1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 #include <asm/shmparam.h> 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/io_uring.h> 79 80 #include <uapi/linux/io_uring.h> 81 82 #include "io-wq.h" 83 84 #include "io_uring.h" 85 #include "opdef.h" 86 #include "refs.h" 87 #include "tctx.h" 88 #include "sqpoll.h" 89 #include "fdinfo.h" 90 #include "kbuf.h" 91 #include "rsrc.h" 92 #include "cancel.h" 93 #include "net.h" 94 #include "notif.h" 95 96 #include "timeout.h" 97 #include "poll.h" 98 #include "rw.h" 99 #include "alloc_cache.h" 100 101 #define IORING_MAX_ENTRIES 32768 102 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 103 104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 105 IORING_REGISTER_LAST + IORING_OP_LAST) 106 107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 108 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 109 110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 112 113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 115 REQ_F_ASYNC_DATA) 116 117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 118 IO_REQ_CLEAN_FLAGS) 119 120 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 121 122 #define IO_COMPL_BATCH 32 123 #define IO_REQ_ALLOC_BATCH 8 124 125 enum { 126 IO_CHECK_CQ_OVERFLOW_BIT, 127 IO_CHECK_CQ_DROPPED_BIT, 128 }; 129 130 enum { 131 IO_EVENTFD_OP_SIGNAL_BIT, 132 IO_EVENTFD_OP_FREE_BIT, 133 }; 134 135 struct io_defer_entry { 136 struct list_head list; 137 struct io_kiocb *req; 138 u32 seq; 139 }; 140 141 /* requests with any of those set should undergo io_disarm_next() */ 142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 144 145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 146 struct task_struct *task, 147 bool cancel_all); 148 149 static void io_dismantle_req(struct io_kiocb *req); 150 static void io_clean_op(struct io_kiocb *req); 151 static void io_queue_sqe(struct io_kiocb *req); 152 static void io_move_task_work_from_local(struct io_ring_ctx *ctx); 153 static void __io_submit_flush_completions(struct io_ring_ctx *ctx); 154 static __cold void io_fallback_tw(struct io_uring_task *tctx); 155 156 struct kmem_cache *req_cachep; 157 158 struct sock *io_uring_get_socket(struct file *file) 159 { 160 #if defined(CONFIG_UNIX) 161 if (io_is_uring_fops(file)) { 162 struct io_ring_ctx *ctx = file->private_data; 163 164 return ctx->ring_sock->sk; 165 } 166 #endif 167 return NULL; 168 } 169 EXPORT_SYMBOL(io_uring_get_socket); 170 171 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 172 { 173 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 174 ctx->submit_state.cqes_count) 175 __io_submit_flush_completions(ctx); 176 } 177 178 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 179 { 180 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 181 } 182 183 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 184 { 185 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 186 } 187 188 static bool io_match_linked(struct io_kiocb *head) 189 { 190 struct io_kiocb *req; 191 192 io_for_each_link(req, head) { 193 if (req->flags & REQ_F_INFLIGHT) 194 return true; 195 } 196 return false; 197 } 198 199 /* 200 * As io_match_task() but protected against racing with linked timeouts. 201 * User must not hold timeout_lock. 202 */ 203 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 204 bool cancel_all) 205 { 206 bool matched; 207 208 if (task && head->task != task) 209 return false; 210 if (cancel_all) 211 return true; 212 213 if (head->flags & REQ_F_LINK_TIMEOUT) { 214 struct io_ring_ctx *ctx = head->ctx; 215 216 /* protect against races with linked timeouts */ 217 spin_lock_irq(&ctx->timeout_lock); 218 matched = io_match_linked(head); 219 spin_unlock_irq(&ctx->timeout_lock); 220 } else { 221 matched = io_match_linked(head); 222 } 223 return matched; 224 } 225 226 static inline void req_fail_link_node(struct io_kiocb *req, int res) 227 { 228 req_set_fail(req); 229 io_req_set_res(req, res, 0); 230 } 231 232 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 233 { 234 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 235 kasan_poison_object_data(req_cachep, req); 236 } 237 238 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 239 { 240 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 241 242 complete(&ctx->ref_comp); 243 } 244 245 static __cold void io_fallback_req_func(struct work_struct *work) 246 { 247 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 248 fallback_work.work); 249 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 250 struct io_kiocb *req, *tmp; 251 struct io_tw_state ts = { .locked = true, }; 252 253 mutex_lock(&ctx->uring_lock); 254 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 255 req->io_task_work.func(req, &ts); 256 if (WARN_ON_ONCE(!ts.locked)) 257 return; 258 io_submit_flush_completions(ctx); 259 mutex_unlock(&ctx->uring_lock); 260 } 261 262 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 263 { 264 unsigned hash_buckets = 1U << bits; 265 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 266 267 table->hbs = kmalloc(hash_size, GFP_KERNEL); 268 if (!table->hbs) 269 return -ENOMEM; 270 271 table->hash_bits = bits; 272 init_hash_table(table, hash_buckets); 273 return 0; 274 } 275 276 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 277 { 278 struct io_ring_ctx *ctx; 279 int hash_bits; 280 281 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 282 if (!ctx) 283 return NULL; 284 285 xa_init(&ctx->io_bl_xa); 286 287 /* 288 * Use 5 bits less than the max cq entries, that should give us around 289 * 32 entries per hash list if totally full and uniformly spread, but 290 * don't keep too many buckets to not overconsume memory. 291 */ 292 hash_bits = ilog2(p->cq_entries) - 5; 293 hash_bits = clamp(hash_bits, 1, 8); 294 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 295 goto err; 296 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 297 goto err; 298 299 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL); 300 if (!ctx->dummy_ubuf) 301 goto err; 302 /* set invalid range, so io_import_fixed() fails meeting it */ 303 ctx->dummy_ubuf->ubuf = -1UL; 304 305 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 306 0, GFP_KERNEL)) 307 goto err; 308 309 ctx->flags = p->flags; 310 init_waitqueue_head(&ctx->sqo_sq_wait); 311 INIT_LIST_HEAD(&ctx->sqd_list); 312 INIT_LIST_HEAD(&ctx->cq_overflow_list); 313 INIT_LIST_HEAD(&ctx->io_buffers_cache); 314 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 315 sizeof(struct io_rsrc_node)); 316 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, 317 sizeof(struct async_poll)); 318 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 319 sizeof(struct io_async_msghdr)); 320 init_completion(&ctx->ref_comp); 321 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 322 mutex_init(&ctx->uring_lock); 323 init_waitqueue_head(&ctx->cq_wait); 324 init_waitqueue_head(&ctx->poll_wq); 325 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 326 spin_lock_init(&ctx->completion_lock); 327 spin_lock_init(&ctx->timeout_lock); 328 INIT_WQ_LIST(&ctx->iopoll_list); 329 INIT_LIST_HEAD(&ctx->io_buffers_pages); 330 INIT_LIST_HEAD(&ctx->io_buffers_comp); 331 INIT_LIST_HEAD(&ctx->defer_list); 332 INIT_LIST_HEAD(&ctx->timeout_list); 333 INIT_LIST_HEAD(&ctx->ltimeout_list); 334 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 335 init_llist_head(&ctx->work_llist); 336 INIT_LIST_HEAD(&ctx->tctx_list); 337 ctx->submit_state.free_list.next = NULL; 338 INIT_WQ_LIST(&ctx->locked_free_list); 339 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 340 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 341 return ctx; 342 err: 343 kfree(ctx->dummy_ubuf); 344 kfree(ctx->cancel_table.hbs); 345 kfree(ctx->cancel_table_locked.hbs); 346 kfree(ctx->io_bl); 347 xa_destroy(&ctx->io_bl_xa); 348 kfree(ctx); 349 return NULL; 350 } 351 352 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 353 { 354 struct io_rings *r = ctx->rings; 355 356 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 357 ctx->cq_extra--; 358 } 359 360 static bool req_need_defer(struct io_kiocb *req, u32 seq) 361 { 362 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 363 struct io_ring_ctx *ctx = req->ctx; 364 365 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 366 } 367 368 return false; 369 } 370 371 static inline void io_req_track_inflight(struct io_kiocb *req) 372 { 373 if (!(req->flags & REQ_F_INFLIGHT)) { 374 req->flags |= REQ_F_INFLIGHT; 375 atomic_inc(&req->task->io_uring->inflight_tracked); 376 } 377 } 378 379 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 380 { 381 if (WARN_ON_ONCE(!req->link)) 382 return NULL; 383 384 req->flags &= ~REQ_F_ARM_LTIMEOUT; 385 req->flags |= REQ_F_LINK_TIMEOUT; 386 387 /* linked timeouts should have two refs once prep'ed */ 388 io_req_set_refcount(req); 389 __io_req_set_refcount(req->link, 2); 390 return req->link; 391 } 392 393 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 394 { 395 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 396 return NULL; 397 return __io_prep_linked_timeout(req); 398 } 399 400 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 401 { 402 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 403 } 404 405 static inline void io_arm_ltimeout(struct io_kiocb *req) 406 { 407 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 408 __io_arm_ltimeout(req); 409 } 410 411 static void io_prep_async_work(struct io_kiocb *req) 412 { 413 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 414 struct io_ring_ctx *ctx = req->ctx; 415 416 if (!(req->flags & REQ_F_CREDS)) { 417 req->flags |= REQ_F_CREDS; 418 req->creds = get_current_cred(); 419 } 420 421 req->work.list.next = NULL; 422 req->work.flags = 0; 423 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 424 if (req->flags & REQ_F_FORCE_ASYNC) 425 req->work.flags |= IO_WQ_WORK_CONCURRENT; 426 427 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 428 req->flags |= io_file_get_flags(req->file); 429 430 if (req->file && (req->flags & REQ_F_ISREG)) { 431 bool should_hash = def->hash_reg_file; 432 433 /* don't serialize this request if the fs doesn't need it */ 434 if (should_hash && (req->file->f_flags & O_DIRECT) && 435 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) 436 should_hash = false; 437 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 438 io_wq_hash_work(&req->work, file_inode(req->file)); 439 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 440 if (def->unbound_nonreg_file) 441 req->work.flags |= IO_WQ_WORK_UNBOUND; 442 } 443 } 444 445 static void io_prep_async_link(struct io_kiocb *req) 446 { 447 struct io_kiocb *cur; 448 449 if (req->flags & REQ_F_LINK_TIMEOUT) { 450 struct io_ring_ctx *ctx = req->ctx; 451 452 spin_lock_irq(&ctx->timeout_lock); 453 io_for_each_link(cur, req) 454 io_prep_async_work(cur); 455 spin_unlock_irq(&ctx->timeout_lock); 456 } else { 457 io_for_each_link(cur, req) 458 io_prep_async_work(cur); 459 } 460 } 461 462 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) 463 { 464 struct io_kiocb *link = io_prep_linked_timeout(req); 465 struct io_uring_task *tctx = req->task->io_uring; 466 467 BUG_ON(!tctx); 468 BUG_ON(!tctx->io_wq); 469 470 /* init ->work of the whole link before punting */ 471 io_prep_async_link(req); 472 473 /* 474 * Not expected to happen, but if we do have a bug where this _can_ 475 * happen, catch it here and ensure the request is marked as 476 * canceled. That will make io-wq go through the usual work cancel 477 * procedure rather than attempt to run this request (or create a new 478 * worker for it). 479 */ 480 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 481 req->work.flags |= IO_WQ_WORK_CANCEL; 482 483 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 484 io_wq_enqueue(tctx->io_wq, &req->work); 485 if (link) 486 io_queue_linked_timeout(link); 487 } 488 489 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 490 { 491 while (!list_empty(&ctx->defer_list)) { 492 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 493 struct io_defer_entry, list); 494 495 if (req_need_defer(de->req, de->seq)) 496 break; 497 list_del_init(&de->list); 498 io_req_task_queue(de->req); 499 kfree(de); 500 } 501 } 502 503 504 static void io_eventfd_ops(struct rcu_head *rcu) 505 { 506 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 507 int ops = atomic_xchg(&ev_fd->ops, 0); 508 509 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 510 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 511 512 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 513 * ordering in a race but if references are 0 we know we have to free 514 * it regardless. 515 */ 516 if (atomic_dec_and_test(&ev_fd->refs)) { 517 eventfd_ctx_put(ev_fd->cq_ev_fd); 518 kfree(ev_fd); 519 } 520 } 521 522 static void io_eventfd_signal(struct io_ring_ctx *ctx) 523 { 524 struct io_ev_fd *ev_fd = NULL; 525 526 rcu_read_lock(); 527 /* 528 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 529 * and eventfd_signal 530 */ 531 ev_fd = rcu_dereference(ctx->io_ev_fd); 532 533 /* 534 * Check again if ev_fd exists incase an io_eventfd_unregister call 535 * completed between the NULL check of ctx->io_ev_fd at the start of 536 * the function and rcu_read_lock. 537 */ 538 if (unlikely(!ev_fd)) 539 goto out; 540 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 541 goto out; 542 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 543 goto out; 544 545 if (likely(eventfd_signal_allowed())) { 546 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 547 } else { 548 atomic_inc(&ev_fd->refs); 549 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 550 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 551 else 552 atomic_dec(&ev_fd->refs); 553 } 554 555 out: 556 rcu_read_unlock(); 557 } 558 559 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 560 { 561 bool skip; 562 563 spin_lock(&ctx->completion_lock); 564 565 /* 566 * Eventfd should only get triggered when at least one event has been 567 * posted. Some applications rely on the eventfd notification count 568 * only changing IFF a new CQE has been added to the CQ ring. There's 569 * no depedency on 1:1 relationship between how many times this 570 * function is called (and hence the eventfd count) and number of CQEs 571 * posted to the CQ ring. 572 */ 573 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 574 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 575 spin_unlock(&ctx->completion_lock); 576 if (skip) 577 return; 578 579 io_eventfd_signal(ctx); 580 } 581 582 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 583 { 584 if (ctx->poll_activated) 585 io_poll_wq_wake(ctx); 586 if (ctx->off_timeout_used) 587 io_flush_timeouts(ctx); 588 if (ctx->drain_active) { 589 spin_lock(&ctx->completion_lock); 590 io_queue_deferred(ctx); 591 spin_unlock(&ctx->completion_lock); 592 } 593 if (ctx->has_evfd) 594 io_eventfd_flush_signal(ctx); 595 } 596 597 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 598 __acquires(ctx->completion_lock) 599 { 600 if (!ctx->task_complete) 601 spin_lock(&ctx->completion_lock); 602 } 603 604 static inline void __io_cq_unlock(struct io_ring_ctx *ctx) 605 { 606 if (!ctx->task_complete) 607 spin_unlock(&ctx->completion_lock); 608 } 609 610 static inline void io_cq_lock(struct io_ring_ctx *ctx) 611 __acquires(ctx->completion_lock) 612 { 613 spin_lock(&ctx->completion_lock); 614 } 615 616 static inline void io_cq_unlock(struct io_ring_ctx *ctx) 617 __releases(ctx->completion_lock) 618 { 619 spin_unlock(&ctx->completion_lock); 620 } 621 622 /* keep it inlined for io_submit_flush_completions() */ 623 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 624 __releases(ctx->completion_lock) 625 { 626 io_commit_cqring(ctx); 627 __io_cq_unlock(ctx); 628 io_commit_cqring_flush(ctx); 629 io_cqring_wake(ctx); 630 } 631 632 static void __io_cq_unlock_post_flush(struct io_ring_ctx *ctx) 633 __releases(ctx->completion_lock) 634 { 635 io_commit_cqring(ctx); 636 637 if (ctx->task_complete) { 638 /* 639 * ->task_complete implies that only current might be waiting 640 * for CQEs, and obviously, we currently don't. No one is 641 * waiting, wakeups are futile, skip them. 642 */ 643 io_commit_cqring_flush(ctx); 644 } else { 645 __io_cq_unlock(ctx); 646 io_commit_cqring_flush(ctx); 647 io_cqring_wake(ctx); 648 } 649 } 650 651 void io_cq_unlock_post(struct io_ring_ctx *ctx) 652 __releases(ctx->completion_lock) 653 { 654 io_commit_cqring(ctx); 655 spin_unlock(&ctx->completion_lock); 656 io_commit_cqring_flush(ctx); 657 io_cqring_wake(ctx); 658 } 659 660 /* Returns true if there are no backlogged entries after the flush */ 661 