1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 #include <asm/shmparam.h> 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/io_uring.h> 79 80 #include <uapi/linux/io_uring.h> 81 82 #include "io-wq.h" 83 84 #include "io_uring.h" 85 #include "opdef.h" 86 #include "refs.h" 87 #include "tctx.h" 88 #include "sqpoll.h" 89 #include "fdinfo.h" 90 #include "kbuf.h" 91 #include "rsrc.h" 92 #include "cancel.h" 93 #include "net.h" 94 #include "notif.h" 95 96 #include "timeout.h" 97 #include "poll.h" 98 #include "rw.h" 99 #include "alloc_cache.h" 100 101 #define IORING_MAX_ENTRIES 32768 102 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 103 104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 105 IORING_REGISTER_LAST + IORING_OP_LAST) 106 107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 108 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 109 110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 112 113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 115 REQ_F_ASYNC_DATA) 116 117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 118 IO_REQ_CLEAN_FLAGS) 119 120 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 121 122 #define IO_COMPL_BATCH 32 123 #define IO_REQ_ALLOC_BATCH 8 124 125 enum { 126 IO_CHECK_CQ_OVERFLOW_BIT, 127 IO_CHECK_CQ_DROPPED_BIT, 128 }; 129 130 enum { 131 IO_EVENTFD_OP_SIGNAL_BIT, 132 IO_EVENTFD_OP_FREE_BIT, 133 }; 134 135 struct io_defer_entry { 136 struct list_head list; 137 struct io_kiocb *req; 138 u32 seq; 139 }; 140 141 /* requests with any of those set should undergo io_disarm_next() */ 142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 144 145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 146 struct task_struct *task, 147 bool cancel_all); 148 149 static void io_queue_sqe(struct io_kiocb *req); 150 151 struct kmem_cache *req_cachep; 152 153 struct sock *io_uring_get_socket(struct file *file) 154 { 155 #if defined(CONFIG_UNIX) 156 if (io_is_uring_fops(file)) { 157 struct io_ring_ctx *ctx = file->private_data; 158 159 return ctx->ring_sock->sk; 160 } 161 #endif 162 return NULL; 163 } 164 EXPORT_SYMBOL(io_uring_get_socket); 165 166 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 167 { 168 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 169 ctx->submit_state.cqes_count) 170 __io_submit_flush_completions(ctx); 171 } 172 173 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 174 { 175 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 176 } 177 178 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 179 { 180 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 181 } 182 183 static bool io_match_linked(struct io_kiocb *head) 184 { 185 struct io_kiocb *req; 186 187 io_for_each_link(req, head) { 188 if (req->flags & REQ_F_INFLIGHT) 189 return true; 190 } 191 return false; 192 } 193 194 /* 195 * As io_match_task() but protected against racing with linked timeouts. 196 * User must not hold timeout_lock. 197 */ 198 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 199 bool cancel_all) 200 { 201 bool matched; 202 203 if (task && head->task != task) 204 return false; 205 if (cancel_all) 206 return true; 207 208 if (head->flags & REQ_F_LINK_TIMEOUT) { 209 struct io_ring_ctx *ctx = head->ctx; 210 211 /* protect against races with linked timeouts */ 212 spin_lock_irq(&ctx->timeout_lock); 213 matched = io_match_linked(head); 214 spin_unlock_irq(&ctx->timeout_lock); 215 } else { 216 matched = io_match_linked(head); 217 } 218 return matched; 219 } 220 221 static inline void req_fail_link_node(struct io_kiocb *req, int res) 222 { 223 req_set_fail(req); 224 io_req_set_res(req, res, 0); 225 } 226 227 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 228 { 229 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 230 } 231 232 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 233 { 234 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 235 236 complete(&ctx->ref_comp); 237 } 238 239 static __cold void io_fallback_req_func(struct work_struct *work) 240 { 241 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 242 fallback_work.work); 243 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 244 struct io_kiocb *req, *tmp; 245 struct io_tw_state ts = { .locked = true, }; 246 247 mutex_lock(&ctx->uring_lock); 248 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 249 req->io_task_work.func(req, &ts); 250 if (WARN_ON_ONCE(!ts.locked)) 251 return; 252 io_submit_flush_completions(ctx); 253 mutex_unlock(&ctx->uring_lock); 254 } 255 256 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 257 { 258 unsigned hash_buckets = 1U << bits; 259 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 260 261 table->hbs = kmalloc(hash_size, GFP_KERNEL); 262 if (!table->hbs) 263 return -ENOMEM; 264 265 table->hash_bits = bits; 266 init_hash_table(table, hash_buckets); 267 return 0; 268 } 269 270 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 271 { 272 struct io_ring_ctx *ctx; 273 int hash_bits; 274 275 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 276 if (!ctx) 277 return NULL; 278 279 xa_init(&ctx->io_bl_xa); 280 281 /* 282 * Use 5 bits less than the max cq entries, that should give us around 283 * 32 entries per hash list if totally full and uniformly spread, but 284 * don't keep too many buckets to not overconsume memory. 285 */ 286 hash_bits = ilog2(p->cq_entries) - 5; 287 hash_bits = clamp(hash_bits, 1, 8); 288 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 289 goto err; 290 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 291 goto err; 292 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 293 0, GFP_KERNEL)) 294 goto err; 295 296 ctx->flags = p->flags; 297 init_waitqueue_head(&ctx->sqo_sq_wait); 298 INIT_LIST_HEAD(&ctx->sqd_list); 299 INIT_LIST_HEAD(&ctx->cq_overflow_list); 300 INIT_LIST_HEAD(&ctx->io_buffers_cache); 301 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 302 sizeof(struct io_rsrc_node)); 303 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, 304 sizeof(struct async_poll)); 305 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 306 sizeof(struct io_async_msghdr)); 307 init_completion(&ctx->ref_comp); 308 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 309 mutex_init(&ctx->uring_lock); 310 init_waitqueue_head(&ctx->cq_wait); 311 init_waitqueue_head(&ctx->poll_wq); 312 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 313 spin_lock_init(&ctx->completion_lock); 314 spin_lock_init(&ctx->timeout_lock); 315 INIT_WQ_LIST(&ctx->iopoll_list); 316 INIT_LIST_HEAD(&ctx->io_buffers_pages); 317 INIT_LIST_HEAD(&ctx->io_buffers_comp); 318 INIT_LIST_HEAD(&ctx->defer_list); 319 INIT_LIST_HEAD(&ctx->timeout_list); 320 INIT_LIST_HEAD(&ctx->ltimeout_list); 321 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 322 init_llist_head(&ctx->work_llist); 323 INIT_LIST_HEAD(&ctx->tctx_list); 324 ctx->submit_state.free_list.next = NULL; 325 INIT_WQ_LIST(&ctx->locked_free_list); 326 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 327 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 328 return ctx; 329 err: 330 kfree(ctx->cancel_table.hbs); 331 kfree(ctx->cancel_table_locked.hbs); 332 kfree(ctx->io_bl); 333 xa_destroy(&ctx->io_bl_xa); 334 kfree(ctx); 335 return NULL; 336 } 337 338 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 339 { 340 struct io_rings *r = ctx->rings; 341 342 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 343 ctx->cq_extra--; 344 } 345 346 static bool req_need_defer(struct io_kiocb *req, u32 seq) 347 { 348 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 349 struct io_ring_ctx *ctx = req->ctx; 350 351 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 352 } 353 354 return false; 355 } 356 357 static void io_clean_op(struct io_kiocb *req) 358 { 359 if (req->flags & REQ_F_BUFFER_SELECTED) { 360 spin_lock(&req->ctx->completion_lock); 361 io_put_kbuf_comp(req); 362 spin_unlock(&req->ctx->completion_lock); 363 } 364 365 if (req->flags & REQ_F_NEED_CLEANUP) { 366 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 367 368 if (def->cleanup) 369 def->cleanup(req); 370 } 371 if ((req->flags & REQ_F_POLLED) && req->apoll) { 372 kfree(req->apoll->double_poll); 373 kfree(req->apoll); 374 req->apoll = NULL; 375 } 376 if (req->flags & REQ_F_INFLIGHT) { 377 struct io_uring_task *tctx = req->task->io_uring; 378 379 atomic_dec(&tctx->inflight_tracked); 380 } 381 if (req->flags & REQ_F_CREDS) 382 put_cred(req->creds); 383 if (req->flags & REQ_F_ASYNC_DATA) { 384 kfree(req->async_data); 385 req->async_data = NULL; 386 } 387 req->flags &= ~IO_REQ_CLEAN_FLAGS; 388 } 389 390 static inline void io_req_track_inflight(struct io_kiocb *req) 391 { 392 if (!(req->flags & REQ_F_INFLIGHT)) { 393 req->flags |= REQ_F_INFLIGHT; 394 atomic_inc(&req->task->io_uring->inflight_tracked); 395 } 396 } 397 398 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 399 { 400 if (WARN_ON_ONCE(!req->link)) 401 return NULL; 402 403 req->flags &= ~REQ_F_ARM_LTIMEOUT; 404 req->flags |= REQ_F_LINK_TIMEOUT; 405 406 /* linked timeouts should have two refs once prep'ed */ 407 io_req_set_refcount(req); 408 __io_req_set_refcount(req->link, 2); 409 return req->link; 410 } 411 412 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 413 { 414 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 415 return NULL; 416 return __io_prep_linked_timeout(req); 417 } 418 419 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 420 { 421 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 422 } 423 424 static inline void io_arm_ltimeout(struct io_kiocb *req) 425 { 426 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 427 __io_arm_ltimeout(req); 428 } 429 430 static void io_prep_async_work(struct io_kiocb *req) 431 { 432 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 433 struct io_ring_ctx *ctx = req->ctx; 434 435 if (!(req->flags & REQ_F_CREDS)) { 436 req->flags |= REQ_F_CREDS; 437 req->creds = get_current_cred(); 438 } 439 440 req->work.list.next = NULL; 441 req->work.flags = 0; 442 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 443 if (req->flags & REQ_F_FORCE_ASYNC) 444 req->work.flags |= IO_WQ_WORK_CONCURRENT; 445 446 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 447 req->flags |= io_file_get_flags(req->file); 448 449 if (req->file && (req->flags & REQ_F_ISREG)) { 450 bool should_hash = def->hash_reg_file; 451 452 /* don't serialize this request if the fs doesn't need it */ 453 if (should_hash && (req->file->f_flags & O_DIRECT) && 454 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) 455 should_hash = false; 456 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 457 io_wq_hash_work(&req->work, file_inode(req->file)); 458 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 459 if (def->unbound_nonreg_file) 460 req->work.flags |= IO_WQ_WORK_UNBOUND; 461 } 462 } 463 464 static void io_prep_async_link(struct io_kiocb *req) 465 { 466 struct io_kiocb *cur; 467 468 if (req->flags & REQ_F_LINK_TIMEOUT) { 469 struct io_ring_ctx *ctx = req->ctx; 470 471 spin_lock_irq(&ctx->timeout_lock); 472 io_for_each_link(cur, req) 473 io_prep_async_work(cur); 474 spin_unlock_irq(&ctx->timeout_lock); 475 } else { 476 io_for_each_link(cur, req) 477 io_prep_async_work(cur); 478 } 479 } 480 481 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) 482 { 483 struct io_kiocb *link = io_prep_linked_timeout(req); 484 struct io_uring_task *tctx = req->task->io_uring; 485 486 BUG_ON(!tctx); 487 BUG_ON(!tctx->io_wq); 488 489 /* init ->work of the whole link before punting */ 490 io_prep_async_link(req); 491 492 /* 493 * Not expected to happen, but if we do have a bug where this _can_ 494 * happen, catch it here and ensure the request is marked as 495 * canceled. That will make io-wq go through the usual work cancel 496 * procedure rather than attempt to run this request (or create a new 497 * worker for it). 498 */ 499 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 500 req->work.flags |= IO_WQ_WORK_CANCEL; 501 502 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 503 io_wq_enqueue(tctx->io_wq, &req->work); 504 if (link) 505 io_queue_linked_timeout(link); 506 } 507 508 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 509 { 510 while (!list_empty(&ctx->defer_list)) { 511 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 512 struct io_defer_entry, list); 513 514 if (req_need_defer(de->req, de->seq)) 515 break; 516 list_del_init(&de->list); 517 io_req_task_queue(de->req); 518 kfree(de); 519 } 520 } 521 522 523 static void io_eventfd_ops(struct rcu_head *rcu) 524 { 525 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 526 int ops = atomic_xchg(&ev_fd->ops, 0); 527 528 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 529 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 530 531 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 532 * ordering in a race but if references are 0 we know we have to free 533 * it regardless. 534 */ 535 if (atomic_dec_and_test(&ev_fd->refs)) { 536 eventfd_ctx_put(ev_fd->cq_ev_fd); 537 kfree(ev_fd); 538 } 539 } 540 541 static void io_eventfd_signal(struct io_ring_ctx *ctx) 542 { 543 struct io_ev_fd *ev_fd = NULL; 544 545 rcu_read_lock(); 546 /* 547 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 548 * and eventfd_signal 549 */ 550 ev_fd = rcu_dereference(ctx->io_ev_fd); 551 552 /* 553 * Check again if ev_fd exists incase an io_eventfd_unregister call 554 * completed between the NULL check of ctx->io_ev_fd at the start of 555 * the function and rcu_read_lock. 556 */ 557 if (unlikely(!ev_fd)) 558 goto out; 559 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 560 goto out; 561 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 562 goto out; 563 564 if (likely(eventfd_signal_allowed())) { 565 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 566 } else { 567 atomic_inc(&ev_fd->refs); 568 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 569 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 570 else 571 atomic_dec(&ev_fd->refs); 572 } 573 574 out: 575 rcu_read_unlock(); 576 } 577 578 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 579 { 580 bool skip; 581 582 spin_lock(&ctx->completion_lock); 583 584 /* 585 * Eventfd should only get triggered when at least one event has been 586 * posted. Some applications rely on the eventfd notification count 587 * only changing IFF a new CQE has been added to the CQ ring. There's 588 * no depedency on 1:1 relationship between how many times this 589 * function is called (and hence the eventfd count) and number of CQEs 590 * posted to the CQ ring. 591 */ 592 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 593 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 594 spin_unlock(&ctx->completion_lock); 595 if (skip) 596 return; 597 598 io_eventfd_signal(ctx); 599 } 600 601 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 602 { 603 if (ctx->poll_activated) 604 io_poll_wq_wake(ctx); 605 if (ctx->off_timeout_used) 606 io_flush_timeouts(ctx); 607 if (ctx->drain_active) { 608 spin_lock(&ctx->completion_lock); 609 io_queue_deferred(ctx); 610 spin_unlock(&ctx->completion_lock); 611 } 612 if (ctx->has_evfd) 613 io_eventfd_flush_signal(ctx); 614 } 615 616 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 617 { 618 if (!ctx->lockless_cq) 619 spin_lock(&ctx->completion_lock); 620 } 621 622 static inline void io_cq_lock(struct io_ring_ctx *ctx) 623 __acquires(ctx->completion_lock) 624 { 625 spin_lock(&ctx->completion_lock); 626 } 627 628 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 629 { 630 io_commit_cqring(ctx); 631 if (!ctx->task_complete) { 632 if (!ctx->lockless_cq) 633 spin_unlock(&ctx->completion_lock); 634 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 635 if (!ctx->syscall_iopoll) 636 io_cqring_wake(ctx); 637 } 638 io_commit_cqring_flush(ctx); 639 } 640 641 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 642 __releases(ctx->completion_lock) 643 { 644 io_commit_cqring(ctx); 645 spin_unlock(&ctx->completion_lock); 646 io_cqring_wake(ctx); 647 io_commit_cqring_flush(ctx); 648 } 649 650 /* Returns true if there are no backlogged entries after the flush */ 651 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 652 { 653 struct io_overflow_cqe *ocqe; 654 LIST_HEAD(list); 655 656 spin_lock(&ctx->completion_lock); 657 list_splice_init(&ctx->cq_overflow_list, &list); 658 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 659 spin_unlock(&ctx->completion_lock); 660 661 while (!list_empty(&list)) { 662 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 663 list_del(&ocqe->list); 664 kfree(ocqe); 665 } 666 } 667 668 