1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <linux/anon_inodes.h> 64 #include <linux/sched/mm.h> 65 #include <linux/uaccess.h> 66 #include <linux/nospec.h> 67 #include <linux/highmem.h> 68 #include <linux/fsnotify.h> 69 #include <linux/fadvise.h> 70 #include <linux/task_work.h> 71 #include <linux/io_uring.h> 72 #include <linux/audit.h> 73 #include <linux/security.h> 74 #include <asm/shmparam.h> 75 76 #define CREATE_TRACE_POINTS 77 #include <trace/events/io_uring.h> 78 79 #include <uapi/linux/io_uring.h> 80 81 #include "io-wq.h" 82 83 #include "io_uring.h" 84 #include "opdef.h" 85 #include "refs.h" 86 #include "tctx.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 95 #include "timeout.h" 96 #include "poll.h" 97 #include "rw.h" 98 #include "alloc_cache.h" 99 100 #define IORING_MAX_ENTRIES 32768 101 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 102 103 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 104 IORING_REGISTER_LAST + IORING_OP_LAST) 105 106 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 107 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 108 109 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 110 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 111 112 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 113 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 114 REQ_F_ASYNC_DATA) 115 116 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 117 IO_REQ_CLEAN_FLAGS) 118 119 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 120 121 #define IO_COMPL_BATCH 32 122 #define IO_REQ_ALLOC_BATCH 8 123 124 enum { 125 IO_CHECK_CQ_OVERFLOW_BIT, 126 IO_CHECK_CQ_DROPPED_BIT, 127 }; 128 129 enum { 130 IO_EVENTFD_OP_SIGNAL_BIT, 131 IO_EVENTFD_OP_FREE_BIT, 132 }; 133 134 struct io_defer_entry { 135 struct list_head list; 136 struct io_kiocb *req; 137 u32 seq; 138 }; 139 140 /* requests with any of those set should undergo io_disarm_next() */ 141 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 142 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 143 144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 145 struct task_struct *task, 146 bool cancel_all); 147 148 static void io_queue_sqe(struct io_kiocb *req); 149 150 struct kmem_cache *req_cachep; 151 static struct workqueue_struct *iou_wq __ro_after_init; 152 153 static int __read_mostly sysctl_io_uring_disabled; 154 static int __read_mostly sysctl_io_uring_group = -1; 155 156 #ifdef CONFIG_SYSCTL 157 static struct ctl_table kernel_io_uring_disabled_table[] = { 158 { 159 .procname = "io_uring_disabled", 160 .data = &sysctl_io_uring_disabled, 161 .maxlen = sizeof(sysctl_io_uring_disabled), 162 .mode = 0644, 163 .proc_handler = proc_dointvec_minmax, 164 .extra1 = SYSCTL_ZERO, 165 .extra2 = SYSCTL_TWO, 166 }, 167 { 168 .procname = "io_uring_group", 169 .data = &sysctl_io_uring_group, 170 .maxlen = sizeof(gid_t), 171 .mode = 0644, 172 .proc_handler = proc_dointvec, 173 }, 174 {}, 175 }; 176 #endif 177 178 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 179 { 180 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 181 ctx->submit_state.cqes_count) 182 __io_submit_flush_completions(ctx); 183 } 184 185 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 186 { 187 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 188 } 189 190 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 191 { 192 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 193 } 194 195 static bool io_match_linked(struct io_kiocb *head) 196 { 197 struct io_kiocb *req; 198 199 io_for_each_link(req, head) { 200 if (req->flags & REQ_F_INFLIGHT) 201 return true; 202 } 203 return false; 204 } 205 206 /* 207 * As io_match_task() but protected against racing with linked timeouts. 208 * User must not hold timeout_lock. 209 */ 210 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 211 bool cancel_all) 212 { 213 bool matched; 214 215 if (task && head->task != task) 216 return false; 217 if (cancel_all) 218 return true; 219 220 if (head->flags & REQ_F_LINK_TIMEOUT) { 221 struct io_ring_ctx *ctx = head->ctx; 222 223 /* protect against races with linked timeouts */ 224 spin_lock_irq(&ctx->timeout_lock); 225 matched = io_match_linked(head); 226 spin_unlock_irq(&ctx->timeout_lock); 227 } else { 228 matched = io_match_linked(head); 229 } 230 return matched; 231 } 232 233 static inline void req_fail_link_node(struct io_kiocb *req, int res) 234 { 235 req_set_fail(req); 236 io_req_set_res(req, res, 0); 237 } 238 239 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 240 { 241 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 242 } 243 244 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 245 { 246 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 247 248 complete(&ctx->ref_comp); 249 } 250 251 static __cold void io_fallback_req_func(struct work_struct *work) 252 { 253 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 254 fallback_work.work); 255 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 256 struct io_kiocb *req, *tmp; 257 struct io_tw_state ts = { .locked = true, }; 258 259 percpu_ref_get(&ctx->refs); 260 mutex_lock(&ctx->uring_lock); 261 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 262 req->io_task_work.func(req, &ts); 263 if (WARN_ON_ONCE(!ts.locked)) 264 return; 265 io_submit_flush_completions(ctx); 266 mutex_unlock(&ctx->uring_lock); 267 percpu_ref_put(&ctx->refs); 268 } 269 270 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 271 { 272 unsigned hash_buckets = 1U << bits; 273 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 274 275 table->hbs = kmalloc(hash_size, GFP_KERNEL); 276 if (!table->hbs) 277 return -ENOMEM; 278 279 table->hash_bits = bits; 280 init_hash_table(table, hash_buckets); 281 return 0; 282 } 283 284 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 285 { 286 struct io_ring_ctx *ctx; 287 int hash_bits; 288 289 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 290 if (!ctx) 291 return NULL; 292 293 xa_init(&ctx->io_bl_xa); 294 295 /* 296 * Use 5 bits less than the max cq entries, that should give us around 297 * 32 entries per hash list if totally full and uniformly spread, but 298 * don't keep too many buckets to not overconsume memory. 299 */ 300 hash_bits = ilog2(p->cq_entries) - 5; 301 hash_bits = clamp(hash_bits, 1, 8); 302 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 303 goto err; 304 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 305 goto err; 306 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 307 0, GFP_KERNEL)) 308 goto err; 309 310 ctx->flags = p->flags; 311 init_waitqueue_head(&ctx->sqo_sq_wait); 312 INIT_LIST_HEAD(&ctx->sqd_list); 313 INIT_LIST_HEAD(&ctx->cq_overflow_list); 314 INIT_LIST_HEAD(&ctx->io_buffers_cache); 315 INIT_HLIST_HEAD(&ctx->io_buf_list); 316 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 317 sizeof(struct io_rsrc_node)); 318 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, 319 sizeof(struct async_poll)); 320 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 321 sizeof(struct io_async_msghdr)); 322 init_completion(&ctx->ref_comp); 323 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 324 mutex_init(&ctx->uring_lock); 325 init_waitqueue_head(&ctx->cq_wait); 326 init_waitqueue_head(&ctx->poll_wq); 327 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 328 spin_lock_init(&ctx->completion_lock); 329 spin_lock_init(&ctx->timeout_lock); 330 INIT_WQ_LIST(&ctx->iopoll_list); 331 INIT_LIST_HEAD(&ctx->io_buffers_pages); 332 INIT_LIST_HEAD(&ctx->io_buffers_comp); 333 INIT_LIST_HEAD(&ctx->defer_list); 334 INIT_LIST_HEAD(&ctx->timeout_list); 335 INIT_LIST_HEAD(&ctx->ltimeout_list); 336 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 337 init_llist_head(&ctx->work_llist); 338 INIT_LIST_HEAD(&ctx->tctx_list); 339 ctx->submit_state.free_list.next = NULL; 340 INIT_WQ_LIST(&ctx->locked_free_list); 341 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 342 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 343 return ctx; 344 err: 345 kfree(ctx->cancel_table.hbs); 346 kfree(ctx->cancel_table_locked.hbs); 347 xa_destroy(&ctx->io_bl_xa); 348 kfree(ctx); 349 return NULL; 350 } 351 352 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 353 { 354 struct io_rings *r = ctx->rings; 355 356 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 357 ctx->cq_extra--; 358 } 359 360 static bool req_need_defer(struct io_kiocb *req, u32 seq) 361 { 362 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 363 struct io_ring_ctx *ctx = req->ctx; 364 365 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 366 } 367 368 return false; 369 } 370 371 static void io_clean_op(struct io_kiocb *req) 372 { 373 if (req->flags & REQ_F_BUFFER_SELECTED) { 374 spin_lock(&req->ctx->completion_lock); 375 io_put_kbuf_comp(req); 376 spin_unlock(&req->ctx->completion_lock); 377 } 378 379 if (req->flags & REQ_F_NEED_CLEANUP) { 380 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 381 382 if (def->cleanup) 383 def->cleanup(req); 384 } 385 if ((req->flags & REQ_F_POLLED) && req->apoll) { 386 kfree(req->apoll->double_poll); 387 kfree(req->apoll); 388 req->apoll = NULL; 389 } 390 if (req->flags & REQ_F_INFLIGHT) { 391 struct io_uring_task *tctx = req->task->io_uring; 392 393 atomic_dec(&tctx->inflight_tracked); 394 } 395 if (req->flags & REQ_F_CREDS) 396 put_cred(req->creds); 397 if (req->flags & REQ_F_ASYNC_DATA) { 398 kfree(req->async_data); 399 req->async_data = NULL; 400 } 401 req->flags &= ~IO_REQ_CLEAN_FLAGS; 402 } 403 404 static inline void io_req_track_inflight(struct io_kiocb *req) 405 { 406 if (!(req->flags & REQ_F_INFLIGHT)) { 407 req->flags |= REQ_F_INFLIGHT; 408 atomic_inc(&req->task->io_uring->inflight_tracked); 409 } 410 } 411 412 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 413 { 414 if (WARN_ON_ONCE(!req->link)) 415 return NULL; 416 417 req->flags &= ~REQ_F_ARM_LTIMEOUT; 418 req->flags |= REQ_F_LINK_TIMEOUT; 419 420 /* linked timeouts should have two refs once prep'ed */ 421 io_req_set_refcount(req); 422 __io_req_set_refcount(req->link, 2); 423 return req->link; 424 } 425 426 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 427 { 428 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 429 return NULL; 430 return __io_prep_linked_timeout(req); 431 } 432 433 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 434 { 435 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 436 } 437 438 static inline void io_arm_ltimeout(struct io_kiocb *req) 439 { 440 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 441 __io_arm_ltimeout(req); 442 } 443 444 static void io_prep_async_work(struct io_kiocb *req) 445 { 446 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 447 struct io_ring_ctx *ctx = req->ctx; 448 449 if (!(req->flags & REQ_F_CREDS)) { 450 req->flags |= REQ_F_CREDS; 451 req->creds = get_current_cred(); 452 } 453 454 req->work.list.next = NULL; 455 req->work.flags = 0; 456 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 457 if (req->flags & REQ_F_FORCE_ASYNC) 458 req->work.flags |= IO_WQ_WORK_CONCURRENT; 459 460 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 461 req->flags |= io_file_get_flags(req->file); 462 463 if (req->file && (req->flags & REQ_F_ISREG)) { 464 bool should_hash = def->hash_reg_file; 465 466 /* don't serialize this request if the fs doesn't need it */ 467 if (should_hash && (req->file->f_flags & O_DIRECT) && 468 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) 469 should_hash = false; 470 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 471 io_wq_hash_work(&req->work, file_inode(req->file)); 472 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 473 if (def->unbound_nonreg_file) 474 req->work.flags |= IO_WQ_WORK_UNBOUND; 475 } 476 } 477 478 static void io_prep_async_link(struct io_kiocb *req) 479 { 480 struct io_kiocb *cur; 481 482 if (req->flags & REQ_F_LINK_TIMEOUT) { 483 struct io_ring_ctx *ctx = req->ctx; 484 485 spin_lock_irq(&ctx->timeout_lock); 486 io_for_each_link(cur, req) 487 io_prep_async_work(cur); 488 spin_unlock_irq(&ctx->timeout_lock); 489 } else { 490 io_for_each_link(cur, req) 491 io_prep_async_work(cur); 492 } 493 } 494 495 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) 496 { 497 struct io_kiocb *link = io_prep_linked_timeout(req); 498 struct io_uring_task *tctx = req->task->io_uring; 499 500 BUG_ON(!tctx); 501 BUG_ON(!tctx->io_wq); 502 503 /* init ->work of the whole link before punting */ 504 io_prep_async_link(req); 505 506 /* 507 * Not expected to happen, but if we do have a bug where this _can_ 508 * happen, catch it here and ensure the request is marked as 509 * canceled. That will make io-wq go through the usual work cancel 510 * procedure rather than attempt to run this request (or create a new 511 * worker for it). 512 */ 513 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 514 req->work.flags |= IO_WQ_WORK_CANCEL; 515 516 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 517 io_wq_enqueue(tctx->io_wq, &req->work); 518 if (link) 519 io_queue_linked_timeout(link); 520 } 521 522 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 523 { 524 while (!list_empty(&ctx->defer_list)) { 525 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 526 struct io_defer_entry, list); 527 528 if (req_need_defer(de->req, de->seq)) 529 break; 530 list_del_init(&de->list); 531 io_req_task_queue(de->req); 532 kfree(de); 533 } 534 } 535 536 537 static void io_eventfd_ops(struct rcu_head *rcu) 538 { 539 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 540 int ops = atomic_xchg(&ev_fd->ops, 0); 541 542 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 543 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 544 545 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 546 * ordering in a race but if references are 0 we know we have to free 547 * it regardless. 548 */ 549 if (atomic_dec_and_test(&ev_fd->refs)) { 550 eventfd_ctx_put(ev_fd->cq_ev_fd); 551 kfree(ev_fd); 552 } 553 } 554 555 static void io_eventfd_signal(struct io_ring_ctx *ctx) 556 { 557 struct io_ev_fd *ev_fd = NULL; 558 559 rcu_read_lock(); 560 /* 561 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 562 * and eventfd_signal 563 */ 564 ev_fd = rcu_dereference(ctx->io_ev_fd); 565 566 /* 567 * Check again if ev_fd exists incase an io_eventfd_unregister call 568 * completed between the NULL check of ctx->io_ev_fd at the start of 569 * the function and rcu_read_lock. 570 */ 571 if (unlikely(!ev_fd)) 572 goto out; 573 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 574 goto out; 575 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 576 goto out; 577 578 if (likely(eventfd_signal_allowed())) { 579 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 580 } else { 581 atomic_inc(&ev_fd->refs); 582 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 583 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 584 else 585 atomic_dec(&ev_fd->refs); 586 } 587 588 out: 589 rcu_read_unlock(); 590 } 591 592 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 593 { 594 bool skip; 595 596 spin_lock(&ctx->completion_lock); 597 598 /* 599 * Eventfd should only get triggered when at least one event has been 600 * posted. Some applications rely on the eventfd notification count 601 * only changing IFF a new CQE has been added to the CQ ring. There's 602 * no depedency on 1:1 relationship between how many times this 603 * function is called (and hence the eventfd count) and number of CQEs 604 * posted to the CQ ring. 605 */ 606 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 607 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 608 spin_unlock(&ctx->completion_lock); 609 if (skip) 610 return; 611 612 io_eventfd_signal(ctx); 613 } 614 615 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 616 { 617 if (ctx->poll_activated) 618 io_poll_wq_wake(ctx); 619 if (ctx->off_timeout_used) 620 io_flush_timeouts(ctx); 621 if (ctx->drain_active) { 622 spin_lock(&ctx->completion_lock); 623 io_queue_deferred(ctx); 624 spin_unlock(&ctx->completion_lock); 625 } 626 if (ctx->has_evfd) 627 io_eventfd_flush_signal(ctx); 628 } 629 630 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 631 { 632 if (!ctx->lockless_cq) 633 spin_lock(&ctx->completion_lock); 634 } 635 636 static inline void io_cq_lock(struct io_ring_ctx *ctx) 637 __acquires(ctx->completion_lock) 638 { 639 spin_lock(&ctx->completion_lock); 640 } 641 642 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 643 { 644 io_commit_cqring(ctx); 645 if (!ctx->task_complete) { 646 if (!ctx->lockless_cq) 647 spin_unlock(&ctx->completion_lock); 648 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 649 if (!ctx->syscall_iopoll) 650 io_cqring_wake(ctx); 651 } 652 io_commit_cqring_flush(ctx); 653 } 654 655 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 656 __releases(ctx->completion_lock) 657 { 658 io_commit_cqring(ctx); 659 spin_unlock(&ctx->completion_lock); 