1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 #include <asm/shmparam.h> 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/io_uring.h> 79 80 #include <uapi/linux/io_uring.h> 81 82 #include "io-wq.h" 83 84 #include "io_uring.h" 85 #include "opdef.h" 86 #include "refs.h" 87 #include "tctx.h" 88 #include "sqpoll.h" 89 #include "fdinfo.h" 90 #include "kbuf.h" 91 #include "rsrc.h" 92 #include "cancel.h" 93 #include "net.h" 94 #include "notif.h" 95 96 #include "timeout.h" 97 #include "poll.h" 98 #include "rw.h" 99 #include "alloc_cache.h" 100 101 #define IORING_MAX_ENTRIES 32768 102 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 103 104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 105 IORING_REGISTER_LAST + IORING_OP_LAST) 106 107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 108 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 109 110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 112 113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 115 REQ_F_ASYNC_DATA) 116 117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 118 IO_REQ_CLEAN_FLAGS) 119 120 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 121 122 #define IO_COMPL_BATCH 32 123 #define IO_REQ_ALLOC_BATCH 8 124 125 enum { 126 IO_CHECK_CQ_OVERFLOW_BIT, 127 IO_CHECK_CQ_DROPPED_BIT, 128 }; 129 130 enum { 131 IO_EVENTFD_OP_SIGNAL_BIT, 132 IO_EVENTFD_OP_FREE_BIT, 133 }; 134 135 struct io_defer_entry { 136 struct list_head list; 137 struct io_kiocb *req; 138 u32 seq; 139 }; 140 141 /* requests with any of those set should undergo io_disarm_next() */ 142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 144 145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 146 struct task_struct *task, 147 bool cancel_all); 148 149 static void io_queue_sqe(struct io_kiocb *req); 150 151 struct kmem_cache *req_cachep; 152 153 static int __read_mostly sysctl_io_uring_disabled; 154 static int __read_mostly sysctl_io_uring_group = -1; 155 156 #ifdef CONFIG_SYSCTL 157 static struct ctl_table kernel_io_uring_disabled_table[] = { 158 { 159 .procname = "io_uring_disabled", 160 .data = &sysctl_io_uring_disabled, 161 .maxlen = sizeof(sysctl_io_uring_disabled), 162 .mode = 0644, 163 .proc_handler = proc_dointvec_minmax, 164 .extra1 = SYSCTL_ZERO, 165 .extra2 = SYSCTL_TWO, 166 }, 167 { 168 .procname = "io_uring_group", 169 .data = &sysctl_io_uring_group, 170 .maxlen = sizeof(gid_t), 171 .mode = 0644, 172 .proc_handler = proc_dointvec, 173 }, 174 {}, 175 }; 176 #endif 177 178 struct sock *io_uring_get_socket(struct file *file) 179 { 180 #if defined(CONFIG_UNIX) 181 if (io_is_uring_fops(file)) { 182 struct io_ring_ctx *ctx = file->private_data; 183 184 return ctx->ring_sock->sk; 185 } 186 #endif 187 return NULL; 188 } 189 EXPORT_SYMBOL(io_uring_get_socket); 190 191 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 192 { 193 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 194 ctx->submit_state.cqes_count) 195 __io_submit_flush_completions(ctx); 196 } 197 198 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 199 { 200 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 201 } 202 203 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 204 { 205 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 206 } 207 208 static bool io_match_linked(struct io_kiocb *head) 209 { 210 struct io_kiocb *req; 211 212 io_for_each_link(req, head) { 213 if (req->flags & REQ_F_INFLIGHT) 214 return true; 215 } 216 return false; 217 } 218 219 /* 220 * As io_match_task() but protected against racing with linked timeouts. 221 * User must not hold timeout_lock. 222 */ 223 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 224 bool cancel_all) 225 { 226 bool matched; 227 228 if (task && head->task != task) 229 return false; 230 if (cancel_all) 231 return true; 232 233 if (head->flags & REQ_F_LINK_TIMEOUT) { 234 struct io_ring_ctx *ctx = head->ctx; 235 236 /* protect against races with linked timeouts */ 237 spin_lock_irq(&ctx->timeout_lock); 238 matched = io_match_linked(head); 239 spin_unlock_irq(&ctx->timeout_lock); 240 } else { 241 matched = io_match_linked(head); 242 } 243 return matched; 244 } 245 246 static inline void req_fail_link_node(struct io_kiocb *req, int res) 247 { 248 req_set_fail(req); 249 io_req_set_res(req, res, 0); 250 } 251 252 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 253 { 254 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 255 } 256 257 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 258 { 259 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 260 261 complete(&ctx->ref_comp); 262 } 263 264 static __cold void io_fallback_req_func(struct work_struct *work) 265 { 266 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 267 fallback_work.work); 268 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 269 struct io_kiocb *req, *tmp; 270 struct io_tw_state ts = { .locked = true, }; 271 272 percpu_ref_get(&ctx->refs); 273 mutex_lock(&ctx->uring_lock); 274 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 275 req->io_task_work.func(req, &ts); 276 if (WARN_ON_ONCE(!ts.locked)) 277 return; 278 io_submit_flush_completions(ctx); 279 mutex_unlock(&ctx->uring_lock); 280 percpu_ref_put(&ctx->refs); 281 } 282 283 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 284 { 285 unsigned hash_buckets = 1U << bits; 286 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 287 288 table->hbs = kmalloc(hash_size, GFP_KERNEL); 289 if (!table->hbs) 290 return -ENOMEM; 291 292 table->hash_bits = bits; 293 init_hash_table(table, hash_buckets); 294 return 0; 295 } 296 297 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 298 { 299 struct io_ring_ctx *ctx; 300 int hash_bits; 301 302 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 303 if (!ctx) 304 return NULL; 305 306 xa_init(&ctx->io_bl_xa); 307 308 /* 309 * Use 5 bits less than the max cq entries, that should give us around 310 * 32 entries per hash list if totally full and uniformly spread, but 311 * don't keep too many buckets to not overconsume memory. 312 */ 313 hash_bits = ilog2(p->cq_entries) - 5; 314 hash_bits = clamp(hash_bits, 1, 8); 315 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 316 goto err; 317 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 318 goto err; 319 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 320 0, GFP_KERNEL)) 321 goto err; 322 323 ctx->flags = p->flags; 324 init_waitqueue_head(&ctx->sqo_sq_wait); 325 INIT_LIST_HEAD(&ctx->sqd_list); 326 INIT_LIST_HEAD(&ctx->cq_overflow_list); 327 INIT_LIST_HEAD(&ctx->io_buffers_cache); 328 INIT_HLIST_HEAD(&ctx->io_buf_list); 329 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 330 sizeof(struct io_rsrc_node)); 331 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, 332 sizeof(struct async_poll)); 333 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 334 sizeof(struct io_async_msghdr)); 335 init_completion(&ctx->ref_comp); 336 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 337 mutex_init(&ctx->uring_lock); 338 init_waitqueue_head(&ctx->cq_wait); 339 init_waitqueue_head(&ctx->poll_wq); 340 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 341 spin_lock_init(&ctx->completion_lock); 342 spin_lock_init(&ctx->timeout_lock); 343 INIT_WQ_LIST(&ctx->iopoll_list); 344 INIT_LIST_HEAD(&ctx->io_buffers_pages); 345 INIT_LIST_HEAD(&ctx->io_buffers_comp); 346 INIT_LIST_HEAD(&ctx->defer_list); 347 INIT_LIST_HEAD(&ctx->timeout_list); 348 INIT_LIST_HEAD(&ctx->ltimeout_list); 349 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 350 init_llist_head(&ctx->work_llist); 351 INIT_LIST_HEAD(&ctx->tctx_list); 352 ctx->submit_state.free_list.next = NULL; 353 INIT_WQ_LIST(&ctx->locked_free_list); 354 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 355 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 356 return ctx; 357 err: 358 kfree(ctx->cancel_table.hbs); 359 kfree(ctx->cancel_table_locked.hbs); 360 kfree(ctx->io_bl); 361 xa_destroy(&ctx->io_bl_xa); 362 kfree(ctx); 363 return NULL; 364 } 365 366 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 367 { 368 struct io_rings *r = ctx->rings; 369 370 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 371 ctx->cq_extra--; 372 } 373 374 static bool req_need_defer(struct io_kiocb *req, u32 seq) 375 { 376 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 377 struct io_ring_ctx *ctx = req->ctx; 378 379 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 380 } 381 382 return false; 383 } 384 385 static void io_clean_op(struct io_kiocb *req) 386 { 387 if (req->flags & REQ_F_BUFFER_SELECTED) { 388 spin_lock(&req->ctx->completion_lock); 389 io_put_kbuf_comp(req); 390 spin_unlock(&req->ctx->completion_lock); 391 } 392 393 if (req->flags & REQ_F_NEED_CLEANUP) { 394 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 395 396 if (def->cleanup) 397 def->cleanup(req); 398 } 399 if ((req->flags & REQ_F_POLLED) && req->apoll) { 400 kfree(req->apoll->double_poll); 401 kfree(req->apoll); 402 req->apoll = NULL; 403 } 404 if (req->flags & REQ_F_INFLIGHT) { 405 struct io_uring_task *tctx = req->task->io_uring; 406 407 atomic_dec(&tctx->inflight_tracked); 408 } 409 if (req->flags & REQ_F_CREDS) 410 put_cred(req->creds); 411 if (req->flags & REQ_F_ASYNC_DATA) { 412 kfree(req->async_data); 413 req->async_data = NULL; 414 } 415 req->flags &= ~IO_REQ_CLEAN_FLAGS; 416 } 417 418 static inline void io_req_track_inflight(struct io_kiocb *req) 419 { 420 if (!(req->flags & REQ_F_INFLIGHT)) { 421 req->flags |= REQ_F_INFLIGHT; 422 atomic_inc(&req->task->io_uring->inflight_tracked); 423 } 424 } 425 426 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 427 { 428 if (WARN_ON_ONCE(!req->link)) 429 return NULL; 430 431 req->flags &= ~REQ_F_ARM_LTIMEOUT; 432 req->flags |= REQ_F_LINK_TIMEOUT; 433 434 /* linked timeouts should have two refs once prep'ed */ 435 io_req_set_refcount(req); 436 __io_req_set_refcount(req->link, 2); 437 return req->link; 438 } 439 440 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 441 { 442 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 443 return NULL; 444 return __io_prep_linked_timeout(req); 445 } 446 447 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 448 { 449 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 450 } 451 452 static inline void io_arm_ltimeout(struct io_kiocb *req) 453 { 454 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 455 __io_arm_ltimeout(req); 456 } 457 458 static void io_prep_async_work(struct io_kiocb *req) 459 { 460 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 461 struct io_ring_ctx *ctx = req->ctx; 462 463 if (!(req->flags & REQ_F_CREDS)) { 464 req->flags |= REQ_F_CREDS; 465 req->creds = get_current_cred(); 466 } 467 468 req->work.list.next = NULL; 469 req->work.flags = 0; 470 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 471 if (req->flags & REQ_F_FORCE_ASYNC) 472 req->work.flags |= IO_WQ_WORK_CONCURRENT; 473 474 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 475 req->flags |= io_file_get_flags(req->file); 476 477 if (req->file && (req->flags & REQ_F_ISREG)) { 478 bool should_hash = def->hash_reg_file; 479 480 /* don't serialize this request if the fs doesn't need it */ 481 if (should_hash && (req->file->f_flags & O_DIRECT) && 482 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) 483 should_hash = false; 484 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 485 io_wq_hash_work(&req->work, file_inode(req->file)); 486 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 487 if (def->unbound_nonreg_file) 488 req->work.flags |= IO_WQ_WORK_UNBOUND; 489 } 490 } 491 492 static void io_prep_async_link(struct io_kiocb *req) 493 { 494 struct io_kiocb *cur; 495 496 if (req->flags & REQ_F_LINK_TIMEOUT) { 497 struct io_ring_ctx *ctx = req->ctx; 498 499 spin_lock_irq(&ctx->timeout_lock); 500 io_for_each_link(cur, req) 501 io_prep_async_work(cur); 502 spin_unlock_irq(&ctx->timeout_lock); 503 } else { 504 io_for_each_link(cur, req) 505 io_prep_async_work(cur); 506 } 507 } 508 509 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) 510 { 511 struct io_kiocb *link = io_prep_linked_timeout(req); 512 struct io_uring_task *tctx = req->task->io_uring; 513 514 BUG_ON(!tctx); 515 BUG_ON(!tctx->io_wq); 516 517 /* init ->work of the whole link before punting */ 518 io_prep_async_link(req); 519 520 /* 521 * Not expected to happen, but if we do have a bug where this _can_ 522 * happen, catch it here and ensure the request is marked as 523 * canceled. That will make io-wq go through the usual work cancel 524 * procedure rather than attempt to run this request (or create a new 525 * worker for it). 526 */ 527 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 528 req->work.flags |= IO_WQ_WORK_CANCEL; 529 530 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 531 io_wq_enqueue(tctx->io_wq, &req->work); 532 if (link) 533 io_queue_linked_timeout(link); 534 } 535 536 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 537 { 538 while (!list_empty(&ctx->defer_list)) { 539 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 540 struct io_defer_entry, list); 541 542 if (req_need_defer(de->req, de->seq)) 543 break; 544 list_del_init(&de->list); 545 io_req_task_queue(de->req); 546 kfree(de); 547 } 548 } 549 550 551 static void io_eventfd_ops(struct rcu_head *rcu) 552 { 553 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 554 int ops = atomic_xchg(&ev_fd->ops, 0); 555 556 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 557 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 558 559 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 560 * ordering in a race but if references are 0 we know we have to free 561 * it regardless. 562 */ 563 if (atomic_dec_and_test(&ev_fd->refs)) { 564 eventfd_ctx_put(ev_fd->cq_ev_fd); 565 kfree(ev_fd); 566 } 567 } 568 569 static void io_eventfd_signal(struct io_ring_ctx *ctx) 570 { 571 struct io_ev_fd *ev_fd = NULL; 572 573 rcu_read_lock(); 574 /* 575 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 576 * and eventfd_signal 577 */ 578 ev_fd = rcu_dereference(ctx->io_ev_fd); 579 580 /* 581 * Check again if ev_fd exists incase an io_eventfd_unregister call 582 * completed between the NULL check of ctx->io_ev_fd at the start of 583 * the function and rcu_read_lock. 584 */ 585 if (unlikely(!ev_fd)) 586 goto out; 587 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 588 goto out; 589 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 590 goto out; 591 592 if (likely(eventfd_signal_allowed())) { 593 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 594 } else { 595 atomic_inc(&ev_fd->refs); 596 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 597 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 598 else 599 atomic_dec(&ev_fd->refs); 600 } 601 602 out: 603 rcu_read_unlock(); 604 } 605 606 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 607 { 608 bool skip; 609 610 spin_lock(&ctx->completion_lock); 611 612 /* 613 * Eventfd should only get triggered when at least one event has been 614 * posted. Some applications rely on the eventfd notification count 615 * only changing IFF a new CQE has been added to the CQ ring. There's 616 * no depedency on 1:1 relationship between how many times this 617 * function is called (and hence the eventfd count) and number of CQEs 618 * posted to the CQ ring. 619 */ 620 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 621 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 622 spin_unlock(&ctx->completion_lock); 623 if (skip) 624 return; 625 626 io_eventfd_signal(ctx); 627 } 628 629 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 630 { 631 if (ctx->poll_activated) 632 io_poll_wq_wake(ctx); 633 if (ctx->off_timeout_used) 634 io_flush_timeouts(ctx); 635 if (ctx->drain_active) { 636 spin_lock(&ctx->completion_lock); 637 io_queue_deferred(ctx); 638 spin_unlock(&ctx->completion_lock); 639 } 640 if (ctx->has_evfd) 641 io_eventfd_flush_signal(ctx); 642 } 643 644 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 645 { 646 if (!ctx->lockless_cq) 647 spin_lock(&ctx->completion_lock); 648 } 649 650 static inline void io_cq_lock(struct io_ring_ctx *ctx) 651 __acquires(ctx->completion_lock) 652 { 653 spin_lock(&ctx->completion_lock); 654 } 655 656 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 657 { 658 io_commit_cqring(ctx); 659 if (!ctx->task_complete) { 660 if (!ctx->lockless_cq) 661 spin_unlock(&ctx->completion_lock); 662 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 663 if (!ctx->syscall_iopoll) 664 io_cqring_wake(ctx); 665 } 666 io_commit_cqring_flush(ctx); 667 } 668 669 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 670 __releases(ctx->completion_lock) 671 { 672 io_commit_cqring(ctx); 673 spin_unlock(&ctx->completion_lock); 674 io_cqring_wake(ctx); 675 io_commit_cqring_flush(ctx); 676 } 677 678 /* Returns