	if (ret)
3788 		return ERR_PTR(ret);
3789 #endif
3790 
3791 	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3792 					 O_RDWR | O_CLOEXEC, NULL);
3793 #if defined(CONFIG_UNIX)
3794 	if (IS_ERR(file)) {
3795 		sock_release(ctx->ring_sock);
3796 		ctx->ring_sock = NULL;
3797 	} else {
3798 		ctx->ring_sock->file = file;
3799 	}
3800 #endif
3801 	return file;
3802 }
3803 
3804 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3805 				  struct io_uring_params __user *params)
3806 {
3807 	struct io_ring_ctx *ctx;
3808 	struct io_uring_task *tctx;
3809 	struct file *file;
3810 	int ret;
3811 
3812 	if (!entries)
3813 		return -EINVAL;
3814 	if (entries > IORING_MAX_ENTRIES) {
3815 		if (!(p->flags & IORING_SETUP_CLAMP))
3816 			return -EINVAL;
3817 		entries = IORING_MAX_ENTRIES;
3818 	}
3819 
3820 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3821 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3822 		return -EINVAL;
3823 
3824 	/*
3825 	 * Use twice as many entries for the CQ ring. It's possible for the
3826 	 * application to drive a higher depth than the size of the SQ ring,
3827 	 * since the sqes are only used at submission time. This allows for
3828 	 * some flexibility in overcommitting a bit. If the application has
3829 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3830 	 * of CQ ring entries manually.
3831 	 */
3832 	p->sq_entries = roundup_pow_of_two(entries);
3833 	if (p->flags & IORING_SETUP_CQSIZE) {
3834 		/*
3835 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3836 		 * to a power-of-two, if it isn't already. We do NOT impose
3837 		 * any cq vs sq ring sizing.
3838 		 */
3839 		if (!p->cq_entries)
3840 			return -EINVAL;
3841 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3842 			if (!(p->flags & IORING_SETUP_CLAMP))
3843 				return -EINVAL;
3844 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3845 		}
3846 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3847 		if (p->cq_entries < p->sq_entries)
3848 			return -EINVAL;
3849 	} else {
3850 		p->cq_entries = 2 * p->sq_entries;
3851 	}
3852 
3853 	ctx = io_ring_ctx_alloc(p);
3854 	if (!ctx)
3855 		return -ENOMEM;
3856 
3857 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3858 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3859 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3860 		ctx->task_complete = true;
3861 
3862 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3863 		ctx->lockless_cq = true;
3864 
3865 	/*
3866 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3867 	 * purposes, see io_activate_pollwq()
3868 	 */
3869 	if (!ctx->task_complete)
3870 		ctx->poll_activated = true;
3871 
3872 	/*
3873 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3874 	 * space applications don't need to do io completion events
3875 	 * polling again, they can rely on io_sq_thread to do polling
3876 	 * work, which can reduce cpu usage and uring_lock contention.
3877 	 */
3878 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3879 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3880 		ctx->syscall_iopoll = 1;
3881 
3882 	ctx->compat = in_compat_syscall();
3883 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3884 		ctx->user = get_uid(current_user());
3885 
3886 	/*
3887 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3888 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3889 	 */
3890 	ret = -EINVAL;
3891 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3892 		/* IPI related flags don't make sense with SQPOLL */
3893 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3894 				  IORING_SETUP_TASKRUN_FLAG |
3895 				  IORING_SETUP_DEFER_TASKRUN))
3896 			goto err;
3897 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3898 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3899 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3900 	} else {
3901 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3902 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3903 			goto err;
3904 		ctx->notify_method = TWA_SIGNAL;
3905 	}
3906 
3907 	/*
3908 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3909 	 * submission task. This implies that there is only one submitter, so enforce
3910 	 * that.
3911 	 */
3912 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3913 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3914 		goto err;
3915 	}
3916 
3917 	/*
3918 	 * This is just grabbed for accounting purposes. When a process exits,
3919 	 * the mm is exited and dropped before the files, hence we need to hang
3920 	 * on to this mm purely for the purposes of being able to unaccount
3921 	 * memory (locked/pinned vm). It's not used for anything else.
