1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 76 #define CREATE_TRACE_POINTS 77 #include <trace/events/io_uring.h> 78 79 #include <uapi/linux/io_uring.h> 80 81 #include "io-wq.h" 82 83 #include "io_uring.h" 84 #include "opdef.h" 85 #include "refs.h" 86 #include "tctx.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 95 #include "timeout.h" 96 #include "poll.h" 97 #include "alloc_cache.h" 98 99 #define IORING_MAX_ENTRIES 32768 100 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 101 102 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 103 IORING_REGISTER_LAST + IORING_OP_LAST) 104 105 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 106 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 107 108 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 109 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 110 111 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 112 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 113 REQ_F_ASYNC_DATA) 114 115 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 116 IO_REQ_CLEAN_FLAGS) 117 118 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 119 120 #define IO_COMPL_BATCH 32 121 #define IO_REQ_ALLOC_BATCH 8 122 123 enum { 124 IO_CHECK_CQ_OVERFLOW_BIT, 125 IO_CHECK_CQ_DROPPED_BIT, 126 }; 127 128 enum { 129 IO_EVENTFD_OP_SIGNAL_BIT, 130 IO_EVENTFD_OP_FREE_BIT, 131 }; 132 133 struct io_defer_entry { 134 struct list_head list; 135 struct io_kiocb *req; 136 u32 seq; 137 }; 138 139 /* requests with any of those set should undergo io_disarm_next() */ 140 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 141 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 142 143 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 144 struct task_struct *task, 145 bool cancel_all); 146 147 static void io_dismantle_req(struct io_kiocb *req); 148 static void io_clean_op(struct io_kiocb *req); 149 static void io_queue_sqe(struct io_kiocb *req); 150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx); 151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx); 152 153 static struct kmem_cache *req_cachep; 154 155 struct sock *io_uring_get_socket(struct file *file) 156 { 157 #if defined(CONFIG_UNIX) 158 if (io_is_uring_fops(file)) { 159 struct io_ring_ctx *ctx = file->private_data; 160 161 return ctx->ring_sock->sk; 162 } 163 #endif 164 return NULL; 165 } 166 EXPORT_SYMBOL(io_uring_get_socket); 167 168 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 169 { 170 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) 171 __io_submit_flush_completions(ctx); 172 } 173 174 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 175 { 176 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 177 } 178 179 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 180 { 181 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 182 } 183 184 static bool io_match_linked(struct io_kiocb *head) 185 { 186 struct io_kiocb *req; 187 188 io_for_each_link(req, head) { 189 if (req->flags & REQ_F_INFLIGHT) 190 return true; 191 } 192 return false; 193 } 194 195 /* 196 * As io_match_task() but protected against racing with linked timeouts. 197 * User must not hold timeout_lock. 198 */ 199 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 200 bool cancel_all) 201 { 202 bool matched; 203 204 if (task && head->task != task) 205 return false; 206 if (cancel_all) 207 return true; 208 209 if (head->flags & REQ_F_LINK_TIMEOUT) { 210 struct io_ring_ctx *ctx = head->ctx; 211 212 /* protect against races with linked timeouts */ 213 spin_lock_irq(&ctx->timeout_lock); 214 matched = io_match_linked(head); 215 spin_unlock_irq(&ctx->timeout_lock); 216 } else { 217 matched = io_match_linked(head); 218 } 219 return matched; 220 } 221 222 static inline void req_fail_link_node(struct io_kiocb *req, int res) 223 { 224 req_set_fail(req); 225 io_req_set_res(req, res, 0); 226 } 227 228 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 229 { 230 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 231 } 232 233 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 234 { 235 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 236 237 complete(&ctx->ref_comp); 238 } 239 240 static __cold void io_fallback_req_func(struct work_struct *work) 241 { 242 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 243 fallback_work.work); 244 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 245 struct io_kiocb *req, *tmp; 246 bool locked = false; 247 248 percpu_ref_get(&ctx->refs); 249 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 250 req->io_task_work.func(req, &locked); 251 252 if (locked) { 253 io_submit_flush_completions(ctx); 254 mutex_unlock(&ctx->uring_lock); 255 } 256 percpu_ref_put(&ctx->refs); 257 } 258 259 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 260 { 261 unsigned hash_buckets = 1U << bits; 262 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 263 264 table->hbs = kmalloc(hash_size, GFP_KERNEL); 265 if (!table->hbs) 266 return -ENOMEM; 267 268 table->hash_bits = bits; 269 init_hash_table(table, hash_buckets); 270 return 0; 271 } 272 273 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 274 { 275 struct io_ring_ctx *ctx; 276 int hash_bits; 277 278 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 279 if (!ctx) 280 return NULL; 281 282 xa_init(&ctx->io_bl_xa); 283 284 /* 285 * Use 5 bits less than the max cq entries, that should give us around 286 * 32 entries per hash list if totally full and uniformly spread, but 287 * don't keep too many buckets to not overconsume memory. 288 */ 289 hash_bits = ilog2(p->cq_entries) - 5; 290 hash_bits = clamp(hash_bits, 1, 8); 291 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 292 goto err; 293 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 294 goto err; 295 296 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL); 297 if (!ctx->dummy_ubuf) 298 goto err; 299 /* set invalid range, so io_import_fixed() fails meeting it */ 300 ctx->dummy_ubuf->ubuf = -1UL; 301 302 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 303 0, GFP_KERNEL)) 304 goto err; 305 306 ctx->flags = p->flags; 307 init_waitqueue_head(&ctx->sqo_sq_wait); 308 INIT_LIST_HEAD(&ctx->sqd_list); 309 INIT_LIST_HEAD(&ctx->cq_overflow_list); 310 INIT_LIST_HEAD(&ctx->io_buffers_cache); 311 io_alloc_cache_init(&ctx->apoll_cache); 312 io_alloc_cache_init(&ctx->netmsg_cache); 313 init_completion(&ctx->ref_comp); 314 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 315 mutex_init(&ctx->uring_lock); 316 init_waitqueue_head(&ctx->cq_wait); 317 spin_lock_init(&ctx->completion_lock); 318 spin_lock_init(&ctx->timeout_lock); 319 INIT_WQ_LIST(&ctx->iopoll_list); 320 INIT_LIST_HEAD(&ctx->io_buffers_pages); 321 INIT_LIST_HEAD(&ctx->io_buffers_comp); 322 INIT_LIST_HEAD(&ctx->defer_list); 323 INIT_LIST_HEAD(&ctx->timeout_list); 324 INIT_LIST_HEAD(&ctx->ltimeout_list); 325 spin_lock_init(&ctx->rsrc_ref_lock); 326 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 327 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work); 328 init_llist_head(&ctx->rsrc_put_llist); 329 init_llist_head(&ctx->work_llist); 330 INIT_LIST_HEAD(&ctx->tctx_list); 331 ctx->submit_state.free_list.next = NULL; 332 INIT_WQ_LIST(&ctx->locked_free_list); 333 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 334 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 335 return ctx; 336 err: 337 kfree(ctx->dummy_ubuf); 338 kfree(ctx->cancel_table.hbs); 339 kfree(ctx->cancel_table_locked.hbs); 340 kfree(ctx->io_bl); 341 xa_destroy(&ctx->io_bl_xa); 342 kfree(ctx); 343 return NULL; 344 } 345 346 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 347 { 348 struct io_rings *r = ctx->rings; 349 350 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 351 ctx->cq_extra--; 352 } 353 354 static bool req_need_defer(struct io_kiocb *req, u32 seq) 355 { 356 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 357 struct io_ring_ctx *ctx = req->ctx; 358 359 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 360 } 361 362 return false; 363 } 364 365 static inline void io_req_track_inflight(struct io_kiocb *req) 366 { 367 if (!(req->flags & REQ_F_INFLIGHT)) { 368 req->flags |= REQ_F_INFLIGHT; 369 atomic_inc(&req->task->io_uring->inflight_tracked); 370 } 371 } 372 373 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 374 { 375 if (WARN_ON_ONCE(!req->link)) 376 return NULL; 377 378 req->flags &= ~REQ_F_ARM_LTIMEOUT; 379 req->flags |= REQ_F_LINK_TIMEOUT; 380 381 /* linked timeouts should have two refs once prep'ed */ 382 io_req_set_refcount(req); 383 __io_req_set_refcount(req->link, 2); 384 return req->link; 385 } 386 387 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 388 { 389 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 390 return NULL; 391 return __io_prep_linked_timeout(req); 392 } 393 394 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 395 { 396 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 397 } 398 399 static inline void io_arm_ltimeout(struct io_kiocb *req) 400 { 401 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 402 __io_arm_ltimeout(req); 403 } 404 405 static void io_prep_async_work(struct io_kiocb *req) 406 { 407 const struct io_op_def *def = &io_op_defs[req->opcode]; 408 struct io_ring_ctx *ctx = req->ctx; 409 410 if (!(req->flags & REQ_F_CREDS)) { 411 req->flags |= REQ_F_CREDS; 412 req->creds = get_current_cred(); 413 } 414 415 req->work.list.next = NULL; 416 req->work.flags = 0; 417 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 418 if (req->flags & REQ_F_FORCE_ASYNC) 419 req->work.flags |= IO_WQ_WORK_CONCURRENT; 420 421 if (req->file && !io_req_ffs_set(req)) 422 req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT; 423 424 if (req->flags & REQ_F_ISREG) { 425 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL)) 426 io_wq_hash_work(&req->work, file_inode(req->file)); 427 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 428 if (def->unbound_nonreg_file) 429 req->work.flags |= IO_WQ_WORK_UNBOUND; 430 } 431 } 432 433 static void io_prep_async_link(struct io_kiocb *req) 434 { 435 struct io_kiocb *cur; 436 437 if (req->flags & REQ_F_LINK_TIMEOUT) { 438 struct io_ring_ctx *ctx = req->ctx; 439 440 spin_lock_irq(&ctx->timeout_lock); 441 io_for_each_link(cur, req) 442 io_prep_async_work(cur); 443 spin_unlock_irq(&ctx->timeout_lock); 444 } else { 445 io_for_each_link(cur, req) 446 io_prep_async_work(cur); 447 } 448 } 449 450 void io_queue_iowq(struct io_kiocb *req, bool *dont_use) 451 { 452 struct io_kiocb *link = io_prep_linked_timeout(req); 453 struct io_uring_task *tctx = req->task->io_uring; 454 455 BUG_ON(!tctx); 456 BUG_ON(!tctx->io_wq); 457 458 /* init ->work of the whole link before punting */ 459 io_prep_async_link(req); 460 461 /* 462 * Not expected to happen, but if we do have a bug where this _can_ 463 * happen, catch it here and ensure the request is marked as 464 * canceled. That will make io-wq go through the usual work cancel 465 * procedure rather than attempt to run this request (or create a new 466 * worker for it). 467 */ 468 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 469 req->work.flags |= IO_WQ_WORK_CANCEL; 470 471 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 472 io_wq_enqueue(tctx->io_wq, &req->work); 473 if (link) 474 io_queue_linked_timeout(link); 475 } 476 477 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 478 { 479 while (!list_empty(&ctx->defer_list)) { 480 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 481 struct io_defer_entry, list); 482 483 if (req_need_defer(de->req, de->seq)) 484 break; 485 list_del_init(&de->list); 486 io_req_task_queue(de->req); 487 kfree(de); 488 } 489 } 490 491 492 static void io_eventfd_ops(struct rcu_head *rcu) 493 { 494 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 495 int ops = atomic_xchg(&ev_fd->ops, 0); 496 497 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 498 eventfd_signal(ev_fd->cq_ev_fd, 1); 499 500 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 501 * ordering in a race but if references are 0 we know we have to free 502 * it regardless. 503 */ 504 if (atomic_dec_and_test(&ev_fd->refs)) { 505 eventfd_ctx_put(ev_fd->cq_ev_fd); 506 kfree(ev_fd); 507 } 508 } 509 510 static void io_eventfd_signal(struct io_ring_ctx *ctx) 511 { 512 struct io_ev_fd *ev_fd = NULL; 513 514 rcu_read_lock(); 515 /* 516 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 517 * and eventfd_signal 518 */ 519 ev_fd = rcu_dereference(ctx->io_ev_fd); 520 521 /* 522 * Check again if ev_fd exists incase an io_eventfd_unregister call 523 * completed between the NULL check of ctx->io_ev_fd at the start of 524 * the function and rcu_read_lock. 525 */ 526 if (unlikely(!ev_fd)) 527 goto out; 528 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 529 goto out; 530 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 531 goto out; 532 533 if (likely(eventfd_signal_allowed())) { 534 eventfd_signal(ev_fd->cq_ev_fd, 1); 535 } else { 536 atomic_inc(&ev_fd->refs); 537 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 538 call_rcu(&ev_fd->rcu, io_eventfd_ops); 539 else 540 atomic_dec(&ev_fd->refs); 541 } 542 543 out: 544 rcu_read_unlock(); 545 } 546 547 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 548 { 549 bool skip; 550 551 spin_lock(&ctx->completion_lock); 552 553 /* 554 * Eventfd should only get triggered when at least one event has been 555 * posted. Some applications rely on the eventfd notification count 556 * only changing IFF a new CQE has been added to the CQ ring. There's 557 * no depedency on 1:1 relationship between how many times this 558 * function is called (and hence the eventfd count) and number of CQEs 559 * posted to the CQ ring. 560 */ 561 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 562 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 563 spin_unlock(&ctx->completion_lock); 564 if (skip) 565 return; 566 567 io_eventfd_signal(ctx); 568 } 569 570 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 571 { 572 if (ctx->off_timeout_used || ctx->drain_active) { 573 spin_lock(&ctx->completion_lock); 574 if (ctx->off_timeout_used) 575 io_flush_timeouts(ctx); 576 if (ctx->drain_active) 577 io_queue_deferred(ctx); 578 spin_unlock(&ctx->completion_lock); 579 } 580 if (ctx->has_evfd) 581 io_eventfd_flush_signal(ctx); 582 } 583 584 static inline void io_cqring_ev_posted(struct io_ring_ctx *ctx) 585 { 586 io_commit_cqring_flush(ctx); 587 io_cqring_wake(ctx); 588 } 589 590 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 591 __releases(ctx->completion_lock) 592 { 593 io_commit_cqring(ctx); 594 spin_unlock(&ctx->completion_lock); 595 io_cqring_ev_posted(ctx); 596 } 597 598 void