true if there are no backlogged entries after the flush */ 679 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 680 { 681 struct io_overflow_cqe *ocqe; 682 LIST_HEAD(list); 683 684 spin_lock(&ctx->completion_lock); 685 list_splice_init(&ctx->cq_overflow_list, &list); 686 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 687 spin_unlock(&ctx->completion_lock); 688 689 while (!list_empty(&list)) { 690 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 691 list_del(&ocqe->list); 692 kfree(ocqe); 693 } 694 } 695 696 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 697 { 698 size_t cqe_size = sizeof(struct io_uring_cqe); 699 700 if (__io_cqring_events(ctx) == ctx->cq_entries) 701 return; 702 703 if (ctx->flags & IORING_SETUP_CQE32) 704 cqe_size <<= 1; 705 706 io_cq_lock(ctx); 707 while (!list_empty(&ctx->cq_overflow_list)) { 708 struct io_uring_cqe *cqe; 709 struct io_overflow_cqe *ocqe; 710 711 if (!io_get_cqe_overflow(ctx, &cqe, true)) 712 break; 713 ocqe = list_first_entry(&ctx->cq_overflow_list, 714 struct io_overflow_cqe, list); 715 memcpy(cqe, &ocqe->cqe, cqe_size); 716 list_del(&ocqe->list); 717 kfree(ocqe); 718 } 719 720 if (list_empty(&ctx->cq_overflow_list)) { 721 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 722 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 723 } 724 io_cq_unlock_post(ctx); 725 } 726 727 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 728 { 729 /* iopoll syncs against uring_lock, not completion_lock */ 730 if (ctx->flags & IORING_SETUP_IOPOLL) 731 mutex_lock(&ctx->uring_lock); 732 __io_cqring_overflow_flush(ctx); 733 if (ctx->flags & IORING_SETUP_IOPOLL) 734 mutex_unlock(&ctx->uring_lock); 735 } 736 737 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 738 { 739 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 740 io_cqring_do_overflow_flush(ctx); 741 } 742 743 /* can be called by any task */ 744 static void io_put_task_remote(struct task_struct *task) 745 { 746 struct io_uring_task *tctx = task->io_uring; 747 748 percpu_counter_sub(&tctx->inflight, 1); 749 if (unlikely(atomic_read(&tctx->in_cancel))) 750 wake_up(&tctx->wait); 751 put_task_struct(task); 752 } 753 754 /* used by a task to put its own references */ 755 static void io_put_task_local(struct task_struct *task) 756 { 757 task->io_uring->cached_refs++; 758 } 759 760 /* must to be called somewhat shortly after putting a request */ 761 static inline void io_put_task(struct task_struct *task) 762 { 763 if (likely(task == current)) 764 io_put_task_local(task); 765 else 766 io_put_task_remote(task); 767 } 768 769 void io_task_refs_refill(struct io_uring_task *tctx) 770 { 771 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 772 773 percpu_counter_add(&tctx->inflight, refill); 774 refcount_add(refill, ¤t->usage); 775 tctx->cached_refs += refill; 776 } 777 778 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 779 { 780 struct io_uring_task *tctx = task->io_uring; 781 unsigned int refs = tctx->cached_refs; 782 783 if (refs) { 784 tctx->cached_refs = 0; 785 percpu_counter_sub(&tctx->inflight, refs); 786 put_task_struct_many(task, refs); 787 } 788 } 789 790 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 791 s32 res, u32 cflags, u64 extra1, u64 extra2) 792 { 793 struct io_overflow_cqe *ocqe; 794 size_t ocq_size = sizeof(struct io_overflow_cqe); 795 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 796 797 lockdep_assert_held(&ctx->completion_lock); 798 799 if (is_cqe32) 800 ocq_size += sizeof(struct io_uring_cqe); 801 802 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 803 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 804 if (!ocqe) { 805 /* 806 * If we're in ring overflow flush mode, or in task cancel mode, 807 * or cannot allocate an overflow entry, then we need to drop it 808 * on the floor. 809 */ 810 io_account_cq_overflow(ctx); 811 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 812 return false; 813 } 814 if (list_empty(&ctx->cq_overflow_list)) { 815 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 816 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 817 818 } 819 ocqe->cqe.user_data = user_data; 820 ocqe->cqe.res = res; 821 ocqe->cqe.flags = cflags; 822 if (is_cqe32) { 823 ocqe->cqe.big_cqe[0] = extra1; 824 ocqe->cqe.big_cqe[1] = extra2; 825 } 826 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 827 return true; 828 } 829 830 void io_req_cqe_overflow(struct io_kiocb *req) 831 { 832 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 833 req->cqe.res, req->cqe.flags, 834 req->big_cqe.extra1, req->big_cqe.extra2); 835 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 836 } 837 838 /* 839 * writes to the cq entry need to come after reading head; the 840 * control dependency is enough as we're using WRITE_ONCE to 841 * fill the cq entry 842 */ 843 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 844 { 845 struct io_rings *rings = ctx->rings; 846 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 847 unsigned int free, queued, len; 848 849 /* 850 * Posting into the CQ when there are pending overflowed CQEs may break 851 * ordering guarantees, which will affect links, F_MORE users and more. 852 * Force overflow the completion. 853 */ 854 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 855 return false; 856 857 /* userspace may cheat modifying the tail, be safe and do min */ 858 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 859 free = ctx->cq_entries - queued; 860 /* we need a contiguous range, limit based on the current array offset */ 861 len = min(free, ctx->cq_entries - off); 862 if (!len) 863 return false; 864 865 if (ctx->flags & IORING_SETUP_CQE32) { 866 off <<= 1; 867 len <<= 1; 868 } 869 870 ctx->cqe_cached = &rings->cqes[off]; 871 ctx->cqe_sentinel = ctx->cqe_cached + len; 872 return true; 873 } 874 875 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 876 u32 cflags) 877 { 878 struct io_uring_cqe *cqe; 879 880 ctx->cq_extra++; 881 882 /* 883 * If we can't get a cq entry, userspace overflowed the 884 * submission (by quite a lot). Increment the overflow count in 885 * the ring. 886 */ 887 if (likely(io_get_cqe(ctx, &cqe))) { 888 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 889 890 WRITE_ONCE(cqe->user_data, user_data); 891 WRITE_ONCE(cqe->res, res); 892 WRITE_ONCE(cqe->flags, cflags); 893 894 if (ctx->flags & IORING_SETUP_CQE32) { 895 WRITE_ONCE(cqe->big_cqe[0], 0); 896 WRITE_ONCE(cqe->big_cqe[1], 0); 897 } 898 return true; 899 } 900 return false; 901 } 902 903 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 904 __must_hold(&ctx->uring_lock) 905 { 906 struct io_submit_state *state = &ctx->submit_state; 907 unsigned int i; 908 909 lockdep_assert_held(&ctx->uring_lock); 910 for (i = 0; i < state->cqes_count; i++) { 911 struct io_uring_cqe *cqe = &ctx->completion_cqes[i]; 912 913 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 914 if (ctx->lockless_cq) { 915 spin_lock(&ctx->completion_lock); 916 io_cqring_event_overflow(ctx, cqe->user_data, 917 cqe->res, cqe->flags, 0, 0); 918 spin_unlock(&ctx->completion_lock); 919 } else { 920 io_cqring_event_overflow(ctx, cqe->user_data, 921 cqe->res, cqe->flags, 0, 0); 922 } 923 } 924 } 925 state->cqes_count = 0; 926 } 927 928 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 929 bool allow_overflow) 930 { 931 bool filled; 932 933 io_cq_lock(ctx); 934 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 935 if (!filled && allow_overflow) 936 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 937 938 io_cq_unlock_post(ctx); 939 return filled; 940 } 941 942 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 943 { 944 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 945 } 946 947 /* 948 * A helper for multishot requests posting additional CQEs. 949 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 950 */ 951 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags) 952 { 953 struct io_ring_ctx *ctx = req->ctx; 954 u64 user_data = req->cqe.user_data; 955 struct io_uring_cqe *cqe; 956 957 if (!defer) 958 return __io_post_aux_cqe(ctx, user_data, res, cflags, false); 959 960 lockdep_assert_held(&ctx->uring_lock); 961 962 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) { 963 __io_cq_lock(ctx); 964 __io_flush_post_cqes(ctx); 965 /* no need to flush - flush is deferred */ 966 __io_cq_unlock_post(ctx); 967 } 968 969 /* For defered completions this is not as strict as it is otherwise, 970 * however it's main job is to prevent unbounded posted completions, 971 * and in that it works just as well. 972 */ 973 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 974 return false; 975 976 cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++]; 977 cqe->user_data = user_data; 978 cqe->res = res; 979 cqe->flags = cflags; 980 return true; 981 } 982 983 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 984 { 985 struct io_ring_ctx *ctx = req->ctx; 986 struct io_rsrc_node *rsrc_node = NULL; 987 988 io_cq_lock(ctx); 989 if (!(req->flags & REQ_F_CQE_SKIP)) { 990 if (!io_fill_cqe_req(ctx, req)) 991 io_req_cqe_overflow(req); 992 } 993 994 /* 995 * If we're the last reference to this request, add to our locked 996 * free_list cache. 997 */ 998 if (req_ref_put_and_test(req)) { 999 if (req->flags & IO_REQ_LINK_FLAGS) { 1000 if (req->flags & IO_DISARM_MASK) 1001 io_disarm_next(req); 1002 if (req->link) { 1003 io_req_task_queue(req->link); 1004 req->link = NULL; 1005 } 1006 } 1007 io_put_kbuf_comp(req); 1008 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1009 io_clean_op(req); 1010 io_put_file(req); 1011 1012 rsrc_node = req->rsrc_node; 1013 /* 1014 * Selected buffer deallocation in io_clean_op() assumes that 1015 * we don't hold ->completion_lock. Clean them here to avoid 1016 * deadlocks. 1017 */ 1018 io_put_task_remote(req->task); 1019 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1020 ctx->locked_free_nr++; 1021 } 1022 io_cq_unlock_post(ctx); 1023 1024 if (rsrc_node) { 1025 io_ring_submit_lock(ctx, issue_flags); 1026 io_put_rsrc_node(ctx, rsrc_node); 1027 io_ring_submit_unlock(ctx, issue_flags); 1028 } 1029 } 1030 1031 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1032 { 1033 if (req->ctx->task_complete && req->ctx->submitter_task != current) { 1034 req->io_task_work.func = io_req_task_complete; 1035 io_req_task_work_add(req); 1036 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1037 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 1038 __io_req_complete_post(req, issue_flags); 1039 } else { 1040 struct io_ring_ctx *ctx = req->ctx; 1041 1042 mutex_lock(&ctx->uring_lock); 1043 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); 1044 mutex_unlock(&ctx->uring_lock); 1045 } 1046 } 1047 1048 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1049 __must_hold(&ctx->uring_lock) 1050 { 1051 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1052 1053 lockdep_assert_held(&req->ctx->uring_lock); 1054 1055 req_set_fail(req); 1056 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1057 if (def->fail) 1058 def->fail(req); 1059 io_req_complete_defer(req); 1060 } 1061 1062 /* 1063 * Don't initialise the fields below on every allocation, but do that in 1064 * advance and keep them valid across allocations. 1065 */ 1066 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1067 { 1068 req->ctx = ctx; 1069 req->link = NULL; 1070 req->async_data = NULL; 1071 /* not necessary, but safer to zero */ 1072 memset(&req->cqe, 0, sizeof(req->cqe)); 1073 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 1074 } 1075 1076 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1077 struct io_submit_state *state) 1078 { 1079 spin_lock(&ctx->completion_lock); 1080 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1081 ctx->locked_free_nr = 0; 1082 spin_unlock(&ctx->completion_lock); 1083 } 1084 1085 /* 1086 * A request might get retired back into the request caches even before opcode 1087 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1088 * Because of that, io_alloc_req() should be called only under ->uring_lock 1089 * and with extra caution to not get a request that is still worked on. 1090 */ 1091 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1092 __must_hold(&ctx->uring_lock) 1093 { 1094 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1095 void *reqs[IO_REQ_ALLOC_BATCH]; 1096 int ret, i; 1097 1098 /* 1099 * If we have more than a batch's worth of requests in our IRQ side 1100 * locked cache, grab the lock and move them over to our submission 1101 * side cache. 1102 */ 1103 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1104 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1105 if (!io_req_cache_empty(ctx)) 1106 return true; 1107 } 1108 1109 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1110 1111 /* 1112 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1113 * retry single alloc to be on the safe side. 1114 */ 1115 if (unlikely(ret <= 0)) { 1116 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1117 if (!reqs[0]) 1118 return false; 1119 ret = 1; 1120 } 1121 1122 percpu_ref_get_many(&ctx->refs, ret); 1123 for (i = 0; i < ret; i++) { 1124 struct io_kiocb *req = reqs[i]; 1125 1126 io_preinit_req(req, ctx); 1127 io_req_add_to_cache(req, ctx); 1128 } 1129 return true; 1130 } 1131 1132 __cold void io_free_req(struct io_kiocb *req) 1133 { 1134 /* refs were already put, restore them for io_req_task_complete() */ 1135 req->flags &= ~REQ_F_REFCOUNT; 1136 /* we only want to free it, don't post CQEs */ 1137 req->flags |= REQ_F_CQE_SKIP; 1138 req->io_task_work.func = io_req_task_complete; 1139 io_req_task_work_add(req); 1140 } 1141 1142 static void __io_req_find_next_prep(struct io_kiocb *req) 1143 { 1144 struct io_ring_ctx *ctx = req->ctx; 1145 1146 spin_lock(&ctx->completion_lock); 1147 io_disarm_next(req); 1148 spin_unlock(&ctx->completion_lock); 1149 } 1150 1151 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1152 { 1153 struct io_kiocb *nxt; 1154 1155 /* 1156 * If LINK is set, we have dependent requests in this chain. If we 1157 * didn't fail this request, queue the first one up, moving any other 1158 * dependencies to the next request. In case of failure, fail the rest 1159 * of the chain. 1160 */ 1161 if (unlikely(req->flags & IO_DISARM_MASK)) 1162 __io_req_find_next_prep(req); 1163 nxt = req->link; 1164 req->link = NULL; 1165 return nxt; 1166 } 1167 1168 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1169 { 1170 if (!ctx) 1171 return; 1172 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1173 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1174 if (ts->locked) { 1175 io_submit_flush_completions(ctx); 1176 mutex_unlock(&ctx->uring_lock); 1177 ts->locked = false; 1178 } 1179 percpu_ref_put(&ctx->refs); 1180 } 1181 1182 static unsigned int handle_tw_list(struct llist_node *node, 1183 struct io_ring_ctx **ctx, 1184 struct io_tw_state *ts, 1185 struct llist_node *last) 1186 { 1187 unsigned int count = 0; 1188 1189 while (node && node != last) { 1190 struct llist_node *next = node->next; 1191 struct io_kiocb *req = container_of(node, struct io_kiocb, 1192 io_task_work.node); 1193 1194 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1195 1196 if (req->ctx != *ctx) { 1197 ctx_flush_and_put(*ctx, ts); 1198 *ctx = req->ctx; 1199 /* if not contended, grab and improve batching */ 1200 ts->locked = mutex_trylock(&(*ctx)->uring_lock); 1201 percpu_ref_get(&(*ctx)->refs); 1202 } 1203 INDIRECT_CALL_2(req->io_task_work.func, 1204 io_poll_task_func, io_req_rw_complete, 1205 req, ts); 1206 node = next; 1207 count++; 1208 if (unlikely(need_resched())) { 1209 ctx_flush_and_put(*ctx, ts); 1210 *ctx = NULL; 1211 cond_resched(); 1212 } 1213 } 1214 1215 return count; 1216 } 1217 1218 /** 1219 * io_llist_xchg - swap all entries in a lock-less list 1220 * @head: the head of lock-less list to delete all entries 1221 * @new: new entry as the head of the list 1222 * 1223 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1224 * The order of entries returned is from the newest to the oldest added one. 1225 */ 1226 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1227 struct llist_node *new) 1228 { 1229 return xchg(&head->first, new); 1230 } 1231 1232 /** 1233 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1234 * @head: the head of lock-less list to delete all entries 1235 * @old: expected old value of the first entry of the list 1236 * @new: new entry as the head of the list 1237 * 1238 * perform a cmpxchg on the first entry of the list. 1239 */ 1240 1241 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1242 struct llist_node *old, 1243 struct llist_node *new) 1244 { 1245 return cmpxchg(&head->first, old, new); 1246 } 1247 1248 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1249 { 1250 struct llist_node *node = llist_del_all(&tctx->task_list); 1251 struct io_ring_ctx *last_ctx = NULL; 1252 struct io_kiocb *req; 1253 1254 while (node) { 1255 req = container_of(node, struct io_kiocb, io_task_work.node); 1256 node = node->next; 1257 if (sync && last_ctx != req->ctx) { 1258 if (last_ctx) { 1259 flush_delayed_work(&last_ctx->fallback_work); 1260 percpu_ref_put(&last_ctx->refs); 1261 } 1262 last_ctx = req->ctx; 1263 percpu_ref_get(&last_ctx->refs); 1264 } 1265 if (llist_add(&req->io_task_work.node, 1266 &req->ctx->fallback_llist)) 1267 schedule_delayed_work(&req->ctx->fallback_work, 1); 1268 } 1269 1270 if (last_ctx) { 1271 flush_delayed_work(&last_ctx->fallback_work); 1272 percpu_ref_put(&last_ctx->refs); 1273 } 1274 } 1275 1276 void tctx_task_work(struct callback_head *cb) 1277 { 1278 struct io_tw_state ts = {}; 1279 struct io_ring_ctx *ctx = NULL; 1280 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1281 task_work); 1282 struct llist_node fake = {}; 1283 struct llist_node *node; 1284 unsigned int loops = 0; 1285 unsigned int count = 0; 1286 1287 if (unlikely(current->flags & PF_EXITING)) { 1288 io_fallback_tw(tctx, true); 1289 return; 1290 } 1291 1292 do { 1293 loops++; 1294 node = io_llist_xchg(&tctx->task_list, &fake); 1295 count += handle_tw_list(node, &ctx, &ts, &fake); 1296 1297 /* skip expensive cmpxchg if there are items in the list */ 1298 if (READ_ONCE(tctx->task_list.first) != &fake) 1299 continue; 1300 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) { 1301 io_submit_flush_completions(ctx); 1302 if (READ_ONCE(tctx->task_list.first) != &fake) 1303 continue; 1304 } 1305 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1306 } while (node != &fake); 1307 1308 ctx_flush_and_put(ctx, &ts); 1309 1310 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1311 if (unlikely(atomic_read(&tctx->in_cancel))) 1312 io_uring_drop_tctx_refs(current); 1313 1314 trace_io_uring_task_work_run(tctx, count, loops); 1315 } 1316 1317 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1318 { 1319 struct io_ring_ctx *ctx = req->ctx; 1320 unsigned nr_wait, nr_tw, nr_tw_prev; 1321 struct llist_node *first; 1322 1323 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1324 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1325 1326 first = READ_ONCE(ctx->work_llist.first); 1327 do { 1328 nr_tw_prev = 0; 1329 if (first) { 1330 struct io_kiocb *first_req = container_of(first, 1331 struct io_kiocb, 1332 io_task_work.node); 1333 /* 1334 * Might be executed at any moment, rely on 1335 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1336 */ 1337 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1338 } 1339 nr_tw = nr_tw_prev + 1; 1340 /* Large enough to fail the nr_wait comparison below */ 1341 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1342 nr_tw = -1U; 1343 1344 req->nr_tw = nr_tw; 1345 req->io_task_work.node.next = first; 1346 } while (!try_cmpxchg(&ctx->work_llist.first, &first, 1347 &req->io_task_work.node)); 1348 1349 if (!first) { 1350 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1351 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1352 if (ctx->has_evfd) 1353 io_eventfd_signal(ctx); 1354 } 1355 1356 nr_wait = atomic_read(&ctx->cq_wait_nr); 1357 /* no one is waiting */ 1358 if (!nr_wait) 1359 return; 1360 /* either not enough or the previous add has already woken it up */ 1361 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait) 1362 return; 1363 /* pairs with set_current_state() in io_cqring_wait() */ 1364 smp_mb__after_atomic(); 1365 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1366 } 1367 1368 static void io_req_normal_work_add(struct io_kiocb *req) 1369 { 1370 struct io_uring_task *tctx = req->task->io_uring; 1371 struct io_ring_ctx *ctx = req->ctx; 1372 1373 /* task_work already pending, we're done */ 1374 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1375 return; 1376 1377 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1378 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1379 1380 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1381 return; 1382 1383 io_fallback_tw(tctx, false); 1384 } 1385 1386 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1387 { 1388 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1389 rcu_read_lock(); 1390 io_req_local_work_add(req, flags); 1391 rcu_read_unlock(); 1392 } else { 1393 io_req_normal_work_add(req); 1394 } 1395 } 1396 1397 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1398 { 1399 struct llist_node *node; 1400 1401 node = llist_del_all(&ctx->work_llist); 1402 while (node) { 1403 struct io_kiocb *req = container_of(node, struct io_kiocb, 1404 io_task_work.node); 1405 1406 node = node->next; 1407 io_req_normal_work_add(req); 1408 } 1409 } 1410 1411 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1412 { 1413 struct llist_node *node; 1414 unsigned int loops = 0; 1415 int ret = 0; 1416 1417 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1418 return -EEXIST; 1419 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1420 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1421 again: 1422 /* 1423 * llists are in reverse order, flip it back the right way before 1424 * running the pending items. 1425 */ 1426 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1427 while (node) { 1428 struct llist_node *next = node->next; 1429 struct io_kiocb *req = container_of(node, struct io_kiocb, 1430 io_task_work.node); 1431 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1432 INDIRECT_CALL_2(req->io_task_work.func, 1433 io_poll_task_func, io_req_rw_complete, 1434 req, ts); 1435 ret++; 1436 node = next; 1437 } 1438 loops++; 1439 1440 if (!llist_empty(&ctx->work_llist)) 1441 goto again; 1442 if (ts->locked) { 1443 io_submit_flush_completions(ctx); 1444 if (!llist_empty(&ctx->work_llist)) 1445 goto again; 1446 } 1447 trace_io_uring_local_work_run(ctx, ret, loops); 1448 return ret; 1449 } 1450 1451 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx) 1452 { 1453 struct io_tw_state ts = { .locked = true, }; 1454 int ret; 1455 1456 if (llist_empty(&ctx->work_llist)) 1457 return 0; 1458 1459 ret = __io_run_local_work(ctx, &ts); 1460 /* shouldn't happen! */ 1461 if (WARN_ON_ONCE(!ts.locked)) 1462 mutex_lock(&ctx->uring_lock); 1463 return ret; 1464 } 1465 1466 static int io_run_local_work(struct io_ring_ctx *ctx) 1467 { 1468 struct io_tw_state ts = {}; 1469 int ret; 1470 1471 ts.locked = mutex_trylock(&ctx->uring_lock); 1472 ret = __io_run_local_work(ctx, &ts); 1473 if (ts.locked) 1474 mutex_unlock(&ctx->uring_lock); 1475 1476 return ret; 1477 } 1478 1479 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1480 { 1481 io_tw_lock(req->ctx, ts); 1482 io_req_defer_failed(req, req->cqe.res); 1483 } 1484 1485 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1486 { 1487 io_tw_lock(req->ctx, ts); 1488 /* req->task == current here, checking PF_EXITING is safe */ 1489 if (unlikely(req->task->flags & PF_EXITING)) 1490 io_req_defer_failed(req, -EFAULT); 1491 else if (req->flags & REQ_F_FORCE_ASYNC) 1492 io_queue_iowq(req, ts); 1493 else 1494 io_queue_sqe(req); 1495 } 1496 1497 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1498 { 1499 io_req_set_res(req, ret, 0); 1500 req->io_task_work.func = io_req_task_cancel; 1501 io_req_task_work_add(req); 1502 } 1503 1504 void io_req_task_queue(struct io_kiocb *req) 1505 { 1506 req->io_task_work.func = io_req_task_submit; 1507 io_req_task_work_add(req); 1508 } 1509 1510 void io_queue_next(struct io_kiocb *req) 1511 { 1512 struct io_kiocb *nxt = io_req_find_next(req); 1513 1514 if (nxt) 1515 io_req_task_queue(nxt); 1516 } 1517 1518 static void io_free_batch_list(struct io_ring_ctx *ctx, 1519 struct io_wq_work_node *node) 1520 __must_hold(&ctx->uring_lock) 1521 { 1522 do { 1523 struct io_kiocb *req = container_of(node, struct io_kiocb, 1524 comp_list); 1525 1526 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1527 if (req->flags & REQ_F_REFCOUNT) { 1528 node = req->comp_list.next; 1529 if (!req_ref_put_and_test(req)) 1530 continue; 1531 } 1532 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1533 struct async_poll *apoll = req->apoll; 1534 1535 if (apoll->double_poll) 1536 kfree(apoll->double_poll); 1537 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1538 kfree(apoll); 1539 req->flags &= ~REQ_F_POLLED; 1540 } 1541 if (req->flags & IO_REQ_LINK_FLAGS) 1542 io_queue_next(req); 1543 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1544 io_clean_op(req); 1545 } 1546 io_put_file(req); 1547 1548 io_req_put_rsrc_locked(req, ctx); 1549 1550 io_put_task(req->task); 1551 node = req->comp_list.next; 1552 io_req_add_to_cache(req, ctx); 1553 } while (node); 1554 } 1555 1556 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1557 __must_hold(&ctx->uring_lock) 1558 { 1559 struct io_submit_state *state = &ctx->submit_state; 1560 struct io_wq_work_node *node; 1561 1562 __io_cq_lock(ctx); 1563 /* must come first to preserve CQE ordering in failure cases */ 1564 if (state->cqes_count) 1565 __io_flush_post_cqes(ctx); 1566 __wq_list_for_each(node, &state->compl_reqs) { 1567 struct io_kiocb *req = container_of(node, struct io_kiocb, 1568 comp_list); 1569 1570 if (!(req->flags & REQ_F_CQE_SKIP) && 1571 unlikely(!io_fill_cqe_req(ctx, req))) { 1572 if (ctx->lockless_cq) { 1573 spin_lock(&ctx->completion_lock); 1574 io_req_cqe_overflow(req); 1575 spin_unlock(&ctx->completion_lock); 1576 } else { 1577 io_req_cqe_overflow(req); 1578 } 1579 } 1580 } 1581 __io_cq_unlock_post(ctx); 1582 1583 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1584 io_free_batch_list(ctx, state->compl_reqs.first); 1585 INIT_WQ_LIST(&state->compl_reqs); 1586 } 1587 } 1588 1589 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1590 { 1591 /* See comment at the top of this file */ 1592 smp_rmb(); 1593 return __io_cqring_events(ctx); 1594 } 1595 1596 /* 1597 * We can't just wait for polled events to come to us, we have to actively 1598 * find and complete them. 1599 */ 1600 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1601 { 1602 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1603 return; 1604 1605 mutex_lock(&ctx->uring_lock); 1606 while (!wq_list_empty(&ctx->iopoll_list)) { 1607 /* let it sleep and repeat later if can't complete a request */ 1608 if (io_do_iopoll(ctx, true) == 0) 1609 break; 1610 /* 1611 * Ensure we allow local-to-the-cpu processing to take place, 1612 * in this case we need to ensure that we reap all events. 1613 * Also let task_work, etc. to progress by releasing the mutex 1614 */ 1615 if (need_resched()) { 1616 mutex_unlock(&ctx->uring_lock); 1617 cond_resched(); 1618 mutex_lock(&ctx->uring_lock); 1619 } 1620 } 1621 mutex_unlock(&ctx->uring_lock); 1622 } 1623 1624 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1625 { 1626 unsigned int nr_events = 0; 1627 unsigned long check_cq; 1628 1629 if (!io_allowed_run_tw(ctx)) 1630 return -EEXIST; 1631 1632 check_cq = READ_ONCE(ctx->check_cq); 1633 if (unlikely(check_cq)) { 1634 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1635 __io_cqring_overflow_flush(ctx); 1636 /* 1637 * Similarly do not spin if we have not informed the user of any 1638 * dropped CQE. 1639 */ 1640 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1641 return -EBADR; 1642 } 1643 /* 1644 * Don't enter poll loop if we already have events pending. 1645 * If we do, we can potentially be spinning for commands that 1646 * already triggered a CQE (eg in error). 1647 */ 1648 if (io_cqring_events(ctx)) 1649 return 0; 1650 1651 do { 1652 int ret = 0; 1653 1654 /* 1655 * If a submit got punted to a workqueue, we can have the 1656 * application entering polling for a command before it gets 1657 * issued. That app will hold the uring_lock for the duration 1658 * of the poll right here, so we need to take a breather every 1659 * now and then to ensure that the issue has a chance to add 1660 * the poll to the issued list. Otherwise we can spin here 1661 * forever, while the workqueue is stuck trying to acquire the 1662 * very same mutex. 1663 */ 1664 if (wq_list_empty(&ctx->iopoll_list) || 1665 io_task_work_pending(ctx)) { 1666 u32 tail = ctx->cached_cq_tail; 1667 1668 (void) io_run_local_work_locked(ctx); 1669 1670 if (task_work_pending(current) || 1671 wq_list_empty(&ctx->iopoll_list)) { 1672 mutex_unlock(&ctx->uring_lock); 1673 io_run_task_work(); 1674 mutex_lock(&ctx->uring_lock); 1675 } 1676 /* some requests don't go through iopoll_list */ 1677 if (tail != ctx->cached_cq_tail || 1678 wq_list_empty(&ctx->iopoll_list)) 1679 break; 1680 } 1681 ret = io_do_iopoll(ctx, !min); 1682 if (unlikely(ret < 0)) 1683 return ret; 1684 1685 if (task_sigpending(current)) 1686 return -EINTR; 1687 if (need_resched()) 1688 break; 1689 1690 nr_events += ret; 1691 } while (nr_events < min); 1692 1693 return 0; 1694 } 1695 1696 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1697 { 1698 if (ts->locked) 1699 io_req_complete_defer(req); 1700 else 1701 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1702 } 1703 1704 /* 1705 * After the iocb has been issued, it's safe to be found on the poll list. 1706 * Adding the kiocb to the list AFTER submission ensures that we don't 1707 * find it from a io_do_iopoll() thread before the issuer is done 1708 * accessing the kiocb cookie. 1709 */ 1710 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1711 { 1712 struct io_ring_ctx *ctx = req->ctx; 1713 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1714 1715 /* workqueue context doesn't hold uring_lock, grab it now */ 1716 if (unlikely(needs_lock)) 1717 mutex_lock(&ctx->uring_lock); 1718 1719 /* 1720 * Track whether we have multiple files in our lists. This will impact 1721 * how we do polling eventually, not spinning if we're on potentially 1722 * different devices. 1723 */ 1724 if (wq_list_empty(&ctx->iopoll_list)) { 1725 ctx->poll_multi_queue = false; 1726 } else if (!ctx->poll_multi_queue) { 1727 struct io_kiocb *list_req; 1728 1729 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1730 comp_list); 1731 if (list_req->file != req->file) 1732 ctx->poll_multi_queue = true; 1733 } 1734 1735 /* 1736 * For fast devices, IO may have already completed. If it has, add 1737 * it to the front so we find it first. 1738 */ 1739 if (READ_ONCE(req->iopoll_completed)) 1740 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1741 else 1742 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1743 1744 if (unlikely(needs_lock)) { 1745 /* 1746 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1747 * in sq thread task context or in io worker task context. If 1748 * current task context is sq thread, we don't need to check 1749 * whether should wake up sq thread. 