660 io_cqring_wake(ctx); 661 io_commit_cqring_flush(ctx); 662 } 663 664 /* Returns true if there are no backlogged entries after the flush */ 665 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 666 { 667 struct io_overflow_cqe *ocqe; 668 LIST_HEAD(list); 669 670 spin_lock(&ctx->completion_lock); 671 list_splice_init(&ctx->cq_overflow_list, &list); 672 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 673 spin_unlock(&ctx->completion_lock); 674 675 while (!list_empty(&list)) { 676 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 677 list_del(&ocqe->list); 678 kfree(ocqe); 679 } 680 } 681 682 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 683 { 684 size_t cqe_size = sizeof(struct io_uring_cqe); 685 686 if (__io_cqring_events(ctx) == ctx->cq_entries) 687 return; 688 689 if (ctx->flags & IORING_SETUP_CQE32) 690 cqe_size <<= 1; 691 692 io_cq_lock(ctx); 693 while (!list_empty(&ctx->cq_overflow_list)) { 694 struct io_uring_cqe *cqe; 695 struct io_overflow_cqe *ocqe; 696 697 if (!io_get_cqe_overflow(ctx, &cqe, true)) 698 break; 699 ocqe = list_first_entry(&ctx->cq_overflow_list, 700 struct io_overflow_cqe, list); 701 memcpy(cqe, &ocqe->cqe, cqe_size); 702 list_del(&ocqe->list); 703 kfree(ocqe); 704 705 /* 706 * For silly syzbot cases that deliberately overflow by huge 707 * amounts, check if we need to resched and drop and 708 * reacquire the locks if so. Nothing real would ever hit this. 709 * Ideally we'd have a non-posting unlock for this, but hard 710 * to care for a non-real case. 711 */ 712 if (need_resched()) { 713 io_cq_unlock_post(ctx); 714 mutex_unlock(&ctx->uring_lock); 715 cond_resched(); 716 mutex_lock(&ctx->uring_lock); 717 io_cq_lock(ctx); 718 } 719 } 720 721 if (list_empty(&ctx->cq_overflow_list)) { 722 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 723 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 724 } 725 io_cq_unlock_post(ctx); 726 } 727 728 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 729 { 730 /* iopoll syncs against uring_lock, not completion_lock */ 731 if (ctx->flags & IORING_SETUP_IOPOLL) 732 mutex_lock(&ctx->uring_lock); 733 __io_cqring_overflow_flush(ctx); 734 if (ctx->flags & IORING_SETUP_IOPOLL) 735 mutex_unlock(&ctx->uring_lock); 736 } 737 738 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 739 { 740 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 741 io_cqring_do_overflow_flush(ctx); 742 } 743 744 /* can be called by any task */ 745 static void io_put_task_remote(struct task_struct *task) 746 { 747 struct io_uring_task *tctx = task->io_uring; 748 749 percpu_counter_sub(&tctx->inflight, 1); 750 if (unlikely(atomic_read(&tctx->in_cancel))) 751 wake_up(&tctx->wait); 752 put_task_struct(task); 753 } 754 755 /* used by a task to put its own references */ 756 static void io_put_task_local(struct task_struct *task) 757 { 758 task->io_uring->cached_refs++; 759 } 760 761 /* must to be called somewhat shortly after putting a request */ 762 static inline void io_put_task(struct task_struct *task) 763 { 764 if (likely(task == current)) 765 io_put_task_local(task); 766 else 767 io_put_task_remote(task); 768 } 769 770 void io_task_refs_refill(struct io_uring_task *tctx) 771 { 772 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 773 774 percpu_counter_add(&tctx->inflight, refill); 775 refcount_add(refill, ¤t->usage); 776 tctx->cached_refs += refill; 777 } 778 779 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 780 { 781 struct io_uring_task *tctx = task->io_uring; 782 unsigned int refs = tctx->cached_refs; 783 784 if (refs) { 785 tctx->cached_refs = 0; 786 percpu_counter_sub(&tctx->inflight, refs); 787 put_task_struct_many(task, refs); 788 } 789 } 790 791 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 792 s32 res, u32 cflags, u64 extra1, u64 extra2) 793 { 794 struct io_overflow_cqe *ocqe; 795 size_t ocq_size = sizeof(struct io_overflow_cqe); 796 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 797 798 lockdep_assert_held(&ctx->completion_lock); 799 800 if (is_cqe32) 801 ocq_size += sizeof(struct io_uring_cqe); 802 803 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 804 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 805 if (!ocqe) { 806 /* 807 * If we're in ring overflow flush mode, or in task cancel mode, 808 * or cannot allocate an overflow entry, then we need to drop it 809 * on the floor. 810 */ 811 io_account_cq_overflow(ctx); 812 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 813 return false; 814 } 815 if (list_empty(&ctx->cq_overflow_list)) { 816 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 817 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 818 819 } 820 ocqe->cqe.user_data = user_data; 821 ocqe->cqe.res = res; 822 ocqe->cqe.flags = cflags; 823 if (is_cqe32) { 824 ocqe->cqe.big_cqe[0] = extra1; 825 ocqe->cqe.big_cqe[1] = extra2; 826 } 827 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 828 return true; 829 } 830 831 void io_req_cqe_overflow(struct io_kiocb *req) 832 { 833 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 834 req->cqe.res, req->cqe.flags, 835 req->big_cqe.extra1, req->big_cqe.extra2); 836 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 837 } 838 839 /* 840 * writes to the cq entry need to come after reading head; the 841 * control dependency is enough as we're using WRITE_ONCE to 842 * fill the cq entry 843 */ 844 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 845 { 846 struct io_rings *rings = ctx->rings; 847 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 848 unsigned int free, queued, len; 849 850 /* 851 * Posting into the CQ when there are pending overflowed CQEs may break 852 * ordering guarantees, which will affect links, F_MORE users and more. 853 * Force overflow the completion. 854 */ 855 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 856 return false; 857 858 /* userspace may cheat modifying the tail, be safe and do min */ 859 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 860 free = ctx->cq_entries - queued; 861 /* we need a contiguous range, limit based on the current array offset */ 862 len = min(free, ctx->cq_entries - off); 863 if (!len) 864 return false; 865 866 if (ctx->flags & IORING_SETUP_CQE32) { 867 off <<= 1; 868 len <<= 1; 869 } 870 871 ctx->cqe_cached = &rings->cqes[off]; 872 ctx->cqe_sentinel = ctx->cqe_cached + len; 873 return true; 874 } 875 876 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 877 u32 cflags) 878 { 879 struct io_uring_cqe *cqe; 880 881 ctx->cq_extra++; 882 883 /* 884 * If we can't get a cq entry, userspace overflowed the 885 * submission (by quite a lot). Increment the overflow count in 886 * the ring. 887 */ 888 if (likely(io_get_cqe(ctx, &cqe))) { 889 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 890 891 WRITE_ONCE(cqe->user_data, user_data); 892 WRITE_ONCE(cqe->res, res); 893 WRITE_ONCE(cqe->flags, cflags); 894 895 if (ctx->flags & IORING_SETUP_CQE32) { 896 WRITE_ONCE(cqe->big_cqe[0], 0); 897 WRITE_ONCE(cqe->big_cqe[1], 0); 898 } 899 return true; 900 } 901 return false; 902 } 903 904 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 905 __must_hold(&ctx->uring_lock) 906 { 907 struct io_submit_state *state = &ctx->submit_state; 908 unsigned int i; 909 910 lockdep_assert_held(&ctx->uring_lock); 911 for (i = 0; i < state->cqes_count; i++) { 912 struct io_uring_cqe *cqe = &ctx->completion_cqes[i]; 913 914 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 915 if (ctx->lockless_cq) { 916 spin_lock(&ctx->completion_lock); 917 io_cqring_event_overflow(ctx, cqe->user_data, 918 cqe->res, cqe->flags, 0, 0); 919 spin_unlock(&ctx->completion_lock); 920 } else { 921 io_cqring_event_overflow(ctx, cqe->user_data, 922 cqe->res, cqe->flags, 0, 0); 923 } 924 } 925 } 926 state->cqes_count = 0; 927 } 928 929 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 930 bool allow_overflow) 931 { 932 bool filled; 933 934 io_cq_lock(ctx); 935 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 936 if (!filled && allow_overflow) 937 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 938 939 io_cq_unlock_post(ctx); 940 return filled; 941 } 942 943 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 944 { 945 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 946 } 947 948 /* 949 * A helper for multishot requests posting additional CQEs. 950 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 951 */ 952 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags) 953 { 954 struct io_ring_ctx *ctx = req->ctx; 955 u64 user_data = req->cqe.user_data; 956 struct io_uring_cqe *cqe; 957 958 if (!defer) 959 return __io_post_aux_cqe(ctx, user_data, res, cflags, false); 960 961 lockdep_assert_held(&ctx->uring_lock); 962 963 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) { 964 __io_cq_lock(ctx); 965 __io_flush_post_cqes(ctx); 966 /* no need to flush - flush is deferred */ 967 __io_cq_unlock_post(ctx); 968 } 969 970 /* For defered completions this is not as strict as it is otherwise, 971 * however it's main job is to prevent unbounded posted completions, 972 * and in that it works just as well. 973 */ 974 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 975 return false; 976 977 cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++]; 978 cqe->user_data = user_data; 979 cqe->res = res; 980 cqe->flags = cflags; 981 return true; 982 } 983 984 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 985 { 986 struct io_ring_ctx *ctx = req->ctx; 987 struct io_rsrc_node *rsrc_node = NULL; 988 989 io_cq_lock(ctx); 990 if (!(req->flags & REQ_F_CQE_SKIP)) { 991 if (!io_fill_cqe_req(ctx, req)) 992 io_req_cqe_overflow(req); 993 } 994 995 /* 996 * If we're the last reference to this request, add to our locked 997 * free_list cache. 998 */ 999 if (req_ref_put_and_test(req)) { 1000 if (req->flags & IO_REQ_LINK_FLAGS) { 1001 if (req->flags & IO_DISARM_MASK) 1002 io_disarm_next(req); 1003 if (req->link) { 1004 io_req_task_queue(req->link); 1005 req->link = NULL; 1006 } 1007 } 1008 io_put_kbuf_comp(req); 1009 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1010 io_clean_op(req); 1011 io_put_file(req); 1012 1013 rsrc_node = req->rsrc_node; 1014 /* 1015 * Selected buffer deallocation in io_clean_op() assumes that 1016 * we don't hold ->completion_lock. Clean them here to avoid 1017 * deadlocks. 1018 */ 1019 io_put_task_remote(req->task); 1020 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1021 ctx->locked_free_nr++; 1022 } 1023 io_cq_unlock_post(ctx); 1024 1025 if (rsrc_node) { 1026 io_ring_submit_lock(ctx, issue_flags); 1027 io_put_rsrc_node(ctx, rsrc_node); 1028 io_ring_submit_unlock(ctx, issue_flags); 1029 } 1030 } 1031 1032 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1033 { 1034 if (req->ctx->task_complete && req->ctx->submitter_task != current) { 1035 req->io_task_work.func = io_req_task_complete; 1036 io_req_task_work_add(req); 1037 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1038 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 1039 __io_req_complete_post(req, issue_flags); 1040 } else { 1041 struct io_ring_ctx *ctx = req->ctx; 1042 1043 mutex_lock(&ctx->uring_lock); 1044 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); 1045 mutex_unlock(&ctx->uring_lock); 1046 } 1047 } 1048 1049 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1050 __must_hold(&ctx->uring_lock) 1051 { 1052 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1053 1054 lockdep_assert_held(&req->ctx->uring_lock); 1055 1056 req_set_fail(req); 1057 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1058 if (def->fail) 1059 def->fail(req); 1060 io_req_complete_defer(req); 1061 } 1062 1063 /* 1064 * Don't initialise the fields below on every allocation, but do that in 1065 * advance and keep them valid across allocations. 1066 */ 1067 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1068 { 1069 req->ctx = ctx; 1070 req->link = NULL; 1071 req->async_data = NULL; 1072 /* not necessary, but safer to zero */ 1073 memset(&req->cqe, 0, sizeof(req->cqe)); 1074 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 1075 } 1076 1077 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1078 struct io_submit_state *state) 1079 { 1080 spin_lock(&ctx->completion_lock); 1081 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1082 ctx->locked_free_nr = 0; 1083 spin_unlock(&ctx->completion_lock); 1084 } 1085 1086 /* 1087 * A request might get retired back into the request caches even before opcode 1088 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1089 * Because of that, io_alloc_req() should be called only under ->uring_lock 1090 * and with extra caution to not get a request that is still worked on. 1091 */ 1092 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1093 __must_hold(&ctx->uring_lock) 1094 { 1095 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1096 void *reqs[IO_REQ_ALLOC_BATCH]; 1097 int ret, i; 1098 1099 /* 1100 * If we have more than a batch's worth of requests in our IRQ side 1101 * locked cache, grab the lock and move them over to our submission 1102 * side cache. 1103 */ 1104 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1105 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1106 if (!io_req_cache_empty(ctx)) 1107 return true; 1108 } 1109 1110 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1111 1112 /* 1113 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1114 * retry single alloc to be on the safe side. 1115 */ 1116 if (unlikely(ret <= 0)) { 1117 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1118 if (!reqs[0]) 1119 return false; 1120 ret = 1; 1121 } 1122 1123 percpu_ref_get_many(&ctx->refs, ret); 1124 for (i = 0; i < ret; i++) { 1125 struct io_kiocb *req = reqs[i]; 1126 1127 io_preinit_req(req, ctx); 1128 io_req_add_to_cache(req, ctx); 1129 } 1130 return true; 1131 } 1132 1133 __cold void io_free_req(struct io_kiocb *req) 1134 { 1135 /* refs were already put, restore them for io_req_task_complete() */ 1136 req->flags &= ~REQ_F_REFCOUNT; 1137 /* we only want to free it, don't post CQEs */ 1138 req->flags |= REQ_F_CQE_SKIP; 1139 req->io_task_work.func = io_req_task_complete; 1140 io_req_task_work_add(req); 1141 } 1142 1143 static void __io_req_find_next_prep(struct io_kiocb *req) 1144 { 1145 struct io_ring_ctx *ctx = req->ctx; 1146 1147 spin_lock(&ctx->completion_lock); 1148 io_disarm_next(req); 1149 spin_unlock(&ctx->completion_lock); 1150 } 1151 1152 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1153 { 1154 struct io_kiocb *nxt; 1155 1156 /* 1157 * If LINK is set, we have dependent requests in this chain. If we 1158 * didn't fail this request, queue the first one up, moving any other 1159 * dependencies to the next request. In case of failure, fail the rest 1160 * of the chain. 