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 662 { 663 struct io_overflow_cqe *ocqe; 664 LIST_HEAD(list); 665 666 io_cq_lock(ctx); 667 list_splice_init(&ctx->cq_overflow_list, &list); 668 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 669 io_cq_unlock(ctx); 670 671 while (!list_empty(&list)) { 672 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 673 list_del(&ocqe->list); 674 kfree(ocqe); 675 } 676 } 677 678 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 679 { 680 size_t cqe_size = sizeof(struct io_uring_cqe); 681 682 if (__io_cqring_events(ctx) == ctx->cq_entries) 683 return; 684 685 if (ctx->flags & IORING_SETUP_CQE32) 686 cqe_size <<= 1; 687 688 io_cq_lock(ctx); 689 while (!list_empty(&ctx->cq_overflow_list)) { 690 struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true); 691 struct io_overflow_cqe *ocqe; 692 693 if (!cqe) 694 break; 695 ocqe = list_first_entry(&ctx->cq_overflow_list, 696 struct io_overflow_cqe, list); 697 memcpy(cqe, &ocqe->cqe, cqe_size); 698 list_del(&ocqe->list); 699 kfree(ocqe); 700 } 701 702 if (list_empty(&ctx->cq_overflow_list)) { 703 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 704 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 705 } 706 io_cq_unlock_post(ctx); 707 } 708 709 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 710 { 711 /* iopoll syncs against uring_lock, not completion_lock */ 712 if (ctx->flags & IORING_SETUP_IOPOLL) 713 mutex_lock(&ctx->uring_lock); 714 __io_cqring_overflow_flush(ctx); 715 if (ctx->flags & IORING_SETUP_IOPOLL) 716 mutex_unlock(&ctx->uring_lock); 717 } 718 719 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 720 { 721 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 722 io_cqring_do_overflow_flush(ctx); 723 } 724 725 /* can be called by any task */ 726 static void io_put_task_remote(struct task_struct *task, int nr) 727 { 728 struct io_uring_task *tctx = task->io_uring; 729 730 percpu_counter_sub(&tctx->inflight, nr); 731 if (unlikely(atomic_read(&tctx->in_cancel))) 732 wake_up(&tctx->wait); 733 put_task_struct_many(task, nr); 734 } 735 736 /* used by a task to put its own references */ 737 static void io_put_task_local(struct task_struct *task, int nr) 738 { 739 task->io_uring->cached_refs += nr; 740 } 741 742 /* must to be called somewhat shortly after putting a request */ 743 static inline void io_put_task(struct task_struct *task, int nr) 744 { 745 if (likely(task == current)) 746 io_put_task_local(task, nr); 747 else 748 io_put_task_remote(task, nr); 749 } 750 751 void io_task_refs_refill(struct io_uring_task *tctx) 752 { 753 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 754 755 percpu_counter_add(&tctx->inflight, refill); 756 refcount_add(refill, ¤t->usage); 757 tctx->cached_refs += refill; 758 } 759 760 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 761 { 762 struct io_uring_task *tctx = task->io_uring; 763 unsigned int refs = tctx->cached_refs; 764 765 if (refs) { 766 tctx->cached_refs = 0; 767 percpu_counter_sub(&tctx->inflight, refs); 768 put_task_struct_many(task, refs); 769 } 770 } 771 772 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 773 s32 res, u32 cflags, u64 extra1, u64 extra2) 774 { 775 struct io_overflow_cqe *ocqe; 776 size_t ocq_size = sizeof(struct io_overflow_cqe); 777 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 778 779 lockdep_assert_held(&ctx->completion_lock); 780 781 if (is_cqe32) 782 ocq_size += sizeof(struct io_uring_cqe); 783 784 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 785 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 786 if (!ocqe) { 787 /* 788 * If we're in ring overflow flush mode, or in task cancel mode, 789 * or cannot allocate an overflow entry, then we need to drop it 790 * on the floor. 791 */ 792 io_account_cq_overflow(ctx); 793 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 794 return false; 795 } 796 if (list_empty(&ctx->cq_overflow_list)) { 797 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 798 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 799 800 } 801 ocqe->cqe.user_data = user_data; 802 ocqe->cqe.res = res; 803 ocqe->cqe.flags = cflags; 804 if (is_cqe32) { 805 ocqe->cqe.big_cqe[0] = extra1; 806 ocqe->cqe.big_cqe[1] = extra2; 807 } 808 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 809 return true; 810 } 811 812 bool io_req_cqe_overflow(struct io_kiocb *req) 813 { 814 if (!(req->flags & REQ_F_CQE32_INIT)) { 815 req->extra1 = 0; 816 req->extra2 = 0; 817 } 818 return io_cqring_event_overflow(req->ctx, req->cqe.user_data, 819 req->cqe.res, req->cqe.flags, 820 req->extra1, req->extra2); 821 } 822 823 /* 824 * writes to the cq entry need to come after reading head; the 825 * control dependency is enough as we're using WRITE_ONCE to 826 * fill the cq entry 827 */ 828 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow) 829 { 830 struct io_rings *rings = ctx->rings; 831 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 832 unsigned int free, queued, len; 833 834 /* 835 * Posting into the CQ when there are pending overflowed CQEs may break 836 * ordering guarantees, which will affect links, F_MORE users and more. 837 * Force overflow the completion. 838 */ 839 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 840 return NULL; 841 842 /* userspace may cheat modifying the tail, be safe and do min */ 843 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 844 free = ctx->cq_entries - queued; 845 /* we need a contiguous range, limit based on the current array offset */ 846 len = min(free, ctx->cq_entries - off); 847 if (!len) 848 return NULL; 849 850 if (ctx->flags & IORING_SETUP_CQE32) { 851 off <<= 1; 852 len <<= 1; 853 } 854 855 ctx->cqe_cached = &rings->cqes[off]; 856 ctx->cqe_sentinel = ctx->cqe_cached + len; 857 858 ctx->cached_cq_tail++; 859 ctx->cqe_cached++; 860 if (ctx->flags & IORING_SETUP_CQE32) 861 ctx->cqe_cached++; 862 return &rings->cqes[off]; 863 } 864 865 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 866 u32 cflags) 867 { 868 struct io_uring_cqe *cqe; 869 870 ctx->cq_extra++; 871 872 /* 873 * If we can't get a cq entry, userspace overflowed the 874 * submission (by quite a lot). Increment the overflow count in 875 * the ring. 876 */ 877 cqe = io_get_cqe(ctx); 878 if (likely(cqe)) { 879 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 880 881 WRITE_ONCE(cqe->user_data, user_data); 882 WRITE_ONCE(cqe->res, res); 883 WRITE_ONCE(cqe->flags, cflags); 884 885 if (ctx->flags & IORING_SETUP_CQE32) { 886 WRITE_ONCE(cqe->big_cqe[0], 0); 887 WRITE_ONCE(cqe->big_cqe[1], 0); 888 } 889 return true; 890 } 891 return false; 892 } 893 894 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 895 __must_hold(&ctx->uring_lock) 896 { 897 struct io_submit_state *state = &ctx->submit_state; 898 unsigned int i; 899 900 lockdep_assert_held(&ctx->uring_lock); 901 for (i = 0; i < state->cqes_count; i++) { 902 struct io_uring_cqe *cqe = &state->cqes[i]; 903 904 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 905 if (ctx->task_complete) { 906 spin_lock(&ctx->completion_lock); 907 io_cqring_event_overflow(ctx, cqe->user_data, 908 cqe->res, cqe->flags, 0, 0); 909 spin_unlock(&ctx->completion_lock); 910 } else { 911 io_cqring_event_overflow(ctx, cqe->user_data, 912 cqe->res, cqe->flags, 0, 0); 913 } 914 } 915 } 916 state->cqes_count = 0; 917 } 918 919 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 920 bool allow_overflow) 921 { 922 bool filled; 923 924 io_cq_lock(ctx); 925 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 926 if (!filled && allow_overflow) 927 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 928 929 io_cq_unlock_post(ctx); 930 return filled; 931 } 932 933 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 934 { 935 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 936 } 937 938 bool io_aux_cqe(const struct io_kiocb *req, bool defer, s32 res, u32 cflags, 939 bool allow_overflow) 940 { 941 struct io_ring_ctx *ctx = req->ctx; 942 u64 user_data = req->cqe.user_data; 943 struct io_uring_cqe *cqe; 944 945 if (!defer) 946 return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow); 947 948 lockdep_assert_held(&ctx->uring_lock); 949 950 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->submit_state.cqes)) { 951 __io_cq_lock(ctx); 952 __io_flush_post_cqes(ctx); 953 /* no need to flush - flush is deferred */ 954 __io_cq_unlock_post(ctx); 955 } 956 957 /* For defered completions this is not as strict as it is otherwise, 958 * however it's main job is to prevent unbounded posted completions, 959 * and in that it works just as well. 960 */ 961 if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 962 return false; 963 964 cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++]; 965 cqe->user_data = user_data; 966 cqe->res = res; 967 cqe->flags = cflags; 968 return true; 969 } 970 971 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 972 { 973 struct io_ring_ctx *ctx = req->ctx; 974 struct io_rsrc_node *rsrc_node = NULL; 975 976 io_cq_lock(ctx); 977 if (!(req->flags & REQ_F_CQE_SKIP)) 978 io_fill_cqe_req(ctx, req); 979 980 /* 981 * If we're the last reference to this request, add to our locked 982 * free_list cache. 983 */ 984 if (req_ref_put_and_test(req)) { 985 if (req->flags & IO_REQ_LINK_FLAGS) { 986 if (req->flags & IO_DISARM_MASK) 987 io_disarm_next(req); 988 if (req->link) { 989 io_req_task_queue(req->link); 990 req->link = NULL; 991 } 992 } 993 io_put_kbuf_comp(req); 994 io_dismantle_req(req); 995 rsrc_node = req->rsrc_node; 996 /* 997 * Selected buffer deallocation in io_clean_op() assumes that 998 * we don't hold ->completion_lock. Clean them here to avoid 999 * deadlocks. 1000 */ 1001 io_put_task_remote(req->task, 1); 1002 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1003 ctx->locked_free_nr++; 1004 } 1005 io_cq_unlock_post(ctx); 1006 1007 if (rsrc_node) { 1008 io_ring_submit_lock(ctx, issue_flags); 1009 io_put_rsrc_node(ctx, rsrc_node); 1010 io_ring_submit_unlock(ctx, issue_flags); 1011 } 1012 } 1013 1014 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1015 { 1016 if (req->ctx->task_complete && req->ctx->submitter_task != current) { 1017 req->io_task_work.func = io_req_task_complete; 1018 io_req_task_work_add(req); 1019 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1020 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 1021 __io_req_complete_post(req, issue_flags); 1022 } else { 1023 struct io_ring_ctx *ctx = req->ctx; 1024 1025 mutex_lock(&ctx->uring_lock); 1026 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); 1027 mutex_unlock(&ctx->uring_lock); 1028 } 1029 } 1030 1031 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1032 __must_hold(&ctx->uring_lock) 1033 { 1034 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1035 1036 lockdep_assert_held(&req->ctx->uring_lock); 1037 1038 req_set_fail(req); 1039 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1040 if (def->fail) 1041 def->fail(req); 1042 io_req_complete_defer(req); 1043 } 1044 1045 /* 1046 * Don't initialise the fields below on every allocation, but do that in 1047 * advance and keep them valid across allocations. 1048 */ 1049 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1050 { 1051 req->ctx = ctx; 1052 req->link = NULL; 1053 req->async_data = NULL; 1054 /* not necessary, but safer to zero */ 1055 req->cqe.res = 0; 1056 } 1057 1058 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1059 struct io_submit_state *state) 1060 { 1061 spin_lock(&ctx->completion_lock); 1062 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1063 ctx->locked_free_nr = 0; 1064 spin_unlock(&ctx->completion_lock); 1065 } 1066 1067 /* 1068 * A request might get retired back into the request caches even before opcode 1069 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1070 * Because of that, io_alloc_req() should be called only under ->uring_lock 1071 * and with extra caution to not get a request that is still worked on. 1072 */ 1073 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1074 __must_hold(&ctx->uring_lock) 1075 { 1076 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1077 void *reqs[IO_REQ_ALLOC_BATCH]; 1078 int ret, i; 1079 1080 /* 1081 * If we have more than a batch's worth of requests in our IRQ side 1082 * locked cache, grab the lock and move them over to our submission 1083 * side cache. 1084 */ 1085 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1086 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1087 if (!io_req_cache_empty(ctx)) 1088 return true; 1089 } 1090 1091 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1092 1093 /* 1094 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1095 * retry single alloc to be on the safe side. 1096 */ 1097 if (unlikely(ret <= 0)) { 1098 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1099 if (!reqs[0]) 1100 return false; 1101 ret = 1; 1102 } 1103 1104 percpu_ref_get_many(&ctx->refs, ret); 1105 for (i = 0; i < ret; i++) { 1106 struct io_kiocb *req = reqs[i]; 1107 1108 io_preinit_req(req, ctx); 1109 io_req_add_to_cache(req, ctx); 1110 } 1111 return true; 1112 } 1113 1114 static inline void io_dismantle_req(struct io_kiocb *req) 1115 { 1116 unsigned int flags = req->flags; 1117 1118 if (unlikely(flags & IO_REQ_CLEAN_FLAGS)) 1119 io_clean_op(req); 1120 if (!(flags & REQ_F_FIXED_FILE)) 1121 io_put_file(req->file); 1122 } 1123 1124 static __cold void io_free_req_tw(struct io_kiocb *req, struct io_tw_state *ts) 1125 { 1126 struct io_ring_ctx *ctx = req->ctx; 1127 1128 if (req->rsrc_node) { 1129 io_tw_lock(ctx, ts); 1130 io_put_rsrc_node(ctx, req->rsrc_node); 1131 } 1132 io_dismantle_req(req); 1133 io_put_task_remote(req->task, 1); 1134 1135 spin_lock(&ctx->completion_lock); 1136 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1137 ctx->locked_free_nr++; 1138 spin_unlock(&ctx->completion_lock); 1139 } 1140 1141 __cold void io_free_req(struct io_kiocb *req) 1142 { 1143 req->io_task_work.func = io_free_req_tw; 1144 io_req_task_work_add(req); 1145 } 1146 1147 static void __io_req_find_next_prep(struct io_kiocb *req) 1148 { 1149 struct io_ring_ctx *ctx = req->ctx; 1150 1151 spin_lock(&ctx->completion_lock); 1152 io_disarm_next(req); 1153 spin_unlock(&ctx->completion_lock); 1154 } 1155 1156 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1157 { 1158 struct io_kiocb *nxt; 1159 1160 /* 1161 * If LINK is set, we have dependent requests in this chain. If we 1162 * didn't fail this request, queue the first one up, moving any other 1163 * dependencies to the next request. In case of failure, fail the rest 1164 * of the chain. 