1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 #include <asm/shmparam.h> 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/io_uring.h> 79 80 #include <uapi/linux/io_uring.h> 81 82 #include "io-wq.h" 83 84 #include "io_uring.h" 85 #include "opdef.h" 86 #include "refs.h" 87 #include "tctx.h" 88 #include "sqpoll.h" 89 #include "fdinfo.h" 90 #include "kbuf.h" 91 #include "rsrc.h" 92 #include "cancel.h" 93 #include "net.h" 94 #include "notif.h" 95 96 #include "timeout.h" 97 #include "poll.h" 98 #include "rw.h" 99 #include "alloc_cache.h" 100 101 #define IORING_MAX_ENTRIES 32768 102 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 103 104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 105 IORING_REGISTER_LAST + IORING_OP_LAST) 106 107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 108 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 109 110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 112 113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 115 REQ_F_ASYNC_DATA) 116 117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 118 IO_REQ_CLEAN_FLAGS) 119 120 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 121 122 #define IO_COMPL_BATCH 32 123 #define IO_REQ_ALLOC_BATCH 8 124 125 enum { 126 IO_CHECK_CQ_OVERFLOW_BIT, 127 IO_CHECK_CQ_DROPPED_BIT, 128 }; 129 130 enum { 131 IO_EVENTFD_OP_SIGNAL_BIT, 132 IO_EVENTFD_OP_FREE_BIT, 133 }; 134 135 struct io_defer_entry { 136 struct list_head list; 137 struct io_kiocb *req; 138 u32 seq; 139 }; 140 141 /* requests with any of those set should undergo io_disarm_next() */ 142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 144 145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 146 struct task_struct *task, 147 bool cancel_all); 148 149 static void io_queue_sqe(struct io_kiocb *req); 150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx); 151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx); 152 153 struct kmem_cache *req_cachep; 154 155 struct sock *io_uring_get_socket(struct file *file) 156 { 157 #if defined(CONFIG_UNIX) 158 if (io_is_uring_fops(file)) { 159 struct io_ring_ctx *ctx = file->private_data; 160 161 return ctx->ring_sock->sk; 162 } 163 #endif 164 return NULL; 165 } 166 EXPORT_SYMBOL(io_uring_get_socket); 167 168 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 169 { 170 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 171 ctx->submit_state.cqes_count) 172 __io_submit_flush_completions(ctx); 173 } 174 175 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 176 { 177 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 178 } 179 180 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 181 { 182 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 183 } 184 185 static bool io_match_linked(struct io_kiocb *head) 186 { 187 struct io_kiocb *req; 188 189 io_for_each_link(req, head) { 190 if (req->flags & REQ_F_INFLIGHT) 191 return true; 192 } 193 return false; 194 } 195 196 /* 197 * As io_match_task() but protected against racing with linked timeouts. 198 * User must not hold timeout_lock. 199 */ 200 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 201 bool cancel_all) 202 { 203 bool matched; 204 205 if (task && head->task != task) 206 return false; 207 if (cancel_all) 208 return true; 209 210 if (head->flags & REQ_F_LINK_TIMEOUT) { 211 struct io_ring_ctx *ctx = head->ctx; 212 213 /* protect against races with linked timeouts */ 214 spin_lock_irq(&ctx->timeout_lock); 215 matched = io_match_linked(head); 216 spin_unlock_irq(&ctx->timeout_lock); 217 } else { 218 matched = io_match_linked(head); 219 } 220 return matched; 221 } 222 223 static inline void req_fail_link_node(struct io_kiocb *req, int res) 224 { 225 req_set_fail(req); 226 io_req_set_res(req, res, 0); 227 } 228 229 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 230 { 231 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 232 kasan_poison_object_data(req_cachep, req); 233 } 234 235 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 236 { 237 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 238 239 complete(&ctx->ref_comp); 240 } 241 242 static __cold void io_fallback_req_func(struct work_struct *work) 243 { 244 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 245 fallback_work.work); 246 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 247 struct io_kiocb *req, *tmp; 248 struct io_tw_state ts = { .locked = true, }; 249 250 mutex_lock(&ctx->uring_lock); 251 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 252 req->io_task_work.func(req, &ts); 253 if (WARN_ON_ONCE(!ts.locked)) 254 return; 255 io_submit_flush_completions(ctx); 256 mutex_unlock(&ctx->uring_lock); 257 } 258 259 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 260 { 261 unsigned hash_buckets = 1U << bits; 262 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 263 264 table->hbs = kmalloc(hash_size, GFP_KERNEL); 265 if (!table->hbs) 266 return -ENOMEM; 267 268 table->hash_bits = bits; 269 init_hash_table(table, hash_buckets); 270 return 0; 271 } 272 273 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 274 { 275 struct io_ring_ctx *ctx; 276 int hash_bits; 277 278 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 279 if (!ctx) 280 return NULL; 281 282 xa_init(&ctx->io_bl_xa); 283 284 /* 285 * Use 5 bits less than the max cq entries, that should give us around 286 * 32 entries per hash list if totally full and uniformly spread, but 287 * don't keep too many buckets to not overconsume memory. 288 */ 289 hash_bits = ilog2(p->cq_entries) - 5; 290 hash_bits = clamp(hash_bits, 1, 8); 291 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 292 goto err; 293 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 294 goto err; 295 296 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL); 297 if (!ctx->dummy_ubuf) 298 goto err; 299 /* set invalid range, so io_import_fixed() fails meeting it */ 300 ctx->dummy_ubuf->ubuf = -1UL; 301 302 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 303 0, GFP_KERNEL)) 304 goto err; 305 306 ctx->flags = p->flags; 307 init_waitqueue_head(&ctx->sqo_sq_wait); 308 INIT_LIST_HEAD(&ctx->sqd_list); 309 INIT_LIST_HEAD(&ctx->cq_overflow_list); 310 INIT_LIST_HEAD(&ctx->io_buffers_cache); 311 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 312 sizeof(struct io_rsrc_node)); 313 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, 314 sizeof(struct async_poll)); 315 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 316 sizeof(struct io_async_msghdr)); 317 init_completion(&ctx->ref_comp); 318 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 319 mutex_init(&ctx->uring_lock); 320 init_waitqueue_head(&ctx->cq_wait); 321 init_waitqueue_head(&ctx->poll_wq); 322 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 323 spin_lock_init(&ctx->completion_lock); 324 spin_lock_init(&ctx->timeout_lock); 325 INIT_WQ_LIST(&ctx->iopoll_list); 326 INIT_LIST_HEAD(&ctx->io_buffers_pages); 327 INIT_LIST_HEAD(&ctx->io_buffers_comp); 328 INIT_LIST_HEAD(&ctx->defer_list); 329 INIT_LIST_HEAD(&ctx->timeout_list); 330 INIT_LIST_HEAD(&ctx->ltimeout_list); 331 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 332 init_llist_head(&ctx->work_llist); 333 INIT_LIST_HEAD(&ctx->tctx_list); 334 ctx->submit_state.free_list.next = NULL; 335 INIT_WQ_LIST(&ctx->locked_free_list); 336 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 337 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 338 return ctx; 339 err: 340 kfree(ctx->dummy_ubuf); 341 kfree(ctx->cancel_table.hbs); 342 kfree(ctx->cancel_table_locked.hbs); 343 kfree(ctx->io_bl); 344 xa_destroy(&ctx->io_bl_xa); 345 kfree(ctx); 346 return NULL; 347 } 348 349 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 350 { 351 struct io_rings *r = ctx->rings; 352 353 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 354 ctx->cq_extra--; 355 } 356 357 static bool req_need_defer(struct io_kiocb *req, u32 seq) 358 { 359 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 360 struct io_ring_ctx *ctx = req->ctx; 361 362 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 363 } 364 365 return false; 366 } 367 368 static void io_clean_op(struct io_kiocb *req) 369 { 370 if (req->flags & REQ_F_BUFFER_SELECTED) { 371 spin_lock(&req->ctx->completion_lock); 372 io_put_kbuf_comp(req); 373 spin_unlock(&req->ctx->completion_lock); 374 } 375 376 if (req->flags & REQ_F_NEED_CLEANUP) { 377 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 378 379 if (def->cleanup) 380 def->cleanup(req); 381 } 382 if ((req->flags & REQ_F_POLLED) && req->apoll) { 383 kfree(req->apoll->double_poll); 384 kfree(req->apoll); 385 req->apoll = NULL; 386 } 387 if (req->flags & REQ_F_INFLIGHT) { 388 struct io_uring_task *tctx = req->task->io_uring; 389 390 atomic_dec(&tctx->inflight_tracked); 391 } 392 if (req->flags & REQ_F_CREDS) 393 put_cred(req->creds); 394 if (req->flags & REQ_F_ASYNC_DATA) { 395 kfree(req->async_data); 396 req->async_data = NULL; 397 } 398 req->flags &= ~IO_REQ_CLEAN_FLAGS; 399 } 400 401 static inline void io_req_track_inflight(struct io_kiocb *req) 402 { 403 if (!(req->flags & REQ_F_INFLIGHT)) { 404 req->flags |= REQ_F_INFLIGHT; 405 atomic_inc(&req->task->io_uring->inflight_tracked); 406 } 407 } 408 409 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 410 { 411 if (WARN_ON_ONCE(!req->link)) 412 return NULL; 413 414 req->flags &= ~REQ_F_ARM_LTIMEOUT; 415 req->flags |= REQ_F_LINK_TIMEOUT; 416 417 /* linked timeouts should have two refs once prep'ed */ 418 io_req_set_refcount(req); 419 __io_req_set_refcount(req->link, 2); 420 return req->link; 421 } 422 423 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 424 { 425 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 426 return NULL; 427 return __io_prep_linked_timeout(req); 428 } 429 430 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 431 { 432 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 433 } 434 435 static inline void io_arm_ltimeout(struct io_kiocb *req) 436 { 437 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 438 __io_arm_ltimeout(req); 439 } 440 441 static void io_prep_async_work(struct io_kiocb *req) 442 { 443 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 444 struct io_ring_ctx *ctx = req->ctx; 445 446 if (!(req->flags & REQ_F_CREDS)) { 447 req->flags |= REQ_F_CREDS; 448 req->creds = get_current_cred(); 449 } 450 451 req->work.list.next = NULL; 452 req->work.flags = 0; 453 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 454 if (req->flags & REQ_F_FORCE_ASYNC) 455 req->work.flags |= IO_WQ_WORK_CONCURRENT; 456 457 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 458 req->flags |= io_file_get_flags(req->file); 459 460 if (req->file && (req->flags & REQ_F_ISREG)) { 461 bool should_hash = def->hash_reg_file; 462 463 /* don't serialize this request if the fs doesn't need it */ 464 if (should_hash && (req->file->f_flags & O_DIRECT) && 465 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) 466 should_hash = false; 467 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 468 io_wq_hash_work(&req->work, file_inode(req->file)); 469 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 470 if (def->unbound_nonreg_file) 471 req->work.flags |= IO_WQ_WORK_UNBOUND; 472 } 473 } 474 475 static void io_prep_async_link(struct io_kiocb *req) 476 { 477 struct io_kiocb *cur; 478 479 if (req->flags & REQ_F_LINK_TIMEOUT) { 480 struct io_ring_ctx *ctx = req->ctx; 481 482 spin_lock_irq(&ctx->timeout_lock); 483 io_for_each_link(cur, req) 484 io_prep_async_work(cur); 485 spin_unlock_irq(&ctx->timeout_lock); 486 } else { 487 io_for_each_link(cur, req) 488 io_prep_async_work(cur); 489 } 490 } 491 492 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) 493 { 494 struct io_kiocb *link = io_prep_linked_timeout(req); 495 struct io_uring_task *tctx = req->task->io_uring; 496 497 BUG_ON(!tctx); 498 BUG_ON(!tctx->io_wq); 499 500 /* init ->work of the whole link before punting */ 501 io_prep_async_link(req); 502 503 /* 504 * Not expected to happen, but if we do have a bug where this _can_ 505 * happen, catch it here and ensure the request is marked as 506 * canceled. That will make io-wq go through the usual work cancel 507 * procedure rather than attempt to run this request (or create a new 508 * worker for it). 509 */ 510 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 511 req->work.flags |= IO_WQ_WORK_CANCEL; 512 513 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 514 io_wq_enqueue(tctx->io_wq, &req->work); 515 if (link) 516 io_queue_linked_timeout(link); 517 } 518 519 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 520 { 521 while (!list_empty(&ctx->defer_list)) { 522 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 523 struct io_defer_entry, list); 524 525 if (req_need_defer(de->req, de->seq)) 526 break; 527 list_del_init(&de->list); 528 io_req_task_queue(de->req); 529 kfree(de); 530 } 531 } 532 533 534 static void io_eventfd_ops(struct rcu_head *rcu) 535 { 536 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 537 int ops = atomic_xchg(&ev_fd->ops, 0); 538 539 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 540 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 541 542 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 543 * ordering in a race but if references are 0 we know we have to free 544 * it regardless. 545 */ 546 if (atomic_dec_and_test(&ev_fd->refs)) { 547 eventfd_ctx_put(ev_fd->cq_ev_fd); 548 kfree(ev_fd); 549 } 550 } 551 552 static void io_eventfd_signal(struct io_ring_ctx *ctx) 553 { 554 struct io_ev_fd *ev_fd = NULL; 555 556 rcu_read_lock(); 557 /* 558 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 559 * and eventfd_signal 560 */ 561 ev_fd = rcu_dereference(ctx->io_ev_fd); 562 563 /* 564 * Check again if ev_fd exists incase an io_eventfd_unregister call 565 * completed between the NULL check of ctx->io_ev_fd at the start of 566 * the function and rcu_read_lock. 567 */ 568 if (unlikely(!ev_fd)) 569 goto out; 570 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 571 goto out; 572 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 573 goto out; 574 575 if (likely(eventfd_signal_allowed())) { 576 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 577 } else { 578 atomic_inc(&ev_fd->refs); 579 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 580 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 581 else 582 atomic_dec(&ev_fd->refs); 583 } 584 585 out: 586 rcu_read_unlock(); 587 } 588 589 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 590 { 591 bool skip; 592 593 spin_lock(&ctx->completion_lock); 594 595 /* 596 * Eventfd should only get triggered when at least one event has been 597 * posted. Some applications rely on the eventfd notification count 598 * only changing IFF a new CQE has been added to the CQ ring. There's 599 * no depedency on 1:1 relationship between how many times this 600 * function is called (and hence the eventfd count) and number of CQEs 601 * posted to the CQ ring. 602 */ 603 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 604 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 605 spin_unlock(&ctx->completion_lock); 606 if (skip) 607 return; 608 609 io_eventfd_signal(ctx); 610 } 611 612 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 613 { 614 if (ctx->poll_activated) 615 io_poll_wq_wake(ctx); 616 if (ctx->off_timeout_used) 617 io_flush_timeouts(ctx); 618 if (ctx->drain_active) { 619 spin_lock(&ctx->completion_lock); 620 io_queue_deferred(ctx); 621 spin_unlock(&ctx->completion_lock); 622 } 623 if (ctx->has_evfd) 624 io_eventfd_flush_signal(ctx); 625 } 626 627 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 628 { 629 if (!ctx->task_complete) 630 spin_lock(&ctx->completion_lock); 631 } 632 633 static inline void io_cq_lock(struct io_ring_ctx *ctx) 634 __acquires(ctx->completion_lock) 635 { 636 spin_lock(&ctx->completion_lock); 637 } 638 639 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 640 { 641 io_commit_cqring(ctx); 642 643 if (ctx->task_complete) { 644 /* 645 * ->task_complete implies that only current might be waiting 646 * for CQEs, and obviously, we currently don't. No one is 647 * waiting, wakeups are futile, skip them. 648 */ 649 io_commit_cqring_flush(ctx); 650 } else { 651 spin_unlock(&ctx->completion_lock); 652 io_commit_cqring_flush(ctx); 653 io_cqring_wake(ctx); 654 } 655 } 656 657 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 658 __releases(ctx->completion_lock) 659 { 660 io_commit_cqring(ctx); 661 spin_unlock(&ctx->completion_lock); 662 