1750 */ 1751 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1752 wq_has_sleeper(&ctx->sq_data->wait)) 1753 wake_up(&ctx->sq_data->wait); 1754 1755 mutex_unlock(&ctx->uring_lock); 1756 } 1757 } 1758 1759 unsigned int io_file_get_flags(struct file *file) 1760 { 1761 unsigned int res = 0; 1762 1763 if (S_ISREG(file_inode(file)->i_mode)) 1764 res |= REQ_F_ISREG; 1765 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1766 res |= REQ_F_SUPPORT_NOWAIT; 1767 return res; 1768 } 1769 1770 bool io_alloc_async_data(struct io_kiocb *req) 1771 { 1772 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1773 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1774 if (req->async_data) { 1775 req->flags |= REQ_F_ASYNC_DATA; 1776 return false; 1777 } 1778 return true; 1779 } 1780 1781 int io_req_prep_async(struct io_kiocb *req) 1782 { 1783 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1784 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1785 1786 /* assign early for deferred execution for non-fixed file */ 1787 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1788 req->file = io_file_get_normal(req, req->cqe.fd); 1789 if (!cdef->prep_async) 1790 return 0; 1791 if (WARN_ON_ONCE(req_has_async_data(req))) 1792 return -EFAULT; 1793 if (!def->manual_alloc) { 1794 if (io_alloc_async_data(req)) 1795 return -EAGAIN; 1796 } 1797 return cdef->prep_async(req); 1798 } 1799 1800 static u32 io_get_sequence(struct io_kiocb *req) 1801 { 1802 u32 seq = req->ctx->cached_sq_head; 1803 struct io_kiocb *cur; 1804 1805 /* need original cached_sq_head, but it was increased for each req */ 1806 io_for_each_link(cur, req) 1807 seq--; 1808 return seq; 1809 } 1810 1811 static __cold void io_drain_req(struct io_kiocb *req) 1812 __must_hold(&ctx->uring_lock) 1813 { 1814 struct io_ring_ctx *ctx = req->ctx; 1815 struct io_defer_entry *de; 1816 int ret; 1817 u32 seq = io_get_sequence(req); 1818 1819 /* Still need defer if there is pending req in defer list. */ 1820 spin_lock(&ctx->completion_lock); 1821 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1822 spin_unlock(&ctx->completion_lock); 1823 queue: 1824 ctx->drain_active = false; 1825 io_req_task_queue(req); 1826 return; 1827 } 1828 spin_unlock(&ctx->completion_lock); 1829 1830 io_prep_async_link(req); 1831 de = kmalloc(sizeof(*de), GFP_KERNEL); 1832 if (!de) { 1833 ret = -ENOMEM; 1834 io_req_defer_failed(req, ret); 1835 return; 1836 } 1837 1838 spin_lock(&ctx->completion_lock); 1839 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1840 spin_unlock(&ctx->completion_lock); 1841 kfree(de); 1842 goto queue; 1843 } 1844 1845 trace_io_uring_defer(req); 1846 de->req = req; 1847 de->seq = seq; 1848 list_add_tail(&de->list, &ctx->defer_list); 1849 spin_unlock(&ctx->completion_lock); 1850 } 1851 1852 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1853 unsigned int issue_flags) 1854 { 1855 if (req->file || !def->needs_file) 1856 return true; 1857 1858 if (req->flags & REQ_F_FIXED_FILE) 1859 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1860 else 1861 req->file = io_file_get_normal(req, req->cqe.fd); 1862 1863 return !!req->file; 1864 } 1865 1866 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1867 { 1868 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1869 const struct cred *creds = NULL; 1870 int ret; 1871 1872 if (unlikely(!io_assign_file(req, def, issue_flags))) 1873 return -EBADF; 1874 1875 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1876 creds = override_creds(req->creds); 1877 1878 if (!def->audit_skip) 1879 audit_uring_entry(req->opcode); 1880 1881 ret = def->issue(req, issue_flags); 1882 1883 if (!def->audit_skip) 1884 audit_uring_exit(!ret, ret); 1885 1886 if (creds) 1887 revert_creds(creds); 1888 1889 if (ret == IOU_OK) { 1890 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1891 io_req_complete_defer(req); 1892 else 1893 io_req_complete_post(req, issue_flags); 1894 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1895 return ret; 1896 1897 /* If the op doesn't have a file, we're not polling for it */ 1898 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1899 io_iopoll_req_issued(req, issue_flags); 1900 1901 return 0; 1902 } 1903 1904 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1905 { 1906 io_tw_lock(req->ctx, ts); 1907 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1908 IO_URING_F_COMPLETE_DEFER); 1909 } 1910 1911 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1912 { 1913 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1914 struct io_kiocb *nxt = NULL; 1915 1916 if (req_ref_put_and_test(req)) { 1917 if (req->flags & IO_REQ_LINK_FLAGS) 1918 nxt = io_req_find_next(req); 1919 io_free_req(req); 1920 } 1921 return nxt ? &nxt->work : NULL; 1922 } 1923 1924 void io_wq_submit_work(struct io_wq_work *work) 1925 { 1926 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1927 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1928 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1929 bool needs_poll = false; 1930 int ret = 0, err = -ECANCELED; 1931 1932 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1933 if (!(req->flags & REQ_F_REFCOUNT)) 1934 __io_req_set_refcount(req, 2); 1935 else 1936 req_ref_get(req); 1937 1938 io_arm_ltimeout(req); 1939 1940 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1941 if (work->flags & IO_WQ_WORK_CANCEL) { 1942 fail: 1943 io_req_task_queue_fail(req, err); 1944 return; 1945 } 1946 if (!io_assign_file(req, def, issue_flags)) { 1947 err = -EBADF; 1948 work->flags |= IO_WQ_WORK_CANCEL; 1949 goto fail; 1950 } 1951 1952 if (req->flags & REQ_F_FORCE_ASYNC) { 1953 bool opcode_poll = def->pollin || def->pollout; 1954 1955 if (opcode_poll && file_can_poll(req->file)) { 1956 needs_poll = true; 1957 issue_flags |= IO_URING_F_NONBLOCK; 1958 } 1959 } 1960 1961 do { 1962 ret = io_issue_sqe(req, issue_flags); 1963 if (ret != -EAGAIN) 1964 break; 1965 1966 /* 1967 * If REQ_F_NOWAIT is set, then don't wait or retry with 1968 * poll. -EAGAIN is final for that case. 1969 */ 1970 if (req->flags & REQ_F_NOWAIT) 1971 break; 1972 1973 /* 1974 * We can get EAGAIN for iopolled IO even though we're 1975 * forcing a sync submission from here, since we can't 1976 * wait for request slots on the block side. 1977 */ 1978 if (!needs_poll) { 1979 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1980 break; 1981 if (io_wq_worker_stopped()) 1982 break; 1983 cond_resched(); 1984 continue; 1985 } 1986 1987 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1988 return; 1989 /* aborted or ready, in either case retry blocking */ 1990 needs_poll = false; 1991 issue_flags &= ~IO_URING_F_NONBLOCK; 1992 } while (1); 1993 1994 /* avoid locking problems by failing it from a clean context */ 1995 if (ret < 0) 1996 io_req_task_queue_fail(req, ret); 1997 } 1998 1999 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 2000 unsigned int issue_flags) 2001 { 2002 struct io_ring_ctx *ctx = req->ctx; 2003 struct io_fixed_file *slot; 2004 struct file *file = NULL; 2005 2006 io_ring_submit_lock(ctx, issue_flags); 2007 2008 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 2009 goto out; 2010 fd = array_index_nospec(fd, ctx->nr_user_files); 2011 slot = io_fixed_file_slot(&ctx->file_table, fd); 2012 file = io_slot_file(slot); 2013 req->flags |= io_slot_flags(slot); 2014 io_req_set_rsrc_node(req, ctx, 0); 2015 out: 2016 io_ring_submit_unlock(ctx, issue_flags); 2017 return file; 2018 } 2019 2020 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 2021 { 2022 struct file *file = fget(fd); 2023 2024 trace_io_uring_file_get(req, fd); 2025 2026 /* we don't allow fixed io_uring files */ 2027 if (file && io_is_uring_fops(file)) 2028 io_req_track_inflight(req); 2029 return file; 2030 } 2031 2032 static void io_queue_async(struct io_kiocb *req, int ret) 2033 __must_hold(&req->ctx->uring_lock) 2034 { 2035 struct io_kiocb *linked_timeout; 2036 2037 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2038 io_req_defer_failed(req, ret); 2039 return; 2040 } 2041 2042 linked_timeout = io_prep_linked_timeout(req); 2043 2044 switch (io_arm_poll_handler(req, 0)) { 2045 case IO_APOLL_READY: 2046 io_kbuf_recycle(req, 0); 2047 io_req_task_queue(req); 2048 break; 2049 case IO_APOLL_ABORTED: 2050 io_kbuf_recycle(req, 0); 2051 io_queue_iowq(req, NULL); 2052 break; 2053 case IO_APOLL_OK: 2054 break; 2055 } 2056 2057 if (linked_timeout) 2058 io_queue_linked_timeout(linked_timeout); 2059 } 2060 2061 static inline void io_queue_sqe(struct io_kiocb *req) 2062 __must_hold(&req->ctx->uring_lock) 2063 { 2064 int ret; 2065 2066 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2067 2068 /* 2069 * We async punt it if the file wasn't marked NOWAIT, or if the file 2070 * doesn't support non-blocking read/write attempts 2071 */ 2072 if (likely(!ret)) 2073 io_arm_ltimeout(req); 2074 else 2075 io_queue_async(req, ret); 2076 } 2077 2078 static void io_queue_sqe_fallback(struct io_kiocb *req) 2079 __must_hold(&req->ctx->uring_lock) 2080 { 2081 if (unlikely(req->flags & REQ_F_FAIL)) { 2082 /* 2083 * We don't submit, fail them all, for that replace hardlinks 2084 * with normal links. Extra REQ_F_LINK is tolerated. 2085 */ 2086 req->flags &= ~REQ_F_HARDLINK; 2087 req->flags |= REQ_F_LINK; 2088 io_req_defer_failed(req, req->cqe.res); 2089 } else { 2090 int ret = io_req_prep_async(req); 2091 2092 if (unlikely(ret)) { 2093 io_req_defer_failed(req, ret); 2094 return; 2095 } 2096 2097 if (unlikely(req->ctx->drain_active)) 2098 io_drain_req(req); 2099 else 2100 io_queue_iowq(req, NULL); 2101 } 2102 } 2103 2104 /* 2105 * Check SQE restrictions (opcode and flags). 2106 * 2107 * Returns 'true' if SQE is allowed, 'false' otherwise. 2108 */ 2109 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2110 struct io_kiocb *req, 2111 unsigned int sqe_flags) 2112 { 2113 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2114 return false; 2115 2116 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2117 ctx->restrictions.sqe_flags_required) 2118 return false; 2119 2120 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2121 ctx->restrictions.sqe_flags_required)) 2122 return false; 2123 2124 return true; 2125 } 2126 2127 static void io_init_req_drain(struct io_kiocb *req) 2128 { 2129 struct io_ring_ctx *ctx = req->ctx; 2130 struct io_kiocb *head = ctx->submit_state.link.head; 2131 2132 ctx->drain_active = true; 2133 if (head) { 2134 /* 2135 * If we need to drain a request in the middle of a link, drain 2136 * the head request and the next request/link after the current 2137 * link. Considering sequential execution of links, 2138 * REQ_F_IO_DRAIN will be maintained for every request of our 2139 * link. 2140 */ 2141 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2142 ctx->drain_next = true; 2143 } 2144 } 2145 2146 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2147 const struct io_uring_sqe *sqe) 2148 __must_hold(&ctx->uring_lock) 2149 { 2150 const struct io_issue_def *def; 2151 unsigned int sqe_flags; 2152 int personality; 2153 u8 opcode; 2154 2155 /* req is partially pre-initialised, see io_preinit_req() */ 2156 req->opcode = opcode = READ_ONCE(sqe->opcode); 2157 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2158 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2159 req->cqe.user_data = READ_ONCE(sqe->user_data); 2160 req->file = NULL; 2161 req->rsrc_node = NULL; 2162 req->task = current; 2163 2164 if (unlikely(opcode >= IORING_OP_LAST)) { 2165 req->opcode = 0; 2166 return -EINVAL; 2167 } 2168 def = &io_issue_defs[opcode]; 2169 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2170 /* enforce forwards compatibility on users */ 2171 if (sqe_flags & ~SQE_VALID_FLAGS) 2172 return -EINVAL; 2173 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2174 if (!def->buffer_select) 2175 return -EOPNOTSUPP; 2176 req->buf_index = READ_ONCE(sqe->buf_group); 2177 } 2178 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2179 ctx->drain_disabled = true; 2180 if (sqe_flags & IOSQE_IO_DRAIN) { 2181 if (ctx->drain_disabled) 2182 return -EOPNOTSUPP; 2183 io_init_req_drain(req); 2184 } 2185 } 2186 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2187 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2188 return -EACCES; 2189 /* knock it to the slow queue path, will be drained there */ 2190 if (ctx->drain_active) 2191 req->flags |= REQ_F_FORCE_ASYNC; 2192 /* if there is no link, we're at "next" request and need to drain */ 2193 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2194 ctx->drain_next = false; 2195 ctx->drain_active = true; 2196 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2197 } 2198 } 2199 2200 if (!def->ioprio && sqe->ioprio) 2201 return -EINVAL; 2202 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2203 return -EINVAL; 2204 2205 if (def->needs_file) { 2206 struct io_submit_state *state = &ctx->submit_state; 2207 2208 req->cqe.fd = READ_ONCE(sqe->fd); 2209 2210 /* 2211 * Plug now if we have more than 2 IO left after this, and the 2212 * target is potentially a read/write to block based storage. 2213 */ 2214 if (state->need_plug && def->plug) { 2215 state->plug_started = true; 2216 state->need_plug = false; 2217 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2218 } 2219 } 2220 2221 personality = READ_ONCE(sqe->personality); 2222 if (personality) { 2223 int ret; 2224 2225 req->creds = xa_load(&ctx->personalities, personality); 2226 if (!req->creds) 2227 return -EINVAL; 2228 get_cred(req->creds); 2229 ret = security_uring_override_creds(req->creds); 2230 if (ret) { 2231 put_cred(req->creds); 2232 return ret; 2233 } 2234 req->flags |= REQ_F_CREDS; 2235 } 2236 2237 return def->prep(req, sqe); 2238 } 2239 2240 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2241 struct io_kiocb *req, int ret) 2242 { 2243 struct io_ring_ctx *ctx = req->ctx; 2244 struct io_submit_link *link = &ctx->submit_state.link; 2245 struct io_kiocb *head = link->head; 2246 2247 trace_io_uring_req_failed(sqe, req, ret); 2248 2249 /* 2250 * Avoid breaking links in the middle as it renders links with SQPOLL 2251 * unusable. Instead of failing eagerly, continue assembling the link if 2252 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2253 * should find the flag and handle the rest. 2254 */ 2255 req_fail_link_node(req, ret); 2256 if (head && !(head->flags & REQ_F_FAIL)) 2257 req_fail_link_node(head, -ECANCELED); 2258 2259 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2260 if (head) { 2261 link->last->link = req; 2262 link->head = NULL; 2263 req = head; 2264 } 2265 io_queue_sqe_fallback(req); 2266 return ret; 2267 } 2268 2269 if (head) 2270 link->last->link = req; 2271 else 2272 link->head = req; 2273 link->last = req; 2274 return 0; 2275 } 2276 2277 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2278 const struct io_uring_sqe *sqe) 2279 __must_hold(&ctx->uring_lock) 2280 { 2281 struct io_submit_link *link = &ctx->submit_state.link; 2282 int ret; 2283 2284 ret = io_init_req(ctx, req, sqe); 2285 if (unlikely(ret)) 2286 return io_submit_fail_init(sqe, req, ret); 2287 2288 trace_io_uring_submit_req(req); 2289 2290 /* 2291 * If we already have a head request, queue this one for async 2292 * submittal once the head completes. If we don't have a head but 2293 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2294 * submitted sync once the chain is complete. If none of those 2295 * conditions are true (normal request), then just queue it. 2296 */ 2297 if (unlikely(link->head)) { 2298 ret = io_req_prep_async(req); 2299 if (unlikely(ret)) 2300 return io_submit_fail_init(sqe, req, ret); 2301 2302 trace_io_uring_link(req, link->head); 2303 link->last->link = req; 2304 link->last = req; 2305 2306 if (req->flags & IO_REQ_LINK_FLAGS) 2307 return 0; 2308 /* last request of the link, flush it */ 2309 req = link->head; 2310 link->head = NULL; 2311 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2312 goto fallback; 2313 2314 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2315 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2316 if (req->flags & IO_REQ_LINK_FLAGS) { 2317 link->head = req; 2318 link->last = req; 2319 } else { 2320 fallback: 2321 io_queue_sqe_fallback(req); 2322 } 2323 return 0; 2324 } 2325 2326 io_queue_sqe(req); 2327 return 0; 2328 } 2329 2330 /* 2331 * Batched submission is done, ensure local IO is flushed out. 2332 */ 2333 static void io_submit_state_end(struct io_ring_ctx *ctx) 2334 { 2335 struct io_submit_state *state = &ctx->submit_state; 2336 2337 if (unlikely(state->link.head)) 2338 io_queue_sqe_fallback(state->link.head); 2339 /* flush only after queuing links as they can generate completions */ 2340 io_submit_flush_completions(ctx); 2341 if (state->plug_started) 2342 blk_finish_plug(&state->plug); 2343 } 2344 2345 /* 2346 * Start submission side cache. 2347 */ 2348 static void io_submit_state_start(struct io_submit_state *state, 2349 unsigned int max_ios) 2350 { 2351 state->plug_started = false; 2352 state->need_plug = max_ios > 2; 2353 state->submit_nr = max_ios; 2354 /* set only head, no need to init link_last in advance */ 2355 state->link.head = NULL; 2356 } 2357 2358 static void io_commit_sqring(struct io_ring_ctx *ctx) 2359 { 2360 struct io_rings *rings = ctx->rings; 2361 2362 /* 2363 * Ensure any loads from the SQEs are done at this point, 2364 * since once we write the new head, the application could 2365 * write new data to them. 2366 */ 2367 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2368 } 2369 2370 /* 2371 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2372 * that is mapped by userspace. This means that care needs to be taken to 2373 * ensure that reads are stable, as we cannot rely on userspace always 2374 * being a good citizen. If members of the sqe are validated and then later 2375 * used, it's important that those reads are done through READ_ONCE() to 2376 * prevent a re-load down the line. 2377 */ 2378 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2379 { 2380 unsigned mask = ctx->sq_entries - 1; 2381 unsigned head = ctx->cached_sq_head++ & mask; 2382 2383 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) { 2384 head = READ_ONCE(ctx->sq_array[head]); 2385 if (unlikely(head >= ctx->sq_entries)) { 2386 /* drop invalid entries */ 2387 spin_lock(&ctx->completion_lock); 2388 ctx->cq_extra--; 2389 spin_unlock(&ctx->completion_lock); 2390 WRITE_ONCE(ctx->rings->sq_dropped, 2391 READ_ONCE(ctx->rings->sq_dropped) + 1); 2392 return false; 2393 } 2394 } 2395 2396 /* 2397 * The cached sq head (or cq tail) serves two purposes: 2398 * 2399 * 1) allows us to batch the cost of updating the user visible 2400 * head updates. 