io_cq_unlock_post(struct io_ring_ctx *ctx) 599 { 600 __io_cq_unlock_post(ctx); 601 } 602 603 /* Returns true if there are no backlogged entries after the flush */ 604 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force) 605 { 606 bool all_flushed; 607 size_t cqe_size = sizeof(struct io_uring_cqe); 608 609 if (!force && __io_cqring_events(ctx) == ctx->cq_entries) 610 return false; 611 612 if (ctx->flags & IORING_SETUP_CQE32) 613 cqe_size <<= 1; 614 615 io_cq_lock(ctx); 616 while (!list_empty(&ctx->cq_overflow_list)) { 617 struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true); 618 struct io_overflow_cqe *ocqe; 619 620 if (!cqe && !force) 621 break; 622 ocqe = list_first_entry(&ctx->cq_overflow_list, 623 struct io_overflow_cqe, list); 624 if (cqe) 625 memcpy(cqe, &ocqe->cqe, cqe_size); 626 else 627 io_account_cq_overflow(ctx); 628 629 list_del(&ocqe->list); 630 kfree(ocqe); 631 } 632 633 all_flushed = list_empty(&ctx->cq_overflow_list); 634 if (all_flushed) { 635 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 636 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 637 } 638 639 io_cq_unlock_post(ctx); 640 return all_flushed; 641 } 642 643 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx) 644 { 645 bool ret = true; 646 647 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 648 /* iopoll syncs against uring_lock, not completion_lock */ 649 if (ctx->flags & IORING_SETUP_IOPOLL) 650 mutex_lock(&ctx->uring_lock); 651 ret = __io_cqring_overflow_flush(ctx, false); 652 if (ctx->flags & IORING_SETUP_IOPOLL) 653 mutex_unlock(&ctx->uring_lock); 654 } 655 656 return ret; 657 } 658 659 void __io_put_task(struct task_struct *task, int nr) 660 { 661 struct io_uring_task *tctx = task->io_uring; 662 663 percpu_counter_sub(&tctx->inflight, nr); 664 if (unlikely(atomic_read(&tctx->in_idle))) 665 wake_up(&tctx->wait); 666 put_task_struct_many(task, nr); 667 } 668 669 void io_task_refs_refill(struct io_uring_task *tctx) 670 { 671 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 672 673 percpu_counter_add(&tctx->inflight, refill); 674 refcount_add(refill, ¤t->usage); 675 tctx->cached_refs += refill; 676 } 677 678 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 679 { 680 struct io_uring_task *tctx = task->io_uring; 681 unsigned int refs = tctx->cached_refs; 682 683 if (refs) { 684 tctx->cached_refs = 0; 685 percpu_counter_sub(&tctx->inflight, refs); 686 put_task_struct_many(task, refs); 687 } 688 } 689 690 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 691 s32 res, u32 cflags, u64 extra1, u64 extra2) 692 { 693 struct io_overflow_cqe *ocqe; 694 size_t ocq_size = sizeof(struct io_overflow_cqe); 695 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 696 697 if (is_cqe32) 698 ocq_size += sizeof(struct io_uring_cqe); 699 700 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 701 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 702 if (!ocqe) { 703 /* 704 * If we're in ring overflow flush mode, or in task cancel mode, 705 * or cannot allocate an overflow entry, then we need to drop it 706 * on the floor. 707 */ 708 io_account_cq_overflow(ctx); 709 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 710 return false; 711 } 712 if (list_empty(&ctx->cq_overflow_list)) { 713 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 714 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 715 716 } 717 ocqe->cqe.user_data = user_data; 718 ocqe->cqe.res = res; 719 ocqe->cqe.flags = cflags; 720 if (is_cqe32) { 721 ocqe->cqe.big_cqe[0] = extra1; 722 ocqe->cqe.big_cqe[1] = extra2; 723 } 724 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 725 return true; 726 } 727 728 bool io_req_cqe_overflow(struct io_kiocb *req) 729 { 730 if (!(req->flags & REQ_F_CQE32_INIT)) { 731 req->extra1 = 0; 732 req->extra2 = 0; 733 } 734 return io_cqring_event_overflow(req->ctx, req->cqe.user_data, 735 req->cqe.res, req->cqe.flags, 736 req->extra1, req->extra2); 737 } 738 739 /* 740 * writes to the cq entry need to come after reading head; the 741 * control dependency is enough as we're using WRITE_ONCE to 742 * fill the cq entry 743 */ 744 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow) 745 { 746 struct io_rings *rings = ctx->rings; 747 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 748 unsigned int free, queued, len; 749 750 /* 751 * Posting into the CQ when there are pending overflowed CQEs may break 752 * ordering guarantees, which will affect links, F_MORE users and more. 753 * Force overflow the completion. 754 */ 755 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 756 return NULL; 757 758 /* userspace may cheat modifying the tail, be safe and do min */ 759 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 760 free = ctx->cq_entries - queued; 761 /* we need a contiguous range, limit based on the current array offset */ 762 len = min(free, ctx->cq_entries - off); 763 if (!len) 764 return NULL; 765 766 if (ctx->flags & IORING_SETUP_CQE32) { 767 off <<= 1; 768 len <<= 1; 769 } 770 771 ctx->cqe_cached = &rings->cqes[off]; 772 ctx->cqe_sentinel = ctx->cqe_cached + len; 773 774 ctx->cached_cq_tail++; 775 ctx->cqe_cached++; 776 if (ctx->flags & IORING_SETUP_CQE32) 777 ctx->cqe_cached++; 778 return &rings->cqes[off]; 779 } 780 781 bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 782 bool allow_overflow) 783 { 784 struct io_uring_cqe *cqe; 785 786 ctx->cq_extra++; 787 788 /* 789 * If we can't get a cq entry, userspace overflowed the 790 * submission (by quite a lot). Increment the overflow count in 791 * the ring. 792 */ 793 cqe = io_get_cqe(ctx); 794 if (likely(cqe)) { 795 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 796 797 WRITE_ONCE(cqe->user_data, user_data); 798 WRITE_ONCE(cqe->res, res); 799 WRITE_ONCE(cqe->flags, cflags); 800 801 if (ctx->flags & IORING_SETUP_CQE32) { 802 WRITE_ONCE(cqe->big_cqe[0], 0); 803 WRITE_ONCE(cqe->big_cqe[1], 0); 804 } 805 return true; 806 } 807 808 if (allow_overflow) 809 return io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 810 811 return false; 812 } 813 814 bool io_post_aux_cqe(struct io_ring_ctx *ctx, 815 u64 user_data, s32 res, u32 cflags, 816 bool allow_overflow) 817 { 818 bool filled; 819 820 io_cq_lock(ctx); 821 filled = io_fill_cqe_aux(ctx, user_data, res, cflags, allow_overflow); 822 io_cq_unlock_post(ctx); 823 return filled; 824 } 825 826 static void __io_req_complete_put(struct io_kiocb *req) 827 { 828 /* 829 * If we're the last reference to this request, add to our locked 830 * free_list cache. 831 */ 832 if (req_ref_put_and_test(req)) { 833 struct io_ring_ctx *ctx = req->ctx; 834 835 if (req->flags & IO_REQ_LINK_FLAGS) { 836 if (req->flags & IO_DISARM_MASK) 837 io_disarm_next(req); 838 if (req->link) { 839 io_req_task_queue(req->link); 840 req->link = NULL; 841 } 842 } 843 io_req_put_rsrc(req); 844 /* 845 * Selected buffer deallocation in io_clean_op() assumes that 846 * we don't hold ->completion_lock. Clean them here to avoid 847 * deadlocks. 848 */ 849 io_put_kbuf_comp(req); 850 io_dismantle_req(req); 851 io_put_task(req->task, 1); 852 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 853 ctx->locked_free_nr++; 854 } 855 } 856 857 void __io_req_complete_post(struct io_kiocb *req) 858 { 859 if (!(req->flags & REQ_F_CQE_SKIP)) 860 __io_fill_cqe_req(req->ctx, req); 861 __io_req_complete_put(req); 862 } 863 864 void io_req_complete_post(struct io_kiocb *req) 865 { 866 struct io_ring_ctx *ctx = req->ctx; 867 868 io_cq_lock(ctx); 869 __io_req_complete_post(req); 870 io_cq_unlock_post(ctx); 871 } 872 873 inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags) 874 { 875 io_req_complete_post(req); 876 } 877 878 void io_req_complete_failed(struct io_kiocb *req, s32 res) 879 { 880 const struct io_op_def *def = &io_op_defs[req->opcode]; 881 882 req_set_fail(req); 883 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 884 if (def->fail) 885 def->fail(req); 886 io_req_complete_post(req); 887 } 888 889 /* 890 * Don't initialise the fields below on every allocation, but do that in 891 * advance and keep them valid across allocations. 892 */ 893 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 894 { 895 req->ctx = ctx; 896 req->link = NULL; 897 req->async_data = NULL; 898 /* not necessary, but safer to zero */ 899 req->cqe.res = 0; 900 } 901 902 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 903 struct io_submit_state *state) 904 { 905 spin_lock(&ctx->completion_lock); 906 wq_list_splice(&ctx->locked_free_list, &state->free_list); 907 ctx->locked_free_nr = 0; 908 spin_unlock(&ctx->completion_lock); 909 } 910 911 /* 912 * A request might get retired back into the request caches even before opcode 913 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 914 * Because of that, io_alloc_req() should be called only under ->uring_lock 915 * and with extra caution to not get a request that is still worked on. 916 */ 917 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 918 __must_hold(&ctx->uring_lock) 919 { 920 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 921 void *reqs[IO_REQ_ALLOC_BATCH]; 922 int ret, i; 923 924 /* 925 * If we have more than a batch's worth of requests in our IRQ side 926 * locked cache, grab the lock and move them over to our submission 927 * side cache. 928 */ 929 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 930 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 931 if (!io_req_cache_empty(ctx)) 932 return true; 933 } 934 935 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 936 937 /* 938 * Bulk alloc is all-or-nothing. If we fail to get a batch, 939 * retry single alloc to be on the safe side. 940 */ 941 if (unlikely(ret <= 0)) { 942 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 943 if (!reqs[0]) 944 return false; 945 ret = 1; 946 } 947 948 percpu_ref_get_many(&ctx->refs, ret); 949 for (i = 0; i < ret; i++) { 950 struct io_kiocb *req = reqs[i]; 951 952 io_preinit_req(req, ctx); 953 io_req_add_to_cache(req, ctx); 954 } 955 return true; 956 } 957 958 static inline void io_dismantle_req(struct io_kiocb *req) 959 { 960 unsigned int flags = req->flags; 961 962 if (unlikely(flags & IO_REQ_CLEAN_FLAGS)) 963 io_clean_op(req); 964 if (!(flags & REQ_F_FIXED_FILE)) 965 io_put_file(req->file); 966 } 967 968 __cold void io_free_req(struct io_kiocb *req) 969 { 970 struct io_ring_ctx *ctx = req->ctx; 971 972 io_req_put_rsrc(req); 973 io_dismantle_req(req); 974 io_put_task(req->task, 1); 975 976 spin_lock(&ctx->completion_lock); 977 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 978 ctx->locked_free_nr++; 979 spin_unlock(&ctx->completion_lock); 980 } 981 982 static void __io_req_find_next_prep(struct io_kiocb *req) 983 { 984 struct io_ring_ctx *ctx = req->ctx; 985 986 io_cq_lock(ctx); 987 io_disarm_next(req); 988 io_cq_unlock_post(ctx); 989 } 990 991 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 992 { 993 struct io_kiocb *nxt; 994 995 /* 996 * If LINK is set, we have dependent requests in this chain. If we 997 * didn't fail this request, queue the first one up, moving any other 998 * dependencies to the next request. In case of failure, fail the rest 999 * of the chain. 1000 */ 1001 if (unlikely(req->flags & IO_DISARM_MASK)) 1002 __io_req_find_next_prep(req); 1003 nxt = req->link; 1004 req->link = NULL; 1005 return nxt; 1006 } 1007 1008 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked) 1009 { 1010 if (!ctx) 1011 return; 1012 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1013 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1014 if (*locked) { 1015 io_submit_flush_completions(ctx); 1016 mutex_unlock(&ctx->uring_lock); 1017 *locked = false; 1018 } 1019 percpu_ref_put(&ctx->refs); 1020 } 1021 1022 static unsigned int handle_tw_list(struct llist_node *node, 1023 struct io_ring_ctx **ctx, bool *locked, 1024 struct llist_node *last) 1025 { 1026 unsigned int count = 0; 1027 1028 while (node != last) { 1029 struct llist_node *next = node->next; 1030 struct io_kiocb *req = container_of(node, struct io_kiocb, 1031 io_task_work.node); 1032 1033 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1034 1035 if (req->ctx != *ctx) { 1036 ctx_flush_and_put(*ctx, locked); 1037 *ctx = req->ctx; 1038 /* if not contended, grab and improve batching */ 1039 *locked = mutex_trylock(&(*ctx)->uring_lock); 1040 percpu_ref_get(&(*ctx)->refs); 1041 } 1042 req->io_task_work.func(req, locked); 1043 node = next; 1044 count++; 1045 } 1046 1047 return count; 1048 } 1049 1050 /** 1051 * io_llist_xchg - swap all entries in a lock-less list 1052 * @head: the head of lock-less list to delete all entries 1053 * @new: new entry as the head of the list 1054 * 1055 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1056 * The order of entries returned is from the newest to the oldest added one. 1057 */ 1058 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1059 struct llist_node *new) 1060 { 1061 return xchg(&head->first, new); 1062 } 1063 1064 /** 1065 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1066 * @head: the head of lock-less list to delete all entries 1067 * @old: expected old value of the first entry of the list 1068 * @new: new entry as the head of the list 1069 * 1070 * perform a cmpxchg on the first entry of the list. 1071 */ 1072 1073 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1074 struct llist_node *old, 1075 struct llist_node *new) 1076 { 1077 return cmpxchg(&head->first, old, new); 1078 } 1079 1080 void tctx_task_work(struct callback_head *cb) 1081 { 1082 bool uring_locked = false; 1083 struct io_ring_ctx *ctx = NULL; 1084 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1085 task_work); 1086 struct llist_node fake = {}; 1087 struct llist_node *node = io_llist_xchg(&tctx->task_list, &fake); 1088 unsigned int loops = 1; 1089 unsigned int count = handle_tw_list(node, &ctx, &uring_locked, NULL); 1090 1091 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1092 while (node != &fake) { 1093 loops++; 1094 node = io_llist_xchg(&tctx->task_list, &fake); 1095 count += handle_tw_list(node, &ctx, &uring_locked, &fake); 1096 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1097 } 1098 1099 ctx_flush_and_put(ctx, &uring_locked); 1100 1101 /* relaxed read is enough as only the task itself sets ->in_idle */ 1102 if (unlikely(atomic_read(&tctx->in_idle))) 1103 io_uring_drop_tctx_refs(current); 1104 1105 trace_io_uring_task_work_run(tctx, count, loops); 1106 } 1107 1108 static void io_req_local_work_add(struct io_kiocb *req) 1109 { 1110 struct io_ring_ctx *ctx = req->ctx; 1111 1112 if (!llist_add(&req->io_task_work.node, &ctx->work_llist)) 1113 return; 1114 /* need it for the following io_cqring_wake() */ 1115 