io_commit_cqring_flush(ctx); 663 io_cqring_wake(ctx); 664 } 665 666 /* Returns true if there are no backlogged entries after the flush */ 667 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 668 { 669 struct io_overflow_cqe *ocqe; 670 LIST_HEAD(list); 671 672 spin_lock(&ctx->completion_lock); 673 list_splice_init(&ctx->cq_overflow_list, &list); 674 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 675 spin_unlock(&ctx->completion_lock); 676 677 while (!list_empty(&list)) { 678 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 679 list_del(&ocqe->list); 680 kfree(ocqe); 681 } 682 } 683 684 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 685 { 686 size_t cqe_size = sizeof(struct io_uring_cqe); 687 688 if (__io_cqring_events(ctx) == ctx->cq_entries) 689 return; 690 691 if (ctx->flags & IORING_SETUP_CQE32) 692 cqe_size <<= 1; 693 694 io_cq_lock(ctx); 695 while (!list_empty(&ctx->cq_overflow_list)) { 696 struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true); 697 struct io_overflow_cqe *ocqe; 698 699 if (!cqe) 700 break; 701 ocqe = list_first_entry(&ctx->cq_overflow_list, 702 struct io_overflow_cqe, list); 703 memcpy(cqe, &ocqe->cqe, cqe_size); 704 list_del(&ocqe->list); 705 kfree(ocqe); 706 } 707 708 if (list_empty(&ctx->cq_overflow_list)) { 709 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 710 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 711 } 712 io_cq_unlock_post(ctx); 713 } 714 715 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 716 { 717 /* iopoll syncs against uring_lock, not completion_lock */ 718 if (ctx->flags & IORING_SETUP_IOPOLL) 719 mutex_lock(&ctx->uring_lock); 720 __io_cqring_overflow_flush(ctx); 721 if (ctx->flags & IORING_SETUP_IOPOLL) 722 mutex_unlock(&ctx->uring_lock); 723 } 724 725 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 726 { 727 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 728 io_cqring_do_overflow_flush(ctx); 729 } 730 731 /* can be called by any task */ 732 static void io_put_task_remote(struct task_struct *task) 733 { 734 struct io_uring_task *tctx = task->io_uring; 735 736 percpu_counter_sub(&tctx->inflight, 1); 737 if (unlikely(atomic_read(&tctx->in_cancel))) 738 wake_up(&tctx->wait); 739 put_task_struct(task); 740 } 741 742 /* used by a task to put its own references */ 743 static void io_put_task_local(struct task_struct *task) 744 { 745 task->io_uring->cached_refs++; 746 } 747 748 /* must to be called somewhat shortly after putting a request */ 749 static inline void io_put_task(struct task_struct *task) 750 { 751 if (likely(task == current)) 752 io_put_task_local(task); 753 else 754 io_put_task_remote(task); 755 } 756 757 void io_task_refs_refill(struct io_uring_task *tctx) 758 { 759 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 760 761 percpu_counter_add(&tctx->inflight, refill); 762 refcount_add(refill, ¤t->usage); 763 tctx->cached_refs += refill; 764 } 765 766 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 767 { 768 struct io_uring_task *tctx = task->io_uring; 769 unsigned int refs = tctx->cached_refs; 770 771 if (refs) { 772 tctx->cached_refs = 0; 773 percpu_counter_sub(&tctx->inflight, refs); 774 put_task_struct_many(task, refs); 775 } 776 } 777 778 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 779 s32 res, u32 cflags, u64 extra1, u64 extra2) 780 { 781 struct io_overflow_cqe *ocqe; 782 size_t ocq_size = sizeof(struct io_overflow_cqe); 783 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 784 785 lockdep_assert_held(&ctx->completion_lock); 786 787 if (is_cqe32) 788 ocq_size += sizeof(struct io_uring_cqe); 789 790 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 791 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 792 if (!ocqe) { 793 /* 794 * If we're in ring overflow flush mode, or in task cancel mode, 795 * or cannot allocate an overflow entry, then we need to drop it 796 * on the floor. 797 */ 798 io_account_cq_overflow(ctx); 799 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 800 return false; 801 } 802 if (list_empty(&ctx->cq_overflow_list)) { 803 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 804 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 805 806 } 807 ocqe->cqe.user_data = user_data; 808 ocqe->cqe.res = res; 809 ocqe->cqe.flags = cflags; 810 if (is_cqe32) { 811 ocqe->cqe.big_cqe[0] = extra1; 812 ocqe->cqe.big_cqe[1] = extra2; 813 } 814 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 815 return true; 816 } 817 818 bool io_req_cqe_overflow(struct io_kiocb *req) 819 { 820 if (!(req->flags & REQ_F_CQE32_INIT)) { 821 req->extra1 = 0; 822 req->extra2 = 0; 823 } 824 return io_cqring_event_overflow(req->ctx, req->cqe.user_data, 825 req->cqe.res, req->cqe.flags, 826 req->extra1, req->extra2); 827 } 828 829 /* 830 * writes to the cq entry need to come after reading head; the 831 * control dependency is enough as we're using WRITE_ONCE to 832 * fill the cq entry 833 */ 834 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow) 835 { 836 struct io_rings *rings = ctx->rings; 837 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 838 unsigned int free, queued, len; 839 840 /* 841 * Posting into the CQ when there are pending overflowed CQEs may break 842 * ordering guarantees, which will affect links, F_MORE users and more. 843 * Force overflow the completion. 844 */ 845 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 846 return NULL; 847 848 /* userspace may cheat modifying the tail, be safe and do min */ 849 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 850 free = ctx->cq_entries - queued; 851 /* we need a contiguous range, limit based on the current array offset */ 852 len = min(free, ctx->cq_entries - off); 853 if (!len) 854 return NULL; 855 856 if (ctx->flags & IORING_SETUP_CQE32) { 857 off <<= 1; 858 len <<= 1; 859 } 860 861 ctx->cqe_cached = &rings->cqes[off]; 862 ctx->cqe_sentinel = ctx->cqe_cached + len; 863 864 ctx->cached_cq_tail++; 865 ctx->cqe_cached++; 866 if (ctx->flags & IORING_SETUP_CQE32) 867 ctx->cqe_cached++; 868 return &rings->cqes[off]; 869 } 870 871 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 872 u32 cflags) 873 { 874 struct io_uring_cqe *cqe; 875 876 ctx->cq_extra++; 877 878 /* 879 * If we can't get a cq entry, userspace overflowed the 880 * submission (by quite a lot). Increment the overflow count in 881 * the ring. 882 */ 883 cqe = io_get_cqe(ctx); 884 if (likely(cqe)) { 885 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 886 887 WRITE_ONCE(cqe->user_data, user_data); 888 WRITE_ONCE(cqe->res, res); 889 WRITE_ONCE(cqe->flags, cflags); 890 891 if (ctx->flags & IORING_SETUP_CQE32) { 892 WRITE_ONCE(cqe->big_cqe[0], 0); 893 WRITE_ONCE(cqe->big_cqe[1], 0); 894 } 895 return true; 896 } 897 return false; 898 } 899 900 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 901 __must_hold(&ctx->uring_lock) 902 { 903 struct io_submit_state *state = &ctx->submit_state; 904 unsigned int i; 905 906 lockdep_assert_held(&ctx->uring_lock); 907 for (i = 0; i < state->cqes_count; i++) { 908 struct io_uring_cqe *cqe = &state->cqes[i]; 909 910 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 911 if (ctx->task_complete) { 912 spin_lock(&ctx->completion_lock); 913 io_cqring_event_overflow(ctx, cqe->user_data, 914 cqe->res, cqe->flags, 0, 0); 915 spin_unlock(&ctx->completion_lock); 916 } else { 917 io_cqring_event_overflow(ctx, cqe->user_data, 918 cqe->res, cqe->flags, 0, 0); 919 } 920 } 921 } 922 state->cqes_count = 0; 923 } 924 925 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 926 bool allow_overflow) 927 { 928 bool filled; 929 930 io_cq_lock(ctx); 931 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 932 if (!filled && allow_overflow) 933 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 934 935 io_cq_unlock_post(ctx); 936 return filled; 937 } 938 939 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 940 { 941 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 942 } 943 944 bool io_aux_cqe(const struct io_kiocb *req, bool defer, s32 res, u32 cflags, 945 bool allow_overflow) 946 { 947 struct io_ring_ctx *ctx = req->ctx; 948 u64 user_data = req->cqe.user_data; 949 struct io_uring_cqe *cqe; 950 951 if (!defer) 952 return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow); 953 954 lockdep_assert_held(&ctx->uring_lock); 955 956 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->submit_state.cqes)) { 957 __io_cq_lock(ctx); 958 __io_flush_post_cqes(ctx); 959 /* no need to flush - flush is deferred */ 960 __io_cq_unlock_post(ctx); 961 } 962 963 /* For defered completions this is not as strict as it is otherwise, 964 * however it's main job is to prevent unbounded posted completions, 965 * and in that it works just as well. 966 */ 967 if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 968 return false; 969 970 cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++]; 971 cqe->user_data = user_data; 972 cqe->res = res; 973 cqe->flags = cflags; 974 return true; 975 } 976 977 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 978 { 979 struct io_ring_ctx *ctx = req->ctx; 980 struct io_rsrc_node *rsrc_node = NULL; 981 982 io_cq_lock(ctx); 983 if (!(req->flags & REQ_F_CQE_SKIP)) 984 io_fill_cqe_req(ctx, req); 985 986 /* 987 * If we're the last reference to this request, add to our locked 988 * free_list cache. 989 */ 990 if (req_ref_put_and_test(req)) { 991 if (req->flags & IO_REQ_LINK_FLAGS) { 992 if (req->flags & IO_DISARM_MASK) 993 io_disarm_next(req); 994 if (req->link) { 995 io_req_task_queue(req->link); 996 req->link = NULL; 997 } 998 } 999 io_put_kbuf_comp(req); 1000 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1001 io_clean_op(req); 1002 if (!(req->flags & REQ_F_FIXED_FILE)) 1003 io_put_file(req->file); 1004 1005 rsrc_node = req->rsrc_node; 1006 /* 1007 * Selected buffer deallocation in io_clean_op() assumes that 1008 * we don't hold ->completion_lock. Clean them here to avoid 1009 * deadlocks. 1010 */ 1011 io_put_task_remote(req->task); 1012 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1013 ctx->locked_free_nr++; 1014 } 1015 io_cq_unlock_post(ctx); 1016 1017 if (rsrc_node) { 1018 io_ring_submit_lock(ctx, issue_flags); 1019 io_put_rsrc_node(ctx, rsrc_node); 1020 io_ring_submit_unlock(ctx, issue_flags); 1021 } 1022 } 1023 1024 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1025 { 1026 if (req->ctx->task_complete && req->ctx->submitter_task != current) { 1027 req->io_task_work.func = io_req_task_complete; 1028 io_req_task_work_add(req); 1029 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1030 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 1031 __io_req_complete_post(req, issue_flags); 1032 } else { 1033 struct io_ring_ctx *ctx = req->ctx; 1034 1035 mutex_lock(&ctx->uring_lock); 1036 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); 1037 mutex_unlock(&ctx->uring_lock); 1038 } 1039 } 1040 1041 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1042 __must_hold(&ctx->uring_lock) 1043 { 1044 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1045 1046 lockdep_assert_held(&req->ctx->uring_lock); 1047 1048 req_set_fail(req); 1049 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1050 if (def->fail) 1051 def->fail(req); 1052 io_req_complete_defer(req); 1053 } 1054 1055 /* 1056 * Don't initialise the fields below on every allocation, but do that in 1057 * advance and keep them valid across allocations. 1058 */ 1059 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1060 { 1061 req->ctx = ctx; 1062 req->link = NULL; 1063 req->async_data = NULL; 1064 /* not necessary, but safer to zero */ 1065 req->cqe.res = 0; 1066 } 1067 1068 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1069 struct io_submit_state *state) 1070 { 1071 spin_lock(&ctx->completion_lock); 1072 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1073 ctx->locked_free_nr = 0; 1074 spin_unlock(&ctx->completion_lock); 1075 } 1076 1077 /* 1078 * A request might get retired back into the request caches even before opcode 1079 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1080 * Because of that, io_alloc_req() should be called only under ->uring_lock 1081 * and with extra caution to not get a request that is still worked on. 1082 */ 1083 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1084 __must_hold(&ctx->uring_lock) 1085 { 1086 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1087 void *reqs[IO_REQ_ALLOC_BATCH]; 1088 int ret, i; 1089 1090 /* 1091 * If we have more than a batch's worth of requests in our IRQ side 1092 * locked cache, grab the lock and move them over to our submission 1093 * side cache. 1094 */ 1095 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1096 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1097 if (!io_req_cache_empty(ctx)) 1098 return true; 1099 } 1100 1101 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1102 1103 /* 1104 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1105 * retry single alloc to be on the safe side. 1106 */ 1107 if (unlikely(ret <= 0)) { 1108 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1109 if (!reqs[0]) 1110 return false; 1111 ret = 1; 1112 } 1113 1114 percpu_ref_get_many(&ctx->refs, ret); 1115 for (i = 0; i < ret; i++) { 1116 struct io_kiocb *req = reqs[i]; 1117 1118 io_preinit_req(req, ctx); 1119 io_req_add_to_cache(req, ctx); 1120 } 1121 return true; 1122 } 1123 1124 __cold void io_free_req(struct io_kiocb *req) 1125 { 1126 /* refs were already put, restore them for io_req_task_complete() */ 1127 req->flags &= ~REQ_F_REFCOUNT; 1128 /* we only want to free it, don't post CQEs */ 1129 req->flags |= REQ_F_CQE_SKIP; 1130 req->io_task_work.func = io_req_task_complete; 1131 io_req_task_work_add(req); 1132 } 1133 1134 static void __io_req_find_next_prep(struct io_kiocb *req) 1135 { 1136 struct io_ring_ctx *ctx = req->ctx; 1137 1138 spin_lock(&ctx->completion_lock); 1139 io_disarm_next(req); 1140 spin_unlock(&ctx->completion_lock); 1141 } 1142 1143 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1144 { 1145 struct io_kiocb *nxt; 1146 1147 /* 1148 * If LINK is set, we have dependent requests in this chain. If we 1149 * didn't fail this request, queue the first one up, moving any other 1150 * dependencies to the next request. In case of failure, fail the rest 1151 * of the chain. 