1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 #include <asm/shmparam.h> 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/io_uring.h> 79 80 #include <uapi/linux/io_uring.h> 81 82 #include "io-wq.h" 83 84 #include "io_uring.h" 85 #include "opdef.h" 86 #include "refs.h" 87 #include "tctx.h" 88 #include "sqpoll.h" 89 #include "fdinfo.h" 90 #include "kbuf.h" 91 #include "rsrc.h" 92 #include "cancel.h" 93 #include "net.h" 94 #include "notif.h" 95 96 #include "timeout.h" 97 #include "poll.h" 98 #include "alloc_cache.h" 99 100 #define IORING_MAX_ENTRIES 32768 101 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 102 103 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 104 IORING_REGISTER_LAST + IORING_OP_LAST) 105 106 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 107 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 108 109 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 110 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 111 112 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 113 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 114 REQ_F_ASYNC_DATA) 115 116 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 117 IO_REQ_CLEAN_FLAGS) 118 119 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 120 121 #define IO_COMPL_BATCH 32 122 #define IO_REQ_ALLOC_BATCH 8 123 124 enum { 125 IO_CHECK_CQ_OVERFLOW_BIT, 126 IO_CHECK_CQ_DROPPED_BIT, 127 }; 128 129 enum { 130 IO_EVENTFD_OP_SIGNAL_BIT, 131 IO_EVENTFD_OP_FREE_BIT, 132 }; 133 134 struct io_defer_entry { 135 struct list_head list; 136 struct io_kiocb *req; 137 u32 seq; 138 }; 139 140 /* requests with any of those set should undergo io_disarm_next() */ 141 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 142 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 143 144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 145 struct task_struct *task, 146 bool cancel_all); 147 148 static void io_dismantle_req(struct io_kiocb *req); 149 static void io_clean_op(struct io_kiocb *req); 150 static void io_queue_sqe(struct io_kiocb *req); 151 static void io_move_task_work_from_local(struct io_ring_ctx *ctx); 152 static void __io_submit_flush_completions(struct io_ring_ctx *ctx); 153 static __cold void io_fallback_tw(struct io_uring_task *tctx); 154 155 struct kmem_cache *req_cachep; 156 157 struct sock *io_uring_get_socket(struct file *file) 158 { 159 #if defined(CONFIG_UNIX) 160 if (io_is_uring_fops(file)) { 161 struct io_ring_ctx *ctx = file->private_data; 162 163 return ctx->ring_sock->sk; 164 } 165 #endif 166 return NULL; 167 } 168 EXPORT_SYMBOL(io_uring_get_socket); 169 170 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 171 { 172 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 173 ctx->submit_state.cqes_count) 174 __io_submit_flush_completions(ctx); 175 } 176 177 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 178 { 179 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 180 } 181 182 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 183 { 184 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 185 } 186 187 static bool io_match_linked(struct io_kiocb *head) 188 { 189 struct io_kiocb *req; 190 191 io_for_each_link(req, head) { 192 if (req->flags & REQ_F_INFLIGHT) 193 return true; 194 } 195 return false; 196 } 197 198 /* 199 * As io_match_task() but protected against racing with linked timeouts. 200 * User must not hold timeout_lock. 201 */ 202 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 203 bool cancel_all) 204 { 205 bool matched; 206 207 if (task && head->task != task) 208 return false; 209 if (cancel_all) 210 return true; 211 212 if (head->flags & REQ_F_LINK_TIMEOUT) { 213 struct io_ring_ctx *ctx = head->ctx; 214 215 /* protect against races with linked timeouts */ 216 spin_lock_irq(&ctx->timeout_lock); 217 matched = io_match_linked(head); 218 spin_unlock_irq(&ctx->timeout_lock); 219 } else { 220 matched = io_match_linked(head); 221 } 222 return matched; 223 } 224 225 static inline void req_fail_link_node(struct io_kiocb *req, int res) 226 { 227 req_set_fail(req); 228 io_req_set_res(req, res, 0); 229 } 230 231 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 232 { 233 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 234 kasan_poison_object_data(req_cachep, req); 235 } 236 237 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 238 { 239 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 240 241 complete(&ctx->ref_comp); 242 } 243 244 static __cold void io_fallback_req_func(struct work_struct *work) 245 { 246 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 247 fallback_work.work); 248 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 249 struct io_kiocb *req, *tmp; 250 struct io_tw_state ts = { .locked = true, }; 251 252 mutex_lock(&ctx->uring_lock); 253 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 254 req->io_task_work.func(req, &ts); 255 if (WARN_ON_ONCE(!ts.locked)) 256 return; 257 io_submit_flush_completions(ctx); 258 mutex_unlock(&ctx->uring_lock); 259 } 260 261 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 262 { 263 unsigned hash_buckets = 1U << bits; 264 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 265 266 table->hbs = kmalloc(hash_size, GFP_KERNEL); 267 if (!table->hbs) 268 return -ENOMEM; 269 270 table->hash_bits = bits; 271 init_hash_table(table, hash_buckets); 272 return 0; 273 } 274 275 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 276 { 277 struct io_ring_ctx *ctx; 278 int hash_bits; 279 280 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 281 if (!ctx) 282 return NULL; 283 284 xa_init(&ctx->io_bl_xa); 285 286 /* 287 * Use 5 bits less than the max cq entries, that should give us around 288 * 32 entries per hash list if totally full and uniformly spread, but 289 * don't keep too many buckets to not overconsume memory. 290 */ 291 hash_bits = ilog2(p->cq_entries) - 5; 292 hash_bits = clamp(hash_bits, 1, 8); 293 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 294 goto err; 295 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 296 goto err; 297 298 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL); 299 if (!ctx->dummy_ubuf) 300 goto err; 301 /* set invalid range, so io_import_fixed() fails meeting it */ 302 ctx->dummy_ubuf->ubuf = -1UL; 303 304 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 305 0, GFP_KERNEL)) 306 goto err; 307 308 ctx->flags = p->flags; 309 init_waitqueue_head(&ctx->sqo_sq_wait); 310 INIT_LIST_HEAD(&ctx->sqd_list); 311 INIT_LIST_HEAD(&ctx->cq_overflow_list); 312 INIT_LIST_HEAD(&ctx->io_buffers_cache); 313 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 314 sizeof(struct io_rsrc_node)); 315 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, 316 sizeof(struct async_poll)); 317 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 318 sizeof(struct io_async_msghdr)); 319 init_completion(&ctx->ref_comp); 320 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 321 mutex_init(&ctx->uring_lock); 322 init_waitqueue_head(&ctx->cq_wait); 323 init_waitqueue_head(&ctx->poll_wq); 324 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 325 spin_lock_init(&ctx->completion_lock); 326 spin_lock_init(&ctx->timeout_lock); 327 INIT_WQ_LIST(&ctx->iopoll_list); 328 INIT_LIST_HEAD(&ctx->io_buffers_pages); 329 INIT_LIST_HEAD(&ctx->io_buffers_comp); 330 INIT_LIST_HEAD(&ctx->defer_list); 331 INIT_LIST_HEAD(&ctx->timeout_list); 332 INIT_LIST_HEAD(&ctx->ltimeout_list); 333 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 334 init_llist_head(&ctx->work_llist); 335 INIT_LIST_HEAD(&ctx->tctx_list); 336 ctx->submit_state.free_list.next = NULL; 337 INIT_WQ_LIST(&ctx->locked_free_list); 338 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 339 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 340 return ctx; 341 err: 342 kfree(ctx->dummy_ubuf); 343 kfree(ctx->cancel_table.hbs); 344 kfree(ctx->cancel_table_locked.hbs); 345 kfree(ctx->io_bl); 346 xa_destroy(&ctx->io_bl_xa); 347 kfree(ctx); 348 return NULL; 349 } 350 351 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 352 { 353 struct io_rings *r = ctx->rings; 354 355 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 356 ctx->cq_extra--; 357 } 358 359 static bool req_need_defer(struct io_kiocb *req, u32 seq) 360 { 361 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 362 struct io_ring_ctx *ctx = req->ctx; 363 364 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 365 } 366 367 return false; 368 } 369 370 static inline void io_req_track_inflight(struct io_kiocb *req) 371 { 372 if (!(req->flags & REQ_F_INFLIGHT)) { 373 req->flags |= REQ_F_INFLIGHT; 374 atomic_inc(&req->task->io_uring->inflight_tracked); 375 } 376 } 377 378 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 379 { 380 if (WARN_ON_ONCE(!req->link)) 381 return NULL; 382 383 req->flags &= ~REQ_F_ARM_LTIMEOUT; 384 req->flags |= REQ_F_LINK_TIMEOUT; 385 386 /* linked timeouts should have two refs once prep'ed */ 387 io_req_set_refcount(req); 388 __io_req_set_refcount(req->link, 2); 389 return req->link; 390 } 391 392 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 393 { 394 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 395 return NULL; 396 return __io_prep_linked_timeout(req); 397 } 398 399 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 400 { 401 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 402 } 403 404 static inline void io_arm_ltimeout(struct io_kiocb *req) 405 { 406 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 407 __io_arm_ltimeout(req); 408 } 409 410 static void io_prep_async_work(struct io_kiocb *req) 411 { 412 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 413 struct io_ring_ctx *ctx = req->ctx; 414 415 if (!(req->flags & REQ_F_CREDS)) { 416 req->flags |= REQ_F_CREDS; 417 req->creds = get_current_cred(); 418 } 419 420 req->work.list.next = NULL; 421 req->work.flags = 0; 422 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 423 if (req->flags & REQ_F_FORCE_ASYNC) 424 req->work.flags |= IO_WQ_WORK_CONCURRENT; 425 426 if (req->file && !io_req_ffs_set(req)) 427 req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT; 428 429 if (req->file && (req->flags & REQ_F_ISREG)) { 430 bool should_hash = def->hash_reg_file; 431 432 /* don't serialize this request if the fs doesn't need it */ 433 if (should_hash && (req->file->f_flags & O_DIRECT) && 434 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) 435 should_hash = false; 436 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 437 io_wq_hash_work(&req->work, file_inode(req->file)); 438 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 439 if (def->unbound_nonreg_file) 440 req->work.flags |= IO_WQ_WORK_UNBOUND; 441 } 442 } 443 444 static void io_prep_async_link(struct io_kiocb *req) 445 { 446 struct io_kiocb *cur; 447 448 if (req->flags & REQ_F_LINK_TIMEOUT) { 449 struct io_ring_ctx *ctx = req->ctx; 450 451 spin_lock_irq(&ctx->timeout_lock); 452 io_for_each_link(cur, req) 453 io_prep_async_work(cur); 454 spin_unlock_irq(&ctx->timeout_lock); 455 } else { 456 io_for_each_link(cur, req) 457 io_prep_async_work(cur); 458 } 459 } 460 461 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) 462 { 463 struct io_kiocb *link = io_prep_linked_timeout(req); 464 struct io_uring_task *tctx = req->task->io_uring; 465 466 BUG_ON(!tctx); 467 BUG_ON(!tctx->io_wq); 468 469 /* init ->work of the whole link before punting */ 470 io_prep_async_link(req); 471 472 /* 473 * Not expected to happen, but if we do have a bug where this _can_ 474 * happen, catch it here and ensure the request is marked as 475 * canceled. That will make io-wq go through the usual work cancel 476 * procedure rather than attempt to run this request (or create a new 477 * worker for it). 478 */ 479 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 480 req->work.flags |= IO_WQ_WORK_CANCEL; 481 482 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 483 io_wq_enqueue(tctx->io_wq, &req->work); 484 if (link) 485 io_queue_linked_timeout(link); 486 } 487 488 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 489 { 490 while (!list_empty(&ctx->defer_list)) { 491 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 492 struct io_defer_entry, list); 493 494 if (req_need_defer(de->req, de->seq)) 495 break; 496 list_del_init(&de->list); 497 io_req_task_queue(de->req); 498 kfree(de); 499 } 500 } 501 502 503 static void io_eventfd_ops(struct rcu_head *rcu) 504 { 505 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 506 int ops = atomic_xchg(&ev_fd->ops, 0); 507 508 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 509 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 510 511 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 512 * ordering in a race but if references are 0 we know we have to free 513 * it regardless. 