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 669 { 670 size_t cqe_size = sizeof(struct io_uring_cqe); 671 672 if (__io_cqring_events(ctx) == ctx->cq_entries) 673 return; 674 675 if (ctx->flags & IORING_SETUP_CQE32) 676 cqe_size <<= 1; 677 678 io_cq_lock(ctx); 679 while (!list_empty(&ctx->cq_overflow_list)) { 680 struct io_uring_cqe *cqe; 681 struct io_overflow_cqe *ocqe; 682 683 if (!io_get_cqe_overflow(ctx, &cqe, true)) 684 break; 685 ocqe = list_first_entry(&ctx->cq_overflow_list, 686 struct io_overflow_cqe, list); 687 memcpy(cqe, &ocqe->cqe, cqe_size); 688 list_del(&ocqe->list); 689 kfree(ocqe); 690 } 691 692 if (list_empty(&ctx->cq_overflow_list)) { 693 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 694 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 695 } 696 io_cq_unlock_post(ctx); 697 } 698 699 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 700 { 701 /* iopoll syncs against uring_lock, not completion_lock */ 702 if (ctx->flags & IORING_SETUP_IOPOLL) 703 mutex_lock(&ctx->uring_lock); 704 __io_cqring_overflow_flush(ctx); 705 if (ctx->flags & IORING_SETUP_IOPOLL) 706 mutex_unlock(&ctx->uring_lock); 707 } 708 709 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 710 { 711 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 712 io_cqring_do_overflow_flush(ctx); 713 } 714 715 /* can be called by any task */ 716 static void io_put_task_remote(struct task_struct *task) 717 { 718 struct io_uring_task *tctx = task->io_uring; 719 720 percpu_counter_sub(&tctx->inflight, 1); 721 if (unlikely(atomic_read(&tctx->in_cancel))) 722 wake_up(&tctx->wait); 723 put_task_struct(task); 724 } 725 726 /* used by a task to put its own references */ 727 static void io_put_task_local(struct task_struct *task) 728 { 729 task->io_uring->cached_refs++; 730 } 731 732 /* must to be called somewhat shortly after putting a request */ 733 static inline void io_put_task(struct task_struct *task) 734 { 735 if (likely(task == current)) 736 io_put_task_local(task); 737 else 738 io_put_task_remote(task); 739 } 740 741 void io_task_refs_refill(struct io_uring_task *tctx) 742 { 743 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 744 745 percpu_counter_add(&tctx->inflight, refill); 746 refcount_add(refill, ¤t->usage); 747 tctx->cached_refs += refill; 748 } 749 750 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 751 { 752 struct io_uring_task *tctx = task->io_uring; 753 unsigned int refs = tctx->cached_refs; 754 755 if (refs) { 756 tctx->cached_refs = 0; 757 percpu_counter_sub(&tctx->inflight, refs); 758 put_task_struct_many(task, refs); 759 } 760 } 761 762 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 763 s32 res, u32 cflags, u64 extra1, u64 extra2) 764 { 765 struct io_overflow_cqe *ocqe; 766 size_t ocq_size = sizeof(struct io_overflow_cqe); 767 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 768 769 lockdep_assert_held(&ctx->completion_lock); 770 771 if (is_cqe32) 772 ocq_size += sizeof(struct io_uring_cqe); 773 774 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 775 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 776 if (!ocqe) { 777 /* 778 * If we're in ring overflow flush mode, or in task cancel mode, 779 * or cannot allocate an overflow entry, then we need to drop it 780 * on the floor. 781 */ 782 io_account_cq_overflow(ctx); 783 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 784 return false; 785 } 786 if (list_empty(&ctx->cq_overflow_list)) { 787 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 788 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 789 790 } 791 ocqe->cqe.user_data = user_data; 792 ocqe->cqe.res = res; 793 ocqe->cqe.flags = cflags; 794 if (is_cqe32) { 795 ocqe->cqe.big_cqe[0] = extra1; 796 ocqe->cqe.big_cqe[1] = extra2; 797 } 798 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 799 return true; 800 } 801 802 void io_req_cqe_overflow(struct io_kiocb *req) 803 { 804 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 805 req->cqe.res, req->cqe.flags, 806 req->big_cqe.extra1, req->big_cqe.extra2); 807 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 808 } 809 810 /* 811 * writes to the cq entry need to come after reading head; the 812 * control dependency is enough as we're using WRITE_ONCE to 813 * fill the cq entry 814 */ 815 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 816 { 817 struct io_rings *rings = ctx->rings; 818 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 819 unsigned int free, queued, len; 820 821 /* 822 * Posting into the CQ when there are pending overflowed CQEs may break 823 * ordering guarantees, which will affect links, F_MORE users and more. 824 * Force overflow the completion. 825 */ 826 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 827 return false; 828 829 /* userspace may cheat modifying the tail, be safe and do min */ 830 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 831 free = ctx->cq_entries - queued; 832 /* we need a contiguous range, limit based on the current array offset */ 833 len = min(free, ctx->cq_entries - off); 834 if (!len) 835 return false; 836 837 if (ctx->flags & IORING_SETUP_CQE32) { 838 off <<= 1; 839 len <<= 1; 840 } 841 842 ctx->cqe_cached = &rings->cqes[off]; 843 ctx->cqe_sentinel = ctx->cqe_cached + len; 844 return true; 845 } 846 847 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 848 u32 cflags) 849 { 850 struct io_uring_cqe *cqe; 851 852 ctx->cq_extra++; 853 854 /* 855 * If we can't get a cq entry, userspace overflowed the 856 * submission (by quite a lot). Increment the overflow count in 857 * the ring. 858 */ 859 if (likely(io_get_cqe(ctx, &cqe))) { 860 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 861 862 WRITE_ONCE(cqe->user_data, user_data); 863 WRITE_ONCE(cqe->res, res); 864 WRITE_ONCE(cqe->flags, cflags); 865 866 if (ctx->flags & IORING_SETUP_CQE32) { 867 WRITE_ONCE(cqe->big_cqe[0], 0); 868 WRITE_ONCE(cqe->big_cqe[1], 0); 869 } 870 return true; 871 } 872 return false; 873 } 874 875 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 876 __must_hold(&ctx->uring_lock) 877 { 878 struct io_submit_state *state = &ctx->submit_state; 879 unsigned int i; 880 881 lockdep_assert_held(&ctx->uring_lock); 882 for (i = 0; i < state->cqes_count; i++) { 883 struct io_uring_cqe *cqe = &ctx->completion_cqes[i]; 884 885 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 886 if (ctx->task_complete) { 887 spin_lock(&ctx->completion_lock); 888 io_cqring_event_overflow(ctx, cqe->user_data, 889 cqe->res, cqe->flags, 0, 0); 890 spin_unlock(&ctx->completion_lock); 891 } else { 892 io_cqring_event_overflow(ctx, cqe->user_data, 893 cqe->res, cqe->flags, 0, 0); 894 } 895 } 896 } 897 state->cqes_count = 0; 898 } 899 900 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 901 bool allow_overflow) 902 { 903 bool filled; 904 905 io_cq_lock(ctx); 906 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 907 if (!filled && allow_overflow) 908 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 909 910 io_cq_unlock_post(ctx); 911 return filled; 912 } 913 914 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 915 { 916 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 917 } 918 919 /* 920 * A helper for multishot requests posting additional CQEs. 921 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 922 */ 923 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags) 924 { 925 struct io_ring_ctx *ctx = req->ctx; 926 u64 user_data = req->cqe.user_data; 927 struct io_uring_cqe *cqe; 928 929 if (!defer) 930 return __io_post_aux_cqe(ctx, user_data, res, cflags, false); 931 932 lockdep_assert_held(&ctx->uring_lock); 933 934 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) { 935 __io_cq_lock(ctx); 936 __io_flush_post_cqes(ctx); 937 /* no need to flush - flush is deferred */ 938 __io_cq_unlock_post(ctx); 939 } 940 941 /* For defered completions this is not as strict as it is otherwise, 942 * however it's main job is to prevent unbounded posted completions, 943 * and in that it works just as well. 944 */ 945 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 946 return false; 947 948 cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++]; 949 cqe->user_data = user_data; 950 cqe->res = res; 951 cqe->flags = cflags; 952 return true; 953 } 954 955 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 956 { 957 struct io_ring_ctx *ctx = req->ctx; 958 struct io_rsrc_node *rsrc_node = NULL; 959 960 io_cq_lock(ctx); 961 if (!(req->flags & REQ_F_CQE_SKIP)) { 962 if (!io_fill_cqe_req(ctx, req)) 963 io_req_cqe_overflow(req); 964 } 965 966 /* 967 * If we're the last reference to this request, add to our locked 968 * free_list cache. 969 */ 970 if (req_ref_put_and_test(req)) { 971 if (req->flags & IO_REQ_LINK_FLAGS) { 972 if (req->flags & IO_DISARM_MASK) 973 io_disarm_next(req); 974 if (req->link) { 975 io_req_task_queue(req->link); 976 req->link = NULL; 977 } 978 } 979 io_put_kbuf_comp(req); 980 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 981 io_clean_op(req); 982 io_put_file(req); 983 984 rsrc_node = req->rsrc_node; 985 /* 986 * Selected buffer deallocation in io_clean_op() assumes that 987 * we don't hold ->completion_lock. Clean them here to avoid 988 * deadlocks. 989 */ 990 io_put_task_remote(req->task); 991 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 992 ctx->locked_free_nr++; 993 } 994 io_cq_unlock_post(ctx); 995 996 if (rsrc_node) { 997 io_ring_submit_lock(ctx, issue_flags); 998 io_put_rsrc_node(ctx, rsrc_node); 999 io_ring_submit_unlock(ctx, issue_flags); 1000 } 1001 } 1002 1003 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1004 { 1005 if (req->ctx->task_complete && req->ctx->submitter_task != current) { 1006 req->io_task_work.func = io_req_task_complete; 1007 io_req_task_work_add(req); 1008 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1009 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 1010 __io_req_complete_post(req, issue_flags); 1011 } else { 1012 struct io_ring_ctx *ctx = req->ctx; 1013 1014 mutex_lock(&ctx->uring_lock); 1015 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); 1016 mutex_unlock(&ctx->uring_lock); 1017 } 1018 } 1019 1020 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1021 __must_hold(&ctx->uring_lock) 1022 { 1023 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1024 1025 lockdep_assert_held(&req->ctx->uring_lock); 1026 1027 req_set_fail(req); 1028 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1029 if (def->fail) 1030 def->fail(req); 1031 io_req_complete_defer(req); 1032 } 1033 1034 /* 1035 * Don't initialise the fields below on every allocation, but do that in 1036 * advance and keep them valid across allocations. 1037 */ 1038 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1039 { 1040 req->ctx = ctx; 1041 req->link = NULL; 1042 req->async_data = NULL; 1043 /* not necessary, but safer to zero */ 1044 memset(&req->cqe, 0, sizeof(req->cqe)); 1045 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 1046 } 1047 1048 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1049 struct io_submit_state *state) 1050 { 1051 spin_lock(&ctx->completion_lock); 1052 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1053 ctx->locked_free_nr = 0; 1054 spin_unlock(&ctx->completion_lock); 1055 } 1056 1057 /* 1058 * A request might get retired back into the request caches even before opcode 1059 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1060 * Because of that, io_alloc_req() should be called only under ->uring_lock 1061 * and with extra caution to not get a request that is still worked on. 1062 */ 1063 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1064 __must_hold(&ctx->uring_lock) 1065 { 1066 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1067 void *reqs[IO_REQ_ALLOC_BATCH]; 1068 int ret, i; 1069 1070 /* 1071 * If we have more than a batch's worth of requests in our IRQ side 1072 * locked cache, grab the lock and move them over to our submission 1073 * side cache. 1074 */ 1075 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1076 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1077 if (!io_req_cache_empty(ctx)) 1078 return true; 1079 } 1080 1081 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1082 1083 /* 1084 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1085 * retry single alloc to be on the safe side. 1086 */ 1087 if (unlikely(ret <= 0)) { 1088 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1089 if (!reqs[0]) 1090 return false; 1091 ret = 1; 1092 } 1093 1094 percpu_ref_get_many(&ctx->refs, ret); 1095 for (i = 0; i < ret; i++) { 1096 struct io_kiocb *req = reqs[i]; 1097 1098 io_preinit_req(req, ctx); 1099 io_req_add_to_cache(req, ctx); 1100 } 1101 return true; 1102 } 1103 1104 __cold void io_free_req(struct io_kiocb *req) 1105 { 1106 /* refs were already put, restore them for io_req_task_complete() */ 1107 req->flags &= ~REQ_F_REFCOUNT; 1108 /* we only want to free it, don't post CQEs */ 1109 req->flags |= REQ_F_CQE_SKIP; 1110 req->io_task_work.func = io_req_task_complete; 1111 io_req_task_work_add(req); 1112 } 1113 1114 static void __io_req_find_next_prep(struct io_kiocb *req) 1115 { 1116 struct io_ring_ctx *ctx = req->ctx; 1117 1118 spin_lock(&ctx->completion_lock); 1119 io_disarm_next(req); 1120 spin_unlock(&ctx->completion_lock); 1121 } 1122 1123 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1124 { 1125 struct io_kiocb *nxt; 1126 1127 /* 1128 * If LINK is set, we have dependent requests in this chain. If we 1129 * didn't fail this request, queue the first one up, moving any other 1130 * dependencies to the next request. In case of failure, fail the rest 1131 * of the chain. 1132 */ 1133 if (unlikely(req->flags & IO_DISARM_MASK)) 1134 __io_req_find_next_prep(req); 1135 nxt = req->link; 1136 req->link = NULL; 1137 return nxt; 1138 } 1139 1140 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1141 { 1142 if (!ctx) 1143 return; 1144 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1145 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1146 if (ts->locked) { 1147 io_submit_flush_completions(ctx); 1148 mutex_unlock(&ctx->uring_lock); 1149 ts->locked = false; 1150 } 1151 percpu_ref_put(&ctx->refs); 1152 } 1153 1154 static unsigned int handle_tw_list(struct llist_node *node, 1155 struct io_ring_ctx **ctx, 1156 struct io_tw_state *ts, 1157 struct llist_node *last) 1158 { 1159 unsigned int count = 0; 1160 1161 while (node && node != last) { 1162 struct llist_node *next = node->next; 1163 struct io_kiocb *req = container_of(node, struct io_kiocb, 1164 io_task_work.node); 1165 1166 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1167 1168 if (req->ctx != *ctx) { 1169 ctx_flush_and_put(*ctx, ts); 1170 *ctx = req->ctx; 1171 /* if not contended, grab and improve batching */ 1172 ts->locked = mutex_trylock(&(*ctx)->uring_lock); 1173 percpu_ref_get(&(*ctx)->refs); 1174 } 1175 INDIRECT_CALL_2(req->io_task_work.func, 1176 io_poll_task_func, io_req_rw_complete, 1177 req, ts); 1178 node = next; 1179 count++; 1180 if (unlikely(need_resched())) { 1181 ctx_flush_and_put(*ctx, ts); 1182 *ctx = NULL; 1183 cond_resched(); 1184 } 1185 } 1186 1187 return count; 1188 } 1189 1190 /** 1191 * io_llist_xchg - swap all entries in a lock-less list 1192 * @head: the head of lock-less list to delete all entries 1193 * @new: new entry as the head of the list 1194 * 1195 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1196 * The order of entries returned is from the newest to the oldest added one. 1197 */ 1198 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1199 struct llist_node *new) 1200 { 1201 return xchg(&head->first, new); 1202 } 1203 1204 /** 1205 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1206 * @head: the head of lock-less list to delete all entries 1207 * @old: expected old value of the first entry of the list 1208 * @new: new entry as the head of the list 1209 * 1210 * perform a cmpxchg on the first entry of the list. 1211 */ 1212 1213 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1214 struct llist_node *old, 1215 struct llist_node *new) 1216 { 1217 return cmpxchg(&head->first, old, new); 1218 } 1219 1220 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1221 { 1222 struct llist_node *node = llist_del_all(&tctx->task_list); 1223 struct io_ring_ctx *last_ctx = NULL; 1224 struct io_kiocb *req; 1225 1226 while (node) { 1227 req = container_of(node, struct io_kiocb, io_task_work.node); 1228 node = node->next; 1229 if (sync && last_ctx != req->ctx) { 1230 if (last_ctx) { 1231 flush_delayed_work(&last_ctx->fallback_work); 1232 percpu_ref_put(&last_ctx->refs); 1233 } 1234 last_ctx = req->ctx; 1235 percpu_ref_get(&last_ctx->refs); 1236 } 1237 if (llist_add(&req->io_task_work.node, 1238 &req->ctx->fallback_llist)) 1239 schedule_delayed_work(&req->ctx->fallback_work, 1); 1240 } 1241 1242 if (last_ctx) { 1243 flush_delayed_work(&last_ctx->fallback_work); 1244 percpu_ref_put(&last_ctx->refs); 1245 } 1246 } 1247 1248 void tctx_task_work(struct callback_head *cb) 1249 { 1250 struct io_tw_state ts = {}; 1251 struct io_ring_ctx *ctx = NULL; 1252 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1253 task_work); 1254 struct llist_node fake = {}; 1255 struct llist_node *node; 1256 unsigned int loops = 0; 1257 unsigned int count = 0; 1258 1259 if (unlikely(current->flags & PF_EXITING)) { 1260 io_fallback_tw(tctx, true); 1261 return; 1262 } 1263 1264 do { 1265 loops++; 1266 node = io_llist_xchg(&tctx->task_list, &fake); 1267 count += handle_tw_list(node, &ctx, &ts, &fake); 1268 1269 /* skip expensive cmpxchg if there are items in the list */ 1270 if (READ_ONCE(tctx->task_list.first) != &fake) 1271 continue; 1272 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) { 1273 io_submit_flush_completions(ctx); 1274 if (READ_ONCE(tctx->task_list.first) != &fake) 1275 continue; 1276 } 1277 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1278 } while (node != &fake); 1279 1280 ctx_flush_and_put(ctx, &ts); 1281 1282 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1283 if (unlikely(atomic_read(&tctx->in_cancel))) 1284 io_uring_drop_tctx_refs(current); 1285 1286 trace_io_uring_task_work_run(tctx, count, loops); 1287 } 1288 1289 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1290 { 1291 struct io_ring_ctx *ctx = req->ctx; 1292 unsigned nr_wait, nr_tw, nr_tw_prev; 1293 struct llist_node *first; 1294 1295 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1296 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1297 1298 first = READ_ONCE(ctx->work_llist.first); 1299 do { 1300 nr_tw_prev = 0; 1301 if (first) { 1302 struct io_kiocb *first_req = container_of(first, 1303 struct io_kiocb, 1304 io_task_work.node); 1305 /* 1306 * Might be executed at any moment, rely on 1307 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1308 */ 1309 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1310 } 1311 nr_tw = nr_tw_prev + 1; 1312 /* Large enough to fail the nr_wait comparison below */ 1313 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1314 nr_tw = -1U; 1315 1316 req->nr_tw = nr_tw; 1317 req->io_task_work.node.next = first; 1318 } while (!try_cmpxchg(&ctx->work_llist.first, &first, 1319 &req->io_task_work.node)); 1320 1321 if (!first) { 1322 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1323 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1324 if (ctx->has_evfd) 1325 io_eventfd_signal(ctx); 1326 } 1327 1328 nr_wait = atomic_read(&ctx->cq_wait_nr); 1329 /* no one is waiting */ 1330 if (!nr_wait) 1331 return; 1332 /* either not enough or the previous add has already woken it up */ 1333 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait) 1334 return; 1335 /* pairs with set_current_state() in io_cqring_wait() */ 1336 smp_mb__after_atomic(); 1337 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1338 } 1339 1340 static void io_req_normal_work_add(struct io_kiocb *req) 1341 { 1342 struct io_uring_task *tctx = req->task->io_uring; 1343 struct io_ring_ctx *ctx = req->ctx; 1344 1345 /* task_work already pending, we're done */ 1346 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1347 return; 1348 1349 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1350 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1351 1352 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1353 return; 1354 1355 io_fallback_tw(tctx, false); 1356 } 1357 1358 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1359 { 1360 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1361 rcu_read_lock(); 1362 io_req_local_work_add(req, flags); 1363 rcu_read_unlock(); 1364 } else { 1365 io_req_normal_work_add(req); 1366 } 1367 } 1368 1369 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1370 { 1371 struct llist_node *node; 1372 1373 node = llist_del_all(&ctx->work_llist); 1374 while (node) { 1375 struct io_kiocb *req = container_of(node, struct io_kiocb, 1376 io_task_work.node); 1377 1378 node = node->next; 1379 io_req_normal_work_add(req); 1380 } 1381 } 1382 1383 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1384 { 1385 struct llist_node *node; 1386 unsigned int loops = 0; 1387 int ret = 0; 1388 1389 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1390 return -EEXIST; 1391 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1392 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1393 again: 1394 /* 1395 * llists are in reverse order, flip it back the right way before 1396 * running the pending items. 1397 */ 1398 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1399 while (node) { 1400 struct llist_node *next = node->next; 1401 struct io_kiocb *req = container_of(node, struct io_kiocb, 1402 io_task_work.node); 1403 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1404 INDIRECT_CALL_2(req->io_task_work.func, 1405 io_poll_task_func, io_req_rw_complete, 1406 req, ts); 1407 ret++; 1408 node = next; 1409 } 1410 loops++; 1411 1412 if (!llist_empty(&ctx->work_llist)) 1413 goto again; 1414 if (ts->locked) { 1415 io_submit_flush_completions(ctx); 1416 if (!llist_empty(&ctx->work_llist)) 1417 goto again; 1418 } 1419 trace_io_uring_local_work_run(ctx, ret, loops); 1420 return ret; 1421 } 1422 1423 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx) 1424 { 1425 struct io_tw_state ts = { .locked = true, }; 1426 int ret; 1427 1428 if (llist_empty(&ctx->work_llist)) 1429 return 0; 1430 1431 ret = __io_run_local_work(ctx, &ts); 1432 /* shouldn't happen! */ 1433 if (WARN_ON_ONCE(!ts.locked)) 1434 mutex_lock(&ctx->uring_lock); 1435 return ret; 1436 } 1437 1438 static int io_run_local_work(struct io_ring_ctx *ctx) 1439 { 1440 struct io_tw_state ts = {}; 1441 int ret; 1442 1443 ts.locked = mutex_trylock(&ctx->uring_lock); 1444 ret = __io_run_local_work(ctx, &ts); 1445 if (ts.locked) 1446 mutex_unlock(&ctx->uring_lock); 1447 1448 return ret; 1449 } 1450 1451 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1452 { 1453 io_tw_lock(req->ctx, ts); 1454 io_req_defer_failed(req, req->cqe.res); 1455 } 1456 1457 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1458 { 1459 io_tw_lock(req->ctx, ts); 1460 /* req->task == current here, checking PF_EXITING is safe */ 1461 if (unlikely(req->task->flags & PF_EXITING)) 1462 io_req_defer_failed(req, -EFAULT); 1463 else if (req->flags & REQ_F_FORCE_ASYNC) 1464 io_queue_iowq(req, ts); 1465 else 1466 io_queue_sqe(req); 1467 } 1468 1469 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1470 { 1471 io_req_set_res(req, ret, 0); 1472 req->io_task_work.func = io_req_task_cancel; 1473 io_req_task_work_add(req); 1474 } 1475 1476 void io_req_task_queue(struct io_kiocb *req) 1477 { 1478 req->io_task_work.func = io_req_task_submit; 1479 io_req_task_work_add(req); 1480 } 1481 1482 void io_queue_next(struct io_kiocb *req) 1483 { 1484 struct io_kiocb *nxt = io_req_find_next(req); 1485 1486 if (nxt) 1487 io_req_task_queue(nxt); 1488 } 1489 1490 static void io_free_batch_list(struct io_ring_ctx *ctx, 1491 struct io_wq_work_node *node) 1492 __must_hold(&ctx->uring_lock) 1493 { 1494 do { 1495 struct io_kiocb *req = container_of(node, struct io_kiocb, 1496 comp_list); 1497 1498 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1499 if (req->flags & REQ_F_REFCOUNT) { 1500 node = req->comp_list.next; 1501 if (!req_ref_put_and_test(req)) 1502 continue; 1503 } 1504 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1505 struct async_poll *apoll = req->apoll; 1506 1507 if (apoll->double_poll) 1508 kfree(apoll->double_poll); 1509 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1510 kfree(apoll); 1511 req->flags &= ~REQ_F_POLLED; 1512 } 1513 if (req->flags & IO_REQ_LINK_FLAGS) 1514 io_queue_next(req); 1515 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1516 io_clean_op(req); 1517 } 1518 io_put_file(req); 1519 1520 io_req_put_rsrc_locked(req, ctx); 1521 1522 io_put_task(req->task); 1523 node = req->comp_list.next; 1524 io_req_add_to_cache(req, ctx); 1525 } while (node); 1526 } 1527 1528 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1529 __must_hold(&ctx->uring_lock) 1530 { 1531 struct io_submit_state *state = &ctx->submit_state; 1532 struct io_wq_work_node *node; 1533 1534 __io_cq_lock(ctx); 1535 /* must come first to preserve CQE ordering in failure cases */ 1536 if (state->cqes_count) 1537 __io_flush_post_cqes(ctx); 1538 __wq_list_for_each(node, &state->compl_reqs) { 1539 struct io_kiocb *req = container_of(node, struct io_kiocb, 1540 comp_list); 1541 1542 if (!(req->flags & REQ_F_CQE_SKIP) && 1543 unlikely(!io_fill_cqe_req(ctx, req))) { 1544 if (ctx->task_complete) { 1545 spin_lock(&ctx->completion_lock); 1546 io_req_cqe_overflow(req); 1547 spin_unlock(&ctx->completion_lock); 1548 } else { 1549 io_req_cqe_overflow(req); 1550 } 1551 } 1552 } 1553 __io_cq_unlock_post(ctx); 1554 1555 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1556 io_free_batch_list(ctx, state->compl_reqs.first); 1557 INIT_WQ_LIST(&state->compl_reqs); 1558 } 1559 } 1560 1561 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1562 { 1563 /* See comment at the top of this file */ 1564 smp_rmb(); 1565 return __io_cqring_events(ctx); 1566 } 1567 1568 /* 1569 * We can't just wait for polled events to come to us, we have to actively 1570 * find and complete them. 1571 */ 1572 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1573 { 1574 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1575 return; 1576 1577 mutex_lock(&ctx->uring_lock); 1578 while (!wq_list_empty(&ctx->iopoll_list)) { 1579 /* let it sleep and repeat later if can't complete a request */ 1580 if (io_do_iopoll(ctx, true) == 0) 1581 break; 1582 /* 1583 * Ensure we allow local-to-the-cpu processing to take place, 1584 * in this case we need to ensure that we reap all events. 1585 * Also let task_work, etc. to progress by releasing the mutex 1586 */ 1587 if (need_resched()) { 1588 mutex_unlock(&ctx->uring_lock); 1589 cond_resched(); 1590 mutex_lock(&ctx->uring_lock); 1591 } 1592 } 1593 mutex_unlock(&ctx->uring_lock); 1594 } 1595 1596 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1597 { 1598 unsigned int nr_events = 0; 1599 unsigned long check_cq; 1600 1601 if (!io_allowed_run_tw(ctx)) 1602 return -EEXIST; 1603 1604 check_cq = READ_ONCE(ctx->check_cq); 1605 if (unlikely(check_cq)) { 1606 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1607 __io_cqring_overflow_flush(ctx); 1608 /* 1609 * Similarly do not spin if we have not informed the user of any 1610 * dropped CQE. 1611 */ 1612 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1613 return -EBADR; 1614 } 1615 /* 1616 * Don't enter poll loop if we already have events pending. 1617 * If we do, we can potentially be spinning for commands that 1618 * already triggered a CQE (eg in error). 1619 */ 1620 if (io_cqring_events(ctx)) 1621 return 0; 1622 1623 do { 1624 int ret = 0; 1625 1626 /* 1627 * If a submit got punted to a workqueue, we can have the 1628 * application entering polling for a command before it gets 1629 * issued. That app will hold the uring_lock for the duration 1630 * of the poll right here, so we need to take a breather every 1631 * now and then to ensure that the issue has a chance to add 1632 * the poll to the issued list. Otherwise we can spin here 1633 * forever, while the workqueue is stuck trying to acquire the 1634 * very same mutex. 1635 */ 1636 if (wq_list_empty(&ctx->iopoll_list) || 1637 io_task_work_pending(ctx)) { 1638 u32 tail = ctx->cached_cq_tail; 1639 1640 (void) io_run_local_work_locked(ctx); 1641 1642 if (task_work_pending(current) || 1643 wq_list_empty(&ctx->iopoll_list)) { 1644 mutex_unlock(&ctx->uring_lock); 1645 io_run_task_work(); 1646 mutex_lock(&ctx->uring_lock); 1647 } 1648 /* some requests don't go through iopoll_list */ 1649 if (tail != ctx->cached_cq_tail || 1650 wq_list_empty(&ctx->iopoll_list)) 1651 break; 1652 } 1653 ret = io_do_iopoll(ctx, !min); 1654 if (unlikely(ret < 0)) 1655 return ret; 1656 1657 if (task_sigpending(current)) 1658 return -EINTR; 1659 if (need_resched()) 1660 break; 1661 1662 nr_events += ret; 1663 } while (nr_events < min); 1664 1665 return 0; 1666 } 1667 1668 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1669 { 1670 if (ts->locked) 1671 io_req_complete_defer(req); 1672 else 1673 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1674 } 1675 1676 /* 1677 * After the iocb has been issued, it's safe to be found on the poll list. 1678 * Adding the kiocb to the list AFTER submission ensures that we don't 1679 * find it from a io_do_iopoll() thread before the issuer is done 1680 * accessing the kiocb cookie. 1681 */ 1682 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1683 { 1684 struct io_ring_ctx *ctx = req->ctx; 1685 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1686 1687 /* workqueue context doesn't hold uring_lock, grab it now */ 1688 if (unlikely(needs_lock)) 1689 mutex_lock(&ctx->uring_lock); 1690 1691 /* 1692 * Track whether we have multiple files in our lists. This will impact 1693 * how we do polling eventually, not spinning if we're on potentially 1694 * different devices. 1695 */ 1696 if (wq_list_empty(&ctx->iopoll_list)) { 1697 ctx->poll_multi_queue = false; 1698 } else if (!ctx->poll_multi_queue) { 1699 struct io_kiocb *list_req; 1700 1701 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1702 comp_list); 1703 if (list_req->file != req->file) 1704 ctx->poll_multi_queue = true; 1705 } 1706 1707 /* 1708 * For fast devices, IO may have already completed. If it has, add 1709 * it to the front so we find it first. 1710 */ 1711 if (READ_ONCE(req->iopoll_completed)) 1712 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1713 else 1714 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1715 1716 if (unlikely(needs_lock)) { 1717 /* 1718 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1719 * in sq thread task context or in io worker task context. If 1720 * current task context is sq thread, we don't need to check 1721 * whether should wake up sq thread. 