1161 */ 1162 if (unlikely(req->flags & IO_DISARM_MASK)) 1163 __io_req_find_next_prep(req); 1164 nxt = req->link; 1165 req->link = NULL; 1166 return nxt; 1167 } 1168 1169 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1170 { 1171 if (!ctx) 1172 return; 1173 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1174 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1175 if (ts->locked) { 1176 io_submit_flush_completions(ctx); 1177 mutex_unlock(&ctx->uring_lock); 1178 ts->locked = false; 1179 } 1180 percpu_ref_put(&ctx->refs); 1181 } 1182 1183 static unsigned int handle_tw_list(struct llist_node *node, 1184 struct io_ring_ctx **ctx, 1185 struct io_tw_state *ts) 1186 { 1187 unsigned int count = 0; 1188 1189 do { 1190 struct llist_node *next = node->next; 1191 struct io_kiocb *req = container_of(node, struct io_kiocb, 1192 io_task_work.node); 1193 1194 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1195 1196 if (req->ctx != *ctx) { 1197 ctx_flush_and_put(*ctx, ts); 1198 *ctx = req->ctx; 1199 /* if not contended, grab and improve batching */ 1200 ts->locked = mutex_trylock(&(*ctx)->uring_lock); 1201 percpu_ref_get(&(*ctx)->refs); 1202 } 1203 INDIRECT_CALL_2(req->io_task_work.func, 1204 io_poll_task_func, io_req_rw_complete, 1205 req, ts); 1206 node = next; 1207 count++; 1208 if (unlikely(need_resched())) { 1209 ctx_flush_and_put(*ctx, ts); 1210 *ctx = NULL; 1211 cond_resched(); 1212 } 1213 } while (node); 1214 1215 return count; 1216 } 1217 1218 /** 1219 * io_llist_xchg - swap all entries in a lock-less list 1220 * @head: the head of lock-less list to delete all entries 1221 * @new: new entry as the head of the list 1222 * 1223 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1224 * The order of entries returned is from the newest to the oldest added one. 1225 */ 1226 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1227 struct llist_node *new) 1228 { 1229 return xchg(&head->first, new); 1230 } 1231 1232 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1233 { 1234 struct llist_node *node = llist_del_all(&tctx->task_list); 1235 struct io_ring_ctx *last_ctx = NULL; 1236 struct io_kiocb *req; 1237 1238 while (node) { 1239 req = container_of(node, struct io_kiocb, io_task_work.node); 1240 node = node->next; 1241 if (sync && last_ctx != req->ctx) { 1242 if (last_ctx) { 1243 flush_delayed_work(&last_ctx->fallback_work); 1244 percpu_ref_put(&last_ctx->refs); 1245 } 1246 last_ctx = req->ctx; 1247 percpu_ref_get(&last_ctx->refs); 1248 } 1249 if (llist_add(&req->io_task_work.node, 1250 &req->ctx->fallback_llist)) 1251 schedule_delayed_work(&req->ctx->fallback_work, 1); 1252 } 1253 1254 if (last_ctx) { 1255 flush_delayed_work(&last_ctx->fallback_work); 1256 percpu_ref_put(&last_ctx->refs); 1257 } 1258 } 1259 1260 void tctx_task_work(struct callback_head *cb) 1261 { 1262 struct io_tw_state ts = {}; 1263 struct io_ring_ctx *ctx = NULL; 1264 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1265 task_work); 1266 struct llist_node *node; 1267 unsigned int count = 0; 1268 1269 if (unlikely(current->flags & PF_EXITING)) { 1270 io_fallback_tw(tctx, true); 1271 return; 1272 } 1273 1274 node = llist_del_all(&tctx->task_list); 1275 if (node) 1276 count = handle_tw_list(node, &ctx, &ts); 1277 1278 ctx_flush_and_put(ctx, &ts); 1279 1280 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1281 if (unlikely(atomic_read(&tctx->in_cancel))) 1282 io_uring_drop_tctx_refs(current); 1283 1284 trace_io_uring_task_work_run(tctx, count, 1); 1285 } 1286 1287 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1288 { 1289 struct io_ring_ctx *ctx = req->ctx; 1290 unsigned nr_wait, nr_tw, nr_tw_prev; 1291 struct llist_node *first; 1292 1293 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1294 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1295 1296 first = READ_ONCE(ctx->work_llist.first); 1297 do { 1298 nr_tw_prev = 0; 1299 if (first) { 1300 struct io_kiocb *first_req = container_of(first, 1301 struct io_kiocb, 1302 io_task_work.node); 1303 /* 1304 * Might be executed at any moment, rely on 1305 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1306 */ 1307 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1308 } 1309 nr_tw = nr_tw_prev + 1; 1310 /* Large enough to fail the nr_wait comparison below */ 1311 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1312 nr_tw = INT_MAX; 1313 1314 req->nr_tw = nr_tw; 1315 req->io_task_work.node.next = first; 1316 } while (!try_cmpxchg(&ctx->work_llist.first, &first, 1317 &req->io_task_work.node)); 1318 1319 if (!first) { 1320 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1321 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1322 if (ctx->has_evfd) 1323 io_eventfd_signal(ctx); 1324 } 1325 1326 nr_wait = atomic_read(&ctx->cq_wait_nr); 1327 /* no one is waiting */ 1328 if (!nr_wait) 1329 return; 1330 /* either not enough or the previous add has already woken it up */ 1331 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait) 1332 return; 1333 /* pairs with set_current_state() in io_cqring_wait() */ 1334 smp_mb__after_atomic(); 1335 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1336 } 1337 1338 static void io_req_normal_work_add(struct io_kiocb *req) 1339 { 1340 struct io_uring_task *tctx = req->task->io_uring; 1341 struct io_ring_ctx *ctx = req->ctx; 1342 1343 /* task_work already pending, we're done */ 1344 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1345 return; 1346 1347 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1348 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1349 1350 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1351 return; 1352 1353 io_fallback_tw(tctx, false); 1354 } 1355 1356 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1357 { 1358 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1359 rcu_read_lock(); 1360 io_req_local_work_add(req, flags); 1361 rcu_read_unlock(); 1362 } else { 1363 io_req_normal_work_add(req); 1364 } 1365 } 1366 1367 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1368 { 1369 struct llist_node *node; 1370 1371 node = llist_del_all(&ctx->work_llist); 1372 while (node) { 1373 struct io_kiocb *req = container_of(node, struct io_kiocb, 1374 io_task_work.node); 1375 1376 node = node->next; 1377 io_req_normal_work_add(req); 1378 } 1379 } 1380 1381 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events, 1382 int min_events) 1383 { 1384 if (llist_empty(&ctx->work_llist)) 1385 return false; 1386 if (events < min_events) 1387 return true; 1388 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1389 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1390 return false; 1391 } 1392 1393 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts, 1394 int min_events) 1395 { 1396 struct llist_node *node; 1397 unsigned int loops = 0; 1398 int ret = 0; 1399 1400 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1401 return -EEXIST; 1402 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1403 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1404 again: 1405 /* 1406 * llists are in reverse order, flip it back the right way before 1407 * running the pending items. 1408 */ 1409 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1410 while (node) { 1411 struct llist_node *next = node->next; 1412 struct io_kiocb *req = container_of(node, struct io_kiocb, 1413 io_task_work.node); 1414 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1415 INDIRECT_CALL_2(req->io_task_work.func, 1416 io_poll_task_func, io_req_rw_complete, 1417 req, ts); 1418 ret++; 1419 node = next; 1420 } 1421 loops++; 1422 1423 if (io_run_local_work_continue(ctx, ret, min_events)) 1424 goto again; 1425 if (ts->locked) { 1426 io_submit_flush_completions(ctx); 1427 if (io_run_local_work_continue(ctx, ret, min_events)) 1428 goto again; 1429 } 1430 1431 trace_io_uring_local_work_run(ctx, ret, loops); 1432 return ret; 1433 } 1434 1435 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx, 1436 int min_events) 1437 { 1438 struct io_tw_state ts = { .locked = true, }; 1439 int ret; 1440 1441 if (llist_empty(&ctx->work_llist)) 1442 return 0; 1443 1444 ret = __io_run_local_work(ctx, &ts, min_events); 1445 /* shouldn't happen! */ 1446 if (WARN_ON_ONCE(!ts.locked)) 1447 mutex_lock(&ctx->uring_lock); 1448 return ret; 1449 } 1450 1451 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events) 1452 { 1453 struct io_tw_state ts = {}; 1454 int ret; 1455 1456 ts.locked = mutex_trylock(&ctx->uring_lock); 1457 ret = __io_run_local_work(ctx, &ts, min_events); 1458 if (ts.locked) 1459 mutex_unlock(&ctx->uring_lock); 1460 1461 return ret; 1462 } 1463 1464 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1465 { 1466 io_tw_lock(req->ctx, ts); 1467 io_req_defer_failed(req, req->cqe.res); 1468 } 1469 1470 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1471 { 1472 io_tw_lock(req->ctx, ts); 1473 /* req->task == current here, checking PF_EXITING is safe */ 1474 if (unlikely(req->task->flags & PF_EXITING)) 1475 io_req_defer_failed(req, -EFAULT); 1476 else if (req->flags & REQ_F_FORCE_ASYNC) 1477 io_queue_iowq(req, ts); 1478 else 1479 io_queue_sqe(req); 1480 } 1481 1482 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1483 { 1484 io_req_set_res(req, ret, 0); 1485 req->io_task_work.func = io_req_task_cancel; 1486 io_req_task_work_add(req); 1487 } 1488 1489 void io_req_task_queue(struct io_kiocb *req) 1490 { 1491 req->io_task_work.func = io_req_task_submit; 1492 io_req_task_work_add(req); 1493 } 1494 1495 void io_queue_next(struct io_kiocb *req) 1496 { 1497 struct io_kiocb *nxt = io_req_find_next(req); 1498 1499 if (nxt) 1500 io_req_task_queue(nxt); 1501 } 1502 1503 static void io_free_batch_list(struct io_ring_ctx *ctx, 1504 struct io_wq_work_node *node) 1505 __must_hold(&ctx->uring_lock) 1506 { 1507 do { 1508 struct io_kiocb *req = container_of(node, struct io_kiocb, 1509 comp_list); 1510 1511 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1512 if (req->flags & REQ_F_REFCOUNT) { 1513 node = req->comp_list.next; 1514 if (!req_ref_put_and_test(req)) 1515 continue; 1516 } 1517 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1518 struct async_poll *apoll = req->apoll; 1519 1520 if (apoll->double_poll) 1521 kfree(apoll->double_poll); 1522 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1523 kfree(apoll); 1524 req->flags &= ~REQ_F_POLLED; 1525 } 1526 if (req->flags & IO_REQ_LINK_FLAGS) 1527 io_queue_next(req); 1528 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1529 io_clean_op(req); 1530 } 1531 io_put_file(req); 1532 1533 io_req_put_rsrc_locked(req, ctx); 1534 1535 io_put_task(req->task); 1536 node = req->comp_list.next; 1537 io_req_add_to_cache(req, ctx); 1538 } while (node); 1539 } 1540 1541 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1542 __must_hold(&ctx->uring_lock) 1543 { 1544 struct io_submit_state *state = &ctx->submit_state; 1545 struct io_wq_work_node *node; 1546 1547 __io_cq_lock(ctx); 1548 /* must come first to preserve CQE ordering in failure cases */ 1549 if (state->cqes_count) 1550 __io_flush_post_cqes(ctx); 1551 __wq_list_for_each(node, &state->compl_reqs) { 1552 struct io_kiocb *req = container_of(node, struct io_kiocb, 1553 comp_list); 1554 1555 if (!(req->flags & REQ_F_CQE_SKIP) && 1556 unlikely(!io_fill_cqe_req(ctx, req))) { 1557 if (ctx->lockless_cq) { 1558 spin_lock(&ctx->completion_lock); 1559 io_req_cqe_overflow(req); 1560 spin_unlock(&ctx->completion_lock); 1561 } else { 1562 io_req_cqe_overflow(req); 1563 } 1564 } 1565 } 1566 __io_cq_unlock_post(ctx); 1567 1568 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1569 io_free_batch_list(ctx, state->compl_reqs.first); 1570 INIT_WQ_LIST(&state->compl_reqs); 1571 } 1572 } 1573 1574 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1575 { 1576 /* See comment at the top of this file */ 1577 smp_rmb(); 1578 return __io_cqring_events(ctx); 1579 } 1580 1581 /* 1582 * We can't just wait for polled events to come to us, we have to actively 1583 * find and complete them. 1584 */ 1585 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1586 { 1587 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1588 return; 1589 1590 mutex_lock(&ctx->uring_lock); 1591 while (!wq_list_empty(&ctx->iopoll_list)) { 1592 /* let it sleep and repeat later if can't complete a request */ 1593 if (io_do_iopoll(ctx, true) == 0) 1594 break; 1595 /* 1596 * Ensure we allow local-to-the-cpu processing to take place, 1597 * in this case we need to ensure that we reap all events. 1598 * Also let task_work, etc. to progress by releasing the mutex 1599 */ 1600 if (need_resched()) { 1601 mutex_unlock(&ctx->uring_lock); 1602 cond_resched(); 1603 mutex_lock(&ctx->uring_lock); 1604 } 1605 } 1606 mutex_unlock(&ctx->uring_lock); 1607 } 1608 1609 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1610 { 1611 unsigned int nr_events = 0; 1612 unsigned long check_cq; 1613 1614 if (!io_allowed_run_tw(ctx)) 1615 return -EEXIST; 1616 1617 check_cq = READ_ONCE(ctx->check_cq); 1618 if (unlikely(check_cq)) { 1619 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1620 __io_cqring_overflow_flush(ctx); 1621 /* 1622 * Similarly do not spin if we have not informed the user of any 1623 * dropped CQE. 1624 */ 1625 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1626 return -EBADR; 1627 } 1628 /* 1629 * Don't enter poll loop if we already have events pending. 1630 * If we do, we can potentially be spinning for commands that 1631 * already triggered a CQE (eg in error). 1632 */ 1633 if (io_cqring_events(ctx)) 1634 return 0; 1635 1636 do { 1637 int ret = 0; 1638 1639 /* 1640 * If a submit got punted to a workqueue, we can have the 1641 * application entering polling for a command before it gets 1642 * issued. That app will hold the uring_lock for the duration 1643 * of the poll right here, so we need to take a breather every 1644 * now and then to ensure that the issue has a chance to add 1645 * the poll to the issued list. Otherwise we can spin here 1646 * forever, while the workqueue is stuck trying to acquire the 1647 * very same mutex. 1648 */ 1649 if (wq_list_empty(&ctx->iopoll_list) || 1650 io_task_work_pending(ctx)) { 1651 u32 tail = ctx->cached_cq_tail; 1652 1653 (void) io_run_local_work_locked(ctx, min); 1654 1655 if (task_work_pending(current) || 1656 wq_list_empty(&ctx->iopoll_list)) { 1657 mutex_unlock(&ctx->uring_lock); 1658 io_run_task_work(); 1659 mutex_lock(&ctx->uring_lock); 1660 } 1661 /* some requests don't go through iopoll_list */ 1662 if (tail != ctx->cached_cq_tail || 1663 wq_list_empty(&ctx->iopoll_list)) 1664 break; 1665 } 1666 ret = io_do_iopoll(ctx, !min); 1667 if (unlikely(ret < 0)) 1668 return ret; 1669 1670 if (task_sigpending(current)) 1671 return -EINTR; 1672 if (need_resched()) 1673 break; 1674 1675 nr_events += ret; 1676 } while (nr_events < min); 1677 1678 return 0; 1679 } 1680 1681 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1682 { 1683 if (ts->locked) 1684 io_req_complete_defer(req); 1685 else 1686 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1687 } 1688 1689 /* 1690 * After the iocb has been issued, it's safe to be found on the poll list. 1691 * Adding the kiocb to the list AFTER submission ensures that we don't 1692 * find it from a io_do_iopoll() thread before the issuer is done 1693 * accessing the kiocb cookie. 1694 */ 1695 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1696 { 1697 struct io_ring_ctx *ctx = req->ctx; 1698 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1699 1700 /* workqueue context doesn't hold uring_lock, grab it now */ 1701 if (unlikely(needs_lock)) 1702 mutex_lock(&ctx->uring_lock); 1703 1704 /* 1705 * Track whether we have multiple files in our lists. This will impact 1706 * how we do polling eventually, not spinning if we're on potentially 1707 * different devices. 1708 */ 1709 if (wq_list_empty(&ctx->iopoll_list)) { 1710 ctx->poll_multi_queue = false; 1711 } else if (!ctx->poll_multi_queue) { 1712 struct io_kiocb *list_req; 1713 1714 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1715 comp_list); 1716 if (list_req->file != req->file) 1717 ctx->poll_multi_queue = true; 1718 } 1719 1720 /* 1721 * For fast devices, IO may have already completed. If it has, add 1722 * it to the front so we find it first. 1723 */ 1724 if (READ_ONCE(req->iopoll_completed)) 1725 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1726 else 1727 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1728 1729 if (unlikely(needs_lock)) { 1730 /* 1731 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1732 * in sq thread task context or in io worker task context. If 1733 * current task context is sq thread, we don't need to check 1734 * whether should wake up sq thread. 