514 */ 515 if (atomic_dec_and_test(&ev_fd->refs)) { 516 eventfd_ctx_put(ev_fd->cq_ev_fd); 517 kfree(ev_fd); 518 } 519 } 520 521 static void io_eventfd_signal(struct io_ring_ctx *ctx) 522 { 523 struct io_ev_fd *ev_fd = NULL; 524 525 rcu_read_lock(); 526 /* 527 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 528 * and eventfd_signal 529 */ 530 ev_fd = rcu_dereference(ctx->io_ev_fd); 531 532 /* 533 * Check again if ev_fd exists incase an io_eventfd_unregister call 534 * completed between the NULL check of ctx->io_ev_fd at the start of 535 * the function and rcu_read_lock. 536 */ 537 if (unlikely(!ev_fd)) 538 goto out; 539 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 540 goto out; 541 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 542 goto out; 543 544 if (likely(eventfd_signal_allowed())) { 545 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 546 } else { 547 atomic_inc(&ev_fd->refs); 548 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 549 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 550 else 551 atomic_dec(&ev_fd->refs); 552 } 553 554 out: 555 rcu_read_unlock(); 556 } 557 558 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 559 { 560 bool skip; 561 562 spin_lock(&ctx->completion_lock); 563 564 /* 565 * Eventfd should only get triggered when at least one event has been 566 * posted. Some applications rely on the eventfd notification count 567 * only changing IFF a new CQE has been added to the CQ ring. There's 568 * no depedency on 1:1 relationship between how many times this 569 * function is called (and hence the eventfd count) and number of CQEs 570 * posted to the CQ ring. 571 */ 572 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 573 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 574 spin_unlock(&ctx->completion_lock); 575 if (skip) 576 return; 577 578 io_eventfd_signal(ctx); 579 } 580 581 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 582 { 583 if (ctx->poll_activated) 584 io_poll_wq_wake(ctx); 585 if (ctx->off_timeout_used) 586 io_flush_timeouts(ctx); 587 if (ctx->drain_active) { 588 spin_lock(&ctx->completion_lock); 589 io_queue_deferred(ctx); 590 spin_unlock(&ctx->completion_lock); 591 } 592 if (ctx->has_evfd) 593 io_eventfd_flush_signal(ctx); 594 } 595 596 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 597 __acquires(ctx->completion_lock) 598 { 599 if (!ctx->task_complete) 600 spin_lock(&ctx->completion_lock); 601 } 602 603 static inline void __io_cq_unlock(struct io_ring_ctx *ctx) 604 { 605 if (!ctx->task_complete) 606 spin_unlock(&ctx->completion_lock); 607 } 608 609 static inline void io_cq_lock(struct io_ring_ctx *ctx) 610 __acquires(ctx->completion_lock) 611 { 612 spin_lock(&ctx->completion_lock); 613 } 614 615 static inline void io_cq_unlock(struct io_ring_ctx *ctx) 616 __releases(ctx->completion_lock) 617 { 618 spin_unlock(&ctx->completion_lock); 619 } 620 621 /* keep it inlined for io_submit_flush_completions() */ 622 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 623 __releases(ctx->completion_lock) 624 { 625 io_commit_cqring(ctx); 626 __io_cq_unlock(ctx); 627 io_commit_cqring_flush(ctx); 628 io_cqring_wake(ctx); 629 } 630 631 static void __io_cq_unlock_post_flush(struct io_ring_ctx *ctx) 632 __releases(ctx->completion_lock) 633 { 634 io_commit_cqring(ctx); 635 636 if (ctx->task_complete) { 637 /* 638 * ->task_complete implies that only current might be waiting 639 * for CQEs, and obviously, we currently don't. No one is 640 * waiting, wakeups are futile, skip them. 641 */ 642 io_commit_cqring_flush(ctx); 643 } else { 644 __io_cq_unlock(ctx); 645 io_commit_cqring_flush(ctx); 646 io_cqring_wake(ctx); 647 } 648 } 649 650 void io_cq_unlock_post(struct io_ring_ctx *ctx) 651 __releases(ctx->completion_lock) 652 { 653 io_commit_cqring(ctx); 654 spin_unlock(&ctx->completion_lock); 655 io_commit_cqring_flush(ctx); 656 io_cqring_wake(ctx); 657 } 658 659 /* Returns true if there are no backlogged entries after the flush */ 660 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 661 { 662 struct io_overflow_cqe *ocqe; 663 LIST_HEAD(list); 664 665 io_cq_lock(ctx); 666 list_splice_init(&ctx->cq_overflow_list, &list); 667 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 668 io_cq_unlock(ctx); 669 670 while (!list_empty(&list)) { 671 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 672 list_del(&ocqe->list); 673 kfree(ocqe); 674 } 675 } 676 677 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 678 { 679 size_t cqe_size = sizeof(struct io_uring_cqe); 680 681 if (__io_cqring_events(ctx) == ctx->cq_entries) 682 return; 683 684 if (ctx->flags & IORING_SETUP_CQE32) 685 cqe_size <<= 1; 686 687 io_cq_lock(ctx); 688 while (!list_empty(&ctx->cq_overflow_list)) { 689 struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true); 690 struct io_overflow_cqe *ocqe; 691 692 if (!cqe) 693 break; 694 ocqe = list_first_entry(&ctx->cq_overflow_list, 695 struct io_overflow_cqe, list); 696 memcpy(cqe, &ocqe->cqe, cqe_size); 697 list_del(&ocqe->list); 698 kfree(ocqe); 699 } 700 701 if (list_empty(&ctx->cq_overflow_list)) { 702 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 703 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 704 } 705 io_cq_unlock_post(ctx); 706 } 707 708 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 709 { 710 /* iopoll syncs against uring_lock, not completion_lock */ 711 if (ctx->flags & IORING_SETUP_IOPOLL) 712 mutex_lock(&ctx->uring_lock); 713 __io_cqring_overflow_flush(ctx); 714 if (ctx->flags & IORING_SETUP_IOPOLL) 715 mutex_unlock(&ctx->uring_lock); 716 } 717 718 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 719 { 720 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 721 io_cqring_do_overflow_flush(ctx); 722 } 723 724 /* can be called by any task */ 725 static void io_put_task_remote(struct task_struct *task, int nr) 726 { 727 struct io_uring_task *tctx = task->io_uring; 728 729 percpu_counter_sub(&tctx->inflight, nr); 730 if (unlikely(atomic_read(&tctx->in_cancel))) 731 wake_up(&tctx->wait); 732 put_task_struct_many(task, nr); 733 } 734 735 /* used by a task to put its own references */ 736 static void io_put_task_local(struct task_struct *task, int nr) 737 { 738 task->io_uring->cached_refs += nr; 739 } 740 741 /* must to be called somewhat shortly after putting a request */ 742 static inline void io_put_task(struct task_struct *task, int nr) 743 { 744 if (likely(task == current)) 745 io_put_task_local(task, nr); 746 else 747 io_put_task_remote(task, nr); 748 } 749 750 void io_task_refs_refill(struct io_uring_task *tctx) 751 { 752 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 753 754 percpu_counter_add(&tctx->inflight, refill); 755 refcount_add(refill, ¤t->usage); 756 tctx->cached_refs += refill; 757 } 758 759 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 760 { 761 struct io_uring_task *tctx = task->io_uring; 762 unsigned int refs = tctx->cached_refs; 763 764 if (refs) { 765 tctx->cached_refs = 0; 766 percpu_counter_sub(&tctx->inflight, refs); 767 put_task_struct_many(task, refs); 768 } 769 } 770 771 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 772 s32 res, u32 cflags, u64 extra1, u64 extra2) 773 { 774 struct io_overflow_cqe *ocqe; 775 size_t ocq_size = sizeof(struct io_overflow_cqe); 776 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 777 778 lockdep_assert_held(&ctx->completion_lock); 779 780 if (is_cqe32) 781 ocq_size += sizeof(struct io_uring_cqe); 782 783 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 784 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 785 if (!ocqe) { 786 /* 787 * If we're in ring overflow flush mode, or in task cancel mode, 788 * or cannot allocate an overflow entry, then we need to drop it 789 * on the floor. 790 */ 791 io_account_cq_overflow(ctx); 792 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 793 return false; 794 } 795 if (list_empty(&ctx->cq_overflow_list)) { 796 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 797 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 798 799 } 800 ocqe->cqe.user_data = user_data; 801 ocqe->cqe.res = res; 802 ocqe->cqe.flags = cflags; 803 if (is_cqe32) { 804 ocqe->cqe.big_cqe[0] = extra1; 805 ocqe->cqe.big_cqe[1] = extra2; 806 } 807 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 808 return true; 809 } 810 811 bool io_req_cqe_overflow(struct io_kiocb *req) 812 { 813 if (!(req->flags & REQ_F_CQE32_INIT)) { 814 req->extra1 = 0; 815 req->extra2 = 0; 816 } 817 return io_cqring_event_overflow(req->ctx, req->cqe.user_data, 818 req->cqe.res, req->cqe.flags, 819 req->extra1, req->extra2); 820 } 821 822 /* 823 * writes to the cq entry need to come after reading head; the 824 * control dependency is enough as we're using WRITE_ONCE to 825 * fill the cq entry 826 */ 827 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow) 828 { 829 struct io_rings *rings = ctx->rings; 830 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 831 unsigned int free, queued, len; 832 833 /* 834 * Posting into the CQ when there are pending overflowed CQEs may break 835 * ordering guarantees, which will affect links, F_MORE users and more. 836 * Force overflow the completion. 837 */ 838 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 839 return NULL; 840 841 /* userspace may cheat modifying the tail, be safe and do min */ 842 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 843 free = ctx->cq_entries - queued; 844 /* we need a contiguous range, limit based on the current array offset */ 845 len = min(free, ctx->cq_entries - off); 846 if (!len) 847 return NULL; 848 849 if (ctx->flags & IORING_SETUP_CQE32) { 850 off <<= 1; 851 len <<= 1; 852 } 853 854 ctx->cqe_cached = &rings->cqes[off]; 855 ctx->cqe_sentinel = ctx->cqe_cached + len; 856 857 ctx->cached_cq_tail++; 858 ctx->cqe_cached++; 859 if (ctx->flags & IORING_SETUP_CQE32) 860 ctx->cqe_cached++; 861 return &rings->cqes[off]; 862 } 863 864 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 865 u32 cflags) 866 { 867 struct io_uring_cqe *cqe; 868 869 ctx->cq_extra++; 870 871 /* 872 * If we can't get a cq entry, userspace overflowed the 873 * submission (by quite a lot). Increment the overflow count in 874 * the ring. 875 */ 876 cqe = io_get_cqe(ctx); 877 if (likely(cqe)) { 878 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 879 880 WRITE_ONCE(cqe->user_data, user_data); 881 WRITE_ONCE(cqe->res, res); 882 WRITE_ONCE(cqe->flags, cflags); 883 884 if (ctx->flags & IORING_SETUP_CQE32) { 885 WRITE_ONCE(cqe->big_cqe[0], 0); 886 WRITE_ONCE(cqe->big_cqe[1], 0); 887 } 888 return true; 889 } 890 return false; 891 } 892 893 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 894 __must_hold(&ctx->uring_lock) 895 { 896 struct io_submit_state *state = &ctx->submit_state; 897 unsigned int i; 898 899 lockdep_assert_held(&ctx->uring_lock); 900 for (i = 0; i < state->cqes_count; i++) { 901 struct io_uring_cqe *cqe = &state->cqes[i]; 902 903 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 904 if (ctx->task_complete) { 905 spin_lock(&ctx->completion_lock); 906 io_cqring_event_overflow(ctx, cqe->user_data, 907 cqe->res, cqe->flags, 0, 0); 908 spin_unlock(&ctx->completion_lock); 909 } else { 910 io_cqring_event_overflow(ctx, cqe->user_data, 911 cqe->res, cqe->flags, 0, 0); 912 } 913 } 914 } 915 state->cqes_count = 0; 916 } 917 918 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 919 bool allow_overflow) 920 { 921 bool filled; 922 923 io_cq_lock(ctx); 924 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 925 if (!filled && allow_overflow) 926 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 927 928 io_cq_unlock_post(ctx); 929 return filled; 930 } 931 932 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 933 { 934 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 935 } 936 937 bool io_aux_cqe(struct io_ring_ctx *ctx, bool defer, u64 user_data, s32 res, u32 cflags, 938 bool allow_overflow) 939 { 940 struct io_uring_cqe *cqe; 941 unsigned int length; 942 943 if (!defer) 944 return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow); 945 946 length = ARRAY_SIZE(ctx->submit_state.cqes); 947 948 lockdep_assert_held(&ctx->uring_lock); 949 950 if (ctx->submit_state.cqes_count == length) { 951 __io_cq_lock(ctx); 952 __io_flush_post_cqes(ctx); 953 /* no need to flush - flush is deferred */ 954 __io_cq_unlock_post(ctx); 955 } 956 957 /* For defered completions this is not as strict as it is otherwise, 958 * however it's main job is to prevent unbounded posted completions, 959 * and in that it works just as well. 960 */ 961 if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 962 return false; 963 964 cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++]; 965 cqe->user_data = user_data; 966 cqe->res = res; 967 cqe->flags = cflags; 968 return true; 969 } 970 971 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 972 { 973 struct io_ring_ctx *ctx = req->ctx; 974 struct io_rsrc_node *rsrc_node = NULL; 975 976 io_cq_lock(ctx); 977 if (!(req->flags & REQ_F_CQE_SKIP)) 978 io_fill_cqe_req(ctx, req); 979 980 /* 981 * If we're the last reference to this request, add to our locked 982 * free_list cache. 983 */ 984 if (req_ref_put_and_test(req)) { 985 if (req->flags & IO_REQ_LINK_FLAGS) { 986 if (req->flags & IO_DISARM_MASK) 987 io_disarm_next(req); 988 if (req->link) { 989 io_req_task_queue(req->link); 990 req->link = NULL; 991 } 992 } 993 io_put_kbuf_comp(req); 994 io_dismantle_req(req); 995 rsrc_node = req->rsrc_node; 996 /* 997 * Selected buffer deallocation in io_clean_op() assumes that 998 * we don't hold ->completion_lock. Clean them here to avoid 999 * deadlocks. 1000 */ 1001 io_put_task_remote(req->task, 1); 1002 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1003 ctx->locked_free_nr++; 1004 } 1005 io_cq_unlock_post(ctx); 1006 1007 if (rsrc_node) { 1008 io_ring_submit_lock(ctx, issue_flags); 1009 io_put_rsrc_node(ctx, rsrc_node); 1010 io_ring_submit_unlock(ctx, issue_flags); 1011 } 1012 } 1013 1014 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1015 { 1016 if (req->ctx->task_complete && req->ctx->submitter_task != current) { 1017 req->io_task_work.func = io_req_task_complete; 1018 io_req_task_work_add(req); 1019 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1020 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 1021 __io_req_complete_post(req, issue_flags); 1022 } else { 1023 struct io_ring_ctx *ctx = req->ctx; 1024 1025 mutex_lock(&ctx->uring_lock); 1026 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); 1027 mutex_unlock(&ctx->uring_lock); 1028 } 1029 } 1030 1031 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1032 __must_hold(&ctx->uring_lock) 1033 { 1034 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1035 1036 lockdep_assert_held(&req->ctx->uring_lock); 1037 1038 req_set_fail(req); 1039 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1040 if (def->fail) 1041 def->fail(req); 1042 io_req_complete_defer(req); 1043 } 1044 1045 /* 1046 * Don't initialise the fields below on every allocation, but do that in 1047 * advance and keep them valid across allocations. 