1722 */ 1723 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1724 wq_has_sleeper(&ctx->sq_data->wait)) 1725 wake_up(&ctx->sq_data->wait); 1726 1727 mutex_unlock(&ctx->uring_lock); 1728 } 1729 } 1730 1731 unsigned int io_file_get_flags(struct file *file) 1732 { 1733 unsigned int res = 0; 1734 1735 if (S_ISREG(file_inode(file)->i_mode)) 1736 res |= REQ_F_ISREG; 1737 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1738 res |= REQ_F_SUPPORT_NOWAIT; 1739 return res; 1740 } 1741 1742 bool io_alloc_async_data(struct io_kiocb *req) 1743 { 1744 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1745 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1746 if (req->async_data) { 1747 req->flags |= REQ_F_ASYNC_DATA; 1748 return false; 1749 } 1750 return true; 1751 } 1752 1753 int io_req_prep_async(struct io_kiocb *req) 1754 { 1755 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1756 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1757 1758 /* assign early for deferred execution for non-fixed file */ 1759 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1760 req->file = io_file_get_normal(req, req->cqe.fd); 1761 if (!cdef->prep_async) 1762 return 0; 1763 if (WARN_ON_ONCE(req_has_async_data(req))) 1764 return -EFAULT; 1765 if (!def->manual_alloc) { 1766 if (io_alloc_async_data(req)) 1767 return -EAGAIN; 1768 } 1769 return cdef->prep_async(req); 1770 } 1771 1772 static u32 io_get_sequence(struct io_kiocb *req) 1773 { 1774 u32 seq = req->ctx->cached_sq_head; 1775 struct io_kiocb *cur; 1776 1777 /* need original cached_sq_head, but it was increased for each req */ 1778 io_for_each_link(cur, req) 1779 seq--; 1780 return seq; 1781 } 1782 1783 static __cold void io_drain_req(struct io_kiocb *req) 1784 __must_hold(&ctx->uring_lock) 1785 { 1786 struct io_ring_ctx *ctx = req->ctx; 1787 struct io_defer_entry *de; 1788 int ret; 1789 u32 seq = io_get_sequence(req); 1790 1791 /* Still need defer if there is pending req in defer list. */ 1792 spin_lock(&ctx->completion_lock); 1793 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1794 spin_unlock(&ctx->completion_lock); 1795 queue: 1796 ctx->drain_active = false; 1797 io_req_task_queue(req); 1798 return; 1799 } 1800 spin_unlock(&ctx->completion_lock); 1801 1802 io_prep_async_link(req); 1803 de = kmalloc(sizeof(*de), GFP_KERNEL); 1804 if (!de) { 1805 ret = -ENOMEM; 1806 io_req_defer_failed(req, ret); 1807 return; 1808 } 1809 1810 spin_lock(&ctx->completion_lock); 1811 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1812 spin_unlock(&ctx->completion_lock); 1813 kfree(de); 1814 goto queue; 1815 } 1816 1817 trace_io_uring_defer(req); 1818 de->req = req; 1819 de->seq = seq; 1820 list_add_tail(&de->list, &ctx->defer_list); 1821 spin_unlock(&ctx->completion_lock); 1822 } 1823 1824 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1825 unsigned int issue_flags) 1826 { 1827 if (req->file || !def->needs_file) 1828 return true; 1829 1830 if (req->flags & REQ_F_FIXED_FILE) 1831 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1832 else 1833 req->file = io_file_get_normal(req, req->cqe.fd); 1834 1835 return !!req->file; 1836 } 1837 1838 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1839 { 1840 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1841 const struct cred *creds = NULL; 1842 int ret; 1843 1844 if (unlikely(!io_assign_file(req, def, issue_flags))) 1845 return -EBADF; 1846 1847 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1848 creds = override_creds(req->creds); 1849 1850 if (!def->audit_skip) 1851 audit_uring_entry(req->opcode); 1852 1853 ret = def->issue(req, issue_flags); 1854 1855 if (!def->audit_skip) 1856 audit_uring_exit(!ret, ret); 1857 1858 if (creds) 1859 revert_creds(creds); 1860 1861 if (ret == IOU_OK) { 1862 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1863 io_req_complete_defer(req); 1864 else 1865 io_req_complete_post(req, issue_flags); 1866 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1867 return ret; 1868 1869 /* If the op doesn't have a file, we're not polling for it */ 1870 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1871 io_iopoll_req_issued(req, issue_flags); 1872 1873 return 0; 1874 } 1875 1876 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1877 { 1878 io_tw_lock(req->ctx, ts); 1879 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1880 IO_URING_F_COMPLETE_DEFER); 1881 } 1882 1883 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1884 { 1885 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1886 struct io_kiocb *nxt = NULL; 1887 1888 if (req_ref_put_and_test(req)) { 1889 if (req->flags & IO_REQ_LINK_FLAGS) 1890 nxt = io_req_find_next(req); 1891 io_free_req(req); 1892 } 1893 return nxt ? &nxt->work : NULL; 1894 } 1895 1896 void io_wq_submit_work(struct io_wq_work *work) 1897 { 1898 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1899 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1900 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1901 bool needs_poll = false; 1902 int ret = 0, err = -ECANCELED; 1903 1904 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1905 if (!(req->flags & REQ_F_REFCOUNT)) 1906 __io_req_set_refcount(req, 2); 1907 else 1908 req_ref_get(req); 1909 1910 io_arm_ltimeout(req); 1911 1912 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1913 if (work->flags & IO_WQ_WORK_CANCEL) { 1914 fail: 1915 io_req_task_queue_fail(req, err); 1916 return; 1917 } 1918 if (!io_assign_file(req, def, issue_flags)) { 1919 err = -EBADF; 1920 work->flags |= IO_WQ_WORK_CANCEL; 1921 goto fail; 1922 } 1923 1924 if (req->flags & REQ_F_FORCE_ASYNC) { 1925 bool opcode_poll = def->pollin || def->pollout; 1926 1927 if (opcode_poll && file_can_poll(req->file)) { 1928 needs_poll = true; 1929 issue_flags |= IO_URING_F_NONBLOCK; 1930 } 1931 } 1932 1933 do { 1934 ret = io_issue_sqe(req, issue_flags); 1935 if (ret != -EAGAIN) 1936 break; 1937 1938 /* 1939 * If REQ_F_NOWAIT is set, then don't wait or retry with 1940 * poll. -EAGAIN is final for that case. 1941 */ 1942 if (req->flags & REQ_F_NOWAIT) 1943 break; 1944 1945 /* 1946 * We can get EAGAIN for iopolled IO even though we're 1947 * forcing a sync submission from here, since we can't 1948 * wait for request slots on the block side. 1949 */ 1950 if (!needs_poll) { 1951 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1952 break; 1953 cond_resched(); 1954 continue; 1955 } 1956 1957 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1958 return; 1959 /* aborted or ready, in either case retry blocking */ 1960 needs_poll = false; 1961 issue_flags &= ~IO_URING_F_NONBLOCK; 1962 } while (1); 1963 1964 /* avoid locking problems by failing it from a clean context */ 1965 if (ret < 0) 1966 io_req_task_queue_fail(req, ret); 1967 } 1968 1969 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1970 unsigned int issue_flags) 1971 { 1972 struct io_ring_ctx *ctx = req->ctx; 1973 struct io_fixed_file *slot; 1974 struct file *file = NULL; 1975 1976 io_ring_submit_lock(ctx, issue_flags); 1977 1978 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 1979 goto out; 1980 fd = array_index_nospec(fd, ctx->nr_user_files); 1981 slot = io_fixed_file_slot(&ctx->file_table, fd); 1982 file = io_slot_file(slot); 1983 req->flags |= io_slot_flags(slot); 1984 io_req_set_rsrc_node(req, ctx, 0); 1985 out: 1986 io_ring_submit_unlock(ctx, issue_flags); 1987 return file; 1988 } 1989 1990 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1991 { 1992 struct file *file = fget(fd); 1993 1994 trace_io_uring_file_get(req, fd); 1995 1996 /* we don't allow fixed io_uring files */ 1997 if (file && io_is_uring_fops(file)) 1998 io_req_track_inflight(req); 1999 return file; 2000 } 2001 2002 static void io_queue_async(struct io_kiocb *req, int ret) 2003 __must_hold(&req->ctx->uring_lock) 2004 { 2005 struct io_kiocb *linked_timeout; 2006 2007 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2008 io_req_defer_failed(req, ret); 2009 return; 2010 } 2011 2012 linked_timeout = io_prep_linked_timeout(req); 2013 2014 switch (io_arm_poll_handler(req, 0)) { 2015 case IO_APOLL_READY: 2016 io_kbuf_recycle(req, 0); 2017 io_req_task_queue(req); 2018 break; 2019 case IO_APOLL_ABORTED: 2020 io_kbuf_recycle(req, 0); 2021 io_queue_iowq(req, NULL); 2022 break; 2023 case IO_APOLL_OK: 2024 break; 2025 } 2026 2027 if (linked_timeout) 2028 io_queue_linked_timeout(linked_timeout); 2029 } 2030 2031 static inline void io_queue_sqe(struct io_kiocb *req) 2032 __must_hold(&req->ctx->uring_lock) 2033 { 2034 int ret; 2035 2036 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2037 2038 /* 2039 * We async punt it if the file wasn't marked NOWAIT, or if the file 2040 * doesn't support non-blocking read/write attempts 2041 */ 2042 if (likely(!ret)) 2043 io_arm_ltimeout(req); 2044 else 2045 io_queue_async(req, ret); 2046 } 2047 2048 static void io_queue_sqe_fallback(struct io_kiocb *req) 2049 __must_hold(&req->ctx->uring_lock) 2050 { 2051 if (unlikely(req->flags & REQ_F_FAIL)) { 2052 /* 2053 * We don't submit, fail them all, for that replace hardlinks 2054 * with normal links. Extra REQ_F_LINK is tolerated. 2055 */ 2056 req->flags &= ~REQ_F_HARDLINK; 2057 req->flags |= REQ_F_LINK; 2058 io_req_defer_failed(req, req->cqe.res); 2059 } else { 2060 int ret = io_req_prep_async(req); 2061 2062 if (unlikely(ret)) { 2063 io_req_defer_failed(req, ret); 2064 return; 2065 } 2066 2067 if (unlikely(req->ctx->drain_active)) 2068 io_drain_req(req); 2069 else 2070 io_queue_iowq(req, NULL); 2071 } 2072 } 2073 2074 /* 2075 * Check SQE restrictions (opcode and flags). 2076 * 2077 * Returns 'true' if SQE is allowed, 'false' otherwise. 2078 */ 2079 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2080 struct io_kiocb *req, 2081 unsigned int sqe_flags) 2082 { 2083 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2084 return false; 2085 2086 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2087 ctx->restrictions.sqe_flags_required) 2088 return false; 2089 2090 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2091 ctx->restrictions.sqe_flags_required)) 2092 return false; 2093 2094 return true; 2095 } 2096 2097 static void io_init_req_drain(struct io_kiocb *req) 2098 { 2099 struct io_ring_ctx *ctx = req->ctx; 2100 struct io_kiocb *head = ctx->submit_state.link.head; 2101 2102 ctx->drain_active = true; 2103 if (head) { 2104 /* 2105 * If we need to drain a request in the middle of a link, drain 2106 * the head request and the next request/link after the current 2107 * link. Considering sequential execution of links, 2108 * REQ_F_IO_DRAIN will be maintained for every request of our 2109 * link. 2110 */ 2111 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2112 ctx->drain_next = true; 2113 } 2114 } 2115 2116 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2117 const struct io_uring_sqe *sqe) 2118 __must_hold(&ctx->uring_lock) 2119 { 2120 const struct io_issue_def *def; 2121 unsigned int sqe_flags; 2122 int personality; 2123 u8 opcode; 2124 2125 /* req is partially pre-initialised, see io_preinit_req() */ 2126 req->opcode = opcode = READ_ONCE(sqe->opcode); 2127 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2128 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2129 req->cqe.user_data = READ_ONCE(sqe->user_data); 2130 req->file = NULL; 2131 req->rsrc_node = NULL; 2132 req->task = current; 2133 2134 if (unlikely(opcode >= IORING_OP_LAST)) { 2135 req->opcode = 0; 2136 return -EINVAL; 2137 } 2138 def = &io_issue_defs[opcode]; 2139 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2140 /* enforce forwards compatibility on users */ 2141 if (sqe_flags & ~SQE_VALID_FLAGS) 2142 return -EINVAL; 2143 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2144 if (!def->buffer_select) 2145 return -EOPNOTSUPP; 2146 req->buf_index = READ_ONCE(sqe->buf_group); 2147 } 2148 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2149 ctx->drain_disabled = true; 2150 if (sqe_flags & IOSQE_IO_DRAIN) { 2151 if (ctx->drain_disabled) 2152 return -EOPNOTSUPP; 2153 io_init_req_drain(req); 2154 } 2155 } 2156 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2157 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2158 return -EACCES; 2159 /* knock it to the slow queue path, will be drained there */ 2160 if (ctx->drain_active) 2161 req->flags |= REQ_F_FORCE_ASYNC; 2162 /* if there is no link, we're at "next" request and need to drain */ 2163 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2164 ctx->drain_next = false; 2165 ctx->drain_active = true; 2166 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2167 } 2168 } 2169 2170 if (!def->ioprio && sqe->ioprio) 2171 return -EINVAL; 2172 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2173 return -EINVAL; 2174 2175 if (def->needs_file) { 2176 struct io_submit_state *state = &ctx->submit_state; 2177 2178 req->cqe.fd = READ_ONCE(sqe->fd); 2179 2180 /* 2181 * Plug now if we have more than 2 IO left after this, and the 2182 * target is potentially a read/write to block based storage. 2183 */ 2184 if (state->need_plug && def->plug) { 2185 state->plug_started = true; 2186 state->need_plug = false; 2187 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2188 } 2189 } 2190 2191 personality = READ_ONCE(sqe->personality); 2192 if (personality) { 2193 int ret; 2194 2195 req->creds = xa_load(&ctx->personalities, personality); 2196 if (!req->creds) 2197 return -EINVAL; 2198 get_cred(req->creds); 2199 ret = security_uring_override_creds(req->creds); 2200 if (ret) { 2201 put_cred(req->creds); 2202 return ret; 2203 } 2204 req->flags |= REQ_F_CREDS; 2205 } 2206 2207 return def->prep(req, sqe); 2208 } 2209 2210 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2211 struct io_kiocb *req, int ret) 2212 { 2213 struct io_ring_ctx *ctx = req->ctx; 2214 struct io_submit_link *link = &ctx->submit_state.link; 2215 struct io_kiocb *head = link->head; 2216 2217 trace_io_uring_req_failed(sqe, req, ret); 2218 2219 /* 2220 * Avoid breaking links in the middle as it renders links with SQPOLL 2221 * unusable. Instead of failing eagerly, continue assembling the link if 2222 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2223 * should find the flag and handle the rest. 2224 */ 2225 req_fail_link_node(req, ret); 2226 if (head && !(head->flags & REQ_F_FAIL)) 2227 req_fail_link_node(head, -ECANCELED); 2228 2229 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2230 if (head) { 2231 link->last->link = req; 2232 link->head = NULL; 2233 req = head; 2234 } 2235 io_queue_sqe_fallback(req); 2236 return ret; 2237 } 2238 2239 if (head) 2240 link->last->link = req; 2241 else 2242 link->head = req; 2243 link->last = req; 2244 return 0; 2245 } 2246 2247 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2248 const struct io_uring_sqe *sqe) 2249 __must_hold(&ctx->uring_lock) 2250 { 2251 struct io_submit_link *link = &ctx->submit_state.link; 2252 int ret; 2253 2254 ret = io_init_req(ctx, req, sqe); 2255 if (unlikely(ret)) 2256 return io_submit_fail_init(sqe, req, ret); 2257 2258 trace_io_uring_submit_req(req); 2259 2260 /* 2261 * If we already have a head request, queue this one for async 2262 * submittal once the head completes. If we don't have a head but 2263 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2264 * submitted sync once the chain is complete. If none of those 2265 * conditions are true (normal request), then just queue it. 2266 */ 2267 if (unlikely(link->head)) { 2268 ret = io_req_prep_async(req); 2269 if (unlikely(ret)) 2270 return io_submit_fail_init(sqe, req, ret); 2271 2272 trace_io_uring_link(req, link->head); 2273 link->last->link = req; 2274 link->last = req; 2275 2276 if (req->flags & IO_REQ_LINK_FLAGS) 2277 return 0; 2278 /* last request of the link, flush it */ 2279 req = link->head; 2280 link->head = NULL; 2281 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2282 goto fallback; 2283 2284 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2285 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2286 if (req->flags & IO_REQ_LINK_FLAGS) { 2287 link->head = req; 2288 link->last = req; 2289 } else { 2290 fallback: 2291 io_queue_sqe_fallback(req); 2292 } 2293 return 0; 2294 } 2295 2296 io_queue_sqe(req); 2297 return 0; 2298 } 2299 2300 /* 2301 * Batched submission is done, ensure local IO is flushed out. 2302 */ 2303 static void io_submit_state_end(struct io_ring_ctx *ctx) 2304 { 2305 struct io_submit_state *state = &ctx->submit_state; 2306 2307 if (unlikely(state->link.head)) 2308 io_queue_sqe_fallback(state->link.head); 2309 /* flush only after queuing links as they can generate completions */ 2310 io_submit_flush_completions(ctx); 2311 if (state->plug_started) 2312 blk_finish_plug(&state->plug); 2313 } 2314 2315 /* 2316 * Start submission side cache. 2317 */ 2318 static void io_submit_state_start(struct io_submit_state *state, 2319 unsigned int max_ios) 2320 { 2321 state->plug_started = false; 2322 state->need_plug = max_ios > 2; 2323 state->submit_nr = max_ios; 2324 /* set only head, no need to init link_last in advance */ 2325 state->link.head = NULL; 2326 } 2327 2328 static void io_commit_sqring(struct io_ring_ctx *ctx) 2329 { 2330 struct io_rings *rings = ctx->rings; 2331 2332 /* 2333 * Ensure any loads from the SQEs are done at this point, 2334 * since once we write the new head, the application could 2335 * write new data to them. 2336 */ 2337 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2338 } 2339 2340 /* 2341 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2342 * that is mapped by userspace. This means that care needs to be taken to 2343 * ensure that reads are stable, as we cannot rely on userspace always 2344 * being a good citizen. If members of the sqe are validated and then later 2345 * used, it's important that those reads are done through READ_ONCE() to 2346 * prevent a re-load down the line. 2347 */ 2348 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2349 { 2350 unsigned mask = ctx->sq_entries - 1; 2351 unsigned head = ctx->cached_sq_head++ & mask; 2352 2353 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) { 2354 head = READ_ONCE(ctx->sq_array[head]); 2355 if (unlikely(head >= ctx->sq_entries)) { 2356 /* drop invalid entries */ 2357 spin_lock(&ctx->completion_lock); 2358 ctx->cq_extra--; 2359 spin_unlock(&ctx->completion_lock); 2360 WRITE_ONCE(ctx->rings->sq_dropped, 2361 READ_ONCE(ctx->rings->sq_dropped) + 1); 2362 return false; 2363 } 2364 } 2365 2366 /* 2367 * The cached sq head (or cq tail) serves two purposes: 2368 * 2369 * 1) allows us to batch the cost of updating the user visible 2370 * head updates. 