2401 * 2) allows the kernel side to track the head on its own, even 2402 * though the application is the one updating it. 2403 */ 2404 2405 /* double index for 128-byte SQEs, twice as long */ 2406 if (ctx->flags & IORING_SETUP_SQE128) 2407 head <<= 1; 2408 *sqe = &ctx->sq_sqes[head]; 2409 return true; 2410 } 2411 2412 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2413 __must_hold(&ctx->uring_lock) 2414 { 2415 unsigned int entries = io_sqring_entries(ctx); 2416 unsigned int left; 2417 int ret; 2418 2419 if (unlikely(!entries)) 2420 return 0; 2421 /* make sure SQ entry isn't read before tail */ 2422 ret = left = min(nr, entries); 2423 io_get_task_refs(left); 2424 io_submit_state_start(&ctx->submit_state, left); 2425 2426 do { 2427 const struct io_uring_sqe *sqe; 2428 struct io_kiocb *req; 2429 2430 if (unlikely(!io_alloc_req(ctx, &req))) 2431 break; 2432 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2433 io_req_add_to_cache(req, ctx); 2434 break; 2435 } 2436 2437 /* 2438 * Continue submitting even for sqe failure if the 2439 * ring was setup with IORING_SETUP_SUBMIT_ALL 2440 */ 2441 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2442 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2443 left--; 2444 break; 2445 } 2446 } while (--left); 2447 2448 if (unlikely(left)) { 2449 ret -= left; 2450 /* try again if it submitted nothing and can't allocate a req */ 2451 if (!ret && io_req_cache_empty(ctx)) 2452 ret = -EAGAIN; 2453 current->io_uring->cached_refs += left; 2454 } 2455 2456 io_submit_state_end(ctx); 2457 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2458 io_commit_sqring(ctx); 2459 return ret; 2460 } 2461 2462 struct io_wait_queue { 2463 struct wait_queue_entry wq; 2464 struct io_ring_ctx *ctx; 2465 unsigned cq_tail; 2466 unsigned nr_timeouts; 2467 ktime_t timeout; 2468 }; 2469 2470 static inline bool io_has_work(struct io_ring_ctx *ctx) 2471 { 2472 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2473 !llist_empty(&ctx->work_llist); 2474 } 2475 2476 static inline bool io_should_wake(struct io_wait_queue *iowq) 2477 { 2478 struct io_ring_ctx *ctx = iowq->ctx; 2479 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2480 2481 /* 2482 * Wake up if we have enough events, or if a timeout occurred since we 2483 * started waiting. For timeouts, we always want to return to userspace, 2484 * regardless of event count. 2485 */ 2486 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2487 } 2488 2489 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2490 int wake_flags, void *key) 2491 { 2492 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2493 2494 /* 2495 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2496 * the task, and the next invocation will do it. 2497 */ 2498 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2499 return autoremove_wake_function(curr, mode, wake_flags, key); 2500 return -1; 2501 } 2502 2503 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2504 { 2505 if (!llist_empty(&ctx->work_llist)) { 2506 __set_current_state(TASK_RUNNING); 2507 if (io_run_local_work(ctx) > 0) 2508 return 0; 2509 } 2510 if (io_run_task_work() > 0) 2511 return 0; 2512 if (task_sigpending(current)) 2513 return -EINTR; 2514 return 0; 2515 } 2516 2517 static bool current_pending_io(void) 2518 { 2519 struct io_uring_task *tctx = current->io_uring; 2520 2521 if (!tctx) 2522 return false; 2523 return percpu_counter_read_positive(&tctx->inflight); 2524 } 2525 2526 /* when returns >0, the caller should retry */ 2527 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2528 struct io_wait_queue *iowq) 2529 { 2530 int io_wait, ret; 2531 2532 if (unlikely(READ_ONCE(ctx->check_cq))) 2533 return 1; 2534 if (unlikely(!llist_empty(&ctx->work_llist))) 2535 return 1; 2536 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) 2537 return 1; 2538 if (unlikely(task_sigpending(current))) 2539 return -EINTR; 2540 if (unlikely(io_should_wake(iowq))) 2541 return 0; 2542 2543 /* 2544 * Mark us as being in io_wait if we have pending requests, so cpufreq 2545 * can take into account that the task is waiting for IO - turns out 2546 * to be important for low QD IO. 2547 */ 2548 io_wait = current->in_iowait; 2549 if (current_pending_io()) 2550 current->in_iowait = 1; 2551 ret = 0; 2552 if (iowq->timeout == KTIME_MAX) 2553 schedule(); 2554 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2555 ret = -ETIME; 2556 current->in_iowait = io_wait; 2557 return ret; 2558 } 2559 2560 /* 2561 * Wait until events become available, if we don't already have some. The 2562 * application must reap them itself, as they reside on the shared cq ring. 2563 */ 2564 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2565 const sigset_t __user *sig, size_t sigsz, 2566 struct __kernel_timespec __user *uts) 2567 { 2568 struct io_wait_queue iowq; 2569 struct io_rings *rings = ctx->rings; 2570 int ret; 2571 2572 if (!io_allowed_run_tw(ctx)) 2573 return -EEXIST; 2574 if (!llist_empty(&ctx->work_llist)) 2575 io_run_local_work(ctx); 2576 io_run_task_work(); 2577 io_cqring_overflow_flush(ctx); 2578 /* if user messes with these they will just get an early return */ 2579 if (__io_cqring_events_user(ctx) >= min_events) 2580 return 0; 2581 2582 if (sig) { 2583 #ifdef CONFIG_COMPAT 2584 if (in_compat_syscall()) 2585 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2586 sigsz); 2587 else 2588 #endif 2589 ret = set_user_sigmask(sig, sigsz); 2590 2591 if (ret) 2592 return ret; 2593 } 2594 2595 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2596 iowq.wq.private = current; 2597 INIT_LIST_HEAD(&iowq.wq.entry); 2598 iowq.ctx = ctx; 2599 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2600 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2601 iowq.timeout = KTIME_MAX; 2602 2603 if (uts) { 2604 struct timespec64 ts; 2605 2606 if (get_timespec64(&ts, uts)) 2607 return -EFAULT; 2608 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2609 } 2610 2611 trace_io_uring_cqring_wait(ctx, min_events); 2612 do { 2613 unsigned long check_cq; 2614 2615 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2616 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2617 2618 atomic_set(&ctx->cq_wait_nr, nr_wait); 2619 set_current_state(TASK_INTERRUPTIBLE); 2620 } else { 2621 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2622 TASK_INTERRUPTIBLE); 2623 } 2624 2625 ret = io_cqring_wait_schedule(ctx, &iowq); 2626 __set_current_state(TASK_RUNNING); 2627 atomic_set(&ctx->cq_wait_nr, 0); 2628 2629 if (ret < 0) 2630 break; 2631 /* 2632 * Run task_work after scheduling and before io_should_wake(). 2633 * If we got woken because of task_work being processed, run it 2634 * now rather than let the caller do another wait loop. 2635 */ 2636 io_run_task_work(); 2637 if (!llist_empty(&ctx->work_llist)) 2638 io_run_local_work(ctx); 2639 2640 check_cq = READ_ONCE(ctx->check_cq); 2641 if (unlikely(check_cq)) { 2642 /* let the caller flush overflows, retry */ 2643 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2644 io_cqring_do_overflow_flush(ctx); 2645 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2646 ret = -EBADR; 2647 break; 2648 } 2649 } 2650 2651 if (io_should_wake(&iowq)) { 2652 ret = 0; 2653 break; 2654 } 2655 cond_resched(); 2656 } while (1); 2657 2658 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2659 finish_wait(&ctx->cq_wait, &iowq.wq); 2660 restore_saved_sigmask_unless(ret == -EINTR); 2661 2662 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2663 } 2664 2665 void io_mem_free(void *ptr) 2666 { 2667 if (!ptr) 2668 return; 2669 2670 folio_put(virt_to_folio(ptr)); 2671 } 2672 2673 static void io_pages_free(struct page ***pages, int npages) 2674 { 2675 struct page **page_array; 2676 int i; 2677 2678 if (!pages) 2679 return; 2680 2681 page_array = *pages; 2682 if (!page_array) 2683 return; 2684 2685 for (i = 0; i < npages; i++) 2686 unpin_user_page(page_array[i]); 2687 kvfree(page_array); 2688 *pages = NULL; 2689 } 2690 2691 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, 2692 unsigned long uaddr, size_t size) 2693 { 2694 struct page **page_array; 2695 unsigned int nr_pages; 2696 void *page_addr; 2697 int ret, i; 2698 2699 *npages = 0; 2700 2701 if (uaddr & (PAGE_SIZE - 1) || !size) 2702 return ERR_PTR(-EINVAL); 2703 2704 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2705 if (nr_pages > USHRT_MAX) 2706 return ERR_PTR(-EINVAL); 2707 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); 2708 if (!page_array) 2709 return ERR_PTR(-ENOMEM); 2710 2711 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, 2712 page_array); 2713 if (ret != nr_pages) { 2714 err: 2715 io_pages_free(&page_array, ret > 0 ? ret : 0); 2716 return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT); 2717 } 2718 2719 page_addr = page_address(page_array[0]); 2720 for (i = 0; i < nr_pages; i++) { 2721 ret = -EINVAL; 2722 2723 /* 2724 * Can't support mapping user allocated ring memory on 32-bit 2725 * archs where it could potentially reside in highmem. Just 2726 * fail those with -EINVAL, just like we did on kernels that 2727 * didn't support this feature. 2728 */ 2729 if (PageHighMem(page_array[i])) 2730 goto err; 2731 2732 /* 2733 * No support for discontig pages for now, should either be a 2734 * single normal page, or a huge page. Later on we can add 2735 * support for remapping discontig pages, for now we will 2736 * just fail them with EINVAL. 2737 */ 2738 if (page_address(page_array[i]) != page_addr) 2739 goto err; 2740 page_addr += PAGE_SIZE; 2741 } 2742 2743 *pages = page_array; 2744 *npages = nr_pages; 2745 return page_to_virt(page_array[0]); 2746 } 2747 2748 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2749 size_t size) 2750 { 2751 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2752 size); 2753 } 2754 2755 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2756 size_t size) 2757 { 2758 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2759 size); 2760 } 2761 2762 static void io_rings_free(struct io_ring_ctx *ctx) 2763 { 2764 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2765 io_mem_free(ctx->rings); 2766 io_mem_free(ctx->sq_sqes); 2767 ctx->rings = NULL; 2768 ctx->sq_sqes = NULL; 2769 } else { 2770 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2771 ctx->n_ring_pages = 0; 2772 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2773 ctx->n_sqe_pages = 0; 2774 } 2775 } 2776 2777 void *io_mem_alloc(size_t size) 2778 { 2779 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2780 void *ret; 2781 2782 ret = (void *) __get_free_pages(gfp, get_order(size)); 2783 if (ret) 2784 return ret; 2785 return ERR_PTR(-ENOMEM); 2786 } 2787 2788 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2789 unsigned int cq_entries, size_t *sq_offset) 2790 { 2791 struct io_rings *rings; 2792 size_t off, sq_array_size; 2793 2794 off = struct_size(rings, cqes, cq_entries); 2795 if (off == SIZE_MAX) 2796 return SIZE_MAX; 2797 if (ctx->flags & IORING_SETUP_CQE32) { 2798 if (check_shl_overflow(off, 1, &off)) 2799 return SIZE_MAX; 2800 } 2801 2802 #ifdef CONFIG_SMP 2803 off = ALIGN(off, SMP_CACHE_BYTES); 2804 if (off == 0) 2805 return SIZE_MAX; 2806 #endif 2807 2808 if (ctx->flags & IORING_SETUP_NO_SQARRAY) { 2809 if (sq_offset) 2810 *sq_offset = SIZE_MAX; 2811 return off; 2812 } 2813 2814 if (sq_offset) 2815 *sq_offset = off; 2816 2817 sq_array_size = array_size(sizeof(u32), sq_entries); 2818 if (sq_array_size == SIZE_MAX) 2819 return SIZE_MAX; 2820 2821 if (check_add_overflow(off, sq_array_size, &off)) 2822 return SIZE_MAX; 2823 2824 return off; 2825 } 2826 2827 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2828 unsigned int eventfd_async) 2829 { 2830 struct io_ev_fd *ev_fd; 2831 __s32 __user *fds = arg; 2832 int fd; 2833 2834 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2835 lockdep_is_held(&ctx->uring_lock)); 2836 if (ev_fd) 2837 return -EBUSY; 2838 2839 if (copy_from_user(&fd, fds, sizeof(*fds))) 2840 return -EFAULT; 2841 2842 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2843 if (!ev_fd) 2844 return -ENOMEM; 2845 2846 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2847 if (IS_ERR(ev_fd->cq_ev_fd)) { 2848 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2849 kfree(ev_fd); 2850 return ret; 2851 } 2852 2853 spin_lock(&ctx->completion_lock); 2854 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2855 spin_unlock(&ctx->completion_lock); 2856 2857 ev_fd->eventfd_async = eventfd_async; 2858 ctx->has_evfd = true; 2859 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2860 atomic_set(&ev_fd->refs, 1); 2861 atomic_set(&ev_fd->ops, 0); 2862 return 0; 2863 } 2864 2865 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2866 { 2867 struct io_ev_fd *ev_fd; 2868 2869 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2870 lockdep_is_held(&ctx->uring_lock)); 2871 if (ev_fd) { 2872 ctx->has_evfd = false; 2873 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2874 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2875 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2876 return 0; 2877 } 2878 2879 return -ENXIO; 2880 } 2881 2882 static void io_req_caches_free(struct io_ring_ctx *ctx) 2883 { 2884 struct io_kiocb *req; 2885 int nr = 0; 2886 2887 mutex_lock(&ctx->uring_lock); 2888 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2889 2890 while (!io_req_cache_empty(ctx)) { 2891 req = io_extract_req(ctx); 2892 kmem_cache_free(req_cachep, req); 2893 nr++; 2894 } 2895 if (nr) 2896 percpu_ref_put_many(&ctx->refs, nr); 2897 mutex_unlock(&ctx->uring_lock); 2898 } 2899 2900 static void io_rsrc_node_cache_free(struct io_cache_entry *entry) 2901 { 2902 kfree(container_of(entry, struct io_rsrc_node, cache)); 2903 } 2904 2905 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2906 { 2907 io_sq_thread_finish(ctx); 2908 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2909 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2910 return; 2911 2912 mutex_lock(&ctx->uring_lock); 2913 if (ctx->buf_data) 2914 __io_sqe_buffers_unregister(ctx); 2915 if (ctx->file_data) 2916 __io_sqe_files_unregister(ctx); 2917 io_cqring_overflow_kill(ctx); 2918 io_eventfd_unregister(ctx); 2919 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2920 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2921 io_destroy_buffers(ctx); 2922 mutex_unlock(&ctx->uring_lock); 2923 if (ctx->sq_creds) 2924 put_cred(ctx->sq_creds); 2925 if (ctx->submitter_task) 2926 put_task_struct(ctx->submitter_task); 2927 2928 /* there are no registered resources left, nobody uses it */ 2929 if (ctx->rsrc_node) 2930 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2931 2932 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2933 2934 #if defined(CONFIG_UNIX) 2935 if (ctx->ring_sock) { 2936 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2937 sock_release(ctx->ring_sock); 2938 } 2939 #endif 2940 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2941 2942 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); 2943 if (ctx->mm_account) { 2944 mmdrop(ctx->mm_account); 2945 ctx->mm_account = NULL; 2946 } 2947 io_rings_free(ctx); 2948 io_kbuf_mmap_list_free(ctx); 2949 2950 percpu_ref_exit(&ctx->refs); 2951 free_uid(ctx->user); 2952 io_req_caches_free(ctx); 2953 if (ctx->hash_map) 2954 io_wq_put_hash(ctx->hash_map); 2955 kfree(ctx->cancel_table.hbs); 2956 kfree(ctx->cancel_table_locked.hbs); 2957 kfree(ctx->io_bl); 2958 xa_destroy(&ctx->io_bl_xa); 2959 kfree(ctx); 2960 } 2961 2962 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2963 { 2964 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2965 poll_wq_task_work); 2966 2967 mutex_lock(&ctx->uring_lock); 2968 ctx->poll_activated = true; 2969 mutex_unlock(&ctx->uring_lock); 2970 2971 /* 2972 * Wake ups for some events between start of polling and activation 2973 * might've been lost due to loose synchronisation. 2974 */ 2975 wake_up_all(&ctx->poll_wq); 2976 percpu_ref_put(&ctx->refs); 2977 } 2978 2979 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2980 { 2981 spin_lock(&ctx->completion_lock); 2982 /* already activated or in progress */ 2983 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2984 goto out; 2985 if (WARN_ON_ONCE(!ctx->task_complete)) 2986 goto out; 2987 if (!ctx->submitter_task) 2988 goto out; 2989 /* 2990 * with ->submitter_task only the submitter task completes requests, we 2991 * only need to sync with it, which is done by injecting a tw 2992 */ 2993 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2994 percpu_ref_get(&ctx->refs); 2995 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2996 percpu_ref_put(&ctx->refs); 2997 out: 2998 spin_unlock(&ctx->completion_lock); 2999 } 3000 3001 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 3002 { 3003 struct io_ring_ctx *ctx = file->private_data; 3004 __poll_t mask = 0; 3005 3006 if (unlikely(!ctx->poll_activated)) 3007 io_activate_pollwq(ctx); 3008 3009 poll_wait(file, &ctx->poll_wq, wait); 3010 /* 3011 * synchronizes with barrier from wq_has_sleeper call in 3012 * io_commit_cqring 3013 */ 3014 smp_rmb(); 3015 if (!io_sqring_full(ctx)) 3016 mask |= EPOLLOUT | EPOLLWRNORM; 3017 3018 /* 3019 * Don't flush cqring overflow list here, just do a simple check. 