1152 */ 1153 if (unlikely(req->flags & IO_DISARM_MASK)) 1154 __io_req_find_next_prep(req); 1155 nxt = req->link; 1156 req->link = NULL; 1157 return nxt; 1158 } 1159 1160 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1161 { 1162 if (!ctx) 1163 return; 1164 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1165 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1166 if (ts->locked) { 1167 io_submit_flush_completions(ctx); 1168 mutex_unlock(&ctx->uring_lock); 1169 ts->locked = false; 1170 } 1171 percpu_ref_put(&ctx->refs); 1172 } 1173 1174 static unsigned int handle_tw_list(struct llist_node *node, 1175 struct io_ring_ctx **ctx, 1176 struct io_tw_state *ts, 1177 struct llist_node *last) 1178 { 1179 unsigned int count = 0; 1180 1181 while (node && node != last) { 1182 struct llist_node *next = node->next; 1183 struct io_kiocb *req = container_of(node, struct io_kiocb, 1184 io_task_work.node); 1185 1186 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1187 1188 if (req->ctx != *ctx) { 1189 ctx_flush_and_put(*ctx, ts); 1190 *ctx = req->ctx; 1191 /* if not contended, grab and improve batching */ 1192 ts->locked = mutex_trylock(&(*ctx)->uring_lock); 1193 percpu_ref_get(&(*ctx)->refs); 1194 } 1195 INDIRECT_CALL_2(req->io_task_work.func, 1196 io_poll_task_func, io_req_rw_complete, 1197 req, ts); 1198 node = next; 1199 count++; 1200 if (unlikely(need_resched())) { 1201 ctx_flush_and_put(*ctx, ts); 1202 *ctx = NULL; 1203 cond_resched(); 1204 } 1205 } 1206 1207 return count; 1208 } 1209 1210 /** 1211 * io_llist_xchg - swap all entries in a lock-less list 1212 * @head: the head of lock-less list to delete all entries 1213 * @new: new entry as the head of the list 1214 * 1215 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1216 * The order of entries returned is from the newest to the oldest added one. 1217 */ 1218 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1219 struct llist_node *new) 1220 { 1221 return xchg(&head->first, new); 1222 } 1223 1224 /** 1225 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1226 * @head: the head of lock-less list to delete all entries 1227 * @old: expected old value of the first entry of the list 1228 * @new: new entry as the head of the list 1229 * 1230 * perform a cmpxchg on the first entry of the list. 1231 */ 1232 1233 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1234 struct llist_node *old, 1235 struct llist_node *new) 1236 { 1237 return cmpxchg(&head->first, old, new); 1238 } 1239 1240 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1241 { 1242 struct llist_node *node = llist_del_all(&tctx->task_list); 1243 struct io_ring_ctx *last_ctx = NULL; 1244 struct io_kiocb *req; 1245 1246 while (node) { 1247 req = container_of(node, struct io_kiocb, io_task_work.node); 1248 node = node->next; 1249 if (sync && last_ctx != req->ctx) { 1250 if (last_ctx) { 1251 flush_delayed_work(&last_ctx->fallback_work); 1252 percpu_ref_put(&last_ctx->refs); 1253 } 1254 last_ctx = req->ctx; 1255 percpu_ref_get(&last_ctx->refs); 1256 } 1257 if (llist_add(&req->io_task_work.node, 1258 &req->ctx->fallback_llist)) 1259 schedule_delayed_work(&req->ctx->fallback_work, 1); 1260 } 1261 1262 if (last_ctx) { 1263 flush_delayed_work(&last_ctx->fallback_work); 1264 percpu_ref_put(&last_ctx->refs); 1265 } 1266 } 1267 1268 void tctx_task_work(struct callback_head *cb) 1269 { 1270 struct io_tw_state ts = {}; 1271 struct io_ring_ctx *ctx = NULL; 1272 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1273 task_work); 1274 struct llist_node fake = {}; 1275 struct llist_node *node; 1276 unsigned int loops = 0; 1277 unsigned int count = 0; 1278 1279 if (unlikely(current->flags & PF_EXITING)) { 1280 io_fallback_tw(tctx, true); 1281 return; 1282 } 1283 1284 do { 1285 loops++; 1286 node = io_llist_xchg(&tctx->task_list, &fake); 1287 count += handle_tw_list(node, &ctx, &ts, &fake); 1288 1289 /* skip expensive cmpxchg if there are items in the list */ 1290 if (READ_ONCE(tctx->task_list.first) != &fake) 1291 continue; 1292 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) { 1293 io_submit_flush_completions(ctx); 1294 if (READ_ONCE(tctx->task_list.first) != &fake) 1295 continue; 1296 } 1297 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1298 } while (node != &fake); 1299 1300 ctx_flush_and_put(ctx, &ts); 1301 1302 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1303 if (unlikely(atomic_read(&tctx->in_cancel))) 1304 io_uring_drop_tctx_refs(current); 1305 1306 trace_io_uring_task_work_run(tctx, count, loops); 1307 } 1308 1309 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1310 { 1311 struct io_ring_ctx *ctx = req->ctx; 1312 unsigned nr_wait, nr_tw, nr_tw_prev; 1313 struct llist_node *first; 1314 1315 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1316 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1317 1318 first = READ_ONCE(ctx->work_llist.first); 1319 do { 1320 nr_tw_prev = 0; 1321 if (first) { 1322 struct io_kiocb *first_req = container_of(first, 1323 struct io_kiocb, 1324 io_task_work.node); 1325 /* 1326 * Might be executed at any moment, rely on 1327 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1328 */ 1329 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1330 } 1331 nr_tw = nr_tw_prev + 1; 1332 /* Large enough to fail the nr_wait comparison below */ 1333 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1334 nr_tw = -1U; 1335 1336 req->nr_tw = nr_tw; 1337 req->io_task_work.node.next = first; 1338 } while (!try_cmpxchg(&ctx->work_llist.first, &first, 1339 &req->io_task_work.node)); 1340 1341 if (!first) { 1342 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1343 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1344 if (ctx->has_evfd) 1345 io_eventfd_signal(ctx); 1346 } 1347 1348 nr_wait = atomic_read(&ctx->cq_wait_nr); 1349 /* no one is waiting */ 1350 if (!nr_wait) 1351 return; 1352 /* either not enough or the previous add has already woken it up */ 1353 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait) 1354 return; 1355 /* pairs with set_current_state() in io_cqring_wait() */ 1356 smp_mb__after_atomic(); 1357 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1358 } 1359 1360 static void io_req_normal_work_add(struct io_kiocb *req) 1361 { 1362 struct io_uring_task *tctx = req->task->io_uring; 1363 struct io_ring_ctx *ctx = req->ctx; 1364 1365 /* task_work already pending, we're done */ 1366 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1367 return; 1368 1369 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1370 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1371 1372 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1373 return; 1374 1375 io_fallback_tw(tctx, false); 1376 } 1377 1378 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1379 { 1380 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1381 rcu_read_lock(); 1382 io_req_local_work_add(req, flags); 1383 rcu_read_unlock(); 1384 } else { 1385 io_req_normal_work_add(req); 1386 } 1387 } 1388 1389 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1390 { 1391 struct llist_node *node; 1392 1393 node = llist_del_all(&ctx->work_llist); 1394 while (node) { 1395 struct io_kiocb *req = container_of(node, struct io_kiocb, 1396 io_task_work.node); 1397 1398 node = node->next; 1399 io_req_normal_work_add(req); 1400 } 1401 } 1402 1403 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1404 { 1405 struct llist_node *node; 1406 unsigned int loops = 0; 1407 int ret = 0; 1408 1409 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1410 return -EEXIST; 1411 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1412 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1413 again: 1414 /* 1415 * llists are in reverse order, flip it back the right way before 1416 * running the pending items. 1417 */ 1418 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1419 while (node) { 1420 struct llist_node *next = node->next; 1421 struct io_kiocb *req = container_of(node, struct io_kiocb, 1422 io_task_work.node); 1423 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1424 INDIRECT_CALL_2(req->io_task_work.func, 1425 io_poll_task_func, io_req_rw_complete, 1426 req, ts); 1427 ret++; 1428 node = next; 1429 } 1430 loops++; 1431 1432 if (!llist_empty(&ctx->work_llist)) 1433 goto again; 1434 if (ts->locked) { 1435 io_submit_flush_completions(ctx); 1436 if (!llist_empty(&ctx->work_llist)) 1437 goto again; 1438 } 1439 trace_io_uring_local_work_run(ctx, ret, loops); 1440 return ret; 1441 } 1442 1443 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx) 1444 { 1445 struct io_tw_state ts = { .locked = true, }; 1446 int ret; 1447 1448 if (llist_empty(&ctx->work_llist)) 1449 return 0; 1450 1451 ret = __io_run_local_work(ctx, &ts); 1452 /* shouldn't happen! */ 1453 if (WARN_ON_ONCE(!ts.locked)) 1454 mutex_lock(&ctx->uring_lock); 1455 return ret; 1456 } 1457 1458 static int io_run_local_work(struct io_ring_ctx *ctx) 1459 { 1460 struct io_tw_state ts = {}; 1461 int ret; 1462 1463 ts.locked = mutex_trylock(&ctx->uring_lock); 1464 ret = __io_run_local_work(ctx, &ts); 1465 if (ts.locked) 1466 mutex_unlock(&ctx->uring_lock); 1467 1468 return ret; 1469 } 1470 1471 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1472 { 1473 io_tw_lock(req->ctx, ts); 1474 io_req_defer_failed(req, req->cqe.res); 1475 } 1476 1477 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1478 { 1479 io_tw_lock(req->ctx, ts); 1480 /* req->task == current here, checking PF_EXITING is safe */ 1481 if (unlikely(req->task->flags & PF_EXITING)) 1482 io_req_defer_failed(req, -EFAULT); 1483 else if (req->flags & REQ_F_FORCE_ASYNC) 1484 io_queue_iowq(req, ts); 1485 else 1486 io_queue_sqe(req); 1487 } 1488 1489 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1490 { 1491 io_req_set_res(req, ret, 0); 1492 req->io_task_work.func = io_req_task_cancel; 1493 io_req_task_work_add(req); 1494 } 1495 1496 void io_req_task_queue(struct io_kiocb *req) 1497 { 1498 req->io_task_work.func = io_req_task_submit; 1499 io_req_task_work_add(req); 1500 } 1501 1502 void io_queue_next(struct io_kiocb *req) 1503 { 1504 struct io_kiocb *nxt = io_req_find_next(req); 1505 1506 if (nxt) 1507 io_req_task_queue(nxt); 1508 } 1509 1510 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node) 1511 __must_hold(&ctx->uring_lock) 1512 { 1513 do { 1514 struct io_kiocb *req = container_of(node, struct io_kiocb, 1515 comp_list); 1516 1517 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1518 if (req->flags & REQ_F_REFCOUNT) { 1519 node = req->comp_list.next; 1520 if (!req_ref_put_and_test(req)) 1521 continue; 1522 } 1523 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1524 struct async_poll *apoll = req->apoll; 1525 1526 if (apoll->double_poll) 1527 kfree(apoll->double_poll); 1528 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1529 kfree(apoll); 1530 req->flags &= ~REQ_F_POLLED; 1531 } 1532 if (req->flags & IO_REQ_LINK_FLAGS) 1533 io_queue_next(req); 1534 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1535 io_clean_op(req); 1536 } 1537 if (!(req->flags & REQ_F_FIXED_FILE)) 1538 io_put_file(req->file); 1539 1540 io_req_put_rsrc_locked(req, ctx); 1541 1542 io_put_task(req->task); 1543 node = req->comp_list.next; 1544 io_req_add_to_cache(req, ctx); 1545 } while (node); 1546 } 1547 1548 static void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1549 __must_hold(&ctx->uring_lock) 1550 { 1551 struct io_submit_state *state = &ctx->submit_state; 1552 struct io_wq_work_node *node; 1553 1554 __io_cq_lock(ctx); 1555 /* must come first to preserve CQE ordering in failure cases */ 1556 if (state->cqes_count) 1557 __io_flush_post_cqes(ctx); 1558 __wq_list_for_each(node, &state->compl_reqs) { 1559 struct io_kiocb *req = container_of(node, struct io_kiocb, 1560 comp_list); 1561 1562 if (!(req->flags & REQ_F_CQE_SKIP) && 1563 unlikely(!__io_fill_cqe_req(ctx, req))) { 1564 if (ctx->task_complete) { 1565 spin_lock(&ctx->completion_lock); 1566 io_req_cqe_overflow(req); 1567 spin_unlock(&ctx->completion_lock); 1568 } else { 1569 io_req_cqe_overflow(req); 1570 } 1571 } 1572 } 1573 __io_cq_unlock_post(ctx); 1574 1575 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1576 io_free_batch_list(ctx, state->compl_reqs.first); 1577 INIT_WQ_LIST(&state->compl_reqs); 1578 } 1579 } 1580 1581 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1582 { 1583 /* See comment at the top of this file */ 1584 smp_rmb(); 1585 return __io_cqring_events(ctx); 1586 } 1587 1588 /* 1589 * We can't just wait for polled events to come to us, we have to actively 1590 * find and complete them. 1591 */ 1592 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1593 { 1594 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1595 return; 1596 1597 mutex_lock(&ctx->uring_lock); 1598 while (!wq_list_empty(&ctx->iopoll_list)) { 1599 /* let it sleep and repeat later if can't complete a request */ 1600 if (io_do_iopoll(ctx, true) == 0) 1601 break; 1602 /* 1603 * Ensure we allow local-to-the-cpu processing to take place, 1604 * in this case we need to ensure that we reap all events. 1605 * Also let task_work, etc. to progress by releasing the mutex 1606 */ 1607 if (need_resched()) { 1608 mutex_unlock(&ctx->uring_lock); 1609 cond_resched(); 1610 mutex_lock(&ctx->uring_lock); 1611 } 1612 } 1613 mutex_unlock(&ctx->uring_lock); 1614 } 1615 1616 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1617 { 1618 unsigned int nr_events = 0; 1619 int ret = 0; 1620 unsigned long check_cq; 1621 1622 if (!io_allowed_run_tw(ctx)) 1623 return -EEXIST; 1624 1625 check_cq = READ_ONCE(ctx->check_cq); 1626 if (unlikely(check_cq)) { 1627 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1628 __io_cqring_overflow_flush(ctx); 1629 /* 1630 * Similarly do not spin if we have not informed the user of any 1631 * dropped CQE. 1632 */ 1633 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1634 return -EBADR; 1635 } 1636 /* 1637 * Don't enter poll loop if we already have events pending. 1638 * If we do, we can potentially be spinning for commands that 1639 * already triggered a CQE (eg in error). 1640 */ 1641 if (io_cqring_events(ctx)) 1642 return 0; 1643 1644 do { 1645 /* 1646 * If a submit got punted to a workqueue, we can have the 1647 * application entering polling for a command before it gets 1648 * issued. That app will hold the uring_lock for the duration 1649 * of the poll right here, so we need to take a breather every 1650 * now and then to ensure that the issue has a chance to add 1651 * the poll to the issued list. Otherwise we can spin here 1652 * forever, while the workqueue is stuck trying to acquire the 1653 * very same mutex. 1654 */ 1655 if (wq_list_empty(&ctx->iopoll_list) || 1656 io_task_work_pending(ctx)) { 1657 u32 tail = ctx->cached_cq_tail; 1658 1659 (void) io_run_local_work_locked(ctx); 1660 1661 if (task_work_pending(current) || 1662 wq_list_empty(&ctx->iopoll_list)) { 1663 mutex_unlock(&ctx->uring_lock); 1664 io_run_task_work(); 1665 mutex_lock(&ctx->uring_lock); 1666 } 1667 /* some requests don't go through iopoll_list */ 1668 if (tail != ctx->cached_cq_tail || 1669 wq_list_empty(&ctx->iopoll_list)) 1670 break; 1671 } 1672 ret = io_do_iopoll(ctx, !min); 1673 if (ret < 0) 1674 break; 1675 nr_events += ret; 1676 ret = 0; 1677 } while (nr_events < min && !need_resched()); 1678 1679 return ret; 1680 } 1681 1682 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1683 { 1684 if (ts->locked) 1685 io_req_complete_defer(req); 1686 else 1687 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1688 } 1689 1690 /* 1691 * After the iocb has been issued, it's safe to be found on the poll list. 1692 * Adding the kiocb to the list AFTER submission ensures that we don't 1693 * find it from a io_do_iopoll() thread before the issuer is done 1694 * accessing the kiocb cookie. 1695 */ 1696 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1697 { 1698 struct io_ring_ctx *ctx = req->ctx; 1699 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1700 1701 /* workqueue context doesn't hold uring_lock, grab it now */ 1702 if (unlikely(needs_lock)) 1703 mutex_lock(&ctx->uring_lock); 1704 1705 /* 1706 * Track whether we have multiple files in our lists. This will impact 1707 * how we do polling eventually, not spinning if we're on potentially 1708 * different devices. 1709 */ 1710 if (wq_list_empty(&ctx->iopoll_list)) { 1711 ctx->poll_multi_queue = false; 1712 } else if (!ctx->poll_multi_queue) { 1713 struct io_kiocb *list_req; 1714 1715 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1716 comp_list); 1717 if (list_req->file != req->file) 1718 ctx->poll_multi_queue = true; 1719 } 1720 1721 /* 1722 * For fast devices, IO may have already completed. If it has, add 1723 * it to the front so we find it first. 1724 */ 1725 if (READ_ONCE(req->iopoll_completed)) 1726 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1727 else 1728 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1729 1730 if (unlikely(needs_lock)) { 1731 /* 1732 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1733 * in sq thread task context or in io worker task context. If 1734 * current task context is sq thread, we don't need to check 1735 * whether should wake up sq thread. 