3922 	 */
3923 	mmgrab(current->mm);
3924 	ctx->mm_account = current->mm;
3925 
3926 	ret = io_allocate_scq_urings(ctx, p);
3927 	if (ret)
3928 		goto err;
3929 
3930 	ret = io_sq_offload_create(ctx, p);
3931 	if (ret)
3932 		goto err;
3933 
3934 	ret = io_rsrc_init(ctx);
3935 	if (ret)
3936 		goto err;
3937 
3938 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3939 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3940 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3941 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3942 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3943 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3944 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3945 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3946 	p->sq_off.resv1 = 0;
3947 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3948 		p->sq_off.user_addr = 0;
3949 
3950 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3951 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3952 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3953 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3954 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3955 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3956 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3957 	p->cq_off.resv1 = 0;
3958 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3959 		p->cq_off.user_addr = 0;
3960 
3961 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3962 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3963 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3964 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3965 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3966 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3967 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
3968 
3969 	if (copy_to_user(params, p, sizeof(*p))) {
3970 		ret = -EFAULT;
3971 		goto err;
3972 	}
3973 
3974 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3975 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3976 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3977 
3978 	file = io_uring_get_file(ctx);
3979 	if (IS_ERR(file)) {
3980 		ret = PTR_ERR(file);
3981 		goto err;
3982 	}
3983 
3984 	ret = __io_uring_add_tctx_node(ctx);
3985 	if (ret)
3986 		goto err_fput;
3987 	tctx = current->io_uring;
3988 
3989 	/*
3990 	 * Install ring fd as the very last thing, so we don't risk someone
3991 	 * having closed it before we finish setup
3992 	 */
3993 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3994 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3995 	else
3996 		ret = io_uring_install_fd(file);
3997 	if (ret < 0)
3998 		goto err_fput;
3999 
4000 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4001 	return ret;
4002 err:
4003 	io_ring_ctx_wait_and_kill(ctx);
4004 	return ret;
4005 err_fput:
4006 	fput(file);
4007 	return ret;
4008 }
4009 
4010 /*
4011  * Sets up an aio uring context, and returns the fd. Applications asks for a
4012  * ring size, we return the actual sq/cq ring sizes (among other things) in the
4013  * params structure passed in.
4014  */
4015 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4016 {
4017 	struct io_uring_params p;
4018 	int i;
4019 
4020 	if (copy_from_user(&p, params, sizeof(p)))
4021 		return -EFAULT;
4022 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4023 		if (p.resv[i])
4024 			return -EINVAL;
4025 	}
4026 
4027 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4028 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4029 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4030 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4031 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4032 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4033 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4034 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4035 			IORING_SETUP_NO_SQARRAY))
4036 		return -EINVAL;
4037 
4038 	return io_uring_create(entries, &p, params);
4039 }
4040 
4041 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4042 		struct io_uring_params __user *, params)