1165 */ 1166 if (unlikely(req->flags & IO_DISARM_MASK)) 1167 __io_req_find_next_prep(req); 1168 nxt = req->link; 1169 req->link = NULL; 1170 return nxt; 1171 } 1172 1173 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1174 { 1175 if (!ctx) 1176 return; 1177 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1178 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1179 if (ts->locked) { 1180 io_submit_flush_completions(ctx); 1181 mutex_unlock(&ctx->uring_lock); 1182 ts->locked = false; 1183 } 1184 percpu_ref_put(&ctx->refs); 1185 } 1186 1187 static unsigned int handle_tw_list(struct llist_node *node, 1188 struct io_ring_ctx **ctx, 1189 struct io_tw_state *ts, 1190 struct llist_node *last) 1191 { 1192 unsigned int count = 0; 1193 1194 while (node && node != last) { 1195 struct llist_node *next = node->next; 1196 struct io_kiocb *req = container_of(node, struct io_kiocb, 1197 io_task_work.node); 1198 1199 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1200 1201 if (req->ctx != *ctx) { 1202 ctx_flush_and_put(*ctx, ts); 1203 *ctx = req->ctx; 1204 /* if not contended, grab and improve batching */ 1205 ts->locked = mutex_trylock(&(*ctx)->uring_lock); 1206 percpu_ref_get(&(*ctx)->refs); 1207 } 1208 INDIRECT_CALL_2(req->io_task_work.func, 1209 io_poll_task_func, io_req_rw_complete, 1210 req, ts); 1211 node = next; 1212 count++; 1213 if (unlikely(need_resched())) { 1214 ctx_flush_and_put(*ctx, ts); 1215 *ctx = NULL; 1216 cond_resched(); 1217 } 1218 } 1219 1220 return count; 1221 } 1222 1223 /** 1224 * io_llist_xchg - swap all entries in a lock-less list 1225 * @head: the head of lock-less list to delete all entries 1226 * @new: new entry as the head of the list 1227 * 1228 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1229 * The order of entries returned is from the newest to the oldest added one. 1230 */ 1231 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1232 struct llist_node *new) 1233 { 1234 return xchg(&head->first, new); 1235 } 1236 1237 /** 1238 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1239 * @head: the head of lock-less list to delete all entries 1240 * @old: expected old value of the first entry of the list 1241 * @new: new entry as the head of the list 1242 * 1243 * perform a cmpxchg on the first entry of the list. 1244 */ 1245 1246 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1247 struct llist_node *old, 1248 struct llist_node *new) 1249 { 1250 return cmpxchg(&head->first, old, new); 1251 } 1252 1253 void tctx_task_work(struct callback_head *cb) 1254 { 1255 struct io_tw_state ts = {}; 1256 struct io_ring_ctx *ctx = NULL; 1257 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1258 task_work); 1259 struct llist_node fake = {}; 1260 struct llist_node *node; 1261 unsigned int loops = 0; 1262 unsigned int count = 0; 1263 1264 if (unlikely(current->flags & PF_EXITING)) { 1265 io_fallback_tw(tctx); 1266 return; 1267 } 1268 1269 do { 1270 loops++; 1271 node = io_llist_xchg(&tctx->task_list, &fake); 1272 count += handle_tw_list(node, &ctx, &ts, &fake); 1273 1274 /* skip expensive cmpxchg if there are items in the list */ 1275 if (READ_ONCE(tctx->task_list.first) != &fake) 1276 continue; 1277 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) { 1278 io_submit_flush_completions(ctx); 1279 if (READ_ONCE(tctx->task_list.first) != &fake) 1280 continue; 1281 } 1282 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1283 } while (node != &fake); 1284 1285 ctx_flush_and_put(ctx, &ts); 1286 1287 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1288 if (unlikely(atomic_read(&tctx->in_cancel))) 1289 io_uring_drop_tctx_refs(current); 1290 1291 trace_io_uring_task_work_run(tctx, count, loops); 1292 } 1293 1294 static __cold void io_fallback_tw(struct io_uring_task *tctx) 1295 { 1296 struct llist_node *node = llist_del_all(&tctx->task_list); 1297 struct io_kiocb *req; 1298 1299 while (node) { 1300 req = container_of(node, struct io_kiocb, io_task_work.node); 1301 node = node->next; 1302 if (llist_add(&req->io_task_work.node, 1303 &req->ctx->fallback_llist)) 1304 schedule_delayed_work(&req->ctx->fallback_work, 1); 1305 } 1306 } 1307 1308 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1309 { 1310 struct io_ring_ctx *ctx = req->ctx; 1311 unsigned nr_wait, nr_tw, nr_tw_prev; 1312 struct llist_node *first; 1313 1314 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1315 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1316 1317 first = READ_ONCE(ctx->work_llist.first); 1318 do { 1319 nr_tw_prev = 0; 1320 if (first) { 1321 struct io_kiocb *first_req = container_of(first, 1322 struct io_kiocb, 1323 io_task_work.node); 1324 /* 1325 * Might be executed at any moment, rely on 1326 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1327 */ 1328 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1329 } 1330 nr_tw = nr_tw_prev + 1; 1331 /* Large enough to fail the nr_wait comparison below */ 1332 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1333 nr_tw = -1U; 1334 1335 req->nr_tw = nr_tw; 1336 req->io_task_work.node.next = first; 1337 } while (!try_cmpxchg(&ctx->work_llist.first, &first, 1338 &req->io_task_work.node)); 1339 1340 if (!first) { 1341 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1342 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1343 if (ctx->has_evfd) 1344 io_eventfd_signal(ctx); 1345 } 1346 1347 nr_wait = atomic_read(&ctx->cq_wait_nr); 1348 /* no one is waiting */ 1349 if (!nr_wait) 1350 return; 1351 /* either not enough or the previous add has already woken it up */ 1352 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait) 1353 return; 1354 /* pairs with set_current_state() in io_cqring_wait() */ 1355 smp_mb__after_atomic(); 1356 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1357 } 1358 1359 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1360 { 1361 struct io_uring_task *tctx = req->task->io_uring; 1362 struct io_ring_ctx *ctx = req->ctx; 1363 1364 if (!(flags & IOU_F_TWQ_FORCE_NORMAL) && 1365 (ctx->flags & IORING_SETUP_DEFER_TASKRUN)) { 1366 rcu_read_lock(); 1367 io_req_local_work_add(req, flags); 1368 rcu_read_unlock(); 1369 return; 1370 } 1371 1372 /* task_work already pending, we're done */ 1373 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1374 return; 1375 1376 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1377 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1378 1379 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1380 return; 1381 1382 io_fallback_tw(tctx); 1383 } 1384 1385 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1386 { 1387 struct llist_node *node; 1388 1389 node = llist_del_all(&ctx->work_llist); 1390 while (node) { 1391 struct io_kiocb *req = container_of(node, struct io_kiocb, 1392 io_task_work.node); 1393 1394 node = node->next; 1395 __io_req_task_work_add(req, IOU_F_TWQ_FORCE_NORMAL); 1396 } 1397 } 1398 1399 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1400 { 1401 struct llist_node *node; 1402 unsigned int loops = 0; 1403 int ret = 0; 1404 1405 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1406 return -EEXIST; 1407 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1408 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1409 again: 1410 /* 1411 * llists are in reverse order, flip it back the right way before 1412 * running the pending items. 1413 */ 1414 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1415 while (node) { 1416 struct llist_node *next = node->next; 1417 struct io_kiocb *req = container_of(node, struct io_kiocb, 1418 io_task_work.node); 1419 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1420 INDIRECT_CALL_2(req->io_task_work.func, 1421 io_poll_task_func, io_req_rw_complete, 1422 req, ts); 1423 ret++; 1424 node = next; 1425 } 1426 loops++; 1427 1428 if (!llist_empty(&ctx->work_llist)) 1429 goto again; 1430 if (ts->locked) { 1431 io_submit_flush_completions(ctx); 1432 if (!llist_empty(&ctx->work_llist)) 1433 goto again; 1434 } 1435 trace_io_uring_local_work_run(ctx, ret, loops); 1436 return ret; 1437 } 1438 1439 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx) 1440 { 1441 struct io_tw_state ts = { .locked = true, }; 1442 int ret; 1443 1444 if (llist_empty(&ctx->work_llist)) 1445 return 0; 1446 1447 ret = __io_run_local_work(ctx, &ts); 1448 /* shouldn't happen! */ 1449 if (WARN_ON_ONCE(!ts.locked)) 1450 mutex_lock(&ctx->uring_lock); 1451 return ret; 1452 } 1453 1454 static int io_run_local_work(struct io_ring_ctx *ctx) 1455 { 1456 struct io_tw_state ts = {}; 1457 int ret; 1458 1459 ts.locked = mutex_trylock(&ctx->uring_lock); 1460 ret = __io_run_local_work(ctx, &ts); 1461 if (ts.locked) 1462 mutex_unlock(&ctx->uring_lock); 1463 1464 return ret; 1465 } 1466 1467 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1468 { 1469 io_tw_lock(req->ctx, ts); 1470 io_req_defer_failed(req, req->cqe.res); 1471 } 1472 1473 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1474 { 1475 io_tw_lock(req->ctx, ts); 1476 /* req->task == current here, checking PF_EXITING is safe */ 1477 if (unlikely(req->task->flags & PF_EXITING)) 1478 io_req_defer_failed(req, -EFAULT); 1479 else if (req->flags & REQ_F_FORCE_ASYNC) 1480 io_queue_iowq(req, ts); 1481 else 1482 io_queue_sqe(req); 1483 } 1484 1485 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1486 { 1487 io_req_set_res(req, ret, 0); 1488 req->io_task_work.func = io_req_task_cancel; 1489 io_req_task_work_add(req); 1490 } 1491 1492 void io_req_task_queue(struct io_kiocb *req) 1493 { 1494 req->io_task_work.func = io_req_task_submit; 1495 io_req_task_work_add(req); 1496 } 1497 1498 void io_queue_next(struct io_kiocb *req) 1499 { 1500 struct io_kiocb *nxt = io_req_find_next(req); 1501 1502 if (nxt) 1503 io_req_task_queue(nxt); 1504 } 1505 1506 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node) 1507 __must_hold(&ctx->uring_lock) 1508 { 1509 struct task_struct *task = NULL; 1510 int task_refs = 0; 1511 1512 do { 1513 struct io_kiocb *req = container_of(node, struct io_kiocb, 1514 comp_list); 1515 1516 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1517 if (req->flags & REQ_F_REFCOUNT) { 1518 node = req->comp_list.next; 1519 if (!req_ref_put_and_test(req)) 1520 continue; 1521 } 1522 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1523 struct async_poll *apoll = req->apoll; 1524 1525 if (apoll->double_poll) 1526 kfree(apoll->double_poll); 1527 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1528 kfree(apoll); 1529 req->flags &= ~REQ_F_POLLED; 1530 } 1531 if (req->flags & IO_REQ_LINK_FLAGS) 1532 io_queue_next(req); 1533 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1534 io_clean_op(req); 1535 } 1536 if (!(req->flags & REQ_F_FIXED_FILE)) 1537 io_put_file(req->file); 1538 1539 io_req_put_rsrc_locked(req, ctx); 1540 1541 if (req->task != task) { 1542 if (task) 1543 io_put_task(task, task_refs); 1544 task = req->task; 1545 task_refs = 0; 1546 } 1547 task_refs++; 1548 node = req->comp_list.next; 1549 io_req_add_to_cache(req, ctx); 1550 } while (node); 1551 1552 if (task) 1553 io_put_task(task, task_refs); 1554 } 1555 1556 static void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1557 __must_hold(&ctx->uring_lock) 1558 { 1559 struct io_submit_state *state = &ctx->submit_state; 1560 struct io_wq_work_node *node; 1561 1562 __io_cq_lock(ctx); 1563 /* must come first to preserve CQE ordering in failure cases */ 1564 if (state->cqes_count) 1565 __io_flush_post_cqes(ctx); 1566 __wq_list_for_each(node, &state->compl_reqs) { 1567 struct io_kiocb *req = container_of(node, struct io_kiocb, 1568 comp_list); 1569 1570 if (!(req->flags & REQ_F_CQE_SKIP) && 1571 unlikely(!__io_fill_cqe_req(ctx, req))) { 1572 if (ctx->task_complete) { 1573 spin_lock(&ctx->completion_lock); 1574 io_req_cqe_overflow(req); 1575 spin_unlock(&ctx->completion_lock); 1576 } else { 1577 io_req_cqe_overflow(req); 1578 } 1579 } 1580 } 1581 __io_cq_unlock_post_flush(ctx); 1582 1583 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1584 io_free_batch_list(ctx, state->compl_reqs.first); 1585 INIT_WQ_LIST(&state->compl_reqs); 1586 } 1587 } 1588 1589 /* 1590 * Drop reference to request, return next in chain (if there is one) if this 1591 * was the last reference to this request. 1592 */ 1593 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req) 1594 { 1595 struct io_kiocb *nxt = NULL; 1596 1597 if (req_ref_put_and_test(req)) { 1598 if (unlikely(req->flags & IO_REQ_LINK_FLAGS)) 1599 nxt = io_req_find_next(req); 1600 io_free_req(req); 1601 } 1602 return nxt; 1603 } 1604 1605 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1606 { 1607 /* See comment at the top of this file */ 1608 smp_rmb(); 1609 return __io_cqring_events(ctx); 1610 } 1611 1612 /* 1613 * We can't just wait for polled events to come to us, we have to actively 1614 * find and complete them. 1615 */ 1616 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1617 { 1618 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1619 return; 1620 1621 mutex_lock(&ctx->uring_lock); 1622 while (!wq_list_empty(&ctx->iopoll_list)) { 1623 /* let it sleep and repeat later if can't complete a request */ 1624 if (io_do_iopoll(ctx, true) == 0) 1625 break; 1626 /* 1627 * Ensure we allow local-to-the-cpu processing to take place, 1628 * in this case we need to ensure that we reap all events. 1629 * Also let task_work, etc. to progress by releasing the mutex 1630 */ 1631 if (need_resched()) { 1632 mutex_unlock(&ctx->uring_lock); 1633 cond_resched(); 1634 mutex_lock(&ctx->uring_lock); 1635 } 1636 } 1637 mutex_unlock(&ctx->uring_lock); 1638 } 1639 1640 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1641 { 1642 unsigned int nr_events = 0; 1643 int ret = 0; 1644 unsigned long check_cq; 1645 1646 if (!io_allowed_run_tw(ctx)) 1647 return -EEXIST; 1648 1649 check_cq = READ_ONCE(ctx->check_cq); 1650 if (unlikely(check_cq)) { 1651 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1652 __io_cqring_overflow_flush(ctx); 1653 /* 1654 * Similarly do not spin if we have not informed the user of any 1655 * dropped CQE. 1656 */ 1657 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1658 return -EBADR; 1659 } 1660 /* 1661 * Don't enter poll loop if we already have events pending. 1662 * If we do, we can potentially be spinning for commands that 1663 * already triggered a CQE (eg in error). 1664 */ 1665 if (io_cqring_events(ctx)) 1666 return 0; 1667 1668 do { 1669 /* 1670 * If a submit got punted to a workqueue, we can have the 1671 * application entering polling for a command before it gets 1672 * issued. That app will hold the uring_lock for the duration 1673 * of the poll right here, so we need to take a breather every 1674 * now and then to ensure that the issue has a chance to add 1675 * the poll to the issued list. Otherwise we can spin here 1676 * forever, while the workqueue is stuck trying to acquire the 1677 * very same mutex. 1678 */ 1679 if (wq_list_empty(&ctx->iopoll_list) || 1680 io_task_work_pending(ctx)) { 1681 u32 tail = ctx->cached_cq_tail; 1682 1683 (void) io_run_local_work_locked(ctx); 1684 1685 if (task_work_pending(current) || 1686 wq_list_empty(&ctx->iopoll_list)) { 1687 mutex_unlock(&ctx->uring_lock); 1688 io_run_task_work(); 1689 mutex_lock(&ctx->uring_lock); 1690 } 1691 /* some requests don't go through iopoll_list */ 1692 if (tail != ctx->cached_cq_tail || 1693 wq_list_empty(&ctx->iopoll_list)) 1694 break; 1695 } 1696 ret = io_do_iopoll(ctx, !min); 1697 if (ret < 0) 1698 break; 1699 nr_events += ret; 1700 ret = 0; 1701 } while (nr_events < min && !need_resched()); 1702 1703 return ret; 1704 } 1705 1706 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1707 { 1708 if (ts->locked) 1709 io_req_complete_defer(req); 1710 else 1711 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1712 } 1713 1714 /* 1715 * After the iocb has been issued, it's safe to be found on the poll list. 1716 * Adding the kiocb to the list AFTER submission ensures that we don't 1717 * find it from a io_do_iopoll() thread before the issuer is done 1718 * accessing the kiocb cookie. 1719 */ 1720 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1721 { 1722 struct io_ring_ctx *ctx = req->ctx; 1723 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1724 1725 /* workqueue context doesn't hold uring_lock, grab it now */ 1726 if (unlikely(needs_lock)) 1727 mutex_lock(&ctx->uring_lock); 1728 1729 /* 1730 * Track whether we have multiple files in our lists. This will impact 1731 * how we do polling eventually, not spinning if we're on potentially 1732 * different devices. 1733 */ 1734 if (wq_list_empty(&ctx->iopoll_list)) { 1735 ctx->poll_multi_queue = false; 1736 } else if (!ctx->poll_multi_queue) { 1737 struct io_kiocb *list_req; 1738 1739 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1740 comp_list); 1741 if (list_req->file != req->file) 1742 ctx->poll_multi_queue = true; 1743 } 1744 1745 /* 1746 * For fast devices, IO may have already completed. If it has, add 1747 * it to the front so we find it first. 1748 */ 1749 if (READ_ONCE(req->iopoll_completed)) 1750 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1751 else 1752 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1753 1754 if (unlikely(needs_lock)) { 1755 /* 1756 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1757 * in sq thread task context or in io worker task context. If 1758 * current task context is sq thread, we don't need to check 1759 * whether should wake up sq thread. 