2371 * 2) allows the kernel side to track the head on its own, even 2372 * though the application is the one updating it. 2373 */ 2374 2375 /* double index for 128-byte SQEs, twice as long */ 2376 if (ctx->flags & IORING_SETUP_SQE128) 2377 head <<= 1; 2378 *sqe = &ctx->sq_sqes[head]; 2379 return true; 2380 } 2381 2382 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2383 __must_hold(&ctx->uring_lock) 2384 { 2385 unsigned int entries = io_sqring_entries(ctx); 2386 unsigned int left; 2387 int ret; 2388 2389 if (unlikely(!entries)) 2390 return 0; 2391 /* make sure SQ entry isn't read before tail */ 2392 ret = left = min(nr, entries); 2393 io_get_task_refs(left); 2394 io_submit_state_start(&ctx->submit_state, left); 2395 2396 do { 2397 const struct io_uring_sqe *sqe; 2398 struct io_kiocb *req; 2399 2400 if (unlikely(!io_alloc_req(ctx, &req))) 2401 break; 2402 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2403 io_req_add_to_cache(req, ctx); 2404 break; 2405 } 2406 2407 /* 2408 * Continue submitting even for sqe failure if the 2409 * ring was setup with IORING_SETUP_SUBMIT_ALL 2410 */ 2411 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2412 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2413 left--; 2414 break; 2415 } 2416 } while (--left); 2417 2418 if (unlikely(left)) { 2419 ret -= left; 2420 /* try again if it submitted nothing and can't allocate a req */ 2421 if (!ret && io_req_cache_empty(ctx)) 2422 ret = -EAGAIN; 2423 current->io_uring->cached_refs += left; 2424 } 2425 2426 io_submit_state_end(ctx); 2427 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2428 io_commit_sqring(ctx); 2429 return ret; 2430 } 2431 2432 struct io_wait_queue { 2433 struct wait_queue_entry wq; 2434 struct io_ring_ctx *ctx; 2435 unsigned cq_tail; 2436 unsigned nr_timeouts; 2437 ktime_t timeout; 2438 }; 2439 2440 static inline bool io_has_work(struct io_ring_ctx *ctx) 2441 { 2442 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2443 !llist_empty(&ctx->work_llist); 2444 } 2445 2446 static inline bool io_should_wake(struct io_wait_queue *iowq) 2447 { 2448 struct io_ring_ctx *ctx = iowq->ctx; 2449 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2450 2451 /* 2452 * Wake up if we have enough events, or if a timeout occurred since we 2453 * started waiting. For timeouts, we always want to return to userspace, 2454 * regardless of event count. 2455 */ 2456 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2457 } 2458 2459 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2460 int wake_flags, void *key) 2461 { 2462 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2463 2464 /* 2465 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2466 * the task, and the next invocation will do it. 2467 */ 2468 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2469 return autoremove_wake_function(curr, mode, wake_flags, key); 2470 return -1; 2471 } 2472 2473 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2474 { 2475 if (!llist_empty(&ctx->work_llist)) { 2476 __set_current_state(TASK_RUNNING); 2477 if (io_run_local_work(ctx) > 0) 2478 return 0; 2479 } 2480 if (io_run_task_work() > 0) 2481 return 0; 2482 if (task_sigpending(current)) 2483 return -EINTR; 2484 return 0; 2485 } 2486 2487 static bool current_pending_io(void) 2488 { 2489 struct io_uring_task *tctx = current->io_uring; 2490 2491 if (!tctx) 2492 return false; 2493 return percpu_counter_read_positive(&tctx->inflight); 2494 } 2495 2496 /* when returns >0, the caller should retry */ 2497 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2498 struct io_wait_queue *iowq) 2499 { 2500 int io_wait, ret; 2501 2502 if (unlikely(READ_ONCE(ctx->check_cq))) 2503 return 1; 2504 if (unlikely(!llist_empty(&ctx->work_llist))) 2505 return 1; 2506 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) 2507 return 1; 2508 if (unlikely(task_sigpending(current))) 2509 return -EINTR; 2510 if (unlikely(io_should_wake(iowq))) 2511 return 0; 2512 2513 /* 2514 * Mark us as being in io_wait if we have pending requests, so cpufreq 2515 * can take into account that the task is waiting for IO - turns out 2516 * to be important for low QD IO. 2517 */ 2518 io_wait = current->in_iowait; 2519 if (current_pending_io()) 2520 current->in_iowait = 1; 2521 ret = 0; 2522 if (iowq->timeout == KTIME_MAX) 2523 schedule(); 2524 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2525 ret = -ETIME; 2526 current->in_iowait = io_wait; 2527 return ret; 2528 } 2529 2530 /* 2531 * Wait until events become available, if we don't already have some. The 2532 * application must reap them itself, as they reside on the shared cq ring. 2533 */ 2534 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2535 const sigset_t __user *sig, size_t sigsz, 2536 struct __kernel_timespec __user *uts) 2537 { 2538 struct io_wait_queue iowq; 2539 struct io_rings *rings = ctx->rings; 2540 int ret; 2541 2542 if (!io_allowed_run_tw(ctx)) 2543 return -EEXIST; 2544 if (!llist_empty(&ctx->work_llist)) 2545 io_run_local_work(ctx); 2546 io_run_task_work(); 2547 io_cqring_overflow_flush(ctx); 2548 /* if user messes with these they will just get an early return */ 2549 if (__io_cqring_events_user(ctx) >= min_events) 2550 return 0; 2551 2552 if (sig) { 2553 #ifdef CONFIG_COMPAT 2554 if (in_compat_syscall()) 2555 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2556 sigsz); 2557 else 2558 #endif 2559 ret = set_user_sigmask(sig, sigsz); 2560 2561 if (ret) 2562 return ret; 2563 } 2564 2565 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2566 iowq.wq.private = current; 2567 INIT_LIST_HEAD(&iowq.wq.entry); 2568 iowq.ctx = ctx; 2569 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2570 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2571 iowq.timeout = KTIME_MAX; 2572 2573 if (uts) { 2574 struct timespec64 ts; 2575 2576 if (get_timespec64(&ts, uts)) 2577 return -EFAULT; 2578 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2579 } 2580 2581 trace_io_uring_cqring_wait(ctx, min_events); 2582 do { 2583 unsigned long check_cq; 2584 2585 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2586 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2587 2588 atomic_set(&ctx->cq_wait_nr, nr_wait); 2589 set_current_state(TASK_INTERRUPTIBLE); 2590 } else { 2591 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2592 TASK_INTERRUPTIBLE); 2593 } 2594 2595 ret = io_cqring_wait_schedule(ctx, &iowq); 2596 __set_current_state(TASK_RUNNING); 2597 atomic_set(&ctx->cq_wait_nr, 0); 2598 2599 if (ret < 0) 2600 break; 2601 /* 2602 * Run task_work after scheduling and before io_should_wake(). 2603 * If we got woken because of task_work being processed, run it 2604 * now rather than let the caller do another wait loop. 2605 */ 2606 io_run_task_work(); 2607 if (!llist_empty(&ctx->work_llist)) 2608 io_run_local_work(ctx); 2609 2610 check_cq = READ_ONCE(ctx->check_cq); 2611 if (unlikely(check_cq)) { 2612 /* let the caller flush overflows, retry */ 2613 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2614 io_cqring_do_overflow_flush(ctx); 2615 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2616 ret = -EBADR; 2617 break; 2618 } 2619 } 2620 2621 if (io_should_wake(&iowq)) { 2622 ret = 0; 2623 break; 2624 } 2625 cond_resched(); 2626 } while (1); 2627 2628 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2629 finish_wait(&ctx->cq_wait, &iowq.wq); 2630 restore_saved_sigmask_unless(ret == -EINTR); 2631 2632 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2633 } 2634 2635 static void io_mem_free(void *ptr) 2636 { 2637 if (!ptr) 2638 return; 2639 2640 folio_put(virt_to_folio(ptr)); 2641 } 2642 2643 static void io_pages_free(struct page ***pages, int npages) 2644 { 2645 struct page **page_array; 2646 int i; 2647 2648 if (!pages) 2649 return; 2650 page_array = *pages; 2651 for (i = 0; i < npages; i++) 2652 unpin_user_page(page_array[i]); 2653 kvfree(page_array); 2654 *pages = NULL; 2655 } 2656 2657 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, 2658 unsigned long uaddr, size_t size) 2659 { 2660 struct page **page_array; 2661 unsigned int nr_pages; 2662 int ret; 2663 2664 *npages = 0; 2665 2666 if (uaddr & (PAGE_SIZE - 1) || !size) 2667 return ERR_PTR(-EINVAL); 2668 2669 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2670 if (nr_pages > USHRT_MAX) 2671 return ERR_PTR(-EINVAL); 2672 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); 2673 if (!page_array) 2674 return ERR_PTR(-ENOMEM); 2675 2676 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, 2677 page_array); 2678 if (ret != nr_pages) { 2679 err: 2680 io_pages_free(&page_array, ret > 0 ? ret : 0); 2681 return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT); 2682 } 2683 /* 2684 * Should be a single page. If the ring is small enough that we can 2685 * use a normal page, that is fine. If we need multiple pages, then 2686 * userspace should use a huge page. That's the only way to guarantee 2687 * that we get contigious memory, outside of just being lucky or 2688 * (currently) having low memory fragmentation. 2689 */ 2690 if (page_array[0] != page_array[ret - 1]) 2691 goto err; 2692 *pages = page_array; 2693 *npages = nr_pages; 2694 return page_to_virt(page_array[0]); 2695 } 2696 2697 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2698 size_t size) 2699 { 2700 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2701 size); 2702 } 2703 2704 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2705 size_t size) 2706 { 2707 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2708 size); 2709 } 2710 2711 static void io_rings_free(struct io_ring_ctx *ctx) 2712 { 2713 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2714 io_mem_free(ctx->rings); 2715 io_mem_free(ctx->sq_sqes); 2716 ctx->rings = NULL; 2717 ctx->sq_sqes = NULL; 2718 } else { 2719 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2720 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2721 } 2722 } 2723 2724 static void *io_mem_alloc(size_t size) 2725 { 2726 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2727 void *ret; 2728 2729 ret = (void *) __get_free_pages(gfp, get_order(size)); 2730 if (ret) 2731 return ret; 2732 return ERR_PTR(-ENOMEM); 2733 } 2734 2735 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2736 unsigned int cq_entries, size_t *sq_offset) 2737 { 2738 struct io_rings *rings; 2739 size_t off, sq_array_size; 2740 2741 off = struct_size(rings, cqes, cq_entries); 2742 if (off == SIZE_MAX) 2743 return SIZE_MAX; 2744 if (ctx->flags & IORING_SETUP_CQE32) { 2745 if (check_shl_overflow(off, 1, &off)) 2746 return SIZE_MAX; 2747 } 2748 2749 #ifdef CONFIG_SMP 2750 off = ALIGN(off, SMP_CACHE_BYTES); 2751 if (off == 0) 2752 return SIZE_MAX; 2753 #endif 2754 2755 if (ctx->flags & IORING_SETUP_NO_SQARRAY) { 2756 if (sq_offset) 2757 *sq_offset = SIZE_MAX; 2758 return off; 2759 } 2760 2761 if (sq_offset) 2762 *sq_offset = off; 2763 2764 sq_array_size = array_size(sizeof(u32), sq_entries); 2765 if (sq_array_size == SIZE_MAX) 2766 return SIZE_MAX; 2767 2768 if (check_add_overflow(off, sq_array_size, &off)) 2769 return SIZE_MAX; 2770 2771 return off; 2772 } 2773 2774 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2775 unsigned int eventfd_async) 2776 { 2777 struct io_ev_fd *ev_fd; 2778 __s32 __user *fds = arg; 2779 int fd; 2780 2781 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2782 lockdep_is_held(&ctx->uring_lock)); 2783 if (ev_fd) 2784 return -EBUSY; 2785 2786 if (copy_from_user(&fd, fds, sizeof(*fds))) 2787 return -EFAULT; 2788 2789 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2790 if (!ev_fd) 2791 return -ENOMEM; 2792 2793 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2794 if (IS_ERR(ev_fd->cq_ev_fd)) { 2795 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2796 kfree(ev_fd); 2797 return ret; 2798 } 2799 2800 spin_lock(&ctx->completion_lock); 2801 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2802 spin_unlock(&ctx->completion_lock); 2803 2804 ev_fd->eventfd_async = eventfd_async; 2805 ctx->has_evfd = true; 2806 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2807 atomic_set(&ev_fd->refs, 1); 2808 atomic_set(&ev_fd->ops, 0); 2809 return 0; 2810 } 2811 2812 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2813 { 2814 struct io_ev_fd *ev_fd; 2815 2816 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2817 lockdep_is_held(&ctx->uring_lock)); 2818 if (ev_fd) { 2819 ctx->has_evfd = false; 2820 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2821 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2822 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2823 return 0; 2824 } 2825 2826 return -ENXIO; 2827 } 2828 2829 static void io_req_caches_free(struct io_ring_ctx *ctx) 2830 { 2831 struct io_kiocb *req; 2832 int nr = 0; 2833 2834 mutex_lock(&ctx->uring_lock); 2835 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2836 2837 while (!io_req_cache_empty(ctx)) { 2838 req = io_extract_req(ctx); 2839 kmem_cache_free(req_cachep, req); 2840 nr++; 2841 } 2842 if (nr) 2843 percpu_ref_put_many(&ctx->refs, nr); 2844 mutex_unlock(&ctx->uring_lock); 2845 } 2846 2847 static void io_rsrc_node_cache_free(struct io_cache_entry *entry) 2848 { 2849 kfree(container_of(entry, struct io_rsrc_node, cache)); 2850 } 2851 2852 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2853 { 2854 io_sq_thread_finish(ctx); 2855 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2856 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2857 return; 2858 2859 mutex_lock(&ctx->uring_lock); 2860 if (ctx->buf_data) 2861 __io_sqe_buffers_unregister(ctx); 2862 if (ctx->file_data) 2863 __io_sqe_files_unregister(ctx); 2864 io_cqring_overflow_kill(ctx); 2865 io_eventfd_unregister(ctx); 2866 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2867 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2868 io_destroy_buffers(ctx); 2869 mutex_unlock(&ctx->uring_lock); 2870 if (ctx->sq_creds) 2871 put_cred(ctx->sq_creds); 2872 if (ctx->submitter_task) 2873 put_task_struct(ctx->submitter_task); 2874 2875 /* there are no registered resources left, nobody uses it */ 2876 if (ctx->rsrc_node) 2877 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2878 2879 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2880 2881 #if defined(CONFIG_UNIX) 2882 if (ctx->ring_sock) { 2883 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2884 sock_release(ctx->ring_sock); 2885 } 2886 #endif 2887 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2888 2889 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); 2890 if (ctx->mm_account) { 2891 mmdrop(ctx->mm_account); 2892 ctx->mm_account = NULL; 2893 } 2894 io_rings_free(ctx); 2895 2896 percpu_ref_exit(&ctx->refs); 2897 free_uid(ctx->user); 2898 io_req_caches_free(ctx); 2899 if (ctx->hash_map) 2900 io_wq_put_hash(ctx->hash_map); 2901 kfree(ctx->cancel_table.hbs); 2902 kfree(ctx->cancel_table_locked.hbs); 2903 kfree(ctx->io_bl); 2904 xa_destroy(&ctx->io_bl_xa); 2905 kfree(ctx); 2906 } 2907 2908 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2909 { 2910 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2911 poll_wq_task_work); 2912 2913 mutex_lock(&ctx->uring_lock); 2914 ctx->poll_activated = true; 2915 mutex_unlock(&ctx->uring_lock); 2916 2917 /* 2918 * Wake ups for some events between start of polling and activation 2919 * might've been lost due to loose synchronisation. 2920 */ 2921 wake_up_all(&ctx->poll_wq); 2922 percpu_ref_put(&ctx->refs); 2923 } 2924 2925 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2926 { 2927 spin_lock(&ctx->completion_lock); 2928 /* already activated or in progress */ 2929 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2930 goto out; 2931 if (WARN_ON_ONCE(!ctx->task_complete)) 2932 goto out; 2933 if (!ctx->submitter_task) 2934 goto out; 2935 /* 2936 * with ->submitter_task only the submitter task completes requests, we 2937 * only need to sync with it, which is done by injecting a tw 2938 */ 2939 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2940 percpu_ref_get(&ctx->refs); 2941 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2942 percpu_ref_put(&ctx->refs); 2943 out: 2944 spin_unlock(&ctx->completion_lock); 2945 } 2946 2947 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2948 { 2949 struct io_ring_ctx *ctx = file->private_data; 2950 __poll_t mask = 0; 2951 2952 if (unlikely(!ctx->poll_activated)) 2953 io_activate_pollwq(ctx); 2954 2955 poll_wait(file, &ctx->poll_wq, wait); 2956 /* 2957 * synchronizes with barrier from wq_has_sleeper call in 2958 * io_commit_cqring 2959 */ 2960 smp_rmb(); 2961 if (!io_sqring_full(ctx)) 2962 mask |= EPOLLOUT | EPOLLWRNORM; 2963 2964 /* 2965 * Don't flush cqring overflow list here, just do a simple check. 2966 * Otherwise there could possible be ABBA deadlock: 2967 * CPU0 CPU1 2968 * ---- ---- 2969 * lock(&ctx->uring_lock); 2970 * lock(&ep->mtx); 2971 * lock(&ctx->uring_lock); 2972 * lock(&ep->mtx); 2973 * 2974 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2975 * pushes them to do the flush. 