4043 {
4044 	return io_uring_setup(entries, params);
4045 }
4046 
4047 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4048 			   unsigned nr_args)
4049 {
4050 	struct io_uring_probe *p;
4051 	size_t size;
4052 	int i, ret;
4053 
4054 	size = struct_size(p, ops, nr_args);
4055 	if (size == SIZE_MAX)
4056 		return -EOVERFLOW;
4057 	p = kzalloc(size, GFP_KERNEL);
4058 	if (!p)
4059 		return -ENOMEM;
4060 
4061 	ret = -EFAULT;
4062 	if (copy_from_user(p, arg, size))
4063 		goto out;
4064 	ret = -EINVAL;
4065 	if (memchr_inv(p, 0, size))
4066 		goto out;
4067 
4068 	p->last_op = IORING_OP_LAST - 1;
4069 	if (nr_args > IORING_OP_LAST)
4070 		nr_args = IORING_OP_LAST;
4071 
4072 	for (i = 0; i < nr_args; i++) {
4073 		p->ops[i].op = i;
4074 		if (!io_issue_defs[i].not_supported)
4075 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
4076 	}
4077 	p->ops_len = i;
4078 
4079 	ret = 0;
4080 	if (copy_to_user(arg, p, size))
4081 		ret = -EFAULT;
4082 out:
4083 	kfree(p);
4084 	return ret;
4085 }
4086 
4087 static int io_register_personality(struct io_ring_ctx *ctx)
4088 {
4089 	const struct cred *creds;
4090 	u32 id;
4091 	int ret;
4092 
4093 	creds = get_current_cred();
4094 
4095 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4096 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4097 	if (ret < 0) {
4098 		put_cred(creds);
4099 		return ret;
4100 	}
4101 	return id;
4102 }
4103 
4104 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4105 					   void __user *arg, unsigned int nr_args)
4106 {
4107 	struct io_uring_restriction *res;
4108 	size_t size;
4109 	int i, ret;
4110 
4111 	/* Restrictions allowed only if rings started disabled */
4112 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4113 		return -EBADFD;
4114 
4115 	/* We allow only a single restrictions registration */
4116 	if (ctx->restrictions.registered)
4117 		return -EBUSY;
4118 
4119 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4120 		return -EINVAL;
4121 
4122 	size = array_size(nr_args, sizeof(*res));
4123 	if (size == SIZE_MAX)
4124 		return -EOVERFLOW;
4125 
4126 	res = memdup_user(arg, size);
4127 	if (IS_ERR(res))
4128 		return PTR_ERR(res);
4129 
4130 	ret = 0;
4131 
4132 	for (i = 0; i < nr_args; i++) {
4133 		switch (res[i].opcode) {
4134 		case IORING_RESTRICTION_REGISTER_OP:
4135 			if (res[i].register_op >= IORING_REGISTER_LAST) {
4136 				ret = -EINVAL;
4137 				goto out;
4138 			}
4139 
4140 			__set_bit(res[i].register_op,
4141 				  ctx->restrictions.register_op);
4142 			break;
4143 		case IORING_RESTRICTION_SQE_OP:
4144 			if (res[i].sqe_op >= IORING_OP_LAST) {
4145 				ret = -EINVAL;
4146 				goto out;
4147 			}
4148 
4149 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4150 			break;
4151 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4152 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4153 			break;
4154 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4155 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4156 			break;
4157 		default:
4158 			ret = -EINVAL;
4159 			goto out;
4160 		}
4161 	}
4162 
4163 out:
4164 	/* Reset all restrictions if an error happened */
4165 	if (ret != 0)
4166 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4167 	else
4168 		ctx->restrictions.registered = true;
4169 
4170 	kfree(res);
4171 	return ret;
4172 }
4173 
4174 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4175 {
4176 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4177 		return -EBADFD;
4178 
4179 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4180 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4181 		/*
4182 		 * Lazy activation attempts would fail if it was polled before
4183 		 * submitter_task is set.
4184 		 */
4185 		if (wq_has_sleeper(&ctx->poll_wq))
4186 			io_activate_pollwq(ctx);
4187 	}
4188 
4189 	if (ctx->restrictions.registered)
4190 		ctx->restricted = 1;
4191 
4192 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
4193 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4194 		wake_up(&ctx->sq_data->wait);
4195 	return 0;