1048 */ 1049 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1050 { 1051 req->ctx = ctx; 1052 req->link = NULL; 1053 req->async_data = NULL; 1054 /* not necessary, but safer to zero */ 1055 req->cqe.res = 0; 1056 } 1057 1058 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1059 struct io_submit_state *state) 1060 { 1061 spin_lock(&ctx->completion_lock); 1062 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1063 ctx->locked_free_nr = 0; 1064 spin_unlock(&ctx->completion_lock); 1065 } 1066 1067 /* 1068 * A request might get retired back into the request caches even before opcode 1069 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1070 * Because of that, io_alloc_req() should be called only under ->uring_lock 1071 * and with extra caution to not get a request that is still worked on. 1072 */ 1073 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1074 __must_hold(&ctx->uring_lock) 1075 { 1076 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1077 void *reqs[IO_REQ_ALLOC_BATCH]; 1078 int ret, i; 1079 1080 /* 1081 * If we have more than a batch's worth of requests in our IRQ side 1082 * locked cache, grab the lock and move them over to our submission 1083 * side cache. 1084 */ 1085 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1086 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1087 if (!io_req_cache_empty(ctx)) 1088 return true; 1089 } 1090 1091 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1092 1093 /* 1094 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1095 * retry single alloc to be on the safe side. 1096 */ 1097 if (unlikely(ret <= 0)) { 1098 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1099 if (!reqs[0]) 1100 return false; 1101 ret = 1; 1102 } 1103 1104 percpu_ref_get_many(&ctx->refs, ret); 1105 for (i = 0; i < ret; i++) { 1106 struct io_kiocb *req = reqs[i]; 1107 1108 io_preinit_req(req, ctx); 1109 io_req_add_to_cache(req, ctx); 1110 } 1111 return true; 1112 } 1113 1114 static inline void io_dismantle_req(struct io_kiocb *req) 1115 { 1116 unsigned int flags = req->flags; 1117 1118 if (unlikely(flags & IO_REQ_CLEAN_FLAGS)) 1119 io_clean_op(req); 1120 if (!(flags & REQ_F_FIXED_FILE)) 1121 io_put_file(req->file); 1122 } 1123 1124 static __cold void io_free_req_tw(struct io_kiocb *req, struct io_tw_state *ts) 1125 { 1126 struct io_ring_ctx *ctx = req->ctx; 1127 1128 if (req->rsrc_node) { 1129 io_tw_lock(ctx, ts); 1130 io_put_rsrc_node(ctx, req->rsrc_node); 1131 } 1132 io_dismantle_req(req); 1133 io_put_task_remote(req->task, 1); 1134 1135 spin_lock(&ctx->completion_lock); 1136 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1137 ctx->locked_free_nr++; 1138 spin_unlock(&ctx->completion_lock); 1139 } 1140 1141 __cold void io_free_req(struct io_kiocb *req) 1142 { 1143 req->io_task_work.func = io_free_req_tw; 1144 io_req_task_work_add(req); 1145 } 1146 1147 static void __io_req_find_next_prep(struct io_kiocb *req) 1148 { 1149 struct io_ring_ctx *ctx = req->ctx; 1150 1151 spin_lock(&ctx->completion_lock); 1152 io_disarm_next(req); 1153 spin_unlock(&ctx->completion_lock); 1154 } 1155 1156 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1157 { 1158 struct io_kiocb *nxt; 1159 1160 /* 1161 * If LINK is set, we have dependent requests in this chain. If we 1162 * didn't fail this request, queue the first one up, moving any other 1163 * dependencies to the next request. In case of failure, fail the rest 1164 * of the chain. 1165 */ 1166 if (unlikely(req->flags & IO_DISARM_MASK)) 1167 __io_req_find_next_prep(req); 1168 nxt = req->link; 1169 req->link = NULL; 1170 return nxt; 1171 } 1172 1173 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1174 { 1175 if (!ctx) 1176 return; 1177 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1178 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1179 if (ts->locked) { 1180 io_submit_flush_completions(ctx); 1181 mutex_unlock(&ctx->uring_lock); 1182 ts->locked = false; 1183 } 1184 percpu_ref_put(&ctx->refs); 1185 } 1186 1187 static unsigned int handle_tw_list(struct llist_node *node, 1188 struct io_ring_ctx **ctx, 1189 struct io_tw_state *ts, 1190 struct llist_node *last) 1191 { 1192 unsigned int count = 0; 1193 1194 while (node && node != last) { 1195 struct llist_node *next = node->next; 1196 struct io_kiocb *req = container_of(node, struct io_kiocb, 1197 io_task_work.node); 1198 1199 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1200 1201 if (req->ctx != *ctx) { 1202 ctx_flush_and_put(*ctx, ts); 1203 *ctx = req->ctx; 1204 /* if not contended, grab and improve batching */ 1205 ts->locked = mutex_trylock(&(*ctx)->uring_lock); 1206 percpu_ref_get(&(*ctx)->refs); 1207 } 1208 req->io_task_work.func(req, ts); 1209 node = next; 1210 count++; 1211 if (unlikely(need_resched())) { 1212 ctx_flush_and_put(*ctx, ts); 1213 *ctx = NULL; 1214 cond_resched(); 1215 } 1216 } 1217 1218 return count; 1219 } 1220 1221 /** 1222 * io_llist_xchg - swap all entries in a lock-less list 1223 * @head: the head of lock-less list to delete all entries 1224 * @new: new entry as the head of the list 1225 * 1226 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1227 * The order of entries returned is from the newest to the oldest added one. 1228 */ 1229 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1230 struct llist_node *new) 1231 { 1232 return xchg(&head->first, new); 1233 } 1234 1235 /** 1236 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1237 * @head: the head of lock-less list to delete all entries 1238 * @old: expected old value of the first entry of the list 1239 * @new: new entry as the head of the list 1240 * 1241 * perform a cmpxchg on the first entry of the list. 1242 */ 1243 1244 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1245 struct llist_node *old, 1246 struct llist_node *new) 1247 { 1248 return cmpxchg(&head->first, old, new); 1249 } 1250 1251 void tctx_task_work(struct callback_head *cb) 1252 { 1253 struct io_tw_state ts = {}; 1254 struct io_ring_ctx *ctx = NULL; 1255 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1256 task_work); 1257 struct llist_node fake = {}; 1258 struct llist_node *node; 1259 unsigned int loops = 0; 1260 unsigned int count = 0; 1261 1262 if (unlikely(current->flags & PF_EXITING)) { 1263 io_fallback_tw(tctx); 1264 return; 1265 } 1266 1267 do { 1268 loops++; 1269 node = io_llist_xchg(&tctx->task_list, &fake); 1270 count += handle_tw_list(node, &ctx, &ts, &fake); 1271 1272 /* skip expensive cmpxchg if there are items in the list */ 1273 if (READ_ONCE(tctx->task_list.first) != &fake) 1274 continue; 1275 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) { 1276 io_submit_flush_completions(ctx); 1277 if (READ_ONCE(tctx->task_list.first) != &fake) 1278 continue; 1279 } 1280 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1281 } while (node != &fake); 1282 1283 ctx_flush_and_put(ctx, &ts); 1284 1285 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1286 if (unlikely(atomic_read(&tctx->in_cancel))) 1287 io_uring_drop_tctx_refs(current); 1288 1289 trace_io_uring_task_work_run(tctx, count, loops); 1290 } 1291 1292 static __cold void io_fallback_tw(struct io_uring_task *tctx) 1293 { 1294 struct llist_node *node = llist_del_all(&tctx->task_list); 1295 struct io_kiocb *req; 1296 1297 while (node) { 1298 req = container_of(node, struct io_kiocb, io_task_work.node); 1299 node = node->next; 1300 if (llist_add(&req->io_task_work.node, 1301 &req->ctx->fallback_llist)) 1302 schedule_delayed_work(&req->ctx->fallback_work, 1); 1303 } 1304 } 1305 1306 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1307 { 1308 struct io_ring_ctx *ctx = req->ctx; 1309 unsigned nr_wait, nr_tw, nr_tw_prev; 1310 struct llist_node *first; 1311 1312 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1313 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1314 1315 first = READ_ONCE(ctx->work_llist.first); 1316 do { 1317 nr_tw_prev = 0; 1318 if (first) { 1319 struct io_kiocb *first_req = container_of(first, 1320 struct io_kiocb, 1321 io_task_work.node); 1322 /* 1323 * Might be executed at any moment, rely on 1324 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1325 */ 1326 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1327 } 1328 nr_tw = nr_tw_prev + 1; 1329 /* Large enough to fail the nr_wait comparison below */ 1330 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1331 nr_tw = -1U; 1332 1333 req->nr_tw = nr_tw; 1334 req->io_task_work.node.next = first; 1335 } while (!try_cmpxchg(&ctx->work_llist.first, &first, 1336 &req->io_task_work.node)); 1337 1338 if (!first) { 1339 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1340 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1341 if (ctx->has_evfd) 1342 io_eventfd_signal(ctx); 1343 } 1344 1345 nr_wait = atomic_read(&ctx->cq_wait_nr); 1346 /* no one is waiting */ 1347 if (!nr_wait) 1348 return; 1349 /* either not enough or the previous add has already woken it up */ 1350 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait) 1351 return; 1352 /* pairs with set_current_state() in io_cqring_wait() */ 1353 smp_mb__after_atomic(); 1354 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1355 } 1356 1357 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1358 { 1359 struct io_uring_task *tctx = req->task->io_uring; 1360 struct io_ring_ctx *ctx = req->ctx; 1361 1362 if (!(flags & IOU_F_TWQ_FORCE_NORMAL) && 1363 (ctx->flags & IORING_SETUP_DEFER_TASKRUN)) { 1364 rcu_read_lock(); 1365 io_req_local_work_add(req, flags); 1366 rcu_read_unlock(); 1367 return; 1368 } 1369 1370 /* task_work already pending, we're done */ 1371 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1372 return; 1373 1374 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1375 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1376 1377 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1378 return; 1379 1380 io_fallback_tw(tctx); 1381 } 1382 1383 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1384 { 1385 struct llist_node *node; 1386 1387 node = llist_del_all(&ctx->work_llist); 1388 while (node) { 1389 struct io_kiocb *req = container_of(node, struct io_kiocb, 1390 io_task_work.node); 1391 1392 node = node->next; 1393 __io_req_task_work_add(req, IOU_F_TWQ_FORCE_NORMAL); 1394 } 1395 } 1396 1397 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1398 { 1399 struct llist_node *node; 1400 unsigned int loops = 0; 1401 int ret = 0; 1402 1403 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1404 return -EEXIST; 1405 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1406 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1407 again: 1408 node = io_llist_xchg(&ctx->work_llist, NULL); 1409 while (node) { 1410 struct llist_node *next = node->next; 1411 struct io_kiocb *req = container_of(node, struct io_kiocb, 1412 io_task_work.node); 1413 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1414 req->io_task_work.func(req, ts); 1415 ret++; 1416 node = next; 1417 } 1418 loops++; 1419 1420 if (!llist_empty(&ctx->work_llist)) 1421 goto again; 1422 if (ts->locked) { 1423 io_submit_flush_completions(ctx); 1424 if (!llist_empty(&ctx->work_llist)) 1425 goto again; 1426 } 1427 trace_io_uring_local_work_run(ctx, ret, loops); 1428 return ret; 1429 } 1430 1431 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx) 1432 { 1433 struct io_tw_state ts = { .locked = true, }; 1434 int ret; 1435 1436 if (llist_empty(&ctx->work_llist)) 1437 return 0; 1438 1439 ret = __io_run_local_work(ctx, &ts); 1440 /* shouldn't happen! */ 1441 if (WARN_ON_ONCE(!ts.locked)) 1442 mutex_lock(&ctx->uring_lock); 1443 return ret; 1444 } 1445 1446 static int io_run_local_work(struct io_ring_ctx *ctx) 1447 { 1448 struct io_tw_state ts = {}; 1449 int ret; 1450 1451 ts.locked = mutex_trylock(&ctx->uring_lock); 1452 ret = __io_run_local_work(ctx, &ts); 1453 if (ts.locked) 1454 mutex_unlock(&ctx->uring_lock); 1455 1456 return ret; 1457 } 1458 1459 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1460 { 1461 io_tw_lock(req->ctx, ts); 1462 io_req_defer_failed(req, req->cqe.res); 1463 } 1464 1465 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1466 { 1467 io_tw_lock(req->ctx, ts); 1468 /* req->task == current here, checking PF_EXITING is safe */ 1469 if (unlikely(req->task->flags & PF_EXITING)) 1470 io_req_defer_failed(req, -EFAULT); 1471 else if (req->flags & REQ_F_FORCE_ASYNC) 1472 io_queue_iowq(req, ts); 1473 else 1474 io_queue_sqe(req); 1475 } 1476 1477 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1478 { 1479 io_req_set_res(req, ret, 0); 1480 req->io_task_work.func = io_req_task_cancel; 1481 io_req_task_work_add(req); 1482 } 1483 1484 void io_req_task_queue(struct io_kiocb *req) 1485 { 1486 req->io_task_work.func = io_req_task_submit; 1487 io_req_task_work_add(req); 1488 } 1489 1490 void io_queue_next(struct io_kiocb *req) 1491 { 1492 struct io_kiocb *nxt = io_req_find_next(req); 1493 1494 if (nxt) 1495 io_req_task_queue(nxt); 1496 } 1497 1498 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node) 1499 __must_hold(&ctx->uring_lock) 1500 { 1501 struct task_struct *task = NULL; 1502 int task_refs = 0; 1503 1504 do { 1505 struct io_kiocb *req = container_of(node, struct io_kiocb, 1506 comp_list); 1507 1508 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1509 if (req->flags & REQ_F_REFCOUNT) { 1510 node = req->comp_list.next; 1511 if (!req_ref_put_and_test(req)) 1512 continue; 1513 } 1514 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1515 struct async_poll *apoll = req->apoll; 1516 1517 if (apoll->double_poll) 1518 kfree(apoll->double_poll); 1519 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1520 kfree(apoll); 1521 req->flags &= ~REQ_F_POLLED; 1522 } 1523 if (req->flags & IO_REQ_LINK_FLAGS) 1524 io_queue_next(req); 1525 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1526 io_clean_op(req); 1527 } 1528 if (!