3020 * Otherwise there could possible be ABBA deadlock: 3021 * CPU0 CPU1 3022 * ---- ---- 3023 * lock(&ctx->uring_lock); 3024 * lock(&ep->mtx); 3025 * lock(&ctx->uring_lock); 3026 * lock(&ep->mtx); 3027 * 3028 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 3029 * pushes them to do the flush. 3030 */ 3031 3032 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 3033 mask |= EPOLLIN | EPOLLRDNORM; 3034 3035 return mask; 3036 } 3037 3038 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 3039 { 3040 const struct cred *creds; 3041 3042 creds = xa_erase(&ctx->personalities, id); 3043 if (creds) { 3044 put_cred(creds); 3045 return 0; 3046 } 3047 3048 return -EINVAL; 3049 } 3050 3051 struct io_tctx_exit { 3052 struct callback_head task_work; 3053 struct completion completion; 3054 struct io_ring_ctx *ctx; 3055 }; 3056 3057 static __cold void io_tctx_exit_cb(struct callback_head *cb) 3058 { 3059 struct io_uring_task *tctx = current->io_uring; 3060 struct io_tctx_exit *work; 3061 3062 work = container_of(cb, struct io_tctx_exit, task_work); 3063 /* 3064 * When @in_cancel, we're in cancellation and it's racy to remove the 3065 * node. It'll be removed by the end of cancellation, just ignore it. 3066 * tctx can be NULL if the queueing of this task_work raced with 3067 * work cancelation off the exec path. 3068 */ 3069 if (tctx && !atomic_read(&tctx->in_cancel)) 3070 io_uring_del_tctx_node((unsigned long)work->ctx); 3071 complete(&work->completion); 3072 } 3073 3074 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 3075 { 3076 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3077 3078 return req->ctx == data; 3079 } 3080 3081 static __cold void io_ring_exit_work(struct work_struct *work) 3082 { 3083 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 3084 unsigned long timeout = jiffies + HZ * 60 * 5; 3085 unsigned long interval = HZ / 20; 3086 struct io_tctx_exit exit; 3087 struct io_tctx_node *node; 3088 int ret; 3089 3090 /* 3091 * If we're doing polled IO and end up having requests being 3092 * submitted async (out-of-line), then completions can come in while 3093 * we're waiting for refs to drop. We need to reap these manually, 3094 * as nobody else will be looking for them. 3095 */ 3096 do { 3097 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 3098 mutex_lock(&ctx->uring_lock); 3099 io_cqring_overflow_kill(ctx); 3100 mutex_unlock(&ctx->uring_lock); 3101 } 3102 3103 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3104 io_move_task_work_from_local(ctx); 3105 3106 while (io_uring_try_cancel_requests(ctx, NULL, true)) 3107 cond_resched(); 3108 3109 if (ctx->sq_data) { 3110 struct io_sq_data *sqd = ctx->sq_data; 3111 struct task_struct *tsk; 3112 3113 io_sq_thread_park(sqd); 3114 tsk = sqd->thread; 3115 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 3116 io_wq_cancel_cb(tsk->io_uring->io_wq, 3117 io_cancel_ctx_cb, ctx, true); 3118 io_sq_thread_unpark(sqd); 3119 } 3120 3121 io_req_caches_free(ctx); 3122 3123 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3124 /* there is little hope left, don't run it too often */ 3125 interval = HZ * 60; 3126 } 3127 /* 3128 * This is really an uninterruptible wait, as it has to be 3129 * complete. But it's also run from a kworker, which doesn't 3130 * take signals, so it's fine to make it interruptible. This 3131 * avoids scenarios where we knowingly can wait much longer 3132 * on completions, for example if someone does a SIGSTOP on 3133 * a task that needs to finish task_work to make this loop 3134 * complete. That's a synthetic situation that should not 3135 * cause a stuck task backtrace, and hence a potential panic 3136 * on stuck tasks if that is enabled. 3137 */ 3138 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 3139 3140 init_completion(&exit.completion); 3141 init_task_work(&exit.task_work, io_tctx_exit_cb); 3142 exit.ctx = ctx; 3143 3144 mutex_lock(&ctx->uring_lock); 3145 while (!list_empty(&ctx->tctx_list)) { 3146 WARN_ON_ONCE(time_after(jiffies, timeout)); 3147 3148 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3149 ctx_node); 3150 /* don't spin on a single task if cancellation failed */ 3151 list_rotate_left(&ctx->tctx_list); 3152 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3153 if (WARN_ON_ONCE(ret)) 3154 continue; 3155 3156 mutex_unlock(&ctx->uring_lock); 3157 /* 3158 * See comment above for 3159 * wait_for_completion_interruptible_timeout() on why this 3160 * wait is marked as interruptible. 3161 */ 3162 wait_for_completion_interruptible(&exit.completion); 3163 mutex_lock(&ctx->uring_lock); 3164 } 3165 mutex_unlock(&ctx->uring_lock); 3166 spin_lock(&ctx->completion_lock); 3167 spin_unlock(&ctx->completion_lock); 3168 3169 /* pairs with RCU read section in io_req_local_work_add() */ 3170 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3171 synchronize_rcu(); 3172 3173 io_ring_ctx_free(ctx); 3174 } 3175 3176 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3177 { 3178 unsigned long index; 3179 struct creds *creds; 3180 3181 mutex_lock(&ctx->uring_lock); 3182 percpu_ref_kill(&ctx->refs); 3183 xa_for_each(&ctx->personalities, index, creds) 3184 io_unregister_personality(ctx, index); 3185 if (ctx->rings) 3186 io_poll_remove_all(ctx, NULL, true); 3187 mutex_unlock(&ctx->uring_lock); 3188 3189 /* 3190 * If we failed setting up the ctx, we might not have any rings 3191 * and therefore did not submit any requests 3192 */ 3193 if (ctx->rings) 3194 io_kill_timeouts(ctx, NULL, true); 3195 3196 flush_delayed_work(&ctx->fallback_work); 3197 3198 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3199 /* 3200 * Use system_unbound_wq to avoid spawning tons of event kworkers 3201 * if we're exiting a ton of rings at the same time. It just adds 3202 * noise and overhead, there's no discernable change in runtime 3203 * over using system_wq. 3204 */ 3205 queue_work(system_unbound_wq, &ctx->exit_work); 3206 } 3207 3208 static int io_uring_release(struct inode *inode, struct file *file) 3209 { 3210 struct io_ring_ctx *ctx = file->private_data; 3211 3212 file->private_data = NULL; 3213 io_ring_ctx_wait_and_kill(ctx); 3214 return 0; 3215 } 3216 3217 struct io_task_cancel { 3218 struct task_struct *task; 3219 bool all; 3220 }; 3221 3222 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3223 { 3224 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3225 struct io_task_cancel *cancel = data; 3226 3227 return io_match_task_safe(req, cancel->task, cancel->all); 3228 } 3229 3230 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3231 struct task_struct *task, 3232 bool cancel_all) 3233 { 3234 struct io_defer_entry *de; 3235 LIST_HEAD(list); 3236 3237 spin_lock(&ctx->completion_lock); 3238 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3239 if (io_match_task_safe(de->req, task, cancel_all)) { 3240 list_cut_position(&list, &ctx->defer_list, &de->list); 3241 break; 3242 } 3243 } 3244 spin_unlock(&ctx->completion_lock); 3245 if (list_empty(&list)) 3246 return false; 3247 3248 while (!list_empty(&list)) { 3249 de = list_first_entry(&list, struct io_defer_entry, list); 3250 list_del_init(&de->list); 3251 io_req_task_queue_fail(de->req, -ECANCELED); 3252 kfree(de); 3253 } 3254 return true; 3255 } 3256 3257 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3258 { 3259 struct io_tctx_node *node; 3260 enum io_wq_cancel cret; 3261 bool ret = false; 3262 3263 mutex_lock(&ctx->uring_lock); 3264 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3265 struct io_uring_task *tctx = node->task->io_uring; 3266 3267 /* 3268 * io_wq will stay alive while we hold uring_lock, because it's 3269 * killed after ctx nodes, which requires to take the lock. 3270 */ 3271 if (!tctx || !tctx->io_wq) 3272 continue; 3273 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3274 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3275 } 3276 mutex_unlock(&ctx->uring_lock); 3277 3278 return ret; 3279 } 3280 3281 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3282 struct task_struct *task, 3283 bool cancel_all) 3284 { 3285 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3286 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3287 enum io_wq_cancel cret; 3288 bool ret = false; 3289 3290 /* set it so io_req_local_work_add() would wake us up */ 3291 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3292 atomic_set(&ctx->cq_wait_nr, 1); 3293 smp_mb(); 3294 } 3295 3296 /* failed during ring init, it couldn't have issued any requests */ 3297 if (!ctx->rings) 3298 return false; 3299 3300 if (!task) { 3301 ret |= io_uring_try_cancel_iowq(ctx); 3302 } else if (tctx && tctx->io_wq) { 3303 /* 3304 * Cancels requests of all rings, not only @ctx, but 3305 * it's fine as the task is in exit/exec. 3306 */ 3307 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3308 &cancel, true); 3309 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3310 } 3311 3312 /* SQPOLL thread does its own polling */ 3313 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3314 (ctx->sq_data && ctx->sq_data->thread == current)) { 3315 while (!wq_list_empty(&ctx->iopoll_list)) { 3316 io_iopoll_try_reap_events(ctx); 3317 ret = true; 3318 cond_resched(); 3319 } 3320 } 3321 3322 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3323 io_allowed_defer_tw_run(ctx)) 3324 ret |= io_run_local_work(ctx) > 0; 3325 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3326 mutex_lock(&ctx->uring_lock); 3327 ret |= io_poll_remove_all(ctx, task, cancel_all); 3328 mutex_unlock(&ctx->uring_lock); 3329 ret |= io_kill_timeouts(ctx, task, cancel_all); 3330 if (task) 3331 ret |= io_run_task_work() > 0; 3332 return ret; 3333 } 3334 3335 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3336 { 3337 if (tracked) 3338 return atomic_read(&tctx->inflight_tracked); 3339 return percpu_counter_sum(&tctx->inflight); 3340 } 3341 3342 /* 3343 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3344 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3345 */ 3346 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3347 { 3348 struct io_uring_task *tctx = current->io_uring; 3349 struct io_ring_ctx *ctx; 3350 struct io_tctx_node *node; 3351 unsigned long index; 3352 s64 inflight; 3353 DEFINE_WAIT(wait); 3354 3355 WARN_ON_ONCE(sqd && sqd->thread != current); 3356 3357 if (!current->io_uring) 3358 return; 3359 if (tctx->io_wq) 3360 io_wq_exit_start(tctx->io_wq); 3361 3362 atomic_inc(&tctx->in_cancel); 3363 do { 3364 bool loop = false; 3365 3366 io_uring_drop_tctx_refs(current); 3367 /* read completions before cancelations */ 3368 inflight = tctx_inflight(tctx, !cancel_all); 3369 if (!inflight) 3370 break; 3371 3372 if (!sqd) { 3373 xa_for_each(&tctx->xa, index, node) { 3374 /* sqpoll task will cancel all its requests */ 3375 if (node->ctx->sq_data) 3376 continue; 3377 loop |= io_uring_try_cancel_requests(node->ctx, 3378 current, cancel_all); 3379 } 3380 } else { 3381 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3382 loop |= io_uring_try_cancel_requests(ctx, 3383 current, 3384 cancel_all); 3385 } 3386 3387 if (loop) { 3388 cond_resched(); 3389 continue; 3390 } 3391 3392 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3393 io_run_task_work(); 3394 io_uring_drop_tctx_refs(current); 3395 xa_for_each(&tctx->xa, index, node) { 3396 if (!llist_empty(&node->ctx->work_llist)) { 3397 WARN_ON_ONCE(node->ctx->submitter_task && 3398 node->ctx->submitter_task != current); 3399 goto end_wait; 3400 } 3401 } 3402 /* 3403 * If we've seen completions, retry without waiting. This 3404 * avoids a race where a completion comes in before we did 3405 * prepare_to_wait(). 3406 */ 3407 if (inflight == tctx_inflight(tctx, !cancel_all)) 3408 schedule(); 3409 end_wait: 3410 finish_wait(&tctx->wait, &wait); 3411 } while (1); 3412 3413 io_uring_clean_tctx(tctx); 3414 if (cancel_all) { 3415 /* 3416 * We shouldn't run task_works after cancel, so just leave 3417 * ->in_cancel set for normal exit. 3418 */ 3419 atomic_dec(&tctx->in_cancel); 3420 /* for exec all current's requests should be gone, kill tctx */ 3421 __io_uring_free(current); 3422 } 3423 } 3424 3425 void __io_uring_cancel(bool cancel_all) 3426 { 3427 io_uring_cancel_generic(cancel_all, NULL); 3428 } 3429 3430 static void *io_uring_validate_mmap_request(struct file *file, 3431 loff_t pgoff, size_t sz) 3432 { 3433 struct io_ring_ctx *ctx = file->private_data; 3434 loff_t offset = pgoff << PAGE_SHIFT; 3435 struct page *page; 3436 void *ptr; 3437 3438 switch (offset & IORING_OFF_MMAP_MASK) { 3439 case IORING_OFF_SQ_RING: 3440 case IORING_OFF_CQ_RING: 3441 /* Don't allow mmap if the ring was setup without it */ 3442 if (ctx->flags & IORING_SETUP_NO_MMAP) 3443 return ERR_PTR(-EINVAL); 3444 ptr = ctx->rings; 3445 break; 3446 case IORING_OFF_SQES: 3447 /* Don't allow mmap if the ring was setup without it */ 3448 if (ctx->flags & IORING_SETUP_NO_MMAP) 3449 return ERR_PTR(-EINVAL); 3450 ptr = ctx->sq_sqes; 3451 break; 3452 case IORING_OFF_PBUF_RING: { 3453 unsigned int bgid; 3454 3455 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; 3456 rcu_read_lock(); 3457 ptr = io_pbuf_get_address(ctx, bgid); 3458 rcu_read_unlock(); 3459 if (!ptr) 3460 return ERR_PTR(-EINVAL); 3461 break; 3462 } 3463 default: 3464 return ERR_PTR(-EINVAL); 3465 } 3466 3467 page = virt_to_head_page(ptr); 3468 if (sz > page_size(page)) 3469 return ERR_PTR(-EINVAL); 3470 3471 return ptr; 3472 } 3473 3474 #ifdef CONFIG_MMU 3475 3476 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3477 { 3478 size_t sz = vma->vm_end - vma->vm_start; 3479 unsigned long pfn; 3480 void *ptr; 3481 3482 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3483 if (IS_ERR(ptr)) 3484 return PTR_ERR(ptr); 3485 3486 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3487 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3488 } 3489 3490 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, 3491 unsigned long addr, unsigned long len, 3492 unsigned long pgoff, unsigned long flags) 3493 { 3494 void *ptr; 3495 3496 /* 3497 * Do not allow to map to user-provided address to avoid breaking the 3498 * aliasing rules. Userspace is not able to guess the offset address of 3499 * kernel kmalloc()ed memory area. 3500 */ 3501 if (addr) 3502 return -EINVAL; 3503 3504 ptr = io_uring_validate_mmap_request(filp, pgoff, len); 3505 if (IS_ERR(ptr)) 3506 return -ENOMEM; 3507 3508 /* 3509 * Some architectures have strong cache aliasing requirements. 3510 * For such architectures we need a coherent mapping which aliases 3511 * kernel memory *and* userspace memory. To achieve that: 3512 * - use a NULL file pointer to reference physical memory, and 3513 * - use the kernel virtual address of the shared io_uring context 3514 * (instead of the userspace-provided address, which has to be 0UL 3515 * anyway). 3516 * - use the same pgoff which the get_unmapped_area() uses to 3517 * calculate the page colouring. 3518 * For architectures without such aliasing requirements, the 3519 * architecture will return any suitable mapping because addr is 0. 3520 */ 3521 filp = NULL; 3522 flags |= MAP_SHARED; 3523 pgoff = 0; /* has been translated to ptr above */ 3524 #ifdef SHM_COLOUR 3525 addr = (uintptr_t) ptr; 3526 pgoff = addr >> PAGE_SHIFT; 3527 #else 3528 addr = 0UL; 3529 #endif 3530 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 3531 } 3532 3533 #else /* !CONFIG_MMU */ 3534 3535 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3536 { 3537 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3538 } 3539 3540 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3541 { 3542 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3543 } 3544 3545 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3546 unsigned long addr, unsigned long len, 3547 unsigned long pgoff, unsigned long flags) 3548 { 3549 void *ptr; 3550 3551 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3552 if (IS_ERR(ptr)) 3553 return PTR_ERR(ptr); 3554 3555 return (unsigned long) ptr; 3556 } 3557 3558 #endif /* !CONFIG_MMU */ 3559 3560 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3561 { 3562 if (flags & IORING_ENTER_EXT_ARG) { 3563 struct io_uring_getevents_arg arg; 3564 3565 if (argsz != sizeof(arg)) 3566 return -EINVAL; 3567 if (copy_from_user(&arg, argp, sizeof(arg))) 3568 return -EFAULT; 3569 } 3570 return 0; 3571 } 3572 3573 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3574 struct __kernel_timespec __user **ts, 3575 const sigset_t __user **sig) 3576 { 3577 struct io_uring_getevents_arg arg; 3578 3579 /* 3580 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3581 * is just a pointer to the sigset_t. 3582 */ 3583 if (!