4196 }
4197 
4198 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx,
4199 					 cpumask_var_t new_mask)
4200 {
4201 	int ret;
4202 
4203 	if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
4204 		ret = io_wq_cpu_affinity(current->io_uring, new_mask);
4205 	} else {
4206 		mutex_unlock(&ctx->uring_lock);
4207 		ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask);
4208 		mutex_lock(&ctx->uring_lock);
4209 	}
4210 
4211 	return ret;
4212 }
4213 
4214 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4215 				       void __user *arg, unsigned len)
4216 {
4217 	cpumask_var_t new_mask;
4218 	int ret;
4219 
4220 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4221 		return -ENOMEM;
4222 
4223 	cpumask_clear(new_mask);
4224 	if (len > cpumask_size())
4225 		len = cpumask_size();
4226 
4227 	if (in_compat_syscall()) {
4228 		ret = compat_get_bitmap(cpumask_bits(new_mask),
4229 					(const compat_ulong_t __user *)arg,
4230 					len * 8 /* CHAR_BIT */);
4231 	} else {
4232 		ret = copy_from_user(new_mask, arg, len);
4233 	}
4234 
4235 	if (ret) {
4236 		free_cpumask_var(new_mask);
4237 		return -EFAULT;
4238 	}
4239 
4240 	ret = __io_register_iowq_aff(ctx, new_mask);
4241 	free_cpumask_var(new_mask);
4242 	return ret;
4243 }
4244 
4245 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4246 {
4247 	return __io_register_iowq_aff(ctx, NULL);
4248 }
4249 
4250 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4251 					       void __user *arg)
4252 	__must_hold(&ctx->uring_lock)
4253 {
4254 	struct io_tctx_node *node;
4255 	struct io_uring_task *tctx = NULL;
4256 	struct io_sq_data *sqd = NULL;
4257 	__u32 new_count[2];
4258 	int i, ret;
4259 
4260 	if (copy_from_user(new_count, arg, sizeof(new_count)))
4261 		return -EFAULT;
4262 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4263 		if (new_count[i] > INT_MAX)
4264 			return -EINVAL;
4265 
4266 	if (ctx->flags & IORING_SETUP_SQPOLL) {
4267 		sqd = ctx->sq_data;
4268 		if (sqd) {
4269 			/*
4270 			 * Observe the correct sqd->lock -> ctx->uring_lock
4271 			 * ordering. Fine to drop uring_lock here, we hold
4272 			 * a ref to the ctx.
4273 			 */
4274 			refcount_inc(&sqd->refs);
4275 			mutex_unlock(&ctx->uring_lock);
4276 			mutex_lock(&sqd->lock);
4277 			mutex_lock(&ctx->uring_lock);
4278 			if (sqd->thread)
4279 				tctx = sqd->thread->io_uring;
4280 		}
4281 	} else {
4282 		tctx = current->io_uring;
4283 	}
4284 
4285 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4286 
4287 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4288 		if (new_count[i])
4289 			ctx->iowq_limits[i] = new_count[i];
4290 	ctx->iowq_limits_set = true;
4291 
4292 	if (tctx && tctx->io_wq) {
4293 		ret = io_wq_max_workers(tctx->io_wq, new_count);
4294 		if (ret)
4295 			goto err;
4296 	} else {
4297 		memset(new_count, 0, sizeof(new_count));
4298 	}
4299 
4300 	if (sqd) {
4301 		mutex_unlock(&sqd->lock);
4302 		io_put_sq_data(sqd);
4303 	}
4304 
4305 	if (copy_to_user(arg, new_count, sizeof(new_count)))
4306 		return -EFAULT;
4307 
4308 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
4309 	if (sqd)
4310 		return 0;
4311 
4312 	/* now propagate the restriction to all registered users */
4313 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4314 		struct io_uring_task *tctx = node->task->io_uring;
4315 
4316 		if (WARN_ON_ONCE(!tctx->io_wq))
4317 			continue;
4318 
4319 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
4320 			new_count[i] = ctx->iowq_limits[i];
4321 		/* ignore errors, it always returns zero anyway */
4322 		(void)io_wq_max_workers(tctx->io_wq, new_count);
4323 	}
4324 	return 0;
4325 err:
4326 	if (sqd) {
4327 		mutex_unlock(&sqd->lock);
4328 		io_put_sq_data(sqd);
4329 	}
4330 	return ret;
4331 }
4332 
4333 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4334 			       void __user *arg, unsigned nr_args)
4335 	__releases(ctx->uring_lock)
4336 	__acquires(ctx->uring_lock)
4337 {
4338 	int ret;
4339 
4340 	/*
4341 	 * We don't quiesce the refs for register anymore and so it can't be
4342 	 * dying as we're holding a file ref here.