(req->flags & REQ_F_FIXED_FILE)) 1529 io_put_file(req->file); 1530 1531 io_req_put_rsrc_locked(req, ctx); 1532 1533 if (req->task != task) { 1534 if (task) 1535 io_put_task(task, task_refs); 1536 task = req->task; 1537 task_refs = 0; 1538 } 1539 task_refs++; 1540 node = req->comp_list.next; 1541 io_req_add_to_cache(req, ctx); 1542 } while (node); 1543 1544 if (task) 1545 io_put_task(task, task_refs); 1546 } 1547 1548 static void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1549 __must_hold(&ctx->uring_lock) 1550 { 1551 struct io_submit_state *state = &ctx->submit_state; 1552 struct io_wq_work_node *node; 1553 1554 __io_cq_lock(ctx); 1555 /* must come first to preserve CQE ordering in failure cases */ 1556 if (state->cqes_count) 1557 __io_flush_post_cqes(ctx); 1558 __wq_list_for_each(node, &state->compl_reqs) { 1559 struct io_kiocb *req = container_of(node, struct io_kiocb, 1560 comp_list); 1561 1562 if (!(req->flags & REQ_F_CQE_SKIP) && 1563 unlikely(!__io_fill_cqe_req(ctx, req))) { 1564 if (ctx->task_complete) { 1565 spin_lock(&ctx->completion_lock); 1566 io_req_cqe_overflow(req); 1567 spin_unlock(&ctx->completion_lock); 1568 } else { 1569 io_req_cqe_overflow(req); 1570 } 1571 } 1572 } 1573 __io_cq_unlock_post_flush(ctx); 1574 1575 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1576 io_free_batch_list(ctx, state->compl_reqs.first); 1577 INIT_WQ_LIST(&state->compl_reqs); 1578 } 1579 } 1580 1581 /* 1582 * Drop reference to request, return next in chain (if there is one) if this 1583 * was the last reference to this request. 1584 */ 1585 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req) 1586 { 1587 struct io_kiocb *nxt = NULL; 1588 1589 if (req_ref_put_and_test(req)) { 1590 if (unlikely(req->flags & IO_REQ_LINK_FLAGS)) 1591 nxt = io_req_find_next(req); 1592 io_free_req(req); 1593 } 1594 return nxt; 1595 } 1596 1597 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1598 { 1599 /* See comment at the top of this file */ 1600 smp_rmb(); 1601 return __io_cqring_events(ctx); 1602 } 1603 1604 /* 1605 * We can't just wait for polled events to come to us, we have to actively 1606 * find and complete them. 1607 */ 1608 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1609 { 1610 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1611 return; 1612 1613 mutex_lock(&ctx->uring_lock); 1614 while (!wq_list_empty(&ctx->iopoll_list)) { 1615 /* let it sleep and repeat later if can't complete a request */ 1616 if (io_do_iopoll(ctx, true) == 0) 1617 break; 1618 /* 1619 * Ensure we allow local-to-the-cpu processing to take place, 1620 * in this case we need to ensure that we reap all events. 1621 * Also let task_work, etc. to progress by releasing the mutex 1622 */ 1623 if (need_resched()) { 1624 mutex_unlock(&ctx->uring_lock); 1625 cond_resched(); 1626 mutex_lock(&ctx->uring_lock); 1627 } 1628 } 1629 mutex_unlock(&ctx->uring_lock); 1630 } 1631 1632 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1633 { 1634 unsigned int nr_events = 0; 1635 int ret = 0; 1636 unsigned long check_cq; 1637 1638 if (!io_allowed_run_tw(ctx)) 1639 return -EEXIST; 1640 1641 check_cq = READ_ONCE(ctx->check_cq); 1642 if (unlikely(check_cq)) { 1643 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1644 __io_cqring_overflow_flush(ctx); 1645 /* 1646 * Similarly do not spin if we have not informed the user of any 1647 * dropped CQE. 1648 */ 1649 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1650 return -EBADR; 1651 } 1652 /* 1653 * Don't enter poll loop if we already have events pending. 1654 * If we do, we can potentially be spinning for commands that 1655 * already triggered a CQE (eg in error). 1656 */ 1657 if (io_cqring_events(ctx)) 1658 return 0; 1659 1660 do { 1661 /* 1662 * If a submit got punted to a workqueue, we can have the 1663 * application entering polling for a command before it gets 1664 * issued. That app will hold the uring_lock for the duration 1665 * of the poll right here, so we need to take a breather every 1666 * now and then to ensure that the issue has a chance to add 1667 * the poll to the issued list. Otherwise we can spin here 1668 * forever, while the workqueue is stuck trying to acquire the 1669 * very same mutex. 1670 */ 1671 if (wq_list_empty(&ctx->iopoll_list) || 1672 io_task_work_pending(ctx)) { 1673 u32 tail = ctx->cached_cq_tail; 1674 1675 (void) io_run_local_work_locked(ctx); 1676 1677 if (task_work_pending(current) || 1678 wq_list_empty(&ctx->iopoll_list)) { 1679 mutex_unlock(&ctx->uring_lock); 1680 io_run_task_work(); 1681 mutex_lock(&ctx->uring_lock); 1682 } 1683 /* some requests don't go through iopoll_list */ 1684 if (tail != ctx->cached_cq_tail || 1685 wq_list_empty(&ctx->iopoll_list)) 1686 break; 1687 } 1688 ret = io_do_iopoll(ctx, !min); 1689 if (ret < 0) 1690 break; 1691 nr_events += ret; 1692 ret = 0; 1693 } while (nr_events < min && !need_resched()); 1694 1695 return ret; 1696 } 1697 1698 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1699 { 1700 if (ts->locked) 1701 io_req_complete_defer(req); 1702 else 1703 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1704 } 1705 1706 /* 1707 * After the iocb has been issued, it's safe to be found on the poll list. 1708 * Adding the kiocb to the list AFTER submission ensures that we don't 1709 * find it from a io_do_iopoll() thread before the issuer is done 1710 * accessing the kiocb cookie. 1711 */ 1712 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1713 { 1714 struct io_ring_ctx *ctx = req->ctx; 1715 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1716 1717 /* workqueue context doesn't hold uring_lock, grab it now */ 1718 if (unlikely(needs_lock)) 1719 mutex_lock(&ctx->uring_lock); 1720 1721 /* 1722 * Track whether we have multiple files in our lists. This will impact 1723 * how we do polling eventually, not spinning if we're on potentially 1724 * different devices. 1725 */ 1726 if (wq_list_empty(&ctx->iopoll_list)) { 1727 ctx->poll_multi_queue = false; 1728 } else if (!ctx->poll_multi_queue) { 1729 struct io_kiocb *list_req; 1730 1731 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1732 comp_list); 1733 if (list_req->file != req->file) 1734 ctx->poll_multi_queue = true; 1735 } 1736 1737 /* 1738 * For fast devices, IO may have already completed. If it has, add 1739 * it to the front so we find it first. 1740 */ 1741 if (READ_ONCE(req->iopoll_completed)) 1742 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1743 else 1744 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1745 1746 if (unlikely(needs_lock)) { 1747 /* 1748 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1749 * in sq thread task context or in io worker task context. If 1750 * current task context is sq thread, we don't need to check 1751 * whether should wake up sq thread. 1752 */ 1753 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1754 wq_has_sleeper(&ctx->sq_data->wait)) 1755 wake_up(&ctx->sq_data->wait); 1756 1757 mutex_unlock(&ctx->uring_lock); 1758 } 1759 } 1760 1761 static bool io_bdev_nowait(struct block_device *bdev) 1762 { 1763 return !bdev || bdev_nowait(bdev); 1764 } 1765 1766 /* 1767 * If we tracked the file through the SCM inflight mechanism, we could support 1768 * any file. For now, just ensure that anything potentially problematic is done 1769 * inline. 1770 */ 1771 static bool __io_file_supports_nowait(struct file *file, umode_t mode) 1772 { 1773 if (S_ISBLK(mode)) { 1774 if (IS_ENABLED(CONFIG_BLOCK) && 1775 io_bdev_nowait(I_BDEV(file->f_mapping->host))) 1776 return true; 1777 return false; 1778 } 1779 if (S_ISSOCK(mode)) 1780 return true; 1781 if (S_ISREG(mode)) { 1782 if (IS_ENABLED(CONFIG_BLOCK) && 1783 io_bdev_nowait(file->f_inode->i_sb->s_bdev) && 1784 !io_is_uring_fops(file)) 1785 return true; 1786 return false; 1787 } 1788 1789 /* any ->read/write should understand O_NONBLOCK */ 1790 if (file->f_flags & O_NONBLOCK) 1791 return true; 1792 return file->f_mode & FMODE_NOWAIT; 1793 } 1794 1795 /* 1796 * If we tracked the file through the SCM inflight mechanism, we could support 1797 * any file. For now, just ensure that anything potentially problematic is done 1798 * inline. 1799 */ 1800 unsigned int io_file_get_flags(struct file *file) 1801 { 1802 umode_t mode = file_inode(file)->i_mode; 1803 unsigned int res = 0; 1804 1805 if (S_ISREG(mode)) 1806 res |= FFS_ISREG; 1807 if (__io_file_supports_nowait(file, mode)) 1808 res |= FFS_NOWAIT; 1809 return res; 1810 } 1811 1812 bool io_alloc_async_data(struct io_kiocb *req) 1813 { 1814 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1815 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1816 if (req->async_data) { 1817 req->flags |= REQ_F_ASYNC_DATA; 1818 return false; 1819 } 1820 return true; 1821 } 1822 1823 int io_req_prep_async(struct io_kiocb *req) 1824 { 1825 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1826 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1827 1828 /* assign early for deferred execution for non-fixed file */ 1829 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1830 req->file = io_file_get_normal(req, req->cqe.fd); 1831 if (!cdef->prep_async) 1832 return 0; 1833 if (WARN_ON_ONCE(req_has_async_data(req))) 1834 return -EFAULT; 1835 if (!def->manual_alloc) { 1836 if (io_alloc_async_data(req)) 1837 return -EAGAIN; 1838 } 1839 return cdef->prep_async(req); 1840 } 1841 1842 static u32 io_get_sequence(struct io_kiocb *req) 1843 { 1844 u32 seq = req->ctx->cached_sq_head; 1845 struct io_kiocb *cur; 1846 1847 /* need original cached_sq_head, but it was increased for each req */ 1848 io_for_each_link(cur, req) 1849 seq--; 1850 return seq; 1851 } 1852 1853 static __cold void io_drain_req(struct io_kiocb *req) 1854 __must_hold(&ctx->uring_lock) 1855 { 1856 struct io_ring_ctx *ctx = req->ctx; 1857 struct io_defer_entry *de; 1858 int ret; 1859 u32 seq = io_get_sequence(req); 1860 1861 /* Still need defer if there is pending req in defer list. */ 1862 spin_lock(&ctx->completion_lock); 1863 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1864 spin_unlock(&ctx->completion_lock); 1865 queue: 1866 ctx->drain_active = false; 1867 io_req_task_queue(req); 1868 return; 1869 } 1870 spin_unlock(&ctx->completion_lock); 1871 1872 io_prep_async_link(req); 1873 de = kmalloc(sizeof(*de), GFP_KERNEL); 1874 if (!de) { 1875 ret = -ENOMEM; 1876 io_req_defer_failed(req, ret); 1877 return; 1878 } 1879 1880 spin_lock(&ctx->completion_lock); 1881 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1882 spin_unlock(&ctx->completion_lock); 1883 kfree(de); 1884 goto queue; 1885 } 1886 1887 trace_io_uring_defer(req); 1888 de->req = req; 1889 de->seq = seq; 1890 list_add_tail(&de->list, &ctx->defer_list); 1891 spin_unlock(&ctx->completion_lock); 1892 } 1893 1894 static void io_clean_op(struct io_kiocb *req) 1895 { 1896 if (req->flags & REQ_F_BUFFER_SELECTED) { 1897 spin_lock(&req->ctx->completion_lock); 1898 io_put_kbuf_comp(req); 1899 spin_unlock(&req->ctx->completion_lock); 1900 } 1901 1902 if (req->flags & REQ_F_NEED_CLEANUP) { 1903 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1904 1905 if (def->cleanup) 1906 def->cleanup(req); 1907 } 1908 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1909 kfree(req->apoll->double_poll); 1910 kfree(req->apoll); 1911 req->apoll = NULL; 1912 } 1913 if (req->flags & REQ_F_INFLIGHT) { 1914 struct io_uring_task *tctx = req->task->io_uring; 1915 1916 atomic_dec(&tctx->inflight_tracked); 1917 } 1918 if (req->flags & REQ_F_CREDS) 1919 put_cred(req->creds); 1920 if (req->flags & REQ_F_ASYNC_DATA) { 1921 kfree(req->async_data); 1922 req->async_data = NULL; 1923 } 1924 req->flags &= ~IO_REQ_CLEAN_FLAGS; 1925 } 1926 1927 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1928 unsigned int issue_flags) 1929 { 1930 if (req->file || !def->needs_file) 1931 return true; 1932 1933 if (req->flags & REQ_F_FIXED_FILE) 1934 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1935 else 1936 req->file = io_file_get_normal(req, req->cqe.fd); 1937 1938 return !!req->file; 1939 } 1940 1941 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1942 { 1943 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1944 const struct cred *creds = NULL; 1945 int ret; 1946 1947 if (unlikely(!io_assign_file(req, def, issue_flags))) 1948 return -EBADF; 1949 1950 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1951 creds = override_creds(req->creds); 1952 1953 if (!def->audit_skip) 1954 audit_uring_entry(req->opcode); 1955 1956 ret = def->issue(req, issue_flags); 1957 1958 if (!def->audit_skip) 1959 audit_uring_exit(!ret, ret); 1960 1961 if (creds) 1962 revert_creds(creds); 1963 1964 if (ret == IOU_OK) { 1965 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1966 io_req_complete_defer(req); 1967 else 1968 io_req_complete_post(req, issue_flags); 1969 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1970 return ret; 1971 1972 /* If the op doesn't have a file, we're not polling for it */ 1973 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1974 io_iopoll_req_issued(req, issue_flags); 1975 1976 return 0; 1977 } 1978 1979 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1980 { 1981 io_tw_lock(req->ctx, ts); 1982 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1983 IO_URING_F_COMPLETE_DEFER); 1984 } 1985 1986 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1987 { 1988 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1989 1990 req = io_put_req_find_next(req); 1991 return req ? &req->work : NULL; 1992 } 1993 1994 void io_wq_submit_work(struct io_wq_work *work) 1995 { 1996 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1997 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1998 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1999 bool needs_poll = false; 2000 int ret = 0, err = -ECANCELED; 2001 2002 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 2003 if (!