smp_mb__after_atomic(); 1116 1117 if (unlikely(atomic_read(&req->task->io_uring->in_idle))) { 1118 io_move_task_work_from_local(ctx); 1119 return; 1120 } 1121 1122 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1123 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1124 1125 if (ctx->has_evfd) 1126 io_eventfd_signal(ctx); 1127 __io_cqring_wake(ctx); 1128 } 1129 1130 static inline void __io_req_task_work_add(struct io_kiocb *req, bool allow_local) 1131 { 1132 struct io_uring_task *tctx = req->task->io_uring; 1133 struct io_ring_ctx *ctx = req->ctx; 1134 struct llist_node *node; 1135 1136 if (allow_local && ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1137 io_req_local_work_add(req); 1138 return; 1139 } 1140 1141 /* task_work already pending, we're done */ 1142 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1143 return; 1144 1145 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1146 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1147 1148 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1149 return; 1150 1151 node = llist_del_all(&tctx->task_list); 1152 1153 while (node) { 1154 req = container_of(node, struct io_kiocb, io_task_work.node); 1155 node = node->next; 1156 if (llist_add(&req->io_task_work.node, 1157 &req->ctx->fallback_llist)) 1158 schedule_delayed_work(&req->ctx->fallback_work, 1); 1159 } 1160 } 1161 1162 void io_req_task_work_add(struct io_kiocb *req) 1163 { 1164 __io_req_task_work_add(req, true); 1165 } 1166 1167 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1168 { 1169 struct llist_node *node; 1170 1171 node = llist_del_all(&ctx->work_llist); 1172 while (node) { 1173 struct io_kiocb *req = container_of(node, struct io_kiocb, 1174 io_task_work.node); 1175 1176 node = node->next; 1177 __io_req_task_work_add(req, false); 1178 } 1179 } 1180 1181 int __io_run_local_work(struct io_ring_ctx *ctx, bool *locked) 1182 { 1183 struct llist_node *node; 1184 struct llist_node fake; 1185 struct llist_node *current_final = NULL; 1186 int ret; 1187 unsigned int loops = 1; 1188 1189 if (unlikely(ctx->submitter_task != current)) 1190 return -EEXIST; 1191 1192 node = io_llist_xchg(&ctx->work_llist, &fake); 1193 ret = 0; 1194 again: 1195 while (node != current_final) { 1196 struct llist_node *next = node->next; 1197 struct io_kiocb *req = container_of(node, struct io_kiocb, 1198 io_task_work.node); 1199 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1200 req->io_task_work.func(req, locked); 1201 ret++; 1202 node = next; 1203 } 1204 1205 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1206 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1207 1208 node = io_llist_cmpxchg(&ctx->work_llist, &fake, NULL); 1209 if (node != &fake) { 1210 loops++; 1211 current_final = &fake; 1212 node = io_llist_xchg(&ctx->work_llist, &fake); 1213 goto again; 1214 } 1215 1216 if (*locked) 1217 io_submit_flush_completions(ctx); 1218 trace_io_uring_local_work_run(ctx, ret, loops); 1219 return ret; 1220 1221 } 1222 1223 int io_run_local_work(struct io_ring_ctx *ctx) 1224 { 1225 bool locked; 1226 int ret; 1227 1228 if (llist_empty(&ctx->work_llist)) 1229 return 0; 1230 1231 __set_current_state(TASK_RUNNING); 1232 locked = mutex_trylock(&ctx->uring_lock); 1233 ret = __io_run_local_work(ctx, &locked); 1234 if (locked) 1235 mutex_unlock(&ctx->uring_lock); 1236 1237 return ret; 1238 } 1239 1240 static void io_req_tw_post(struct io_kiocb *req, bool *locked) 1241 { 1242 io_req_complete_post(req); 1243 } 1244 1245 void io_req_tw_post_queue(struct io_kiocb *req, s32 res, u32 cflags) 1246 { 1247 io_req_set_res(req, res, cflags); 1248 req->io_task_work.func = io_req_tw_post; 1249 io_req_task_work_add(req); 1250 } 1251 1252 static void io_req_task_cancel(struct io_kiocb *req, bool *locked) 1253 { 1254 /* not needed for normal modes, but SQPOLL depends on it */ 1255 io_tw_lock(req->ctx, locked); 1256 io_req_complete_failed(req, req->cqe.res); 1257 } 1258 1259 void io_req_task_submit(struct io_kiocb *req, bool *locked) 1260 { 1261 io_tw_lock(req->ctx, locked); 1262 /* req->task == current here, checking PF_EXITING is safe */ 1263 if (likely(!(req->task->flags & PF_EXITING))) 1264 io_queue_sqe(req); 1265 else 1266 io_req_complete_failed(req, -EFAULT); 1267 } 1268 1269 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1270 { 1271 io_req_set_res(req, ret, 0); 1272 req->io_task_work.func = io_req_task_cancel; 1273 io_req_task_work_add(req); 1274 } 1275 1276 void io_req_task_queue(struct io_kiocb *req) 1277 { 1278 req->io_task_work.func = io_req_task_submit; 1279 io_req_task_work_add(req); 1280 } 1281 1282 void io_queue_next(struct io_kiocb *req) 1283 { 1284 struct io_kiocb *nxt = io_req_find_next(req); 1285 1286 if (nxt) 1287 io_req_task_queue(nxt); 1288 } 1289 1290 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node) 1291 __must_hold(&ctx->uring_lock) 1292 { 1293 struct task_struct *task = NULL; 1294 int task_refs = 0; 1295 1296 do { 1297 struct io_kiocb *req = container_of(node, struct io_kiocb, 1298 comp_list); 1299 1300 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1301 if (req->flags & REQ_F_REFCOUNT) { 1302 node = req->comp_list.next; 1303 if (!req_ref_put_and_test(req)) 1304 continue; 1305 } 1306 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1307 struct async_poll *apoll = req->apoll; 1308 1309 if (apoll->double_poll) 1310 kfree(apoll->double_poll); 1311 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1312 kfree(apoll); 1313 req->flags &= ~REQ_F_POLLED; 1314 } 1315 if (req->flags & IO_REQ_LINK_FLAGS) 1316 io_queue_next(req); 1317 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1318 io_clean_op(req); 1319 } 1320 if (!(req->flags & REQ_F_FIXED_FILE)) 1321 io_put_file(req->file); 1322 1323 io_req_put_rsrc_locked(req, ctx); 1324 1325 if (req->task != task) { 1326 if (task) 1327 io_put_task(task, task_refs); 1328 task = req->task; 1329 task_refs = 0; 1330 } 1331 task_refs++; 1332 node = req->comp_list.next; 1333 io_req_add_to_cache(req, ctx); 1334 } while (node); 1335 1336 if (task) 1337 io_put_task(task, task_refs); 1338 } 1339 1340 static void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1341 __must_hold(&ctx->uring_lock) 1342 { 1343 struct io_wq_work_node *node, *prev; 1344 struct io_submit_state *state = &ctx->submit_state; 1345 1346 io_cq_lock(ctx); 1347 wq_list_for_each(node, prev, &state->compl_reqs) { 1348 struct io_kiocb *req = container_of(node, struct io_kiocb, 1349 comp_list); 1350 1351 if (!(req->flags & REQ_F_CQE_SKIP)) 1352 __io_fill_cqe_req(ctx, req); 1353 } 1354 __io_cq_unlock_post(ctx); 1355 1356 io_free_batch_list(ctx, state->compl_reqs.first); 1357 INIT_WQ_LIST(&state->compl_reqs); 1358 } 1359 1360 /* 1361 * Drop reference to request, return next in chain (if there is one) if this 1362 * was the last reference to this request. 1363 */ 1364 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req) 1365 { 1366 struct io_kiocb *nxt = NULL; 1367 1368 if (req_ref_put_and_test(req)) { 1369 if (unlikely(req->flags & IO_REQ_LINK_FLAGS)) 1370 nxt = io_req_find_next(req); 1371 io_free_req(req); 1372 } 1373 return nxt; 1374 } 1375 1376 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1377 { 1378 /* See comment at the top of this file */ 1379 smp_rmb(); 1380 return __io_cqring_events(ctx); 1381 } 1382 1383 /* 1384 * We can't just wait for polled events to come to us, we have to actively 1385 * find and complete them. 1386 */ 1387 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1388 { 1389 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1390 return; 1391 1392 mutex_lock(&ctx->uring_lock); 1393 while (!wq_list_empty(&ctx->iopoll_list)) { 1394 /* let it sleep and repeat later if can't complete a request */ 1395 if (io_do_iopoll(ctx, true) == 0) 1396 break; 1397 /* 1398 * Ensure we allow local-to-the-cpu processing to take place, 1399 * in this case we need to ensure that we reap all events. 1400 * Also let task_work, etc. to progress by releasing the mutex 1401 */ 1402 if (need_resched()) { 1403 mutex_unlock(&ctx->uring_lock); 1404 cond_resched(); 1405 mutex_lock(&ctx->uring_lock); 1406 } 1407 } 1408 mutex_unlock(&ctx->uring_lock); 1409 } 1410 1411 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1412 { 1413 unsigned int nr_events = 0; 1414 int ret = 0; 1415 unsigned long check_cq; 1416 1417 if (!io_allowed_run_tw(ctx)) 1418 return -EEXIST; 1419 1420 check_cq = READ_ONCE(ctx->check_cq); 1421 if (unlikely(check_cq)) { 1422 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1423 __io_cqring_overflow_flush(ctx, false); 1424 /* 1425 * Similarly do not spin if we have not informed the user of any 1426 * dropped CQE. 1427 */ 1428 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1429 return -EBADR; 1430 } 1431 /* 1432 * Don't enter poll loop if we already have events pending. 1433 * If we do, we can potentially be spinning for commands that 1434 * already triggered a CQE (eg in error). 1435 */ 1436 if (io_cqring_events(ctx)) 1437 return 0; 1438 1439 do { 1440 /* 1441 * If a submit got punted to a workqueue, we can have the 1442 * application entering polling for a command before it gets 1443 * issued. That app will hold the uring_lock for the duration 1444 * of the poll right here, so we need to take a breather every 1445 * now and then to ensure that the issue has a chance to add 1446 * the poll to the issued list. Otherwise we can spin here 1447 * forever, while the workqueue is stuck trying to acquire the 1448 * very same mutex. 1449 */ 1450 if (wq_list_empty(&ctx->iopoll_list) || 1451 io_task_work_pending(ctx)) { 1452 u32 tail = ctx->cached_cq_tail; 1453 1454 (void) io_run_local_work_locked(ctx); 1455 1456 if (task_work_pending(current) || 1457 wq_list_empty(&ctx->iopoll_list)) { 1458 mutex_unlock(&ctx->uring_lock); 1459 io_run_task_work(); 1460 mutex_lock(&ctx->uring_lock); 1461 } 1462 /* some requests don't go through iopoll_list */ 1463 if (tail != ctx->cached_cq_tail || 1464 wq_list_empty(&ctx->iopoll_list)) 1465 break; 1466 } 1467 ret = io_do_iopoll(ctx, !min); 1468 if (ret < 0) 1469 break; 1470 nr_events += ret; 1471 ret = 0; 1472 } while (nr_events < min && !need_resched()); 1473 1474 return ret; 1475 } 1476 1477 void io_req_task_complete(struct io_kiocb *req, bool *locked) 1478 { 1479 if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)) { 1480 unsigned issue_flags = *locked ? 0 : IO_URING_F_UNLOCKED; 1481 1482 req->cqe.flags |= io_put_kbuf(req, issue_flags); 1483 } 1484 1485 if (*locked) 1486 io_req_complete_defer(req); 1487 else 1488 io_req_complete_post(req); 1489 } 1490 1491 /* 1492 * After the iocb has been issued, it's safe to be found on the poll list. 1493 * Adding the kiocb to the list AFTER submission ensures that we don't 1494 * find it from a io_do_iopoll() thread before the issuer is done 1495 * accessing the kiocb cookie. 1496 */ 1497 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1498 { 1499 struct io_ring_ctx *ctx = req->ctx; 1500 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1501 1502 /* workqueue context doesn't hold uring_lock, grab it now */ 1503 if (unlikely(needs_lock)) 1504 mutex_lock(&ctx->uring_lock); 1505 1506 /* 1507 * Track whether we have multiple files in our lists. This will impact 1508 * how we do polling eventually, not spinning if we're on potentially 1509 * different devices. 1510 */ 1511 if (wq_list_empty(&ctx->iopoll_list)) { 1512 ctx->poll_multi_queue = false; 1513 } else if (!ctx->poll_multi_queue) { 1514 struct io_kiocb *list_req; 1515 1516 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1517 comp_list); 1518 if (list_req->file != req->file) 1519 ctx->poll_multi_queue = true; 1520 } 1521 1522 /* 1523 * For fast devices, IO may have already completed. If it has, add 1524 * it to the front so we find it first. 1525 */ 1526 if (READ_ONCE(req->iopoll_completed)) 1527 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1528 else 1529 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1530 1531 if (unlikely(needs_lock)) { 1532 /* 1533 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1534 * in sq thread task context or in io worker task context. If 1535 * current task context is sq thread, we don't need to check 1536 * whether should wake up sq thread. 1537 */ 1538 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1539 wq_has_sleeper(&ctx->sq_data->wait)) 1540 wake_up(&ctx->sq_data->wait); 1541 1542 mutex_unlock(&ctx->uring_lock); 1543 } 1544 } 1545 1546 static bool io_bdev_nowait(struct block_device *bdev) 1547 { 1548 return !bdev || bdev_nowait(bdev); 1549 } 1550 1551 /* 1552 * If we tracked the file through the SCM inflight mechanism, we could support 1553 * any file. For now, just ensure that anything potentially problematic is done 1554 * inline. 1555 */ 1556 static bool __io_file_supports_nowait(struct file *file, umode_t mode) 1557 { 1558 if (S_ISBLK(mode)) { 1559 if (IS_ENABLED(CONFIG_BLOCK) && 1560 io_bdev_nowait(I_BDEV(file->f_mapping->host))) 1561 return true; 1562 return false; 1563 } 1564 if (S_ISSOCK(mode)) 1565 return true; 1566 if (S_ISREG(mode)) { 1567 if (IS_ENABLED(CONFIG_BLOCK) && 1568 io_bdev_nowait(file->f_inode->i_sb->s_bdev) && 1569 !io_is_uring_fops(file)) 1570 return true; 1571 return false; 1572 } 1573 1574 /* any ->read/write should understand O_NONBLOCK */ 1575 if (file->f_flags & O_NONBLOCK) 1576 return true; 1577 return file->f_mode & FMODE_NOWAIT; 1578 } 1579 1580 /* 1581 * If we tracked the file through the SCM inflight mechanism, we could support 1582 * any file. For now, just ensure that anything potentially problematic is done 1583 * inline. 