4343 	 */
4344 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4345 		return -ENXIO;
4346 
4347 	if (ctx->submitter_task && ctx->submitter_task != current)
4348 		return -EEXIST;
4349 
4350 	if (ctx->restricted) {
4351 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4352 		if (!test_bit(opcode, ctx->restrictions.register_op))
4353 			return -EACCES;
4354 	}
4355 
4356 	switch (opcode) {
4357 	case IORING_REGISTER_BUFFERS:
4358 		ret = -EFAULT;
4359 		if (!arg)
4360 			break;
4361 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4362 		break;
4363 	case IORING_UNREGISTER_BUFFERS:
4364 		ret = -EINVAL;
4365 		if (arg || nr_args)
4366 			break;
4367 		ret = io_sqe_buffers_unregister(ctx);
4368 		break;
4369 	case IORING_REGISTER_FILES:
4370 		ret = -EFAULT;
4371 		if (!arg)
4372 			break;
4373 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4374 		break;
4375 	case IORING_UNREGISTER_FILES:
4376 		ret = -EINVAL;
4377 		if (arg || nr_args)
4378 			break;
4379 		ret = io_sqe_files_unregister(ctx);
4380 		break;
4381 	case IORING_REGISTER_FILES_UPDATE:
4382 		ret = io_register_files_update(ctx, arg, nr_args);
4383 		break;
4384 	case IORING_REGISTER_EVENTFD:
4385 		ret = -EINVAL;
4386 		if (nr_args != 1)
4387 			break;
4388 		ret = io_eventfd_register(ctx, arg, 0);
4389 		break;
4390 	case IORING_REGISTER_EVENTFD_ASYNC:
4391 		ret = -EINVAL;
4392 		if (nr_args != 1)
4393 			break;
4394 		ret = io_eventfd_register(ctx, arg, 1);
4395 		break;
4396 	case IORING_UNREGISTER_EVENTFD:
4397 		ret = -EINVAL;
4398 		if (arg || nr_args)
4399 			break;
4400 		ret = io_eventfd_unregister(ctx);
4401 		break;
4402 	case IORING_REGISTER_PROBE:
4403 		ret = -EINVAL;
4404 		if (!arg || nr_args > 256)
4405 			break;
4406 		ret = io_probe(ctx, arg, nr_args);
4407 		break;
4408 	case IORING_REGISTER_PERSONALITY:
4409 		ret = -EINVAL;
4410 		if (arg || nr_args)
4411 			break;
4412 		ret = io_register_personality(ctx);
4413 		break;
4414 	case IORING_UNREGISTER_PERSONALITY:
4415 		ret = -EINVAL;
4416 		if (arg)
4417 			break;
4418 		ret = io_unregister_personality(ctx, nr_args);
4419 		break;
4420 	case IORING_REGISTER_ENABLE_RINGS:
4421 		ret = -EINVAL;
4422 		if (arg || nr_args)
4423 			break;
4424 		ret = io_register_enable_rings(ctx);
4425 		break;
4426 	case IORING_REGISTER_RESTRICTIONS:
4427 		ret = io_register_restrictions(ctx, arg, nr_args);
4428 		break;
4429 	case IORING_REGISTER_FILES2:
4430 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4431 		break;
4432 	case IORING_REGISTER_FILES_UPDATE2:
4433 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4434 					      IORING_RSRC_FILE);
4435 		break;
4436 	case IORING_REGISTER_BUFFERS2:
4437 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4438 		break;
4439 	case IORING_REGISTER_BUFFERS_UPDATE:
4440 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4441 					      IORING_RSRC_BUFFER);
4442 		break;
4443 	case IORING_REGISTER_IOWQ_AFF:
4444 		ret = -EINVAL;
4445 		if (!arg || !nr_args)
4446 			break;
4447 		ret = io_register_iowq_aff(ctx, arg, nr_args);
4448 		break;
4449 	case IORING_UNREGISTER_IOWQ_AFF:
4450 		ret = -EINVAL;
4451 		if (arg || nr_args)
4452 			break;
4453 		ret = io_unregister_iowq_aff(ctx);
4454 		break;
4455 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4456 		ret = -EINVAL;
4457 		if (!arg || nr_args != 2)
4458 			break;
4459 		ret = io_register_iowq_max_workers(ctx, arg);
4460 		break;
4461 	case IORING_REGISTER_RING_FDS:
4462 		ret = io_ringfd_register(ctx, arg, nr_args);
4463 		break;
4464 	case IORING_UNREGISTER_RING_FDS:
4465 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4466 		break;
4467 	case IORING_REGISTER_PBUF_RING:
4468 		ret = -EINVAL;
4469 		if (!arg || nr_args != 1)
4470 			break;
4471 		ret = io_register_pbuf_ring(ctx, arg);
4472 		break;
4473 	case IORING_UNREGISTER_PBUF_RING:
4474 		ret = -EINVAL;
4475 		if (!arg || nr_args != 1)
4476 			break;
4477 		ret = io_unregister_pbuf_ring(ctx, arg);
4478 		break;
4479 	case IORING_REGISTER_SYNC_CANCEL:
4480 		ret = -EINVAL;
4481 		if (!arg || nr_args != 1)
4482 			break;
4483 		ret = io_sync_cancel(ctx, arg);
4484 		break;
4485 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4486 		ret = -EINVAL;
4487 		if (!arg || nr_args)
4488 			break;
4489 		ret = io_register_file_alloc_range(ctx, arg);
4490 		break;
4491 	default:
4492 		ret = -EINVAL;
4493 		break;
4494 	}
4495 
4496 	return ret;
4497 }
4498 
4499 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4500 		void __user *, arg, unsigned int, nr_args)
4501 {
4502 	struct io_ring_ctx *ctx;
4503 	long ret = -EBADF;
4504 	struct fd f;
4505 	bool use_registered_ring;
4506 
4507 	use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4508 	opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4509 
4510 	if (opcode >= IORING_REGISTER_LAST)
4511 		return -EINVAL;
4512 
4513 	if (use_registered_ring) {
4514 		/*
4515 		 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4516 		 * need only dereference our task private array to find it.
4517 		 */
4518 		struct io_uring_task *tctx = current->io_uring;
4519 
4520 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4521 			return -EINVAL;