(req->flags & REQ_F_REFCOUNT)) 2004 __io_req_set_refcount(req, 2); 2005 else 2006 req_ref_get(req); 2007 2008 io_arm_ltimeout(req); 2009 2010 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 2011 if (work->flags & IO_WQ_WORK_CANCEL) { 2012 fail: 2013 io_req_task_queue_fail(req, err); 2014 return; 2015 } 2016 if (!io_assign_file(req, def, issue_flags)) { 2017 err = -EBADF; 2018 work->flags |= IO_WQ_WORK_CANCEL; 2019 goto fail; 2020 } 2021 2022 if (req->flags & REQ_F_FORCE_ASYNC) { 2023 bool opcode_poll = def->pollin || def->pollout; 2024 2025 if (opcode_poll && file_can_poll(req->file)) { 2026 needs_poll = true; 2027 issue_flags |= IO_URING_F_NONBLOCK; 2028 } 2029 } 2030 2031 do { 2032 ret = io_issue_sqe(req, issue_flags); 2033 if (ret != -EAGAIN) 2034 break; 2035 /* 2036 * We can get EAGAIN for iopolled IO even though we're 2037 * forcing a sync submission from here, since we can't 2038 * wait for request slots on the block side. 2039 */ 2040 if (!needs_poll) { 2041 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 2042 break; 2043 cond_resched(); 2044 continue; 2045 } 2046 2047 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 2048 return; 2049 /* aborted or ready, in either case retry blocking */ 2050 needs_poll = false; 2051 issue_flags &= ~IO_URING_F_NONBLOCK; 2052 } while (1); 2053 2054 /* avoid locking problems by failing it from a clean context */ 2055 if (ret < 0) 2056 io_req_task_queue_fail(req, ret); 2057 } 2058 2059 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 2060 unsigned int issue_flags) 2061 { 2062 struct io_ring_ctx *ctx = req->ctx; 2063 struct file *file = NULL; 2064 unsigned long file_ptr; 2065 2066 io_ring_submit_lock(ctx, issue_flags); 2067 2068 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 2069 goto out; 2070 fd = array_index_nospec(fd, ctx->nr_user_files); 2071 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr; 2072 file = (struct file *) (file_ptr & FFS_MASK); 2073 file_ptr &= ~FFS_MASK; 2074 /* mask in overlapping REQ_F and FFS bits */ 2075 req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT); 2076 io_req_set_rsrc_node(req, ctx, 0); 2077 out: 2078 io_ring_submit_unlock(ctx, issue_flags); 2079 return file; 2080 } 2081 2082 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 2083 { 2084 struct file *file = fget(fd); 2085 2086 trace_io_uring_file_get(req, fd); 2087 2088 /* we don't allow fixed io_uring files */ 2089 if (file && io_is_uring_fops(file)) 2090 io_req_track_inflight(req); 2091 return file; 2092 } 2093 2094 static void io_queue_async(struct io_kiocb *req, int ret) 2095 __must_hold(&req->ctx->uring_lock) 2096 { 2097 struct io_kiocb *linked_timeout; 2098 2099 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2100 io_req_defer_failed(req, ret); 2101 return; 2102 } 2103 2104 linked_timeout = io_prep_linked_timeout(req); 2105 2106 switch (io_arm_poll_handler(req, 0)) { 2107 case IO_APOLL_READY: 2108 io_kbuf_recycle(req, 0); 2109 io_req_task_queue(req); 2110 break; 2111 case IO_APOLL_ABORTED: 2112 io_kbuf_recycle(req, 0); 2113 io_queue_iowq(req, NULL); 2114 break; 2115 case IO_APOLL_OK: 2116 break; 2117 } 2118 2119 if (linked_timeout) 2120 io_queue_linked_timeout(linked_timeout); 2121 } 2122 2123 static inline void io_queue_sqe(struct io_kiocb *req) 2124 __must_hold(&req->ctx->uring_lock) 2125 { 2126 int ret; 2127 2128 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2129 2130 /* 2131 * We async punt it if the file wasn't marked NOWAIT, or if the file 2132 * doesn't support non-blocking read/write attempts 2133 */ 2134 if (likely(!ret)) 2135 io_arm_ltimeout(req); 2136 else 2137 io_queue_async(req, ret); 2138 } 2139 2140 static void io_queue_sqe_fallback(struct io_kiocb *req) 2141 __must_hold(&req->ctx->uring_lock) 2142 { 2143 if (unlikely(req->flags & REQ_F_FAIL)) { 2144 /* 2145 * We don't submit, fail them all, for that replace hardlinks 2146 * with normal links. Extra REQ_F_LINK is tolerated. 2147 */ 2148 req->flags &= ~REQ_F_HARDLINK; 2149 req->flags |= REQ_F_LINK; 2150 io_req_defer_failed(req, req->cqe.res); 2151 } else { 2152 int ret = io_req_prep_async(req); 2153 2154 if (unlikely(ret)) { 2155 io_req_defer_failed(req, ret); 2156 return; 2157 } 2158 2159 if (unlikely(req->ctx->drain_active)) 2160 io_drain_req(req); 2161 else 2162 io_queue_iowq(req, NULL); 2163 } 2164 } 2165 2166 /* 2167 * Check SQE restrictions (opcode and flags). 2168 * 2169 * Returns 'true' if SQE is allowed, 'false' otherwise. 2170 */ 2171 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2172 struct io_kiocb *req, 2173 unsigned int sqe_flags) 2174 { 2175 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2176 return false; 2177 2178 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2179 ctx->restrictions.sqe_flags_required) 2180 return false; 2181 2182 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2183 ctx->restrictions.sqe_flags_required)) 2184 return false; 2185 2186 return true; 2187 } 2188 2189 static void io_init_req_drain(struct io_kiocb *req) 2190 { 2191 struct io_ring_ctx *ctx = req->ctx; 2192 struct io_kiocb *head = ctx->submit_state.link.head; 2193 2194 ctx->drain_active = true; 2195 if (head) { 2196 /* 2197 * If we need to drain a request in the middle of a link, drain 2198 * the head request and the next request/link after the current 2199 * link. Considering sequential execution of links, 2200 * REQ_F_IO_DRAIN will be maintained for every request of our 2201 * link. 2202 */ 2203 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2204 ctx->drain_next = true; 2205 } 2206 } 2207 2208 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2209 const struct io_uring_sqe *sqe) 2210 __must_hold(&ctx->uring_lock) 2211 { 2212 const struct io_issue_def *def; 2213 unsigned int sqe_flags; 2214 int personality; 2215 u8 opcode; 2216 2217 /* req is partially pre-initialised, see io_preinit_req() */ 2218 req->opcode = opcode = READ_ONCE(sqe->opcode); 2219 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2220 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2221 req->cqe.user_data = READ_ONCE(sqe->user_data); 2222 req->file = NULL; 2223 req->rsrc_node = NULL; 2224 req->task = current; 2225 2226 if (unlikely(opcode >= IORING_OP_LAST)) { 2227 req->opcode = 0; 2228 return -EINVAL; 2229 } 2230 def = &io_issue_defs[opcode]; 2231 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2232 /* enforce forwards compatibility on users */ 2233 if (sqe_flags & ~SQE_VALID_FLAGS) 2234 return -EINVAL; 2235 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2236 if (!def->buffer_select) 2237 return -EOPNOTSUPP; 2238 req->buf_index = READ_ONCE(sqe->buf_group); 2239 } 2240 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2241 ctx->drain_disabled = true; 2242 if (sqe_flags & IOSQE_IO_DRAIN) { 2243 if (ctx->drain_disabled) 2244 return -EOPNOTSUPP; 2245 io_init_req_drain(req); 2246 } 2247 } 2248 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2249 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2250 return -EACCES; 2251 /* knock it to the slow queue path, will be drained there */ 2252 if (ctx->drain_active) 2253 req->flags |= REQ_F_FORCE_ASYNC; 2254 /* if there is no link, we're at "next" request and need to drain */ 2255 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2256 ctx->drain_next = false; 2257 ctx->drain_active = true; 2258 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2259 } 2260 } 2261 2262 if (!def->ioprio && sqe->ioprio) 2263 return -EINVAL; 2264 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2265 return -EINVAL; 2266 2267 if (def->needs_file) { 2268 struct io_submit_state *state = &ctx->submit_state; 2269 2270 req->cqe.fd = READ_ONCE(sqe->fd); 2271 2272 /* 2273 * Plug now if we have more than 2 IO left after this, and the 2274 * target is potentially a read/write to block based storage. 2275 */ 2276 if (state->need_plug && def->plug) { 2277 state->plug_started = true; 2278 state->need_plug = false; 2279 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2280 } 2281 } 2282 2283 personality = READ_ONCE(sqe->personality); 2284 if (personality) { 2285 int ret; 2286 2287 req->creds = xa_load(&ctx->personalities, personality); 2288 if (!req->creds) 2289 return -EINVAL; 2290 get_cred(req->creds); 2291 ret = security_uring_override_creds(req->creds); 2292 if (ret) { 2293 put_cred(req->creds); 2294 return ret; 2295 } 2296 req->flags |= REQ_F_CREDS; 2297 } 2298 2299 return def->prep(req, sqe); 2300 } 2301 2302 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2303 struct io_kiocb *req, int ret) 2304 { 2305 struct io_ring_ctx *ctx = req->ctx; 2306 struct io_submit_link *link = &ctx->submit_state.link; 2307 struct io_kiocb *head = link->head; 2308 2309 trace_io_uring_req_failed(sqe, req, ret); 2310 2311 /* 2312 * Avoid breaking links in the middle as it renders links with SQPOLL 2313 * unusable. Instead of failing eagerly, continue assembling the link if 2314 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2315 * should find the flag and handle the rest. 2316 */ 2317 req_fail_link_node(req, ret); 2318 if (head && !(head->flags & REQ_F_FAIL)) 2319 req_fail_link_node(head, -ECANCELED); 2320 2321 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2322 if (head) { 2323 link->last->link = req; 2324 link->head = NULL; 2325 req = head; 2326 } 2327 io_queue_sqe_fallback(req); 2328 return ret; 2329 } 2330 2331 if (head) 2332 link->last->link = req; 2333 else 2334 link->head = req; 2335 link->last = req; 2336 return 0; 2337 } 2338 2339 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2340 const struct io_uring_sqe *sqe) 2341 __must_hold(&ctx->uring_lock) 2342 { 2343 struct io_submit_link *link = &ctx->submit_state.link; 2344 int ret; 2345 2346 ret = io_init_req(ctx, req, sqe); 2347 if (unlikely(ret)) 2348 return io_submit_fail_init(sqe, req, ret); 2349 2350 trace_io_uring_submit_req(req); 2351 2352 /* 2353 * If we already have a head request, queue this one for async 2354 * submittal once the head completes. If we don't have a head but 2355 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2356 * submitted sync once the chain is complete. If none of those 2357 * conditions are true (normal request), then just queue it. 2358 */ 2359 if (unlikely(link->head)) { 2360 ret = io_req_prep_async(req); 2361 if (unlikely(ret)) 2362 return io_submit_fail_init(sqe, req, ret); 2363 2364 trace_io_uring_link(req, link->head); 2365 link->last->link = req; 2366 link->last = req; 2367 2368 if (req->flags & IO_REQ_LINK_FLAGS) 2369 return 0; 2370 /* last request of the link, flush it */ 2371 req = link->head; 2372 link->head = NULL; 2373 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2374 goto fallback; 2375 2376 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2377 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2378 if (req->flags & IO_REQ_LINK_FLAGS) { 2379 link->head = req; 2380 link->last = req; 2381 } else { 2382 fallback: 2383 io_queue_sqe_fallback(req); 2384 } 2385 return 0; 2386 } 2387 2388 io_queue_sqe(req); 2389 return 0; 2390 } 2391 2392 /* 2393 * Batched submission is done, ensure local IO is flushed out. 2394 */ 2395 static void io_submit_state_end(struct io_ring_ctx *ctx) 2396 { 2397 struct io_submit_state *state = &ctx->submit_state; 2398 2399 if (unlikely(state->link.head)) 2400 io_queue_sqe_fallback(state->link.head); 2401 /* flush only after queuing links as they can generate completions */ 2402 io_submit_flush_completions(ctx); 2403 if (state->plug_started) 2404 blk_finish_plug(&state->plug); 2405 } 2406 2407 /* 2408 * Start submission side cache. 2409 */ 2410 static void io_submit_state_start(struct io_submit_state *state, 2411 unsigned int max_ios) 2412 { 2413 state->plug_started = false; 2414 state->need_plug = max_ios > 2; 2415 state->submit_nr = max_ios; 2416 /* set only head, no need to init link_last in advance */ 2417 state->link.head = NULL; 2418 } 2419 2420 static void io_commit_sqring(struct io_ring_ctx *ctx) 2421 { 2422 struct io_rings *rings = ctx->rings; 2423 2424 /* 2425 * Ensure any loads from the SQEs are done at this point, 2426 * since once we write the new head, the application could 2427 * write new data to them. 2428 */ 2429 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2430 } 2431 2432 /* 2433 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2434 * that is mapped by userspace. This means that care needs to be taken to 2435 * ensure that reads are stable, as we cannot rely on userspace always 2436 * being a good citizen. If members of the sqe are validated and then later 2437 * used, it's important that those reads are done through READ_ONCE() to 2438 * prevent a re-load down the line. 2439 */ 2440 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2441 { 2442 unsigned head, mask = ctx->sq_entries - 1; 2443 unsigned sq_idx = ctx->cached_sq_head++ & mask; 2444 2445 /* 2446 * The cached sq head (or cq tail) serves two purposes: 2447 * 2448 * 1) allows us to batch the cost of updating the user visible 2449 * head updates. 2450 * 2) allows the kernel side to track the head on its own, even 2451 * though the application is the one updating it. 2452 */ 2453 head = READ_ONCE(ctx->sq_array[sq_idx]); 2454 if (likely(head < ctx->sq_entries)) { 2455 /* double index for 128-byte SQEs, twice as long */ 2456 if (ctx->flags & IORING_SETUP_SQE128) 2457 head <<= 1; 2458 *sqe = &ctx->sq_sqes[head]; 2459 return true; 2460 } 2461 2462 /* drop invalid entries */ 2463 ctx->cq_extra--; 2464 WRITE_ONCE(ctx->rings->sq_dropped, 2465 READ_ONCE(ctx->rings->sq_dropped) + 1); 2466 return false; 2467 } 2468 2469 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2470 __must_hold(&ctx->uring_lock) 2471 { 2472 unsigned int entries = io_sqring_entries(ctx); 2473 unsigned int left; 2474 int ret; 2475 2476 if (unlikely(!entries)) 2477 return 0; 2478 /* make sure SQ entry isn't read before tail */ 2479 ret = left = min(nr, entries); 2480 io_get_task_refs(left); 2481 io_submit_state_start(&ctx->submit_state, left); 2482 2483 do { 2484 const struct io_uring_sqe *sqe; 2485 struct io_kiocb *req; 2486 2487 if (unlikely(!io_alloc_req(ctx, &req))) 2488 break; 2489 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2490 io_req_add_to_cache(req, ctx); 2491 break; 2492 } 2493 2494 /* 2495 * Continue submitting even for sqe failure if the 2496 * ring was setup with IORING_SETUP_SUBMIT_ALL 2497 */ 2498 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2499 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2500 left--; 2501 break; 2502 } 2503 } while (--left); 2504 2505 if (unlikely(left)) { 2506 ret -= left; 2507 /* try again if it submitted nothing and can't allocate a req */ 2508 if (!ret && io_req_cache_empty(ctx)) 2509 ret = -EAGAIN; 2510 current->io_uring->cached_refs += left; 2511 } 2512 2513 io_submit_state_end(ctx); 2514 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2515 io_commit_sqring(ctx); 2516 return ret; 2517 } 2518 2519 struct io_wait_queue { 2520 struct wait_queue_entry wq; 2521 struct io_ring_ctx *ctx; 2522 unsigned cq_tail; 2523 unsigned nr_timeouts; 2524 ktime_t timeout; 2525 }; 2526 2527 static inline bool io_has_work(struct io_ring_ctx *ctx) 2528 { 2529 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2530 !llist_empty(&ctx->work_llist); 2531 } 2532 2533 static inline bool io_should_wake(struct io_wait_queue *iowq) 2534 { 2535 struct io_ring_ctx *ctx = iowq->ctx; 2536 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2537 2538 /* 2539 * Wake up if we have enough events, or if a timeout occurred since we 2540 * started waiting. For timeouts, we always want to return to userspace, 2541 * regardless of event count. 