1736 */ 1737 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1738 wq_has_sleeper(&ctx->sq_data->wait)) 1739 wake_up(&ctx->sq_data->wait); 1740 1741 mutex_unlock(&ctx->uring_lock); 1742 } 1743 } 1744 1745 unsigned int io_file_get_flags(struct file *file) 1746 { 1747 unsigned int res = 0; 1748 1749 if (S_ISREG(file_inode(file)->i_mode)) 1750 res |= REQ_F_ISREG; 1751 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1752 res |= REQ_F_SUPPORT_NOWAIT; 1753 return res; 1754 } 1755 1756 bool io_alloc_async_data(struct io_kiocb *req) 1757 { 1758 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1759 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1760 if (req->async_data) { 1761 req->flags |= REQ_F_ASYNC_DATA; 1762 return false; 1763 } 1764 return true; 1765 } 1766 1767 int io_req_prep_async(struct io_kiocb *req) 1768 { 1769 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1770 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1771 1772 /* assign early for deferred execution for non-fixed file */ 1773 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1774 req->file = io_file_get_normal(req, req->cqe.fd); 1775 if (!cdef->prep_async) 1776 return 0; 1777 if (WARN_ON_ONCE(req_has_async_data(req))) 1778 return -EFAULT; 1779 if (!def->manual_alloc) { 1780 if (io_alloc_async_data(req)) 1781 return -EAGAIN; 1782 } 1783 return cdef->prep_async(req); 1784 } 1785 1786 static u32 io_get_sequence(struct io_kiocb *req) 1787 { 1788 u32 seq = req->ctx->cached_sq_head; 1789 struct io_kiocb *cur; 1790 1791 /* need original cached_sq_head, but it was increased for each req */ 1792 io_for_each_link(cur, req) 1793 seq--; 1794 return seq; 1795 } 1796 1797 static __cold void io_drain_req(struct io_kiocb *req) 1798 __must_hold(&ctx->uring_lock) 1799 { 1800 struct io_ring_ctx *ctx = req->ctx; 1801 struct io_defer_entry *de; 1802 int ret; 1803 u32 seq = io_get_sequence(req); 1804 1805 /* Still need defer if there is pending req in defer list. */ 1806 spin_lock(&ctx->completion_lock); 1807 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1808 spin_unlock(&ctx->completion_lock); 1809 queue: 1810 ctx->drain_active = false; 1811 io_req_task_queue(req); 1812 return; 1813 } 1814 spin_unlock(&ctx->completion_lock); 1815 1816 io_prep_async_link(req); 1817 de = kmalloc(sizeof(*de), GFP_KERNEL); 1818 if (!de) { 1819 ret = -ENOMEM; 1820 io_req_defer_failed(req, ret); 1821 return; 1822 } 1823 1824 spin_lock(&ctx->completion_lock); 1825 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1826 spin_unlock(&ctx->completion_lock); 1827 kfree(de); 1828 goto queue; 1829 } 1830 1831 trace_io_uring_defer(req); 1832 de->req = req; 1833 de->seq = seq; 1834 list_add_tail(&de->list, &ctx->defer_list); 1835 spin_unlock(&ctx->completion_lock); 1836 } 1837 1838 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1839 unsigned int issue_flags) 1840 { 1841 if (req->file || !def->needs_file) 1842 return true; 1843 1844 if (req->flags & REQ_F_FIXED_FILE) 1845 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1846 else 1847 req->file = io_file_get_normal(req, req->cqe.fd); 1848 1849 return !!req->file; 1850 } 1851 1852 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1853 { 1854 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1855 const struct cred *creds = NULL; 1856 int ret; 1857 1858 if (unlikely(!io_assign_file(req, def, issue_flags))) 1859 return -EBADF; 1860 1861 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1862 creds = override_creds(req->creds); 1863 1864 if (!def->audit_skip) 1865 audit_uring_entry(req->opcode); 1866 1867 ret = def->issue(req, issue_flags); 1868 1869 if (!def->audit_skip) 1870 audit_uring_exit(!ret, ret); 1871 1872 if (creds) 1873 revert_creds(creds); 1874 1875 if (ret == IOU_OK) { 1876 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1877 io_req_complete_defer(req); 1878 else 1879 io_req_complete_post(req, issue_flags); 1880 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1881 return ret; 1882 1883 /* If the op doesn't have a file, we're not polling for it */ 1884 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1885 io_iopoll_req_issued(req, issue_flags); 1886 1887 return 0; 1888 } 1889 1890 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1891 { 1892 io_tw_lock(req->ctx, ts); 1893 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1894 IO_URING_F_COMPLETE_DEFER); 1895 } 1896 1897 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1898 { 1899 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1900 struct io_kiocb *nxt = NULL; 1901 1902 if (req_ref_put_and_test(req)) { 1903 if (req->flags & IO_REQ_LINK_FLAGS) 1904 nxt = io_req_find_next(req); 1905 io_free_req(req); 1906 } 1907 return nxt ? &nxt->work : NULL; 1908 } 1909 1910 void io_wq_submit_work(struct io_wq_work *work) 1911 { 1912 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1913 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1914 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1915 bool needs_poll = false; 1916 int ret = 0, err = -ECANCELED; 1917 1918 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1919 if (!(req->flags & REQ_F_REFCOUNT)) 1920 __io_req_set_refcount(req, 2); 1921 else 1922 req_ref_get(req); 1923 1924 io_arm_ltimeout(req); 1925 1926 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1927 if (work->flags & IO_WQ_WORK_CANCEL) { 1928 fail: 1929 io_req_task_queue_fail(req, err); 1930 return; 1931 } 1932 if (!io_assign_file(req, def, issue_flags)) { 1933 err = -EBADF; 1934 work->flags |= IO_WQ_WORK_CANCEL; 1935 goto fail; 1936 } 1937 1938 if (req->flags & REQ_F_FORCE_ASYNC) { 1939 bool opcode_poll = def->pollin || def->pollout; 1940 1941 if (opcode_poll && file_can_poll(req->file)) { 1942 needs_poll = true; 1943 issue_flags |= IO_URING_F_NONBLOCK; 1944 } 1945 } 1946 1947 do { 1948 ret = io_issue_sqe(req, issue_flags); 1949 if (ret != -EAGAIN) 1950 break; 1951 1952 /* 1953 * If REQ_F_NOWAIT is set, then don't wait or retry with 1954 * poll. -EAGAIN is final for that case. 1955 */ 1956 if (req->flags & REQ_F_NOWAIT) 1957 break; 1958 1959 /* 1960 * We can get EAGAIN for iopolled IO even though we're 1961 * forcing a sync submission from here, since we can't 1962 * wait for request slots on the block side. 1963 */ 1964 if (!needs_poll) { 1965 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1966 break; 1967 cond_resched(); 1968 continue; 1969 } 1970 1971 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1972 return; 1973 /* aborted or ready, in either case retry blocking */ 1974 needs_poll = false; 1975 issue_flags &= ~IO_URING_F_NONBLOCK; 1976 } while (1); 1977 1978 /* avoid locking problems by failing it from a clean context */ 1979 if (ret < 0) 1980 io_req_task_queue_fail(req, ret); 1981 } 1982 1983 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1984 unsigned int issue_flags) 1985 { 1986 struct io_ring_ctx *ctx = req->ctx; 1987 struct io_fixed_file *slot; 1988 struct file *file = NULL; 1989 1990 io_ring_submit_lock(ctx, issue_flags); 1991 1992 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 1993 goto out; 1994 fd = array_index_nospec(fd, ctx->nr_user_files); 1995 slot = io_fixed_file_slot(&ctx->file_table, fd); 1996 file = io_slot_file(slot); 1997 req->flags |= io_slot_flags(slot); 1998 io_req_set_rsrc_node(req, ctx, 0); 1999 out: 2000 io_ring_submit_unlock(ctx, issue_flags); 2001 return file; 2002 } 2003 2004 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 2005 { 2006 struct file *file = fget(fd); 2007 2008 trace_io_uring_file_get(req, fd); 2009 2010 /* we don't allow fixed io_uring files */ 2011 if (file && io_is_uring_fops(file)) 2012 io_req_track_inflight(req); 2013 return file; 2014 } 2015 2016 static void io_queue_async(struct io_kiocb *req, int ret) 2017 __must_hold(&req->ctx->uring_lock) 2018 { 2019 struct io_kiocb *linked_timeout; 2020 2021 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2022 io_req_defer_failed(req, ret); 2023 return; 2024 } 2025 2026 linked_timeout = io_prep_linked_timeout(req); 2027 2028 switch (io_arm_poll_handler(req, 0)) { 2029 case IO_APOLL_READY: 2030 io_kbuf_recycle(req, 0); 2031 io_req_task_queue(req); 2032 break; 2033 case IO_APOLL_ABORTED: 2034 io_kbuf_recycle(req, 0); 2035 io_queue_iowq(req, NULL); 2036 break; 2037 case IO_APOLL_OK: 2038 break; 2039 } 2040 2041 if (linked_timeout) 2042 io_queue_linked_timeout(linked_timeout); 2043 } 2044 2045 static inline void io_queue_sqe(struct io_kiocb *req) 2046 __must_hold(&req->ctx->uring_lock) 2047 { 2048 int ret; 2049 2050 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2051 2052 /* 2053 * We async punt it if the file wasn't marked NOWAIT, or if the file 2054 * doesn't support non-blocking read/write attempts 2055 */ 2056 if (likely(!ret)) 2057 io_arm_ltimeout(req); 2058 else 2059 io_queue_async(req, ret); 2060 } 2061 2062 static void io_queue_sqe_fallback(struct io_kiocb *req) 2063 __must_hold(&req->ctx->uring_lock) 2064 { 2065 if (unlikely(req->flags & REQ_F_FAIL)) { 2066 /* 2067 * We don't submit, fail them all, for that replace hardlinks 2068 * with normal links. Extra REQ_F_LINK is tolerated. 2069 */ 2070 req->flags &= ~REQ_F_HARDLINK; 2071 req->flags |= REQ_F_LINK; 2072 io_req_defer_failed(req, req->cqe.res); 2073 } else { 2074 int ret = io_req_prep_async(req); 2075 2076 if (unlikely(ret)) { 2077 io_req_defer_failed(req, ret); 2078 return; 2079 } 2080 2081 if (unlikely(req->ctx->drain_active)) 2082 io_drain_req(req); 2083 else 2084 io_queue_iowq(req, NULL); 2085 } 2086 } 2087 2088 /* 2089 * Check SQE restrictions (opcode and flags). 2090 * 2091 * Returns 'true' if SQE is allowed, 'false' otherwise. 2092 */ 2093 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2094 struct io_kiocb *req, 2095 unsigned int sqe_flags) 2096 { 2097 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2098 return false; 2099 2100 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2101 ctx->restrictions.sqe_flags_required) 2102 return false; 2103 2104 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2105 ctx->restrictions.sqe_flags_required)) 2106 return false; 2107 2108 return true; 2109 } 2110 2111 static void io_init_req_drain(struct io_kiocb *req) 2112 { 2113 struct io_ring_ctx *ctx = req->ctx; 2114 struct io_kiocb *head = ctx->submit_state.link.head; 2115 2116 ctx->drain_active = true; 2117 if (head) { 2118 /* 2119 * If we need to drain a request in the middle of a link, drain 2120 * the head request and the next request/link after the current 2121 * link. Considering sequential execution of links, 2122 * REQ_F_IO_DRAIN will be maintained for every request of our 2123 * link. 2124 */ 2125 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2126 ctx->drain_next = true; 2127 } 2128 } 2129 2130 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2131 const struct io_uring_sqe *sqe) 2132 __must_hold(&ctx->uring_lock) 2133 { 2134 const struct io_issue_def *def; 2135 unsigned int sqe_flags; 2136 int personality; 2137 u8 opcode; 2138 2139 /* req is partially pre-initialised, see io_preinit_req() */ 2140 req->opcode = opcode = READ_ONCE(sqe->opcode); 2141 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2142 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2143 req->cqe.user_data = READ_ONCE(sqe->user_data); 2144 req->file = NULL; 2145 req->rsrc_node = NULL; 2146 req->task = current; 2147 2148 if (unlikely(opcode >= IORING_OP_LAST)) { 2149 req->opcode = 0; 2150 return -EINVAL; 2151 } 2152 def = &io_issue_defs[opcode]; 2153 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2154 /* enforce forwards compatibility on users */ 2155 if (sqe_flags & ~SQE_VALID_FLAGS) 2156 return -EINVAL; 2157 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2158 if (!def->buffer_select) 2159 return -EOPNOTSUPP; 2160 req->buf_index = READ_ONCE(sqe->buf_group); 2161 } 2162 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2163 ctx->drain_disabled = true; 2164 if (sqe_flags & IOSQE_IO_DRAIN) { 2165 if (ctx->drain_disabled) 2166 return -EOPNOTSUPP; 2167 io_init_req_drain(req); 2168 } 2169 } 2170 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2171 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2172 return -EACCES; 2173 /* knock it to the slow queue path, will be drained there */ 2174 if (ctx->drain_active) 2175 req->flags |= REQ_F_FORCE_ASYNC; 2176 /* if there is no link, we're at "next" request and need to drain */ 2177 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2178 ctx->drain_next = false; 2179 ctx->drain_active = true; 2180 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2181 } 2182 } 2183 2184 if (!def->ioprio && sqe->ioprio) 2185 return -EINVAL; 2186 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2187 return -EINVAL; 2188 2189 if (def->needs_file) { 2190 struct io_submit_state *state = &ctx->submit_state; 2191 2192 req->cqe.fd = READ_ONCE(sqe->fd); 2193 2194 /* 2195 * Plug now if we have more than 2 IO left after this, and the 2196 * target is potentially a read/write to block based storage. 2197 */ 2198 if (state->need_plug && def->plug) { 2199 state->plug_started = true; 2200 state->need_plug = false; 2201 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2202 } 2203 } 2204 2205 personality = READ_ONCE(sqe->personality); 2206 if (personality) { 2207 int ret; 2208 2209 req->creds = xa_load(&ctx->personalities, personality); 2210 if (!req->creds) 2211 return -EINVAL; 2212 get_cred(req->creds); 2213 ret = security_uring_override_creds(req->creds); 2214 if (ret) { 2215 put_cred(req->creds); 2216 return ret; 2217 } 2218 req->flags |= REQ_F_CREDS; 2219 } 2220 2221 return def->prep(req, sqe); 2222 } 2223 2224 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2225 struct io_kiocb *req, int ret) 2226 { 2227 struct io_ring_ctx *ctx = req->ctx; 2228 struct io_submit_link *link = &ctx->submit_state.link; 2229 struct io_kiocb *head = link->head; 2230 2231 trace_io_uring_req_failed(sqe, req, ret); 2232 2233 /* 2234 * Avoid breaking links in the middle as it renders links with SQPOLL 2235 * unusable. Instead of failing eagerly, continue assembling the link if 2236 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2237 * should find the flag and handle the rest. 2238 */ 2239 req_fail_link_node(req, ret); 2240 if (head && !(head->flags & REQ_F_FAIL)) 2241 req_fail_link_node(head, -ECANCELED); 2242 2243 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2244 if (head) { 2245 link->last->link = req; 2246 link->head = NULL; 2247 req = head; 2248 } 2249 io_queue_sqe_fallback(req); 2250 return ret; 2251 } 2252 2253 if (head) 2254 link->last->link = req; 2255 else 2256 link->head = req; 2257 link->last = req; 2258 return 0; 2259 } 2260 2261 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2262 const struct io_uring_sqe *sqe) 2263 __must_hold(&ctx->uring_lock) 2264 { 2265 struct io_submit_link *link = &ctx->submit_state.link; 2266 int ret; 2267 2268 ret = io_init_req(ctx, req, sqe); 2269 if (unlikely(ret)) 2270 return io_submit_fail_init(sqe, req, ret); 2271 2272 trace_io_uring_submit_req(req); 2273 2274 /* 2275 * If we already have a head request, queue this one for async 2276 * submittal once the head completes. If we don't have a head but 2277 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2278 * submitted sync once the chain is complete. If none of those 2279 * conditions are true (normal request), then just queue it. 2280 */ 2281 if (unlikely(link->head)) { 2282 ret = io_req_prep_async(req); 2283 if (unlikely(ret)) 2284 return io_submit_fail_init(sqe, req, ret); 2285 2286 trace_io_uring_link(req, link->head); 2287 link->last->link = req; 2288 link->last = req; 2289 2290 if (req->flags & IO_REQ_LINK_FLAGS) 2291 return 0; 2292 /* last request of the link, flush it */ 2293 req = link->head; 2294 link->head = NULL; 2295 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2296 goto fallback; 2297 2298 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2299 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2300 if (req->flags & IO_REQ_LINK_FLAGS) { 2301 link->head = req; 2302 link->last = req; 2303 } else { 2304 fallback: 2305 io_queue_sqe_fallback(req); 2306 } 2307 return 0; 2308 } 2309 2310 io_queue_sqe(req); 2311 return 0; 2312 } 2313 2314 /* 2315 * Batched submission is done, ensure local IO is flushed out. 2316 */ 2317 static void io_submit_state_end(struct io_ring_ctx *ctx) 2318 { 2319 struct io_submit_state *state = &ctx->submit_state; 2320 2321 if (unlikely(state->link.head)) 2322 io_queue_sqe_fallback(state->link.head); 2323 /* flush only after queuing links as they can generate completions */ 2324 io_submit_flush_completions(ctx); 2325 if (state->plug_started) 2326 blk_finish_plug(&state->plug); 2327 } 2328 2329 /* 2330 * Start submission side cache. 2331 */ 2332 static void io_submit_state_start(struct io_submit_state *state, 2333 unsigned int max_ios) 2334 { 2335 state->plug_started = false; 2336 state->need_plug = max_ios > 2; 2337 state->submit_nr = max_ios; 2338 /* set only head, no need to init link_last in advance */ 2339 state->link.head = NULL; 2340 } 2341 2342 static void io_commit_sqring(struct io_ring_ctx *ctx) 2343 { 2344 struct io_rings *rings = ctx->rings; 2345 2346 /* 2347 * Ensure any loads from the SQEs are done at this point, 2348 * since once we write the new head, the application could 2349 * write new data to them. 2350 */ 2351 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2352 } 2353 2354 /* 2355 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2356 * that is mapped by userspace. This means that care needs to be taken to 2357 * ensure that reads are stable, as we cannot rely on userspace always 2358 * being a good citizen. If members of the sqe are validated and then later 2359 * used, it's important that those reads are done through READ_ONCE() to 2360 * prevent a re-load down the line. 2361 */ 2362 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2363 { 2364 unsigned head, mask = ctx->sq_entries - 1; 2365 unsigned sq_idx = ctx->cached_sq_head++ & mask; 2366 2367 /* 2368 * The cached sq head (or cq tail) serves two purposes: 2369 * 2370 * 1) allows us to batch the cost of updating the user visible 2371 * head updates. 