1760 */ 1761 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1762 wq_has_sleeper(&ctx->sq_data->wait)) 1763 wake_up(&ctx->sq_data->wait); 1764 1765 mutex_unlock(&ctx->uring_lock); 1766 } 1767 } 1768 1769 unsigned int io_file_get_flags(struct file *file) 1770 { 1771 unsigned int res = 0; 1772 1773 if (S_ISREG(file_inode(file)->i_mode)) 1774 res |= REQ_F_ISREG; 1775 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1776 res |= REQ_F_SUPPORT_NOWAIT; 1777 return res; 1778 } 1779 1780 bool io_alloc_async_data(struct io_kiocb *req) 1781 { 1782 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1783 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1784 if (req->async_data) { 1785 req->flags |= REQ_F_ASYNC_DATA; 1786 return false; 1787 } 1788 return true; 1789 } 1790 1791 int io_req_prep_async(struct io_kiocb *req) 1792 { 1793 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1794 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1795 1796 /* assign early for deferred execution for non-fixed file */ 1797 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1798 req->file = io_file_get_normal(req, req->cqe.fd); 1799 if (!cdef->prep_async) 1800 return 0; 1801 if (WARN_ON_ONCE(req_has_async_data(req))) 1802 return -EFAULT; 1803 if (!def->manual_alloc) { 1804 if (io_alloc_async_data(req)) 1805 return -EAGAIN; 1806 } 1807 return cdef->prep_async(req); 1808 } 1809 1810 static u32 io_get_sequence(struct io_kiocb *req) 1811 { 1812 u32 seq = req->ctx->cached_sq_head; 1813 struct io_kiocb *cur; 1814 1815 /* need original cached_sq_head, but it was increased for each req */ 1816 io_for_each_link(cur, req) 1817 seq--; 1818 return seq; 1819 } 1820 1821 static __cold void io_drain_req(struct io_kiocb *req) 1822 __must_hold(&ctx->uring_lock) 1823 { 1824 struct io_ring_ctx *ctx = req->ctx; 1825 struct io_defer_entry *de; 1826 int ret; 1827 u32 seq = io_get_sequence(req); 1828 1829 /* Still need defer if there is pending req in defer list. */ 1830 spin_lock(&ctx->completion_lock); 1831 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1832 spin_unlock(&ctx->completion_lock); 1833 queue: 1834 ctx->drain_active = false; 1835 io_req_task_queue(req); 1836 return; 1837 } 1838 spin_unlock(&ctx->completion_lock); 1839 1840 io_prep_async_link(req); 1841 de = kmalloc(sizeof(*de), GFP_KERNEL); 1842 if (!de) { 1843 ret = -ENOMEM; 1844 io_req_defer_failed(req, ret); 1845 return; 1846 } 1847 1848 spin_lock(&ctx->completion_lock); 1849 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1850 spin_unlock(&ctx->completion_lock); 1851 kfree(de); 1852 goto queue; 1853 } 1854 1855 trace_io_uring_defer(req); 1856 de->req = req; 1857 de->seq = seq; 1858 list_add_tail(&de->list, &ctx->defer_list); 1859 spin_unlock(&ctx->completion_lock); 1860 } 1861 1862 static void io_clean_op(struct io_kiocb *req) 1863 { 1864 if (req->flags & REQ_F_BUFFER_SELECTED) { 1865 spin_lock(&req->ctx->completion_lock); 1866 io_put_kbuf_comp(req); 1867 spin_unlock(&req->ctx->completion_lock); 1868 } 1869 1870 if (req->flags & REQ_F_NEED_CLEANUP) { 1871 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1872 1873 if (def->cleanup) 1874 def->cleanup(req); 1875 } 1876 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1877 kfree(req->apoll->double_poll); 1878 kfree(req->apoll); 1879 req->apoll = NULL; 1880 } 1881 if (req->flags & REQ_F_INFLIGHT) { 1882 struct io_uring_task *tctx = req->task->io_uring; 1883 1884 atomic_dec(&tctx->inflight_tracked); 1885 } 1886 if (req->flags & REQ_F_CREDS) 1887 put_cred(req->creds); 1888 if (req->flags & REQ_F_ASYNC_DATA) { 1889 kfree(req->async_data); 1890 req->async_data = NULL; 1891 } 1892 req->flags &= ~IO_REQ_CLEAN_FLAGS; 1893 } 1894 1895 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1896 unsigned int issue_flags) 1897 { 1898 if (req->file || !def->needs_file) 1899 return true; 1900 1901 if (req->flags & REQ_F_FIXED_FILE) 1902 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1903 else 1904 req->file = io_file_get_normal(req, req->cqe.fd); 1905 1906 return !!req->file; 1907 } 1908 1909 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1910 { 1911 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1912 const struct cred *creds = NULL; 1913 int ret; 1914 1915 if (unlikely(!io_assign_file(req, def, issue_flags))) 1916 return -EBADF; 1917 1918 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1919 creds = override_creds(req->creds); 1920 1921 if (!def->audit_skip) 1922 audit_uring_entry(req->opcode); 1923 1924 ret = def->issue(req, issue_flags); 1925 1926 if (!def->audit_skip) 1927 audit_uring_exit(!ret, ret); 1928 1929 if (creds) 1930 revert_creds(creds); 1931 1932 if (ret == IOU_OK) { 1933 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1934 io_req_complete_defer(req); 1935 else 1936 io_req_complete_post(req, issue_flags); 1937 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1938 return ret; 1939 1940 /* If the op doesn't have a file, we're not polling for it */ 1941 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1942 io_iopoll_req_issued(req, issue_flags); 1943 1944 return 0; 1945 } 1946 1947 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1948 { 1949 io_tw_lock(req->ctx, ts); 1950 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1951 IO_URING_F_COMPLETE_DEFER); 1952 } 1953 1954 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1955 { 1956 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1957 1958 req = io_put_req_find_next(req); 1959 return req ? &req->work : NULL; 1960 } 1961 1962 void io_wq_submit_work(struct io_wq_work *work) 1963 { 1964 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1965 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1966 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1967 bool needs_poll = false; 1968 int ret = 0, err = -ECANCELED; 1969 1970 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1971 if (!(req->flags & REQ_F_REFCOUNT)) 1972 __io_req_set_refcount(req, 2); 1973 else 1974 req_ref_get(req); 1975 1976 io_arm_ltimeout(req); 1977 1978 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1979 if (work->flags & IO_WQ_WORK_CANCEL) { 1980 fail: 1981 io_req_task_queue_fail(req, err); 1982 return; 1983 } 1984 if (!io_assign_file(req, def, issue_flags)) { 1985 err = -EBADF; 1986 work->flags |= IO_WQ_WORK_CANCEL; 1987 goto fail; 1988 } 1989 1990 if (req->flags & REQ_F_FORCE_ASYNC) { 1991 bool opcode_poll = def->pollin || def->pollout; 1992 1993 if (opcode_poll && file_can_poll(req->file)) { 1994 needs_poll = true; 1995 issue_flags |= IO_URING_F_NONBLOCK; 1996 } 1997 } 1998 1999 do { 2000 ret = io_issue_sqe(req, issue_flags); 2001 if (ret != -EAGAIN) 2002 break; 2003 /* 2004 * We can get EAGAIN for iopolled IO even though we're 2005 * forcing a sync submission from here, since we can't 2006 * wait for request slots on the block side. 2007 */ 2008 if (!needs_poll) { 2009 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 2010 break; 2011 cond_resched(); 2012 continue; 2013 } 2014 2015 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 2016 return; 2017 /* aborted or ready, in either case retry blocking */ 2018 needs_poll = false; 2019 issue_flags &= ~IO_URING_F_NONBLOCK; 2020 } while (1); 2021 2022 /* avoid locking problems by failing it from a clean context */ 2023 if (ret < 0) 2024 io_req_task_queue_fail(req, ret); 2025 } 2026 2027 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 2028 unsigned int issue_flags) 2029 { 2030 struct io_ring_ctx *ctx = req->ctx; 2031 struct file *file = NULL; 2032 unsigned long file_ptr; 2033 2034 io_ring_submit_lock(ctx, issue_flags); 2035 2036 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 2037 goto out; 2038 fd = array_index_nospec(fd, ctx->nr_user_files); 2039 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr; 2040 file = (struct file *) (file_ptr & FFS_MASK); 2041 file_ptr &= ~FFS_MASK; 2042 /* mask in overlapping REQ_F and FFS bits */ 2043 req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT); 2044 io_req_set_rsrc_node(req, ctx, 0); 2045 out: 2046 io_ring_submit_unlock(ctx, issue_flags); 2047 return file; 2048 } 2049 2050 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 2051 { 2052 struct file *file = fget(fd); 2053 2054 trace_io_uring_file_get(req, fd); 2055 2056 /* we don't allow fixed io_uring files */ 2057 if (file && io_is_uring_fops(file)) 2058 io_req_track_inflight(req); 2059 return file; 2060 } 2061 2062 static void io_queue_async(struct io_kiocb *req, int ret) 2063 __must_hold(&req->ctx->uring_lock) 2064 { 2065 struct io_kiocb *linked_timeout; 2066 2067 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2068 io_req_defer_failed(req, ret); 2069 return; 2070 } 2071 2072 linked_timeout = io_prep_linked_timeout(req); 2073 2074 switch (io_arm_poll_handler(req, 0)) { 2075 case IO_APOLL_READY: 2076 io_kbuf_recycle(req, 0); 2077 io_req_task_queue(req); 2078 break; 2079 case IO_APOLL_ABORTED: 2080 io_kbuf_recycle(req, 0); 2081 io_queue_iowq(req, NULL); 2082 break; 2083 case IO_APOLL_OK: 2084 break; 2085 } 2086 2087 if (linked_timeout) 2088 io_queue_linked_timeout(linked_timeout); 2089 } 2090 2091 static inline void io_queue_sqe(struct io_kiocb *req) 2092 __must_hold(&req->ctx->uring_lock) 2093 { 2094 int ret; 2095 2096 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2097 2098 /* 2099 * We async punt it if the file wasn't marked NOWAIT, or if the file 2100 * doesn't support non-blocking read/write attempts 2101 */ 2102 if (likely(!ret)) 2103 io_arm_ltimeout(req); 2104 else 2105 io_queue_async(req, ret); 2106 } 2107 2108 static void io_queue_sqe_fallback(struct io_kiocb *req) 2109 __must_hold(&req->ctx->uring_lock) 2110 { 2111 if (unlikely(req->flags & REQ_F_FAIL)) { 2112 /* 2113 * We don't submit, fail them all, for that replace hardlinks 2114 * with normal links. Extra REQ_F_LINK is tolerated. 2115 */ 2116 req->flags &= ~REQ_F_HARDLINK; 2117 req->flags |= REQ_F_LINK; 2118 io_req_defer_failed(req, req->cqe.res); 2119 } else { 2120 int ret = io_req_prep_async(req); 2121 2122 if (unlikely(ret)) { 2123 io_req_defer_failed(req, ret); 2124 return; 2125 } 2126 2127 if (unlikely(req->ctx->drain_active)) 2128 io_drain_req(req); 2129 else 2130 io_queue_iowq(req, NULL); 2131 } 2132 } 2133 2134 /* 2135 * Check SQE restrictions (opcode and flags). 2136 * 2137 * Returns 'true' if SQE is allowed, 'false' otherwise. 2138 */ 2139 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2140 struct io_kiocb *req, 2141 unsigned int sqe_flags) 2142 { 2143 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2144 return false; 2145 2146 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2147 ctx->restrictions.sqe_flags_required) 2148 return false; 2149 2150 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2151 ctx->restrictions.sqe_flags_required)) 2152 return false; 2153 2154 return true; 2155 } 2156 2157 static void io_init_req_drain(struct io_kiocb *req) 2158 { 2159 struct io_ring_ctx *ctx = req->ctx; 2160 struct io_kiocb *head = ctx->submit_state.link.head; 2161 2162 ctx->drain_active = true; 2163 if (head) { 2164 /* 2165 * If we need to drain a request in the middle of a link, drain 2166 * the head request and the next request/link after the current 2167 * link. Considering sequential execution of links, 2168 * REQ_F_IO_DRAIN will be maintained for every request of our 2169 * link. 2170 */ 2171 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2172 ctx->drain_next = true; 2173 } 2174 } 2175 2176 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2177 const struct io_uring_sqe *sqe) 2178 __must_hold(&ctx->uring_lock) 2179 { 2180 const struct io_issue_def *def; 2181 unsigned int sqe_flags; 2182 int personality; 2183 u8 opcode; 2184 2185 /* req is partially pre-initialised, see io_preinit_req() */ 2186 req->opcode = opcode = READ_ONCE(sqe->opcode); 2187 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2188 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2189 req->cqe.user_data = READ_ONCE(sqe->user_data); 2190 req->file = NULL; 2191 req->rsrc_node = NULL; 2192 req->task = current; 2193 2194 if (unlikely(opcode >= IORING_OP_LAST)) { 2195 req->opcode = 0; 2196 return -EINVAL; 2197 } 2198 def = &io_issue_defs[opcode]; 2199 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2200 /* enforce forwards compatibility on users */ 2201 if (sqe_flags & ~SQE_VALID_FLAGS) 2202 return -EINVAL; 2203 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2204 if (!def->buffer_select) 2205 return -EOPNOTSUPP; 2206 req->buf_index = READ_ONCE(sqe->buf_group); 2207 } 2208 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2209 ctx->drain_disabled = true; 2210 if (sqe_flags & IOSQE_IO_DRAIN) { 2211 if (ctx->drain_disabled) 2212 return -EOPNOTSUPP; 2213 io_init_req_drain(req); 2214 } 2215 } 2216 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2217 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2218 return -EACCES; 2219 /* knock it to the slow queue path, will be drained there */ 2220 if (ctx->drain_active) 2221 req->flags |= REQ_F_FORCE_ASYNC; 2222 /* if there is no link, we're at "next" request and need to drain */ 2223 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2224 ctx->drain_next = false; 2225 ctx->drain_active = true; 2226 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2227 } 2228 } 2229 2230 if (!def->ioprio && sqe->ioprio) 2231 return -EINVAL; 2232 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2233 return -EINVAL; 2234 2235 if (def->needs_file) { 2236 struct io_submit_state *state = &ctx->submit_state; 2237 2238 req->cqe.fd = READ_ONCE(sqe->fd); 2239 2240 /* 2241 * Plug now if we have more than 2 IO left after this, and the 2242 * target is potentially a read/write to block based storage. 2243 */ 2244 if (state->need_plug && def->plug) { 2245 state->plug_started = true; 2246 state->need_plug = false; 2247 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2248 } 2249 } 2250 2251 personality = READ_ONCE(sqe->personality); 2252 if (personality) { 2253 int ret; 2254 2255 req->creds = xa_load(&ctx->personalities, personality); 2256 if (!req->creds) 2257 return -EINVAL; 2258 get_cred(req->creds); 2259 ret = security_uring_override_creds(req->creds); 2260 if (ret) { 2261 put_cred(req->creds); 2262 return ret; 2263 } 2264 req->flags |= REQ_F_CREDS; 2265 } 2266 2267 return def->prep(req, sqe); 2268 } 2269 2270 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2271 struct io_kiocb *req, int ret) 2272 { 2273 struct io_ring_ctx *ctx = req->ctx; 2274 struct io_submit_link *link = &ctx->submit_state.link; 2275 struct io_kiocb *head = link->head; 2276 2277 trace_io_uring_req_failed(sqe, req, ret); 2278 2279 /* 2280 * Avoid breaking links in the middle as it renders links with SQPOLL 2281 * unusable. Instead of failing eagerly, continue assembling the link if 2282 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2283 * should find the flag and handle the rest. 2284 */ 2285 req_fail_link_node(req, ret); 2286 if (head && !(head->flags & REQ_F_FAIL)) 2287 req_fail_link_node(head, -ECANCELED); 2288 2289 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2290 if (head) { 2291 link->last->link = req; 2292 link->head = NULL; 2293 req = head; 2294 } 2295 io_queue_sqe_fallback(req); 2296 return ret; 2297 } 2298 2299 if (head) 2300 link->last->link = req; 2301 else 2302 link->head = req; 2303 link->last = req; 2304 return 0; 2305 } 2306 2307 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2308 const struct io_uring_sqe *sqe) 2309 __must_hold(&ctx->uring_lock) 2310 { 2311 struct io_submit_link *link = &ctx->submit_state.link; 2312 int ret; 2313 2314 ret = io_init_req(ctx, req, sqe); 2315 if (unlikely(ret)) 2316 return io_submit_fail_init(sqe, req, ret); 2317 2318 trace_io_uring_submit_req(req); 2319 2320 /* 2321 * If we already have a head request, queue this one for async 2322 * submittal once the head completes. If we don't have a head but 2323 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2324 * submitted sync once the chain is complete. If none of those 2325 * conditions are true (normal request), then just queue it. 2326 */ 2327 if (unlikely(link->head)) { 2328 ret = io_req_prep_async(req); 2329 if (unlikely(ret)) 2330 return io_submit_fail_init(sqe, req, ret); 2331 2332 trace_io_uring_link(req, link->head); 2333 link->last->link = req; 2334 link->last = req; 2335 2336 if (req->flags & IO_REQ_LINK_FLAGS) 2337 return 0; 2338 /* last request of the link, flush it */ 2339 req = link->head; 2340 link->head = NULL; 2341 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2342 goto fallback; 2343 2344 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2345 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2346 if (req->flags & IO_REQ_LINK_FLAGS) { 2347 link->head = req; 2348 link->last = req; 2349 } else { 2350 fallback: 2351 io_queue_sqe_fallback(req); 2352 } 2353 return 0; 2354 } 2355 2356 io_queue_sqe(req); 2357 return 0; 2358 } 2359 2360 /* 2361 * Batched submission is done, ensure local IO is flushed out. 2362 */ 2363 static void io_submit_state_end(struct io_ring_ctx *ctx) 2364 { 2365 struct io_submit_state *state = &ctx->submit_state; 2366 2367 if (unlikely(state->link.head)) 2368 io_queue_sqe_fallback(state->link.head); 2369 /* flush only after queuing links as they can generate completions */ 2370 io_submit_flush_completions(ctx); 2371 if (state->plug_started) 2372 blk_finish_plug(&state->plug); 2373 } 2374 2375 /* 2376 * Start submission side cache. 