(flags & IORING_ENTER_EXT_ARG)) { 3584 *sig = (const sigset_t __user *) argp; 3585 *ts = NULL; 3586 return 0; 3587 } 3588 3589 /* 3590 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3591 * timespec and sigset_t pointers if good. 3592 */ 3593 if (*argsz != sizeof(arg)) 3594 return -EINVAL; 3595 if (copy_from_user(&arg, argp, sizeof(arg))) 3596 return -EFAULT; 3597 if (arg.pad) 3598 return -EINVAL; 3599 *sig = u64_to_user_ptr(arg.sigmask); 3600 *argsz = arg.sigmask_sz; 3601 *ts = u64_to_user_ptr(arg.ts); 3602 return 0; 3603 } 3604 3605 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3606 u32, min_complete, u32, flags, const void __user *, argp, 3607 size_t, argsz) 3608 { 3609 struct io_ring_ctx *ctx; 3610 struct fd f; 3611 long ret; 3612 3613 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3614 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3615 IORING_ENTER_REGISTERED_RING))) 3616 return -EINVAL; 3617 3618 /* 3619 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3620 * need only dereference our task private array to find it. 3621 */ 3622 if (flags & IORING_ENTER_REGISTERED_RING) { 3623 struct io_uring_task *tctx = current->io_uring; 3624 3625 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3626 return -EINVAL; 3627 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3628 f.file = tctx->registered_rings[fd]; 3629 f.flags = 0; 3630 if (unlikely(!f.file)) 3631 return -EBADF; 3632 } else { 3633 f = fdget(fd); 3634 if (unlikely(!f.file)) 3635 return -EBADF; 3636 ret = -EOPNOTSUPP; 3637 if (unlikely(!io_is_uring_fops(f.file))) 3638 goto out; 3639 } 3640 3641 ctx = f.file->private_data; 3642 ret = -EBADFD; 3643 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3644 goto out; 3645 3646 /* 3647 * For SQ polling, the thread will do all submissions and completions. 3648 * Just return the requested submit count, and wake the thread if 3649 * we were asked to. 3650 */ 3651 ret = 0; 3652 if (ctx->flags & IORING_SETUP_SQPOLL) { 3653 io_cqring_overflow_flush(ctx); 3654 3655 if (unlikely(ctx->sq_data->thread == NULL)) { 3656 ret = -EOWNERDEAD; 3657 goto out; 3658 } 3659 if (flags & IORING_ENTER_SQ_WAKEUP) 3660 wake_up(&ctx->sq_data->wait); 3661 if (flags & IORING_ENTER_SQ_WAIT) 3662 io_sqpoll_wait_sq(ctx); 3663 3664 ret = to_submit; 3665 } else if (to_submit) { 3666 ret = io_uring_add_tctx_node(ctx); 3667 if (unlikely(ret)) 3668 goto out; 3669 3670 mutex_lock(&ctx->uring_lock); 3671 ret = io_submit_sqes(ctx, to_submit); 3672 if (ret != to_submit) { 3673 mutex_unlock(&ctx->uring_lock); 3674 goto out; 3675 } 3676 if (flags & IORING_ENTER_GETEVENTS) { 3677 if (ctx->syscall_iopoll) 3678 goto iopoll_locked; 3679 /* 3680 * Ignore errors, we'll soon call io_cqring_wait() and 3681 * it should handle ownership problems if any. 3682 */ 3683 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3684 (void)io_run_local_work_locked(ctx); 3685 } 3686 mutex_unlock(&ctx->uring_lock); 3687 } 3688 3689 if (flags & IORING_ENTER_GETEVENTS) { 3690 int ret2; 3691 3692 if (ctx->syscall_iopoll) { 3693 /* 3694 * We disallow the app entering submit/complete with 3695 * polling, but we still need to lock the ring to 3696 * prevent racing with polled issue that got punted to 3697 * a workqueue. 3698 */ 3699 mutex_lock(&ctx->uring_lock); 3700 iopoll_locked: 3701 ret2 = io_validate_ext_arg(flags, argp, argsz); 3702 if (likely(!ret2)) { 3703 min_complete = min(min_complete, 3704 ctx->cq_entries); 3705 ret2 = io_iopoll_check(ctx, min_complete); 3706 } 3707 mutex_unlock(&ctx->uring_lock); 3708 } else { 3709 const sigset_t __user *sig; 3710 struct __kernel_timespec __user *ts; 3711 3712 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3713 if (likely(!ret2)) { 3714 min_complete = min(min_complete, 3715 ctx->cq_entries); 3716 ret2 = io_cqring_wait(ctx, min_complete, sig, 3717 argsz, ts); 3718 } 3719 } 3720 3721 if (!ret) { 3722 ret = ret2; 3723 3724 /* 3725 * EBADR indicates that one or more CQE were dropped. 3726 * Once the user has been informed we can clear the bit 3727 * as they are obviously ok with those drops. 3728 */ 3729 if (unlikely(ret2 == -EBADR)) 3730 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3731 &ctx->check_cq); 3732 } 3733 } 3734 out: 3735 fdput(f); 3736 return ret; 3737 } 3738 3739 static const struct file_operations io_uring_fops = { 3740 .release = io_uring_release, 3741 .mmap = io_uring_mmap, 3742 #ifndef CONFIG_MMU 3743 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3744 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3745 #else 3746 .get_unmapped_area = io_uring_mmu_get_unmapped_area, 3747 #endif 3748 .poll = io_uring_poll, 3749 #ifdef CONFIG_PROC_FS 3750 .show_fdinfo = io_uring_show_fdinfo, 3751 #endif 3752 }; 3753 3754 bool io_is_uring_fops(struct file *file) 3755 { 3756 return file->f_op == &io_uring_fops; 3757 } 3758 3759 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3760 struct io_uring_params *p) 3761 { 3762 struct io_rings *rings; 3763 size_t size, sq_array_offset; 3764 void *ptr; 3765 3766 /* make sure these are sane, as we already accounted them */ 3767 ctx->sq_entries = p->sq_entries; 3768 ctx->cq_entries = p->cq_entries; 3769 3770 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3771 if (size == SIZE_MAX) 3772 return -EOVERFLOW; 3773 3774 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3775 rings = io_mem_alloc(size); 3776 else 3777 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3778 3779 if (IS_ERR(rings)) 3780 return PTR_ERR(rings); 3781 3782 ctx->rings = rings; 3783 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3784 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3785 rings->sq_ring_mask = p->sq_entries - 1; 3786 rings->cq_ring_mask = p->cq_entries - 1; 3787 rings->sq_ring_entries = p->sq_entries; 3788 rings->cq_ring_entries = p->cq_entries; 3789 3790 if (p->flags & IORING_SETUP_SQE128) 3791 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3792 else 3793 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3794 if (size == SIZE_MAX) { 3795 io_rings_free(ctx); 3796 return -EOVERFLOW; 3797 } 3798 3799 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3800 ptr = io_mem_alloc(size); 3801 else 3802 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3803 3804 if (IS_ERR(ptr)) { 3805 io_rings_free(ctx); 3806 return PTR_ERR(ptr); 3807 } 3808 3809 ctx->sq_sqes = ptr; 3810 return 0; 3811 } 3812 3813 static int io_uring_install_fd(struct file *file) 3814 { 3815 int fd; 3816 3817 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3818 if (fd < 0) 3819 return fd; 3820 fd_install(fd, file); 3821 return fd; 3822 } 3823 3824 /* 3825 * Allocate an anonymous fd, this is what constitutes the application 3826 * visible backing of an io_uring instance. The application mmaps this 3827 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3828 * we have to tie this fd to a socket for file garbage collection purposes. 3829 */ 3830 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3831 { 3832 struct file *file; 3833 #if defined(CONFIG_UNIX) 3834 int ret; 3835 3836 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3837 &ctx->ring_sock); 3838 if (ret) 3839 return ERR_PTR(ret); 3840 #endif 3841 3842 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3843 O_RDWR | O_CLOEXEC, NULL); 3844 #if defined(CONFIG_UNIX) 3845 if (IS_ERR(file)) { 3846 sock_release(ctx->ring_sock); 3847 ctx->ring_sock = NULL; 3848 } else { 3849 ctx->ring_sock->file = file; 3850 } 3851 #endif 3852 return file; 3853 } 3854 3855 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3856 struct io_uring_params __user *params) 3857 { 3858 struct io_ring_ctx *ctx; 3859 struct io_uring_task *tctx; 3860 struct file *file; 3861 int ret; 3862 3863 if (!entries) 3864 return -EINVAL; 3865 if (entries > IORING_MAX_ENTRIES) { 3866 if (!(p->flags & IORING_SETUP_CLAMP)) 3867 return -EINVAL; 3868 entries = IORING_MAX_ENTRIES; 3869 } 3870 3871 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3872 && !(p->flags & IORING_SETUP_NO_MMAP)) 3873 return -EINVAL; 3874 3875 /* 3876 * Use twice as many entries for the CQ ring. It's possible for the 3877 * application to drive a higher depth than the size of the SQ ring, 3878 * since the sqes are only used at submission time. This allows for 3879 * some flexibility in overcommitting a bit. If the application has 3880 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3881 * of CQ ring entries manually. 3882 */ 3883 p->sq_entries = roundup_pow_of_two(entries); 3884 if (p->flags & IORING_SETUP_CQSIZE) { 3885 /* 3886 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3887 * to a power-of-two, if it isn't already. We do NOT impose 3888 * any cq vs sq ring sizing. 3889 */ 3890 if (!p->cq_entries) 3891 return -EINVAL; 3892 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3893 if (!(p->flags & IORING_SETUP_CLAMP)) 3894 return -EINVAL; 3895 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3896 } 3897 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3898 if (p->cq_entries < p->sq_entries) 3899 return -EINVAL; 3900 } else { 3901 p->cq_entries = 2 * p->sq_entries; 3902 } 3903 3904 ctx = io_ring_ctx_alloc(p); 3905 if (!ctx) 3906 return -ENOMEM; 3907 3908 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3909 !(ctx->flags & IORING_SETUP_IOPOLL) && 3910 !(ctx->flags & IORING_SETUP_SQPOLL)) 3911 ctx->task_complete = true; 3912 3913 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3914 ctx->lockless_cq = true; 3915 3916 /* 3917 * lazy poll_wq activation relies on ->task_complete for synchronisation 3918 * purposes, see io_activate_pollwq() 3919 */ 3920 if (!ctx->task_complete) 3921 ctx->poll_activated = true; 3922 3923 /* 3924 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3925 * space applications don't need to do io completion events 3926 * polling again, they can rely on io_sq_thread to do polling 3927 * work, which can reduce cpu usage and uring_lock contention. 3928 */ 3929 if (ctx->flags & IORING_SETUP_IOPOLL && 3930 !(ctx->flags & IORING_SETUP_SQPOLL)) 3931 ctx->syscall_iopoll = 1; 3932 3933 ctx->compat = in_compat_syscall(); 3934 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3935 ctx->user = get_uid(current_user()); 3936 3937 /* 3938 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3939 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3940 */ 3941 ret = -EINVAL; 3942 if (ctx->flags & IORING_SETUP_SQPOLL) { 3943 /* IPI related flags don't make sense with SQPOLL */ 3944 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3945 IORING_SETUP_TASKRUN_FLAG | 3946 IORING_SETUP_DEFER_TASKRUN)) 3947 goto err; 3948 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3949 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3950 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3951 } else { 3952 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3953 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3954 goto err; 3955 ctx->notify_method = TWA_SIGNAL; 3956 } 3957 3958 /* 3959 * For DEFER_TASKRUN we require the completion task to be the same as the 3960 * submission task. This implies that there is only one submitter, so enforce 3961 * that. 3962 */ 3963 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3964 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3965 goto err; 3966 } 3967 3968 /* 3969 * This is just grabbed for accounting purposes. When a process exits, 3970 * the mm is exited and dropped before the files, hence we need to hang 3971 * on to this mm purely for the purposes of being able to unaccount 3972 * memory (locked/pinned vm). It's not used for anything else. 3973 */ 3974 mmgrab(current->mm); 3975 ctx->mm_account = current->mm; 3976 3977 ret = io_allocate_scq_urings(ctx, p); 3978 if (ret) 3979 goto err; 3980 3981 ret = io_sq_offload_create(ctx, p); 3982 if (ret) 3983 goto err; 3984 3985 ret = io_rsrc_init(ctx); 3986 if (ret) 3987 goto err; 3988 3989 p->sq_off.head = offsetof(struct io_rings, sq.head); 3990 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3991 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3992 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3993 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3994 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3995 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3996 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3997 p->sq_off.resv1 = 0; 3998 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3999 p->sq_off.user_addr = 0; 4000 4001 p->cq_off.head = offsetof(struct io_rings, cq.head); 4002 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 4003 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 4004 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 4005 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 4006 p->cq_off.cqes = offsetof(struct io_rings, cqes); 4007 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 4008 p->cq_off.resv1 = 0; 4009 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 4010 p->cq_off.user_addr = 0; 4011 4012 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 4013 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 4014 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 4015 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 4016 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 4017 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 4018 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 4019 4020 if (copy_to_user(params, p, sizeof(*p))) { 4021 ret = -EFAULT; 4022 goto err; 4023 } 4024 4025 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 4026 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 4027 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4028 4029 file = io_uring_get_file(ctx); 4030 if (IS_ERR(file)) { 4031 ret = PTR_ERR(file); 4032 goto err; 4033 } 4034 4035 ret = __io_uring_add_tctx_node(ctx); 4036 if (ret) 4037 goto err_fput; 4038 tctx = current->io_uring; 4039 4040 /* 4041 * Install ring fd as the very last thing, so we don't risk someone 4042 * having closed it before we finish setup 4043 */ 4044 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 4045 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 4046 else 4047 ret = io_uring_install_fd(file); 4048 if (ret < 0) 4049 goto err_fput; 4050 4051 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 4052 return ret; 4053 err: 4054 io_ring_ctx_wait_and_kill(ctx); 4055 return ret; 4056 err_fput: 4057 fput(file); 4058 return ret; 4059 } 4060 4061 /* 4062 * Sets up an aio uring context, and returns the fd. Applications asks for a 4063 * ring size, we return the actual sq/cq ring sizes (among other things) in the 4064 * params structure passed in. 4065 */ 4066 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 4067 { 4068 struct io_uring_params p; 4069 int i; 4070 4071 if (copy_from_user(&p, params, sizeof(p))) 4072 return -EFAULT; 4073 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 4074 if (p.resv[i]) 4075 return -EINVAL; 4076 } 4077 4078 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 4079 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 4080 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 4081 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 4082 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 4083 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 4084 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 4085 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 4086 IORING_SETUP_NO_SQARRAY)) 4087 return -EINVAL; 4088 4089 return io_uring_create(entries, &p, params); 4090 } 4091 4092 static inline bool io_uring_allowed(void) 4093 { 4094 int disabled = READ_ONCE(sysctl_io_uring_disabled); 4095 kgid_t io_uring_group; 4096 4097 if (disabled == 2) 4098 return false; 4099 4100 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 4101 return true; 4102 4103 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 4104 if (!gid_valid(io_uring_group)) 4105 return false; 4106 4107 return in_group_p(io_uring_group); 4108 } 4109 4110 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 4111 struct io_uring_params __user *, params) 4112 { 4113 if (!io_uring_allowed()) 4114 return -EPERM; 4115 4116 return io_uring_setup(entries, params); 4117 } 4118 4119 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 4120 unsigned nr_args) 4121 { 4122 struct io_uring_probe *p; 4123 size_t size; 4124 int i, ret; 4125 4126 size = struct_size(p, ops, nr_args); 4127 if (size == SIZE_MAX) 4128 return -EOVERFLOW; 4129 p = kzalloc(size, GFP_KERNEL); 4130 if (!p) 4131 return -ENOMEM; 4132 4133 ret = -EFAULT; 4134 if (copy_from_user(p, arg, size)) 4135 goto out; 4136 ret = -EINVAL; 4137 if (memchr_inv(p, 0, size)) 4138 goto out; 4139 4140 p->last_op = IORING_OP_LAST - 1; 4141 if (nr_args > IORING_OP_LAST) 4142 nr_args = IORING_OP_LAST; 4143 4144 for (i = 0; i < nr_args; i++) { 4145 p->ops[i].op = i; 4146 if (!io_issue_defs[i].not_supported) 4147 p->ops[i].flags = IO_URING_OP_SUPPORTED; 4148 } 4149 p->ops_len = i; 4150 4151 ret = 0; 4152 if (copy_to_user(arg, p, size)) 4153 ret = -EFAULT; 