2372 * 2) allows the kernel side to track the head on its own, even 2373 * though the application is the one updating it. 2374 */ 2375 head = READ_ONCE(ctx->sq_array[sq_idx]); 2376 if (likely(head < ctx->sq_entries)) { 2377 /* double index for 128-byte SQEs, twice as long */ 2378 if (ctx->flags & IORING_SETUP_SQE128) 2379 head <<= 1; 2380 *sqe = &ctx->sq_sqes[head]; 2381 return true; 2382 } 2383 2384 /* drop invalid entries */ 2385 ctx->cq_extra--; 2386 WRITE_ONCE(ctx->rings->sq_dropped, 2387 READ_ONCE(ctx->rings->sq_dropped) + 1); 2388 return false; 2389 } 2390 2391 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2392 __must_hold(&ctx->uring_lock) 2393 { 2394 unsigned int entries = io_sqring_entries(ctx); 2395 unsigned int left; 2396 int ret; 2397 2398 if (unlikely(!entries)) 2399 return 0; 2400 /* make sure SQ entry isn't read before tail */ 2401 ret = left = min(nr, entries); 2402 io_get_task_refs(left); 2403 io_submit_state_start(&ctx->submit_state, left); 2404 2405 do { 2406 const struct io_uring_sqe *sqe; 2407 struct io_kiocb *req; 2408 2409 if (unlikely(!io_alloc_req(ctx, &req))) 2410 break; 2411 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2412 io_req_add_to_cache(req, ctx); 2413 break; 2414 } 2415 2416 /* 2417 * Continue submitting even for sqe failure if the 2418 * ring was setup with IORING_SETUP_SUBMIT_ALL 2419 */ 2420 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2421 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2422 left--; 2423 break; 2424 } 2425 } while (--left); 2426 2427 if (unlikely(left)) { 2428 ret -= left; 2429 /* try again if it submitted nothing and can't allocate a req */ 2430 if (!ret && io_req_cache_empty(ctx)) 2431 ret = -EAGAIN; 2432 current->io_uring->cached_refs += left; 2433 } 2434 2435 io_submit_state_end(ctx); 2436 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2437 io_commit_sqring(ctx); 2438 return ret; 2439 } 2440 2441 struct io_wait_queue { 2442 struct wait_queue_entry wq; 2443 struct io_ring_ctx *ctx; 2444 unsigned cq_tail; 2445 unsigned nr_timeouts; 2446 ktime_t timeout; 2447 }; 2448 2449 static inline bool io_has_work(struct io_ring_ctx *ctx) 2450 { 2451 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2452 !llist_empty(&ctx->work_llist); 2453 } 2454 2455 static inline bool io_should_wake(struct io_wait_queue *iowq) 2456 { 2457 struct io_ring_ctx *ctx = iowq->ctx; 2458 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2459 2460 /* 2461 * Wake up if we have enough events, or if a timeout occurred since we 2462 * started waiting. For timeouts, we always want to return to userspace, 2463 * regardless of event count. 2464 */ 2465 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2466 } 2467 2468 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2469 int wake_flags, void *key) 2470 { 2471 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2472 2473 /* 2474 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2475 * the task, and the next invocation will do it. 2476 */ 2477 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2478 return autoremove_wake_function(curr, mode, wake_flags, key); 2479 return -1; 2480 } 2481 2482 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2483 { 2484 if (!llist_empty(&ctx->work_llist)) { 2485 __set_current_state(TASK_RUNNING); 2486 if (io_run_local_work(ctx) > 0) 2487 return 1; 2488 } 2489 if (io_run_task_work() > 0) 2490 return 1; 2491 if (task_sigpending(current)) 2492 return -EINTR; 2493 return 0; 2494 } 2495 2496 static bool current_pending_io(void) 2497 { 2498 struct io_uring_task *tctx = current->io_uring; 2499 2500 if (!tctx) 2501 return false; 2502 return percpu_counter_read_positive(&tctx->inflight); 2503 } 2504 2505 /* when returns >0, the caller should retry */ 2506 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2507 struct io_wait_queue *iowq) 2508 { 2509 int io_wait, ret; 2510 2511 if (unlikely(READ_ONCE(ctx->check_cq))) 2512 return 1; 2513 if (unlikely(!llist_empty(&ctx->work_llist))) 2514 return 1; 2515 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) 2516 return 1; 2517 if (unlikely(task_sigpending(current))) 2518 return -EINTR; 2519 if (unlikely(io_should_wake(iowq))) 2520 return 0; 2521 2522 /* 2523 * Mark us as being in io_wait if we have pending requests, so cpufreq 2524 * can take into account that the task is waiting for IO - turns out 2525 * to be important for low QD IO. 2526 */ 2527 io_wait = current->in_iowait; 2528 if (current_pending_io()) 2529 current->in_iowait = 1; 2530 ret = 0; 2531 if (iowq->timeout == KTIME_MAX) 2532 schedule(); 2533 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2534 ret = -ETIME; 2535 current->in_iowait = io_wait; 2536 return ret; 2537 } 2538 2539 /* 2540 * Wait until events become available, if we don't already have some. The 2541 * application must reap them itself, as they reside on the shared cq ring. 2542 */ 2543 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2544 const sigset_t __user *sig, size_t sigsz, 2545 struct __kernel_timespec __user *uts) 2546 { 2547 struct io_wait_queue iowq; 2548 struct io_rings *rings = ctx->rings; 2549 int ret; 2550 2551 if (!io_allowed_run_tw(ctx)) 2552 return -EEXIST; 2553 if (!llist_empty(&ctx->work_llist)) 2554 io_run_local_work(ctx); 2555 io_run_task_work(); 2556 io_cqring_overflow_flush(ctx); 2557 /* if user messes with these they will just get an early return */ 2558 if (__io_cqring_events_user(ctx) >= min_events) 2559 return 0; 2560 2561 if (sig) { 2562 #ifdef CONFIG_COMPAT 2563 if (in_compat_syscall()) 2564 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2565 sigsz); 2566 else 2567 #endif 2568 ret = set_user_sigmask(sig, sigsz); 2569 2570 if (ret) 2571 return ret; 2572 } 2573 2574 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2575 iowq.wq.private = current; 2576 INIT_LIST_HEAD(&iowq.wq.entry); 2577 iowq.ctx = ctx; 2578 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2579 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2580 iowq.timeout = KTIME_MAX; 2581 2582 if (uts) { 2583 struct timespec64 ts; 2584 2585 if (get_timespec64(&ts, uts)) 2586 return -EFAULT; 2587 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2588 } 2589 2590 trace_io_uring_cqring_wait(ctx, min_events); 2591 do { 2592 unsigned long check_cq; 2593 2594 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2595 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2596 2597 atomic_set(&ctx->cq_wait_nr, nr_wait); 2598 set_current_state(TASK_INTERRUPTIBLE); 2599 } else { 2600 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2601 TASK_INTERRUPTIBLE); 2602 } 2603 2604 ret = io_cqring_wait_schedule(ctx, &iowq); 2605 __set_current_state(TASK_RUNNING); 2606 atomic_set(&ctx->cq_wait_nr, 0); 2607 2608 if (ret < 0) 2609 break; 2610 /* 2611 * Run task_work after scheduling and before io_should_wake(). 2612 * If we got woken because of task_work being processed, run it 2613 * now rather than let the caller do another wait loop. 2614 */ 2615 io_run_task_work(); 2616 if (!llist_empty(&ctx->work_llist)) 2617 io_run_local_work(ctx); 2618 2619 check_cq = READ_ONCE(ctx->check_cq); 2620 if (unlikely(check_cq)) { 2621 /* let the caller flush overflows, retry */ 2622 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2623 io_cqring_do_overflow_flush(ctx); 2624 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2625 ret = -EBADR; 2626 break; 2627 } 2628 } 2629 2630 if (io_should_wake(&iowq)) { 2631 ret = 0; 2632 break; 2633 } 2634 cond_resched(); 2635 } while (1); 2636 2637 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2638 finish_wait(&ctx->cq_wait, &iowq.wq); 2639 restore_saved_sigmask_unless(ret == -EINTR); 2640 2641 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2642 } 2643 2644 static void io_mem_free(void *ptr) 2645 { 2646 struct page *page; 2647 2648 if (!ptr) 2649 return; 2650 2651 page = virt_to_head_page(ptr); 2652 if (put_page_testzero(page)) 2653 free_compound_page(page); 2654 } 2655 2656 static void io_pages_free(struct page ***pages, int npages) 2657 { 2658 struct page **page_array; 2659 int i; 2660 2661 if (!pages) 2662 return; 2663 page_array = *pages; 2664 for (i = 0; i < npages; i++) 2665 unpin_user_page(page_array[i]); 2666 kvfree(page_array); 2667 *pages = NULL; 2668 } 2669 2670 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, 2671 unsigned long uaddr, size_t size) 2672 { 2673 struct page **page_array; 2674 unsigned int nr_pages; 2675 int ret; 2676 2677 *npages = 0; 2678 2679 if (uaddr & (PAGE_SIZE - 1) || !size) 2680 return ERR_PTR(-EINVAL); 2681 2682 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2683 if (nr_pages > USHRT_MAX) 2684 return ERR_PTR(-EINVAL); 2685 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); 2686 if (!page_array) 2687 return ERR_PTR(-ENOMEM); 2688 2689 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, 2690 page_array); 2691 if (ret != nr_pages) { 2692 err: 2693 io_pages_free(&page_array, ret > 0 ? ret : 0); 2694 return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT); 2695 } 2696 /* 2697 * Should be a single page. If the ring is small enough that we can 2698 * use a normal page, that is fine. If we need multiple pages, then 2699 * userspace should use a huge page. That's the only way to guarantee 2700 * that we get contigious memory, outside of just being lucky or 2701 * (currently) having low memory fragmentation. 2702 */ 2703 if (page_array[0] != page_array[ret - 1]) 2704 goto err; 2705 *pages = page_array; 2706 *npages = nr_pages; 2707 return page_to_virt(page_array[0]); 2708 } 2709 2710 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2711 size_t size) 2712 { 2713 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2714 size); 2715 } 2716 2717 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2718 size_t size) 2719 { 2720 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2721 size); 2722 } 2723 2724 static void io_rings_free(struct io_ring_ctx *ctx) 2725 { 2726 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2727 io_mem_free(ctx->rings); 2728 io_mem_free(ctx->sq_sqes); 2729 ctx->rings = NULL; 2730 ctx->sq_sqes = NULL; 2731 } else { 2732 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2733 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2734 } 2735 } 2736 2737 static void *io_mem_alloc(size_t size) 2738 { 2739 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2740 void *ret; 2741 2742 ret = (void *) __get_free_pages(gfp, get_order(size)); 2743 if (ret) 2744 return ret; 2745 return ERR_PTR(-ENOMEM); 2746 } 2747 2748 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2749 unsigned int cq_entries, size_t *sq_offset) 2750 { 2751 struct io_rings *rings; 2752 size_t off, sq_array_size; 2753 2754 off = struct_size(rings, cqes, cq_entries); 2755 if (off == SIZE_MAX) 2756 return SIZE_MAX; 2757 if (ctx->flags & IORING_SETUP_CQE32) { 2758 if (check_shl_overflow(off, 1, &off)) 2759 return SIZE_MAX; 2760 } 2761 2762 #ifdef CONFIG_SMP 2763 off = ALIGN(off, SMP_CACHE_BYTES); 2764 if (off == 0) 2765 return SIZE_MAX; 2766 #endif 2767 2768 if (sq_offset) 2769 *sq_offset = off; 2770 2771 sq_array_size = array_size(sizeof(u32), sq_entries); 2772 if (sq_array_size == SIZE_MAX) 2773 return SIZE_MAX; 2774 2775 if (check_add_overflow(off, sq_array_size, &off)) 2776 return SIZE_MAX; 2777 2778 return off; 2779 } 2780 2781 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2782 unsigned int eventfd_async) 2783 { 2784 struct io_ev_fd *ev_fd; 2785 __s32 __user *fds = arg; 2786 int fd; 2787 2788 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2789 lockdep_is_held(&ctx->uring_lock)); 2790 if (ev_fd) 2791 return -EBUSY; 2792 2793 if (copy_from_user(&fd, fds, sizeof(*fds))) 2794 return -EFAULT; 2795 2796 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2797 if (!ev_fd) 2798 return -ENOMEM; 2799 2800 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2801 if (IS_ERR(ev_fd->cq_ev_fd)) { 2802 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2803 kfree(ev_fd); 2804 return ret; 2805 } 2806 2807 spin_lock(&ctx->completion_lock); 2808 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2809 spin_unlock(&ctx->completion_lock); 2810 2811 ev_fd->eventfd_async = eventfd_async; 2812 ctx->has_evfd = true; 2813 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2814 atomic_set(&ev_fd->refs, 1); 2815 atomic_set(&ev_fd->ops, 0); 2816 return 0; 2817 } 2818 2819 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2820 { 2821 struct io_ev_fd *ev_fd; 2822 2823 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2824 lockdep_is_held(&ctx->uring_lock)); 2825 if (ev_fd) { 2826 ctx->has_evfd = false; 2827 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2828 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2829 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2830 return 0; 2831 } 2832 2833 return -ENXIO; 2834 } 2835 2836 static void io_req_caches_free(struct io_ring_ctx *ctx) 2837 { 2838 struct io_kiocb *req; 2839 int nr = 0; 2840 2841 mutex_lock(&ctx->uring_lock); 2842 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2843 2844 while (!io_req_cache_empty(ctx)) { 2845 req = io_extract_req(ctx); 2846 kmem_cache_free(req_cachep, req); 2847 nr++; 2848 } 2849 if (nr) 2850 percpu_ref_put_many(&ctx->refs, nr); 2851 mutex_unlock(&ctx->uring_lock); 2852 } 2853 2854 static void io_rsrc_node_cache_free(struct io_cache_entry *entry) 2855 { 2856 kfree(container_of(entry, struct io_rsrc_node, cache)); 2857 } 2858 2859 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2860 { 2861 io_sq_thread_finish(ctx); 2862 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2863 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2864 return; 2865 2866 mutex_lock(&ctx->uring_lock); 2867 if (ctx->buf_data) 2868 __io_sqe_buffers_unregister(ctx); 2869 if (ctx->file_data) 2870 __io_sqe_files_unregister(ctx); 2871 io_cqring_overflow_kill(ctx); 2872 io_eventfd_unregister(ctx); 2873 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2874 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2875 io_destroy_buffers(ctx); 2876 mutex_unlock(&ctx->uring_lock); 2877 if (ctx->sq_creds) 2878 put_cred(ctx->sq_creds); 2879 if (ctx->submitter_task) 2880 put_task_struct(ctx->submitter_task); 2881 2882 /* there are no registered resources left, nobody uses it */ 2883 if (ctx->rsrc_node) 2884 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2885 2886 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2887 2888 #if defined(CONFIG_UNIX) 2889 if (ctx->ring_sock) { 2890 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2891 sock_release(ctx->ring_sock); 2892 } 2893 #endif 2894 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2895 2896 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); 2897 if (ctx->mm_account) { 2898 mmdrop(ctx->mm_account); 2899 ctx->mm_account = NULL; 2900 } 2901 io_rings_free(ctx); 2902 2903 percpu_ref_exit(&ctx->refs); 2904 free_uid(ctx->user); 2905 io_req_caches_free(ctx); 2906 if (ctx->hash_map) 2907 io_wq_put_hash(ctx->hash_map); 2908 kfree(ctx->cancel_table.hbs); 2909 kfree(ctx->cancel_table_locked.hbs); 2910 kfree(ctx->dummy_ubuf); 2911 kfree(ctx->io_bl); 2912 xa_destroy(&ctx->io_bl_xa); 2913 kfree(ctx); 2914 } 2915 2916 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2917 { 2918 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2919 poll_wq_task_work); 2920 2921 mutex_lock(&ctx->uring_lock); 2922 ctx->poll_activated = true; 2923 mutex_unlock(&ctx->uring_lock); 2924 2925 /* 2926 * Wake ups for some events between start of polling and activation 2927 * might've been lost due to loose synchronisation. 2928 */ 2929 wake_up_all(&ctx->poll_wq); 2930 percpu_ref_put(&ctx->refs); 2931 } 2932 2933 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2934 { 2935 spin_lock(&ctx->completion_lock); 2936 /* already activated or in progress */ 2937 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2938 goto out; 2939 if (WARN_ON_ONCE(!ctx->task_complete)) 2940 goto out; 2941 if (!ctx->submitter_task) 2942 goto out; 2943 /* 2944 * with ->submitter_task only the submitter task completes requests, we 2945 * only need to sync with it, which is done by injecting a tw 2946 */ 2947 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2948 percpu_ref_get(&ctx->refs); 2949 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2950 percpu_ref_put(&ctx->refs); 2951 out: 2952 spin_unlock(&ctx->completion_lock); 2953 } 2954 2955 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2956 { 2957 struct io_ring_ctx *ctx = file->private_data; 2958 __poll_t mask = 0; 2959 2960 if (unlikely(!ctx->poll_activated)) 2961 io_activate_pollwq(ctx); 2962 2963 poll_wait(file, &ctx->poll_wq, wait); 2964 /* 2965 * synchronizes with barrier from wq_has_sleeper call in 2966 * io_commit_cqring 2967 */ 2968 smp_rmb(); 2969 if (!io_sqring_full(ctx)) 2970 mask |= EPOLLOUT | EPOLLWRNORM; 2971 2972 /* 2973 * Don't flush cqring overflow list here, just do a simple check. 