1735 */ 1736 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1737 wq_has_sleeper(&ctx->sq_data->wait)) 1738 wake_up(&ctx->sq_data->wait); 1739 1740 mutex_unlock(&ctx->uring_lock); 1741 } 1742 } 1743 1744 unsigned int io_file_get_flags(struct file *file) 1745 { 1746 unsigned int res = 0; 1747 1748 if (S_ISREG(file_inode(file)->i_mode)) 1749 res |= REQ_F_ISREG; 1750 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1751 res |= REQ_F_SUPPORT_NOWAIT; 1752 return res; 1753 } 1754 1755 bool io_alloc_async_data(struct io_kiocb *req) 1756 { 1757 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1758 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1759 if (req->async_data) { 1760 req->flags |= REQ_F_ASYNC_DATA; 1761 return false; 1762 } 1763 return true; 1764 } 1765 1766 int io_req_prep_async(struct io_kiocb *req) 1767 { 1768 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1769 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1770 1771 /* assign early for deferred execution for non-fixed file */ 1772 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1773 req->file = io_file_get_normal(req, req->cqe.fd); 1774 if (!cdef->prep_async) 1775 return 0; 1776 if (WARN_ON_ONCE(req_has_async_data(req))) 1777 return -EFAULT; 1778 if (!def->manual_alloc) { 1779 if (io_alloc_async_data(req)) 1780 return -EAGAIN; 1781 } 1782 return cdef->prep_async(req); 1783 } 1784 1785 static u32 io_get_sequence(struct io_kiocb *req) 1786 { 1787 u32 seq = req->ctx->cached_sq_head; 1788 struct io_kiocb *cur; 1789 1790 /* need original cached_sq_head, but it was increased for each req */ 1791 io_for_each_link(cur, req) 1792 seq--; 1793 return seq; 1794 } 1795 1796 static __cold void io_drain_req(struct io_kiocb *req) 1797 __must_hold(&ctx->uring_lock) 1798 { 1799 struct io_ring_ctx *ctx = req->ctx; 1800 struct io_defer_entry *de; 1801 int ret; 1802 u32 seq = io_get_sequence(req); 1803 1804 /* Still need defer if there is pending req in defer list. */ 1805 spin_lock(&ctx->completion_lock); 1806 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1807 spin_unlock(&ctx->completion_lock); 1808 queue: 1809 ctx->drain_active = false; 1810 io_req_task_queue(req); 1811 return; 1812 } 1813 spin_unlock(&ctx->completion_lock); 1814 1815 io_prep_async_link(req); 1816 de = kmalloc(sizeof(*de), GFP_KERNEL); 1817 if (!de) { 1818 ret = -ENOMEM; 1819 io_req_defer_failed(req, ret); 1820 return; 1821 } 1822 1823 spin_lock(&ctx->completion_lock); 1824 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1825 spin_unlock(&ctx->completion_lock); 1826 kfree(de); 1827 goto queue; 1828 } 1829 1830 trace_io_uring_defer(req); 1831 de->req = req; 1832 de->seq = seq; 1833 list_add_tail(&de->list, &ctx->defer_list); 1834 spin_unlock(&ctx->completion_lock); 1835 } 1836 1837 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1838 unsigned int issue_flags) 1839 { 1840 if (req->file || !def->needs_file) 1841 return true; 1842 1843 if (req->flags & REQ_F_FIXED_FILE) 1844 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1845 else 1846 req->file = io_file_get_normal(req, req->cqe.fd); 1847 1848 return !!req->file; 1849 } 1850 1851 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1852 { 1853 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1854 const struct cred *creds = NULL; 1855 int ret; 1856 1857 if (unlikely(!io_assign_file(req, def, issue_flags))) 1858 return -EBADF; 1859 1860 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1861 creds = override_creds(req->creds); 1862 1863 if (!def->audit_skip) 1864 audit_uring_entry(req->opcode); 1865 1866 ret = def->issue(req, issue_flags); 1867 1868 if (!def->audit_skip) 1869 audit_uring_exit(!ret, ret); 1870 1871 if (creds) 1872 revert_creds(creds); 1873 1874 if (ret == IOU_OK) { 1875 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1876 io_req_complete_defer(req); 1877 else 1878 io_req_complete_post(req, issue_flags); 1879 1880 return 0; 1881 } 1882 1883 if (ret != IOU_ISSUE_SKIP_COMPLETE) 1884 return ret; 1885 1886 /* If the op doesn't have a file, we're not polling for it */ 1887 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1888 io_iopoll_req_issued(req, issue_flags); 1889 1890 return 0; 1891 } 1892 1893 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1894 { 1895 io_tw_lock(req->ctx, ts); 1896 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1897 IO_URING_F_COMPLETE_DEFER); 1898 } 1899 1900 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1901 { 1902 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1903 struct io_kiocb *nxt = NULL; 1904 1905 if (req_ref_put_and_test(req)) { 1906 if (req->flags & IO_REQ_LINK_FLAGS) 1907 nxt = io_req_find_next(req); 1908 io_free_req(req); 1909 } 1910 return nxt ? &nxt->work : NULL; 1911 } 1912 1913 void io_wq_submit_work(struct io_wq_work *work) 1914 { 1915 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1916 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1917 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1918 bool needs_poll = false; 1919 int ret = 0, err = -ECANCELED; 1920 1921 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1922 if (!(req->flags & REQ_F_REFCOUNT)) 1923 __io_req_set_refcount(req, 2); 1924 else 1925 req_ref_get(req); 1926 1927 io_arm_ltimeout(req); 1928 1929 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1930 if (work->flags & IO_WQ_WORK_CANCEL) { 1931 fail: 1932 io_req_task_queue_fail(req, err); 1933 return; 1934 } 1935 if (!io_assign_file(req, def, issue_flags)) { 1936 err = -EBADF; 1937 work->flags |= IO_WQ_WORK_CANCEL; 1938 goto fail; 1939 } 1940 1941 if (req->flags & REQ_F_FORCE_ASYNC) { 1942 bool opcode_poll = def->pollin || def->pollout; 1943 1944 if (opcode_poll && file_can_poll(req->file)) { 1945 needs_poll = true; 1946 issue_flags |= IO_URING_F_NONBLOCK; 1947 } 1948 } 1949 1950 do { 1951 ret = io_issue_sqe(req, issue_flags); 1952 if (ret != -EAGAIN) 1953 break; 1954 1955 /* 1956 * If REQ_F_NOWAIT is set, then don't wait or retry with 1957 * poll. -EAGAIN is final for that case. 1958 */ 1959 if (req->flags & REQ_F_NOWAIT) 1960 break; 1961 1962 /* 1963 * We can get EAGAIN for iopolled IO even though we're 1964 * forcing a sync submission from here, since we can't 1965 * wait for request slots on the block side. 1966 */ 1967 if (!needs_poll) { 1968 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1969 break; 1970 if (io_wq_worker_stopped()) 1971 break; 1972 cond_resched(); 1973 continue; 1974 } 1975 1976 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1977 return; 1978 /* aborted or ready, in either case retry blocking */ 1979 needs_poll = false; 1980 issue_flags &= ~IO_URING_F_NONBLOCK; 1981 } while (1); 1982 1983 /* avoid locking problems by failing it from a clean context */ 1984 if (ret < 0) 1985 io_req_task_queue_fail(req, ret); 1986 } 1987 1988 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1989 unsigned int issue_flags) 1990 { 1991 struct io_ring_ctx *ctx = req->ctx; 1992 struct io_fixed_file *slot; 1993 struct file *file = NULL; 1994 1995 io_ring_submit_lock(ctx, issue_flags); 1996 1997 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 1998 goto out; 1999 fd = array_index_nospec(fd, ctx->nr_user_files); 2000 slot = io_fixed_file_slot(&ctx->file_table, fd); 2001 file = io_slot_file(slot); 2002 req->flags |= io_slot_flags(slot); 2003 io_req_set_rsrc_node(req, ctx, 0); 2004 out: 2005 io_ring_submit_unlock(ctx, issue_flags); 2006 return file; 2007 } 2008 2009 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 2010 { 2011 struct file *file = fget(fd); 2012 2013 trace_io_uring_file_get(req, fd); 2014 2015 /* we don't allow fixed io_uring files */ 2016 if (file && io_is_uring_fops(file)) 2017 io_req_track_inflight(req); 2018 return file; 2019 } 2020 2021 static void io_queue_async(struct io_kiocb *req, int ret) 2022 __must_hold(&req->ctx->uring_lock) 2023 { 2024 struct io_kiocb *linked_timeout; 2025 2026 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2027 io_req_defer_failed(req, ret); 2028 return; 2029 } 2030 2031 linked_timeout = io_prep_linked_timeout(req); 2032 2033 switch (io_arm_poll_handler(req, 0)) { 2034 case IO_APOLL_READY: 2035 io_kbuf_recycle(req, 0); 2036 io_req_task_queue(req); 2037 break; 2038 case IO_APOLL_ABORTED: 2039 io_kbuf_recycle(req, 0); 2040 io_queue_iowq(req, NULL); 2041 break; 2042 case IO_APOLL_OK: 2043 break; 2044 } 2045 2046 if (linked_timeout) 2047 io_queue_linked_timeout(linked_timeout); 2048 } 2049 2050 static inline void io_queue_sqe(struct io_kiocb *req) 2051 __must_hold(&req->ctx->uring_lock) 2052 { 2053 int ret; 2054 2055 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2056 2057 /* 2058 * We async punt it if the file wasn't marked NOWAIT, or if the file 2059 * doesn't support non-blocking read/write attempts 2060 */ 2061 if (likely(!ret)) 2062 io_arm_ltimeout(req); 2063 else 2064 io_queue_async(req, ret); 2065 } 2066 2067 static void io_queue_sqe_fallback(struct io_kiocb *req) 2068 __must_hold(&req->ctx->uring_lock) 2069 { 2070 if (unlikely(req->flags & REQ_F_FAIL)) { 2071 /* 2072 * We don't submit, fail them all, for that replace hardlinks 2073 * with normal links. Extra REQ_F_LINK is tolerated. 2074 */ 2075 req->flags &= ~REQ_F_HARDLINK; 2076 req->flags |= REQ_F_LINK; 2077 io_req_defer_failed(req, req->cqe.res); 2078 } else { 2079 int ret = io_req_prep_async(req); 2080 2081 if (unlikely(ret)) { 2082 io_req_defer_failed(req, ret); 2083 return; 2084 } 2085 2086 if (unlikely(req->ctx->drain_active)) 2087 io_drain_req(req); 2088 else 2089 io_queue_iowq(req, NULL); 2090 } 2091 } 2092 2093 /* 2094 * Check SQE restrictions (opcode and flags). 2095 * 2096 * Returns 'true' if SQE is allowed, 'false' otherwise. 2097 */ 2098 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2099 struct io_kiocb *req, 2100 unsigned int sqe_flags) 2101 { 2102 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2103 return false; 2104 2105 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2106 ctx->restrictions.sqe_flags_required) 2107 return false; 2108 2109 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2110 ctx->restrictions.sqe_flags_required)) 2111 return false; 2112 2113 return true; 2114 } 2115 2116 static void io_init_req_drain(struct io_kiocb *req) 2117 { 2118 struct io_ring_ctx *ctx = req->ctx; 2119 struct io_kiocb *head = ctx->submit_state.link.head; 2120 2121 ctx->drain_active = true; 2122 if (head) { 2123 /* 2124 * If we need to drain a request in the middle of a link, drain 2125 * the head request and the next request/link after the current 2126 * link. Considering sequential execution of links, 2127 * REQ_F_IO_DRAIN will be maintained for every request of our 2128 * link. 2129 */ 2130 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2131 ctx->drain_next = true; 2132 } 2133 } 2134 2135 static __cold int io_init_fail_req(struct io_kiocb *req, int err) 2136 { 2137 /* ensure per-opcode data is cleared if we fail before prep */ 2138 memset(&req->cmd.data, 0, sizeof(req->cmd.data)); 2139 return err; 2140 } 2141 2142 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2143 const struct io_uring_sqe *sqe) 2144 __must_hold(&ctx->uring_lock) 2145 { 2146 const struct io_issue_def *def; 2147 unsigned int sqe_flags; 2148 int personality; 2149 u8 opcode; 2150 2151 /* req is partially pre-initialised, see io_preinit_req() */ 2152 req->opcode = opcode = READ_ONCE(sqe->opcode); 2153 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2154 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2155 req->cqe.user_data = READ_ONCE(sqe->user_data); 2156 req->file = NULL; 2157 req->rsrc_node = NULL; 2158 req->task = current; 2159 2160 if (unlikely(opcode >= IORING_OP_LAST)) { 2161 req->opcode = 0; 2162 return io_init_fail_req(req, -EINVAL); 2163 } 2164 def = &io_issue_defs[opcode]; 2165 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2166 /* enforce forwards compatibility on users */ 2167 if (sqe_flags & ~SQE_VALID_FLAGS) 2168 return io_init_fail_req(req, -EINVAL); 2169 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2170 if (!def->buffer_select) 2171 return io_init_fail_req(req, -EOPNOTSUPP); 2172 req->buf_index = READ_ONCE(sqe->buf_group); 2173 } 2174 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2175 ctx->drain_disabled = true; 2176 if (sqe_flags & IOSQE_IO_DRAIN) { 2177 if (ctx->drain_disabled) 2178 return io_init_fail_req(req, -EOPNOTSUPP); 2179 io_init_req_drain(req); 2180 } 2181 } 2182 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2183 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2184 return io_init_fail_req(req, -EACCES); 2185 /* knock it to the slow queue path, will be drained there */ 2186 if (ctx->drain_active) 2187 req->flags |= REQ_F_FORCE_ASYNC; 2188 /* if there is no link, we're at "next" request and need to drain */ 2189 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2190 ctx->drain_next = false; 2191 ctx->drain_active = true; 2192 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2193 } 2194 } 2195 2196 if (!def->ioprio && sqe->ioprio) 2197 return io_init_fail_req(req, -EINVAL); 2198 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2199 return io_init_fail_req(req, -EINVAL); 2200 2201 if (def->needs_file) { 2202 struct io_submit_state *state = &ctx->submit_state; 2203 2204 req->cqe.fd = READ_ONCE(sqe->fd); 2205 2206 /* 2207 * Plug now if we have more than 2 IO left after this, and the 2208 * target is potentially a read/write to block based storage. 2209 */ 2210 if (state->need_plug && def->plug) { 2211 state->plug_started = true; 2212 state->need_plug = false; 2213 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2214 } 2215 } 2216 2217 personality = READ_ONCE(sqe->personality); 2218 if (personality) { 2219 int ret; 2220 2221 req->creds = xa_load(&ctx->personalities, personality); 2222 if (!req->creds) 2223 return io_init_fail_req(req, -EINVAL); 2224 get_cred(req->creds); 2225 ret = security_uring_override_creds(req->creds); 2226 if (ret) { 2227 put_cred(req->creds); 2228 return io_init_fail_req(req, ret); 2229 } 2230 req->flags |= REQ_F_CREDS; 2231 } 2232 2233 return def->prep(req, sqe); 2234 } 2235 2236 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2237 struct io_kiocb *req, int ret) 2238 { 2239 struct io_ring_ctx *ctx = req->ctx; 2240 struct io_submit_link *link = &ctx->submit_state.link; 2241 struct io_kiocb *head = link->head; 2242 2243 trace_io_uring_req_failed(sqe, req, ret); 2244 2245 /* 2246 * Avoid breaking links in the middle as it renders links with SQPOLL 2247 * unusable. Instead of failing eagerly, continue assembling the link if 2248 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2249 * should find the flag and handle the rest. 2250 */ 2251 req_fail_link_node(req, ret); 2252 if (head && !(head->flags & REQ_F_FAIL)) 2253 req_fail_link_node(head, -ECANCELED); 2254 2255 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2256 if (head) { 2257 link->last->link = req; 2258 link->head = NULL; 2259 req = head; 2260 } 2261 io_queue_sqe_fallback(req); 2262 return ret; 2263 } 2264 2265 if (head) 2266 link->last->link = req; 2267 else 2268 link->head = req; 2269 link->last = req; 2270 return 0; 2271 } 2272 2273 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2274 const struct io_uring_sqe *sqe) 2275 __must_hold(&ctx->uring_lock) 2276 { 2277 struct io_submit_link *link = &ctx->submit_state.link; 2278 int ret; 2279 2280 ret = io_init_req(ctx, req, sqe); 2281 if (unlikely(ret)) 2282 return io_submit_fail_init(sqe, req, ret); 2283 2284 trace_io_uring_submit_req(req); 2285 2286 /* 2287 * If we already have a head request, queue this one for async 2288 * submittal once the head completes. If we don't have a head but 2289 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2290 * submitted sync once the chain is complete. If none of those 2291 * conditions are true (normal request), then just queue it. 2292 */ 2293 if (unlikely(link->head)) { 2294 ret = io_req_prep_async(req); 2295 if (unlikely(ret)) 2296 return io_submit_fail_init(sqe, req, ret); 2297 2298 trace_io_uring_link(req, link->head); 2299 link->last->link = req; 2300 link->last = req; 2301 2302 if (req->flags & IO_REQ_LINK_FLAGS) 2303 return 0; 2304 /* last request of the link, flush it */ 2305 req = link->head; 2306 link->head = NULL; 2307 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2308 goto fallback; 2309 2310 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2311 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2312 if (req->flags & IO_REQ_LINK_FLAGS) { 2313 link->head = req; 2314 link->last = req; 2315 } else { 2316 fallback: 2317 io_queue_sqe_fallback(req); 2318 } 2319 return 0; 2320 } 2321 2322 io_queue_sqe(req); 2323 return 0; 2324 } 2325 2326 /* 2327 * Batched submission is done, ensure local IO is flushed out. 2328 */ 2329 static void io_submit_state_end(struct io_ring_ctx *ctx) 2330 { 2331 struct io_submit_state *state = &ctx->submit_state; 2332 2333 if (unlikely(state->link.head)) 2334 io_queue_sqe_fallback(state->link.head); 2335 /* flush only after queuing links as they can generate completions */ 2336 io_submit_flush_completions(ctx); 2337 if (state->plug_started) 2338 blk_finish_plug(&state->plug); 2339 } 2340 2341 /* 2342 * Start submission side cache. 2343 */ 2344 static void io_submit_state_start(struct io_submit_state *state, 2345 unsigned int max_ios) 2346 { 2347 state->plug_started = false; 2348 state->need_plug = max_ios > 2; 2349 state->submit_nr = max_ios; 2350 /* set only head, no need to init link_last in advance */ 2351 state->link.head = NULL; 2352 } 2353 2354 static void io_commit_sqring(struct io_ring_ctx *ctx) 2355 { 2356 struct io_rings *rings = ctx->rings; 2357 2358 /* 2359 * Ensure any loads from the SQEs are done at this point, 2360 * since once we write the new head, the application could 2361 * write new data to them. 2362 */ 2363 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2364 } 2365 2366 /* 2367 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2368 * that is mapped by userspace. This means that care needs to be taken to 2369 * ensure that reads are stable, as we cannot rely on userspace always 2370 * being a good citizen. If members of the sqe are validated and then later 2371 * used, it's important that those reads are done through READ_ONCE() to 2372 * prevent a re-load down the line. 2373 */ 2374 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2375 { 2376 unsigned mask = ctx->sq_entries - 1; 2377 unsigned head = ctx->cached_sq_head++ & mask; 2378 2379 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) { 2380 head = READ_ONCE(ctx->sq_array[head]); 2381 if (unlikely(head >= ctx->sq_entries)) { 2382 /* drop invalid entries */ 2383 spin_lock(&ctx->completion_lock); 2384 ctx->cq_extra--; 2385 spin_unlock(&ctx->completion_lock); 2386 WRITE_ONCE(ctx->rings->sq_dropped, 2387 READ_ONCE(ctx->rings->sq_dropped) + 1); 2388 return false; 2389 } 2390 } 2391 2392 /* 2393 * The cached sq head (or cq tail) serves two purposes: 2394 * 2395 * 1) allows us to batch the cost of updating the user visible 2396 * head updates. 