2377 */ 2378 static void io_submit_state_start(struct io_submit_state *state, 2379 unsigned int max_ios) 2380 { 2381 state->plug_started = false; 2382 state->need_plug = max_ios > 2; 2383 state->submit_nr = max_ios; 2384 /* set only head, no need to init link_last in advance */ 2385 state->link.head = NULL; 2386 } 2387 2388 static void io_commit_sqring(struct io_ring_ctx *ctx) 2389 { 2390 struct io_rings *rings = ctx->rings; 2391 2392 /* 2393 * Ensure any loads from the SQEs are done at this point, 2394 * since once we write the new head, the application could 2395 * write new data to them. 2396 */ 2397 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2398 } 2399 2400 /* 2401 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2402 * that is mapped by userspace. This means that care needs to be taken to 2403 * ensure that reads are stable, as we cannot rely on userspace always 2404 * being a good citizen. If members of the sqe are validated and then later 2405 * used, it's important that those reads are done through READ_ONCE() to 2406 * prevent a re-load down the line. 2407 */ 2408 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2409 { 2410 unsigned head, mask = ctx->sq_entries - 1; 2411 unsigned sq_idx = ctx->cached_sq_head++ & mask; 2412 2413 /* 2414 * The cached sq head (or cq tail) serves two purposes: 2415 * 2416 * 1) allows us to batch the cost of updating the user visible 2417 * head updates. 2418 * 2) allows the kernel side to track the head on its own, even 2419 * though the application is the one updating it. 2420 */ 2421 head = READ_ONCE(ctx->sq_array[sq_idx]); 2422 if (likely(head < ctx->sq_entries)) { 2423 /* double index for 128-byte SQEs, twice as long */ 2424 if (ctx->flags & IORING_SETUP_SQE128) 2425 head <<= 1; 2426 *sqe = &ctx->sq_sqes[head]; 2427 return true; 2428 } 2429 2430 /* drop invalid entries */ 2431 ctx->cq_extra--; 2432 WRITE_ONCE(ctx->rings->sq_dropped, 2433 READ_ONCE(ctx->rings->sq_dropped) + 1); 2434 return false; 2435 } 2436 2437 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2438 __must_hold(&ctx->uring_lock) 2439 { 2440 unsigned int entries = io_sqring_entries(ctx); 2441 unsigned int left; 2442 int ret; 2443 2444 if (unlikely(!entries)) 2445 return 0; 2446 /* make sure SQ entry isn't read before tail */ 2447 ret = left = min(nr, entries); 2448 io_get_task_refs(left); 2449 io_submit_state_start(&ctx->submit_state, left); 2450 2451 do { 2452 const struct io_uring_sqe *sqe; 2453 struct io_kiocb *req; 2454 2455 if (unlikely(!io_alloc_req(ctx, &req))) 2456 break; 2457 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2458 io_req_add_to_cache(req, ctx); 2459 break; 2460 } 2461 2462 /* 2463 * Continue submitting even for sqe failure if the 2464 * ring was setup with IORING_SETUP_SUBMIT_ALL 2465 */ 2466 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2467 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2468 left--; 2469 break; 2470 } 2471 } while (--left); 2472 2473 if (unlikely(left)) { 2474 ret -= left; 2475 /* try again if it submitted nothing and can't allocate a req */ 2476 if (!ret && io_req_cache_empty(ctx)) 2477 ret = -EAGAIN; 2478 current->io_uring->cached_refs += left; 2479 } 2480 2481 io_submit_state_end(ctx); 2482 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2483 io_commit_sqring(ctx); 2484 return ret; 2485 } 2486 2487 struct io_wait_queue { 2488 struct wait_queue_entry wq; 2489 struct io_ring_ctx *ctx; 2490 unsigned cq_tail; 2491 unsigned nr_timeouts; 2492 ktime_t timeout; 2493 }; 2494 2495 static inline bool io_has_work(struct io_ring_ctx *ctx) 2496 { 2497 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2498 !llist_empty(&ctx->work_llist); 2499 } 2500 2501 static inline bool io_should_wake(struct io_wait_queue *iowq) 2502 { 2503 struct io_ring_ctx *ctx = iowq->ctx; 2504 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2505 2506 /* 2507 * Wake up if we have enough events, or if a timeout occurred since we 2508 * started waiting. For timeouts, we always want to return to userspace, 2509 * regardless of event count. 2510 */ 2511 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2512 } 2513 2514 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2515 int wake_flags, void *key) 2516 { 2517 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2518 2519 /* 2520 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2521 * the task, and the next invocation will do it. 2522 */ 2523 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2524 return autoremove_wake_function(curr, mode, wake_flags, key); 2525 return -1; 2526 } 2527 2528 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2529 { 2530 if (!llist_empty(&ctx->work_llist)) { 2531 __set_current_state(TASK_RUNNING); 2532 if (io_run_local_work(ctx) > 0) 2533 return 1; 2534 } 2535 if (io_run_task_work() > 0) 2536 return 1; 2537 if (task_sigpending(current)) 2538 return -EINTR; 2539 return 0; 2540 } 2541 2542 /* when returns >0, the caller should retry */ 2543 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2544 struct io_wait_queue *iowq) 2545 { 2546 if (unlikely(READ_ONCE(ctx->check_cq))) 2547 return 1; 2548 if (unlikely(!llist_empty(&ctx->work_llist))) 2549 return 1; 2550 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) 2551 return 1; 2552 if (unlikely(task_sigpending(current))) 2553 return -EINTR; 2554 if (unlikely(io_should_wake(iowq))) 2555 return 0; 2556 if (iowq->timeout == KTIME_MAX) 2557 schedule(); 2558 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2559 return -ETIME; 2560 return 0; 2561 } 2562 2563 /* 2564 * Wait until events become available, if we don't already have some. The 2565 * application must reap them itself, as they reside on the shared cq ring. 2566 */ 2567 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2568 const sigset_t __user *sig, size_t sigsz, 2569 struct __kernel_timespec __user *uts) 2570 { 2571 struct io_wait_queue iowq; 2572 struct io_rings *rings = ctx->rings; 2573 int ret; 2574 2575 if (!io_allowed_run_tw(ctx)) 2576 return -EEXIST; 2577 if (!llist_empty(&ctx->work_llist)) 2578 io_run_local_work(ctx); 2579 io_run_task_work(); 2580 io_cqring_overflow_flush(ctx); 2581 /* if user messes with these they will just get an early return */ 2582 if (__io_cqring_events_user(ctx) >= min_events) 2583 return 0; 2584 2585 if (sig) { 2586 #ifdef CONFIG_COMPAT 2587 if (in_compat_syscall()) 2588 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2589 sigsz); 2590 else 2591 #endif 2592 ret = set_user_sigmask(sig, sigsz); 2593 2594 if (ret) 2595 return ret; 2596 } 2597 2598 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2599 iowq.wq.private = current; 2600 INIT_LIST_HEAD(&iowq.wq.entry); 2601 iowq.ctx = ctx; 2602 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2603 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2604 iowq.timeout = KTIME_MAX; 2605 2606 if (uts) { 2607 struct timespec64 ts; 2608 2609 if (get_timespec64(&ts, uts)) 2610 return -EFAULT; 2611 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2612 } 2613 2614 trace_io_uring_cqring_wait(ctx, min_events); 2615 do { 2616 unsigned long check_cq; 2617 2618 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2619 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2620 2621 atomic_set(&ctx->cq_wait_nr, nr_wait); 2622 set_current_state(TASK_INTERRUPTIBLE); 2623 } else { 2624 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2625 TASK_INTERRUPTIBLE); 2626 } 2627 2628 ret = io_cqring_wait_schedule(ctx, &iowq); 2629 __set_current_state(TASK_RUNNING); 2630 atomic_set(&ctx->cq_wait_nr, 0); 2631 2632 if (ret < 0) 2633 break; 2634 /* 2635 * Run task_work after scheduling and before io_should_wake(). 2636 * If we got woken because of task_work being processed, run it 2637 * now rather than let the caller do another wait loop. 2638 */ 2639 io_run_task_work(); 2640 if (!llist_empty(&ctx->work_llist)) 2641 io_run_local_work(ctx); 2642 2643 check_cq = READ_ONCE(ctx->check_cq); 2644 if (unlikely(check_cq)) { 2645 /* let the caller flush overflows, retry */ 2646 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2647 io_cqring_do_overflow_flush(ctx); 2648 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2649 ret = -EBADR; 2650 break; 2651 } 2652 } 2653 2654 if (io_should_wake(&iowq)) { 2655 ret = 0; 2656 break; 2657 } 2658 cond_resched(); 2659 } while (1); 2660 2661 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2662 finish_wait(&ctx->cq_wait, &iowq.wq); 2663 restore_saved_sigmask_unless(ret == -EINTR); 2664 2665 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2666 } 2667 2668 static void io_mem_free(void *ptr) 2669 { 2670 struct page *page; 2671 2672 if (!ptr) 2673 return; 2674 2675 page = virt_to_head_page(ptr); 2676 if (put_page_testzero(page)) 2677 free_compound_page(page); 2678 } 2679 2680 static void io_pages_free(struct page ***pages, int npages) 2681 { 2682 struct page **page_array; 2683 int i; 2684 2685 if (!pages) 2686 return; 2687 page_array = *pages; 2688 for (i = 0; i < npages; i++) 2689 unpin_user_page(page_array[i]); 2690 kvfree(page_array); 2691 *pages = NULL; 2692 } 2693 2694 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, 2695 unsigned long uaddr, size_t size) 2696 { 2697 struct page **page_array; 2698 unsigned int nr_pages; 2699 int ret; 2700 2701 *npages = 0; 2702 2703 if (uaddr & (PAGE_SIZE - 1) || !size) 2704 return ERR_PTR(-EINVAL); 2705 2706 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2707 if (nr_pages > USHRT_MAX) 2708 return ERR_PTR(-EINVAL); 2709 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); 2710 if (!page_array) 2711 return ERR_PTR(-ENOMEM); 2712 2713 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, 2714 page_array); 2715 if (ret != nr_pages) { 2716 err: 2717 io_pages_free(&page_array, ret > 0 ? ret : 0); 2718 return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT); 2719 } 2720 /* 2721 * Should be a single page. If the ring is small enough that we can 2722 * use a normal page, that is fine. If we need multiple pages, then 2723 * userspace should use a huge page. That's the only way to guarantee 2724 * that we get contigious memory, outside of just being lucky or 2725 * (currently) having low memory fragmentation. 2726 */ 2727 if (page_array[0] != page_array[ret - 1]) 2728 goto err; 2729 *pages = page_array; 2730 *npages = nr_pages; 2731 return page_to_virt(page_array[0]); 2732 } 2733 2734 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2735 size_t size) 2736 { 2737 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2738 size); 2739 } 2740 2741 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2742 size_t size) 2743 { 2744 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2745 size); 2746 } 2747 2748 static void io_rings_free(struct io_ring_ctx *ctx) 2749 { 2750 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2751 io_mem_free(ctx->rings); 2752 io_mem_free(ctx->sq_sqes); 2753 ctx->rings = NULL; 2754 ctx->sq_sqes = NULL; 2755 } else { 2756 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2757 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2758 } 2759 } 2760 2761 static void *io_mem_alloc(size_t size) 2762 { 2763 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2764 void *ret; 2765 2766 ret = (void *) __get_free_pages(gfp, get_order(size)); 2767 if (ret) 2768 return ret; 2769 return ERR_PTR(-ENOMEM); 2770 } 2771 2772 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2773 unsigned int cq_entries, size_t *sq_offset) 2774 { 2775 struct io_rings *rings; 2776 size_t off, sq_array_size; 2777 2778 off = struct_size(rings, cqes, cq_entries); 2779 if (off == SIZE_MAX) 2780 return SIZE_MAX; 2781 if (ctx->flags & IORING_SETUP_CQE32) { 2782 if (check_shl_overflow(off, 1, &off)) 2783 return SIZE_MAX; 2784 } 2785 2786 #ifdef CONFIG_SMP 2787 off = ALIGN(off, SMP_CACHE_BYTES); 2788 if (off == 0) 2789 return SIZE_MAX; 2790 #endif 2791 2792 if (sq_offset) 2793 *sq_offset = off; 2794 2795 sq_array_size = array_size(sizeof(u32), sq_entries); 2796 if (sq_array_size == SIZE_MAX) 2797 return SIZE_MAX; 2798 2799 if (check_add_overflow(off, sq_array_size, &off)) 2800 return SIZE_MAX; 2801 2802 return off; 2803 } 2804 2805 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2806 unsigned int eventfd_async) 2807 { 2808 struct io_ev_fd *ev_fd; 2809 __s32 __user *fds = arg; 2810 int fd; 2811 2812 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2813 lockdep_is_held(&ctx->uring_lock)); 2814 if (ev_fd) 2815 return -EBUSY; 2816 2817 if (copy_from_user(&fd, fds, sizeof(*fds))) 2818 return -EFAULT; 2819 2820 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2821 if (!ev_fd) 2822 return -ENOMEM; 2823 2824 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2825 if (IS_ERR(ev_fd->cq_ev_fd)) { 2826 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2827 kfree(ev_fd); 2828 return ret; 2829 } 2830 2831 spin_lock(&ctx->completion_lock); 2832 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2833 spin_unlock(&ctx->completion_lock); 2834 2835 ev_fd->eventfd_async = eventfd_async; 2836 ctx->has_evfd = true; 2837 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2838 atomic_set(&ev_fd->refs, 1); 2839 atomic_set(&ev_fd->ops, 0); 2840 return 0; 2841 } 2842 2843 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2844 { 2845 struct io_ev_fd *ev_fd; 2846 2847 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2848 lockdep_is_held(&ctx->uring_lock)); 2849 if (ev_fd) { 2850 ctx->has_evfd = false; 2851 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2852 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2853 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2854 return 0; 2855 } 2856 2857 return -ENXIO; 2858 } 2859 2860 static void io_req_caches_free(struct io_ring_ctx *ctx) 2861 { 2862 struct io_kiocb *req; 2863 int nr = 0; 2864 2865 mutex_lock(&ctx->uring_lock); 2866 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2867 2868 while (!io_req_cache_empty(ctx)) { 2869 req = io_extract_req(ctx); 2870 kmem_cache_free(req_cachep, req); 2871 nr++; 2872 } 2873 if (nr) 2874 percpu_ref_put_many(&ctx->refs, nr); 2875 mutex_unlock(&ctx->uring_lock); 2876 } 2877 2878 static void io_rsrc_node_cache_free(struct io_cache_entry *entry) 2879 { 2880 kfree(container_of(entry, struct io_rsrc_node, cache)); 2881 } 2882 2883 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2884 { 2885 io_sq_thread_finish(ctx); 2886 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2887 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2888 return; 2889 2890 mutex_lock(&ctx->uring_lock); 2891 if (ctx->buf_data) 2892 __io_sqe_buffers_unregister(ctx); 2893 if (ctx->file_data) 2894 __io_sqe_files_unregister(ctx); 2895 io_cqring_overflow_kill(ctx); 2896 io_eventfd_unregister(ctx); 2897 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2898 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2899 io_destroy_buffers(ctx); 2900 mutex_unlock(&ctx->uring_lock); 2901 if (ctx->sq_creds) 2902 put_cred(ctx->sq_creds); 2903 if (ctx->submitter_task) 2904 put_task_struct(ctx->submitter_task); 2905 2906 /* there are no registered resources left, nobody uses it */ 2907 if (ctx->rsrc_node) 2908 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2909 2910 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2911 2912 #if defined(CONFIG_UNIX) 2913 if (ctx->ring_sock) { 2914 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2915 sock_release(ctx->ring_sock); 2916 } 2917 #endif 2918 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2919 2920 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); 2921 if (ctx->mm_account) { 2922 mmdrop(ctx->mm_account); 2923 ctx->mm_account = NULL; 2924 } 2925 io_rings_free(ctx); 2926 2927 percpu_ref_exit(&ctx->refs); 2928 free_uid(ctx->user); 2929 io_req_caches_free(ctx); 2930 if (ctx->hash_map) 2931 io_wq_put_hash(ctx->hash_map); 2932 kfree(ctx->cancel_table.hbs); 2933 kfree(ctx->cancel_table_locked.hbs); 2934 kfree(ctx->dummy_ubuf); 2935 kfree(ctx->io_bl); 2936 xa_destroy(&ctx->io_bl_xa); 2937 kfree(ctx); 2938 } 2939 2940 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2941 { 2942 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2943 poll_wq_task_work); 2944 2945 mutex_lock(&ctx->uring_lock); 2946 ctx->poll_activated = true; 2947 mutex_unlock(&ctx->uring_lock); 2948 2949 /* 2950 * Wake ups for some events between start of polling and activation 2951 * might've been lost due to loose synchronisation. 