1584 */ 1585 unsigned int io_file_get_flags(struct file *file) 1586 { 1587 umode_t mode = file_inode(file)->i_mode; 1588 unsigned int res = 0; 1589 1590 if (S_ISREG(mode)) 1591 res |= FFS_ISREG; 1592 if (__io_file_supports_nowait(file, mode)) 1593 res |= FFS_NOWAIT; 1594 return res; 1595 } 1596 1597 bool io_alloc_async_data(struct io_kiocb *req) 1598 { 1599 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size); 1600 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL); 1601 if (req->async_data) { 1602 req->flags |= REQ_F_ASYNC_DATA; 1603 return false; 1604 } 1605 return true; 1606 } 1607 1608 int io_req_prep_async(struct io_kiocb *req) 1609 { 1610 const struct io_op_def *def = &io_op_defs[req->opcode]; 1611 1612 /* assign early for deferred execution for non-fixed file */ 1613 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE)) 1614 req->file = io_file_get_normal(req, req->cqe.fd); 1615 if (!def->prep_async) 1616 return 0; 1617 if (WARN_ON_ONCE(req_has_async_data(req))) 1618 return -EFAULT; 1619 if (!io_op_defs[req->opcode].manual_alloc) { 1620 if (io_alloc_async_data(req)) 1621 return -EAGAIN; 1622 } 1623 return def->prep_async(req); 1624 } 1625 1626 static u32 io_get_sequence(struct io_kiocb *req) 1627 { 1628 u32 seq = req->ctx->cached_sq_head; 1629 struct io_kiocb *cur; 1630 1631 /* need original cached_sq_head, but it was increased for each req */ 1632 io_for_each_link(cur, req) 1633 seq--; 1634 return seq; 1635 } 1636 1637 static __cold void io_drain_req(struct io_kiocb *req) 1638 { 1639 struct io_ring_ctx *ctx = req->ctx; 1640 struct io_defer_entry *de; 1641 int ret; 1642 u32 seq = io_get_sequence(req); 1643 1644 /* Still need defer if there is pending req in defer list. */ 1645 spin_lock(&ctx->completion_lock); 1646 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1647 spin_unlock(&ctx->completion_lock); 1648 queue: 1649 ctx->drain_active = false; 1650 io_req_task_queue(req); 1651 return; 1652 } 1653 spin_unlock(&ctx->completion_lock); 1654 1655 ret = io_req_prep_async(req); 1656 if (ret) { 1657 fail: 1658 io_req_complete_failed(req, ret); 1659 return; 1660 } 1661 io_prep_async_link(req); 1662 de = kmalloc(sizeof(*de), GFP_KERNEL); 1663 if (!de) { 1664 ret = -ENOMEM; 1665 goto fail; 1666 } 1667 1668 spin_lock(&ctx->completion_lock); 1669 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1670 spin_unlock(&ctx->completion_lock); 1671 kfree(de); 1672 goto queue; 1673 } 1674 1675 trace_io_uring_defer(req); 1676 de->req = req; 1677 de->seq = seq; 1678 list_add_tail(&de->list, &ctx->defer_list); 1679 spin_unlock(&ctx->completion_lock); 1680 } 1681 1682 static void io_clean_op(struct io_kiocb *req) 1683 { 1684 if (req->flags & REQ_F_BUFFER_SELECTED) { 1685 spin_lock(&req->ctx->completion_lock); 1686 io_put_kbuf_comp(req); 1687 spin_unlock(&req->ctx->completion_lock); 1688 } 1689 1690 if (req->flags & REQ_F_NEED_CLEANUP) { 1691 const struct io_op_def *def = &io_op_defs[req->opcode]; 1692 1693 if (def->cleanup) 1694 def->cleanup(req); 1695 } 1696 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1697 kfree(req->apoll->double_poll); 1698 kfree(req->apoll); 1699 req->apoll = NULL; 1700 } 1701 if (req->flags & REQ_F_INFLIGHT) { 1702 struct io_uring_task *tctx = req->task->io_uring; 1703 1704 atomic_dec(&tctx->inflight_tracked); 1705 } 1706 if (req->flags & REQ_F_CREDS) 1707 put_cred(req->creds); 1708 if (req->flags & REQ_F_ASYNC_DATA) { 1709 kfree(req->async_data); 1710 req->async_data = NULL; 1711 } 1712 req->flags &= ~IO_REQ_CLEAN_FLAGS; 1713 } 1714 1715 static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags) 1716 { 1717 if (req->file || !io_op_defs[req->opcode].needs_file) 1718 return true; 1719 1720 if (req->flags & REQ_F_FIXED_FILE) 1721 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1722 else 1723 req->file = io_file_get_normal(req, req->cqe.fd); 1724 1725 return !!req->file; 1726 } 1727 1728 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1729 { 1730 const struct io_op_def *def = &io_op_defs[req->opcode]; 1731 const struct cred *creds = NULL; 1732 int ret; 1733 1734 if (unlikely(!io_assign_file(req, issue_flags))) 1735 return -EBADF; 1736 1737 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1738 creds = override_creds(req->creds); 1739 1740 if (!def->audit_skip) 1741 audit_uring_entry(req->opcode); 1742 1743 ret = def->issue(req, issue_flags); 1744 1745 if (!def->audit_skip) 1746 audit_uring_exit(!ret, ret); 1747 1748 if (creds) 1749 revert_creds(creds); 1750 1751 if (ret == IOU_OK) { 1752 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1753 io_req_complete_defer(req); 1754 else 1755 io_req_complete_post(req); 1756 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1757 return ret; 1758 1759 /* If the op doesn't have a file, we're not polling for it */ 1760 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && req->file) 1761 io_iopoll_req_issued(req, issue_flags); 1762 1763 return 0; 1764 } 1765 1766 int io_poll_issue(struct io_kiocb *req, bool *locked) 1767 { 1768 io_tw_lock(req->ctx, locked); 1769 if (unlikely(req->task->flags & PF_EXITING)) 1770 return -EFAULT; 1771 return io_issue_sqe(req, IO_URING_F_NONBLOCK); 1772 } 1773 1774 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1775 { 1776 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1777 1778 req = io_put_req_find_next(req); 1779 return req ? &req->work : NULL; 1780 } 1781 1782 void io_wq_submit_work(struct io_wq_work *work) 1783 { 1784 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1785 const struct io_op_def *def = &io_op_defs[req->opcode]; 1786 unsigned int issue_flags = IO_URING_F_UNLOCKED; 1787 bool needs_poll = false; 1788 int ret = 0, err = -ECANCELED; 1789 1790 /* one will be dropped by ->io_free_work() after returning to io-wq */ 1791 if (!(req->flags & REQ_F_REFCOUNT)) 1792 __io_req_set_refcount(req, 2); 1793 else 1794 req_ref_get(req); 1795 1796 io_arm_ltimeout(req); 1797 1798 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1799 if (work->flags & IO_WQ_WORK_CANCEL) { 1800 fail: 1801 io_req_task_queue_fail(req, err); 1802 return; 1803 } 1804 if (!io_assign_file(req, issue_flags)) { 1805 err = -EBADF; 1806 work->flags |= IO_WQ_WORK_CANCEL; 1807 goto fail; 1808 } 1809 1810 if (req->flags & REQ_F_FORCE_ASYNC) { 1811 bool opcode_poll = def->pollin || def->pollout; 1812 1813 if (opcode_poll && file_can_poll(req->file)) { 1814 needs_poll = true; 1815 issue_flags |= IO_URING_F_NONBLOCK; 1816 } 1817 } 1818 1819 do { 1820 ret = io_issue_sqe(req, issue_flags); 1821 if (ret != -EAGAIN) 1822 break; 1823 /* 1824 * We can get EAGAIN for iopolled IO even though we're 1825 * forcing a sync submission from here, since we can't 1826 * wait for request slots on the block side. 1827 */ 1828 if (!needs_poll) { 1829 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1830 break; 1831 cond_resched(); 1832 continue; 1833 } 1834 1835 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1836 return; 1837 /* aborted or ready, in either case retry blocking */ 1838 needs_poll = false; 1839 issue_flags &= ~IO_URING_F_NONBLOCK; 1840 } while (1); 1841 1842 /* avoid locking problems by failing it from a clean context */ 1843 if (ret < 0) 1844 io_req_task_queue_fail(req, ret); 1845 } 1846 1847 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1848 unsigned int issue_flags) 1849 { 1850 struct io_ring_ctx *ctx = req->ctx; 1851 struct file *file = NULL; 1852 unsigned long file_ptr; 1853 1854 io_ring_submit_lock(ctx, issue_flags); 1855 1856 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 1857 goto out; 1858 fd = array_index_nospec(fd, ctx->nr_user_files); 1859 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr; 1860 file = (struct file *) (file_ptr & FFS_MASK); 1861 file_ptr &= ~FFS_MASK; 1862 /* mask in overlapping REQ_F and FFS bits */ 1863 req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT); 1864 io_req_set_rsrc_node(req, ctx, 0); 1865 out: 1866 io_ring_submit_unlock(ctx, issue_flags); 1867 return file; 1868 } 1869 1870 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1871 { 1872 struct file *file = fget(fd); 1873 1874 trace_io_uring_file_get(req, fd); 1875 1876 /* we don't allow fixed io_uring files */ 1877 if (file && io_is_uring_fops(file)) 1878 io_req_track_inflight(req); 1879 return file; 1880 } 1881 1882 static void io_queue_async(struct io_kiocb *req, int ret) 1883 __must_hold(&req->ctx->uring_lock) 1884 { 1885 struct io_kiocb *linked_timeout; 1886 1887 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1888 io_req_complete_failed(req, ret); 1889 return; 1890 } 1891 1892 linked_timeout = io_prep_linked_timeout(req); 1893 1894 switch (io_arm_poll_handler(req, 0)) { 1895 case IO_APOLL_READY: 1896 io_kbuf_recycle(req, 0); 1897 io_req_task_queue(req); 1898 break; 1899 case IO_APOLL_ABORTED: 1900 io_kbuf_recycle(req, 0); 1901 io_queue_iowq(req, NULL); 1902 break; 1903 case IO_APOLL_OK: 1904 break; 1905 } 1906 1907 if (linked_timeout) 1908 io_queue_linked_timeout(linked_timeout); 1909 } 1910 1911 static inline void io_queue_sqe(struct io_kiocb *req) 1912 __must_hold(&req->ctx->uring_lock) 1913 { 1914 int ret; 1915 1916 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 1917 1918 /* 1919 * We async punt it if the file wasn't marked NOWAIT, or if the file 1920 * doesn't support non-blocking read/write attempts 1921 */ 1922 if (likely(!ret)) 1923 io_arm_ltimeout(req); 1924 else 1925 io_queue_async(req, ret); 1926 } 1927 1928 static void io_queue_sqe_fallback(struct io_kiocb *req) 1929 __must_hold(&req->ctx->uring_lock) 1930 { 1931 if (unlikely(req->flags & REQ_F_FAIL)) { 1932 /* 1933 * We don't submit, fail them all, for that replace hardlinks 1934 * with normal links. Extra REQ_F_LINK is tolerated. 1935 */ 1936 req->flags &= ~REQ_F_HARDLINK; 1937 req->flags |= REQ_F_LINK; 1938 io_req_complete_failed(req, req->cqe.res); 1939 } else if (unlikely(req->ctx->drain_active)) { 1940 io_drain_req(req); 1941 } else { 1942 int ret = io_req_prep_async(req); 1943 1944 if (unlikely(ret)) 1945 io_req_complete_failed(req, ret); 1946 else 1947 io_queue_iowq(req, NULL); 1948 } 1949 } 1950 1951 /* 1952 * Check SQE restrictions (opcode and flags). 1953 * 1954 * Returns 'true' if SQE is allowed, 'false' otherwise. 1955 */ 1956 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 1957 struct io_kiocb *req, 1958 unsigned int sqe_flags) 1959 { 1960 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 1961 return false; 1962 1963 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 1964 ctx->restrictions.sqe_flags_required) 1965 return false; 1966 1967 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 1968 ctx->restrictions.sqe_flags_required)) 1969 return false; 1970 1971 return true; 1972 } 1973 1974 static void io_init_req_drain(struct io_kiocb *req) 1975 { 1976 struct io_ring_ctx *ctx = req->ctx; 1977 struct io_kiocb *head = ctx->submit_state.link.head; 1978 1979 ctx->drain_active = true; 1980 if (head) { 1981 /* 1982 * If we need to drain a request in the middle of a link, drain 1983 * the head request and the next request/link after the current 1984 * link. Considering sequential execution of links, 1985 * REQ_F_IO_DRAIN will be maintained for every request of our 1986 * link. 1987 */ 1988 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 1989 ctx->drain_next = true; 1990 } 1991 } 1992 1993 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 1994 const struct io_uring_sqe *sqe) 1995 __must_hold(&ctx->uring_lock) 1996 { 1997 const struct io_op_def *def; 1998 unsigned int sqe_flags; 1999 int personality; 2000 u8 opcode; 2001 2002 /* req is partially pre-initialised, see io_preinit_req() */ 2003 req->opcode = opcode = READ_ONCE(sqe->opcode); 2004 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2005 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2006 req->cqe.user_data = READ_ONCE(sqe->user_data); 2007 req->file = NULL; 2008 req->rsrc_node = NULL; 2009 req->task = current; 2010 2011 if (unlikely(opcode >= IORING_OP_LAST)) { 2012 req->opcode = 0; 2013 return -EINVAL; 2014 } 2015 def = &io_op_defs[opcode]; 2016 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2017 /* enforce forwards compatibility on users */ 2018 if (sqe_flags & ~SQE_VALID_FLAGS) 2019 return -EINVAL; 2020 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2021 if (!def->buffer_select) 2022 return -EOPNOTSUPP; 2023 req->buf_index = READ_ONCE(sqe->buf_group); 2024 } 2025 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2026 ctx->drain_disabled = true; 2027 if (sqe_flags & IOSQE_IO_DRAIN) { 2028 if (ctx->drain_disabled) 2029 return -EOPNOTSUPP; 2030 io_init_req_drain(req); 2031 } 2032 } 2033 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2034 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2035 return -EACCES; 2036 /* knock it to the slow queue path, will be drained there */ 2037 if (ctx->drain_active) 2038 req->flags |= REQ_F_FORCE_ASYNC; 2039 /* if there is no link, we're at "next" request and need to drain */ 2040 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2041 ctx->drain_next = false; 2042 ctx->drain_active = true; 2043 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2044 } 2045 } 2046 2047 if (!def->ioprio && sqe->ioprio) 2048 return -EINVAL; 2049 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2050 return -EINVAL; 2051 2052 if (def->needs_file) { 2053 struct io_submit_state *state = &ctx->submit_state; 2054 2055 req->cqe.fd = READ_ONCE(sqe->fd); 2056 2057 /* 2058 * Plug now if we have more than 2 IO left after this, and the 2059 * target is potentially a read/write to block based storage. 2060 */ 2061 if (state->need_plug && def->plug) { 2062 state->plug_started = true; 2063 state->need_plug = false; 2064 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2065 } 2066 } 2067 2068 personality = READ_ONCE(sqe->personality); 2069 if (personality) { 2070 int ret; 2071 2072 req->creds = xa_load(&ctx->personalities, personality); 2073 if (!req->creds) 2074 return -EINVAL; 2075 get_cred(req->creds); 2076 ret = security_uring_override_creds(req->creds); 2077 if (ret) { 2078 put_cred(req->creds); 2079 return ret; 2080 } 2081 req->flags |= REQ_F_CREDS; 2082 } 2083 2084 return def->prep(req, sqe); 2085 } 2086 2087 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2088 struct io_kiocb *req, int ret) 2089 { 2090 struct io_ring_ctx *ctx = req->ctx; 2091 struct io_submit_link *link = &ctx->submit_state.link; 2092 struct io_kiocb *head = link->head; 2093 2094 trace_io_uring_req_failed(sqe, req, ret); 2095 2096 /* 2097 * Avoid breaking links in the middle as it renders links with SQPOLL 2098 * unusable. Instead of failing eagerly, continue assembling the link if 2099 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2100 * should find the flag and handle the rest. 2101 */ 2102 req_fail_link_node(req, ret); 2103 if (head && !