2976 */ 2977 2978 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2979 mask |= EPOLLIN | EPOLLRDNORM; 2980 2981 return mask; 2982 } 2983 2984 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 2985 { 2986 const struct cred *creds; 2987 2988 creds = xa_erase(&ctx->personalities, id); 2989 if (creds) { 2990 put_cred(creds); 2991 return 0; 2992 } 2993 2994 return -EINVAL; 2995 } 2996 2997 struct io_tctx_exit { 2998 struct callback_head task_work; 2999 struct completion completion; 3000 struct io_ring_ctx *ctx; 3001 }; 3002 3003 static __cold void io_tctx_exit_cb(struct callback_head *cb) 3004 { 3005 struct io_uring_task *tctx = current->io_uring; 3006 struct io_tctx_exit *work; 3007 3008 work = container_of(cb, struct io_tctx_exit, task_work); 3009 /* 3010 * When @in_cancel, we're in cancellation and it's racy to remove the 3011 * node. It'll be removed by the end of cancellation, just ignore it. 3012 * tctx can be NULL if the queueing of this task_work raced with 3013 * work cancelation off the exec path. 3014 */ 3015 if (tctx && !atomic_read(&tctx->in_cancel)) 3016 io_uring_del_tctx_node((unsigned long)work->ctx); 3017 complete(&work->completion); 3018 } 3019 3020 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 3021 { 3022 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3023 3024 return req->ctx == data; 3025 } 3026 3027 static __cold void io_ring_exit_work(struct work_struct *work) 3028 { 3029 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 3030 unsigned long timeout = jiffies + HZ * 60 * 5; 3031 unsigned long interval = HZ / 20; 3032 struct io_tctx_exit exit; 3033 struct io_tctx_node *node; 3034 int ret; 3035 3036 /* 3037 * If we're doing polled IO and end up having requests being 3038 * submitted async (out-of-line), then completions can come in while 3039 * we're waiting for refs to drop. We need to reap these manually, 3040 * as nobody else will be looking for them. 3041 */ 3042 do { 3043 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 3044 mutex_lock(&ctx->uring_lock); 3045 io_cqring_overflow_kill(ctx); 3046 mutex_unlock(&ctx->uring_lock); 3047 } 3048 3049 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3050 io_move_task_work_from_local(ctx); 3051 3052 while (io_uring_try_cancel_requests(ctx, NULL, true)) 3053 cond_resched(); 3054 3055 if (ctx->sq_data) { 3056 struct io_sq_data *sqd = ctx->sq_data; 3057 struct task_struct *tsk; 3058 3059 io_sq_thread_park(sqd); 3060 tsk = sqd->thread; 3061 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 3062 io_wq_cancel_cb(tsk->io_uring->io_wq, 3063 io_cancel_ctx_cb, ctx, true); 3064 io_sq_thread_unpark(sqd); 3065 } 3066 3067 io_req_caches_free(ctx); 3068 3069 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3070 /* there is little hope left, don't run it too often */ 3071 interval = HZ * 60; 3072 } 3073 /* 3074 * This is really an uninterruptible wait, as it has to be 3075 * complete. But it's also run from a kworker, which doesn't 3076 * take signals, so it's fine to make it interruptible. This 3077 * avoids scenarios where we knowingly can wait much longer 3078 * on completions, for example if someone does a SIGSTOP on 3079 * a task that needs to finish task_work to make this loop 3080 * complete. That's a synthetic situation that should not 3081 * cause a stuck task backtrace, and hence a potential panic 3082 * on stuck tasks if that is enabled. 3083 */ 3084 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 3085 3086 init_completion(&exit.completion); 3087 init_task_work(&exit.task_work, io_tctx_exit_cb); 3088 exit.ctx = ctx; 3089 /* 3090 * Some may use context even when all refs and requests have been put, 3091 * and they are free to do so while still holding uring_lock or 3092 * completion_lock, see io_req_task_submit(). Apart from other work, 3093 * this lock/unlock section also waits them to finish. 3094 */ 3095 mutex_lock(&ctx->uring_lock); 3096 while (!list_empty(&ctx->tctx_list)) { 3097 WARN_ON_ONCE(time_after(jiffies, timeout)); 3098 3099 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3100 ctx_node); 3101 /* don't spin on a single task if cancellation failed */ 3102 list_rotate_left(&ctx->tctx_list); 3103 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3104 if (WARN_ON_ONCE(ret)) 3105 continue; 3106 3107 mutex_unlock(&ctx->uring_lock); 3108 /* 3109 * See comment above for 3110 * wait_for_completion_interruptible_timeout() on why this 3111 * wait is marked as interruptible. 3112 */ 3113 wait_for_completion_interruptible(&exit.completion); 3114 mutex_lock(&ctx->uring_lock); 3115 } 3116 mutex_unlock(&ctx->uring_lock); 3117 spin_lock(&ctx->completion_lock); 3118 spin_unlock(&ctx->completion_lock); 3119 3120 /* pairs with RCU read section in io_req_local_work_add() */ 3121 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3122 synchronize_rcu(); 3123 3124 io_ring_ctx_free(ctx); 3125 } 3126 3127 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3128 { 3129 unsigned long index; 3130 struct creds *creds; 3131 3132 mutex_lock(&ctx->uring_lock); 3133 percpu_ref_kill(&ctx->refs); 3134 xa_for_each(&ctx->personalities, index, creds) 3135 io_unregister_personality(ctx, index); 3136 if (ctx->rings) 3137 io_poll_remove_all(ctx, NULL, true); 3138 mutex_unlock(&ctx->uring_lock); 3139 3140 /* 3141 * If we failed setting up the ctx, we might not have any rings 3142 * and therefore did not submit any requests 3143 */ 3144 if (ctx->rings) 3145 io_kill_timeouts(ctx, NULL, true); 3146 3147 flush_delayed_work(&ctx->fallback_work); 3148 3149 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3150 /* 3151 * Use system_unbound_wq to avoid spawning tons of event kworkers 3152 * if we're exiting a ton of rings at the same time. It just adds 3153 * noise and overhead, there's no discernable change in runtime 3154 * over using system_wq. 3155 */ 3156 queue_work(system_unbound_wq, &ctx->exit_work); 3157 } 3158 3159 static int io_uring_release(struct inode *inode, struct file *file) 3160 { 3161 struct io_ring_ctx *ctx = file->private_data; 3162 3163 file->private_data = NULL; 3164 io_ring_ctx_wait_and_kill(ctx); 3165 return 0; 3166 } 3167 3168 struct io_task_cancel { 3169 struct task_struct *task; 3170 bool all; 3171 }; 3172 3173 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3174 { 3175 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3176 struct io_task_cancel *cancel = data; 3177 3178 return io_match_task_safe(req, cancel->task, cancel->all); 3179 } 3180 3181 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3182 struct task_struct *task, 3183 bool cancel_all) 3184 { 3185 struct io_defer_entry *de; 3186 LIST_HEAD(list); 3187 3188 spin_lock(&ctx->completion_lock); 3189 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3190 if (io_match_task_safe(de->req, task, cancel_all)) { 3191 list_cut_position(&list, &ctx->defer_list, &de->list); 3192 break; 3193 } 3194 } 3195 spin_unlock(&ctx->completion_lock); 3196 if (list_empty(&list)) 3197 return false; 3198 3199 while (!list_empty(&list)) { 3200 de = list_first_entry(&list, struct io_defer_entry, list); 3201 list_del_init(&de->list); 3202 io_req_task_queue_fail(de->req, -ECANCELED); 3203 kfree(de); 3204 } 3205 return true; 3206 } 3207 3208 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3209 { 3210 struct io_tctx_node *node; 3211 enum io_wq_cancel cret; 3212 bool ret = false; 3213 3214 mutex_lock(&ctx->uring_lock); 3215 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3216 struct io_uring_task *tctx = node->task->io_uring; 3217 3218 /* 3219 * io_wq will stay alive while we hold uring_lock, because it's 3220 * killed after ctx nodes, which requires to take the lock. 3221 */ 3222 if (!tctx || !tctx->io_wq) 3223 continue; 3224 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3225 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3226 } 3227 mutex_unlock(&ctx->uring_lock); 3228 3229 return ret; 3230 } 3231 3232 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3233 struct task_struct *task, 3234 bool cancel_all) 3235 { 3236 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3237 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3238 enum io_wq_cancel cret; 3239 bool ret = false; 3240 3241 /* set it so io_req_local_work_add() would wake us up */ 3242 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3243 atomic_set(&ctx->cq_wait_nr, 1); 3244 smp_mb(); 3245 } 3246 3247 /* failed during ring init, it couldn't have issued any requests */ 3248 if (!ctx->rings) 3249 return false; 3250 3251 if (!task) { 3252 ret |= io_uring_try_cancel_iowq(ctx); 3253 } else if (tctx && tctx->io_wq) { 3254 /* 3255 * Cancels requests of all rings, not only @ctx, but 3256 * it's fine as the task is in exit/exec. 3257 */ 3258 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3259 &cancel, true); 3260 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3261 } 3262 3263 /* SQPOLL thread does its own polling */ 3264 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3265 (ctx->sq_data && ctx->sq_data->thread == current)) { 3266 while (!wq_list_empty(&ctx->iopoll_list)) { 3267 io_iopoll_try_reap_events(ctx); 3268 ret = true; 3269 cond_resched(); 3270 } 3271 } 3272 3273 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3274 io_allowed_defer_tw_run(ctx)) 3275 ret |= io_run_local_work(ctx) > 0; 3276 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3277 mutex_lock(&ctx->uring_lock); 3278 ret |= io_poll_remove_all(ctx, task, cancel_all); 3279 mutex_unlock(&ctx->uring_lock); 3280 ret |= io_kill_timeouts(ctx, task, cancel_all); 3281 if (task) 3282 ret |= io_run_task_work() > 0; 3283 return ret; 3284 } 3285 3286 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3287 { 3288 if (tracked) 3289 return atomic_read(&tctx->inflight_tracked); 3290 return percpu_counter_sum(&tctx->inflight); 3291 } 3292 3293 /* 3294 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3295 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3296 */ 3297 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3298 { 3299 struct io_uring_task *tctx = current->io_uring; 3300 struct io_ring_ctx *ctx; 3301 struct io_tctx_node *node; 3302 unsigned long index; 3303 s64 inflight; 3304 DEFINE_WAIT(wait); 3305 3306 WARN_ON_ONCE(sqd && sqd->thread != current); 3307 3308 if (!current->io_uring) 3309 return; 3310 if (tctx->io_wq) 3311 io_wq_exit_start(tctx->io_wq); 3312 3313 atomic_inc(&tctx->in_cancel); 3314 do { 3315 bool loop = false; 3316 3317 io_uring_drop_tctx_refs(current); 3318 /* read completions before cancelations */ 3319 inflight = tctx_inflight(tctx, !cancel_all); 3320 if (!inflight) 3321 break; 3322 3323 if (!sqd) { 3324 xa_for_each(&tctx->xa, index, node) { 3325 /* sqpoll task will cancel all its requests */ 3326 if (node->ctx->sq_data) 3327 continue; 3328 loop |= io_uring_try_cancel_requests(node->ctx, 3329 current, cancel_all); 3330 } 3331 } else { 3332 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3333 loop |= io_uring_try_cancel_requests(ctx, 3334 current, 3335 cancel_all); 3336 } 3337 3338 if (loop) { 3339 cond_resched(); 3340 continue; 3341 } 3342 3343 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3344 io_run_task_work(); 3345 io_uring_drop_tctx_refs(current); 3346 xa_for_each(&tctx->xa, index, node) { 3347 if (!llist_empty(&node->ctx->work_llist)) { 3348 WARN_ON_ONCE(node->ctx->submitter_task && 3349 node->ctx->submitter_task != current); 3350 goto end_wait; 3351 } 3352 } 3353 /* 3354 * If we've seen completions, retry without waiting. This 3355 * avoids a race where a completion comes in before we did 3356 * prepare_to_wait(). 3357 */ 3358 if (inflight == tctx_inflight(tctx, !cancel_all)) 3359 schedule(); 3360 end_wait: 3361 finish_wait(&tctx->wait, &wait); 3362 } while (1); 3363 3364 io_uring_clean_tctx(tctx); 3365 if (cancel_all) { 3366 /* 3367 * We shouldn't run task_works after cancel, so just leave 3368 * ->in_cancel set for normal exit. 3369 */ 3370 atomic_dec(&tctx->in_cancel); 3371 /* for exec all current's requests should be gone, kill tctx */ 3372 __io_uring_free(current); 3373 } 3374 } 3375 3376 void __io_uring_cancel(bool cancel_all) 3377 { 3378 io_uring_cancel_generic(cancel_all, NULL); 3379 } 3380 3381 static void *io_uring_validate_mmap_request(struct file *file, 3382 loff_t pgoff, size_t sz) 3383 { 3384 struct io_ring_ctx *ctx = file->private_data; 3385 loff_t offset = pgoff << PAGE_SHIFT; 3386 struct page *page; 3387 void *ptr; 3388 3389 /* Don't allow mmap if the ring was setup without it */ 3390 if (ctx->flags & IORING_SETUP_NO_MMAP) 3391 return ERR_PTR(-EINVAL); 3392 3393 switch (offset & IORING_OFF_MMAP_MASK) { 3394 case IORING_OFF_SQ_RING: 3395 case IORING_OFF_CQ_RING: 3396 ptr = ctx->rings; 3397 break; 3398 case IORING_OFF_SQES: 3399 ptr = ctx->sq_sqes; 3400 break; 3401 case IORING_OFF_PBUF_RING: { 3402 unsigned int bgid; 3403 3404 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; 3405 mutex_lock(&ctx->uring_lock); 3406 ptr = io_pbuf_get_address(ctx, bgid); 3407 mutex_unlock(&ctx->uring_lock); 3408 if (!ptr) 3409 return ERR_PTR(-EINVAL); 3410 break; 3411 } 3412 default: 3413 return ERR_PTR(-EINVAL); 3414 } 3415 3416 page = virt_to_head_page(ptr); 3417 if (sz > page_size(page)) 3418 return ERR_PTR(-EINVAL); 3419 3420 return ptr; 3421 } 3422 3423 #ifdef CONFIG_MMU 3424 3425 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3426 { 3427 size_t sz = vma->vm_end - vma->vm_start; 3428 unsigned long pfn; 3429 void *ptr; 3430 3431 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3432 if (IS_ERR(ptr)) 3433 return PTR_ERR(ptr); 3434 3435 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3436 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3437 } 3438 3439 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, 3440 unsigned long addr, unsigned long len, 3441 unsigned long pgoff, unsigned long flags) 3442 { 3443 void *ptr; 3444 3445 /* 3446 * Do not allow to map to user-provided address to avoid breaking the 3447 * aliasing rules. Userspace is not able to guess the offset address of 3448 * kernel kmalloc()ed memory area. 3449 */ 3450 if (addr) 3451 return -EINVAL; 3452 3453 ptr = io_uring_validate_mmap_request(filp, pgoff, len); 3454 if (IS_ERR(ptr)) 3455 return -ENOMEM; 3456 3457 /* 3458 * Some architectures have strong cache aliasing requirements. 3459 * For such architectures we need a coherent mapping which aliases 3460 * kernel memory *and* userspace memory. To achieve that: 3461 * - use a NULL file pointer to reference physical memory, and 3462 * - use the kernel virtual address of the shared io_uring context 3463 * (instead of the userspace-provided address, which has to be 0UL 3464 * anyway). 3465 * - use the same pgoff which the get_unmapped_area() uses to 3466 * calculate the page colouring. 3467 * For architectures without such aliasing requirements, the 3468 * architecture will return any suitable mapping because addr is 0. 3469 */ 3470 filp = NULL; 3471 flags |= MAP_SHARED; 3472 pgoff = 0; /* has been translated to ptr above */ 3473 #ifdef SHM_COLOUR 3474 addr = (uintptr_t) ptr; 3475 pgoff = addr >> PAGE_SHIFT; 3476 #else 3477 addr = 0UL; 3478 #endif 3479 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 3480 } 3481 3482 #else /* !CONFIG_MMU */ 3483 3484 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3485 { 3486 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3487 } 3488 3489 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3490 { 3491 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3492 } 3493 3494 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3495 unsigned long addr, unsigned long len, 3496 unsigned long pgoff, unsigned long flags) 3497 { 3498 void *ptr; 3499 3500 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3501 if (IS_ERR(ptr)) 3502 return PTR_ERR(ptr); 3503 3504 return (unsigned long) ptr; 3505 } 3506 3507 #endif /* !CONFIG_MMU */ 3508 3509 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3510 { 3511 if (flags & IORING_ENTER_EXT_ARG) { 3512 struct io_uring_getevents_arg arg; 3513 3514 if (argsz != sizeof(arg)) 3515 return -EINVAL; 3516 if (copy_from_user(&arg, argp, sizeof(arg))) 3517 return -EFAULT; 3518 } 3519 return 0; 3520 } 3521 3522 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3523 struct __kernel_timespec __user **ts, 3524 const sigset_t __user **sig) 3525 { 3526 struct io_uring_getevents_arg arg; 3527 3528 /* 3529 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3530 * is just a pointer to the sigset_t. 3531 */ 3532 if (!