2952 */ 2953 wake_up_all(&ctx->poll_wq); 2954 percpu_ref_put(&ctx->refs); 2955 } 2956 2957 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2958 { 2959 spin_lock(&ctx->completion_lock); 2960 /* already activated or in progress */ 2961 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2962 goto out; 2963 if (WARN_ON_ONCE(!ctx->task_complete)) 2964 goto out; 2965 if (!ctx->submitter_task) 2966 goto out; 2967 /* 2968 * with ->submitter_task only the submitter task completes requests, we 2969 * only need to sync with it, which is done by injecting a tw 2970 */ 2971 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2972 percpu_ref_get(&ctx->refs); 2973 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2974 percpu_ref_put(&ctx->refs); 2975 out: 2976 spin_unlock(&ctx->completion_lock); 2977 } 2978 2979 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2980 { 2981 struct io_ring_ctx *ctx = file->private_data; 2982 __poll_t mask = 0; 2983 2984 if (unlikely(!ctx->poll_activated)) 2985 io_activate_pollwq(ctx); 2986 2987 poll_wait(file, &ctx->poll_wq, wait); 2988 /* 2989 * synchronizes with barrier from wq_has_sleeper call in 2990 * io_commit_cqring 2991 */ 2992 smp_rmb(); 2993 if (!io_sqring_full(ctx)) 2994 mask |= EPOLLOUT | EPOLLWRNORM; 2995 2996 /* 2997 * Don't flush cqring overflow list here, just do a simple check. 2998 * Otherwise there could possible be ABBA deadlock: 2999 * CPU0 CPU1 3000 * ---- ---- 3001 * lock(&ctx->uring_lock); 3002 * lock(&ep->mtx); 3003 * lock(&ctx->uring_lock); 3004 * lock(&ep->mtx); 3005 * 3006 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 3007 * pushes them to do the flush. 3008 */ 3009 3010 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 3011 mask |= EPOLLIN | EPOLLRDNORM; 3012 3013 return mask; 3014 } 3015 3016 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 3017 { 3018 const struct cred *creds; 3019 3020 creds = xa_erase(&ctx->personalities, id); 3021 if (creds) { 3022 put_cred(creds); 3023 return 0; 3024 } 3025 3026 return -EINVAL; 3027 } 3028 3029 struct io_tctx_exit { 3030 struct callback_head task_work; 3031 struct completion completion; 3032 struct io_ring_ctx *ctx; 3033 }; 3034 3035 static __cold void io_tctx_exit_cb(struct callback_head *cb) 3036 { 3037 struct io_uring_task *tctx = current->io_uring; 3038 struct io_tctx_exit *work; 3039 3040 work = container_of(cb, struct io_tctx_exit, task_work); 3041 /* 3042 * When @in_cancel, we're in cancellation and it's racy to remove the 3043 * node. It'll be removed by the end of cancellation, just ignore it. 3044 * tctx can be NULL if the queueing of this task_work raced with 3045 * work cancelation off the exec path. 3046 */ 3047 if (tctx && !atomic_read(&tctx->in_cancel)) 3048 io_uring_del_tctx_node((unsigned long)work->ctx); 3049 complete(&work->completion); 3050 } 3051 3052 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 3053 { 3054 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3055 3056 return req->ctx == data; 3057 } 3058 3059 static __cold void io_ring_exit_work(struct work_struct *work) 3060 { 3061 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 3062 unsigned long timeout = jiffies + HZ * 60 * 5; 3063 unsigned long interval = HZ / 20; 3064 struct io_tctx_exit exit; 3065 struct io_tctx_node *node; 3066 int ret; 3067 3068 /* 3069 * If we're doing polled IO and end up having requests being 3070 * submitted async (out-of-line), then completions can come in while 3071 * we're waiting for refs to drop. We need to reap these manually, 3072 * as nobody else will be looking for them. 3073 */ 3074 do { 3075 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 3076 mutex_lock(&ctx->uring_lock); 3077 io_cqring_overflow_kill(ctx); 3078 mutex_unlock(&ctx->uring_lock); 3079 } 3080 3081 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3082 io_move_task_work_from_local(ctx); 3083 3084 while (io_uring_try_cancel_requests(ctx, NULL, true)) 3085 cond_resched(); 3086 3087 if (ctx->sq_data) { 3088 struct io_sq_data *sqd = ctx->sq_data; 3089 struct task_struct *tsk; 3090 3091 io_sq_thread_park(sqd); 3092 tsk = sqd->thread; 3093 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 3094 io_wq_cancel_cb(tsk->io_uring->io_wq, 3095 io_cancel_ctx_cb, ctx, true); 3096 io_sq_thread_unpark(sqd); 3097 } 3098 3099 io_req_caches_free(ctx); 3100 3101 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3102 /* there is little hope left, don't run it too often */ 3103 interval = HZ * 60; 3104 } 3105 /* 3106 * This is really an uninterruptible wait, as it has to be 3107 * complete. But it's also run from a kworker, which doesn't 3108 * take signals, so it's fine to make it interruptible. This 3109 * avoids scenarios where we knowingly can wait much longer 3110 * on completions, for example if someone does a SIGSTOP on 3111 * a task that needs to finish task_work to make this loop 3112 * complete. That's a synthetic situation that should not 3113 * cause a stuck task backtrace, and hence a potential panic 3114 * on stuck tasks if that is enabled. 3115 */ 3116 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 3117 3118 init_completion(&exit.completion); 3119 init_task_work(&exit.task_work, io_tctx_exit_cb); 3120 exit.ctx = ctx; 3121 /* 3122 * Some may use context even when all refs and requests have been put, 3123 * and they are free to do so while still holding uring_lock or 3124 * completion_lock, see io_req_task_submit(). Apart from other work, 3125 * this lock/unlock section also waits them to finish. 3126 */ 3127 mutex_lock(&ctx->uring_lock); 3128 while (!list_empty(&ctx->tctx_list)) { 3129 WARN_ON_ONCE(time_after(jiffies, timeout)); 3130 3131 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3132 ctx_node); 3133 /* don't spin on a single task if cancellation failed */ 3134 list_rotate_left(&ctx->tctx_list); 3135 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3136 if (WARN_ON_ONCE(ret)) 3137 continue; 3138 3139 mutex_unlock(&ctx->uring_lock); 3140 /* 3141 * See comment above for 3142 * wait_for_completion_interruptible_timeout() on why this 3143 * wait is marked as interruptible. 3144 */ 3145 wait_for_completion_interruptible(&exit.completion); 3146 mutex_lock(&ctx->uring_lock); 3147 } 3148 mutex_unlock(&ctx->uring_lock); 3149 spin_lock(&ctx->completion_lock); 3150 spin_unlock(&ctx->completion_lock); 3151 3152 /* pairs with RCU read section in io_req_local_work_add() */ 3153 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3154 synchronize_rcu(); 3155 3156 io_ring_ctx_free(ctx); 3157 } 3158 3159 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3160 { 3161 unsigned long index; 3162 struct creds *creds; 3163 3164 mutex_lock(&ctx->uring_lock); 3165 percpu_ref_kill(&ctx->refs); 3166 xa_for_each(&ctx->personalities, index, creds) 3167 io_unregister_personality(ctx, index); 3168 if (ctx->rings) 3169 io_poll_remove_all(ctx, NULL, true); 3170 mutex_unlock(&ctx->uring_lock); 3171 3172 /* 3173 * If we failed setting up the ctx, we might not have any rings 3174 * and therefore did not submit any requests 3175 */ 3176 if (ctx->rings) 3177 io_kill_timeouts(ctx, NULL, true); 3178 3179 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3180 /* 3181 * Use system_unbound_wq to avoid spawning tons of event kworkers 3182 * if we're exiting a ton of rings at the same time. It just adds 3183 * noise and overhead, there's no discernable change in runtime 3184 * over using system_wq. 3185 */ 3186 queue_work(system_unbound_wq, &ctx->exit_work); 3187 } 3188 3189 static int io_uring_release(struct inode *inode, struct file *file) 3190 { 3191 struct io_ring_ctx *ctx = file->private_data; 3192 3193 file->private_data = NULL; 3194 io_ring_ctx_wait_and_kill(ctx); 3195 return 0; 3196 } 3197 3198 struct io_task_cancel { 3199 struct task_struct *task; 3200 bool all; 3201 }; 3202 3203 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3204 { 3205 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3206 struct io_task_cancel *cancel = data; 3207 3208 return io_match_task_safe(req, cancel->task, cancel->all); 3209 } 3210 3211 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3212 struct task_struct *task, 3213 bool cancel_all) 3214 { 3215 struct io_defer_entry *de; 3216 LIST_HEAD(list); 3217 3218 spin_lock(&ctx->completion_lock); 3219 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3220 if (io_match_task_safe(de->req, task, cancel_all)) { 3221 list_cut_position(&list, &ctx->defer_list, &de->list); 3222 break; 3223 } 3224 } 3225 spin_unlock(&ctx->completion_lock); 3226 if (list_empty(&list)) 3227 return false; 3228 3229 while (!list_empty(&list)) { 3230 de = list_first_entry(&list, struct io_defer_entry, list); 3231 list_del_init(&de->list); 3232 io_req_task_queue_fail(de->req, -ECANCELED); 3233 kfree(de); 3234 } 3235 return true; 3236 } 3237 3238 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3239 { 3240 struct io_tctx_node *node; 3241 enum io_wq_cancel cret; 3242 bool ret = false; 3243 3244 mutex_lock(&ctx->uring_lock); 3245 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3246 struct io_uring_task *tctx = node->task->io_uring; 3247 3248 /* 3249 * io_wq will stay alive while we hold uring_lock, because it's 3250 * killed after ctx nodes, which requires to take the lock. 3251 */ 3252 if (!tctx || !tctx->io_wq) 3253 continue; 3254 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3255 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3256 } 3257 mutex_unlock(&ctx->uring_lock); 3258 3259 return ret; 3260 } 3261 3262 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3263 struct task_struct *task, 3264 bool cancel_all) 3265 { 3266 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3267 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3268 enum io_wq_cancel cret; 3269 bool ret = false; 3270 3271 /* set it so io_req_local_work_add() would wake us up */ 3272 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3273 atomic_set(&ctx->cq_wait_nr, 1); 3274 smp_mb(); 3275 } 3276 3277 /* failed during ring init, it couldn't have issued any requests */ 3278 if (!ctx->rings) 3279 return false; 3280 3281 if (!task) { 3282 ret |= io_uring_try_cancel_iowq(ctx); 3283 } else if (tctx && tctx->io_wq) { 3284 /* 3285 * Cancels requests of all rings, not only @ctx, but 3286 * it's fine as the task is in exit/exec. 3287 */ 3288 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3289 &cancel, true); 3290 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3291 } 3292 3293 /* SQPOLL thread does its own polling */ 3294 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3295 (ctx->sq_data && ctx->sq_data->thread == current)) { 3296 while (!wq_list_empty(&ctx->iopoll_list)) { 3297 io_iopoll_try_reap_events(ctx); 3298 ret = true; 3299 cond_resched(); 3300 } 3301 } 3302 3303 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3304 io_allowed_defer_tw_run(ctx)) 3305 ret |= io_run_local_work(ctx) > 0; 3306 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3307 mutex_lock(&ctx->uring_lock); 3308 ret |= io_poll_remove_all(ctx, task, cancel_all); 3309 mutex_unlock(&ctx->uring_lock); 3310 ret |= io_kill_timeouts(ctx, task, cancel_all); 3311 if (task) 3312 ret |= io_run_task_work() > 0; 3313 return ret; 3314 } 3315 3316 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3317 { 3318 if (tracked) 3319 return atomic_read(&tctx->inflight_tracked); 3320 return percpu_counter_sum(&tctx->inflight); 3321 } 3322 3323 /* 3324 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3325 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3326 */ 3327 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3328 { 3329 struct io_uring_task *tctx = current->io_uring; 3330 struct io_ring_ctx *ctx; 3331 struct io_tctx_node *node; 3332 unsigned long index; 3333 s64 inflight; 3334 DEFINE_WAIT(wait); 3335 3336 WARN_ON_ONCE(sqd && sqd->thread != current); 3337 3338 if (!current->io_uring) 3339 return; 3340 if (tctx->io_wq) 3341 io_wq_exit_start(tctx->io_wq); 3342 3343 atomic_inc(&tctx->in_cancel); 3344 do { 3345 bool loop = false; 3346 3347 io_uring_drop_tctx_refs(current); 3348 /* read completions before cancelations */ 3349 inflight = tctx_inflight(tctx, !cancel_all); 3350 if (!inflight) 3351 break; 3352 3353 if (!sqd) { 3354 xa_for_each(&tctx->xa, index, node) { 3355 /* sqpoll task will cancel all its requests */ 3356 if (node->ctx->sq_data) 3357 continue; 3358 loop |= io_uring_try_cancel_requests(node->ctx, 3359 current, cancel_all); 3360 } 3361 } else { 3362 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3363 loop |= io_uring_try_cancel_requests(ctx, 3364 current, 3365 cancel_all); 3366 } 3367 3368 if (loop) { 3369 cond_resched(); 3370 continue; 3371 } 3372 3373 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3374 io_run_task_work(); 3375 io_uring_drop_tctx_refs(current); 3376 xa_for_each(&tctx->xa, index, node) { 3377 if (!llist_empty(&node->ctx->work_llist)) { 3378 WARN_ON_ONCE(node->ctx->submitter_task && 3379 node->ctx->submitter_task != current); 3380 goto end_wait; 3381 } 3382 } 3383 /* 3384 * If we've seen completions, retry without waiting. This 3385 * avoids a race where a completion comes in before we did 3386 * prepare_to_wait(). 3387 */ 3388 if (inflight == tctx_inflight(tctx, !cancel_all)) 3389 schedule(); 3390 end_wait: 3391 finish_wait(&tctx->wait, &wait); 3392 } while (1); 3393 3394 io_uring_clean_tctx(tctx); 3395 if (cancel_all) { 3396 /* 3397 * We shouldn't run task_works after cancel, so just leave 3398 * ->in_cancel set for normal exit. 3399 */ 3400 atomic_dec(&tctx->in_cancel); 3401 /* for exec all current's requests should be gone, kill tctx */ 3402 __io_uring_free(current); 3403 } 3404 } 3405 3406 void __io_uring_cancel(bool cancel_all) 3407 { 3408 io_uring_cancel_generic(cancel_all, NULL); 3409 } 3410 3411 static void *io_uring_validate_mmap_request(struct file *file, 3412 loff_t pgoff, size_t sz) 3413 { 3414 struct io_ring_ctx *ctx = file->private_data; 3415 loff_t offset = pgoff << PAGE_SHIFT; 3416 struct page *page; 3417 void *ptr; 3418 3419 /* Don't allow mmap if the ring was setup without it */ 3420 if (ctx->flags & IORING_SETUP_NO_MMAP) 3421 return ERR_PTR(-EINVAL); 3422 3423 switch (offset & IORING_OFF_MMAP_MASK) { 3424 case IORING_OFF_SQ_RING: 3425 case IORING_OFF_CQ_RING: 3426 ptr = ctx->rings; 3427 break; 3428 case IORING_OFF_SQES: 3429 ptr = ctx->sq_sqes; 3430 break; 3431 case IORING_OFF_PBUF_RING: { 3432 unsigned int bgid; 3433 3434 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; 3435 mutex_lock(&ctx->uring_lock); 3436 ptr = io_pbuf_get_address(ctx, bgid); 3437 mutex_unlock(&ctx->uring_lock); 3438 if (!ptr) 3439 return ERR_PTR(-EINVAL); 3440 break; 3441 } 3442 default: 3443 return ERR_PTR(-EINVAL); 3444 } 3445 3446 page = virt_to_head_page(ptr); 3447 if (sz > page_size(page)) 3448 return ERR_PTR(-EINVAL); 3449 3450 return ptr; 3451 } 3452 3453 #ifdef CONFIG_MMU 3454 3455 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3456 { 3457 size_t sz = vma->vm_end - vma->vm_start; 3458 unsigned long pfn; 3459 void *ptr; 3460 3461 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3462 if (IS_ERR(ptr)) 3463 return PTR_ERR(ptr); 3464 3465 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3466 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3467 } 3468 3469 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, 3470 unsigned long addr, unsigned long len, 3471 unsigned long pgoff, unsigned long flags) 3472 { 3473 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 3474 struct vm_unmapped_area_info info; 3475 void *ptr; 3476 3477 /* 3478 * Do not allow to map to user-provided address to avoid breaking the 3479 * aliasing rules. Userspace is not able to guess the offset address of 3480 * kernel kmalloc()ed memory area. 3481 */ 3482 if (addr) 3483 return -EINVAL; 3484 3485 ptr = io_uring_validate_mmap_request(filp, pgoff, len); 3486 if (IS_ERR(ptr)) 3487 return -ENOMEM; 3488 3489 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 3490 info.length = len; 3491 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 3492 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base); 3493 #ifdef SHM_COLOUR 3494 info.align_mask = PAGE_MASK & (SHM_COLOUR - 1UL); 3495 #else 3496 info.align_mask = PAGE_MASK & (SHMLBA - 1UL); 3497 #endif 3498 info.align_offset = (unsigned long) ptr; 3499 3500 /* 3501 * A failed mmap() very likely causes application failure, 3502 * so fall back to the bottom-up function here. This scenario 3503 * can happen with large stack limits and large mmap() 3504 * allocations. 