4522 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4523 		f.file = tctx->registered_rings[fd];
4524 		f.flags = 0;
4525 		if (unlikely(!f.file))
4526 			return -EBADF;
4527 	} else {
4528 		f = fdget(fd);
4529 		if (unlikely(!f.file))
4530 			return -EBADF;
4531 		ret = -EOPNOTSUPP;
4532 		if (!io_is_uring_fops(f.file))
4533 			goto out_fput;
4534 	}
4535 
4536 	ctx = f.file->private_data;
4537 
4538 	mutex_lock(&ctx->uring_lock);
4539 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4540 	mutex_unlock(&ctx->uring_lock);
4541 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4542 out_fput:
4543 	fdput(f);
4544 	return ret;
4545 }
4546 
4547 static int __init io_uring_init(void)
4548 {
4549 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4550 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4551 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4552 } while (0)
4553 
4554 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4555 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4556 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4557 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4558 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4559 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4560 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4561 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4562 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4563 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4564 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4565 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4566 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4567 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4568 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4569 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4570 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4571 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4572 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4573 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4574 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4575 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4576 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4577 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4578 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4579 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4580 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4581 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4582 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4583 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4584 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4585 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4586 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4587 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4588 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4589 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4590 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4591 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4592 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4593 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4594 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4595 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4596 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4597 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4598 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4599 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4600 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4601 
4602 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4603 		     sizeof(struct io_uring_rsrc_update));
4604 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4605 		     sizeof(struct io_uring_rsrc_update2));
4606 
4607 	/* ->buf_index is u16 */
4608 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4609 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4610 		     offsetof(struct io_uring_buf_ring, tail));
4611 
4612 	/* should fit into one byte */
4613 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4614 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4615 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4616 
4617 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4618 
4619 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4620 
4621 	io_uring_optable_init();
4622 
4623 	/*
4624 	 * Allow user copy in the per-command field, which starts after the
4625 	 * file in io_kiocb and until the opcode field. The openat2 handling
4626 	 * requires copying in user memory into the io_kiocb object in that
4627 	 * range, and HARDENED_USERCOPY will complain if we haven't
4628 	 * correctly annotated this range.
4629 	 */
4630 	req_cachep = kmem_cache_create_usercopy("io_kiocb",
4631 				sizeof(struct io_kiocb), 0,
4632 				SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4633 				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4634 				offsetof(struct io_kiocb, cmd.data),
4635 				sizeof_field(struct io_kiocb, cmd.data), NULL);
4636 
4637 	return 0;
4638 };
4639 __initcall(io_uring_init);
4640