2397 * 2) allows the kernel side to track the head on its own, even 2398 * though the application is the one updating it. 2399 */ 2400 2401 /* double index for 128-byte SQEs, twice as long */ 2402 if (ctx->flags & IORING_SETUP_SQE128) 2403 head <<= 1; 2404 *sqe = &ctx->sq_sqes[head]; 2405 return true; 2406 } 2407 2408 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2409 __must_hold(&ctx->uring_lock) 2410 { 2411 unsigned int entries = io_sqring_entries(ctx); 2412 unsigned int left; 2413 int ret; 2414 2415 if (unlikely(!entries)) 2416 return 0; 2417 /* make sure SQ entry isn't read before tail */ 2418 ret = left = min(nr, entries); 2419 io_get_task_refs(left); 2420 io_submit_state_start(&ctx->submit_state, left); 2421 2422 do { 2423 const struct io_uring_sqe *sqe; 2424 struct io_kiocb *req; 2425 2426 if (unlikely(!io_alloc_req(ctx, &req))) 2427 break; 2428 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2429 io_req_add_to_cache(req, ctx); 2430 break; 2431 } 2432 2433 /* 2434 * Continue submitting even for sqe failure if the 2435 * ring was setup with IORING_SETUP_SUBMIT_ALL 2436 */ 2437 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2438 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2439 left--; 2440 break; 2441 } 2442 } while (--left); 2443 2444 if (unlikely(left)) { 2445 ret -= left; 2446 /* try again if it submitted nothing and can't allocate a req */ 2447 if (!ret && io_req_cache_empty(ctx)) 2448 ret = -EAGAIN; 2449 current->io_uring->cached_refs += left; 2450 } 2451 2452 io_submit_state_end(ctx); 2453 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2454 io_commit_sqring(ctx); 2455 return ret; 2456 } 2457 2458 struct io_wait_queue { 2459 struct wait_queue_entry wq; 2460 struct io_ring_ctx *ctx; 2461 unsigned cq_tail; 2462 unsigned nr_timeouts; 2463 ktime_t timeout; 2464 }; 2465 2466 static inline bool io_has_work(struct io_ring_ctx *ctx) 2467 { 2468 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2469 !llist_empty(&ctx->work_llist); 2470 } 2471 2472 static inline bool io_should_wake(struct io_wait_queue *iowq) 2473 { 2474 struct io_ring_ctx *ctx = iowq->ctx; 2475 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2476 2477 /* 2478 * Wake up if we have enough events, or if a timeout occurred since we 2479 * started waiting. For timeouts, we always want to return to userspace, 2480 * regardless of event count. 2481 */ 2482 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2483 } 2484 2485 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2486 int wake_flags, void *key) 2487 { 2488 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2489 2490 /* 2491 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2492 * the task, and the next invocation will do it. 2493 */ 2494 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2495 return autoremove_wake_function(curr, mode, wake_flags, key); 2496 return -1; 2497 } 2498 2499 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2500 { 2501 if (!llist_empty(&ctx->work_llist)) { 2502 __set_current_state(TASK_RUNNING); 2503 if (io_run_local_work(ctx, INT_MAX) > 0) 2504 return 0; 2505 } 2506 if (io_run_task_work() > 0) 2507 return 0; 2508 if (task_sigpending(current)) 2509 return -EINTR; 2510 return 0; 2511 } 2512 2513 static bool current_pending_io(void) 2514 { 2515 struct io_uring_task *tctx = current->io_uring; 2516 2517 if (!tctx) 2518 return false; 2519 return percpu_counter_read_positive(&tctx->inflight); 2520 } 2521 2522 /* when returns >0, the caller should retry */ 2523 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2524 struct io_wait_queue *iowq) 2525 { 2526 int ret; 2527 2528 if (unlikely(READ_ONCE(ctx->check_cq))) 2529 return 1; 2530 if (unlikely(!llist_empty(&ctx->work_llist))) 2531 return 1; 2532 if (unlikely(task_work_pending(current))) 2533 return 1; 2534 if (unlikely(task_sigpending(current))) 2535 return -EINTR; 2536 if (unlikely(io_should_wake(iowq))) 2537 return 0; 2538 2539 /* 2540 * Mark us as being in io_wait if we have pending requests, so cpufreq 2541 * can take into account that the task is waiting for IO - turns out 2542 * to be important for low QD IO. 2543 */ 2544 if (current_pending_io()) 2545 current->in_iowait = 1; 2546 ret = 0; 2547 if (iowq->timeout == KTIME_MAX) 2548 schedule(); 2549 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2550 ret = -ETIME; 2551 current->in_iowait = 0; 2552 return ret; 2553 } 2554 2555 /* 2556 * Wait until events become available, if we don't already have some. The 2557 * application must reap them itself, as they reside on the shared cq ring. 2558 */ 2559 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2560 const sigset_t __user *sig, size_t sigsz, 2561 struct __kernel_timespec __user *uts) 2562 { 2563 struct io_wait_queue iowq; 2564 struct io_rings *rings = ctx->rings; 2565 int ret; 2566 2567 if (!io_allowed_run_tw(ctx)) 2568 return -EEXIST; 2569 if (!llist_empty(&ctx->work_llist)) 2570 io_run_local_work(ctx, min_events); 2571 io_run_task_work(); 2572 io_cqring_overflow_flush(ctx); 2573 /* if user messes with these they will just get an early return */ 2574 if (__io_cqring_events_user(ctx) >= min_events) 2575 return 0; 2576 2577 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2578 iowq.wq.private = current; 2579 INIT_LIST_HEAD(&iowq.wq.entry); 2580 iowq.ctx = ctx; 2581 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2582 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2583 iowq.timeout = KTIME_MAX; 2584 2585 if (uts) { 2586 struct timespec64 ts; 2587 2588 if (get_timespec64(&ts, uts)) 2589 return -EFAULT; 2590 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2591 } 2592 2593 if (sig) { 2594 #ifdef CONFIG_COMPAT 2595 if (in_compat_syscall()) 2596 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2597 sigsz); 2598 else 2599 #endif 2600 ret = set_user_sigmask(sig, sigsz); 2601 2602 if (ret) 2603 return ret; 2604 } 2605 2606 trace_io_uring_cqring_wait(ctx, min_events); 2607 do { 2608 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2609 unsigned long check_cq; 2610 2611 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2612 atomic_set(&ctx->cq_wait_nr, nr_wait); 2613 set_current_state(TASK_INTERRUPTIBLE); 2614 } else { 2615 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2616 TASK_INTERRUPTIBLE); 2617 } 2618 2619 ret = io_cqring_wait_schedule(ctx, &iowq); 2620 __set_current_state(TASK_RUNNING); 2621 atomic_set(&ctx->cq_wait_nr, 0); 2622 2623 /* 2624 * Run task_work after scheduling and before io_should_wake(). 2625 * If we got woken because of task_work being processed, run it 2626 * now rather than let the caller do another wait loop. 2627 */ 2628 if (!llist_empty(&ctx->work_llist)) 2629 io_run_local_work(ctx, nr_wait); 2630 io_run_task_work(); 2631 2632 /* 2633 * Non-local task_work will be run on exit to userspace, but 2634 * if we're using DEFER_TASKRUN, then we could have waited 2635 * with a timeout for a number of requests. If the timeout 2636 * hits, we could have some requests ready to process. Ensure 2637 * this break is _after_ we have run task_work, to avoid 2638 * deferring running potentially pending requests until the 2639 * next time we wait for events. 2640 */ 2641 if (ret < 0) 2642 break; 2643 2644 check_cq = READ_ONCE(ctx->check_cq); 2645 if (unlikely(check_cq)) { 2646 /* let the caller flush overflows, retry */ 2647 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2648 io_cqring_do_overflow_flush(ctx); 2649 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2650 ret = -EBADR; 2651 break; 2652 } 2653 } 2654 2655 if (io_should_wake(&iowq)) { 2656 ret = 0; 2657 break; 2658 } 2659 cond_resched(); 2660 } while (1); 2661 2662 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2663 finish_wait(&ctx->cq_wait, &iowq.wq); 2664 restore_saved_sigmask_unless(ret == -EINTR); 2665 2666 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2667 } 2668 2669 void io_mem_free(void *ptr) 2670 { 2671 if (!ptr) 2672 return; 2673 2674 folio_put(virt_to_folio(ptr)); 2675 } 2676 2677 static void io_pages_free(struct page ***pages, int npages) 2678 { 2679 struct page **page_array; 2680 int i; 2681 2682 if (!pages) 2683 return; 2684 2685 page_array = *pages; 2686 if (!page_array) 2687 return; 2688 2689 for (i = 0; i < npages; i++) 2690 unpin_user_page(page_array[i]); 2691 kvfree(page_array); 2692 *pages = NULL; 2693 } 2694 2695 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, 2696 unsigned long uaddr, size_t size) 2697 { 2698 struct page **page_array; 2699 unsigned int nr_pages; 2700 void *page_addr; 2701 int ret, i, pinned; 2702 2703 *npages = 0; 2704 2705 if (uaddr & (PAGE_SIZE - 1) || !size) 2706 return ERR_PTR(-EINVAL); 2707 2708 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2709 if (nr_pages > USHRT_MAX) 2710 return ERR_PTR(-EINVAL); 2711 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); 2712 if (!page_array) 2713 return ERR_PTR(-ENOMEM); 2714 2715 2716 pinned = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, 2717 page_array); 2718 if (pinned != nr_pages) { 2719 ret = (pinned < 0) ? pinned : -EFAULT; 2720 goto free_pages; 2721 } 2722 2723 page_addr = page_address(page_array[0]); 2724 for (i = 0; i < nr_pages; i++) { 2725 ret = -EINVAL; 2726 2727 /* 2728 * Can't support mapping user allocated ring memory on 32-bit 2729 * archs where it could potentially reside in highmem. Just 2730 * fail those with -EINVAL, just like we did on kernels that 2731 * didn't support this feature. 2732 */ 2733 if (PageHighMem(page_array[i])) 2734 goto free_pages; 2735 2736 /* 2737 * No support for discontig pages for now, should either be a 2738 * single normal page, or a huge page. Later on we can add 2739 * support for remapping discontig pages, for now we will 2740 * just fail them with EINVAL. 2741 */ 2742 if (page_address(page_array[i]) != page_addr) 2743 goto free_pages; 2744 page_addr += PAGE_SIZE; 2745 } 2746 2747 *pages = page_array; 2748 *npages = nr_pages; 2749 return page_to_virt(page_array[0]); 2750 2751 free_pages: 2752 io_pages_free(&page_array, pinned > 0 ? pinned : 0); 2753 return ERR_PTR(ret); 2754 } 2755 2756 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2757 size_t size) 2758 { 2759 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2760 size); 2761 } 2762 2763 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2764 size_t size) 2765 { 2766 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2767 size); 2768 } 2769 2770 static void io_rings_free(struct io_ring_ctx *ctx) 2771 { 2772 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2773 io_mem_free(ctx->rings); 2774 io_mem_free(ctx->sq_sqes); 2775 } else { 2776 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2777 ctx->n_ring_pages = 0; 2778 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2779 ctx->n_sqe_pages = 0; 2780 } 2781 2782 ctx->rings = NULL; 2783 ctx->sq_sqes = NULL; 2784 } 2785 2786 void *io_mem_alloc(size_t size) 2787 { 2788 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2789 void *ret; 2790 2791 ret = (void *) __get_free_pages(gfp, get_order(size)); 2792 if (ret) 2793 return ret; 2794 return ERR_PTR(-ENOMEM); 2795 } 2796 2797 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2798 unsigned int cq_entries, size_t *sq_offset) 2799 { 2800 struct io_rings *rings; 2801 size_t off, sq_array_size; 2802 2803 off = struct_size(rings, cqes, cq_entries); 2804 if (off == SIZE_MAX) 2805 return SIZE_MAX; 2806 if (ctx->flags & IORING_SETUP_CQE32) { 2807 if (check_shl_overflow(off, 1, &off)) 2808 return SIZE_MAX; 2809 } 2810 2811 #ifdef CONFIG_SMP 2812 off = ALIGN(off, SMP_CACHE_BYTES); 2813 if (off == 0) 2814 return SIZE_MAX; 2815 #endif 2816 2817 if (ctx->flags & IORING_SETUP_NO_SQARRAY) { 2818 if (sq_offset) 2819 *sq_offset = SIZE_MAX; 2820 return off; 2821 } 2822 2823 if (sq_offset) 2824 *sq_offset = off; 2825 2826 sq_array_size = array_size(sizeof(u32), sq_entries); 2827 if (sq_array_size == SIZE_MAX) 2828 return SIZE_MAX; 2829 2830 if (check_add_overflow(off, sq_array_size, &off)) 2831 return SIZE_MAX; 2832 2833 return off; 2834 } 2835 2836 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2837 unsigned int eventfd_async) 2838 { 2839 struct io_ev_fd *ev_fd; 2840 __s32 __user *fds = arg; 2841 int fd; 2842 2843 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2844 lockdep_is_held(&ctx->uring_lock)); 2845 if (ev_fd) 2846 return -EBUSY; 2847 2848 if (copy_from_user(&fd, fds, sizeof(*fds))) 2849 return -EFAULT; 2850 2851 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2852 if (!ev_fd) 2853 return -ENOMEM; 2854 2855 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2856 if (IS_ERR(ev_fd->cq_ev_fd)) { 2857 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2858 kfree(ev_fd); 2859 return ret; 2860 } 2861 2862 spin_lock(&ctx->completion_lock); 2863 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2864 spin_unlock(&ctx->completion_lock); 2865 2866 ev_fd->eventfd_async = eventfd_async; 2867 ctx->has_evfd = true; 2868 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2869 atomic_set(&ev_fd->refs, 1); 2870 atomic_set(&ev_fd->ops, 0); 2871 return 0; 2872 } 2873 2874 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2875 { 2876 struct io_ev_fd *ev_fd; 2877 2878 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2879 lockdep_is_held(&ctx->uring_lock)); 2880 if (ev_fd) { 2881 ctx->has_evfd = false; 2882 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2883 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2884 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2885 return 0; 2886 } 2887 2888 return -ENXIO; 2889 } 2890 2891 static void io_req_caches_free(struct io_ring_ctx *ctx) 2892 { 2893 struct io_kiocb *req; 2894 int nr = 0; 2895 2896 mutex_lock(&ctx->uring_lock); 2897 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2898 2899 while (!io_req_cache_empty(ctx)) { 2900 req = io_extract_req(ctx); 2901 kmem_cache_free(req_cachep, req); 2902 nr++; 2903 } 2904 if (nr) 2905 percpu_ref_put_many(&ctx->refs, nr); 2906 mutex_unlock(&ctx->uring_lock); 2907 } 2908 2909 static void io_rsrc_node_cache_free(struct io_cache_entry *entry) 2910 { 2911 kfree(container_of(entry, struct io_rsrc_node, cache)); 2912 } 2913 2914 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2915 { 2916 io_sq_thread_finish(ctx); 2917 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2918 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2919 return; 2920 2921 mutex_lock(&ctx->uring_lock); 2922 if (ctx->buf_data) 2923 __io_sqe_buffers_unregister(ctx); 2924 if (ctx->file_data) 2925 __io_sqe_files_unregister(ctx); 2926 io_cqring_overflow_kill(ctx); 2927 io_eventfd_unregister(ctx); 2928 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2929 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2930 io_destroy_buffers(ctx); 2931 mutex_unlock(&ctx->uring_lock); 2932 if (ctx->sq_creds) 2933 put_cred(ctx->sq_creds); 2934 if (ctx->submitter_task) 2935 put_task_struct(ctx->submitter_task); 2936 2937 /* there are no registered resources left, nobody uses it */ 2938 if (ctx->rsrc_node) 2939 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2940 2941 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2942 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2943 2944 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); 2945 if (ctx->mm_account) { 2946 mmdrop(ctx->mm_account); 2947 ctx->mm_account = NULL; 2948 } 2949 io_rings_free(ctx); 2950 io_kbuf_mmap_list_free(ctx); 2951 2952 percpu_ref_exit(&ctx->refs); 2953 free_uid(ctx->user); 2954 io_req_caches_free(ctx); 2955 if (ctx->hash_map) 2956 io_wq_put_hash(ctx->hash_map); 2957 kfree(ctx->cancel_table.hbs); 2958 kfree(ctx->cancel_table_locked.hbs); 2959 xa_destroy(&ctx->io_bl_xa); 2960 kfree(ctx); 2961 } 2962 2963 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2964 { 2965 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2966 poll_wq_task_work); 2967 2968 mutex_lock(&ctx->uring_lock); 2969 ctx->poll_activated = true; 2970 mutex_unlock(&ctx->uring_lock); 2971 2972 /* 2973 * Wake ups for some events between start of polling and activation 2974 * might've been lost due to loose synchronisation. 2975 */ 2976 wake_up_all(&ctx->poll_wq); 2977 percpu_ref_put(&ctx->refs); 2978 } 2979 2980 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2981 { 2982 spin_lock(&ctx->completion_lock); 2983 /* already activated or in progress */ 2984 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2985 goto out; 2986 if (WARN_ON_ONCE(!ctx->task_complete)) 2987 goto out; 2988 if (!ctx->submitter_task) 2989 goto out; 2990 /* 2991 * with ->submitter_task only the submitter task completes requests, we 2992 * only need to sync with it, which is done by injecting a tw 2993 */ 2994 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2995 percpu_ref_get(&ctx->refs); 2996 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2997 percpu_ref_put(&ctx->refs); 2998 out: 2999 spin_unlock(&ctx->completion_lock); 3000 } 3001 3002 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 3003 { 3004 struct io_ring_ctx *ctx = file->private_data; 3005 __poll_t mask = 0; 3006 3007 if (unlikely(!ctx->poll_activated)) 3008 io_activate_pollwq(ctx); 3009 3010 poll_wait(file, &ctx->poll_wq, wait); 3011 /* 3012 * synchronizes with barrier from wq_has_sleeper call in 3013 * io_commit_cqring 3014 */ 3015 smp_rmb(); 3016 if (!io_sqring_full(ctx)) 3017 mask |= EPOLLOUT | EPOLLWRNORM; 3018 3019 /* 3020 * Don't flush cqring overflow list here, just do a simple check. 