3505 */ 3506 addr = vm_unmapped_area(&info); 3507 if (offset_in_page(addr)) { 3508 info.flags = 0; 3509 info.low_limit = TASK_UNMAPPED_BASE; 3510 info.high_limit = mmap_end; 3511 addr = vm_unmapped_area(&info); 3512 } 3513 3514 return addr; 3515 } 3516 3517 #else /* !CONFIG_MMU */ 3518 3519 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3520 { 3521 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3522 } 3523 3524 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3525 { 3526 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3527 } 3528 3529 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3530 unsigned long addr, unsigned long len, 3531 unsigned long pgoff, unsigned long flags) 3532 { 3533 void *ptr; 3534 3535 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3536 if (IS_ERR(ptr)) 3537 return PTR_ERR(ptr); 3538 3539 return (unsigned long) ptr; 3540 } 3541 3542 #endif /* !CONFIG_MMU */ 3543 3544 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3545 { 3546 if (flags & IORING_ENTER_EXT_ARG) { 3547 struct io_uring_getevents_arg arg; 3548 3549 if (argsz != sizeof(arg)) 3550 return -EINVAL; 3551 if (copy_from_user(&arg, argp, sizeof(arg))) 3552 return -EFAULT; 3553 } 3554 return 0; 3555 } 3556 3557 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3558 struct __kernel_timespec __user **ts, 3559 const sigset_t __user **sig) 3560 { 3561 struct io_uring_getevents_arg arg; 3562 3563 /* 3564 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3565 * is just a pointer to the sigset_t. 3566 */ 3567 if (!(flags & IORING_ENTER_EXT_ARG)) { 3568 *sig = (const sigset_t __user *) argp; 3569 *ts = NULL; 3570 return 0; 3571 } 3572 3573 /* 3574 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3575 * timespec and sigset_t pointers if good. 3576 */ 3577 if (*argsz != sizeof(arg)) 3578 return -EINVAL; 3579 if (copy_from_user(&arg, argp, sizeof(arg))) 3580 return -EFAULT; 3581 if (arg.pad) 3582 return -EINVAL; 3583 *sig = u64_to_user_ptr(arg.sigmask); 3584 *argsz = arg.sigmask_sz; 3585 *ts = u64_to_user_ptr(arg.ts); 3586 return 0; 3587 } 3588 3589 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3590 u32, min_complete, u32, flags, const void __user *, argp, 3591 size_t, argsz) 3592 { 3593 struct io_ring_ctx *ctx; 3594 struct fd f; 3595 long ret; 3596 3597 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3598 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3599 IORING_ENTER_REGISTERED_RING))) 3600 return -EINVAL; 3601 3602 /* 3603 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3604 * need only dereference our task private array to find it. 3605 */ 3606 if (flags & IORING_ENTER_REGISTERED_RING) { 3607 struct io_uring_task *tctx = current->io_uring; 3608 3609 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3610 return -EINVAL; 3611 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3612 f.file = tctx->registered_rings[fd]; 3613 f.flags = 0; 3614 if (unlikely(!f.file)) 3615 return -EBADF; 3616 } else { 3617 f = fdget(fd); 3618 if (unlikely(!f.file)) 3619 return -EBADF; 3620 ret = -EOPNOTSUPP; 3621 if (unlikely(!io_is_uring_fops(f.file))) 3622 goto out; 3623 } 3624 3625 ctx = f.file->private_data; 3626 ret = -EBADFD; 3627 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3628 goto out; 3629 3630 /* 3631 * For SQ polling, the thread will do all submissions and completions. 3632 * Just return the requested submit count, and wake the thread if 3633 * we were asked to. 3634 */ 3635 ret = 0; 3636 if (ctx->flags & IORING_SETUP_SQPOLL) { 3637 io_cqring_overflow_flush(ctx); 3638 3639 if (unlikely(ctx->sq_data->thread == NULL)) { 3640 ret = -EOWNERDEAD; 3641 goto out; 3642 } 3643 if (flags & IORING_ENTER_SQ_WAKEUP) 3644 wake_up(&ctx->sq_data->wait); 3645 if (flags & IORING_ENTER_SQ_WAIT) 3646 io_sqpoll_wait_sq(ctx); 3647 3648 ret = to_submit; 3649 } else if (to_submit) { 3650 ret = io_uring_add_tctx_node(ctx); 3651 if (unlikely(ret)) 3652 goto out; 3653 3654 mutex_lock(&ctx->uring_lock); 3655 ret = io_submit_sqes(ctx, to_submit); 3656 if (ret != to_submit) { 3657 mutex_unlock(&ctx->uring_lock); 3658 goto out; 3659 } 3660 if (flags & IORING_ENTER_GETEVENTS) { 3661 if (ctx->syscall_iopoll) 3662 goto iopoll_locked; 3663 /* 3664 * Ignore errors, we'll soon call io_cqring_wait() and 3665 * it should handle ownership problems if any. 3666 */ 3667 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3668 (void)io_run_local_work_locked(ctx); 3669 } 3670 mutex_unlock(&ctx->uring_lock); 3671 } 3672 3673 if (flags & IORING_ENTER_GETEVENTS) { 3674 int ret2; 3675 3676 if (ctx->syscall_iopoll) { 3677 /* 3678 * We disallow the app entering submit/complete with 3679 * polling, but we still need to lock the ring to 3680 * prevent racing with polled issue that got punted to 3681 * a workqueue. 3682 */ 3683 mutex_lock(&ctx->uring_lock); 3684 iopoll_locked: 3685 ret2 = io_validate_ext_arg(flags, argp, argsz); 3686 if (likely(!ret2)) { 3687 min_complete = min(min_complete, 3688 ctx->cq_entries); 3689 ret2 = io_iopoll_check(ctx, min_complete); 3690 } 3691 mutex_unlock(&ctx->uring_lock); 3692 } else { 3693 const sigset_t __user *sig; 3694 struct __kernel_timespec __user *ts; 3695 3696 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3697 if (likely(!ret2)) { 3698 min_complete = min(min_complete, 3699 ctx->cq_entries); 3700 ret2 = io_cqring_wait(ctx, min_complete, sig, 3701 argsz, ts); 3702 } 3703 } 3704 3705 if (!ret) { 3706 ret = ret2; 3707 3708 /* 3709 * EBADR indicates that one or more CQE were dropped. 3710 * Once the user has been informed we can clear the bit 3711 * as they are obviously ok with those drops. 3712 */ 3713 if (unlikely(ret2 == -EBADR)) 3714 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3715 &ctx->check_cq); 3716 } 3717 } 3718 out: 3719 fdput(f); 3720 return ret; 3721 } 3722 3723 static const struct file_operations io_uring_fops = { 3724 .release = io_uring_release, 3725 .mmap = io_uring_mmap, 3726 #ifndef CONFIG_MMU 3727 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3728 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3729 #else 3730 .get_unmapped_area = io_uring_mmu_get_unmapped_area, 3731 #endif 3732 .poll = io_uring_poll, 3733 #ifdef CONFIG_PROC_FS 3734 .show_fdinfo = io_uring_show_fdinfo, 3735 #endif 3736 }; 3737 3738 bool io_is_uring_fops(struct file *file) 3739 { 3740 return file->f_op == &io_uring_fops; 3741 } 3742 3743 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3744 struct io_uring_params *p) 3745 { 3746 struct io_rings *rings; 3747 size_t size, sq_array_offset; 3748 void *ptr; 3749 3750 /* make sure these are sane, as we already accounted them */ 3751 ctx->sq_entries = p->sq_entries; 3752 ctx->cq_entries = p->cq_entries; 3753 3754 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3755 if (size == SIZE_MAX) 3756 return -EOVERFLOW; 3757 3758 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3759 rings = io_mem_alloc(size); 3760 else 3761 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3762 3763 if (IS_ERR(rings)) 3764 return PTR_ERR(rings); 3765 3766 ctx->rings = rings; 3767 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3768 rings->sq_ring_mask = p->sq_entries - 1; 3769 rings->cq_ring_mask = p->cq_entries - 1; 3770 rings->sq_ring_entries = p->sq_entries; 3771 rings->cq_ring_entries = p->cq_entries; 3772 3773 if (p->flags & IORING_SETUP_SQE128) 3774 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3775 else 3776 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3777 if (size == SIZE_MAX) { 3778 io_rings_free(ctx); 3779 return -EOVERFLOW; 3780 } 3781 3782 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3783 ptr = io_mem_alloc(size); 3784 else 3785 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3786 3787 if (IS_ERR(ptr)) { 3788 io_rings_free(ctx); 3789 return PTR_ERR(ptr); 3790 } 3791 3792 ctx->sq_sqes = ptr; 3793 return 0; 3794 } 3795 3796 static int io_uring_install_fd(struct file *file) 3797 { 3798 int fd; 3799 3800 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3801 if (fd < 0) 3802 return fd; 3803 fd_install(fd, file); 3804 return fd; 3805 } 3806 3807 /* 3808 * Allocate an anonymous fd, this is what constitutes the application 3809 * visible backing of an io_uring instance. The application mmaps this 3810 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3811 * we have to tie this fd to a socket for file garbage collection purposes. 3812 */ 3813 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3814 { 3815 struct file *file; 3816 #if defined(CONFIG_UNIX) 3817 int ret; 3818 3819 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3820 &ctx->ring_sock); 3821 if (ret) 3822 return ERR_PTR(ret); 3823 #endif 3824 3825 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3826 O_RDWR | O_CLOEXEC, NULL); 3827 #if defined(CONFIG_UNIX) 3828 if (IS_ERR(file)) { 3829 sock_release(ctx->ring_sock); 3830 ctx->ring_sock = NULL; 3831 } else { 3832 ctx->ring_sock->file = file; 3833 } 3834 #endif 3835 return file; 3836 } 3837 3838 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3839 struct io_uring_params __user *params) 3840 { 3841 struct io_ring_ctx *ctx; 3842 struct io_uring_task *tctx; 3843 struct file *file; 3844 int ret; 3845 3846 if (!entries) 3847 return -EINVAL; 3848 if (entries > IORING_MAX_ENTRIES) { 3849 if (!(p->flags & IORING_SETUP_CLAMP)) 3850 return -EINVAL; 3851 entries = IORING_MAX_ENTRIES; 3852 } 3853 3854 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3855 && !(p->flags & IORING_SETUP_NO_MMAP)) 3856 return -EINVAL; 3857 3858 /* 3859 * Use twice as many entries for the CQ ring. It's possible for the 3860 * application to drive a higher depth than the size of the SQ ring, 3861 * since the sqes are only used at submission time. This allows for 3862 * some flexibility in overcommitting a bit. If the application has 3863 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3864 * of CQ ring entries manually. 3865 */ 3866 p->sq_entries = roundup_pow_of_two(entries); 3867 if (p->flags & IORING_SETUP_CQSIZE) { 3868 /* 3869 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3870 * to a power-of-two, if it isn't already. We do NOT impose 3871 * any cq vs sq ring sizing. 3872 */ 3873 if (!p->cq_entries) 3874 return -EINVAL; 3875 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3876 if (!(p->flags & IORING_SETUP_CLAMP)) 3877 return -EINVAL; 3878 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3879 } 3880 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3881 if (p->cq_entries < p->sq_entries) 3882 return -EINVAL; 3883 } else { 3884 p->cq_entries = 2 * p->sq_entries; 3885 } 3886 3887 ctx = io_ring_ctx_alloc(p); 3888 if (!ctx) 3889 return -ENOMEM; 3890 3891 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3892 !(ctx->flags & IORING_SETUP_IOPOLL) && 3893 !(ctx->flags & IORING_SETUP_SQPOLL)) 3894 ctx->task_complete = true; 3895 3896 /* 3897 * lazy poll_wq activation relies on ->task_complete for synchronisation 3898 * purposes, see io_activate_pollwq() 3899 */ 3900 if (!ctx->task_complete) 3901 ctx->poll_activated = true; 3902 3903 /* 3904 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3905 * space applications don't need to do io completion events 3906 * polling again, they can rely on io_sq_thread to do polling 3907 * work, which can reduce cpu usage and uring_lock contention. 3908 */ 3909 if (ctx->flags & IORING_SETUP_IOPOLL && 3910 !(ctx->flags & IORING_SETUP_SQPOLL)) 3911 ctx->syscall_iopoll = 1; 3912 3913 ctx->compat = in_compat_syscall(); 3914 if (!capable(CAP_IPC_LOCK)) 3915 ctx->user = get_uid(current_user()); 3916 3917 /* 3918 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3919 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3920 */ 3921 ret = -EINVAL; 3922 if (ctx->flags & IORING_SETUP_SQPOLL) { 3923 /* IPI related flags don't make sense with SQPOLL */ 3924 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3925 IORING_SETUP_TASKRUN_FLAG | 3926 IORING_SETUP_DEFER_TASKRUN)) 3927 goto err; 3928 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3929 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3930 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3931 } else { 3932 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3933 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3934 goto err; 3935 ctx->notify_method = TWA_SIGNAL; 3936 } 3937 3938 /* 3939 * For DEFER_TASKRUN we require the completion task to be the same as the 3940 * submission task. This implies that there is only one submitter, so enforce 3941 * that. 3942 */ 3943 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3944 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3945 goto err; 3946 } 3947 3948 /* 3949 * This is just grabbed for accounting purposes. When a process exits, 3950 * the mm is exited and dropped before the files, hence we need to hang 3951 * on to this mm purely for the purposes of being able to unaccount 3952 * memory (locked/pinned vm). It's not used for anything else. 3953 */ 3954 mmgrab(current->mm); 3955 ctx->mm_account = current->mm; 3956 3957 ret = io_allocate_scq_urings(ctx, p); 3958 if (ret) 3959 goto err; 3960 3961 ret = io_sq_offload_create(ctx, p); 3962 if (ret) 3963 goto err; 3964 3965 ret = io_rsrc_init(ctx); 3966 if (ret) 3967 goto err; 3968 3969 p->sq_off.head = offsetof(struct io_rings, sq.head); 3970 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3971 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3972 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3973 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3974 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3975 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3976 p->sq_off.resv1 = 0; 3977 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3978 p->sq_off.user_addr = 0; 3979 3980 p->cq_off.head = offsetof(struct io_rings, cq.head); 3981 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3982 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3983 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3984 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3985 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3986 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3987 p->cq_off.resv1 = 0; 3988 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3989 p->cq_off.user_addr = 0; 3990 3991 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3992 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3993 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3994 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3995 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3996 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3997 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 3998 3999 if (copy_to_user(params, p, sizeof(*p))) { 4000 ret = -EFAULT; 4001 goto err; 4002 } 4003 4004 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 4005 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 4006 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4007 4008 file = io_uring_get_file(ctx); 4009 if (IS_ERR(file)) { 4010 ret = PTR_ERR(file); 4011 goto err; 4012 } 4013 4014 ret = __io_uring_add_tctx_node(ctx); 4015 if (ret) 4016 goto err_fput; 4017 tctx = current->io_uring; 4018 4019 /* 4020 * Install ring fd as the very last thing, so we don't risk someone 4021 * having closed it before we finish setup 4022 */ 4023 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 4024 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 4025 else 4026 ret = io_uring_install_fd(file); 4027 if (ret < 0) 4028 goto err_fput; 4029 4030 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 4031 return ret; 4032 err: 4033 io_ring_ctx_wait_and_kill(ctx); 4034 return ret; 4035 err_fput: 4036 fput(file); 4037 return ret; 4038 } 4039 4040 /* 4041 * Sets up an aio uring context, and returns the fd. Applications asks for a 4042 * ring size, we return the actual sq/cq ring sizes (among other things) in the 4043 * params structure passed in. 4044 */ 4045 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 4046 { 4047 struct io_uring_params p; 4048 int i; 4049 4050 if (copy_from_user(&p, params, sizeof(p))) 4051 return -EFAULT; 4052 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 4053 if (p.resv[i]) 4054 return -EINVAL; 4055 } 4056 4057 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 4058 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 4059 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 4060 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 4061 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 4062 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 4063 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 4064 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY)) 4065 return -EINVAL; 4066 4067 return io_uring_create(entries, &p, params); 4068 } 4069 4070 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 4071 struct io_uring_params __user *, params) 4072 { 4073 return io_uring_setup(entries, params); 4074 } 4075 4076 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 4077 unsigned nr_args) 4078 { 4079 struct io_uring_probe *p; 4080 size_t size; 4081 int i, ret; 4082 4083 size = struct_size(p, ops, nr_args); 4084 if (size == SIZE_MAX) 4085 return -EOVERFLOW; 4086 p = kzalloc(size, GFP_KERNEL); 4087 if (!p) 4088 return -ENOMEM; 4089 4090 ret = -EFAULT; 4091 if (copy_from_user(p, arg, size)) 4092 goto out; 4093 ret = -EINVAL; 4094 if (memchr_inv(p, 0, size)) 4095 goto out; 4096 4097 p->last_op = IORING_OP_LAST - 1; 4098 if (nr_args > IORING_OP_LAST) 4099 nr_args = IORING_OP_LAST; 4100 4101 for (i = 0; i < nr_args; i++) { 4102 p->ops[i].op = i; 4103 if (!io_issue_defs[i].not_supported) 4104 p->ops[i].flags = IO_URING_OP_SUPPORTED; 4105 } 4106 p->ops_len = i; 4107 4108 ret = 0; 4109 if (copy_to_user(arg, p, size)) 4110 ret = -EFAULT; 4111 out: 4112 kfree(p); 4113 return ret; 4114 } 4115 4116 static int io_register_personality(struct io_ring_ctx *ctx) 4117 { 4118 const struct cred *creds; 4119 u32 id; 4120 int ret; 4121 4122 creds = get_current_cred(); 4123 4124 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 4125 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 4126 if (ret < 0) { 4127 put_cred(creds); 4128 return ret; 4129 } 4130 return id; 4131 } 4132 4133 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 4134 void __user *arg, unsigned int nr_args) 4135 { 4136 struct io_uring_restriction *res; 4137 size_t size; 4138 int i, ret; 4139 4140 /* Restrictions allowed only if rings started disabled */ 4141 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4142 return -EBADFD; 4143 4144 /* We allow only a single restrictions registration */ 4145 if (ctx->restrictions.registered) 4146 return -EBUSY; 4147 4148 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 4149 return -EINVAL; 4150 4151 size = array_size(nr_args, sizeof(*res)); 4152 if (size == SIZE_MAX) 4153 return -EOVERFLOW; 4154 4155 res = memdup_user(arg, size); 4156 if (IS_ERR(res)) 4157 return PTR_ERR(res); 4158 4159 ret = 0; 4160 4161 for (i = 0; i < nr_args; i++) { 4162 switch (res[i].opcode) { 4163 case IORING_RESTRICTION_REGISTER_OP: 4164 if (res[i].register_op >= IORING_REGISTER_LAST) { 4165 ret = -EINVAL; 4166 goto out; 4167 } 4168 4169 __set_bit(res[i].register_op, 4170 ctx->restrictions.register_op); 4171 break; 4172 case IORING_RESTRICTION_SQE_OP: 4173 if (res[i].sqe_op >= IORING_OP_LAST) { 4174 ret = -EINVAL; 4175 goto out; 4176 } 4177 4178 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 4179 break; 4180 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 4181 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 4182 break; 4183 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 4184 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 4185 break; 4186 default: 4187 ret = -EINVAL; 4188 goto out; 4189 } 4190 } 4191 4192 out: 4193 /* Reset all restrictions if an error happened */ 4194 if (ret != 0) 4195 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 4196 else 4197 ctx->restrictions.registered = true; 4198 4199 kfree(res); 4200 return ret; 4201 } 4202 4203 static int io_register_enable_rings(struct io_ring_ctx *ctx) 4204 { 4205 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4206 return -EBADFD; 4207 4208 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) { 4209 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4210 /* 4211 * Lazy activation attempts would fail if it was polled before 4212 * submitter_task is set. 4213 */ 4214 if (wq_has_sleeper(&ctx->poll_wq)) 4215 io_activate_pollwq(ctx); 4216 } 4217 4218 if (ctx->restrictions.registered) 4219 ctx->restricted = 1; 4220 4221 ctx->flags &= ~IORING_SETUP_R_DISABLED; 4222 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 4223 wake_up(&ctx->sq_data->wait); 4224 return 0; 4225 } 4226 4227 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 4228 void __user *arg, unsigned len) 4229 { 4230 struct io_uring_task *tctx = current->io_uring; 4231 cpumask_var_t new_mask; 4232 int ret; 4233 4234 if (!tctx || !tctx->io_wq) 4235 return -EINVAL; 4236 4237 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4238 return -ENOMEM; 4239 4240 cpumask_clear(new_mask); 4241 if (len > cpumask_size()) 4242 len = cpumask_size(); 4243 4244 if (in_compat_syscall()) { 4245 ret = compat_get_bitmap(cpumask_bits(new_mask), 4246 (const compat_ulong_t __user *)arg, 4247 len * 8 /* CHAR_BIT */); 4248 } else { 4249 ret = copy_from_user(new_mask, arg, len); 4250 } 4251 4252 if (ret) { 4253 free_cpumask_var(new_mask); 4254 return -EFAULT; 4255 } 4256 4257 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask); 4258 free_cpumask_var(new_mask); 4259 return ret; 4260 } 4261 4262 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 4263 { 4264 struct io_uring_task *tctx = current->io_uring; 4265 4266 if (!tctx || !tctx->io_wq) 4267 return -EINVAL; 4268 4269 return io_wq_cpu_affinity(tctx->io_wq, NULL); 4270 } 4271 4272 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 4273 void __user *arg) 4274 __must_hold(&ctx->uring_lock) 4275 { 4276 struct io_tctx_node *node; 4277 struct io_uring_task *tctx = NULL; 4278 struct io_sq_data *sqd = NULL; 4279 __u32 new_count[2]; 4280 int i, ret; 4281 4282 if (copy_from_user(new_count, arg, sizeof(new_count))) 4283 return -EFAULT; 4284 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4285 if (new_count[i] > INT_MAX) 4286 return -EINVAL; 4287 4288 if (ctx->flags & IORING_SETUP_SQPOLL) { 4289 sqd = ctx->sq_data; 4290 if (sqd) { 4291 /* 4292 * Observe the correct sqd->lock -> ctx->uring_lock 4293 * ordering. Fine to drop uring_lock here, we hold 4294 * a ref to the ctx. 4295 */ 4296 refcount_inc(&sqd->refs); 4297 mutex_unlock(&ctx->uring_lock); 4298 mutex_lock(&sqd->lock); 4299 mutex_lock(&ctx->uring_lock); 4300 if (sqd->thread) 4301 tctx = sqd->thread->io_uring; 4302 } 4303 } else { 4304 tctx = current->io_uring; 4305 } 4306 4307 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 4308 4309 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4310 if (new_count[i]) 4311 ctx->iowq_limits[i] = new_count[i]; 4312 ctx->iowq_limits_set = true; 4313 4314 if (tctx && tctx->io_wq) { 4315 ret = io_wq_max_workers(tctx->io_wq, new_count); 4316 if (ret) 4317 goto err; 4318 } else { 4319 memset(new_count, 0, sizeof(new_count)); 4320 } 4321 4322 if (sqd) { 4323 mutex_unlock(&sqd->lock); 4324 io_put_sq_data(sqd); 4325 } 4326 4327 if (copy_to_user(arg, new_count, sizeof(new_count))) 4328 return -EFAULT; 4329 4330 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 4331 if (sqd) 4332 return 0; 4333 4334 /* now propagate the restriction to all registered users */ 4335 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 4336 struct io_uring_task *tctx = node->task->io_uring; 4337 4338 if (WARN_ON_ONCE(!tctx->io_wq)) 4339 continue; 4340 4341 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4342 new_count[i] = ctx->iowq_limits[i]; 4343 /* ignore errors, it always returns zero anyway */ 4344 (void)io_wq_max_workers(tctx->io_wq, new_count); 4345 } 4346 return 0; 4347 err: 4348 if (sqd) { 4349 mutex_unlock(&sqd->lock); 4350 io_put_sq_data(sqd); 4351 } 4352 return ret; 4353 } 4354 4355 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4356 void __user *arg, unsigned nr_args) 4357 __releases(ctx->uring_lock) 4358 __acquires(ctx->uring_lock) 4359 { 4360 int ret; 4361 4362 /* 4363 * We don't quiesce the refs for register anymore and so it can't be 4364 * dying as we're holding a file ref here. 4365 */ 4366 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4367 return -ENXIO; 4368 4369 if (ctx->submitter_task && ctx->submitter_task != current) 4370 return -EEXIST; 4371 4372 if (ctx->restricted) { 4373 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4374 if (!test_bit(opcode, ctx->restrictions.register_op)) 4375 return -EACCES; 4376 } 4377 4378 switch (opcode) { 4379 case IORING_REGISTER_BUFFERS: 4380 ret = -EFAULT; 4381 if (!arg) 4382 break; 4383 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4384 break; 4385 case IORING_UNREGISTER_BUFFERS: 4386 ret = -EINVAL; 4387 if (arg || nr_args) 4388 break; 4389 ret = io_sqe_buffers_unregister(ctx); 4390 break; 4391 case IORING_REGISTER_FILES: 4392 ret = -EFAULT; 4393 if (!arg) 4394 break; 4395 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4396 break; 4397 case IORING_UNREGISTER_FILES: 4398 ret = -EINVAL; 4399 if (arg || nr_args) 4400 break; 4401 ret = io_sqe_files_unregister(ctx); 4402 break; 4403 case IORING_REGISTER_FILES_UPDATE: 4404 ret = io_register_files_update(ctx, arg, nr_args); 4405 break; 4406 case IORING_REGISTER_EVENTFD: 4407 ret = -EINVAL; 4408 if (nr_args != 1) 4409 break; 4410 ret = io_eventfd_register(ctx, arg, 0); 4411 break; 4412 case IORING_REGISTER_EVENTFD_ASYNC: 4413 ret = -EINVAL; 4414 if (nr_args != 1) 4415 break; 4416 ret = io_eventfd_register(ctx, arg, 1); 4417 break; 4418 case IORING_UNREGISTER_EVENTFD: 4419 ret = -EINVAL; 4420 if (arg || nr_args) 4421 break; 4422 ret = io_eventfd_unregister(ctx); 4423 break; 4424 case IORING_REGISTER_PROBE: 4425 ret = -EINVAL; 4426 if (!arg || nr_args > 256) 4427 break; 4428 ret = io_probe(ctx, arg, nr_args); 4429 break; 4430 case IORING_REGISTER_PERSONALITY: 4431 ret = -EINVAL; 4432 if (arg || nr_args) 4433 break; 4434 ret = io_register_personality(ctx); 4435 break; 4436 case IORING_UNREGISTER_PERSONALITY: 4437 ret = -EINVAL; 4438 if (arg) 4439 break; 4440 ret = io_unregister_personality(ctx, nr_args); 4441 break; 4442 case IORING_REGISTER_ENABLE_RINGS: 4443 ret = -EINVAL; 4444 if (arg || nr_args) 4445 break; 4446 ret = io_register_enable_rings(ctx); 4447 break; 4448 case IORING_REGISTER_RESTRICTIONS: 4449 ret = io_register_restrictions(ctx, arg, nr_args); 4450 break; 4451 case IORING_REGISTER_FILES2: 4452 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4453 break; 4454 case IORING_REGISTER_FILES_UPDATE2: 4455 ret = io_register_rsrc_update(ctx, arg, nr_args, 4456 IORING_RSRC_FILE); 4457 break; 4458 case IORING_REGISTER_BUFFERS2: 4459 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4460 break; 4461 case IORING_REGISTER_BUFFERS_UPDATE: 4462 ret = io_register_rsrc_update(ctx, arg, nr_args, 4463 IORING_RSRC_BUFFER); 4464 break; 4465 case IORING_REGISTER_IOWQ_AFF: 4466 ret = -EINVAL; 4467 if (!arg || !nr_args) 4468 break; 4469 ret = io_register_iowq_aff(ctx, arg, nr_args); 4470 break; 4471 case IORING_UNREGISTER_IOWQ_AFF: 4472 ret = -EINVAL; 4473 if (arg || nr_args) 4474 break; 4475 ret = io_unregister_iowq_aff(ctx); 4476 break; 4477 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4478 ret = -EINVAL; 4479 if (!arg || nr_args != 2) 4480 break; 4481 ret = io_register_iowq_max_workers(ctx, arg); 4482 break; 4483 case IORING_REGISTER_RING_FDS: 4484 ret = io_ringfd_register(ctx, arg, nr_args); 4485 break; 4486 case IORING_UNREGISTER_RING_FDS: 4487 ret = io_ringfd_unregister(ctx, arg, nr_args); 4488 break; 4489 case IORING_REGISTER_PBUF_RING: 4490 ret = -EINVAL; 4491 if (!arg || nr_args != 1) 4492 break; 4493 ret = io_register_pbuf_ring(ctx, arg); 4494 break; 4495 case IORING_UNREGISTER_PBUF_RING: 4496 ret = -EINVAL; 4497 if (!arg || nr_args != 1) 4498 break; 4499 ret = io_unregister_pbuf_ring(ctx, arg); 4500 break; 4501 case IORING_REGISTER_SYNC_CANCEL: 4502 ret = -EINVAL; 4503 if (!arg || nr_args != 1) 4504 break; 4505 ret = io_sync_cancel(ctx, arg); 4506 break; 4507 case IORING_REGISTER_FILE_ALLOC_RANGE: 4508 ret = -EINVAL; 4509 if (!arg || nr_args) 4510 break; 4511 ret = io_register_file_alloc_range(ctx, arg); 4512 break; 4513 default: 4514 ret = -EINVAL; 4515 break; 4516 } 4517 4518 return ret; 4519 } 4520 4521 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4522 void __user *, arg, unsigned int, nr_args) 4523 { 4524 struct io_ring_ctx *ctx; 4525 long ret = -EBADF; 4526 struct fd f; 4527 bool use_registered_ring; 4528 4529 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING); 4530 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING; 4531 4532 if (opcode >= IORING_REGISTER_LAST) 4533 return -EINVAL; 4534 4535 if (use_registered_ring) { 4536 /* 4537 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 4538 * need only dereference our task private array to find it. 4539 */ 4540 struct io_uring_task *tctx = current->io_uring; 4541 4542 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 4543 return -EINVAL; 4544 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 4545 f.file = tctx->registered_rings[fd]; 4546 f.flags = 0; 4547 if (unlikely(!f.file)) 4548 return -EBADF; 4549 } else { 4550 f = fdget(fd); 4551 if (unlikely(!f.file)) 4552 return -EBADF; 4553 ret = -EOPNOTSUPP; 4554 if (!io_is_uring_fops(f.file)) 4555 goto out_fput; 4556 } 4557 4558 ctx = f.file->private_data; 4559 4560 mutex_lock(&ctx->uring_lock); 4561 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4562 mutex_unlock(&ctx->uring_lock); 4563 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4564 out_fput: 4565 fdput(f); 4566 return ret; 4567 } 4568 4569 static int __init io_uring_init(void) 4570 { 4571 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4572 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4573 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4574 } while (0) 4575 4576 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4577 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4578 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4579 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4580 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4581 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4582 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4583 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4584 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4585 BUILD_BUG_SQE_ELEM(8, __u64, off); 4586 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4587 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4588 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4589 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4590 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4591 BUILD_BUG_SQE_ELEM(24, __u32, len); 4592 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4593 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4594 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4595 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4596 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4597 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4598 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4599 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4600 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4601 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4602 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4603 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4604 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4605 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4606 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4607 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4608 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4609 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4610 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4611 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4612 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4613 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4614 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4615 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4616 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4617 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4618 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4619 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4620 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4621 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4622 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4623 4624 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4625 sizeof(struct io_uring_rsrc_update)); 4626 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4627 sizeof(struct io_uring_rsrc_update2)); 4628 4629 /* ->buf_index is u16 */ 4630 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4631 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4632 offsetof(struct io_uring_buf_ring, tail)); 4633 4634 /* should fit into one byte */ 4635 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4636 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4637 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4638 4639 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4640 4641 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4642 4643 io_uring_optable_init(); 4644 4645 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4646 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU); 4647 return 0; 4648 }; 4649 __initcall(io_uring_init); 4650