(head->flags & REQ_F_FAIL)) 2104 req_fail_link_node(head, -ECANCELED); 2105 2106 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2107 if (head) { 2108 link->last->link = req; 2109 link->head = NULL; 2110 req = head; 2111 } 2112 io_queue_sqe_fallback(req); 2113 return ret; 2114 } 2115 2116 if (head) 2117 link->last->link = req; 2118 else 2119 link->head = req; 2120 link->last = req; 2121 return 0; 2122 } 2123 2124 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2125 const struct io_uring_sqe *sqe) 2126 __must_hold(&ctx->uring_lock) 2127 { 2128 struct io_submit_link *link = &ctx->submit_state.link; 2129 int ret; 2130 2131 ret = io_init_req(ctx, req, sqe); 2132 if (unlikely(ret)) 2133 return io_submit_fail_init(sqe, req, ret); 2134 2135 /* don't need @sqe from now on */ 2136 trace_io_uring_submit_sqe(req, true); 2137 2138 /* 2139 * If we already have a head request, queue this one for async 2140 * submittal once the head completes. If we don't have a head but 2141 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2142 * submitted sync once the chain is complete. If none of those 2143 * conditions are true (normal request), then just queue it. 2144 */ 2145 if (unlikely(link->head)) { 2146 ret = io_req_prep_async(req); 2147 if (unlikely(ret)) 2148 return io_submit_fail_init(sqe, req, ret); 2149 2150 trace_io_uring_link(req, link->head); 2151 link->last->link = req; 2152 link->last = req; 2153 2154 if (req->flags & IO_REQ_LINK_FLAGS) 2155 return 0; 2156 /* last request of the link, flush it */ 2157 req = link->head; 2158 link->head = NULL; 2159 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2160 goto fallback; 2161 2162 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2163 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2164 if (req->flags & IO_REQ_LINK_FLAGS) { 2165 link->head = req; 2166 link->last = req; 2167 } else { 2168 fallback: 2169 io_queue_sqe_fallback(req); 2170 } 2171 return 0; 2172 } 2173 2174 io_queue_sqe(req); 2175 return 0; 2176 } 2177 2178 /* 2179 * Batched submission is done, ensure local IO is flushed out. 2180 */ 2181 static void io_submit_state_end(struct io_ring_ctx *ctx) 2182 { 2183 struct io_submit_state *state = &ctx->submit_state; 2184 2185 if (unlikely(state->link.head)) 2186 io_queue_sqe_fallback(state->link.head); 2187 /* flush only after queuing links as they can generate completions */ 2188 io_submit_flush_completions(ctx); 2189 if (state->plug_started) 2190 blk_finish_plug(&state->plug); 2191 } 2192 2193 /* 2194 * Start submission side cache. 2195 */ 2196 static void io_submit_state_start(struct io_submit_state *state, 2197 unsigned int max_ios) 2198 { 2199 state->plug_started = false; 2200 state->need_plug = max_ios > 2; 2201 state->submit_nr = max_ios; 2202 /* set only head, no need to init link_last in advance */ 2203 state->link.head = NULL; 2204 } 2205 2206 static void io_commit_sqring(struct io_ring_ctx *ctx) 2207 { 2208 struct io_rings *rings = ctx->rings; 2209 2210 /* 2211 * Ensure any loads from the SQEs are done at this point, 2212 * since once we write the new head, the application could 2213 * write new data to them. 2214 */ 2215 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2216 } 2217 2218 /* 2219 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2220 * that is mapped by userspace. This means that care needs to be taken to 2221 * ensure that reads are stable, as we cannot rely on userspace always 2222 * being a good citizen. If members of the sqe are validated and then later 2223 * used, it's important that those reads are done through READ_ONCE() to 2224 * prevent a re-load down the line. 2225 */ 2226 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx) 2227 { 2228 unsigned head, mask = ctx->sq_entries - 1; 2229 unsigned sq_idx = ctx->cached_sq_head++ & mask; 2230 2231 /* 2232 * The cached sq head (or cq tail) serves two purposes: 2233 * 2234 * 1) allows us to batch the cost of updating the user visible 2235 * head updates. 2236 * 2) allows the kernel side to track the head on its own, even 2237 * though the application is the one updating it. 2238 */ 2239 head = READ_ONCE(ctx->sq_array[sq_idx]); 2240 if (likely(head < ctx->sq_entries)) { 2241 /* double index for 128-byte SQEs, twice as long */ 2242 if (ctx->flags & IORING_SETUP_SQE128) 2243 head <<= 1; 2244 return &ctx->sq_sqes[head]; 2245 } 2246 2247 /* drop invalid entries */ 2248 ctx->cq_extra--; 2249 WRITE_ONCE(ctx->rings->sq_dropped, 2250 READ_ONCE(ctx->rings->sq_dropped) + 1); 2251 return NULL; 2252 } 2253 2254 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2255 __must_hold(&ctx->uring_lock) 2256 { 2257 unsigned int entries = io_sqring_entries(ctx); 2258 unsigned int left; 2259 int ret; 2260 2261 if (unlikely(!entries)) 2262 return 0; 2263 /* make sure SQ entry isn't read before tail */ 2264 ret = left = min3(nr, ctx->sq_entries, entries); 2265 io_get_task_refs(left); 2266 io_submit_state_start(&ctx->submit_state, left); 2267 2268 do { 2269 const struct io_uring_sqe *sqe; 2270 struct io_kiocb *req; 2271 2272 if (unlikely(!io_alloc_req_refill(ctx))) 2273 break; 2274 req = io_alloc_req(ctx); 2275 sqe = io_get_sqe(ctx); 2276 if (unlikely(!sqe)) { 2277 io_req_add_to_cache(req, ctx); 2278 break; 2279 } 2280 2281 /* 2282 * Continue submitting even for sqe failure if the 2283 * ring was setup with IORING_SETUP_SUBMIT_ALL 2284 */ 2285 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2286 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2287 left--; 2288 break; 2289 } 2290 } while (--left); 2291 2292 if (unlikely(left)) { 2293 ret -= left; 2294 /* try again if it submitted nothing and can't allocate a req */ 2295 if (!ret && io_req_cache_empty(ctx)) 2296 ret = -EAGAIN; 2297 current->io_uring->cached_refs += left; 2298 } 2299 2300 io_submit_state_end(ctx); 2301 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2302 io_commit_sqring(ctx); 2303 return ret; 2304 } 2305 2306 struct io_wait_queue { 2307 struct wait_queue_entry wq; 2308 struct io_ring_ctx *ctx; 2309 unsigned cq_tail; 2310 unsigned nr_timeouts; 2311 }; 2312 2313 static inline bool io_has_work(struct io_ring_ctx *ctx) 2314 { 2315 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2316 ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 2317 !llist_empty(&ctx->work_llist)); 2318 } 2319 2320 static inline bool io_should_wake(struct io_wait_queue *iowq) 2321 { 2322 struct io_ring_ctx *ctx = iowq->ctx; 2323 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2324 2325 /* 2326 * Wake up if we have enough events, or if a timeout occurred since we 2327 * started waiting. For timeouts, we always want to return to userspace, 2328 * regardless of event count. 2329 */ 2330 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2331 } 2332 2333 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2334 int wake_flags, void *key) 2335 { 2336 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, 2337 wq); 2338 struct io_ring_ctx *ctx = iowq->ctx; 2339 2340 /* 2341 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2342 * the task, and the next invocation will do it. 2343 */ 2344 if (io_should_wake(iowq) || io_has_work(ctx)) 2345 return autoremove_wake_function(curr, mode, wake_flags, key); 2346 return -1; 2347 } 2348 2349 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2350 { 2351 if (io_run_task_work_ctx(ctx) > 0) 2352 return 1; 2353 if (task_sigpending(current)) 2354 return -EINTR; 2355 return 0; 2356 } 2357 2358 /* when returns >0, the caller should retry */ 2359 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2360 struct io_wait_queue *iowq, 2361 ktime_t timeout) 2362 { 2363 int ret; 2364 unsigned long check_cq; 2365 2366 /* make sure we run task_work before checking for signals */ 2367 ret = io_run_task_work_sig(ctx); 2368 if (ret || io_should_wake(iowq)) 2369 return ret; 2370 2371 check_cq = READ_ONCE(ctx->check_cq); 2372 if (unlikely(check_cq)) { 2373 /* let the caller flush overflows, retry */ 2374 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2375 return 1; 2376 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 2377 return -EBADR; 2378 } 2379 if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS)) 2380 return -ETIME; 2381 return 1; 2382 } 2383 2384 /* 2385 * Wait until events become available, if we don't already have some. The 2386 * application must reap them itself, as they reside on the shared cq ring. 2387 */ 2388 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2389 const sigset_t __user *sig, size_t sigsz, 2390 struct __kernel_timespec __user *uts) 2391 { 2392 struct io_wait_queue iowq; 2393 struct io_rings *rings = ctx->rings; 2394 ktime_t timeout = KTIME_MAX; 2395 int ret; 2396 2397 if (!io_allowed_run_tw(ctx)) 2398 return -EEXIST; 2399 2400 do { 2401 /* always run at least 1 task work to process local work */ 2402 ret = io_run_task_work_ctx(ctx); 2403 if (ret < 0) 2404 return ret; 2405 io_cqring_overflow_flush(ctx); 2406 2407 /* if user messes with these they will just get an early return */ 2408 if (__io_cqring_events_user(ctx) >= min_events) 2409 return 0; 2410 } while (ret > 0); 2411 2412 if (sig) { 2413 #ifdef CONFIG_COMPAT 2414 if (in_compat_syscall()) 2415 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2416 sigsz); 2417 else 2418 #endif 2419 ret = set_user_sigmask(sig, sigsz); 2420 2421 if (ret) 2422 return ret; 2423 } 2424 2425 if (uts) { 2426 struct timespec64 ts; 2427 2428 if (get_timespec64(&ts, uts)) 2429 return -EFAULT; 2430 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2431 } 2432 2433 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2434 iowq.wq.private = current; 2435 INIT_LIST_HEAD(&iowq.wq.entry); 2436 iowq.ctx = ctx; 2437 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2438 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2439 2440 trace_io_uring_cqring_wait(ctx, min_events); 2441 do { 2442 /* if we can't even flush overflow, don't wait for more */ 2443 if (!io_cqring_overflow_flush(ctx)) { 2444 ret = -EBUSY; 2445 break; 2446 } 2447 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2448 TASK_INTERRUPTIBLE); 2449 ret = io_cqring_wait_schedule(ctx, &iowq, timeout); 2450 cond_resched(); 2451 } while (ret > 0); 2452 2453 finish_wait(&ctx->cq_wait, &iowq.wq); 2454 restore_saved_sigmask_unless(ret == -EINTR); 2455 2456 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2457 } 2458 2459 static void io_mem_free(void *ptr) 2460 { 2461 struct page *page; 2462 2463 if (!ptr) 2464 return; 2465 2466 page = virt_to_head_page(ptr); 2467 if (put_page_testzero(page)) 2468 free_compound_page(page); 2469 } 2470 2471 static void *io_mem_alloc(size_t size) 2472 { 2473 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2474 2475 return (void *) __get_free_pages(gfp, get_order(size)); 2476 } 2477 2478 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2479 unsigned int cq_entries, size_t *sq_offset) 2480 { 2481 struct io_rings *rings; 2482 size_t off, sq_array_size; 2483 2484 off = struct_size(rings, cqes, cq_entries); 2485 if (off == SIZE_MAX) 2486 return SIZE_MAX; 2487 if (ctx->flags & IORING_SETUP_CQE32) { 2488 if (check_shl_overflow(off, 1, &off)) 2489 return SIZE_MAX; 2490 } 2491 2492 #ifdef CONFIG_SMP 2493 off = ALIGN(off, SMP_CACHE_BYTES); 2494 if (off == 0) 2495 return SIZE_MAX; 2496 #endif 2497 2498 if (sq_offset) 2499 *sq_offset = off; 2500 2501 sq_array_size = array_size(sizeof(u32), sq_entries); 2502 if (sq_array_size == SIZE_MAX) 2503 return SIZE_MAX; 2504 2505 if (check_add_overflow(off, sq_array_size, &off)) 2506 return SIZE_MAX; 2507 2508 return off; 2509 } 2510 2511 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2512 unsigned int eventfd_async) 2513 { 2514 struct io_ev_fd *ev_fd; 2515 __s32 __user *fds = arg; 2516 int fd; 2517 2518 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2519 lockdep_is_held(&ctx->uring_lock)); 2520 if (ev_fd) 2521 return -EBUSY; 2522 2523 if (copy_from_user(&fd, fds, sizeof(*fds))) 2524 return -EFAULT; 2525 2526 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2527 if (!ev_fd) 2528 return -ENOMEM; 2529 2530 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2531 if (IS_ERR(ev_fd->cq_ev_fd)) { 2532 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2533 kfree(ev_fd); 2534 return ret; 2535 } 2536 2537 spin_lock(&ctx->completion_lock); 2538 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2539 spin_unlock(&ctx->completion_lock); 2540 2541 ev_fd->eventfd_async = eventfd_async; 2542 ctx->has_evfd = true; 2543 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2544 atomic_set(&ev_fd->refs, 1); 2545 atomic_set(&ev_fd->ops, 0); 2546 return 0; 2547 } 2548 2549 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2550 { 2551 struct io_ev_fd *ev_fd; 2552 2553 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2554 lockdep_is_held(&ctx->uring_lock)); 2555 if (ev_fd) { 2556 ctx->has_evfd = false; 2557 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2558 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2559 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2560 return 0; 2561 } 2562 2563 return -ENXIO; 2564 } 2565 2566 static void io_req_caches_free(struct io_ring_ctx *ctx) 2567 { 2568 int nr = 0; 2569 2570 mutex_lock(&ctx->uring_lock); 2571 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2572 2573 while (!io_req_cache_empty(ctx)) { 2574 struct io_kiocb *req = io_alloc_req(ctx); 2575 2576 kmem_cache_free(req_cachep, req); 2577 nr++; 2578 } 2579 if (nr) 2580 percpu_ref_put_many(&ctx->refs, nr); 2581 mutex_unlock(&ctx->uring_lock); 2582 } 2583 2584 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2585 { 2586 io_sq_thread_finish(ctx); 2587 io_rsrc_refs_drop(ctx); 2588 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2589 io_wait_rsrc_data(ctx->buf_data); 2590 io_wait_rsrc_data(ctx->file_data); 2591 2592 mutex_lock(&ctx->uring_lock); 2593 if (ctx->buf_data) 2594 __io_sqe_buffers_unregister(ctx); 2595 if (ctx->file_data) 2596 __io_sqe_files_unregister(ctx); 2597 if (ctx->rings) 2598 __io_cqring_overflow_flush(ctx, true); 2599 io_eventfd_unregister(ctx); 2600 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2601 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2602 mutex_unlock(&ctx->uring_lock); 2603 io_destroy_buffers(ctx); 2604 if (ctx->sq_creds) 2605 put_cred(ctx->sq_creds); 2606 if (ctx->submitter_task) 2607 put_task_struct(ctx->submitter_task); 2608 2609 /* there are no registered resources left, nobody uses it */ 2610 if (ctx->rsrc_node) 2611 io_rsrc_node_destroy(ctx->rsrc_node); 2612 if (ctx->rsrc_backup_node) 2613 io_rsrc_node_destroy(ctx->rsrc_backup_node); 2614 flush_delayed_work(&ctx->rsrc_put_work); 2615 flush_delayed_work(&ctx->fallback_work); 2616 2617 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2618 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist)); 2619 2620 #if defined(CONFIG_UNIX) 2621 if (ctx->ring_sock) { 2622 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2623 sock_release(ctx->ring_sock); 2624 } 2625 #endif 2626 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2627 2628 if (ctx->mm_account) { 2629 mmdrop(ctx->mm_account); 2630 ctx->mm_account = NULL; 2631 } 2632 io_mem_free(ctx->rings); 2633 io_mem_free(ctx->sq_sqes); 2634 2635 percpu_ref_exit(&ctx->refs); 2636 free_uid(ctx->user); 2637 io_req_caches_free(ctx); 2638 if (ctx->hash_map) 2639 io_wq_put_hash(ctx->hash_map); 2640 kfree(ctx->cancel_table.hbs); 2641 kfree(ctx->cancel_table_locked.hbs); 2642 kfree(ctx->dummy_ubuf); 2643 kfree(ctx->io_bl); 2644 xa_destroy(&ctx->io_bl_xa); 2645 kfree(ctx); 2646 } 2647 2648 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2649 { 2650 struct io_ring_ctx *ctx = file->private_data; 2651 __poll_t mask = 0; 2652 2653 poll_wait(file, &ctx->cq_wait, wait); 2654 /* 2655 * synchronizes with barrier from wq_has_sleeper call in 2656 * io_commit_cqring 2657 */ 2658 smp_rmb(); 2659 if (!io_sqring_full(ctx)) 2660 mask |= EPOLLOUT | EPOLLWRNORM; 2661 2662 /* 2663 * Don't flush cqring overflow list here, just do a simple check. 