3021 * Otherwise there could possible be ABBA deadlock: 3022 * CPU0 CPU1 3023 * ---- ---- 3024 * lock(&ctx->uring_lock); 3025 * lock(&ep->mtx); 3026 * lock(&ctx->uring_lock); 3027 * lock(&ep->mtx); 3028 * 3029 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 3030 * pushes them to do the flush. 3031 */ 3032 3033 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 3034 mask |= EPOLLIN | EPOLLRDNORM; 3035 3036 return mask; 3037 } 3038 3039 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 3040 { 3041 const struct cred *creds; 3042 3043 creds = xa_erase(&ctx->personalities, id); 3044 if (creds) { 3045 put_cred(creds); 3046 return 0; 3047 } 3048 3049 return -EINVAL; 3050 } 3051 3052 struct io_tctx_exit { 3053 struct callback_head task_work; 3054 struct completion completion; 3055 struct io_ring_ctx *ctx; 3056 }; 3057 3058 static __cold void io_tctx_exit_cb(struct callback_head *cb) 3059 { 3060 struct io_uring_task *tctx = current->io_uring; 3061 struct io_tctx_exit *work; 3062 3063 work = container_of(cb, struct io_tctx_exit, task_work); 3064 /* 3065 * When @in_cancel, we're in cancellation and it's racy to remove the 3066 * node. It'll be removed by the end of cancellation, just ignore it. 3067 * tctx can be NULL if the queueing of this task_work raced with 3068 * work cancelation off the exec path. 3069 */ 3070 if (tctx && !atomic_read(&tctx->in_cancel)) 3071 io_uring_del_tctx_node((unsigned long)work->ctx); 3072 complete(&work->completion); 3073 } 3074 3075 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 3076 { 3077 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3078 3079 return req->ctx == data; 3080 } 3081 3082 static __cold void io_ring_exit_work(struct work_struct *work) 3083 { 3084 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 3085 unsigned long timeout = jiffies + HZ * 60 * 5; 3086 unsigned long interval = HZ / 20; 3087 struct io_tctx_exit exit; 3088 struct io_tctx_node *node; 3089 int ret; 3090 3091 /* 3092 * If we're doing polled IO and end up having requests being 3093 * submitted async (out-of-line), then completions can come in while 3094 * we're waiting for refs to drop. We need to reap these manually, 3095 * as nobody else will be looking for them. 3096 */ 3097 do { 3098 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 3099 mutex_lock(&ctx->uring_lock); 3100 io_cqring_overflow_kill(ctx); 3101 mutex_unlock(&ctx->uring_lock); 3102 } 3103 3104 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3105 io_move_task_work_from_local(ctx); 3106 3107 while (io_uring_try_cancel_requests(ctx, NULL, true)) 3108 cond_resched(); 3109 3110 if (ctx->sq_data) { 3111 struct io_sq_data *sqd = ctx->sq_data; 3112 struct task_struct *tsk; 3113 3114 io_sq_thread_park(sqd); 3115 tsk = sqd->thread; 3116 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 3117 io_wq_cancel_cb(tsk->io_uring->io_wq, 3118 io_cancel_ctx_cb, ctx, true); 3119 io_sq_thread_unpark(sqd); 3120 } 3121 3122 io_req_caches_free(ctx); 3123 3124 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3125 /* there is little hope left, don't run it too often */ 3126 interval = HZ * 60; 3127 } 3128 /* 3129 * This is really an uninterruptible wait, as it has to be 3130 * complete. But it's also run from a kworker, which doesn't 3131 * take signals, so it's fine to make it interruptible. This 3132 * avoids scenarios where we knowingly can wait much longer 3133 * on completions, for example if someone does a SIGSTOP on 3134 * a task that needs to finish task_work to make this loop 3135 * complete. That's a synthetic situation that should not 3136 * cause a stuck task backtrace, and hence a potential panic 3137 * on stuck tasks if that is enabled. 3138 */ 3139 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 3140 3141 init_completion(&exit.completion); 3142 init_task_work(&exit.task_work, io_tctx_exit_cb); 3143 exit.ctx = ctx; 3144 3145 mutex_lock(&ctx->uring_lock); 3146 while (!list_empty(&ctx->tctx_list)) { 3147 WARN_ON_ONCE(time_after(jiffies, timeout)); 3148 3149 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3150 ctx_node); 3151 /* don't spin on a single task if cancellation failed */ 3152 list_rotate_left(&ctx->tctx_list); 3153 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3154 if (WARN_ON_ONCE(ret)) 3155 continue; 3156 3157 mutex_unlock(&ctx->uring_lock); 3158 /* 3159 * See comment above for 3160 * wait_for_completion_interruptible_timeout() on why this 3161 * wait is marked as interruptible. 3162 */ 3163 wait_for_completion_interruptible(&exit.completion); 3164 mutex_lock(&ctx->uring_lock); 3165 } 3166 mutex_unlock(&ctx->uring_lock); 3167 spin_lock(&ctx->completion_lock); 3168 spin_unlock(&ctx->completion_lock); 3169 3170 /* pairs with RCU read section in io_req_local_work_add() */ 3171 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3172 synchronize_rcu(); 3173 3174 io_ring_ctx_free(ctx); 3175 } 3176 3177 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3178 { 3179 unsigned long index; 3180 struct creds *creds; 3181 3182 mutex_lock(&ctx->uring_lock); 3183 percpu_ref_kill(&ctx->refs); 3184 xa_for_each(&ctx->personalities, index, creds) 3185 io_unregister_personality(ctx, index); 3186 if (ctx->rings) 3187 io_poll_remove_all(ctx, NULL, true); 3188 mutex_unlock(&ctx->uring_lock); 3189 3190 /* 3191 * If we failed setting up the ctx, we might not have any rings 3192 * and therefore did not submit any requests 3193 */ 3194 if (ctx->rings) 3195 io_kill_timeouts(ctx, NULL, true); 3196 3197 flush_delayed_work(&ctx->fallback_work); 3198 3199 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3200 /* 3201 * Use system_unbound_wq to avoid spawning tons of event kworkers 3202 * if we're exiting a ton of rings at the same time. It just adds 3203 * noise and overhead, there's no discernable change in runtime 3204 * over using system_wq. 3205 */ 3206 queue_work(iou_wq, &ctx->exit_work); 3207 } 3208 3209 static int io_uring_release(struct inode *inode, struct file *file) 3210 { 3211 struct io_ring_ctx *ctx = file->private_data; 3212 3213 file->private_data = NULL; 3214 io_ring_ctx_wait_and_kill(ctx); 3215 return 0; 3216 } 3217 3218 struct io_task_cancel { 3219 struct task_struct *task; 3220 bool all; 3221 }; 3222 3223 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3224 { 3225 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3226 struct io_task_cancel *cancel = data; 3227 3228 return io_match_task_safe(req, cancel->task, cancel->all); 3229 } 3230 3231 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3232 struct task_struct *task, 3233 bool cancel_all) 3234 { 3235 struct io_defer_entry *de; 3236 LIST_HEAD(list); 3237 3238 spin_lock(&ctx->completion_lock); 3239 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3240 if (io_match_task_safe(de->req, task, cancel_all)) { 3241 list_cut_position(&list, &ctx->defer_list, &de->list); 3242 break; 3243 } 3244 } 3245 spin_unlock(&ctx->completion_lock); 3246 if (list_empty(&list)) 3247 return false; 3248 3249 while (!list_empty(&list)) { 3250 de = list_first_entry(&list, struct io_defer_entry, list); 3251 list_del_init(&de->list); 3252 io_req_task_queue_fail(de->req, -ECANCELED); 3253 kfree(de); 3254 } 3255 return true; 3256 } 3257 3258 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3259 { 3260 struct io_tctx_node *node; 3261 enum io_wq_cancel cret; 3262 bool ret = false; 3263 3264 mutex_lock(&ctx->uring_lock); 3265 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3266 struct io_uring_task *tctx = node->task->io_uring; 3267 3268 /* 3269 * io_wq will stay alive while we hold uring_lock, because it's 3270 * killed after ctx nodes, which requires to take the lock. 3271 */ 3272 if (!tctx || !tctx->io_wq) 3273 continue; 3274 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3275 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3276 } 3277 mutex_unlock(&ctx->uring_lock); 3278 3279 return ret; 3280 } 3281 3282 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3283 struct task_struct *task, 3284 bool cancel_all) 3285 { 3286 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3287 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3288 enum io_wq_cancel cret; 3289 bool ret = false; 3290 3291 /* set it so io_req_local_work_add() would wake us up */ 3292 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3293 atomic_set(&ctx->cq_wait_nr, 1); 3294 smp_mb(); 3295 } 3296 3297 /* failed during ring init, it couldn't have issued any requests */ 3298 if (!ctx->rings) 3299 return false; 3300 3301 if (!task) { 3302 ret |= io_uring_try_cancel_iowq(ctx); 3303 } else if (tctx && tctx->io_wq) { 3304 /* 3305 * Cancels requests of all rings, not only @ctx, but 3306 * it's fine as the task is in exit/exec. 3307 */ 3308 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3309 &cancel, true); 3310 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3311 } 3312 3313 /* SQPOLL thread does its own polling */ 3314 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3315 (ctx->sq_data && ctx->sq_data->thread == current)) { 3316 while (!wq_list_empty(&ctx->iopoll_list)) { 3317 io_iopoll_try_reap_events(ctx); 3318 ret = true; 3319 cond_resched(); 3320 } 3321 } 3322 3323 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3324 io_allowed_defer_tw_run(ctx)) 3325 ret |= io_run_local_work(ctx, INT_MAX) > 0; 3326 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3327 mutex_lock(&ctx->uring_lock); 3328 ret |= io_poll_remove_all(ctx, task, cancel_all); 3329 mutex_unlock(&ctx->uring_lock); 3330 ret |= io_kill_timeouts(ctx, task, cancel_all); 3331 if (task) 3332 ret |= io_run_task_work() > 0; 3333 return ret; 3334 } 3335 3336 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3337 { 3338 if (tracked) 3339 return atomic_read(&tctx->inflight_tracked); 3340 return percpu_counter_sum(&tctx->inflight); 3341 } 3342 3343 /* 3344 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3345 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3346 */ 3347 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3348 { 3349 struct io_uring_task *tctx = current->io_uring; 3350 struct io_ring_ctx *ctx; 3351 struct io_tctx_node *node; 3352 unsigned long index; 3353 s64 inflight; 3354 DEFINE_WAIT(wait); 3355 3356 WARN_ON_ONCE(sqd && sqd->thread != current); 3357 3358 if (!current->io_uring) 3359 return; 3360 if (tctx->io_wq) 3361 io_wq_exit_start(tctx->io_wq); 3362 3363 atomic_inc(&tctx->in_cancel); 3364 do { 3365 bool loop = false; 3366 3367 io_uring_drop_tctx_refs(current); 3368 if (!tctx_inflight(tctx, !cancel_all)) 3369 break; 3370 3371 /* read completions before cancelations */ 3372 inflight = tctx_inflight(tctx, false); 3373 if (!inflight) 3374 break; 3375 3376 if (!sqd) { 3377 xa_for_each(&tctx->xa, index, node) { 3378 /* sqpoll task will cancel all its requests */ 3379 if (node->ctx->sq_data) 3380 continue; 3381 loop |= io_uring_try_cancel_requests(node->ctx, 3382 current, cancel_all); 3383 } 3384 } else { 3385 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3386 loop |= io_uring_try_cancel_requests(ctx, 3387 current, 3388 cancel_all); 3389 } 3390 3391 if (loop) { 3392 cond_resched(); 3393 continue; 3394 } 3395 3396 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3397 io_run_task_work(); 3398 io_uring_drop_tctx_refs(current); 3399 xa_for_each(&tctx->xa, index, node) { 3400 if (!llist_empty(&node->ctx->work_llist)) { 3401 WARN_ON_ONCE(node->ctx->submitter_task && 3402 node->ctx->submitter_task != current); 3403 goto end_wait; 3404 } 3405 } 3406 /* 3407 * If we've seen completions, retry without waiting. This 3408 * avoids a race where a completion comes in before we did 3409 * prepare_to_wait(). 3410 */ 3411 if (inflight == tctx_inflight(tctx, !cancel_all)) 3412 schedule(); 3413 end_wait: 3414 finish_wait(&tctx->wait, &wait); 3415 } while (1); 3416 3417 io_uring_clean_tctx(tctx); 3418 if (cancel_all) { 3419 /* 3420 * We shouldn't run task_works after cancel, so just leave 3421 * ->in_cancel set for normal exit. 3422 */ 3423 atomic_dec(&tctx->in_cancel); 3424 /* for exec all current's requests should be gone, kill tctx */ 3425 __io_uring_free(current); 3426 } 3427 } 3428 3429 void __io_uring_cancel(bool cancel_all) 3430 { 3431 io_uring_cancel_generic(cancel_all, NULL); 3432 } 3433 3434 static void *io_uring_validate_mmap_request(struct file *file, 3435 loff_t pgoff, size_t sz) 3436 { 3437 struct io_ring_ctx *ctx = file->private_data; 3438 loff_t offset = pgoff << PAGE_SHIFT; 3439 struct page *page; 3440 void *ptr; 3441 3442 switch (offset & IORING_OFF_MMAP_MASK) { 3443 case IORING_OFF_SQ_RING: 3444 case IORING_OFF_CQ_RING: 3445 /* Don't allow mmap if the ring was setup without it */ 3446 if (ctx->flags & IORING_SETUP_NO_MMAP) 3447 return ERR_PTR(-EINVAL); 3448 ptr = ctx->rings; 3449 break; 3450 case IORING_OFF_SQES: 3451 /* Don't allow mmap if the ring was setup without it */ 3452 if (ctx->flags & IORING_SETUP_NO_MMAP) 3453 return ERR_PTR(-EINVAL); 3454 ptr = ctx->sq_sqes; 3455 break; 3456 case IORING_OFF_PBUF_RING: { 3457 struct io_buffer_list *bl; 3458 unsigned int bgid; 3459 3460 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; 3461 bl = io_pbuf_get_bl(ctx, bgid); 3462 if (IS_ERR(bl)) 3463 return bl; 3464 ptr = bl->buf_ring; 3465 io_put_bl(ctx, bl); 3466 break; 3467 } 3468 default: 3469 return ERR_PTR(-EINVAL); 3470 } 3471 3472 page = virt_to_head_page(ptr); 3473 if (sz > page_size(page)) 3474 return ERR_PTR(-EINVAL); 3475 3476 return ptr; 3477 } 3478 3479 #ifdef CONFIG_MMU 3480 3481 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3482 { 3483 size_t sz = vma->vm_end - vma->vm_start; 3484 unsigned long pfn; 3485 void *ptr; 3486 3487 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3488 if (IS_ERR(ptr)) 3489 return PTR_ERR(ptr); 3490 3491 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3492 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3493 } 3494 3495 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, 3496 unsigned long addr, unsigned long len, 3497 unsigned long pgoff, unsigned long flags) 3498 { 3499 void *ptr; 3500 3501 /* 3502 * Do not allow to map to user-provided address to avoid breaking the 3503 * aliasing rules. Userspace is not able to guess the offset address of 3504 * kernel kmalloc()ed memory area. 3505 */ 3506 if (addr) 3507 return -EINVAL; 3508 3509 ptr = io_uring_validate_mmap_request(filp, pgoff, len); 3510 if (IS_ERR(ptr)) 3511 return -ENOMEM; 3512 3513 /* 3514 * Some architectures have strong cache aliasing requirements. 3515 * For such architectures we need a coherent mapping which aliases 3516 * kernel memory *and* userspace memory. To achieve that: 3517 * - use a NULL file pointer to reference physical memory, and 3518 * - use the kernel virtual address of the shared io_uring context 3519 * (instead of the userspace-provided address, which has to be 0UL 3520 * anyway). 3521 * - use the same pgoff which the get_unmapped_area() uses to 3522 * calculate the page colouring. 3523 * For architectures without such aliasing requirements, the 3524 * architecture will return any suitable mapping because addr is 0. 3525 */ 3526 filp = NULL; 3527 flags |= MAP_SHARED; 3528 pgoff = 0; /* has been translated to ptr above */ 3529 #ifdef SHM_COLOUR 3530 addr = (uintptr_t) ptr; 3531 pgoff = addr >> PAGE_SHIFT; 3532 #else 3533 addr = 0UL; 3534 #endif 3535 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 3536 } 3537 3538 #else /* !CONFIG_MMU */ 3539 3540 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3541 { 3542 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3543 } 3544 3545 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3546 { 3547 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3548 } 3549 3550 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3551 unsigned long addr, unsigned long len, 3552 unsigned long pgoff, unsigned long flags) 3553 { 3554 void *ptr; 3555 3556 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3557 if (IS_ERR(ptr)) 3558 return PTR_ERR(ptr); 3559 3560 return (unsigned long) ptr; 3561 } 3562 3563 #endif /* !CONFIG_MMU */ 3564 3565 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3566 { 3567 if (flags & IORING_ENTER_EXT_ARG) { 3568 struct io_uring_getevents_arg arg; 3569 3570 if (argsz != sizeof(arg)) 3571 return -EINVAL; 3572 if (copy_from_user(&arg, argp, sizeof(arg))) 3573 return -EFAULT; 3574 } 3575 return 0; 3576 } 3577 3578 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3579 struct __kernel_timespec __user **ts, 3580 const sigset_t __user **sig) 3581 { 3582 struct io_uring_getevents_arg arg; 3583 3584 /* 3585 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3586 * is just a pointer to the sigset_t. 3587 */ 3588 if (!