4154 out: 4155 kfree(p); 4156 return ret; 4157 } 4158 4159 static int io_register_personality(struct io_ring_ctx *ctx) 4160 { 4161 const struct cred *creds; 4162 u32 id; 4163 int ret; 4164 4165 creds = get_current_cred(); 4166 4167 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 4168 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 4169 if (ret < 0) { 4170 put_cred(creds); 4171 return ret; 4172 } 4173 return id; 4174 } 4175 4176 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 4177 void __user *arg, unsigned int nr_args) 4178 { 4179 struct io_uring_restriction *res; 4180 size_t size; 4181 int i, ret; 4182 4183 /* Restrictions allowed only if rings started disabled */ 4184 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4185 return -EBADFD; 4186 4187 /* We allow only a single restrictions registration */ 4188 if (ctx->restrictions.registered) 4189 return -EBUSY; 4190 4191 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 4192 return -EINVAL; 4193 4194 size = array_size(nr_args, sizeof(*res)); 4195 if (size == SIZE_MAX) 4196 return -EOVERFLOW; 4197 4198 res = memdup_user(arg, size); 4199 if (IS_ERR(res)) 4200 return PTR_ERR(res); 4201 4202 ret = 0; 4203 4204 for (i = 0; i < nr_args; i++) { 4205 switch (res[i].opcode) { 4206 case IORING_RESTRICTION_REGISTER_OP: 4207 if (res[i].register_op >= IORING_REGISTER_LAST) { 4208 ret = -EINVAL; 4209 goto out; 4210 } 4211 4212 __set_bit(res[i].register_op, 4213 ctx->restrictions.register_op); 4214 break; 4215 case IORING_RESTRICTION_SQE_OP: 4216 if (res[i].sqe_op >= IORING_OP_LAST) { 4217 ret = -EINVAL; 4218 goto out; 4219 } 4220 4221 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 4222 break; 4223 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 4224 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 4225 break; 4226 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 4227 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 4228 break; 4229 default: 4230 ret = -EINVAL; 4231 goto out; 4232 } 4233 } 4234 4235 out: 4236 /* Reset all restrictions if an error happened */ 4237 if (ret != 0) 4238 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 4239 else 4240 ctx->restrictions.registered = true; 4241 4242 kfree(res); 4243 return ret; 4244 } 4245 4246 static int io_register_enable_rings(struct io_ring_ctx *ctx) 4247 { 4248 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4249 return -EBADFD; 4250 4251 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) { 4252 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4253 /* 4254 * Lazy activation attempts would fail if it was polled before 4255 * submitter_task is set. 4256 */ 4257 if (wq_has_sleeper(&ctx->poll_wq)) 4258 io_activate_pollwq(ctx); 4259 } 4260 4261 if (ctx->restrictions.registered) 4262 ctx->restricted = 1; 4263 4264 ctx->flags &= ~IORING_SETUP_R_DISABLED; 4265 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 4266 wake_up(&ctx->sq_data->wait); 4267 return 0; 4268 } 4269 4270 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx, 4271 cpumask_var_t new_mask) 4272 { 4273 int ret; 4274 4275 if (!(ctx->flags & IORING_SETUP_SQPOLL)) { 4276 ret = io_wq_cpu_affinity(current->io_uring, new_mask); 4277 } else { 4278 mutex_unlock(&ctx->uring_lock); 4279 ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask); 4280 mutex_lock(&ctx->uring_lock); 4281 } 4282 4283 return ret; 4284 } 4285 4286 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 4287 void __user *arg, unsigned len) 4288 { 4289 cpumask_var_t new_mask; 4290 int ret; 4291 4292 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4293 return -ENOMEM; 4294 4295 cpumask_clear(new_mask); 4296 if (len > cpumask_size()) 4297 len = cpumask_size(); 4298 4299 if (in_compat_syscall()) { 4300 ret = compat_get_bitmap(cpumask_bits(new_mask), 4301 (const compat_ulong_t __user *)arg, 4302 len * 8 /* CHAR_BIT */); 4303 } else { 4304 ret = copy_from_user(new_mask, arg, len); 4305 } 4306 4307 if (ret) { 4308 free_cpumask_var(new_mask); 4309 return -EFAULT; 4310 } 4311 4312 ret = __io_register_iowq_aff(ctx, new_mask); 4313 free_cpumask_var(new_mask); 4314 return ret; 4315 } 4316 4317 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 4318 { 4319 return __io_register_iowq_aff(ctx, NULL); 4320 } 4321 4322 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 4323 void __user *arg) 4324 __must_hold(&ctx->uring_lock) 4325 { 4326 struct io_tctx_node *node; 4327 struct io_uring_task *tctx = NULL; 4328 struct io_sq_data *sqd = NULL; 4329 __u32 new_count[2]; 4330 int i, ret; 4331 4332 if (copy_from_user(new_count, arg, sizeof(new_count))) 4333 return -EFAULT; 4334 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4335 if (new_count[i] > INT_MAX) 4336 return -EINVAL; 4337 4338 if (ctx->flags & IORING_SETUP_SQPOLL) { 4339 sqd = ctx->sq_data; 4340 if (sqd) { 4341 /* 4342 * Observe the correct sqd->lock -> ctx->uring_lock 4343 * ordering. Fine to drop uring_lock here, we hold 4344 * a ref to the ctx. 4345 */ 4346 refcount_inc(&sqd->refs); 4347 mutex_unlock(&ctx->uring_lock); 4348 mutex_lock(&sqd->lock); 4349 mutex_lock(&ctx->uring_lock); 4350 if (sqd->thread) 4351 tctx = sqd->thread->io_uring; 4352 } 4353 } else { 4354 tctx = current->io_uring; 4355 } 4356 4357 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 4358 4359 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4360 if (new_count[i]) 4361 ctx->iowq_limits[i] = new_count[i]; 4362 ctx->iowq_limits_set = true; 4363 4364 if (tctx && tctx->io_wq) { 4365 ret = io_wq_max_workers(tctx->io_wq, new_count); 4366 if (ret) 4367 goto err; 4368 } else { 4369 memset(new_count, 0, sizeof(new_count)); 4370 } 4371 4372 if (sqd) { 4373 mutex_unlock(&sqd->lock); 4374 io_put_sq_data(sqd); 4375 } 4376 4377 if (copy_to_user(arg, new_count, sizeof(new_count))) 4378 return -EFAULT; 4379 4380 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 4381 if (sqd) 4382 return 0; 4383 4384 /* now propagate the restriction to all registered users */ 4385 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 4386 struct io_uring_task *tctx = node->task->io_uring; 4387 4388 if (WARN_ON_ONCE(!tctx->io_wq)) 4389 continue; 4390 4391 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4392 new_count[i] = ctx->iowq_limits[i]; 4393 /* ignore errors, it always returns zero anyway */ 4394 (void)io_wq_max_workers(tctx->io_wq, new_count); 4395 } 4396 return 0; 4397 err: 4398 if (sqd) { 4399 mutex_unlock(&sqd->lock); 4400 io_put_sq_data(sqd); 4401 } 4402 return ret; 4403 } 4404 4405 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4406 void __user *arg, unsigned nr_args) 4407 __releases(ctx->uring_lock) 4408 __acquires(ctx->uring_lock) 4409 { 4410 int ret; 4411 4412 /* 4413 * We don't quiesce the refs for register anymore and so it can't be 4414 * dying as we're holding a file ref here. 4415 */ 4416 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4417 return -ENXIO; 4418 4419 if (ctx->submitter_task && ctx->submitter_task != current) 4420 return -EEXIST; 4421 4422 if (ctx->restricted) { 4423 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4424 if (!test_bit(opcode, ctx->restrictions.register_op)) 4425 return -EACCES; 4426 } 4427 4428 switch (opcode) { 4429 case IORING_REGISTER_BUFFERS: 4430 ret = -EFAULT; 4431 if (!arg) 4432 break; 4433 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4434 break; 4435 case IORING_UNREGISTER_BUFFERS: 4436 ret = -EINVAL; 4437 if (arg || nr_args) 4438 break; 4439 ret = io_sqe_buffers_unregister(ctx); 4440 break; 4441 case IORING_REGISTER_FILES: 4442 ret = -EFAULT; 4443 if (!arg) 4444 break; 4445 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4446 break; 4447 case IORING_UNREGISTER_FILES: 4448 ret = -EINVAL; 4449 if (arg || nr_args) 4450 break; 4451 ret = io_sqe_files_unregister(ctx); 4452 break; 4453 case IORING_REGISTER_FILES_UPDATE: 4454 ret = io_register_files_update(ctx, arg, nr_args); 4455 break; 4456 case IORING_REGISTER_EVENTFD: 4457 ret = -EINVAL; 4458 if (nr_args != 1) 4459 break; 4460 ret = io_eventfd_register(ctx, arg, 0); 4461 break; 4462 case IORING_REGISTER_EVENTFD_ASYNC: 4463 ret = -EINVAL; 4464 if (nr_args != 1) 4465 break; 4466 ret = io_eventfd_register(ctx, arg, 1); 4467 break; 4468 case IORING_UNREGISTER_EVENTFD: 4469 ret = -EINVAL; 4470 if (arg || nr_args) 4471 break; 4472 ret = io_eventfd_unregister(ctx); 4473 break; 4474 case IORING_REGISTER_PROBE: 4475 ret = -EINVAL; 4476 if (!arg || nr_args > 256) 4477 break; 4478 ret = io_probe(ctx, arg, nr_args); 4479 break; 4480 case IORING_REGISTER_PERSONALITY: 4481 ret = -EINVAL; 4482 if (arg || nr_args) 4483 break; 4484 ret = io_register_personality(ctx); 4485 break; 4486 case IORING_UNREGISTER_PERSONALITY: 4487 ret = -EINVAL; 4488 if (arg) 4489 break; 4490 ret = io_unregister_personality(ctx, nr_args); 4491 break; 4492 case IORING_REGISTER_ENABLE_RINGS: 4493 ret = -EINVAL; 4494 if (arg || nr_args) 4495 break; 4496 ret = io_register_enable_rings(ctx); 4497 break; 4498 case IORING_REGISTER_RESTRICTIONS: 4499 ret = io_register_restrictions(ctx, arg, nr_args); 4500 break; 4501 case IORING_REGISTER_FILES2: 4502 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4503 break; 4504 case IORING_REGISTER_FILES_UPDATE2: 4505 ret = io_register_rsrc_update(ctx, arg, nr_args, 4506 IORING_RSRC_FILE); 4507 break; 4508 case IORING_REGISTER_BUFFERS2: 4509 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4510 break; 4511 case IORING_REGISTER_BUFFERS_UPDATE: 4512 ret = io_register_rsrc_update(ctx, arg, nr_args, 4513 IORING_RSRC_BUFFER); 4514 break; 4515 case IORING_REGISTER_IOWQ_AFF: 4516 ret = -EINVAL; 4517 if (!arg || !nr_args) 4518 break; 4519 ret = io_register_iowq_aff(ctx, arg, nr_args); 4520 break; 4521 case IORING_UNREGISTER_IOWQ_AFF: 4522 ret = -EINVAL; 4523 if (arg || nr_args) 4524 break; 4525 ret = io_unregister_iowq_aff(ctx); 4526 break; 4527 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4528 ret = -EINVAL; 4529 if (!arg || nr_args != 2) 4530 break; 4531 ret = io_register_iowq_max_workers(ctx, arg); 4532 break; 4533 case IORING_REGISTER_RING_FDS: 4534 ret = io_ringfd_register(ctx, arg, nr_args); 4535 break; 4536 case IORING_UNREGISTER_RING_FDS: 4537 ret = io_ringfd_unregister(ctx, arg, nr_args); 4538 break; 4539 case IORING_REGISTER_PBUF_RING: 4540 ret = -EINVAL; 4541 if (!arg || nr_args != 1) 4542 break; 4543 ret = io_register_pbuf_ring(ctx, arg); 4544 break; 4545 case IORING_UNREGISTER_PBUF_RING: 4546 ret = -EINVAL; 4547 if (!arg || nr_args != 1) 4548 break; 4549 ret = io_unregister_pbuf_ring(ctx, arg); 4550 break; 4551 case IORING_REGISTER_SYNC_CANCEL: 4552 ret = -EINVAL; 4553 if (!arg || nr_args != 1) 4554 break; 4555 ret = io_sync_cancel(ctx, arg); 4556 break; 4557 case IORING_REGISTER_FILE_ALLOC_RANGE: 4558 ret = -EINVAL; 4559 if (!arg || nr_args) 4560 break; 4561 ret = io_register_file_alloc_range(ctx, arg); 4562 break; 4563 default: 4564 ret = -EINVAL; 4565 break; 4566 } 4567 4568 return ret; 4569 } 4570 4571 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4572 void __user *, arg, unsigned int, nr_args) 4573 { 4574 struct io_ring_ctx *ctx; 4575 long ret = -EBADF; 4576 struct fd f; 4577 bool use_registered_ring; 4578 4579 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING); 4580 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING; 4581 4582 if (opcode >= IORING_REGISTER_LAST) 4583 return -EINVAL; 4584 4585 if (use_registered_ring) { 4586 /* 4587 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 4588 * need only dereference our task private array to find it. 4589 */ 4590 struct io_uring_task *tctx = current->io_uring; 4591 4592 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 4593 return -EINVAL; 4594 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 4595 f.file = tctx->registered_rings[fd]; 4596 f.flags = 0; 4597 if (unlikely(!f.file)) 4598 return -EBADF; 4599 } else { 4600 f = fdget(fd); 4601 if (unlikely(!f.file)) 4602 return -EBADF; 4603 ret = -EOPNOTSUPP; 4604 if (!io_is_uring_fops(f.file)) 4605 goto out_fput; 4606 } 4607 4608 ctx = f.file->private_data; 4609 4610 mutex_lock(&ctx->uring_lock); 4611 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4612 mutex_unlock(&ctx->uring_lock); 4613 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4614 out_fput: 4615 fdput(f); 4616 return ret; 4617 } 4618 4619 static int __init io_uring_init(void) 4620 { 4621 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4622 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4623 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4624 } while (0) 4625 4626 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4627 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4628 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4629 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4630 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4631 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4632 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4633 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4634 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4635 BUILD_BUG_SQE_ELEM(8, __u64, off); 4636 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4637 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4638 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4639 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4640 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4641 BUILD_BUG_SQE_ELEM(24, __u32, len); 4642 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4643 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4644 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4645 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4646 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4647 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4648 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4649 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4650 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4651 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4652 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4653 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4654 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4655 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4656 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4657 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4658 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4659 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4660 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4661 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4662 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4663 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4664 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4665 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4666 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4667 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4668 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4669 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4670 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4671 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4672 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4673 4674 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4675 sizeof(struct io_uring_rsrc_update)); 4676 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4677 sizeof(struct io_uring_rsrc_update2)); 4678 4679 /* ->buf_index is u16 */ 4680 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4681 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4682 offsetof(struct io_uring_buf_ring, tail)); 4683 4684 /* should fit into one byte */ 4685 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4686 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4687 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4688 4689 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4690 4691 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4692 4693 io_uring_optable_init(); 4694 4695 /* 4696 * Allow user copy in the per-command field, which starts after the 4697 * file in io_kiocb and until the opcode field. The openat2 handling 4698 * requires copying in user memory into the io_kiocb object in that 4699 * range, and HARDENED_USERCOPY will complain if we haven't 4700 * correctly annotated this range. 4701 */ 4702 req_cachep = kmem_cache_create_usercopy("io_kiocb", 4703 sizeof(struct io_kiocb), 0, 4704 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4705 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU, 4706 offsetof(struct io_kiocb, cmd.data), 4707 sizeof_field(struct io_kiocb, cmd.data), NULL); 4708 4709 #ifdef CONFIG_SYSCTL 4710 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 4711 #endif 4712 4713 return 0; 4714 }; 4715 __initcall(io_uring_init); 4716