2664 * Otherwise there could possible be ABBA deadlock: 2665 * CPU0 CPU1 2666 * ---- ---- 2667 * lock(&ctx->uring_lock); 2668 * lock(&ep->mtx); 2669 * lock(&ctx->uring_lock); 2670 * lock(&ep->mtx); 2671 * 2672 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2673 * pushs them to do the flush. 2674 */ 2675 2676 if (io_cqring_events(ctx) || io_has_work(ctx)) 2677 mask |= EPOLLIN | EPOLLRDNORM; 2678 2679 return mask; 2680 } 2681 2682 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 2683 { 2684 const struct cred *creds; 2685 2686 creds = xa_erase(&ctx->personalities, id); 2687 if (creds) { 2688 put_cred(creds); 2689 return 0; 2690 } 2691 2692 return -EINVAL; 2693 } 2694 2695 struct io_tctx_exit { 2696 struct callback_head task_work; 2697 struct completion completion; 2698 struct io_ring_ctx *ctx; 2699 }; 2700 2701 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2702 { 2703 struct io_uring_task *tctx = current->io_uring; 2704 struct io_tctx_exit *work; 2705 2706 work = container_of(cb, struct io_tctx_exit, task_work); 2707 /* 2708 * When @in_idle, we're in cancellation and it's racy to remove the 2709 * node. It'll be removed by the end of cancellation, just ignore it. 2710 */ 2711 if (!atomic_read(&tctx->in_idle)) 2712 io_uring_del_tctx_node((unsigned long)work->ctx); 2713 complete(&work->completion); 2714 } 2715 2716 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2717 { 2718 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2719 2720 return req->ctx == data; 2721 } 2722 2723 static __cold void io_ring_exit_work(struct work_struct *work) 2724 { 2725 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2726 unsigned long timeout = jiffies + HZ * 60 * 5; 2727 unsigned long interval = HZ / 20; 2728 struct io_tctx_exit exit; 2729 struct io_tctx_node *node; 2730 int ret; 2731 2732 /* 2733 * If we're doing polled IO and end up having requests being 2734 * submitted async (out-of-line), then completions can come in while 2735 * we're waiting for refs to drop. We need to reap these manually, 2736 * as nobody else will be looking for them. 2737 */ 2738 do { 2739 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2740 io_move_task_work_from_local(ctx); 2741 2742 while (io_uring_try_cancel_requests(ctx, NULL, true)) 2743 cond_resched(); 2744 2745 if (ctx->sq_data) { 2746 struct io_sq_data *sqd = ctx->sq_data; 2747 struct task_struct *tsk; 2748 2749 io_sq_thread_park(sqd); 2750 tsk = sqd->thread; 2751 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2752 io_wq_cancel_cb(tsk->io_uring->io_wq, 2753 io_cancel_ctx_cb, ctx, true); 2754 io_sq_thread_unpark(sqd); 2755 } 2756 2757 io_req_caches_free(ctx); 2758 2759 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2760 /* there is little hope left, don't run it too often */ 2761 interval = HZ * 60; 2762 } 2763 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval)); 2764 2765 init_completion(&exit.completion); 2766 init_task_work(&exit.task_work, io_tctx_exit_cb); 2767 exit.ctx = ctx; 2768 /* 2769 * Some may use context even when all refs and requests have been put, 2770 * and they are free to do so while still holding uring_lock or 2771 * completion_lock, see io_req_task_submit(). Apart from other work, 2772 * this lock/unlock section also waits them to finish. 2773 */ 2774 mutex_lock(&ctx->uring_lock); 2775 while (!list_empty(&ctx->tctx_list)) { 2776 WARN_ON_ONCE(time_after(jiffies, timeout)); 2777 2778 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 2779 ctx_node); 2780 /* don't spin on a single task if cancellation failed */ 2781 list_rotate_left(&ctx->tctx_list); 2782 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 2783 if (WARN_ON_ONCE(ret)) 2784 continue; 2785 2786 mutex_unlock(&ctx->uring_lock); 2787 wait_for_completion(&exit.completion); 2788 mutex_lock(&ctx->uring_lock); 2789 } 2790 mutex_unlock(&ctx->uring_lock); 2791 spin_lock(&ctx->completion_lock); 2792 spin_unlock(&ctx->completion_lock); 2793 2794 io_ring_ctx_free(ctx); 2795 } 2796 2797 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 2798 { 2799 unsigned long index; 2800 struct creds *creds; 2801 2802 mutex_lock(&ctx->uring_lock); 2803 percpu_ref_kill(&ctx->refs); 2804 if (ctx->rings) 2805 __io_cqring_overflow_flush(ctx, true); 2806 xa_for_each(&ctx->personalities, index, creds) 2807 io_unregister_personality(ctx, index); 2808 if (ctx->rings) 2809 io_poll_remove_all(ctx, NULL, true); 2810 mutex_unlock(&ctx->uring_lock); 2811 2812 /* 2813 * If we failed setting up the ctx, we might not have any rings 2814 * and therefore did not submit any requests 2815 */ 2816 if (ctx->rings) 2817 io_kill_timeouts(ctx, NULL, true); 2818 2819 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 2820 /* 2821 * Use system_unbound_wq to avoid spawning tons of event kworkers 2822 * if we're exiting a ton of rings at the same time. It just adds 2823 * noise and overhead, there's no discernable change in runtime 2824 * over using system_wq. 2825 */ 2826 queue_work(system_unbound_wq, &ctx->exit_work); 2827 } 2828 2829 static int io_uring_release(struct inode *inode, struct file *file) 2830 { 2831 struct io_ring_ctx *ctx = file->private_data; 2832 2833 file->private_data = NULL; 2834 io_ring_ctx_wait_and_kill(ctx); 2835 return 0; 2836 } 2837 2838 struct io_task_cancel { 2839 struct task_struct *task; 2840 bool all; 2841 }; 2842 2843 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 2844 { 2845 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2846 struct io_task_cancel *cancel = data; 2847 2848 return io_match_task_safe(req, cancel->task, cancel->all); 2849 } 2850 2851 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 2852 struct task_struct *task, 2853 bool cancel_all) 2854 { 2855 struct io_defer_entry *de; 2856 LIST_HEAD(list); 2857 2858 spin_lock(&ctx->completion_lock); 2859 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 2860 if (io_match_task_safe(de->req, task, cancel_all)) { 2861 list_cut_position(&list, &ctx->defer_list, &de->list); 2862 break; 2863 } 2864 } 2865 spin_unlock(&ctx->completion_lock); 2866 if (list_empty(&list)) 2867 return false; 2868 2869 while (!list_empty(&list)) { 2870 de = list_first_entry(&list, struct io_defer_entry, list); 2871 list_del_init(&de->list); 2872 io_req_complete_failed(de->req, -ECANCELED); 2873 kfree(de); 2874 } 2875 return true; 2876 } 2877 2878 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 2879 { 2880 struct io_tctx_node *node; 2881 enum io_wq_cancel cret; 2882 bool ret = false; 2883 2884 mutex_lock(&ctx->uring_lock); 2885 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 2886 struct io_uring_task *tctx = node->task->io_uring; 2887 2888 /* 2889 * io_wq will stay alive while we hold uring_lock, because it's 2890 * killed after ctx nodes, which requires to take the lock. 2891 */ 2892 if (!tctx || !tctx->io_wq) 2893 continue; 2894 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 2895 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 2896 } 2897 mutex_unlock(&ctx->uring_lock); 2898 2899 return ret; 2900 } 2901 2902 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 2903 struct task_struct *task, 2904 bool cancel_all) 2905 { 2906 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 2907 struct io_uring_task *tctx = task ? task->io_uring : NULL; 2908 enum io_wq_cancel cret; 2909 bool ret = false; 2910 2911 /* failed during ring init, it couldn't have issued any requests */ 2912 if (!ctx->rings) 2913 return false; 2914 2915 if (!task) { 2916 ret |= io_uring_try_cancel_iowq(ctx); 2917 } else if (tctx && tctx->io_wq) { 2918 /* 2919 * Cancels requests of all rings, not only @ctx, but 2920 * it's fine as the task is in exit/exec. 2921 */ 2922 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 2923 &cancel, true); 2924 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 2925 } 2926 2927 /* SQPOLL thread does its own polling */ 2928 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 2929 (ctx->sq_data && ctx->sq_data->thread == current)) { 2930 while (!wq_list_empty(&ctx->iopoll_list)) { 2931 io_iopoll_try_reap_events(ctx); 2932 ret = true; 2933 } 2934 } 2935 2936 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2937 ret |= io_run_local_work(ctx) > 0; 2938 ret |= io_cancel_defer_files(ctx, task, cancel_all); 2939 mutex_lock(&ctx->uring_lock); 2940 ret |= io_poll_remove_all(ctx, task, cancel_all); 2941 mutex_unlock(&ctx->uring_lock); 2942 ret |= io_kill_timeouts(ctx, task, cancel_all); 2943 if (task) 2944 ret |= io_run_task_work() > 0; 2945 return ret; 2946 } 2947 2948 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 2949 { 2950 if (tracked) 2951 return atomic_read(&tctx->inflight_tracked); 2952 return percpu_counter_sum(&tctx->inflight); 2953 } 2954 2955 /* 2956 * Find any io_uring ctx that this task has registered or done IO on, and cancel 2957 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 2958 */ 2959 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 2960 { 2961 struct io_uring_task *tctx = current->io_uring; 2962 struct io_ring_ctx *ctx; 2963 s64 inflight; 2964 DEFINE_WAIT(wait); 2965 2966 WARN_ON_ONCE(sqd && sqd->thread != current); 2967 2968 if (!current->io_uring) 2969 return; 2970 if (tctx->io_wq) 2971 io_wq_exit_start(tctx->io_wq); 2972 2973 atomic_inc(&tctx->in_idle); 2974 do { 2975 bool loop = false; 2976 2977 io_uring_drop_tctx_refs(current); 2978 /* read completions before cancelations */ 2979 inflight = tctx_inflight(tctx, !cancel_all); 2980 if (!inflight) 2981 break; 2982 2983 if (!sqd) { 2984 struct io_tctx_node *node; 2985 unsigned long index; 2986 2987 xa_for_each(&tctx->xa, index, node) { 2988 /* sqpoll task will cancel all its requests */ 2989 if (node->ctx->sq_data) 2990 continue; 2991 loop |= io_uring_try_cancel_requests(node->ctx, 2992 current, cancel_all); 2993 } 2994 } else { 2995 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 2996 loop |= io_uring_try_cancel_requests(ctx, 2997 current, 2998 cancel_all); 2999 } 3000 3001 if (loop) { 3002 cond_resched(); 3003 continue; 3004 } 3005 3006 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3007 io_run_task_work(); 3008 io_uring_drop_tctx_refs(current); 3009 3010 /* 3011 * If we've seen completions, retry without waiting. This 3012 * avoids a race where a completion comes in before we did 3013 * prepare_to_wait(). 3014 */ 3015 if (inflight == tctx_inflight(tctx, !cancel_all)) 3016 schedule(); 3017 finish_wait(&tctx->wait, &wait); 3018 } while (1); 3019 3020 io_uring_clean_tctx(tctx); 3021 if (cancel_all) { 3022 /* 3023 * We shouldn't run task_works after cancel, so just leave 3024 * ->in_idle set for normal exit. 3025 */ 3026 atomic_dec(&tctx->in_idle); 3027 /* for exec all current's requests should be gone, kill tctx */ 3028 __io_uring_free(current); 3029 } 3030 } 3031 3032 void __io_uring_cancel(bool cancel_all) 3033 { 3034 io_uring_cancel_generic(cancel_all, NULL); 3035 } 3036 3037 static void *io_uring_validate_mmap_request(struct file *file, 3038 loff_t pgoff, size_t sz) 3039 { 3040 struct io_ring_ctx *ctx = file->private_data; 3041 loff_t offset = pgoff << PAGE_SHIFT; 3042 struct page *page; 3043 void *ptr; 3044 3045 switch (offset) { 3046 case IORING_OFF_SQ_RING: 3047 case IORING_OFF_CQ_RING: 3048 ptr = ctx->rings; 3049 break; 3050 case IORING_OFF_SQES: 3051 ptr = ctx->sq_sqes; 3052 break; 3053 default: 3054 return ERR_PTR(-EINVAL); 3055 } 3056 3057 page = virt_to_head_page(ptr); 3058 if (sz > page_size(page)) 3059 return ERR_PTR(-EINVAL); 3060 3061 return ptr; 3062 } 3063 3064 #ifdef CONFIG_MMU 3065 3066 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3067 { 3068 size_t sz = vma->vm_end - vma->vm_start; 3069 unsigned long pfn; 3070 void *ptr; 3071 3072 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3073 if (IS_ERR(ptr)) 3074 return PTR_ERR(ptr); 3075 3076 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3077 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3078 } 3079 3080 #else /* !CONFIG_MMU */ 3081 3082 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3083 { 3084 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL; 3085 } 3086 3087 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3088 { 3089 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3090 } 3091 3092 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3093 unsigned long addr, unsigned long len, 3094 unsigned long pgoff, unsigned long flags) 3095 { 3096 void *ptr; 3097 3098 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3099 if (IS_ERR(ptr)) 3100 return PTR_ERR(ptr); 3101 3102 return (unsigned long) ptr; 3103 } 3104 3105 #endif /* !CONFIG_MMU */ 3106 3107 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3108 { 3109 if (flags & IORING_ENTER_EXT_ARG) { 3110 struct io_uring_getevents_arg arg; 3111 3112 if (argsz != sizeof(arg)) 3113 return -EINVAL; 3114 if (copy_from_user(&arg, argp, sizeof(arg))) 3115 return -EFAULT; 3116 } 3117 return 0; 3118 } 3119 3120 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3121 struct __kernel_timespec __user **ts, 3122 const sigset_t __user **sig) 3123 { 3124 struct io_uring_getevents_arg arg; 3125 3126 /* 3127 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3128 * is just a pointer to the sigset_t. 3129 */ 3130 if (!(flags & IORING_ENTER_EXT_ARG)) { 3131 *sig = (const sigset_t __user *) argp; 3132 *ts = NULL; 3133 return 0; 3134 } 3135 3136 /* 3137 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3138 * timespec and sigset_t pointers if good. 3139 */ 3140 if (*argsz != sizeof(arg)) 3141 return -EINVAL; 3142 if (copy_from_user(&arg, argp, sizeof(arg))) 3143 return -EFAULT; 3144 if (arg.pad) 3145 return -EINVAL; 3146 *sig = u64_to_user_ptr(arg.sigmask); 3147 *argsz = arg.sigmask_sz; 3148 *ts = u64_to_user_ptr(arg.ts); 3149 return 0; 3150 } 3151 3152 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3153 u32, min_complete, u32, flags, const void __user *, argp, 3154 size_t, argsz) 3155 { 3156 struct io_ring_ctx *ctx; 3157 struct fd f; 3158 long ret; 3159 3160 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3161 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3162 IORING_ENTER_REGISTERED_RING))) 3163 return -EINVAL; 3164 3165 /* 3166 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3167 * need only dereference our task private array to find it. 3168 */ 3169 if (flags & IORING_ENTER_REGISTERED_RING) { 3170 struct io_uring_task *tctx = current->io_uring; 3171 3172 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3173 return -EINVAL; 3174 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3175 f.file = tctx->registered_rings[fd]; 3176 f.flags = 0; 3177 if (unlikely(!f.file)) 3178 return -EBADF; 3179 } else { 3180 f = fdget(fd); 3181 if (unlikely(!f.file)) 3182 return -EBADF; 3183 ret = -EOPNOTSUPP; 3184 if (unlikely(!io_is_uring_fops(f.file))) 3185 goto out; 3186 } 3187 3188 ctx = f.file->private_data; 3189 ret = -EBADFD; 3190 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3191 goto out; 3192 3193 /* 3194 * For SQ polling, the thread will do all submissions and completions. 