2974 * Otherwise there could possible be ABBA deadlock: 2975 * CPU0 CPU1 2976 * ---- ---- 2977 * lock(&ctx->uring_lock); 2978 * lock(&ep->mtx); 2979 * lock(&ctx->uring_lock); 2980 * lock(&ep->mtx); 2981 * 2982 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2983 * pushes them to do the flush. 2984 */ 2985 2986 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2987 mask |= EPOLLIN | EPOLLRDNORM; 2988 2989 return mask; 2990 } 2991 2992 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 2993 { 2994 const struct cred *creds; 2995 2996 creds = xa_erase(&ctx->personalities, id); 2997 if (creds) { 2998 put_cred(creds); 2999 return 0; 3000 } 3001 3002 return -EINVAL; 3003 } 3004 3005 struct io_tctx_exit { 3006 struct callback_head task_work; 3007 struct completion completion; 3008 struct io_ring_ctx *ctx; 3009 }; 3010 3011 static __cold void io_tctx_exit_cb(struct callback_head *cb) 3012 { 3013 struct io_uring_task *tctx = current->io_uring; 3014 struct io_tctx_exit *work; 3015 3016 work = container_of(cb, struct io_tctx_exit, task_work); 3017 /* 3018 * When @in_cancel, we're in cancellation and it's racy to remove the 3019 * node. It'll be removed by the end of cancellation, just ignore it. 3020 * tctx can be NULL if the queueing of this task_work raced with 3021 * work cancelation off the exec path. 3022 */ 3023 if (tctx && !atomic_read(&tctx->in_cancel)) 3024 io_uring_del_tctx_node((unsigned long)work->ctx); 3025 complete(&work->completion); 3026 } 3027 3028 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 3029 { 3030 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3031 3032 return req->ctx == data; 3033 } 3034 3035 static __cold void io_ring_exit_work(struct work_struct *work) 3036 { 3037 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 3038 unsigned long timeout = jiffies + HZ * 60 * 5; 3039 unsigned long interval = HZ / 20; 3040 struct io_tctx_exit exit; 3041 struct io_tctx_node *node; 3042 int ret; 3043 3044 /* 3045 * If we're doing polled IO and end up having requests being 3046 * submitted async (out-of-line), then completions can come in while 3047 * we're waiting for refs to drop. We need to reap these manually, 3048 * as nobody else will be looking for them. 3049 */ 3050 do { 3051 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 3052 mutex_lock(&ctx->uring_lock); 3053 io_cqring_overflow_kill(ctx); 3054 mutex_unlock(&ctx->uring_lock); 3055 } 3056 3057 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3058 io_move_task_work_from_local(ctx); 3059 3060 while (io_uring_try_cancel_requests(ctx, NULL, true)) 3061 cond_resched(); 3062 3063 if (ctx->sq_data) { 3064 struct io_sq_data *sqd = ctx->sq_data; 3065 struct task_struct *tsk; 3066 3067 io_sq_thread_park(sqd); 3068 tsk = sqd->thread; 3069 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 3070 io_wq_cancel_cb(tsk->io_uring->io_wq, 3071 io_cancel_ctx_cb, ctx, true); 3072 io_sq_thread_unpark(sqd); 3073 } 3074 3075 io_req_caches_free(ctx); 3076 3077 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3078 /* there is little hope left, don't run it too often */ 3079 interval = HZ * 60; 3080 } 3081 /* 3082 * This is really an uninterruptible wait, as it has to be 3083 * complete. But it's also run from a kworker, which doesn't 3084 * take signals, so it's fine to make it interruptible. This 3085 * avoids scenarios where we knowingly can wait much longer 3086 * on completions, for example if someone does a SIGSTOP on 3087 * a task that needs to finish task_work to make this loop 3088 * complete. That's a synthetic situation that should not 3089 * cause a stuck task backtrace, and hence a potential panic 3090 * on stuck tasks if that is enabled. 3091 */ 3092 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 3093 3094 init_completion(&exit.completion); 3095 init_task_work(&exit.task_work, io_tctx_exit_cb); 3096 exit.ctx = ctx; 3097 /* 3098 * Some may use context even when all refs and requests have been put, 3099 * and they are free to do so while still holding uring_lock or 3100 * completion_lock, see io_req_task_submit(). Apart from other work, 3101 * this lock/unlock section also waits them to finish. 3102 */ 3103 mutex_lock(&ctx->uring_lock); 3104 while (!list_empty(&ctx->tctx_list)) { 3105 WARN_ON_ONCE(time_after(jiffies, timeout)); 3106 3107 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3108 ctx_node); 3109 /* don't spin on a single task if cancellation failed */ 3110 list_rotate_left(&ctx->tctx_list); 3111 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3112 if (WARN_ON_ONCE(ret)) 3113 continue; 3114 3115 mutex_unlock(&ctx->uring_lock); 3116 /* 3117 * See comment above for 3118 * wait_for_completion_interruptible_timeout() on why this 3119 * wait is marked as interruptible. 3120 */ 3121 wait_for_completion_interruptible(&exit.completion); 3122 mutex_lock(&ctx->uring_lock); 3123 } 3124 mutex_unlock(&ctx->uring_lock); 3125 spin_lock(&ctx->completion_lock); 3126 spin_unlock(&ctx->completion_lock); 3127 3128 /* pairs with RCU read section in io_req_local_work_add() */ 3129 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3130 synchronize_rcu(); 3131 3132 io_ring_ctx_free(ctx); 3133 } 3134 3135 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3136 { 3137 unsigned long index; 3138 struct creds *creds; 3139 3140 mutex_lock(&ctx->uring_lock); 3141 percpu_ref_kill(&ctx->refs); 3142 xa_for_each(&ctx->personalities, index, creds) 3143 io_unregister_personality(ctx, index); 3144 if (ctx->rings) 3145 io_poll_remove_all(ctx, NULL, true); 3146 mutex_unlock(&ctx->uring_lock); 3147 3148 /* 3149 * If we failed setting up the ctx, we might not have any rings 3150 * and therefore did not submit any requests 3151 */ 3152 if (ctx->rings) 3153 io_kill_timeouts(ctx, NULL, true); 3154 3155 flush_delayed_work(&ctx->fallback_work); 3156 3157 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3158 /* 3159 * Use system_unbound_wq to avoid spawning tons of event kworkers 3160 * if we're exiting a ton of rings at the same time. It just adds 3161 * noise and overhead, there's no discernable change in runtime 3162 * over using system_wq. 3163 */ 3164 queue_work(system_unbound_wq, &ctx->exit_work); 3165 } 3166 3167 static int io_uring_release(struct inode *inode, struct file *file) 3168 { 3169 struct io_ring_ctx *ctx = file->private_data; 3170 3171 file->private_data = NULL; 3172 io_ring_ctx_wait_and_kill(ctx); 3173 return 0; 3174 } 3175 3176 struct io_task_cancel { 3177 struct task_struct *task; 3178 bool all; 3179 }; 3180 3181 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3182 { 3183 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3184 struct io_task_cancel *cancel = data; 3185 3186 return io_match_task_safe(req, cancel->task, cancel->all); 3187 } 3188 3189 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3190 struct task_struct *task, 3191 bool cancel_all) 3192 { 3193 struct io_defer_entry *de; 3194 LIST_HEAD(list); 3195 3196 spin_lock(&ctx->completion_lock); 3197 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3198 if (io_match_task_safe(de->req, task, cancel_all)) { 3199 list_cut_position(&list, &ctx->defer_list, &de->list); 3200 break; 3201 } 3202 } 3203 spin_unlock(&ctx->completion_lock); 3204 if (list_empty(&list)) 3205 return false; 3206 3207 while (!list_empty(&list)) { 3208 de = list_first_entry(&list, struct io_defer_entry, list); 3209 list_del_init(&de->list); 3210 io_req_task_queue_fail(de->req, -ECANCELED); 3211 kfree(de); 3212 } 3213 return true; 3214 } 3215 3216 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3217 { 3218 struct io_tctx_node *node; 3219 enum io_wq_cancel cret; 3220 bool ret = false; 3221 3222 mutex_lock(&ctx->uring_lock); 3223 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3224 struct io_uring_task *tctx = node->task->io_uring; 3225 3226 /* 3227 * io_wq will stay alive while we hold uring_lock, because it's 3228 * killed after ctx nodes, which requires to take the lock. 3229 */ 3230 if (!tctx || !tctx->io_wq) 3231 continue; 3232 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3233 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3234 } 3235 mutex_unlock(&ctx->uring_lock); 3236 3237 return ret; 3238 } 3239 3240 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3241 struct task_struct *task, 3242 bool cancel_all) 3243 { 3244 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3245 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3246 enum io_wq_cancel cret; 3247 bool ret = false; 3248 3249 /* set it so io_req_local_work_add() would wake us up */ 3250 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3251 atomic_set(&ctx->cq_wait_nr, 1); 3252 smp_mb(); 3253 } 3254 3255 /* failed during ring init, it couldn't have issued any requests */ 3256 if (!ctx->rings) 3257 return false; 3258 3259 if (!task) { 3260 ret |= io_uring_try_cancel_iowq(ctx); 3261 } else if (tctx && tctx->io_wq) { 3262 /* 3263 * Cancels requests of all rings, not only @ctx, but 3264 * it's fine as the task is in exit/exec. 3265 */ 3266 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3267 &cancel, true); 3268 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3269 } 3270 3271 /* SQPOLL thread does its own polling */ 3272 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3273 (ctx->sq_data && ctx->sq_data->thread == current)) { 3274 while (!wq_list_empty(&ctx->iopoll_list)) { 3275 io_iopoll_try_reap_events(ctx); 3276 ret = true; 3277 cond_resched(); 3278 } 3279 } 3280 3281 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3282 io_allowed_defer_tw_run(ctx)) 3283 ret |= io_run_local_work(ctx) > 0; 3284 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3285 mutex_lock(&ctx->uring_lock); 3286 ret |= io_poll_remove_all(ctx, task, cancel_all); 3287 mutex_unlock(&ctx->uring_lock); 3288 ret |= io_kill_timeouts(ctx, task, cancel_all); 3289 if (task) 3290 ret |= io_run_task_work() > 0; 3291 return ret; 3292 } 3293 3294 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3295 { 3296 if (tracked) 3297 return atomic_read(&tctx->inflight_tracked); 3298 return percpu_counter_sum(&tctx->inflight); 3299 } 3300 3301 /* 3302 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3303 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3304 */ 3305 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3306 { 3307 struct io_uring_task *tctx = current->io_uring; 3308 struct io_ring_ctx *ctx; 3309 struct io_tctx_node *node; 3310 unsigned long index; 3311 s64 inflight; 3312 DEFINE_WAIT(wait); 3313 3314 WARN_ON_ONCE(sqd && sqd->thread != current); 3315 3316 if (!current->io_uring) 3317 return; 3318 if (tctx->io_wq) 3319 io_wq_exit_start(tctx->io_wq); 3320 3321 atomic_inc(&tctx->in_cancel); 3322 do { 3323 bool loop = false; 3324 3325 io_uring_drop_tctx_refs(current); 3326 /* read completions before cancelations */ 3327 inflight = tctx_inflight(tctx, !cancel_all); 3328 if (!inflight) 3329 break; 3330 3331 if (!sqd) { 3332 xa_for_each(&tctx->xa, index, node) { 3333 /* sqpoll task will cancel all its requests */ 3334 if (node->ctx->sq_data) 3335 continue; 3336 loop |= io_uring_try_cancel_requests(node->ctx, 3337 current, cancel_all); 3338 } 3339 } else { 3340 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3341 loop |= io_uring_try_cancel_requests(ctx, 3342 current, 3343 cancel_all); 3344 } 3345 3346 if (loop) { 3347 cond_resched(); 3348 continue; 3349 } 3350 3351 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3352 io_run_task_work(); 3353 io_uring_drop_tctx_refs(current); 3354 xa_for_each(&tctx->xa, index, node) { 3355 if (!llist_empty(&node->ctx->work_llist)) { 3356 WARN_ON_ONCE(node->ctx->submitter_task && 3357 node->ctx->submitter_task != current); 3358 goto end_wait; 3359 } 3360 } 3361 /* 3362 * If we've seen completions, retry without waiting. This 3363 * avoids a race where a completion comes in before we did 3364 * prepare_to_wait(). 3365 */ 3366 if (inflight == tctx_inflight(tctx, !cancel_all)) 3367 schedule(); 3368 end_wait: 3369 finish_wait(&tctx->wait, &wait); 3370 } while (1); 3371 3372 io_uring_clean_tctx(tctx); 3373 if (cancel_all) { 3374 /* 3375 * We shouldn't run task_works after cancel, so just leave 3376 * ->in_cancel set for normal exit. 3377 */ 3378 atomic_dec(&tctx->in_cancel); 3379 /* for exec all current's requests should be gone, kill tctx */ 3380 __io_uring_free(current); 3381 } 3382 } 3383 3384 void __io_uring_cancel(bool cancel_all) 3385 { 3386 io_uring_cancel_generic(cancel_all, NULL); 3387 } 3388 3389 static void *io_uring_validate_mmap_request(struct file *file, 3390 loff_t pgoff, size_t sz) 3391 { 3392 struct io_ring_ctx *ctx = file->private_data; 3393 loff_t offset = pgoff << PAGE_SHIFT; 3394 struct page *page; 3395 void *ptr; 3396 3397 /* Don't allow mmap if the ring was setup without it */ 3398 if (ctx->flags & IORING_SETUP_NO_MMAP) 3399 return ERR_PTR(-EINVAL); 3400 3401 switch (offset & IORING_OFF_MMAP_MASK) { 3402 case IORING_OFF_SQ_RING: 3403 case IORING_OFF_CQ_RING: 3404 ptr = ctx->rings; 3405 break; 3406 case IORING_OFF_SQES: 3407 ptr = ctx->sq_sqes; 3408 break; 3409 case IORING_OFF_PBUF_RING: { 3410 unsigned int bgid; 3411 3412 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; 3413 mutex_lock(&ctx->uring_lock); 3414 ptr = io_pbuf_get_address(ctx, bgid); 3415 mutex_unlock(&ctx->uring_lock); 3416 if (!ptr) 3417 return ERR_PTR(-EINVAL); 3418 break; 3419 } 3420 default: 3421 return ERR_PTR(-EINVAL); 3422 } 3423 3424 page = virt_to_head_page(ptr); 3425 if (sz > page_size(page)) 3426 return ERR_PTR(-EINVAL); 3427 3428 return ptr; 3429 } 3430 3431 #ifdef CONFIG_MMU 3432 3433 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3434 { 3435 size_t sz = vma->vm_end - vma->vm_start; 3436 unsigned long pfn; 3437 void *ptr; 3438 3439 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3440 if (IS_ERR(ptr)) 3441 return PTR_ERR(ptr); 3442 3443 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3444 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3445 } 3446 3447 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, 3448 unsigned long addr, unsigned long len, 3449 unsigned long pgoff, unsigned long flags) 3450 { 3451 void *ptr; 3452 3453 /* 3454 * Do not allow to map to user-provided address to avoid breaking the 3455 * aliasing rules. Userspace is not able to guess the offset address of 3456 * kernel kmalloc()ed memory area. 3457 */ 3458 if (addr) 3459 return -EINVAL; 3460 3461 ptr = io_uring_validate_mmap_request(filp, pgoff, len); 3462 if (IS_ERR(ptr)) 3463 return -ENOMEM; 3464 3465 /* 3466 * Some architectures have strong cache aliasing requirements. 3467 * For such architectures we need a coherent mapping which aliases 3468 * kernel memory *and* userspace memory. To achieve that: 3469 * - use a NULL file pointer to reference physical memory, and 3470 * - use the kernel virtual address of the shared io_uring context 3471 * (instead of the userspace-provided address, which has to be 0UL 3472 * anyway). 3473 * For architectures without such aliasing requirements, the 3474 * architecture will return any suitable mapping because addr is 0. 3475 */ 3476 filp = NULL; 3477 flags |= MAP_SHARED; 3478 pgoff = 0; /* has been translated to ptr above */ 3479 #ifdef SHM_COLOUR 3480 addr = (uintptr_t) ptr; 3481 #else 3482 addr = 0UL; 3483 #endif 3484 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 3485 } 3486 3487 #else /* !CONFIG_MMU */ 3488 3489 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3490 { 3491 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3492 } 3493 3494 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3495 { 3496 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3497 } 3498 3499 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3500 unsigned long addr, unsigned long len, 3501 unsigned long pgoff, unsigned long flags) 3502 { 3503 void *ptr; 3504 3505 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3506 if (IS_ERR(ptr)) 3507 return PTR_ERR(ptr); 3508 3509 return (unsigned long) ptr; 3510 } 3511 3512 #endif /* !CONFIG_MMU */ 3513 3514 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3515 { 3516 if (flags & IORING_ENTER_EXT_ARG) { 3517 struct io_uring_getevents_arg arg; 3518 3519 if (argsz != sizeof(arg)) 3520 return -EINVAL; 3521 if (copy_from_user(&arg, argp, sizeof(arg))) 3522 return -EFAULT; 3523 } 3524 return 0; 3525 } 3526 3527 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3528 struct __kernel_timespec __user **ts, 3529 const sigset_t __user **sig) 3530 { 3531 struct io_uring_getevents_arg arg; 3532 3533 /* 3534 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3535 * is just a pointer to the sigset_t. 3536 */ 3537 if (!