(flags & IORING_ENTER_EXT_ARG)) { 3533 *sig = (const sigset_t __user *) argp; 3534 *ts = NULL; 3535 return 0; 3536 } 3537 3538 /* 3539 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3540 * timespec and sigset_t pointers if good. 3541 */ 3542 if (*argsz != sizeof(arg)) 3543 return -EINVAL; 3544 if (copy_from_user(&arg, argp, sizeof(arg))) 3545 return -EFAULT; 3546 if (arg.pad) 3547 return -EINVAL; 3548 *sig = u64_to_user_ptr(arg.sigmask); 3549 *argsz = arg.sigmask_sz; 3550 *ts = u64_to_user_ptr(arg.ts); 3551 return 0; 3552 } 3553 3554 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3555 u32, min_complete, u32, flags, const void __user *, argp, 3556 size_t, argsz) 3557 { 3558 struct io_ring_ctx *ctx; 3559 struct fd f; 3560 long ret; 3561 3562 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3563 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3564 IORING_ENTER_REGISTERED_RING))) 3565 return -EINVAL; 3566 3567 /* 3568 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3569 * need only dereference our task private array to find it. 3570 */ 3571 if (flags & IORING_ENTER_REGISTERED_RING) { 3572 struct io_uring_task *tctx = current->io_uring; 3573 3574 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3575 return -EINVAL; 3576 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3577 f.file = tctx->registered_rings[fd]; 3578 f.flags = 0; 3579 if (unlikely(!f.file)) 3580 return -EBADF; 3581 } else { 3582 f = fdget(fd); 3583 if (unlikely(!f.file)) 3584 return -EBADF; 3585 ret = -EOPNOTSUPP; 3586 if (unlikely(!io_is_uring_fops(f.file))) 3587 goto out; 3588 } 3589 3590 ctx = f.file->private_data; 3591 ret = -EBADFD; 3592 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3593 goto out; 3594 3595 /* 3596 * For SQ polling, the thread will do all submissions and completions. 3597 * Just return the requested submit count, and wake the thread if 3598 * we were asked to. 3599 */ 3600 ret = 0; 3601 if (ctx->flags & IORING_SETUP_SQPOLL) { 3602 io_cqring_overflow_flush(ctx); 3603 3604 if (unlikely(ctx->sq_data->thread == NULL)) { 3605 ret = -EOWNERDEAD; 3606 goto out; 3607 } 3608 if (flags & IORING_ENTER_SQ_WAKEUP) 3609 wake_up(&ctx->sq_data->wait); 3610 if (flags & IORING_ENTER_SQ_WAIT) 3611 io_sqpoll_wait_sq(ctx); 3612 3613 ret = to_submit; 3614 } else if (to_submit) { 3615 ret = io_uring_add_tctx_node(ctx); 3616 if (unlikely(ret)) 3617 goto out; 3618 3619 mutex_lock(&ctx->uring_lock); 3620 ret = io_submit_sqes(ctx, to_submit); 3621 if (ret != to_submit) { 3622 mutex_unlock(&ctx->uring_lock); 3623 goto out; 3624 } 3625 if (flags & IORING_ENTER_GETEVENTS) { 3626 if (ctx->syscall_iopoll) 3627 goto iopoll_locked; 3628 /* 3629 * Ignore errors, we'll soon call io_cqring_wait() and 3630 * it should handle ownership problems if any. 3631 */ 3632 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3633 (void)io_run_local_work_locked(ctx); 3634 } 3635 mutex_unlock(&ctx->uring_lock); 3636 } 3637 3638 if (flags & IORING_ENTER_GETEVENTS) { 3639 int ret2; 3640 3641 if (ctx->syscall_iopoll) { 3642 /* 3643 * We disallow the app entering submit/complete with 3644 * polling, but we still need to lock the ring to 3645 * prevent racing with polled issue that got punted to 3646 * a workqueue. 3647 */ 3648 mutex_lock(&ctx->uring_lock); 3649 iopoll_locked: 3650 ret2 = io_validate_ext_arg(flags, argp, argsz); 3651 if (likely(!ret2)) { 3652 min_complete = min(min_complete, 3653 ctx->cq_entries); 3654 ret2 = io_iopoll_check(ctx, min_complete); 3655 } 3656 mutex_unlock(&ctx->uring_lock); 3657 } else { 3658 const sigset_t __user *sig; 3659 struct __kernel_timespec __user *ts; 3660 3661 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3662 if (likely(!ret2)) { 3663 min_complete = min(min_complete, 3664 ctx->cq_entries); 3665 ret2 = io_cqring_wait(ctx, min_complete, sig, 3666 argsz, ts); 3667 } 3668 } 3669 3670 if (!ret) { 3671 ret = ret2; 3672 3673 /* 3674 * EBADR indicates that one or more CQE were dropped. 3675 * Once the user has been informed we can clear the bit 3676 * as they are obviously ok with those drops. 3677 */ 3678 if (unlikely(ret2 == -EBADR)) 3679 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3680 &ctx->check_cq); 3681 } 3682 } 3683 out: 3684 fdput(f); 3685 return ret; 3686 } 3687 3688 static const struct file_operations io_uring_fops = { 3689 .release = io_uring_release, 3690 .mmap = io_uring_mmap, 3691 #ifndef CONFIG_MMU 3692 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3693 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3694 #else 3695 .get_unmapped_area = io_uring_mmu_get_unmapped_area, 3696 #endif 3697 .poll = io_uring_poll, 3698 #ifdef CONFIG_PROC_FS 3699 .show_fdinfo = io_uring_show_fdinfo, 3700 #endif 3701 }; 3702 3703 bool io_is_uring_fops(struct file *file) 3704 { 3705 return file->f_op == &io_uring_fops; 3706 } 3707 3708 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3709 struct io_uring_params *p) 3710 { 3711 struct io_rings *rings; 3712 size_t size, sq_array_offset; 3713 void *ptr; 3714 3715 /* make sure these are sane, as we already accounted them */ 3716 ctx->sq_entries = p->sq_entries; 3717 ctx->cq_entries = p->cq_entries; 3718 3719 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3720 if (size == SIZE_MAX) 3721 return -EOVERFLOW; 3722 3723 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3724 rings = io_mem_alloc(size); 3725 else 3726 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3727 3728 if (IS_ERR(rings)) 3729 return PTR_ERR(rings); 3730 3731 ctx->rings = rings; 3732 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3733 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3734 rings->sq_ring_mask = p->sq_entries - 1; 3735 rings->cq_ring_mask = p->cq_entries - 1; 3736 rings->sq_ring_entries = p->sq_entries; 3737 rings->cq_ring_entries = p->cq_entries; 3738 3739 if (p->flags & IORING_SETUP_SQE128) 3740 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3741 else 3742 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3743 if (size == SIZE_MAX) { 3744 io_rings_free(ctx); 3745 return -EOVERFLOW; 3746 } 3747 3748 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3749 ptr = io_mem_alloc(size); 3750 else 3751 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3752 3753 if (IS_ERR(ptr)) { 3754 io_rings_free(ctx); 3755 return PTR_ERR(ptr); 3756 } 3757 3758 ctx->sq_sqes = ptr; 3759 return 0; 3760 } 3761 3762 static int io_uring_install_fd(struct file *file) 3763 { 3764 int fd; 3765 3766 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3767 if (fd < 0) 3768 return fd; 3769 fd_install(fd, file); 3770 return fd; 3771 } 3772 3773 /* 3774 * Allocate an anonymous fd, this is what constitutes the application 3775 * visible backing of an io_uring instance. The application mmaps this 3776 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3777 * we have to tie this fd to a socket for file garbage collection purposes. 3778 */ 3779 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3780 { 3781 struct file *file; 3782 #if defined(CONFIG_UNIX) 3783 int ret; 3784 3785 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3786 &ctx->ring_sock); 3787 if (ret) 3788 return ERR_PTR(ret); 3789 #endif 3790 3791 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3792 O_RDWR | O_CLOEXEC, NULL); 3793 #if defined(CONFIG_UNIX) 3794 if (IS_ERR(file)) { 3795 sock_release(ctx->ring_sock); 3796 ctx->ring_sock = NULL; 3797 } else { 3798 ctx->ring_sock->file = file; 3799 } 3800 #endif 3801 return file; 3802 } 3803 3804 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3805 struct io_uring_params __user *params) 3806 { 3807 struct io_ring_ctx *ctx; 3808 struct io_uring_task *tctx; 3809 struct file *file; 3810 int ret; 3811 3812 if (!entries) 3813 return -EINVAL; 3814 if (entries > IORING_MAX_ENTRIES) { 3815 if (!(p->flags & IORING_SETUP_CLAMP)) 3816 return -EINVAL; 3817 entries = IORING_MAX_ENTRIES; 3818 } 3819 3820 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3821 && !(p->flags & IORING_SETUP_NO_MMAP)) 3822 return -EINVAL; 3823 3824 /* 3825 * Use twice as many entries for the CQ ring. It's possible for the 3826 * application to drive a higher depth than the size of the SQ ring, 3827 * since the sqes are only used at submission time. This allows for 3828 * some flexibility in overcommitting a bit. If the application has 3829 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3830 * of CQ ring entries manually. 3831 */ 3832 p->sq_entries = roundup_pow_of_two(entries); 3833 if (p->flags & IORING_SETUP_CQSIZE) { 3834 /* 3835 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3836 * to a power-of-two, if it isn't already. We do NOT impose 3837 * any cq vs sq ring sizing. 3838 */ 3839 if (!p->cq_entries) 3840 return -EINVAL; 3841 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3842 if (!(p->flags & IORING_SETUP_CLAMP)) 3843 return -EINVAL; 3844 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3845 } 3846 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3847 if (p->cq_entries < p->sq_entries) 3848 return -EINVAL; 3849 } else { 3850 p->cq_entries = 2 * p->sq_entries; 3851 } 3852 3853 ctx = io_ring_ctx_alloc(p); 3854 if (!ctx) 3855 return -ENOMEM; 3856 3857 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3858 !(ctx->flags & IORING_SETUP_IOPOLL) && 3859 !(ctx->flags & IORING_SETUP_SQPOLL)) 3860 ctx->task_complete = true; 3861 3862 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3863 ctx->lockless_cq = true; 3864 3865 /* 3866 * lazy poll_wq activation relies on ->task_complete for synchronisation 3867 * purposes, see io_activate_pollwq() 3868 */ 3869 if (!ctx->task_complete) 3870 ctx->poll_activated = true; 3871 3872 /* 3873 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3874 * space applications don't need to do io completion events 3875 * polling again, they can rely on io_sq_thread to do polling 3876 * work, which can reduce cpu usage and uring_lock contention. 3877 */ 3878 if (ctx->flags & IORING_SETUP_IOPOLL && 3879 !(ctx->flags & IORING_SETUP_SQPOLL)) 3880 ctx->syscall_iopoll = 1; 3881 3882 ctx->compat = in_compat_syscall(); 3883 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3884 ctx->user = get_uid(current_user()); 3885 3886 /* 3887 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3888 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3889 */ 3890 ret = -EINVAL; 3891 if (ctx->flags & IORING_SETUP_SQPOLL) { 3892 /* IPI related flags don't make sense with SQPOLL */ 3893 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3894 IORING_SETUP_TASKRUN_FLAG | 3895 IORING_SETUP_DEFER_TASKRUN)) 3896 goto err; 3897 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3898 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3899 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3900 } else { 3901 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3902 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3903 goto err; 3904 ctx->notify_method = TWA_SIGNAL; 3905 } 3906 3907 /* 3908 * For DEFER_TASKRUN we require the completion task to be the same as the 3909 * submission task. This implies that there is only one submitter, so enforce 3910 * that. 3911 */ 3912 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3913 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3914 goto err; 3915 } 3916 3917 /* 3918 * This is just grabbed for accounting purposes. When a process exits, 3919 * the mm is exited and dropped before the files, hence we need to hang 3920 * on to this mm purely for the purposes of being able to unaccount 3921 * memory (locked/pinned vm). It's not used for anything else. 3922 */ 3923 mmgrab(current->mm); 3924 ctx->mm_account = current->mm; 3925 3926 ret = io_allocate_scq_urings(ctx, p); 3927 if (ret) 3928 goto err; 3929 3930 ret = io_sq_offload_create(ctx, p); 3931 if (ret) 3932 goto err; 3933 3934 ret = io_rsrc_init(ctx); 3935 if (ret) 3936 goto err; 3937 3938 p->sq_off.head = offsetof(struct io_rings, sq.head); 3939 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3940 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3941 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3942 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3943 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3944 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3945 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3946 p->sq_off.resv1 = 0; 3947 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3948 p->sq_off.user_addr = 0; 3949 3950 p->cq_off.head = offsetof(struct io_rings, cq.head); 3951 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3952 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3953 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3954 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3955 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3956 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3957 p->cq_off.resv1 = 0; 3958 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3959 p->cq_off.user_addr = 0; 3960 3961 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3962 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3963 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3964 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3965 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3966 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3967 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 3968 3969 if (copy_to_user(params, p, sizeof(*p))) { 3970 ret = -EFAULT; 3971 goto err; 3972 } 3973 3974 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3975 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3976 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3977 3978 file = io_uring_get_file(ctx); 3979 if (IS_ERR(file)) { 3980 ret = PTR_ERR(file); 3981 goto err; 3982 } 3983 3984 ret = __io_uring_add_tctx_node(ctx); 3985 if (ret) 3986 goto err_fput; 3987 tctx = current->io_uring; 3988 3989 /* 3990 * Install ring fd as the very last thing, so we don't risk someone 3991 * having closed it before we finish setup 3992 */ 3993 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3994 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3995 else 3996 ret = io_uring_install_fd(file); 3997 if (ret < 0) 3998 goto err_fput; 3999 4000 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 4001 return ret; 4002 err: 4003 io_ring_ctx_wait_and_kill(ctx); 4004 return ret; 4005 err_fput: 4006 fput(file); 4007 return ret; 4008 } 4009 4010 /* 4011 * Sets up an aio uring context, and returns the fd. Applications asks for a 4012 * ring size, we return the actual sq/cq ring sizes (among other things) in the 4013 * params structure passed in. 4014 */ 4015 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 4016 { 4017 struct io_uring_params p; 4018 int i; 4019 4020 if (copy_from_user(&p, params, sizeof(p))) 4021 return -EFAULT; 4022 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 4023 if (p.resv[i]) 4024 return -EINVAL; 4025 } 4026 4027 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 4028 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 4029 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 4030 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 4031 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 4032 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 4033 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 4034 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 4035 IORING_SETUP_NO_SQARRAY)) 4036 return -EINVAL; 4037 4038 return io_uring_create(entries, &p, params); 4039 } 4040 4041 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 4042 struct io_uring_params __user *, params) 4043 { 4044 return io_uring_setup(entries, params); 4045 } 4046 4047 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 4048 unsigned nr_args) 4049 { 4050 struct io_uring_probe *p; 4051 size_t size; 4052 int i, ret; 4053 4054 size = struct_size(p, ops, nr_args); 4055 if (size == SIZE_MAX) 4056 return -EOVERFLOW; 4057 p = kzalloc(size, GFP_KERNEL); 4058 if (!p) 4059 return -ENOMEM; 4060 4061 ret = -EFAULT; 4062 if (copy_from_user(p, arg, size)) 4063 goto out; 4064 ret = -EINVAL; 4065 if (memchr_inv(p, 0, size)) 4066 goto out; 4067 4068 p->last_op = IORING_OP_LAST - 1; 4069 if (nr_args > IORING_OP_LAST) 4070 nr_args = IORING_OP_LAST; 4071 4072 for (i = 0; i < nr_args; i++) { 4073 p->ops[i].op = i; 4074 if (!io_issue_defs[i].not_supported) 4075 p->ops[i].flags = IO_URING_OP_SUPPORTED; 4076 } 4077 p->ops_len = i; 4078 4079 ret = 0; 4080 if (copy_to_user(arg, p, size)) 4081 ret = -EFAULT; 4082 out: 4083 kfree(p); 4084 return ret; 4085 } 4086 4087 static int io_register_personality(struct io_ring_ctx *ctx) 4088 { 4089 const struct cred *creds; 4090 u32 id; 4091 int ret; 4092 4093 creds = get_current_cred(); 4094 4095 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 4096 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 4097 if (ret < 0) { 4098 put_cred(creds); 4099 return ret; 4100 } 4101 return id; 4102 } 4103 4104 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 4105 void __user *arg, unsigned int nr_args) 4106 { 4107 struct io_uring_restriction *res; 4108 size_t size; 4109 int i, ret; 4110 4111 /* Restrictions allowed only if rings started disabled */ 4112 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4113 return -EBADFD; 4114 4115 /* We allow only a single restrictions registration */ 4116 if (ctx->restrictions.registered) 4117 return -EBUSY; 4118 4119 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 4120 return -EINVAL; 4121 4122 size = array_size(nr_args, sizeof(*res)); 4123 if (size == SIZE_MAX) 4124 return -EOVERFLOW; 4125 4126 res = memdup_user(arg, size); 4127 if (IS_ERR(res)) 4128 return PTR_ERR(res); 4129 4130 ret = 0; 4131 4132 for (i = 0; i < nr_args; i++) { 4133 switch (res[i].opcode) { 4134 case IORING_RESTRICTION_REGISTER_OP: 4135 if (res[i].register_op >= IORING_REGISTER_LAST) { 4136 ret = -EINVAL; 4137 goto out; 4138 } 4139 4140 __set_bit(res[i].register_op, 4141 ctx->restrictions.register_op); 4142 break; 4143 case IORING_RESTRICTION_SQE_OP: 4144 if (res[i].sqe_op >= IORING_OP_LAST) { 4145 ret = -EINVAL; 4146 goto out; 4147 } 4148 4149 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 4150 break; 4151 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 4152 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 4153 break; 4154 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 4155 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 4156 break; 4157 default: 4158 ret = -EINVAL; 4159 goto out; 4160 } 4161 } 4162 4163 out: 4164 /* Reset all restrictions if an error happened */ 4165 if (ret != 0) 4166 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 4167 else 4168 ctx->restrictions.registered = true; 4169 4170 kfree(res); 4171 return ret; 4172 } 4173 4174 static int io_register_enable_rings(struct io_ring_ctx *ctx) 4175 { 4176 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4177 return -EBADFD; 4178 4179 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) { 4180 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4181 /* 4182 * Lazy activation attempts would fail if it was polled before 4183 * submitter_task is set. 4184 */ 4185 if (wq_has_sleeper(&ctx->poll_wq)) 4186 io_activate_pollwq(ctx); 4187 } 4188 4189 if (ctx->restrictions.registered) 4190 ctx->restricted = 1; 4191 4192 ctx->flags &= ~IORING_SETUP_R_DISABLED; 4193 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 4194 wake_up(&ctx->sq_data->wait); 4195 return 0; 4196 } 4197 4198 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx, 4199 cpumask_var_t new_mask) 4200 { 4201 int ret; 4202 4203 if (!(ctx->flags & IORING_SETUP_SQPOLL)) { 4204 ret = io_wq_cpu_affinity(current->io_uring, new_mask); 4205 } else { 4206 mutex_unlock(&ctx->uring_lock); 4207 ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask); 4208 mutex_lock(&ctx->uring_lock); 4209 } 4210 4211 return ret; 4212 } 4213 4214 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 4215 void __user *arg, unsigned len) 4216 { 4217 cpumask_var_t new_mask; 4218 int ret; 4219 4220 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4221 return -ENOMEM; 4222 4223 cpumask_clear(new_mask); 4224 if (len > cpumask_size()) 4225 len = cpumask_size(); 4226 4227 if (in_compat_syscall()) { 4228 ret = compat_get_bitmap(cpumask_bits(new_mask), 4229 (const compat_ulong_t __user *)arg, 4230 len * 8 /* CHAR_BIT */); 4231 } else { 4232 ret = copy_from_user(new_mask, arg, len); 4233 } 4234 4235 if (ret) { 4236 free_cpumask_var(new_mask); 4237 return -EFAULT; 4238 } 4239 4240 ret = __io_register_iowq_aff(ctx, new_mask); 4241 free_cpumask_var(new_mask); 4242 return ret; 4243 } 4244 4245 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 4246 { 4247 return __io_register_iowq_aff(ctx, NULL); 4248 } 4249 4250 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 4251 void __user *arg) 4252 __must_hold(&ctx->uring_lock) 4253 { 4254 struct io_tctx_node *node; 4255 struct io_uring_task *tctx = NULL; 4256 struct io_sq_data *sqd = NULL; 4257 __u32 new_count[2]; 4258 int i, ret; 4259 4260 if (copy_from_user(new_count, arg, sizeof(new_count))) 4261 return -EFAULT; 4262 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4263 if (new_count[i] > INT_MAX) 4264 return -EINVAL; 4265 4266 if (ctx->flags & IORING_SETUP_SQPOLL) { 4267 sqd = ctx->sq_data; 4268 if (sqd) { 4269 /* 4270 * Observe the correct sqd->lock -> ctx->uring_lock 4271 * ordering. Fine to drop uring_lock here, we hold 4272 * a ref to the ctx. 4273 */ 4274 refcount_inc(&sqd->refs); 4275 mutex_unlock(&ctx->uring_lock); 4276 mutex_lock(&sqd->lock); 4277 mutex_lock(&ctx->uring_lock); 4278 if (sqd->thread) 4279 tctx = sqd->thread->io_uring; 4280 } 4281 } else { 4282 tctx = current->io_uring; 4283 } 4284 4285 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 4286 4287 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4288 if (new_count[i]) 4289 ctx->iowq_limits[i] = new_count[i]; 4290 ctx->iowq_limits_set = true; 4291 4292 if (tctx && tctx->io_wq) { 4293 ret = io_wq_max_workers(tctx->io_wq, new_count); 4294 if (ret) 4295 goto err; 4296 } else { 4297 memset(new_count, 0, sizeof(new_count)); 4298 } 4299 4300 if (sqd) { 4301 mutex_unlock(&sqd->lock); 4302 io_put_sq_data(sqd); 4303 } 4304 4305 if (copy_to_user(arg, new_count, sizeof(new_count))) 4306 return -EFAULT; 4307 4308 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 4309 if (sqd) 4310 return 0; 4311 4312 /* now propagate the restriction to all registered users */ 4313 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 4314 struct io_uring_task *tctx = node->task->io_uring; 4315 4316 if (WARN_ON_ONCE(!tctx->io_wq)) 4317 continue; 4318 4319 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4320 new_count[i] = ctx->iowq_limits[i]; 4321 /* ignore errors, it always returns zero anyway */ 4322 (void)io_wq_max_workers(tctx->io_wq, new_count); 4323 } 4324 return 0; 4325 err: 4326 if (sqd) { 4327 mutex_unlock(&sqd->lock); 4328 io_put_sq_data(sqd); 4329 } 4330 return ret; 4331 } 4332 4333 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4334 void __user *arg, unsigned nr_args) 4335 __releases(ctx->uring_lock) 4336 __acquires(ctx->uring_lock) 4337 { 4338 int ret; 4339 4340 /* 4341 * We don't quiesce the refs for register anymore and so it can't be 4342 * dying as we're holding a file ref here. 4343 */ 4344 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4345 return -ENXIO; 4346 4347 if (ctx->submitter_task && ctx->submitter_task != current) 4348 return -EEXIST; 4349 4350 if (ctx->restricted) { 4351 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4352 if (!test_bit(opcode, ctx->restrictions.register_op)) 4353 return -EACCES; 4354 } 4355 4356 switch (opcode) { 4357 case IORING_REGISTER_BUFFERS: 4358 ret = -EFAULT; 4359 if (!arg) 4360 break; 4361 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4362 break; 4363 case IORING_UNREGISTER_BUFFERS: 4364 ret = -EINVAL; 4365 if (arg || nr_args) 4366 break; 4367 ret = io_sqe_buffers_unregister(ctx); 4368 break; 4369 case IORING_REGISTER_FILES: 4370 ret = -EFAULT; 4371 if (!arg) 4372 break; 4373 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4374 break; 4375 case IORING_UNREGISTER_FILES: 4376 ret = -EINVAL; 4377 if (arg || nr_args) 4378 break; 4379 ret = io_sqe_files_unregister(ctx); 4380 break; 4381 case IORING_REGISTER_FILES_UPDATE: 4382 ret = io_register_files_update(ctx, arg, nr_args); 4383 break; 4384 case IORING_REGISTER_EVENTFD: 4385 ret = -EINVAL; 4386 if (nr_args != 1) 4387 break; 4388 ret = io_eventfd_register(ctx, arg, 0); 4389 break; 4390 case IORING_REGISTER_EVENTFD_ASYNC: 4391 ret = -EINVAL; 4392 if (nr_args != 1) 4393 break; 4394 ret = io_eventfd_register(ctx, arg, 1); 4395 break; 4396 case IORING_UNREGISTER_EVENTFD: 4397 ret = -EINVAL; 4398 if (arg || nr_args) 4399 break; 4400 ret = io_eventfd_unregister(ctx); 4401 break; 4402 case IORING_REGISTER_PROBE: 4403 ret = -EINVAL; 4404 if (!arg || nr_args > 256) 4405 break; 4406 ret = io_probe(ctx, arg, nr_args); 4407 break; 4408 case IORING_REGISTER_PERSONALITY: 4409 ret = -EINVAL; 4410 if (arg || nr_args) 4411 break; 4412 ret = io_register_personality(ctx); 4413 break; 4414 case IORING_UNREGISTER_PERSONALITY: 4415 ret = -EINVAL; 4416 if (arg) 4417 break; 4418 ret = io_unregister_personality(ctx, nr_args); 4419 break; 4420 case IORING_REGISTER_ENABLE_RINGS: 4421 ret = -EINVAL; 4422 if (arg || nr_args) 4423 break; 4424 ret = io_register_enable_rings(ctx); 4425 break; 4426 case IORING_REGISTER_RESTRICTIONS: 4427 ret = io_register_restrictions(ctx, arg, nr_args); 4428 break; 4429 case IORING_REGISTER_FILES2: 4430 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4431 break; 4432 case IORING_REGISTER_FILES_UPDATE2: 4433 ret = io_register_rsrc_update(ctx, arg, nr_args, 4434 IORING_RSRC_FILE); 4435 break; 4436 case IORING_REGISTER_BUFFERS2: 4437 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4438 break; 4439 case IORING_REGISTER_BUFFERS_UPDATE: 4440 ret = io_register_rsrc_update(ctx, arg, nr_args, 4441 IORING_RSRC_BUFFER); 4442 break; 4443 case IORING_REGISTER_IOWQ_AFF: 4444 ret = -EINVAL; 4445 if (!arg || !nr_args) 4446 break; 4447 ret = io_register_iowq_aff(ctx, arg, nr_args); 4448 break; 4449 case IORING_UNREGISTER_IOWQ_AFF: 4450 ret = -EINVAL; 4451 if (arg || nr_args) 4452 break; 4453 ret = io_unregister_iowq_aff(ctx); 4454 break; 4455 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4456 ret = -EINVAL; 4457 if (!arg || nr_args != 2) 4458 break; 4459 ret = io_register_iowq_max_workers(ctx, arg); 4460 break; 4461 case IORING_REGISTER_RING_FDS: 4462 ret = io_ringfd_register(ctx, arg, nr_args); 4463 break; 4464 case IORING_UNREGISTER_RING_FDS: 4465 ret = io_ringfd_unregister(ctx, arg, nr_args); 4466 break; 4467 case IORING_REGISTER_PBUF_RING: 4468 ret = -EINVAL; 4469 if (!arg || nr_args != 1) 4470 break; 4471 ret = io_register_pbuf_ring(ctx, arg); 4472 break; 4473 case IORING_UNREGISTER_PBUF_RING: 4474 ret = -EINVAL; 4475 if (!arg || nr_args != 1) 4476 break; 4477 ret = io_unregister_pbuf_ring(ctx, arg); 4478 break; 4479 case IORING_REGISTER_SYNC_CANCEL: 4480 ret = -EINVAL; 4481 if (!arg || nr_args != 1) 4482 break; 4483 ret = io_sync_cancel(ctx, arg); 4484 break; 4485 case IORING_REGISTER_FILE_ALLOC_RANGE: 4486 ret = -EINVAL; 4487 if (!arg || nr_args) 4488 break; 4489 ret = io_register_file_alloc_range(ctx, arg); 4490 break; 4491 default: 4492 ret = -EINVAL; 4493 break; 4494 } 4495 4496 return ret; 4497 } 4498 4499 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4500 void __user *, arg, unsigned int, nr_args) 4501 { 4502 struct io_ring_ctx *ctx; 4503 long ret = -EBADF; 4504 struct fd f; 4505 bool use_registered_ring; 4506 4507 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING); 4508 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING; 4509 4510 if (opcode >= IORING_REGISTER_LAST) 4511 return -EINVAL; 4512 4513 if (use_registered_ring) { 4514 /* 4515 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 4516 * need only dereference our task private array to find it. 4517 */ 4518 struct io_uring_task *tctx = current->io_uring; 4519 4520 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 4521 return -EINVAL; 4522 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 4523 f.file = tctx->registered_rings[fd]; 4524 f.flags = 0; 4525 if (unlikely(!f.file)) 4526 return -EBADF; 4527 } else { 4528 f = fdget(fd); 4529 if (unlikely(!f.file)) 4530 return -EBADF; 4531 ret = -EOPNOTSUPP; 4532 if (!io_is_uring_fops(f.file)) 4533 goto out_fput; 4534 } 4535 4536 ctx = f.file->private_data; 4537 4538 mutex_lock(&ctx->uring_lock); 4539 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4540 mutex_unlock(&ctx->uring_lock); 4541 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4542 out_fput: 4543 fdput(f); 4544 return ret; 4545 } 4546 4547 static int __init io_uring_init(void) 4548 { 4549 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4550 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4551 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4552 } while (0) 4553 4554 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4555 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4556 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4557 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4558 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4559 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4560 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4561 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4562 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4563 BUILD_BUG_SQE_ELEM(8, __u64, off); 4564 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4565 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4566 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4567 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4568 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4569 BUILD_BUG_SQE_ELEM(24, __u32, len); 4570 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4571 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4572 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4573 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4574 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4575 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4576 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4577 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4578 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4579 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4580 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4581 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4582 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4583 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4584 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4585 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4586 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4587 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4588 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4589 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4590 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4591 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4592 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4593 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4594 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4595 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4596 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4597 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4598 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4599 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4600 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4601 4602 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4603 sizeof(struct io_uring_rsrc_update)); 4604 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4605 sizeof(struct io_uring_rsrc_update2)); 4606 4607 /* ->buf_index is u16 */ 4608 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4609 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4610 offsetof(struct io_uring_buf_ring, tail)); 4611 4612 /* should fit into one byte */ 4613 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4614 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4615 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4616 4617 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4618 4619 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4620 4621 io_uring_optable_init(); 4622 4623 /* 4624 * Allow user copy in the per-command field, which starts after the 4625 * file in io_kiocb and until the opcode field. The openat2 handling 4626 * requires copying in user memory into the io_kiocb object in that 4627 * range, and HARDENED_USERCOPY will complain if we haven't 4628 * correctly annotated this range. 4629 */ 4630 req_cachep = kmem_cache_create_usercopy("io_kiocb", 4631 sizeof(struct io_kiocb), 0, 4632 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4633 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU, 4634 offsetof(struct io_kiocb, cmd.data), 4635 sizeof_field(struct io_kiocb, cmd.data), NULL); 4636 4637 return 0; 4638 }; 4639 __initcall(io_uring_init); 4640