2542 */ 2543 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2544 } 2545 2546 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2547 int wake_flags, void *key) 2548 { 2549 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2550 2551 /* 2552 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2553 * the task, and the next invocation will do it. 2554 */ 2555 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2556 return autoremove_wake_function(curr, mode, wake_flags, key); 2557 return -1; 2558 } 2559 2560 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2561 { 2562 if (!llist_empty(&ctx->work_llist)) { 2563 __set_current_state(TASK_RUNNING); 2564 if (io_run_local_work(ctx) > 0) 2565 return 1; 2566 } 2567 if (io_run_task_work() > 0) 2568 return 1; 2569 if (task_sigpending(current)) 2570 return -EINTR; 2571 return 0; 2572 } 2573 2574 /* when returns >0, the caller should retry */ 2575 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2576 struct io_wait_queue *iowq) 2577 { 2578 if (unlikely(READ_ONCE(ctx->check_cq))) 2579 return 1; 2580 if (unlikely(!llist_empty(&ctx->work_llist))) 2581 return 1; 2582 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) 2583 return 1; 2584 if (unlikely(task_sigpending(current))) 2585 return -EINTR; 2586 if (unlikely(io_should_wake(iowq))) 2587 return 0; 2588 if (iowq->timeout == KTIME_MAX) 2589 schedule(); 2590 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2591 return -ETIME; 2592 return 0; 2593 } 2594 2595 /* 2596 * Wait until events become available, if we don't already have some. The 2597 * application must reap them itself, as they reside on the shared cq ring. 2598 */ 2599 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2600 const sigset_t __user *sig, size_t sigsz, 2601 struct __kernel_timespec __user *uts) 2602 { 2603 struct io_wait_queue iowq; 2604 struct io_rings *rings = ctx->rings; 2605 int ret; 2606 2607 if (!io_allowed_run_tw(ctx)) 2608 return -EEXIST; 2609 if (!llist_empty(&ctx->work_llist)) 2610 io_run_local_work(ctx); 2611 io_run_task_work(); 2612 io_cqring_overflow_flush(ctx); 2613 /* if user messes with these they will just get an early return */ 2614 if (__io_cqring_events_user(ctx) >= min_events) 2615 return 0; 2616 2617 if (sig) { 2618 #ifdef CONFIG_COMPAT 2619 if (in_compat_syscall()) 2620 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2621 sigsz); 2622 else 2623 #endif 2624 ret = set_user_sigmask(sig, sigsz); 2625 2626 if (ret) 2627 return ret; 2628 } 2629 2630 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2631 iowq.wq.private = current; 2632 INIT_LIST_HEAD(&iowq.wq.entry); 2633 iowq.ctx = ctx; 2634 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2635 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2636 iowq.timeout = KTIME_MAX; 2637 2638 if (uts) { 2639 struct timespec64 ts; 2640 2641 if (get_timespec64(&ts, uts)) 2642 return -EFAULT; 2643 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2644 } 2645 2646 trace_io_uring_cqring_wait(ctx, min_events); 2647 do { 2648 unsigned long check_cq; 2649 2650 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2651 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2652 2653 atomic_set(&ctx->cq_wait_nr, nr_wait); 2654 set_current_state(TASK_INTERRUPTIBLE); 2655 } else { 2656 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2657 TASK_INTERRUPTIBLE); 2658 } 2659 2660 ret = io_cqring_wait_schedule(ctx, &iowq); 2661 __set_current_state(TASK_RUNNING); 2662 atomic_set(&ctx->cq_wait_nr, 0); 2663 2664 if (ret < 0) 2665 break; 2666 /* 2667 * Run task_work after scheduling and before io_should_wake(). 2668 * If we got woken because of task_work being processed, run it 2669 * now rather than let the caller do another wait loop. 2670 */ 2671 io_run_task_work(); 2672 if (!llist_empty(&ctx->work_llist)) 2673 io_run_local_work(ctx); 2674 2675 check_cq = READ_ONCE(ctx->check_cq); 2676 if (unlikely(check_cq)) { 2677 /* let the caller flush overflows, retry */ 2678 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2679 io_cqring_do_overflow_flush(ctx); 2680 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2681 ret = -EBADR; 2682 break; 2683 } 2684 } 2685 2686 if (io_should_wake(&iowq)) { 2687 ret = 0; 2688 break; 2689 } 2690 cond_resched(); 2691 } while (1); 2692 2693 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2694 finish_wait(&ctx->cq_wait, &iowq.wq); 2695 restore_saved_sigmask_unless(ret == -EINTR); 2696 2697 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2698 } 2699 2700 static void io_mem_free(void *ptr) 2701 { 2702 struct page *page; 2703 2704 if (!ptr) 2705 return; 2706 2707 page = virt_to_head_page(ptr); 2708 if (put_page_testzero(page)) 2709 free_compound_page(page); 2710 } 2711 2712 static void *io_mem_alloc(size_t size) 2713 { 2714 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2715 2716 return (void *) __get_free_pages(gfp, get_order(size)); 2717 } 2718 2719 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2720 unsigned int cq_entries, size_t *sq_offset) 2721 { 2722 struct io_rings *rings; 2723 size_t off, sq_array_size; 2724 2725 off = struct_size(rings, cqes, cq_entries); 2726 if (off == SIZE_MAX) 2727 return SIZE_MAX; 2728 if (ctx->flags & IORING_SETUP_CQE32) { 2729 if (check_shl_overflow(off, 1, &off)) 2730 return SIZE_MAX; 2731 } 2732 2733 #ifdef CONFIG_SMP 2734 off = ALIGN(off, SMP_CACHE_BYTES); 2735 if (off == 0) 2736 return SIZE_MAX; 2737 #endif 2738 2739 if (sq_offset) 2740 *sq_offset = off; 2741 2742 sq_array_size = array_size(sizeof(u32), sq_entries); 2743 if (sq_array_size == SIZE_MAX) 2744 return SIZE_MAX; 2745 2746 if (check_add_overflow(off, sq_array_size, &off)) 2747 return SIZE_MAX; 2748 2749 return off; 2750 } 2751 2752 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2753 unsigned int eventfd_async) 2754 { 2755 struct io_ev_fd *ev_fd; 2756 __s32 __user *fds = arg; 2757 int fd; 2758 2759 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2760 lockdep_is_held(&ctx->uring_lock)); 2761 if (ev_fd) 2762 return -EBUSY; 2763 2764 if (copy_from_user(&fd, fds, sizeof(*fds))) 2765 return -EFAULT; 2766 2767 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2768 if (!ev_fd) 2769 return -ENOMEM; 2770 2771 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2772 if (IS_ERR(ev_fd->cq_ev_fd)) { 2773 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2774 kfree(ev_fd); 2775 return ret; 2776 } 2777 2778 spin_lock(&ctx->completion_lock); 2779 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2780 spin_unlock(&ctx->completion_lock); 2781 2782 ev_fd->eventfd_async = eventfd_async; 2783 ctx->has_evfd = true; 2784 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2785 atomic_set(&ev_fd->refs, 1); 2786 atomic_set(&ev_fd->ops, 0); 2787 return 0; 2788 } 2789 2790 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2791 { 2792 struct io_ev_fd *ev_fd; 2793 2794 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2795 lockdep_is_held(&ctx->uring_lock)); 2796 if (ev_fd) { 2797 ctx->has_evfd = false; 2798 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2799 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2800 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2801 return 0; 2802 } 2803 2804 return -ENXIO; 2805 } 2806 2807 static void io_req_caches_free(struct io_ring_ctx *ctx) 2808 { 2809 struct io_kiocb *req; 2810 int nr = 0; 2811 2812 mutex_lock(&ctx->uring_lock); 2813 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2814 2815 while (!io_req_cache_empty(ctx)) { 2816 req = io_extract_req(ctx); 2817 kmem_cache_free(req_cachep, req); 2818 nr++; 2819 } 2820 if (nr) 2821 percpu_ref_put_many(&ctx->refs, nr); 2822 mutex_unlock(&ctx->uring_lock); 2823 } 2824 2825 static void io_rsrc_node_cache_free(struct io_cache_entry *entry) 2826 { 2827 kfree(container_of(entry, struct io_rsrc_node, cache)); 2828 } 2829 2830 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2831 { 2832 io_sq_thread_finish(ctx); 2833 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2834 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2835 return; 2836 2837 mutex_lock(&ctx->uring_lock); 2838 if (ctx->buf_data) 2839 __io_sqe_buffers_unregister(ctx); 2840 if (ctx->file_data) 2841 __io_sqe_files_unregister(ctx); 2842 io_cqring_overflow_kill(ctx); 2843 io_eventfd_unregister(ctx); 2844 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2845 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2846 io_destroy_buffers(ctx); 2847 mutex_unlock(&ctx->uring_lock); 2848 if (ctx->sq_creds) 2849 put_cred(ctx->sq_creds); 2850 if (ctx->submitter_task) 2851 put_task_struct(ctx->submitter_task); 2852 2853 /* there are no registered resources left, nobody uses it */ 2854 if (ctx->rsrc_node) 2855 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2856 2857 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2858 2859 #if defined(CONFIG_UNIX) 2860 if (ctx->ring_sock) { 2861 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2862 sock_release(ctx->ring_sock); 2863 } 2864 #endif 2865 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2866 2867 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); 2868 if (ctx->mm_account) { 2869 mmdrop(ctx->mm_account); 2870 ctx->mm_account = NULL; 2871 } 2872 io_mem_free(ctx->rings); 2873 io_mem_free(ctx->sq_sqes); 2874 2875 percpu_ref_exit(&ctx->refs); 2876 free_uid(ctx->user); 2877 io_req_caches_free(ctx); 2878 if (ctx->hash_map) 2879 io_wq_put_hash(ctx->hash_map); 2880 kfree(ctx->cancel_table.hbs); 2881 kfree(ctx->cancel_table_locked.hbs); 2882 kfree(ctx->dummy_ubuf); 2883 kfree(ctx->io_bl); 2884 xa_destroy(&ctx->io_bl_xa); 2885 kfree(ctx); 2886 } 2887 2888 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2889 { 2890 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2891 poll_wq_task_work); 2892 2893 mutex_lock(&ctx->uring_lock); 2894 ctx->poll_activated = true; 2895 mutex_unlock(&ctx->uring_lock); 2896 2897 /* 2898 * Wake ups for some events between start of polling and activation 2899 * might've been lost due to loose synchronisation. 2900 */ 2901 wake_up_all(&ctx->poll_wq); 2902 percpu_ref_put(&ctx->refs); 2903 } 2904 2905 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2906 { 2907 spin_lock(&ctx->completion_lock); 2908 /* already activated or in progress */ 2909 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2910 goto out; 2911 if (WARN_ON_ONCE(!ctx->task_complete)) 2912 goto out; 2913 if (!ctx->submitter_task) 2914 goto out; 2915 /* 2916 * with ->submitter_task only the submitter task completes requests, we 2917 * only need to sync with it, which is done by injecting a tw 2918 */ 2919 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2920 percpu_ref_get(&ctx->refs); 2921 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2922 percpu_ref_put(&ctx->refs); 2923 out: 2924 spin_unlock(&ctx->completion_lock); 2925 } 2926 2927 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2928 { 2929 struct io_ring_ctx *ctx = file->private_data; 2930 __poll_t mask = 0; 2931 2932 if (unlikely(!ctx->poll_activated)) 2933 io_activate_pollwq(ctx); 2934 2935 poll_wait(file, &ctx->poll_wq, wait); 2936 /* 2937 * synchronizes with barrier from wq_has_sleeper call in 2938 * io_commit_cqring 2939 */ 2940 smp_rmb(); 2941 if (!io_sqring_full(ctx)) 2942 mask |= EPOLLOUT | EPOLLWRNORM; 2943 2944 /* 2945 * Don't flush cqring overflow list here, just do a simple check. 2946 * Otherwise there could possible be ABBA deadlock: 2947 * CPU0 CPU1 2948 * ---- ---- 2949 * lock(&ctx->uring_lock); 2950 * lock(&ep->mtx); 2951 * lock(&ctx->uring_lock); 2952 * lock(&ep->mtx); 2953 * 2954 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2955 * pushes them to do the flush. 