(flags & IORING_ENTER_EXT_ARG)) { 3589 *sig = (const sigset_t __user *) argp; 3590 *ts = NULL; 3591 return 0; 3592 } 3593 3594 /* 3595 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3596 * timespec and sigset_t pointers if good. 3597 */ 3598 if (*argsz != sizeof(arg)) 3599 return -EINVAL; 3600 if (copy_from_user(&arg, argp, sizeof(arg))) 3601 return -EFAULT; 3602 if (arg.pad) 3603 return -EINVAL; 3604 *sig = u64_to_user_ptr(arg.sigmask); 3605 *argsz = arg.sigmask_sz; 3606 *ts = u64_to_user_ptr(arg.ts); 3607 return 0; 3608 } 3609 3610 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3611 u32, min_complete, u32, flags, const void __user *, argp, 3612 size_t, argsz) 3613 { 3614 struct io_ring_ctx *ctx; 3615 struct file *file; 3616 long ret; 3617 3618 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3619 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3620 IORING_ENTER_REGISTERED_RING))) 3621 return -EINVAL; 3622 3623 /* 3624 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3625 * need only dereference our task private array to find it. 3626 */ 3627 if (flags & IORING_ENTER_REGISTERED_RING) { 3628 struct io_uring_task *tctx = current->io_uring; 3629 3630 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3631 return -EINVAL; 3632 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3633 file = tctx->registered_rings[fd]; 3634 if (unlikely(!file)) 3635 return -EBADF; 3636 } else { 3637 file = fget(fd); 3638 if (unlikely(!file)) 3639 return -EBADF; 3640 ret = -EOPNOTSUPP; 3641 if (unlikely(!io_is_uring_fops(file))) 3642 goto out; 3643 } 3644 3645 ctx = file->private_data; 3646 ret = -EBADFD; 3647 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3648 goto out; 3649 3650 /* 3651 * For SQ polling, the thread will do all submissions and completions. 3652 * Just return the requested submit count, and wake the thread if 3653 * we were asked to. 3654 */ 3655 ret = 0; 3656 if (ctx->flags & IORING_SETUP_SQPOLL) { 3657 io_cqring_overflow_flush(ctx); 3658 3659 if (unlikely(ctx->sq_data->thread == NULL)) { 3660 ret = -EOWNERDEAD; 3661 goto out; 3662 } 3663 if (flags & IORING_ENTER_SQ_WAKEUP) 3664 wake_up(&ctx->sq_data->wait); 3665 if (flags & IORING_ENTER_SQ_WAIT) 3666 io_sqpoll_wait_sq(ctx); 3667 3668 ret = to_submit; 3669 } else if (to_submit) { 3670 ret = io_uring_add_tctx_node(ctx); 3671 if (unlikely(ret)) 3672 goto out; 3673 3674 mutex_lock(&ctx->uring_lock); 3675 ret = io_submit_sqes(ctx, to_submit); 3676 if (ret != to_submit) { 3677 mutex_unlock(&ctx->uring_lock); 3678 goto out; 3679 } 3680 if (flags & IORING_ENTER_GETEVENTS) { 3681 if (ctx->syscall_iopoll) 3682 goto iopoll_locked; 3683 /* 3684 * Ignore errors, we'll soon call io_cqring_wait() and 3685 * it should handle ownership problems if any. 3686 */ 3687 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3688 (void)io_run_local_work_locked(ctx, min_complete); 3689 } 3690 mutex_unlock(&ctx->uring_lock); 3691 } 3692 3693 if (flags & IORING_ENTER_GETEVENTS) { 3694 int ret2; 3695 3696 if (ctx->syscall_iopoll) { 3697 /* 3698 * We disallow the app entering submit/complete with 3699 * polling, but we still need to lock the ring to 3700 * prevent racing with polled issue that got punted to 3701 * a workqueue. 3702 */ 3703 mutex_lock(&ctx->uring_lock); 3704 iopoll_locked: 3705 ret2 = io_validate_ext_arg(flags, argp, argsz); 3706 if (likely(!ret2)) { 3707 min_complete = min(min_complete, 3708 ctx->cq_entries); 3709 ret2 = io_iopoll_check(ctx, min_complete); 3710 } 3711 mutex_unlock(&ctx->uring_lock); 3712 } else { 3713 const sigset_t __user *sig; 3714 struct __kernel_timespec __user *ts; 3715 3716 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3717 if (likely(!ret2)) { 3718 min_complete = min(min_complete, 3719 ctx->cq_entries); 3720 ret2 = io_cqring_wait(ctx, min_complete, sig, 3721 argsz, ts); 3722 } 3723 } 3724 3725 if (!ret) { 3726 ret = ret2; 3727 3728 /* 3729 * EBADR indicates that one or more CQE were dropped. 3730 * Once the user has been informed we can clear the bit 3731 * as they are obviously ok with those drops. 3732 */ 3733 if (unlikely(ret2 == -EBADR)) 3734 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3735 &ctx->check_cq); 3736 } 3737 } 3738 out: 3739 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3740 fput(file); 3741 return ret; 3742 } 3743 3744 static const struct file_operations io_uring_fops = { 3745 .release = io_uring_release, 3746 .mmap = io_uring_mmap, 3747 #ifndef CONFIG_MMU 3748 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3749 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3750 #else 3751 .get_unmapped_area = io_uring_mmu_get_unmapped_area, 3752 #endif 3753 .poll = io_uring_poll, 3754 #ifdef CONFIG_PROC_FS 3755 .show_fdinfo = io_uring_show_fdinfo, 3756 #endif 3757 }; 3758 3759 bool io_is_uring_fops(struct file *file) 3760 { 3761 return file->f_op == &io_uring_fops; 3762 } 3763 3764 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3765 struct io_uring_params *p) 3766 { 3767 struct io_rings *rings; 3768 size_t size, sq_array_offset; 3769 void *ptr; 3770 3771 /* make sure these are sane, as we already accounted them */ 3772 ctx->sq_entries = p->sq_entries; 3773 ctx->cq_entries = p->cq_entries; 3774 3775 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3776 if (size == SIZE_MAX) 3777 return -EOVERFLOW; 3778 3779 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3780 rings = io_mem_alloc(size); 3781 else 3782 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3783 3784 if (IS_ERR(rings)) 3785 return PTR_ERR(rings); 3786 3787 ctx->rings = rings; 3788 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3789 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3790 rings->sq_ring_mask = p->sq_entries - 1; 3791 rings->cq_ring_mask = p->cq_entries - 1; 3792 rings->sq_ring_entries = p->sq_entries; 3793 rings->cq_ring_entries = p->cq_entries; 3794 3795 if (p->flags & IORING_SETUP_SQE128) 3796 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3797 else 3798 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3799 if (size == SIZE_MAX) { 3800 io_rings_free(ctx); 3801 return -EOVERFLOW; 3802 } 3803 3804 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3805 ptr = io_mem_alloc(size); 3806 else 3807 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3808 3809 if (IS_ERR(ptr)) { 3810 io_rings_free(ctx); 3811 return PTR_ERR(ptr); 3812 } 3813 3814 ctx->sq_sqes = ptr; 3815 return 0; 3816 } 3817 3818 static int io_uring_install_fd(struct file *file) 3819 { 3820 int fd; 3821 3822 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3823 if (fd < 0) 3824 return fd; 3825 fd_install(fd, file); 3826 return fd; 3827 } 3828 3829 /* 3830 * Allocate an anonymous fd, this is what constitutes the application 3831 * visible backing of an io_uring instance. The application mmaps this 3832 * fd to gain access to the SQ/CQ ring details. 3833 */ 3834 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3835 { 3836 return anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3837 O_RDWR | O_CLOEXEC, NULL); 3838 } 3839 3840 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3841 struct io_uring_params __user *params) 3842 { 3843 struct io_ring_ctx *ctx; 3844 struct io_uring_task *tctx; 3845 struct file *file; 3846 int ret; 3847 3848 if (!entries) 3849 return -EINVAL; 3850 if (entries > IORING_MAX_ENTRIES) { 3851 if (!(p->flags & IORING_SETUP_CLAMP)) 3852 return -EINVAL; 3853 entries = IORING_MAX_ENTRIES; 3854 } 3855 3856 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3857 && !(p->flags & IORING_SETUP_NO_MMAP)) 3858 return -EINVAL; 3859 3860 /* 3861 * Use twice as many entries for the CQ ring. It's possible for the 3862 * application to drive a higher depth than the size of the SQ ring, 3863 * since the sqes are only used at submission time. This allows for 3864 * some flexibility in overcommitting a bit. If the application has 3865 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3866 * of CQ ring entries manually. 3867 */ 3868 p->sq_entries = roundup_pow_of_two(entries); 3869 if (p->flags & IORING_SETUP_CQSIZE) { 3870 /* 3871 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3872 * to a power-of-two, if it isn't already. We do NOT impose 3873 * any cq vs sq ring sizing. 3874 */ 3875 if (!p->cq_entries) 3876 return -EINVAL; 3877 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3878 if (!(p->flags & IORING_SETUP_CLAMP)) 3879 return -EINVAL; 3880 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3881 } 3882 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3883 if (p->cq_entries < p->sq_entries) 3884 return -EINVAL; 3885 } else { 3886 p->cq_entries = 2 * p->sq_entries; 3887 } 3888 3889 ctx = io_ring_ctx_alloc(p); 3890 if (!ctx) 3891 return -ENOMEM; 3892 3893 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3894 !(ctx->flags & IORING_SETUP_IOPOLL) && 3895 !(ctx->flags & IORING_SETUP_SQPOLL)) 3896 ctx->task_complete = true; 3897 3898 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3899 ctx->lockless_cq = true; 3900 3901 /* 3902 * lazy poll_wq activation relies on ->task_complete for synchronisation 3903 * purposes, see io_activate_pollwq() 3904 */ 3905 if (!ctx->task_complete) 3906 ctx->poll_activated = true; 3907 3908 /* 3909 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3910 * space applications don't need to do io completion events 3911 * polling again, they can rely on io_sq_thread to do polling 3912 * work, which can reduce cpu usage and uring_lock contention. 3913 */ 3914 if (ctx->flags & IORING_SETUP_IOPOLL && 3915 !(ctx->flags & IORING_SETUP_SQPOLL)) 3916 ctx->syscall_iopoll = 1; 3917 3918 ctx->compat = in_compat_syscall(); 3919 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3920 ctx->user = get_uid(current_user()); 3921 3922 /* 3923 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3924 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3925 */ 3926 ret = -EINVAL; 3927 if (ctx->flags & IORING_SETUP_SQPOLL) { 3928 /* IPI related flags don't make sense with SQPOLL */ 3929 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3930 IORING_SETUP_TASKRUN_FLAG | 3931 IORING_SETUP_DEFER_TASKRUN)) 3932 goto err; 3933 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3934 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3935 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3936 } else { 3937 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3938 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3939 goto err; 3940 ctx->notify_method = TWA_SIGNAL; 3941 } 3942 3943 /* 3944 * For DEFER_TASKRUN we require the completion task to be the same as the 3945 * submission task. This implies that there is only one submitter, so enforce 3946 * that. 3947 */ 3948 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3949 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3950 goto err; 3951 } 3952 3953 /* 3954 * This is just grabbed for accounting purposes. When a process exits, 3955 * the mm is exited and dropped before the files, hence we need to hang 3956 * on to this mm purely for the purposes of being able to unaccount 3957 * memory (locked/pinned vm). It's not used for anything else. 3958 */ 3959 mmgrab(current->mm); 3960 ctx->mm_account = current->mm; 3961 3962 ret = io_allocate_scq_urings(ctx, p); 3963 if (ret) 3964 goto err; 3965 3966 ret = io_sq_offload_create(ctx, p); 3967 if (ret) 3968 goto err; 3969 3970 ret = io_rsrc_init(ctx); 3971 if (ret) 3972 goto err; 3973 3974 p->sq_off.head = offsetof(struct io_rings, sq.head); 3975 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3976 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3977 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3978 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3979 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3980 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3981 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3982 p->sq_off.resv1 = 0; 3983 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3984 p->sq_off.user_addr = 0; 3985 3986 p->cq_off.head = offsetof(struct io_rings, cq.head); 3987 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3988 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3989 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3990 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3991 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3992 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3993 p->cq_off.resv1 = 0; 3994 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3995 p->cq_off.user_addr = 0; 3996 3997 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3998 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3999 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 4000 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 4001 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 4002 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 4003 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 4004 4005 if (copy_to_user(params, p, sizeof(*p))) { 4006 ret = -EFAULT; 4007 goto err; 4008 } 4009 4010 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 4011 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 4012 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4013 4014 file = io_uring_get_file(ctx); 4015 if (IS_ERR(file)) { 4016 ret = PTR_ERR(file); 4017 goto err; 4018 } 4019 4020 ret = __io_uring_add_tctx_node(ctx); 4021 if (ret) 4022 goto err_fput; 4023 tctx = current->io_uring; 4024 4025 /* 4026 * Install ring fd as the very last thing, so we don't risk someone 4027 * having closed it before we finish setup 4028 */ 4029 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 4030 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 4031 else 4032 ret = io_uring_install_fd(file); 4033 if (ret < 0) 4034 goto err_fput; 4035 4036 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 4037 return ret; 4038 err: 4039 io_ring_ctx_wait_and_kill(ctx); 4040 return ret; 4041 err_fput: 4042 fput(file); 4043 return ret; 4044 } 4045 4046 /* 4047 * Sets up an aio uring context, and returns the fd. Applications asks for a 4048 * ring size, we return the actual sq/cq ring sizes (among other things) in the 4049 * params structure passed in. 4050 */ 4051 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 4052 { 4053 struct io_uring_params p; 4054 int i; 4055 4056 if (copy_from_user(&p, params, sizeof(p))) 4057 return -EFAULT; 4058 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 4059 if (p.resv[i]) 4060 return -EINVAL; 4061 } 4062 4063 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 4064 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 4065 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 4066 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 4067 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 4068 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 4069 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 4070 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 4071 IORING_SETUP_NO_SQARRAY)) 4072 return -EINVAL; 4073 4074 return io_uring_create(entries, &p, params); 4075 } 4076 4077 static inline bool io_uring_allowed(void) 4078 { 4079 int disabled = READ_ONCE(sysctl_io_uring_disabled); 4080 kgid_t io_uring_group; 4081 4082 if (disabled == 2) 4083 return false; 4084 4085 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 4086 return true; 4087 4088 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 4089 if (!gid_valid(io_uring_group)) 4090 return false; 4091 4092 return in_group_p(io_uring_group); 4093 } 4094 4095 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 4096 struct io_uring_params __user *, params) 4097 { 4098 if (!io_uring_allowed()) 4099 return -EPERM; 4100 4101 return io_uring_setup(entries, params); 4102 } 4103 4104 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 4105 unsigned nr_args) 4106 { 4107 struct io_uring_probe *p; 4108 size_t size; 4109 int i, ret; 4110 4111 size = struct_size(p, ops, nr_args); 4112 if (size == SIZE_MAX) 4113 return -EOVERFLOW; 4114 p = kzalloc(size, GFP_KERNEL); 4115 if (!p) 4116 return -ENOMEM; 4117 4118 ret = -EFAULT; 4119 if (copy_from_user(p, arg, size)) 4120 goto out; 4121 ret = -EINVAL; 4122 if (memchr_inv(p, 0, size)) 4123 goto out; 4124 4125 p->last_op = IORING_OP_LAST - 1; 4126 if (nr_args > IORING_OP_LAST) 4127 nr_args = IORING_OP_LAST; 4128 4129 for (i = 0; i < nr_args; i++) { 4130 p->ops[i].op = i; 4131 if (!io_issue_defs[i].not_supported) 4132 p->ops[i].flags = IO_URING_OP_SUPPORTED; 4133 } 4134 p->ops_len = i; 4135 4136 ret = 0; 4137 if (copy_to_user(arg, p, size)) 4138 ret = -EFAULT; 4139 out: 