3195 * Just return the requested submit count, and wake the thread if 3196 * we were asked to. 3197 */ 3198 ret = 0; 3199 if (ctx->flags & IORING_SETUP_SQPOLL) { 3200 io_cqring_overflow_flush(ctx); 3201 3202 if (unlikely(ctx->sq_data->thread == NULL)) { 3203 ret = -EOWNERDEAD; 3204 goto out; 3205 } 3206 if (flags & IORING_ENTER_SQ_WAKEUP) 3207 wake_up(&ctx->sq_data->wait); 3208 if (flags & IORING_ENTER_SQ_WAIT) { 3209 ret = io_sqpoll_wait_sq(ctx); 3210 if (ret) 3211 goto out; 3212 } 3213 ret = to_submit; 3214 } else if (to_submit) { 3215 ret = io_uring_add_tctx_node(ctx); 3216 if (unlikely(ret)) 3217 goto out; 3218 3219 mutex_lock(&ctx->uring_lock); 3220 ret = io_submit_sqes(ctx, to_submit); 3221 if (ret != to_submit) { 3222 mutex_unlock(&ctx->uring_lock); 3223 goto out; 3224 } 3225 if (flags & IORING_ENTER_GETEVENTS) { 3226 if (ctx->syscall_iopoll) 3227 goto iopoll_locked; 3228 /* 3229 * Ignore errors, we'll soon call io_cqring_wait() and 3230 * it should handle ownership problems if any. 3231 */ 3232 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3233 (void)io_run_local_work_locked(ctx); 3234 } 3235 mutex_unlock(&ctx->uring_lock); 3236 } 3237 3238 if (flags & IORING_ENTER_GETEVENTS) { 3239 int ret2; 3240 3241 if (ctx->syscall_iopoll) { 3242 /* 3243 * We disallow the app entering submit/complete with 3244 * polling, but we still need to lock the ring to 3245 * prevent racing with polled issue that got punted to 3246 * a workqueue. 3247 */ 3248 mutex_lock(&ctx->uring_lock); 3249 iopoll_locked: 3250 ret2 = io_validate_ext_arg(flags, argp, argsz); 3251 if (likely(!ret2)) { 3252 min_complete = min(min_complete, 3253 ctx->cq_entries); 3254 ret2 = io_iopoll_check(ctx, min_complete); 3255 } 3256 mutex_unlock(&ctx->uring_lock); 3257 } else { 3258 const sigset_t __user *sig; 3259 struct __kernel_timespec __user *ts; 3260 3261 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3262 if (likely(!ret2)) { 3263 min_complete = min(min_complete, 3264 ctx->cq_entries); 3265 ret2 = io_cqring_wait(ctx, min_complete, sig, 3266 argsz, ts); 3267 } 3268 } 3269 3270 if (!ret) { 3271 ret = ret2; 3272 3273 /* 3274 * EBADR indicates that one or more CQE were dropped. 3275 * Once the user has been informed we can clear the bit 3276 * as they are obviously ok with those drops. 3277 */ 3278 if (unlikely(ret2 == -EBADR)) 3279 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3280 &ctx->check_cq); 3281 } 3282 } 3283 out: 3284 fdput(f); 3285 return ret; 3286 } 3287 3288 static const struct file_operations io_uring_fops = { 3289 .release = io_uring_release, 3290 .mmap = io_uring_mmap, 3291 #ifndef CONFIG_MMU 3292 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3293 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3294 #endif 3295 .poll = io_uring_poll, 3296 #ifdef CONFIG_PROC_FS 3297 .show_fdinfo = io_uring_show_fdinfo, 3298 #endif 3299 }; 3300 3301 bool io_is_uring_fops(struct file *file) 3302 { 3303 return file->f_op == &io_uring_fops; 3304 } 3305 3306 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3307 struct io_uring_params *p) 3308 { 3309 struct io_rings *rings; 3310 size_t size, sq_array_offset; 3311 3312 /* make sure these are sane, as we already accounted them */ 3313 ctx->sq_entries = p->sq_entries; 3314 ctx->cq_entries = p->cq_entries; 3315 3316 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3317 if (size == SIZE_MAX) 3318 return -EOVERFLOW; 3319 3320 rings = io_mem_alloc(size); 3321 if (!rings) 3322 return -ENOMEM; 3323 3324 ctx->rings = rings; 3325 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3326 rings->sq_ring_mask = p->sq_entries - 1; 3327 rings->cq_ring_mask = p->cq_entries - 1; 3328 rings->sq_ring_entries = p->sq_entries; 3329 rings->cq_ring_entries = p->cq_entries; 3330 3331 if (p->flags & IORING_SETUP_SQE128) 3332 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3333 else 3334 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3335 if (size == SIZE_MAX) { 3336 io_mem_free(ctx->rings); 3337 ctx->rings = NULL; 3338 return -EOVERFLOW; 3339 } 3340 3341 ctx->sq_sqes = io_mem_alloc(size); 3342 if (!ctx->sq_sqes) { 3343 io_mem_free(ctx->rings); 3344 ctx->rings = NULL; 3345 return -ENOMEM; 3346 } 3347 3348 return 0; 3349 } 3350 3351 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file) 3352 { 3353 int ret, fd; 3354 3355 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3356 if (fd < 0) 3357 return fd; 3358 3359 ret = __io_uring_add_tctx_node(ctx); 3360 if (ret) { 3361 put_unused_fd(fd); 3362 return ret; 3363 } 3364 fd_install(fd, file); 3365 return fd; 3366 } 3367 3368 /* 3369 * Allocate an anonymous fd, this is what constitutes the application 3370 * visible backing of an io_uring instance. The application mmaps this 3371 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3372 * we have to tie this fd to a socket for file garbage collection purposes. 3373 */ 3374 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3375 { 3376 struct file *file; 3377 #if defined(CONFIG_UNIX) 3378 int ret; 3379 3380 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3381 &ctx->ring_sock); 3382 if (ret) 3383 return ERR_PTR(ret); 3384 #endif 3385 3386 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3387 O_RDWR | O_CLOEXEC, NULL); 3388 #if defined(CONFIG_UNIX) 3389 if (IS_ERR(file)) { 3390 sock_release(ctx->ring_sock); 3391 ctx->ring_sock = NULL; 3392 } else { 3393 ctx->ring_sock->file = file; 3394 } 3395 #endif 3396 return file; 3397 } 3398 3399 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3400 struct io_uring_params __user *params) 3401 { 3402 struct io_ring_ctx *ctx; 3403 struct file *file; 3404 int ret; 3405 3406 if (!entries) 3407 return -EINVAL; 3408 if (entries > IORING_MAX_ENTRIES) { 3409 if (!(p->flags & IORING_SETUP_CLAMP)) 3410 return -EINVAL; 3411 entries = IORING_MAX_ENTRIES; 3412 } 3413 3414 /* 3415 * Use twice as many entries for the CQ ring. It's possible for the 3416 * application to drive a higher depth than the size of the SQ ring, 3417 * since the sqes are only used at submission time. This allows for 3418 * some flexibility in overcommitting a bit. If the application has 3419 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3420 * of CQ ring entries manually. 3421 */ 3422 p->sq_entries = roundup_pow_of_two(entries); 3423 if (p->flags & IORING_SETUP_CQSIZE) { 3424 /* 3425 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3426 * to a power-of-two, if it isn't already. We do NOT impose 3427 * any cq vs sq ring sizing. 3428 */ 3429 if (!p->cq_entries) 3430 return -EINVAL; 3431 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3432 if (!(p->flags & IORING_SETUP_CLAMP)) 3433 return -EINVAL; 3434 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3435 } 3436 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3437 if (p->cq_entries < p->sq_entries) 3438 return -EINVAL; 3439 } else { 3440 p->cq_entries = 2 * p->sq_entries; 3441 } 3442 3443 ctx = io_ring_ctx_alloc(p); 3444 if (!ctx) 3445 return -ENOMEM; 3446 3447 /* 3448 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3449 * space applications don't need to do io completion events 3450 * polling again, they can rely on io_sq_thread to do polling 3451 * work, which can reduce cpu usage and uring_lock contention. 3452 */ 3453 if (ctx->flags & IORING_SETUP_IOPOLL && 3454 !(ctx->flags & IORING_SETUP_SQPOLL)) 3455 ctx->syscall_iopoll = 1; 3456 3457 ctx->compat = in_compat_syscall(); 3458 if (!capable(CAP_IPC_LOCK)) 3459 ctx->user = get_uid(current_user()); 3460 3461 /* 3462 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3463 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3464 */ 3465 ret = -EINVAL; 3466 if (ctx->flags & IORING_SETUP_SQPOLL) { 3467 /* IPI related flags don't make sense with SQPOLL */ 3468 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3469 IORING_SETUP_TASKRUN_FLAG | 3470 IORING_SETUP_DEFER_TASKRUN)) 3471 goto err; 3472 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3473 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3474 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3475 } else { 3476 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3477 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3478 goto err; 3479 ctx->notify_method = TWA_SIGNAL; 3480 } 3481 3482 /* 3483 * For DEFER_TASKRUN we require the completion task to be the same as the 3484 * submission task. This implies that there is only one submitter, so enforce 3485 * that. 3486 */ 3487 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3488 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3489 goto err; 3490 } 3491 3492 /* 3493 * This is just grabbed for accounting purposes. When a process exits, 3494 * the mm is exited and dropped before the files, hence we need to hang 3495 * on to this mm purely for the purposes of being able to unaccount 3496 * memory (locked/pinned vm). It's not used for anything else. 3497 */ 3498 mmgrab(current->mm); 3499 ctx->mm_account = current->mm; 3500 3501 ret = io_allocate_scq_urings(ctx, p); 3502 if (ret) 3503 goto err; 3504 3505 ret = io_sq_offload_create(ctx, p); 3506 if (ret) 3507 goto err; 3508 /* always set a rsrc node */ 3509 ret = io_rsrc_node_switch_start(ctx); 3510 if (ret) 3511 goto err; 3512 io_rsrc_node_switch(ctx, NULL); 3513 3514 memset(&p->sq_off, 0, sizeof(p->sq_off)); 3515 p->sq_off.head = offsetof(struct io_rings, sq.head); 3516 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3517 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3518 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3519 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3520 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3521 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3522 3523 memset(&p->cq_off, 0, sizeof(p->cq_off)); 3524 p->cq_off.head = offsetof(struct io_rings, cq.head); 3525 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3526 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3527 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3528 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3529 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3530 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3531 3532 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3533 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3534 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3535 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3536 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3537 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3538 IORING_FEAT_LINKED_FILE; 3539 3540 if (copy_to_user(params, p, sizeof(*p))) { 3541 ret = -EFAULT; 3542 goto err; 3543 } 3544 3545 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3546 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3547 ctx->submitter_task = get_task_struct(current); 3548 3549 file = io_uring_get_file(ctx); 3550 if (IS_ERR(file)) { 3551 ret = PTR_ERR(file); 3552 goto err; 3553 } 3554 3555 /* 3556 * Install ring fd as the very last thing, so we don't risk someone 3557 * having closed it before we finish setup 3558 */ 3559 ret = io_uring_install_fd(ctx, file); 3560 if (ret < 0) { 3561 /* fput will clean it up */ 3562 fput(file); 3563 return ret; 3564 } 3565 3566 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3567 return ret; 3568 err: 3569 io_ring_ctx_wait_and_kill(ctx); 3570 return ret; 3571 } 3572 3573 /* 3574 * Sets up an aio uring context, and returns the fd. Applications asks for a 3575 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3576 * params structure passed in. 3577 */ 3578 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3579 { 3580 struct io_uring_params p; 3581 int i; 3582 3583 if (copy_from_user(&p, params, sizeof(p))) 3584 return -EFAULT; 3585 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3586 if (p.resv[i]) 3587 return -EINVAL; 3588 } 3589 3590 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3591 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3592 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3593 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3594 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3595 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3596 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN)) 3597 return -EINVAL; 3598 3599 return io_uring_create(entries, &p, params); 3600 } 3601 3602 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3603 struct io_uring_params __user *, params) 3604 { 3605 return io_uring_setup(entries, params); 3606 } 3607 3608 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 3609 unsigned nr_args) 3610 { 3611 struct io_uring_probe *p; 3612 size_t size; 3613 int i, ret; 3614 3615 size = struct_size(p, ops, nr_args); 3616 if (size == SIZE_MAX) 3617 return -EOVERFLOW; 3618 p = kzalloc(size, GFP_KERNEL); 3619 if (!p) 3620 return -ENOMEM; 3621 3622 ret = -EFAULT; 3623 if (copy_from_user(p, arg, size)) 3624 goto out; 3625 ret = -EINVAL; 3626 if (memchr_inv(p, 0, size)) 3627 goto out; 3628 3629 p->last_op = IORING_OP_LAST - 1; 3630 if (nr_args > IORING_OP_LAST) 3631 nr_args = IORING_OP_LAST; 3632 3633 for (i = 0; i < nr_args; i++) { 3634 p->ops[i].op = i; 3635 if (!io_op_defs[i].not_supported) 3636 p->ops[i].flags = IO_URING_OP_SUPPORTED; 3637 } 3638 p->ops_len = i; 3639 3640 ret = 0; 3641 if (copy_to_user(arg, p, size)) 3642 ret = -EFAULT; 3643 out: 3644 kfree(p); 3645 return ret; 3646 } 3647 3648 static int io_register_personality(struct io_ring_ctx *ctx) 3649 { 3650 const struct cred *creds; 3651 u32 id; 3652 int ret; 3653 3654 creds = get_current_cred(); 3655 3656 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 3657 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 3658 if (ret < 0) { 3659 put_cred(creds); 3660 return ret; 3661 } 3662 return id; 3663 } 3664 3665 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 