2956 */ 2957 2958 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2959 mask |= EPOLLIN | EPOLLRDNORM; 2960 2961 return mask; 2962 } 2963 2964 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 2965 { 2966 const struct cred *creds; 2967 2968 creds = xa_erase(&ctx->personalities, id); 2969 if (creds) { 2970 put_cred(creds); 2971 return 0; 2972 } 2973 2974 return -EINVAL; 2975 } 2976 2977 struct io_tctx_exit { 2978 struct callback_head task_work; 2979 struct completion completion; 2980 struct io_ring_ctx *ctx; 2981 }; 2982 2983 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2984 { 2985 struct io_uring_task *tctx = current->io_uring; 2986 struct io_tctx_exit *work; 2987 2988 work = container_of(cb, struct io_tctx_exit, task_work); 2989 /* 2990 * When @in_cancel, we're in cancellation and it's racy to remove the 2991 * node. It'll be removed by the end of cancellation, just ignore it. 2992 * tctx can be NULL if the queueing of this task_work raced with 2993 * work cancelation off the exec path. 2994 */ 2995 if (tctx && !atomic_read(&tctx->in_cancel)) 2996 io_uring_del_tctx_node((unsigned long)work->ctx); 2997 complete(&work->completion); 2998 } 2999 3000 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 3001 { 3002 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3003 3004 return req->ctx == data; 3005 } 3006 3007 static __cold void io_ring_exit_work(struct work_struct *work) 3008 { 3009 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 3010 unsigned long timeout = jiffies + HZ * 60 * 5; 3011 unsigned long interval = HZ / 20; 3012 struct io_tctx_exit exit; 3013 struct io_tctx_node *node; 3014 int ret; 3015 3016 /* 3017 * If we're doing polled IO and end up having requests being 3018 * submitted async (out-of-line), then completions can come in while 3019 * we're waiting for refs to drop. We need to reap these manually, 3020 * as nobody else will be looking for them. 3021 */ 3022 do { 3023 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 3024 mutex_lock(&ctx->uring_lock); 3025 io_cqring_overflow_kill(ctx); 3026 mutex_unlock(&ctx->uring_lock); 3027 } 3028 3029 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3030 io_move_task_work_from_local(ctx); 3031 3032 while (io_uring_try_cancel_requests(ctx, NULL, true)) 3033 cond_resched(); 3034 3035 if (ctx->sq_data) { 3036 struct io_sq_data *sqd = ctx->sq_data; 3037 struct task_struct *tsk; 3038 3039 io_sq_thread_park(sqd); 3040 tsk = sqd->thread; 3041 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 3042 io_wq_cancel_cb(tsk->io_uring->io_wq, 3043 io_cancel_ctx_cb, ctx, true); 3044 io_sq_thread_unpark(sqd); 3045 } 3046 3047 io_req_caches_free(ctx); 3048 3049 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3050 /* there is little hope left, don't run it too often */ 3051 interval = HZ * 60; 3052 } 3053 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval)); 3054 3055 init_completion(&exit.completion); 3056 init_task_work(&exit.task_work, io_tctx_exit_cb); 3057 exit.ctx = ctx; 3058 /* 3059 * Some may use context even when all refs and requests have been put, 3060 * and they are free to do so while still holding uring_lock or 3061 * completion_lock, see io_req_task_submit(). Apart from other work, 3062 * this lock/unlock section also waits them to finish. 3063 */ 3064 mutex_lock(&ctx->uring_lock); 3065 while (!list_empty(&ctx->tctx_list)) { 3066 WARN_ON_ONCE(time_after(jiffies, timeout)); 3067 3068 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3069 ctx_node); 3070 /* don't spin on a single task if cancellation failed */ 3071 list_rotate_left(&ctx->tctx_list); 3072 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3073 if (WARN_ON_ONCE(ret)) 3074 continue; 3075 3076 mutex_unlock(&ctx->uring_lock); 3077 wait_for_completion(&exit.completion); 3078 mutex_lock(&ctx->uring_lock); 3079 } 3080 mutex_unlock(&ctx->uring_lock); 3081 spin_lock(&ctx->completion_lock); 3082 spin_unlock(&ctx->completion_lock); 3083 3084 /* pairs with RCU read section in io_req_local_work_add() */ 3085 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3086 synchronize_rcu(); 3087 3088 io_ring_ctx_free(ctx); 3089 } 3090 3091 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3092 { 3093 unsigned long index; 3094 struct creds *creds; 3095 3096 mutex_lock(&ctx->uring_lock); 3097 percpu_ref_kill(&ctx->refs); 3098 xa_for_each(&ctx->personalities, index, creds) 3099 io_unregister_personality(ctx, index); 3100 if (ctx->rings) 3101 io_poll_remove_all(ctx, NULL, true); 3102 mutex_unlock(&ctx->uring_lock); 3103 3104 /* 3105 * If we failed setting up the ctx, we might not have any rings 3106 * and therefore did not submit any requests 3107 */ 3108 if (ctx->rings) 3109 io_kill_timeouts(ctx, NULL, true); 3110 3111 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3112 /* 3113 * Use system_unbound_wq to avoid spawning tons of event kworkers 3114 * if we're exiting a ton of rings at the same time. It just adds 3115 * noise and overhead, there's no discernable change in runtime 3116 * over using system_wq. 3117 */ 3118 queue_work(system_unbound_wq, &ctx->exit_work); 3119 } 3120 3121 static int io_uring_release(struct inode *inode, struct file *file) 3122 { 3123 struct io_ring_ctx *ctx = file->private_data; 3124 3125 file->private_data = NULL; 3126 io_ring_ctx_wait_and_kill(ctx); 3127 return 0; 3128 } 3129 3130 struct io_task_cancel { 3131 struct task_struct *task; 3132 bool all; 3133 }; 3134 3135 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3136 { 3137 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3138 struct io_task_cancel *cancel = data; 3139 3140 return io_match_task_safe(req, cancel->task, cancel->all); 3141 } 3142 3143 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3144 struct task_struct *task, 3145 bool cancel_all) 3146 { 3147 struct io_defer_entry *de; 3148 LIST_HEAD(list); 3149 3150 spin_lock(&ctx->completion_lock); 3151 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3152 if (io_match_task_safe(de->req, task, cancel_all)) { 3153 list_cut_position(&list, &ctx->defer_list, &de->list); 3154 break; 3155 } 3156 } 3157 spin_unlock(&ctx->completion_lock); 3158 if (list_empty(&list)) 3159 return false; 3160 3161 while (!list_empty(&list)) { 3162 de = list_first_entry(&list, struct io_defer_entry, list); 3163 list_del_init(&de->list); 3164 io_req_task_queue_fail(de->req, -ECANCELED); 3165 kfree(de); 3166 } 3167 return true; 3168 } 3169 3170 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3171 { 3172 struct io_tctx_node *node; 3173 enum io_wq_cancel cret; 3174 bool ret = false; 3175 3176 mutex_lock(&ctx->uring_lock); 3177 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3178 struct io_uring_task *tctx = node->task->io_uring; 3179 3180 /* 3181 * io_wq will stay alive while we hold uring_lock, because it's 3182 * killed after ctx nodes, which requires to take the lock. 3183 */ 3184 if (!tctx || !tctx->io_wq) 3185 continue; 3186 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3187 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3188 } 3189 mutex_unlock(&ctx->uring_lock); 3190 3191 return ret; 3192 } 3193 3194 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3195 struct task_struct *task, 3196 bool cancel_all) 3197 { 3198 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3199 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3200 enum io_wq_cancel cret; 3201 bool ret = false; 3202 3203 /* set it so io_req_local_work_add() would wake us up */ 3204 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3205 atomic_set(&ctx->cq_wait_nr, 1); 3206 smp_mb(); 3207 } 3208 3209 /* failed during ring init, it couldn't have issued any requests */ 3210 if (!ctx->rings) 3211 return false; 3212 3213 if (!task) { 3214 ret |= io_uring_try_cancel_iowq(ctx); 3215 } else if (tctx && tctx->io_wq) { 3216 /* 3217 * Cancels requests of all rings, not only @ctx, but 3218 * it's fine as the task is in exit/exec. 3219 */ 3220 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3221 &cancel, true); 3222 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3223 } 3224 3225 /* SQPOLL thread does its own polling */ 3226 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3227 (ctx->sq_data && ctx->sq_data->thread == current)) { 3228 while (!wq_list_empty(&ctx->iopoll_list)) { 3229 io_iopoll_try_reap_events(ctx); 3230 ret = true; 3231 cond_resched(); 3232 } 3233 } 3234 3235 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3236 io_allowed_defer_tw_run(ctx)) 3237 ret |= io_run_local_work(ctx) > 0; 3238 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3239 mutex_lock(&ctx->uring_lock); 3240 ret |= io_poll_remove_all(ctx, task, cancel_all); 3241 mutex_unlock(&ctx->uring_lock); 3242 ret |= io_kill_timeouts(ctx, task, cancel_all); 3243 if (task) 3244 ret |= io_run_task_work() > 0; 3245 return ret; 3246 } 3247 3248 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3249 { 3250 if (tracked) 3251 return atomic_read(&tctx->inflight_tracked); 3252 return percpu_counter_sum(&tctx->inflight); 3253 } 3254 3255 /* 3256 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3257 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3258 */ 3259 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3260 { 3261 struct io_uring_task *tctx = current->io_uring; 3262 struct io_ring_ctx *ctx; 3263 struct io_tctx_node *node; 3264 unsigned long index; 3265 s64 inflight; 3266 DEFINE_WAIT(wait); 3267 3268 WARN_ON_ONCE(sqd && sqd->thread != current); 3269 3270 if (!current->io_uring) 3271 return; 3272 if (tctx->io_wq) 3273 io_wq_exit_start(tctx->io_wq); 3274 3275 atomic_inc(&tctx->in_cancel); 3276 do { 3277 bool loop = false; 3278 3279 io_uring_drop_tctx_refs(current); 3280 /* read completions before cancelations */ 3281 inflight = tctx_inflight(tctx, !cancel_all); 3282 if (!inflight) 3283 break; 3284 3285 if (!sqd) { 3286 xa_for_each(&tctx->xa, index, node) { 3287 /* sqpoll task will cancel all its requests */ 3288 if (node->ctx->sq_data) 3289 continue; 3290 loop |= io_uring_try_cancel_requests(node->ctx, 3291 current, cancel_all); 3292 } 3293 } else { 3294 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3295 loop |= io_uring_try_cancel_requests(ctx, 3296 current, 3297 cancel_all); 3298 } 3299 3300 if (loop) { 3301 cond_resched(); 3302 continue; 3303 } 3304 3305 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3306 io_run_task_work(); 3307 io_uring_drop_tctx_refs(current); 3308 xa_for_each(&tctx->xa, index, node) { 3309 if (!llist_empty(&node->ctx->work_llist)) { 3310 WARN_ON_ONCE(node->ctx->submitter_task && 3311 node->ctx->submitter_task != current); 3312 goto end_wait; 3313 } 3314 } 3315 /* 3316 * If we've seen completions, retry without waiting. This 3317 * avoids a race where a completion comes in before we did 3318 * prepare_to_wait(). 3319 */ 3320 if (inflight == tctx_inflight(tctx, !cancel_all)) 3321 schedule(); 3322 end_wait: 3323 finish_wait(&tctx->wait, &wait); 3324 } while (1); 3325 3326 io_uring_clean_tctx(tctx); 3327 if (cancel_all) { 3328 /* 3329 * We shouldn't run task_works after cancel, so just leave 3330 * ->in_cancel set for normal exit. 3331 */ 3332 atomic_dec(&tctx->in_cancel); 3333 /* for exec all current's requests should be gone, kill tctx */ 3334 __io_uring_free(current); 3335 } 3336 } 3337 3338 void __io_uring_cancel(bool cancel_all) 3339 { 3340 io_uring_cancel_generic(cancel_all, NULL); 3341 } 3342 3343 static void *io_uring_validate_mmap_request(struct file *file, 3344 loff_t pgoff, size_t sz) 3345 { 3346 struct io_ring_ctx *ctx = file->private_data; 3347 loff_t offset = pgoff << PAGE_SHIFT; 3348 struct page *page; 3349 void *ptr; 3350 3351 switch (offset & IORING_OFF_MMAP_MASK) { 3352 case IORING_OFF_SQ_RING: 3353 case IORING_OFF_CQ_RING: 3354 ptr = ctx->rings; 3355 break; 3356 case IORING_OFF_SQES: 3357 ptr = ctx->sq_sqes; 3358 break; 3359 case IORING_OFF_PBUF_RING: { 3360 unsigned int bgid; 3361 3362 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; 3363 mutex_lock(&ctx->uring_lock); 3364 ptr = io_pbuf_get_address(ctx, bgid); 3365 mutex_unlock(&ctx->uring_lock); 3366 if (!ptr) 3367 return ERR_PTR(-EINVAL); 3368 break; 3369 } 3370 default: 3371 return ERR_PTR(-EINVAL); 3372 } 3373 3374 page = virt_to_head_page(ptr); 3375 if (sz > page_size(page)) 3376 return ERR_PTR(-EINVAL); 3377 3378 return ptr; 3379 } 3380 3381 #ifdef CONFIG_MMU 3382 3383 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3384 { 3385 size_t sz = vma->vm_end - vma->vm_start; 3386 unsigned long pfn; 3387 void *ptr; 3388 3389 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3390 if (IS_ERR(ptr)) 3391 return PTR_ERR(ptr); 3392 3393 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3394 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3395 } 3396 3397 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, 3398 unsigned long addr, unsigned long len, 3399 unsigned long pgoff, unsigned long flags) 3400 { 3401 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 3402 struct vm_unmapped_area_info info; 3403 void *ptr; 3404 3405 /* 3406 * Do not allow to map to user-provided address to avoid breaking the 3407 * aliasing rules. Userspace is not able to guess the offset address of 3408 * kernel kmalloc()ed memory area. 3409 */ 3410 if (addr) 3411 return -EINVAL; 3412 3413 ptr = io_uring_validate_mmap_request(filp, pgoff, len); 3414 if (IS_ERR(ptr)) 3415 return -ENOMEM; 3416 3417 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 3418 info.length = len; 3419 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 3420 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base); 3421 #ifdef SHM_COLOUR 3422 info.align_mask = PAGE_MASK & (SHM_COLOUR - 1UL); 3423 #else 3424 info.align_mask = PAGE_MASK & (SHMLBA - 1UL); 3425 #endif 3426 info.align_offset = (unsigned long) ptr; 3427 3428 /* 3429 * A failed mmap() very likely causes application failure, 3430 * so fall back to the bottom-up function here. This scenario 3431 * can happen with large stack limits and large mmap() 3432 * allocations. 3433 */ 3434 addr = vm_unmapped_area(&info); 3435 if (offset_in_page(addr)) { 3436 info.flags = 0; 3437 info.low_limit = TASK_UNMAPPED_BASE; 3438 info.high_limit = mmap_end; 3439 addr = vm_unmapped_area(&info); 3440 } 3441 3442 return addr; 3443 } 3444 3445 #else /* !CONFIG_MMU */ 3446 3447 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3448 { 3449 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3450 } 3451 3452 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3453 { 3454 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3455 } 3456 3457 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3458 unsigned long addr, unsigned long len, 3459 unsigned long pgoff, unsigned long flags) 3460 { 3461 void *ptr; 3462 3463 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3464 if (IS_ERR(ptr)) 3465 return PTR_ERR(ptr); 3466 3467 return (unsigned long) ptr; 3468 } 3469 3470 #endif /* !CONFIG_MMU */ 3471 3472 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3473 { 3474 if (flags & IORING_ENTER_EXT_ARG) { 3475 struct io_uring_getevents_arg arg; 3476 3477 if (argsz != sizeof(arg)) 3478 return -EINVAL; 3479 if (copy_from_user(&arg, argp, sizeof(arg))) 3480 return -EFAULT; 3481 } 3482 return 0; 3483 } 3484 3485 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3486 struct __kernel_timespec __user **ts, 3487 const sigset_t __user **sig) 3488 { 3489 struct io_uring_getevents_arg arg; 3490 3491 /* 3492 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3493 * is just a pointer to the sigset_t. 3494 */ 3495 if (!