(flags & IORING_ENTER_EXT_ARG)) { 3538 *sig = (const sigset_t __user *) argp; 3539 *ts = NULL; 3540 return 0; 3541 } 3542 3543 /* 3544 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3545 * timespec and sigset_t pointers if good. 3546 */ 3547 if (*argsz != sizeof(arg)) 3548 return -EINVAL; 3549 if (copy_from_user(&arg, argp, sizeof(arg))) 3550 return -EFAULT; 3551 if (arg.pad) 3552 return -EINVAL; 3553 *sig = u64_to_user_ptr(arg.sigmask); 3554 *argsz = arg.sigmask_sz; 3555 *ts = u64_to_user_ptr(arg.ts); 3556 return 0; 3557 } 3558 3559 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3560 u32, min_complete, u32, flags, const void __user *, argp, 3561 size_t, argsz) 3562 { 3563 struct io_ring_ctx *ctx; 3564 struct fd f; 3565 long ret; 3566 3567 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3568 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3569 IORING_ENTER_REGISTERED_RING))) 3570 return -EINVAL; 3571 3572 /* 3573 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3574 * need only dereference our task private array to find it. 3575 */ 3576 if (flags & IORING_ENTER_REGISTERED_RING) { 3577 struct io_uring_task *tctx = current->io_uring; 3578 3579 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3580 return -EINVAL; 3581 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3582 f.file = tctx->registered_rings[fd]; 3583 f.flags = 0; 3584 if (unlikely(!f.file)) 3585 return -EBADF; 3586 } else { 3587 f = fdget(fd); 3588 if (unlikely(!f.file)) 3589 return -EBADF; 3590 ret = -EOPNOTSUPP; 3591 if (unlikely(!io_is_uring_fops(f.file))) 3592 goto out; 3593 } 3594 3595 ctx = f.file->private_data; 3596 ret = -EBADFD; 3597 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3598 goto out; 3599 3600 /* 3601 * For SQ polling, the thread will do all submissions and completions. 3602 * Just return the requested submit count, and wake the thread if 3603 * we were asked to. 3604 */ 3605 ret = 0; 3606 if (ctx->flags & IORING_SETUP_SQPOLL) { 3607 io_cqring_overflow_flush(ctx); 3608 3609 if (unlikely(ctx->sq_data->thread == NULL)) { 3610 ret = -EOWNERDEAD; 3611 goto out; 3612 } 3613 if (flags & IORING_ENTER_SQ_WAKEUP) 3614 wake_up(&ctx->sq_data->wait); 3615 if (flags & IORING_ENTER_SQ_WAIT) 3616 io_sqpoll_wait_sq(ctx); 3617 3618 ret = to_submit; 3619 } else if (to_submit) { 3620 ret = io_uring_add_tctx_node(ctx); 3621 if (unlikely(ret)) 3622 goto out; 3623 3624 mutex_lock(&ctx->uring_lock); 3625 ret = io_submit_sqes(ctx, to_submit); 3626 if (ret != to_submit) { 3627 mutex_unlock(&ctx->uring_lock); 3628 goto out; 3629 } 3630 if (flags & IORING_ENTER_GETEVENTS) { 3631 if (ctx->syscall_iopoll) 3632 goto iopoll_locked; 3633 /* 3634 * Ignore errors, we'll soon call io_cqring_wait() and 3635 * it should handle ownership problems if any. 3636 */ 3637 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3638 (void)io_run_local_work_locked(ctx); 3639 } 3640 mutex_unlock(&ctx->uring_lock); 3641 } 3642 3643 if (flags & IORING_ENTER_GETEVENTS) { 3644 int ret2; 3645 3646 if (ctx->syscall_iopoll) { 3647 /* 3648 * We disallow the app entering submit/complete with 3649 * polling, but we still need to lock the ring to 3650 * prevent racing with polled issue that got punted to 3651 * a workqueue. 3652 */ 3653 mutex_lock(&ctx->uring_lock); 3654 iopoll_locked: 3655 ret2 = io_validate_ext_arg(flags, argp, argsz); 3656 if (likely(!ret2)) { 3657 min_complete = min(min_complete, 3658 ctx->cq_entries); 3659 ret2 = io_iopoll_check(ctx, min_complete); 3660 } 3661 mutex_unlock(&ctx->uring_lock); 3662 } else { 3663 const sigset_t __user *sig; 3664 struct __kernel_timespec __user *ts; 3665 3666 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3667 if (likely(!ret2)) { 3668 min_complete = min(min_complete, 3669 ctx->cq_entries); 3670 ret2 = io_cqring_wait(ctx, min_complete, sig, 3671 argsz, ts); 3672 } 3673 } 3674 3675 if (!ret) { 3676 ret = ret2; 3677 3678 /* 3679 * EBADR indicates that one or more CQE were dropped. 3680 * Once the user has been informed we can clear the bit 3681 * as they are obviously ok with those drops. 3682 */ 3683 if (unlikely(ret2 == -EBADR)) 3684 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3685 &ctx->check_cq); 3686 } 3687 } 3688 out: 3689 fdput(f); 3690 return ret; 3691 } 3692 3693 static const struct file_operations io_uring_fops = { 3694 .release = io_uring_release, 3695 .mmap = io_uring_mmap, 3696 #ifndef CONFIG_MMU 3697 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3698 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3699 #else 3700 .get_unmapped_area = io_uring_mmu_get_unmapped_area, 3701 #endif 3702 .poll = io_uring_poll, 3703 #ifdef CONFIG_PROC_FS 3704 .show_fdinfo = io_uring_show_fdinfo, 3705 #endif 3706 }; 3707 3708 bool io_is_uring_fops(struct file *file) 3709 { 3710 return file->f_op == &io_uring_fops; 3711 } 3712 3713 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3714 struct io_uring_params *p) 3715 { 3716 struct io_rings *rings; 3717 size_t size, sq_array_offset; 3718 void *ptr; 3719 3720 /* make sure these are sane, as we already accounted them */ 3721 ctx->sq_entries = p->sq_entries; 3722 ctx->cq_entries = p->cq_entries; 3723 3724 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3725 if (size == SIZE_MAX) 3726 return -EOVERFLOW; 3727 3728 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3729 rings = io_mem_alloc(size); 3730 else 3731 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3732 3733 if (IS_ERR(rings)) 3734 return PTR_ERR(rings); 3735 3736 ctx->rings = rings; 3737 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3738 rings->sq_ring_mask = p->sq_entries - 1; 3739 rings->cq_ring_mask = p->cq_entries - 1; 3740 rings->sq_ring_entries = p->sq_entries; 3741 rings->cq_ring_entries = p->cq_entries; 3742 3743 if (p->flags & IORING_SETUP_SQE128) 3744 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3745 else 3746 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3747 if (size == SIZE_MAX) { 3748 io_rings_free(ctx); 3749 return -EOVERFLOW; 3750 } 3751 3752 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3753 ptr = io_mem_alloc(size); 3754 else 3755 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3756 3757 if (IS_ERR(ptr)) { 3758 io_rings_free(ctx); 3759 return PTR_ERR(ptr); 3760 } 3761 3762 ctx->sq_sqes = ptr; 3763 return 0; 3764 } 3765 3766 static int io_uring_install_fd(struct file *file) 3767 { 3768 int fd; 3769 3770 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3771 if (fd < 0) 3772 return fd; 3773 fd_install(fd, file); 3774 return fd; 3775 } 3776 3777 /* 3778 * Allocate an anonymous fd, this is what constitutes the application 3779 * visible backing of an io_uring instance. The application mmaps this 3780 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3781 * we have to tie this fd to a socket for file garbage collection purposes. 3782 */ 3783 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3784 { 3785 struct file *file; 3786 #if defined(CONFIG_UNIX) 3787 int ret; 3788 3789 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3790 &ctx->ring_sock); 3791 if (ret) 3792 return ERR_PTR(ret); 3793 #endif 3794 3795 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3796 O_RDWR | O_CLOEXEC, NULL); 3797 #if defined(CONFIG_UNIX) 3798 if (IS_ERR(file)) { 3799 sock_release(ctx->ring_sock); 3800 ctx->ring_sock = NULL; 3801 } else { 3802 ctx->ring_sock->file = file; 3803 } 3804 #endif 3805 return file; 3806 } 3807 3808 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3809 struct io_uring_params __user *params) 3810 { 3811 struct io_ring_ctx *ctx; 3812 struct io_uring_task *tctx; 3813 struct file *file; 3814 int ret; 3815 3816 if (!entries) 3817 return -EINVAL; 3818 if (entries > IORING_MAX_ENTRIES) { 3819 if (!(p->flags & IORING_SETUP_CLAMP)) 3820 return -EINVAL; 3821 entries = IORING_MAX_ENTRIES; 3822 } 3823 3824 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3825 && !(p->flags & IORING_SETUP_NO_MMAP)) 3826 return -EINVAL; 3827 3828 /* 3829 * Use twice as many entries for the CQ ring. It's possible for the 3830 * application to drive a higher depth than the size of the SQ ring, 3831 * since the sqes are only used at submission time. This allows for 3832 * some flexibility in overcommitting a bit. If the application has 3833 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3834 * of CQ ring entries manually. 3835 */ 3836 p->sq_entries = roundup_pow_of_two(entries); 3837 if (p->flags & IORING_SETUP_CQSIZE) { 3838 /* 3839 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3840 * to a power-of-two, if it isn't already. We do NOT impose 3841 * any cq vs sq ring sizing. 3842 */ 3843 if (!p->cq_entries) 3844 return -EINVAL; 3845 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3846 if (!(p->flags & IORING_SETUP_CLAMP)) 3847 return -EINVAL; 3848 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3849 } 3850 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3851 if (p->cq_entries < p->sq_entries) 3852 return -EINVAL; 3853 } else { 3854 p->cq_entries = 2 * p->sq_entries; 3855 } 3856 3857 ctx = io_ring_ctx_alloc(p); 3858 if (!ctx) 3859 return -ENOMEM; 3860 3861 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3862 !(ctx->flags & IORING_SETUP_IOPOLL) && 3863 !(ctx->flags & IORING_SETUP_SQPOLL)) 3864 ctx->task_complete = true; 3865 3866 /* 3867 * lazy poll_wq activation relies on ->task_complete for synchronisation 3868 * purposes, see io_activate_pollwq() 3869 */ 3870 if (!ctx->task_complete) 3871 ctx->poll_activated = true; 3872 3873 /* 3874 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3875 * space applications don't need to do io completion events 3876 * polling again, they can rely on io_sq_thread to do polling 3877 * work, which can reduce cpu usage and uring_lock contention. 3878 */ 3879 if (ctx->flags & IORING_SETUP_IOPOLL && 3880 !(ctx->flags & IORING_SETUP_SQPOLL)) 3881 ctx->syscall_iopoll = 1; 3882 3883 ctx->compat = in_compat_syscall(); 3884 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3885 ctx->user = get_uid(current_user()); 3886 3887 /* 3888 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3889 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3890 */ 3891 ret = -EINVAL; 3892 if (ctx->flags & IORING_SETUP_SQPOLL) { 3893 /* IPI related flags don't make sense with SQPOLL */ 3894 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3895 IORING_SETUP_TASKRUN_FLAG | 3896 IORING_SETUP_DEFER_TASKRUN)) 3897 goto err; 3898 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3899 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3900 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3901 } else { 3902 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3903 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3904 goto err; 3905 ctx->notify_method = TWA_SIGNAL; 3906 } 3907 3908 /* 3909 * For DEFER_TASKRUN we require the completion task to be the same as the 3910 * submission task. This implies that there is only one submitter, so enforce 3911 * that. 3912 */ 3913 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3914 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3915 goto err; 3916 } 3917 3918 /* 3919 * This is just grabbed for accounting purposes. When a process exits, 3920 * the mm is exited and dropped before the files, hence we need to hang 3921 * on to this mm purely for the purposes of being able to unaccount 3922 * memory (locked/pinned vm). It's not used for anything else. 3923 */ 3924 mmgrab(current->mm); 3925 ctx->mm_account = current->mm; 3926 3927 ret = io_allocate_scq_urings(ctx, p); 3928 if (ret) 3929 goto err; 3930 3931 ret = io_sq_offload_create(ctx, p); 3932 if (ret) 3933 goto err; 3934 3935 ret = io_rsrc_init(ctx); 3936 if (ret) 3937 goto err; 3938 3939 p->sq_off.head = offsetof(struct io_rings, sq.head); 3940 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3941 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3942 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3943 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3944 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3945 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3946 p->sq_off.resv1 = 0; 3947 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3948 p->sq_off.user_addr = 0; 3949 3950 p->cq_off.head = offsetof(struct io_rings, cq.head); 3951 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3952 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3953 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3954 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3955 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3956 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3957 p->cq_off.resv1 = 0; 3958 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3959 p->cq_off.user_addr = 0; 3960 3961 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3962 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3963 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3964 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3965 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3966 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3967 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 3968 3969 if (copy_to_user(params, p, sizeof(*p))) { 3970 ret = -EFAULT; 3971 goto err; 3972 } 3973 3974 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3975 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3976 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3977 3978 file = io_uring_get_file(ctx); 3979 if (IS_ERR(file)) { 3980 ret = PTR_ERR(file); 3981 goto err; 3982 } 3983 3984 ret = __io_uring_add_tctx_node(ctx); 3985 if (ret) 3986 goto err_fput; 3987 tctx = current->io_uring; 3988 3989 /* 3990 * Install ring fd as the very last thing, so we don't risk someone 3991 * having closed it before we finish setup 3992 */ 3993 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3994 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3995 else 3996 ret = io_uring_install_fd(file); 3997 if (ret < 0) 3998 goto err_fput; 3999 4000 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 4001 return ret; 4002 err: 4003 io_ring_ctx_wait_and_kill(ctx); 4004 return ret; 4005 err_fput: 4006 fput(file); 4007 return ret; 4008 } 4009 4010 /* 4011 * Sets up an aio uring context, and returns the fd. Applications asks for a 4012 * ring size, we return the actual sq/cq ring sizes (among other things) in the 4013 * params structure passed in. 4014 */ 4015 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 4016 { 4017 struct io_uring_params p; 4018 int i; 4019 4020 if (copy_from_user(&p, params, sizeof(p))) 4021 return -EFAULT; 4022 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 4023 if (p.resv[i]) 4024 return -EINVAL; 4025 } 4026 4027 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 4028 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 4029 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 4030 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 4031 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 4032 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 4033 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 4034 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY)) 4035 return -EINVAL; 4036 4037 return io_uring_create(entries, &p, params); 4038 } 4039 4040 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 4041 struct io_uring_params __user *, params) 4042 { 4043 return io_uring_setup(entries, params); 4044 } 4045 4046 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 4047 unsigned nr_args) 4048 { 4049 struct io_uring_probe *p; 4050 size_t size; 4051 int i, ret; 4052 4053 size = struct_size(p, ops, nr_args); 4054 if (size == SIZE_MAX) 4055 return -EOVERFLOW; 4056 p = kzalloc(size, GFP_KERNEL); 4057 if (!p) 4058 return -ENOMEM; 4059 4060 ret = -EFAULT; 