4140 kfree(p); 4141 return ret; 4142 } 4143 4144 static int io_register_personality(struct io_ring_ctx *ctx) 4145 { 4146 const struct cred *creds; 4147 u32 id; 4148 int ret; 4149 4150 creds = get_current_cred(); 4151 4152 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 4153 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 4154 if (ret < 0) { 4155 put_cred(creds); 4156 return ret; 4157 } 4158 return id; 4159 } 4160 4161 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 4162 void __user *arg, unsigned int nr_args) 4163 { 4164 struct io_uring_restriction *res; 4165 size_t size; 4166 int i, ret; 4167 4168 /* Restrictions allowed only if rings started disabled */ 4169 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4170 return -EBADFD; 4171 4172 /* We allow only a single restrictions registration */ 4173 if (ctx->restrictions.registered) 4174 return -EBUSY; 4175 4176 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 4177 return -EINVAL; 4178 4179 size = array_size(nr_args, sizeof(*res)); 4180 if (size == SIZE_MAX) 4181 return -EOVERFLOW; 4182 4183 res = memdup_user(arg, size); 4184 if (IS_ERR(res)) 4185 return PTR_ERR(res); 4186 4187 ret = 0; 4188 4189 for (i = 0; i < nr_args; i++) { 4190 switch (res[i].opcode) { 4191 case IORING_RESTRICTION_REGISTER_OP: 4192 if (res[i].register_op >= IORING_REGISTER_LAST) { 4193 ret = -EINVAL; 4194 goto out; 4195 } 4196 4197 __set_bit(res[i].register_op, 4198 ctx->restrictions.register_op); 4199 break; 4200 case IORING_RESTRICTION_SQE_OP: 4201 if (res[i].sqe_op >= IORING_OP_LAST) { 4202 ret = -EINVAL; 4203 goto out; 4204 } 4205 4206 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 4207 break; 4208 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 4209 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 4210 break; 4211 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 4212 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 4213 break; 4214 default: 4215 ret = -EINVAL; 4216 goto out; 4217 } 4218 } 4219 4220 out: 4221 /* Reset all restrictions if an error happened */ 4222 if (ret != 0) 4223 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 4224 else 4225 ctx->restrictions.registered = true; 4226 4227 kfree(res); 4228 return ret; 4229 } 4230 4231 static int io_register_enable_rings(struct io_ring_ctx *ctx) 4232 { 4233 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4234 return -EBADFD; 4235 4236 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) { 4237 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4238 /* 4239 * Lazy activation attempts would fail if it was polled before 4240 * submitter_task is set. 4241 */ 4242 if (wq_has_sleeper(&ctx->poll_wq)) 4243 io_activate_pollwq(ctx); 4244 } 4245 4246 if (ctx->restrictions.registered) 4247 ctx->restricted = 1; 4248 4249 ctx->flags &= ~IORING_SETUP_R_DISABLED; 4250 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 4251 wake_up(&ctx->sq_data->wait); 4252 return 0; 4253 } 4254 4255 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx, 4256 cpumask_var_t new_mask) 4257 { 4258 int ret; 4259 4260 if (!(ctx->flags & IORING_SETUP_SQPOLL)) { 4261 ret = io_wq_cpu_affinity(current->io_uring, new_mask); 4262 } else { 4263 mutex_unlock(&ctx->uring_lock); 4264 ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask); 4265 mutex_lock(&ctx->uring_lock); 4266 } 4267 4268 return ret; 4269 } 4270 4271 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 4272 void __user *arg, unsigned len) 4273 { 4274 cpumask_var_t new_mask; 4275 int ret; 4276 4277 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4278 return -ENOMEM; 4279 4280 cpumask_clear(new_mask); 4281 if (len > cpumask_size()) 4282 len = cpumask_size(); 4283 4284 if (in_compat_syscall()) { 4285 ret = compat_get_bitmap(cpumask_bits(new_mask), 4286 (const compat_ulong_t __user *)arg, 4287 len * 8 /* CHAR_BIT */); 4288 } else { 4289 ret = copy_from_user(new_mask, arg, len); 4290 } 4291 4292 if (ret) { 4293 free_cpumask_var(new_mask); 4294 return -EFAULT; 4295 } 4296 4297 ret = __io_register_iowq_aff(ctx, new_mask); 4298 free_cpumask_var(new_mask); 4299 return ret; 4300 } 4301 4302 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 4303 { 4304 return __io_register_iowq_aff(ctx, NULL); 4305 } 4306 4307 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 4308 void __user *arg) 4309 __must_hold(&ctx->uring_lock) 4310 { 4311 struct io_tctx_node *node; 4312 struct io_uring_task *tctx = NULL; 4313 struct io_sq_data *sqd = NULL; 4314 __u32 new_count[2]; 4315 int i, ret; 4316 4317 if (copy_from_user(new_count, arg, sizeof(new_count))) 4318 return -EFAULT; 4319 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4320 if (new_count[i] > INT_MAX) 4321 return -EINVAL; 4322 4323 if (ctx->flags & IORING_SETUP_SQPOLL) { 4324 sqd = ctx->sq_data; 4325 if (sqd) { 4326 /* 4327 * Observe the correct sqd->lock -> ctx->uring_lock 4328 * ordering. Fine to drop uring_lock here, we hold 4329 * a ref to the ctx. 4330 */ 4331 refcount_inc(&sqd->refs); 4332 mutex_unlock(&ctx->uring_lock); 4333 mutex_lock(&sqd->lock); 4334 mutex_lock(&ctx->uring_lock); 4335 if (sqd->thread) 4336 tctx = sqd->thread->io_uring; 4337 } 4338 } else { 4339 tctx = current->io_uring; 4340 } 4341 4342 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 4343 4344 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4345 if (new_count[i]) 4346 ctx->iowq_limits[i] = new_count[i]; 4347 ctx->iowq_limits_set = true; 4348 4349 if (tctx && tctx->io_wq) { 4350 ret = io_wq_max_workers(tctx->io_wq, new_count); 4351 if (ret) 4352 goto err; 4353 } else { 4354 memset(new_count, 0, sizeof(new_count)); 4355 } 4356 4357 if (sqd) { 4358 mutex_unlock(&sqd->lock); 4359 io_put_sq_data(sqd); 4360 } 4361 4362 if (copy_to_user(arg, new_count, sizeof(new_count))) 4363 return -EFAULT; 4364 4365 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 4366 if (sqd) 4367 return 0; 4368 4369 /* now propagate the restriction to all registered users */ 4370 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 4371 struct io_uring_task *tctx = node->task->io_uring; 4372 4373 if (WARN_ON_ONCE(!tctx->io_wq)) 4374 continue; 4375 4376 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4377 new_count[i] = ctx->iowq_limits[i]; 4378 /* ignore errors, it always returns zero anyway */ 4379 (void)io_wq_max_workers(tctx->io_wq, new_count); 4380 } 4381 return 0; 4382 err: 4383 if (sqd) { 4384 mutex_unlock(&sqd->lock); 4385 io_put_sq_data(sqd); 4386 } 4387 return ret; 4388 } 4389 4390 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4391 void __user *arg, unsigned nr_args) 4392 __releases(ctx->uring_lock) 4393 __acquires(ctx->uring_lock) 4394 { 4395 int ret; 4396 4397 /* 4398 * We don't quiesce the refs for register anymore and so it can't be 4399 * dying as we're holding a file ref here. 4400 */ 4401 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4402 return -ENXIO; 4403 4404 if (ctx->submitter_task && ctx->submitter_task != current) 4405 return -EEXIST; 4406 4407 if (ctx->restricted) { 4408 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4409 if (!test_bit(opcode, ctx->restrictions.register_op)) 4410 return -EACCES; 4411 } 4412 4413 switch (opcode) { 4414 case IORING_REGISTER_BUFFERS: 4415 ret = -EFAULT; 4416 if (!arg) 4417 break; 4418 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4419 break; 4420 case IORING_UNREGISTER_BUFFERS: 4421 ret = -EINVAL; 4422 if (arg || nr_args) 4423 break; 4424 ret = io_sqe_buffers_unregister(ctx); 4425 break; 4426 case IORING_REGISTER_FILES: 4427 ret = -EFAULT; 4428 if (!arg) 4429 break; 4430 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4431 break; 4432 case IORING_UNREGISTER_FILES: 4433 ret = -EINVAL; 4434 if (arg || nr_args) 4435 break; 4436 ret = io_sqe_files_unregister(ctx); 4437 break; 4438 case IORING_REGISTER_FILES_UPDATE: 4439 ret = io_register_files_update(ctx, arg, nr_args); 4440 break; 4441 case IORING_REGISTER_EVENTFD: 4442 ret = -EINVAL; 4443 if (nr_args != 1) 4444 break; 4445 ret = io_eventfd_register(ctx, arg, 0); 4446 break; 4447 case IORING_REGISTER_EVENTFD_ASYNC: 4448 ret = -EINVAL; 4449 if (nr_args != 1) 4450 break; 4451 ret = io_eventfd_register(ctx, arg, 1); 4452 break; 4453 case IORING_UNREGISTER_EVENTFD: 4454 ret = -EINVAL; 4455 if (arg || nr_args) 4456 break; 4457 ret = io_eventfd_unregister(ctx); 4458 break; 4459 case IORING_REGISTER_PROBE: 4460 ret = -EINVAL; 4461 if (!arg || nr_args > 256) 4462 break; 4463 ret = io_probe(ctx, arg, nr_args); 4464 break; 4465 case IORING_REGISTER_PERSONALITY: 4466 ret = -EINVAL; 4467 if (arg || nr_args) 4468 break; 4469 ret = io_register_personality(ctx); 4470 break; 4471 case IORING_UNREGISTER_PERSONALITY: 4472 ret = -EINVAL; 4473 if (arg) 4474 break; 4475 ret = io_unregister_personality(ctx, nr_args); 4476 break; 4477 case IORING_REGISTER_ENABLE_RINGS: 4478 ret = -EINVAL; 4479 if (arg || nr_args) 4480 break; 4481 ret = io_register_enable_rings(ctx); 4482 break; 4483 case IORING_REGISTER_RESTRICTIONS: 4484 ret = io_register_restrictions(ctx, arg, nr_args); 4485 break; 4486 case IORING_REGISTER_FILES2: 4487 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4488 break; 4489 case IORING_REGISTER_FILES_UPDATE2: 4490 ret = io_register_rsrc_update(ctx, arg, nr_args, 4491 IORING_RSRC_FILE); 4492 break; 4493 case IORING_REGISTER_BUFFERS2: 4494 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4495 break; 4496 case IORING_REGISTER_BUFFERS_UPDATE: 4497 ret = io_register_rsrc_update(ctx, arg, nr_args, 4498 IORING_RSRC_BUFFER); 4499 break; 4500 case IORING_REGISTER_IOWQ_AFF: 4501 ret = -EINVAL; 4502 if (!arg || !nr_args) 4503 break; 4504 ret = io_register_iowq_aff(ctx, arg, nr_args); 4505 break; 4506 case IORING_UNREGISTER_IOWQ_AFF: 4507 ret = -EINVAL; 4508 if (arg || nr_args) 4509 break; 4510 ret = io_unregister_iowq_aff(ctx); 4511 break; 4512 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4513 ret = -EINVAL; 4514 if (!arg || nr_args != 2) 4515 break; 4516 ret = io_register_iowq_max_workers(ctx, arg); 4517 break; 4518 case IORING_REGISTER_RING_FDS: 4519 ret = io_ringfd_register(ctx, arg, nr_args); 4520 break; 4521 case IORING_UNREGISTER_RING_FDS: 4522 ret = io_ringfd_unregister(ctx, arg, nr_args); 4523 break; 4524 case IORING_REGISTER_PBUF_RING: 4525 ret = -EINVAL; 4526 if (!arg || nr_args != 1) 4527 break; 4528 ret = io_register_pbuf_ring(ctx, arg); 4529 break; 4530 case IORING_UNREGISTER_PBUF_RING: 4531 ret = -EINVAL; 4532 if (!arg || nr_args != 1) 4533 break; 4534 ret = io_unregister_pbuf_ring(ctx, arg); 4535 break; 4536 case IORING_REGISTER_SYNC_CANCEL: 4537 ret = -EINVAL; 4538 if (!arg || nr_args != 1) 4539 break; 4540 ret = io_sync_cancel(ctx, arg); 4541 break; 4542 case IORING_REGISTER_FILE_ALLOC_RANGE: 4543 ret = -EINVAL; 4544 if (!arg || nr_args) 4545 break; 4546 ret = io_register_file_alloc_range(ctx, arg); 4547 break; 4548 default: 4549 ret = -EINVAL; 4550 break; 4551 } 4552 4553 return ret; 4554 } 4555 4556 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4557 void __user *, arg, unsigned int, nr_args) 4558 { 4559 struct io_ring_ctx *ctx; 4560 long ret = -EBADF; 4561 struct file *file; 4562 bool use_registered_ring; 4563 4564 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING); 4565 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING; 4566 4567 if (opcode >= IORING_REGISTER_LAST) 4568 return -EINVAL; 4569 4570 if (use_registered_ring) { 4571 /* 4572 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 4573 * need only dereference our task private array to find it. 4574 */ 4575 struct io_uring_task *tctx = current->io_uring; 4576 4577 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 4578 return -EINVAL; 4579 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 4580 file = tctx->registered_rings[fd]; 4581 if (unlikely(!file)) 4582 return -EBADF; 4583 } else { 4584 file = fget(fd); 4585 if (unlikely(!file)) 4586 return -EBADF; 4587 ret = -EOPNOTSUPP; 4588 if (!io_is_uring_fops(file)) 4589 goto out_fput; 4590 } 4591 4592 ctx = file->private_data; 4593 4594 mutex_lock(&ctx->uring_lock); 4595 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4596 mutex_unlock(&ctx->uring_lock); 4597 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4598 out_fput: 4599 if (!use_registered_ring) 4600 fput(file); 4601 return ret; 4602 } 4603 4604 static int __init io_uring_init(void) 4605 { 4606 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4607 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4608 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4609 } while (0) 4610 4611 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4612 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4613 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4614 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4615 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4616 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4617 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4618 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4619 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4620 BUILD_BUG_SQE_ELEM(8, __u64, off); 4621 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4622 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4623 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4624 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4625 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4626 BUILD_BUG_SQE_ELEM(24, __u32, len); 4627 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4628 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4629 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4630 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4631 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4632 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4633 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4634 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4635 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4636 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4637 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4638 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4639 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4640 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4641 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4642 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4643 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4644 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4645 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4646 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4647 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4648 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4649 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4650 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4651 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4652 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4653 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4654 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4655 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4656 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4657 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4658 4659 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4660 sizeof(struct io_uring_rsrc_update)); 4661 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4662 sizeof(struct io_uring_rsrc_update2)); 4663 4664 /* ->buf_index is u16 */ 4665 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4666 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4667 offsetof(struct io_uring_buf_ring, tail)); 4668 4669 /* should fit into one byte */ 4670 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4671 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4672 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4673 4674 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4675 4676 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4677 4678 io_uring_optable_init(); 4679 4680 /* 4681 * Allow user copy in the per-command field, which starts after the 4682 * file in io_kiocb and until the opcode field. The openat2 handling 4683 * requires copying in user memory into the io_kiocb object in that 4684 * range, and HARDENED_USERCOPY will complain if we haven't 4685 * correctly annotated this range. 4686 */ 4687 req_cachep = kmem_cache_create_usercopy("io_kiocb", 4688 sizeof(struct io_kiocb), 0, 4689 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4690 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU, 4691 offsetof(struct io_kiocb, cmd.data), 4692 sizeof_field(struct io_kiocb, cmd.data), NULL); 4693 4694 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64); 4695 4696 #ifdef CONFIG_SYSCTL 4697 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 4698 #endif 4699 4700 return 0; 4701 }; 4702 __initcall(io_uring_init); 4703