3666 void __user *arg, unsigned int nr_args) 3667 { 3668 struct io_uring_restriction *res; 3669 size_t size; 3670 int i, ret; 3671 3672 /* Restrictions allowed only if rings started disabled */ 3673 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 3674 return -EBADFD; 3675 3676 /* We allow only a single restrictions registration */ 3677 if (ctx->restrictions.registered) 3678 return -EBUSY; 3679 3680 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 3681 return -EINVAL; 3682 3683 size = array_size(nr_args, sizeof(*res)); 3684 if (size == SIZE_MAX) 3685 return -EOVERFLOW; 3686 3687 res = memdup_user(arg, size); 3688 if (IS_ERR(res)) 3689 return PTR_ERR(res); 3690 3691 ret = 0; 3692 3693 for (i = 0; i < nr_args; i++) { 3694 switch (res[i].opcode) { 3695 case IORING_RESTRICTION_REGISTER_OP: 3696 if (res[i].register_op >= IORING_REGISTER_LAST) { 3697 ret = -EINVAL; 3698 goto out; 3699 } 3700 3701 __set_bit(res[i].register_op, 3702 ctx->restrictions.register_op); 3703 break; 3704 case IORING_RESTRICTION_SQE_OP: 3705 if (res[i].sqe_op >= IORING_OP_LAST) { 3706 ret = -EINVAL; 3707 goto out; 3708 } 3709 3710 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 3711 break; 3712 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 3713 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 3714 break; 3715 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 3716 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 3717 break; 3718 default: 3719 ret = -EINVAL; 3720 goto out; 3721 } 3722 } 3723 3724 out: 3725 /* Reset all restrictions if an error happened */ 3726 if (ret != 0) 3727 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 3728 else 3729 ctx->restrictions.registered = true; 3730 3731 kfree(res); 3732 return ret; 3733 } 3734 3735 static int io_register_enable_rings(struct io_ring_ctx *ctx) 3736 { 3737 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 3738 return -EBADFD; 3739 3740 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) 3741 ctx->submitter_task = get_task_struct(current); 3742 3743 if (ctx->restrictions.registered) 3744 ctx->restricted = 1; 3745 3746 ctx->flags &= ~IORING_SETUP_R_DISABLED; 3747 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 3748 wake_up(&ctx->sq_data->wait); 3749 return 0; 3750 } 3751 3752 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 3753 void __user *arg, unsigned len) 3754 { 3755 struct io_uring_task *tctx = current->io_uring; 3756 cpumask_var_t new_mask; 3757 int ret; 3758 3759 if (!tctx || !tctx->io_wq) 3760 return -EINVAL; 3761 3762 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 3763 return -ENOMEM; 3764 3765 cpumask_clear(new_mask); 3766 if (len > cpumask_size()) 3767 len = cpumask_size(); 3768 3769 if (in_compat_syscall()) { 3770 ret = compat_get_bitmap(cpumask_bits(new_mask), 3771 (const compat_ulong_t __user *)arg, 3772 len * 8 /* CHAR_BIT */); 3773 } else { 3774 ret = copy_from_user(new_mask, arg, len); 3775 } 3776 3777 if (ret) { 3778 free_cpumask_var(new_mask); 3779 return -EFAULT; 3780 } 3781 3782 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask); 3783 free_cpumask_var(new_mask); 3784 return ret; 3785 } 3786 3787 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 3788 { 3789 struct io_uring_task *tctx = current->io_uring; 3790 3791 if (!tctx || !tctx->io_wq) 3792 return -EINVAL; 3793 3794 return io_wq_cpu_affinity(tctx->io_wq, NULL); 3795 } 3796 3797 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 3798 void __user *arg) 3799 __must_hold(&ctx->uring_lock) 3800 { 3801 struct io_tctx_node *node; 3802 struct io_uring_task *tctx = NULL; 3803 struct io_sq_data *sqd = NULL; 3804 __u32 new_count[2]; 3805 int i, ret; 3806 3807 if (copy_from_user(new_count, arg, sizeof(new_count))) 3808 return -EFAULT; 3809 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3810 if (new_count[i] > INT_MAX) 3811 return -EINVAL; 3812 3813 if (ctx->flags & IORING_SETUP_SQPOLL) { 3814 sqd = ctx->sq_data; 3815 if (sqd) { 3816 /* 3817 * Observe the correct sqd->lock -> ctx->uring_lock 3818 * ordering. Fine to drop uring_lock here, we hold 3819 * a ref to the ctx. 3820 */ 3821 refcount_inc(&sqd->refs); 3822 mutex_unlock(&ctx->uring_lock); 3823 mutex_lock(&sqd->lock); 3824 mutex_lock(&ctx->uring_lock); 3825 if (sqd->thread) 3826 tctx = sqd->thread->io_uring; 3827 } 3828 } else { 3829 tctx = current->io_uring; 3830 } 3831 3832 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 3833 3834 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3835 if (new_count[i]) 3836 ctx->iowq_limits[i] = new_count[i]; 3837 ctx->iowq_limits_set = true; 3838 3839 if (tctx && tctx->io_wq) { 3840 ret = io_wq_max_workers(tctx->io_wq, new_count); 3841 if (ret) 3842 goto err; 3843 } else { 3844 memset(new_count, 0, sizeof(new_count)); 3845 } 3846 3847 if (sqd) { 3848 mutex_unlock(&sqd->lock); 3849 io_put_sq_data(sqd); 3850 } 3851 3852 if (copy_to_user(arg, new_count, sizeof(new_count))) 3853 return -EFAULT; 3854 3855 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 3856 if (sqd) 3857 return 0; 3858 3859 /* now propagate the restriction to all registered users */ 3860 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3861 struct io_uring_task *tctx = node->task->io_uring; 3862 3863 if (WARN_ON_ONCE(!tctx->io_wq)) 3864 continue; 3865 3866 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3867 new_count[i] = ctx->iowq_limits[i]; 3868 /* ignore errors, it always returns zero anyway */ 3869 (void)io_wq_max_workers(tctx->io_wq, new_count); 3870 } 3871 return 0; 3872 err: 3873 if (sqd) { 3874 mutex_unlock(&sqd->lock); 3875 io_put_sq_data(sqd); 3876 } 3877 return ret; 3878 } 3879 3880 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 3881 void __user *arg, unsigned nr_args) 3882 __releases(ctx->uring_lock) 3883 __acquires(ctx->uring_lock) 3884 { 3885 int ret; 3886 3887 /* 3888 * We don't quiesce the refs for register anymore and so it can't be 3889 * dying as we're holding a file ref here. 3890 */ 3891 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 3892 return -ENXIO; 3893 3894 if (ctx->submitter_task && ctx->submitter_task != current) 3895 return -EEXIST; 3896 3897 if (ctx->restricted) { 3898 if (opcode >= IORING_REGISTER_LAST) 3899 return -EINVAL; 3900 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 3901 if (!test_bit(opcode, ctx->restrictions.register_op)) 3902 return -EACCES; 3903 } 3904 3905 switch (opcode) { 3906 case IORING_REGISTER_BUFFERS: 3907 ret = -EFAULT; 3908 if (!arg) 3909 break; 3910 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 3911 break; 3912 case IORING_UNREGISTER_BUFFERS: 3913 ret = -EINVAL; 3914 if (arg || nr_args) 3915 break; 3916 ret = io_sqe_buffers_unregister(ctx); 3917 break; 3918 case IORING_REGISTER_FILES: 3919 ret = -EFAULT; 3920 if (!arg) 3921 break; 3922 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 3923 break; 3924 case IORING_UNREGISTER_FILES: 3925 ret = -EINVAL; 3926 if (arg || nr_args) 3927 break; 3928 ret = io_sqe_files_unregister(ctx); 3929 break; 3930 case IORING_REGISTER_FILES_UPDATE: 3931 ret = io_register_files_update(ctx, arg, nr_args); 3932 break; 3933 case IORING_REGISTER_EVENTFD: 3934 ret = -EINVAL; 3935 if (nr_args != 1) 3936 break; 3937 ret = io_eventfd_register(ctx, arg, 0); 3938 break; 3939 case IORING_REGISTER_EVENTFD_ASYNC: 3940 ret = -EINVAL; 3941 if (nr_args != 1) 3942 break; 3943 ret = io_eventfd_register(ctx, arg, 1); 3944 break; 3945 case IORING_UNREGISTER_EVENTFD: 3946 ret = -EINVAL; 3947 if (arg || nr_args) 3948 break; 3949 ret = io_eventfd_unregister(ctx); 3950 break; 3951 case IORING_REGISTER_PROBE: 3952 ret = -EINVAL; 3953 if (!arg || nr_args > 256) 3954 break; 3955 ret = io_probe(ctx, arg, nr_args); 3956 break; 3957 case IORING_REGISTER_PERSONALITY: 3958 ret = -EINVAL; 3959 if (arg || nr_args) 3960 break; 3961 ret = io_register_personality(ctx); 3962 break; 3963 case IORING_UNREGISTER_PERSONALITY: 3964 ret = -EINVAL; 3965 if (arg) 3966 break; 3967 ret = io_unregister_personality(ctx, nr_args); 3968 break; 3969 case IORING_REGISTER_ENABLE_RINGS: 3970 ret = -EINVAL; 3971 if (arg || nr_args) 3972 break; 3973 ret = io_register_enable_rings(ctx); 3974 break; 3975 case IORING_REGISTER_RESTRICTIONS: 3976 ret = io_register_restrictions(ctx, arg, nr_args); 3977 break; 3978 case IORING_REGISTER_FILES2: 3979 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 3980 break; 3981 case IORING_REGISTER_FILES_UPDATE2: 3982 ret = io_register_rsrc_update(ctx, arg, nr_args, 3983 IORING_RSRC_FILE); 3984 break; 3985 case IORING_REGISTER_BUFFERS2: 3986 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 3987 break; 3988 case IORING_REGISTER_BUFFERS_UPDATE: 3989 ret = io_register_rsrc_update(ctx, arg, nr_args, 3990 IORING_RSRC_BUFFER); 3991 break; 3992 case IORING_REGISTER_IOWQ_AFF: 3993 ret = -EINVAL; 3994 if (!arg || !nr_args) 3995 break; 3996 ret = io_register_iowq_aff(ctx, arg, nr_args); 3997 break; 3998 case IORING_UNREGISTER_IOWQ_AFF: 3999 ret = -EINVAL; 4000 if (arg || nr_args) 4001 break; 4002 ret = io_unregister_iowq_aff(ctx); 4003 break; 4004 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4005 ret = -EINVAL; 4006 if (!arg || nr_args != 2) 4007 break; 4008 ret = io_register_iowq_max_workers(ctx, arg); 4009 break; 4010 case IORING_REGISTER_RING_FDS: 4011 ret = io_ringfd_register(ctx, arg, nr_args); 4012 break; 4013 case IORING_UNREGISTER_RING_FDS: 4014 ret = io_ringfd_unregister(ctx, arg, nr_args); 4015 break; 4016 case IORING_REGISTER_PBUF_RING: 4017 ret = -EINVAL; 4018 if (!arg || nr_args != 1) 4019 break; 4020 ret = io_register_pbuf_ring(ctx, arg); 4021 break; 4022 case IORING_UNREGISTER_PBUF_RING: 4023 ret = -EINVAL; 4024 if (!arg || nr_args != 1) 4025 break; 4026 ret = io_unregister_pbuf_ring(ctx, arg); 4027 break; 4028 case IORING_REGISTER_SYNC_CANCEL: 4029 ret = -EINVAL; 4030 if (!arg || nr_args != 1) 4031 break; 4032 ret = io_sync_cancel(ctx, arg); 4033 break; 4034 case IORING_REGISTER_FILE_ALLOC_RANGE: 4035 ret = -EINVAL; 4036 if (!arg || nr_args) 4037 break; 4038 ret = io_register_file_alloc_range(ctx, arg); 4039 break; 4040 default: 4041 ret = -EINVAL; 4042 break; 4043 } 4044 4045 return ret; 4046 } 4047 4048 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4049 void __user *, arg, unsigned int, nr_args) 4050 { 4051 struct io_ring_ctx *ctx; 4052 long ret = -EBADF; 4053 struct fd f; 4054 4055 f = fdget(fd); 4056 if (!f.file) 4057 return -EBADF; 4058 4059 ret = -EOPNOTSUPP; 4060 if (!io_is_uring_fops(f.file)) 4061 goto out_fput; 4062 4063 ctx = f.file->private_data; 4064 4065 io_run_task_work_ctx(ctx); 4066 4067 mutex_lock(&ctx->uring_lock); 4068 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4069 mutex_unlock(&ctx->uring_lock); 4070 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4071 out_fput: 4072 fdput(f); 4073 return ret; 4074 } 4075 4076 static int __init io_uring_init(void) 4077 { 4078 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4079 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4080 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4081 } while (0) 4082 4083 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4084 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4085 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4086 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4087 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4088 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4089 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4090 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4091 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4092 BUILD_BUG_SQE_ELEM(8, __u64, off); 4093 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4094 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4095 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4096 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4097 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4098 BUILD_BUG_SQE_ELEM(24, __u32, len); 4099 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4100 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4101 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4102 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4103 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4104 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4105 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4106 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4107 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4108 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4109 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4110 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4111 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4112 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4113 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4114 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4115 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4116 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4117 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4118 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4119 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4120 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4121 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4122 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4123 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4124 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4125 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4126 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4127 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4128 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4129 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4130 4131 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4132 sizeof(struct io_uring_rsrc_update)); 4133 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4134 sizeof(struct io_uring_rsrc_update2)); 4135 4136 /* ->buf_index is u16 */ 4137 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4138 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4139 offsetof(struct io_uring_buf_ring, tail)); 4140 4141 /* should fit into one byte */ 4142 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4143 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4144 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4145 4146 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4147 4148 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4149 4150 io_uring_optable_init(); 4151 4152 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4153 SLAB_ACCOUNT); 4154 return 0; 4155 }; 4156 __initcall(io_uring_init); 4157