4061 if (copy_from_user(p, arg, size)) 4062 goto out; 4063 ret = -EINVAL; 4064 if (memchr_inv(p, 0, size)) 4065 goto out; 4066 4067 p->last_op = IORING_OP_LAST - 1; 4068 if (nr_args > IORING_OP_LAST) 4069 nr_args = IORING_OP_LAST; 4070 4071 for (i = 0; i < nr_args; i++) { 4072 p->ops[i].op = i; 4073 if (!io_issue_defs[i].not_supported) 4074 p->ops[i].flags = IO_URING_OP_SUPPORTED; 4075 } 4076 p->ops_len = i; 4077 4078 ret = 0; 4079 if (copy_to_user(arg, p, size)) 4080 ret = -EFAULT; 4081 out: 4082 kfree(p); 4083 return ret; 4084 } 4085 4086 static int io_register_personality(struct io_ring_ctx *ctx) 4087 { 4088 const struct cred *creds; 4089 u32 id; 4090 int ret; 4091 4092 creds = get_current_cred(); 4093 4094 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 4095 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 4096 if (ret < 0) { 4097 put_cred(creds); 4098 return ret; 4099 } 4100 return id; 4101 } 4102 4103 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 4104 void __user *arg, unsigned int nr_args) 4105 { 4106 struct io_uring_restriction *res; 4107 size_t size; 4108 int i, ret; 4109 4110 /* Restrictions allowed only if rings started disabled */ 4111 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4112 return -EBADFD; 4113 4114 /* We allow only a single restrictions registration */ 4115 if (ctx->restrictions.registered) 4116 return -EBUSY; 4117 4118 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 4119 return -EINVAL; 4120 4121 size = array_size(nr_args, sizeof(*res)); 4122 if (size == SIZE_MAX) 4123 return -EOVERFLOW; 4124 4125 res = memdup_user(arg, size); 4126 if (IS_ERR(res)) 4127 return PTR_ERR(res); 4128 4129 ret = 0; 4130 4131 for (i = 0; i < nr_args; i++) { 4132 switch (res[i].opcode) { 4133 case IORING_RESTRICTION_REGISTER_OP: 4134 if (res[i].register_op >= IORING_REGISTER_LAST) { 4135 ret = -EINVAL; 4136 goto out; 4137 } 4138 4139 __set_bit(res[i].register_op, 4140 ctx->restrictions.register_op); 4141 break; 4142 case IORING_RESTRICTION_SQE_OP: 4143 if (res[i].sqe_op >= IORING_OP_LAST) { 4144 ret = -EINVAL; 4145 goto out; 4146 } 4147 4148 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 4149 break; 4150 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 4151 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 4152 break; 4153 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 4154 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 4155 break; 4156 default: 4157 ret = -EINVAL; 4158 goto out; 4159 } 4160 } 4161 4162 out: 4163 /* Reset all restrictions if an error happened */ 4164 if (ret != 0) 4165 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 4166 else 4167 ctx->restrictions.registered = true; 4168 4169 kfree(res); 4170 return ret; 4171 } 4172 4173 static int io_register_enable_rings(struct io_ring_ctx *ctx) 4174 { 4175 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4176 return -EBADFD; 4177 4178 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) { 4179 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4180 /* 4181 * Lazy activation attempts would fail if it was polled before 4182 * submitter_task is set. 4183 */ 4184 if (wq_has_sleeper(&ctx->poll_wq)) 4185 io_activate_pollwq(ctx); 4186 } 4187 4188 if (ctx->restrictions.registered) 4189 ctx->restricted = 1; 4190 4191 ctx->flags &= ~IORING_SETUP_R_DISABLED; 4192 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 4193 wake_up(&ctx->sq_data->wait); 4194 return 0; 4195 } 4196 4197 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 4198 void __user *arg, unsigned len) 4199 { 4200 struct io_uring_task *tctx = current->io_uring; 4201 cpumask_var_t new_mask; 4202 int ret; 4203 4204 if (!tctx || !tctx->io_wq) 4205 return -EINVAL; 4206 4207 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4208 return -ENOMEM; 4209 4210 cpumask_clear(new_mask); 4211 if (len > cpumask_size()) 4212 len = cpumask_size(); 4213 4214 if (in_compat_syscall()) { 4215 ret = compat_get_bitmap(cpumask_bits(new_mask), 4216 (const compat_ulong_t __user *)arg, 4217 len * 8 /* CHAR_BIT */); 4218 } else { 4219 ret = copy_from_user(new_mask, arg, len); 4220 } 4221 4222 if (ret) { 4223 free_cpumask_var(new_mask); 4224 return -EFAULT; 4225 } 4226 4227 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask); 4228 free_cpumask_var(new_mask); 4229 return ret; 4230 } 4231 4232 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 4233 { 4234 struct io_uring_task *tctx = current->io_uring; 4235 4236 if (!tctx || !tctx->io_wq) 4237 return -EINVAL; 4238 4239 return io_wq_cpu_affinity(tctx->io_wq, NULL); 4240 } 4241 4242 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 4243 void __user *arg) 4244 __must_hold(&ctx->uring_lock) 4245 { 4246 struct io_tctx_node *node; 4247 struct io_uring_task *tctx = NULL; 4248 struct io_sq_data *sqd = NULL; 4249 __u32 new_count[2]; 4250 int i, ret; 4251 4252 if (copy_from_user(new_count, arg, sizeof(new_count))) 4253 return -EFAULT; 4254 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4255 if (new_count[i] > INT_MAX) 4256 return -EINVAL; 4257 4258 if (ctx->flags & IORING_SETUP_SQPOLL) { 4259 sqd = ctx->sq_data; 4260 if (sqd) { 4261 /* 4262 * Observe the correct sqd->lock -> ctx->uring_lock 4263 * ordering. Fine to drop uring_lock here, we hold 4264 * a ref to the ctx. 4265 */ 4266 refcount_inc(&sqd->refs); 4267 mutex_unlock(&ctx->uring_lock); 4268 mutex_lock(&sqd->lock); 4269 mutex_lock(&ctx->uring_lock); 4270 if (sqd->thread) 4271 tctx = sqd->thread->io_uring; 4272 } 4273 } else { 4274 tctx = current->io_uring; 4275 } 4276 4277 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 4278 4279 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4280 if (new_count[i]) 4281 ctx->iowq_limits[i] = new_count[i]; 4282 ctx->iowq_limits_set = true; 4283 4284 if (tctx && tctx->io_wq) { 4285 ret = io_wq_max_workers(tctx->io_wq, new_count); 4286 if (ret) 4287 goto err; 4288 } else { 4289 memset(new_count, 0, sizeof(new_count)); 4290 } 4291 4292 if (sqd) { 4293 mutex_unlock(&sqd->lock); 4294 io_put_sq_data(sqd); 4295 } 4296 4297 if (copy_to_user(arg, new_count, sizeof(new_count))) 4298 return -EFAULT; 4299 4300 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 4301 if (sqd) 4302 return 0; 4303 4304 /* now propagate the restriction to all registered users */ 4305 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 4306 struct io_uring_task *tctx = node->task->io_uring; 4307 4308 if (WARN_ON_ONCE(!tctx->io_wq)) 4309 continue; 4310 4311 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4312 new_count[i] = ctx->iowq_limits[i]; 4313 /* ignore errors, it always returns zero anyway */ 4314 (void)io_wq_max_workers(tctx->io_wq, new_count); 4315 } 4316 return 0; 4317 err: 4318 if (sqd) { 4319 mutex_unlock(&sqd->lock); 4320 io_put_sq_data(sqd); 4321 } 4322 return ret; 4323 } 4324 4325 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4326 void __user *arg, unsigned nr_args) 4327 __releases(ctx->uring_lock) 4328 __acquires(ctx->uring_lock) 4329 { 4330 int ret; 4331 4332 /* 4333 * We don't quiesce the refs for register anymore and so it can't be 4334 * dying as we're holding a file ref here. 4335 */ 4336 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4337 return -ENXIO; 4338 4339 if (ctx->submitter_task && ctx->submitter_task != current) 4340 return -EEXIST; 4341 4342 if (ctx->restricted) { 4343 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4344 if (!test_bit(opcode, ctx->restrictions.register_op)) 4345 return -EACCES; 4346 } 4347 4348 switch (opcode) { 4349 case IORING_REGISTER_BUFFERS: 4350 ret = -EFAULT; 4351 if (!arg) 4352 break; 4353 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4354 break; 4355 case IORING_UNREGISTER_BUFFERS: 4356 ret = -EINVAL; 4357 if (arg || nr_args) 4358 break; 4359 ret = io_sqe_buffers_unregister(ctx); 4360 break; 4361 case IORING_REGISTER_FILES: 4362 ret = -EFAULT; 4363 if (!arg) 4364 break; 4365 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4366 break; 4367 case IORING_UNREGISTER_FILES: 4368 ret = -EINVAL; 4369 if (arg || nr_args) 4370 break; 4371 ret = io_sqe_files_unregister(ctx); 4372 break; 4373 case IORING_REGISTER_FILES_UPDATE: 4374 ret = io_register_files_update(ctx, arg, nr_args); 4375 break; 4376 case IORING_REGISTER_EVENTFD: 4377 ret = -EINVAL; 4378 if (nr_args != 1) 4379 break; 4380 ret = io_eventfd_register(ctx, arg, 0); 4381 break; 4382 case IORING_REGISTER_EVENTFD_ASYNC: 4383 ret = -EINVAL; 4384 if (nr_args != 1) 4385 break; 4386 ret = io_eventfd_register(ctx, arg, 1); 4387 break; 4388 case IORING_UNREGISTER_EVENTFD: 4389 ret = -EINVAL; 4390 if (arg || nr_args) 4391 break; 4392 ret = io_eventfd_unregister(ctx); 4393 break; 4394 case IORING_REGISTER_PROBE: 4395 ret = -EINVAL; 4396 if (!arg || nr_args > 256) 4397 break; 4398 ret = io_probe(ctx, arg, nr_args); 4399 break; 4400 case IORING_REGISTER_PERSONALITY: 4401 ret = -EINVAL; 4402 if (arg || nr_args) 4403 break; 4404 ret = io_register_personality(ctx); 4405 break; 4406 case IORING_UNREGISTER_PERSONALITY: 4407 ret = -EINVAL; 4408 if (arg) 4409 break; 4410 ret = io_unregister_personality(ctx, nr_args); 4411 break; 4412 case IORING_REGISTER_ENABLE_RINGS: 4413 ret = -EINVAL; 4414 if (arg || nr_args) 4415 break; 4416 ret = io_register_enable_rings(ctx); 4417 break; 4418 case IORING_REGISTER_RESTRICTIONS: 4419 ret = io_register_restrictions(ctx, arg, nr_args); 4420 break; 4421 case IORING_REGISTER_FILES2: 4422 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4423 break; 4424 case IORING_REGISTER_FILES_UPDATE2: 4425 ret = io_register_rsrc_update(ctx, arg, nr_args, 4426 IORING_RSRC_FILE); 4427 break; 4428 case IORING_REGISTER_BUFFERS2: 4429 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4430 break; 4431 case IORING_REGISTER_BUFFERS_UPDATE: 4432 ret = io_register_rsrc_update(ctx, arg, nr_args, 4433 IORING_RSRC_BUFFER); 4434 break; 4435 case IORING_REGISTER_IOWQ_AFF: 4436 ret = -EINVAL; 4437 if (!arg || !nr_args) 4438 break; 4439 ret = io_register_iowq_aff(ctx, arg, nr_args); 4440 break; 4441 case IORING_UNREGISTER_IOWQ_AFF: 4442 ret = -EINVAL; 4443 if (arg || nr_args) 4444 break; 4445 ret = io_unregister_iowq_aff(ctx); 4446 break; 4447 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4448 ret = -EINVAL; 4449 if (!arg || nr_args != 2) 4450 break; 4451 ret = io_register_iowq_max_workers(ctx, arg); 4452 break; 4453 case IORING_REGISTER_RING_FDS: 4454 ret = io_ringfd_register(ctx, arg, nr_args); 4455 break; 4456 case IORING_UNREGISTER_RING_FDS: 4457 ret = io_ringfd_unregister(ctx, arg, nr_args); 4458 break; 4459 case IORING_REGISTER_PBUF_RING: 4460 ret = -EINVAL; 4461 if (!arg || nr_args != 1) 4462 break; 4463 ret = io_register_pbuf_ring(ctx, arg); 4464 break; 4465 case IORING_UNREGISTER_PBUF_RING: 4466 ret = -EINVAL; 4467 if (!arg || nr_args != 1) 4468 break; 4469 ret = io_unregister_pbuf_ring(ctx, arg); 4470 break; 4471 case IORING_REGISTER_SYNC_CANCEL: 4472 ret = -EINVAL; 4473 if (!arg || nr_args != 1) 4474 break; 4475 ret = io_sync_cancel(ctx, arg); 4476 break; 4477 case IORING_REGISTER_FILE_ALLOC_RANGE: 4478 ret = -EINVAL; 4479 if (!arg || nr_args) 4480 break; 4481 ret = io_register_file_alloc_range(ctx, arg); 4482 break; 4483 default: 4484 ret = -EINVAL; 4485 break; 4486 } 4487 4488 return ret; 4489 } 4490 4491 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4492 void __user *, arg, unsigned int, nr_args) 4493 { 4494 struct io_ring_ctx *ctx; 4495 long ret = -EBADF; 4496 struct fd f; 4497 bool use_registered_ring; 4498 4499 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING); 4500 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING; 4501 4502 if (opcode >= IORING_REGISTER_LAST) 4503 return -EINVAL; 4504 4505 if (use_registered_ring) { 4506 /* 4507 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 4508 * need only dereference our task private array to find it. 4509 */ 4510 struct io_uring_task *tctx = current->io_uring; 4511 4512 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 4513 return -EINVAL; 4514 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 4515 f.file = tctx->registered_rings[fd]; 4516 f.flags = 0; 4517 if (unlikely(!f.file)) 4518 return -EBADF; 4519 } else { 4520 f = fdget(fd); 4521 if (unlikely(!f.file)) 4522 return -EBADF; 4523 ret = -EOPNOTSUPP; 4524 if (!io_is_uring_fops(f.file)) 4525 goto out_fput; 4526 } 4527 4528 ctx = f.file->private_data; 4529 4530 mutex_lock(&ctx->uring_lock); 4531 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4532 mutex_unlock(&ctx->uring_lock); 4533 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4534 out_fput: 4535 fdput(f); 4536 return ret; 4537 } 4538 4539 static int __init io_uring_init(void) 4540 { 4541 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4542 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4543 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4544 } while (0) 4545 4546 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4547 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4548 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4549 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4550 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4551 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4552 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4553 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4554 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4555 BUILD_BUG_SQE_ELEM(8, __u64, off); 4556 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4557 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4558 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4559 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4560 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4561 BUILD_BUG_SQE_ELEM(24, __u32, len); 4562 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4563 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4564 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4565 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4566 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4567 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4568 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4569 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4570 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4571 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4572 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4573 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4574 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4575 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4576 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4577 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4578 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4579 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4580 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4581 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4582 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4583 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4584 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4585 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4586 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4587 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4588 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4589 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4590 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4591 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4592 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4593 4594 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4595 sizeof(struct io_uring_rsrc_update)); 4596 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4597 sizeof(struct io_uring_rsrc_update2)); 4598 4599 /* ->buf_index is u16 */ 4600 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4601 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4602 offsetof(struct io_uring_buf_ring, tail)); 4603 4604 /* should fit into one byte */ 4605 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4606 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4607 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4608 4609 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4610 4611 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4612 4613 io_uring_optable_init(); 4614 4615 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4616 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU); 4617 return 0; 4618 }; 4619 __initcall(io_uring_init); 4620