(flags & IORING_ENTER_EXT_ARG)) { 3496 *sig = (const sigset_t __user *) argp; 3497 *ts = NULL; 3498 return 0; 3499 } 3500 3501 /* 3502 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3503 * timespec and sigset_t pointers if good. 3504 */ 3505 if (*argsz != sizeof(arg)) 3506 return -EINVAL; 3507 if (copy_from_user(&arg, argp, sizeof(arg))) 3508 return -EFAULT; 3509 if (arg.pad) 3510 return -EINVAL; 3511 *sig = u64_to_user_ptr(arg.sigmask); 3512 *argsz = arg.sigmask_sz; 3513 *ts = u64_to_user_ptr(arg.ts); 3514 return 0; 3515 } 3516 3517 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3518 u32, min_complete, u32, flags, const void __user *, argp, 3519 size_t, argsz) 3520 { 3521 struct io_ring_ctx *ctx; 3522 struct fd f; 3523 long ret; 3524 3525 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3526 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3527 IORING_ENTER_REGISTERED_RING))) 3528 return -EINVAL; 3529 3530 /* 3531 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3532 * need only dereference our task private array to find it. 3533 */ 3534 if (flags & IORING_ENTER_REGISTERED_RING) { 3535 struct io_uring_task *tctx = current->io_uring; 3536 3537 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3538 return -EINVAL; 3539 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3540 f.file = tctx->registered_rings[fd]; 3541 f.flags = 0; 3542 if (unlikely(!f.file)) 3543 return -EBADF; 3544 } else { 3545 f = fdget(fd); 3546 if (unlikely(!f.file)) 3547 return -EBADF; 3548 ret = -EOPNOTSUPP; 3549 if (unlikely(!io_is_uring_fops(f.file))) 3550 goto out; 3551 } 3552 3553 ctx = f.file->private_data; 3554 ret = -EBADFD; 3555 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3556 goto out; 3557 3558 /* 3559 * For SQ polling, the thread will do all submissions and completions. 3560 * Just return the requested submit count, and wake the thread if 3561 * we were asked to. 3562 */ 3563 ret = 0; 3564 if (ctx->flags & IORING_SETUP_SQPOLL) { 3565 io_cqring_overflow_flush(ctx); 3566 3567 if (unlikely(ctx->sq_data->thread == NULL)) { 3568 ret = -EOWNERDEAD; 3569 goto out; 3570 } 3571 if (flags & IORING_ENTER_SQ_WAKEUP) 3572 wake_up(&ctx->sq_data->wait); 3573 if (flags & IORING_ENTER_SQ_WAIT) 3574 io_sqpoll_wait_sq(ctx); 3575 3576 ret = to_submit; 3577 } else if (to_submit) { 3578 ret = io_uring_add_tctx_node(ctx); 3579 if (unlikely(ret)) 3580 goto out; 3581 3582 mutex_lock(&ctx->uring_lock); 3583 ret = io_submit_sqes(ctx, to_submit); 3584 if (ret != to_submit) { 3585 mutex_unlock(&ctx->uring_lock); 3586 goto out; 3587 } 3588 if (flags & IORING_ENTER_GETEVENTS) { 3589 if (ctx->syscall_iopoll) 3590 goto iopoll_locked; 3591 /* 3592 * Ignore errors, we'll soon call io_cqring_wait() and 3593 * it should handle ownership problems if any. 3594 */ 3595 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3596 (void)io_run_local_work_locked(ctx); 3597 } 3598 mutex_unlock(&ctx->uring_lock); 3599 } 3600 3601 if (flags & IORING_ENTER_GETEVENTS) { 3602 int ret2; 3603 3604 if (ctx->syscall_iopoll) { 3605 /* 3606 * We disallow the app entering submit/complete with 3607 * polling, but we still need to lock the ring to 3608 * prevent racing with polled issue that got punted to 3609 * a workqueue. 3610 */ 3611 mutex_lock(&ctx->uring_lock); 3612 iopoll_locked: 3613 ret2 = io_validate_ext_arg(flags, argp, argsz); 3614 if (likely(!ret2)) { 3615 min_complete = min(min_complete, 3616 ctx->cq_entries); 3617 ret2 = io_iopoll_check(ctx, min_complete); 3618 } 3619 mutex_unlock(&ctx->uring_lock); 3620 } else { 3621 const sigset_t __user *sig; 3622 struct __kernel_timespec __user *ts; 3623 3624 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3625 if (likely(!ret2)) { 3626 min_complete = min(min_complete, 3627 ctx->cq_entries); 3628 ret2 = io_cqring_wait(ctx, min_complete, sig, 3629 argsz, ts); 3630 } 3631 } 3632 3633 if (!ret) { 3634 ret = ret2; 3635 3636 /* 3637 * EBADR indicates that one or more CQE were dropped. 3638 * Once the user has been informed we can clear the bit 3639 * as they are obviously ok with those drops. 3640 */ 3641 if (unlikely(ret2 == -EBADR)) 3642 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3643 &ctx->check_cq); 3644 } 3645 } 3646 out: 3647 fdput(f); 3648 return ret; 3649 } 3650 3651 static const struct file_operations io_uring_fops = { 3652 .release = io_uring_release, 3653 .mmap = io_uring_mmap, 3654 #ifndef CONFIG_MMU 3655 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3656 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3657 #else 3658 .get_unmapped_area = io_uring_mmu_get_unmapped_area, 3659 #endif 3660 .poll = io_uring_poll, 3661 #ifdef CONFIG_PROC_FS 3662 .show_fdinfo = io_uring_show_fdinfo, 3663 #endif 3664 }; 3665 3666 bool io_is_uring_fops(struct file *file) 3667 { 3668 return file->f_op == &io_uring_fops; 3669 } 3670 3671 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3672 struct io_uring_params *p) 3673 { 3674 struct io_rings *rings; 3675 size_t size, sq_array_offset; 3676 3677 /* make sure these are sane, as we already accounted them */ 3678 ctx->sq_entries = p->sq_entries; 3679 ctx->cq_entries = p->cq_entries; 3680 3681 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3682 if (size == SIZE_MAX) 3683 return -EOVERFLOW; 3684 3685 rings = io_mem_alloc(size); 3686 if (!rings) 3687 return -ENOMEM; 3688 3689 ctx->rings = rings; 3690 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3691 rings->sq_ring_mask = p->sq_entries - 1; 3692 rings->cq_ring_mask = p->cq_entries - 1; 3693 rings->sq_ring_entries = p->sq_entries; 3694 rings->cq_ring_entries = p->cq_entries; 3695 3696 if (p->flags & IORING_SETUP_SQE128) 3697 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3698 else 3699 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3700 if (size == SIZE_MAX) { 3701 io_mem_free(ctx->rings); 3702 ctx->rings = NULL; 3703 return -EOVERFLOW; 3704 } 3705 3706 ctx->sq_sqes = io_mem_alloc(size); 3707 if (!ctx->sq_sqes) { 3708 io_mem_free(ctx->rings); 3709 ctx->rings = NULL; 3710 return -ENOMEM; 3711 } 3712 3713 return 0; 3714 } 3715 3716 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file) 3717 { 3718 int ret, fd; 3719 3720 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3721 if (fd < 0) 3722 return fd; 3723 3724 ret = __io_uring_add_tctx_node(ctx); 3725 if (ret) { 3726 put_unused_fd(fd); 3727 return ret; 3728 } 3729 fd_install(fd, file); 3730 return fd; 3731 } 3732 3733 /* 3734 * Allocate an anonymous fd, this is what constitutes the application 3735 * visible backing of an io_uring instance. The application mmaps this 3736 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3737 * we have to tie this fd to a socket for file garbage collection purposes. 3738 */ 3739 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3740 { 3741 struct file *file; 3742 #if defined(CONFIG_UNIX) 3743 int ret; 3744 3745 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3746 &ctx->ring_sock); 3747 if (ret) 3748 return ERR_PTR(ret); 3749 #endif 3750 3751 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3752 O_RDWR | O_CLOEXEC, NULL); 3753 #if defined(CONFIG_UNIX) 3754 if (IS_ERR(file)) { 3755 sock_release(ctx->ring_sock); 3756 ctx->ring_sock = NULL; 3757 } else { 3758 ctx->ring_sock->file = file; 3759 } 3760 #endif 3761 return file; 3762 } 3763 3764 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3765 struct io_uring_params __user *params) 3766 { 3767 struct io_ring_ctx *ctx; 3768 struct file *file; 3769 int ret; 3770 3771 if (!entries) 3772 return -EINVAL; 3773 if (entries > IORING_MAX_ENTRIES) { 3774 if (!(p->flags & IORING_SETUP_CLAMP)) 3775 return -EINVAL; 3776 entries = IORING_MAX_ENTRIES; 3777 } 3778 3779 /* 3780 * Use twice as many entries for the CQ ring. It's possible for the 3781 * application to drive a higher depth than the size of the SQ ring, 3782 * since the sqes are only used at submission time. This allows for 3783 * some flexibility in overcommitting a bit. If the application has 3784 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3785 * of CQ ring entries manually. 3786 */ 3787 p->sq_entries = roundup_pow_of_two(entries); 3788 if (p->flags & IORING_SETUP_CQSIZE) { 3789 /* 3790 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3791 * to a power-of-two, if it isn't already. We do NOT impose 3792 * any cq vs sq ring sizing. 3793 */ 3794 if (!p->cq_entries) 3795 return -EINVAL; 3796 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3797 if (!(p->flags & IORING_SETUP_CLAMP)) 3798 return -EINVAL; 3799 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3800 } 3801 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3802 if (p->cq_entries < p->sq_entries) 3803 return -EINVAL; 3804 } else { 3805 p->cq_entries = 2 * p->sq_entries; 3806 } 3807 3808 ctx = io_ring_ctx_alloc(p); 3809 if (!ctx) 3810 return -ENOMEM; 3811 3812 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3813 !(ctx->flags & IORING_SETUP_IOPOLL) && 3814 !(ctx->flags & IORING_SETUP_SQPOLL)) 3815 ctx->task_complete = true; 3816 3817 /* 3818 * lazy poll_wq activation relies on ->task_complete for synchronisation 3819 * purposes, see io_activate_pollwq() 3820 */ 3821 if (!ctx->task_complete) 3822 ctx->poll_activated = true; 3823 3824 /* 3825 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3826 * space applications don't need to do io completion events 3827 * polling again, they can rely on io_sq_thread to do polling 3828 * work, which can reduce cpu usage and uring_lock contention. 3829 */ 3830 if (ctx->flags & IORING_SETUP_IOPOLL && 3831 !(ctx->flags & IORING_SETUP_SQPOLL)) 3832 ctx->syscall_iopoll = 1; 3833 3834 ctx->compat = in_compat_syscall(); 3835 if (!capable(CAP_IPC_LOCK)) 3836 ctx->user = get_uid(current_user()); 3837 3838 /* 3839 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3840 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3841 */ 3842 ret = -EINVAL; 3843 if (ctx->flags & IORING_SETUP_SQPOLL) { 3844 /* IPI related flags don't make sense with SQPOLL */ 3845 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3846 IORING_SETUP_TASKRUN_FLAG | 3847 IORING_SETUP_DEFER_TASKRUN)) 3848 goto err; 3849 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3850 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3851 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3852 } else { 3853 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3854 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3855 goto err; 3856 ctx->notify_method = TWA_SIGNAL; 3857 } 3858 3859 /* 3860 * For DEFER_TASKRUN we require the completion task to be the same as the 3861 * submission task. This implies that there is only one submitter, so enforce 3862 * that. 3863 */ 3864 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3865 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3866 goto err; 3867 } 3868 3869 /* 3870 * This is just grabbed for accounting purposes. When a process exits, 3871 * the mm is exited and dropped before the files, hence we need to hang 3872 * on to this mm purely for the purposes of being able to unaccount 3873 * memory (locked/pinned vm). It's not used for anything else. 3874 */ 3875 mmgrab(current->mm); 3876 ctx->mm_account = current->mm; 3877 3878 ret = io_allocate_scq_urings(ctx, p); 3879 if (ret) 3880 goto err; 3881 3882 ret = io_sq_offload_create(ctx, p); 3883 if (ret) 3884 goto err; 3885 3886 ret = io_rsrc_init(ctx); 3887 if (ret) 3888 goto err; 3889 3890 memset(&p->sq_off, 0, sizeof(p->sq_off)); 3891 p->sq_off.head = offsetof(struct io_rings, sq.head); 3892 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3893 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3894 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3895 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3896 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3897 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3898 3899 memset(&p->cq_off, 0, sizeof(p->cq_off)); 3900 p->cq_off.head = offsetof(struct io_rings, cq.head); 3901 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3902 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3903 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3904 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3905 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3906 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3907 3908 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3909 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3910 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3911 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3912 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3913 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3914 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 3915 3916 if (copy_to_user(params, p, sizeof(*p))) { 3917 ret = -EFAULT; 3918 goto err; 3919 } 3920 3921 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3922 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3923 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3924 3925 file = io_uring_get_file(ctx); 3926 if (IS_ERR(file)) { 3927 ret = PTR_ERR(file); 3928 goto err; 3929 } 3930 3931 /* 3932 * Install ring fd as the very last thing, so we don't risk someone 3933 * having closed it before we finish setup 3934 */ 3935 ret = io_uring_install_fd(ctx, file); 3936 if (ret < 0) { 3937 /* fput will clean it up */ 3938 fput(file); 3939 return ret; 3940 } 3941 3942 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3943 return ret; 3944 err: 3945 io_ring_ctx_wait_and_kill(ctx); 3946 return ret; 3947 } 3948 3949 /* 3950 * Sets up an aio uring context, and returns the fd. Applications asks for a 3951 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3952 * params structure passed in. 3953 */ 3954 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3955 { 3956 struct io_uring_params p; 3957 int i; 3958 3959 if (copy_from_user(&p, params, sizeof(p))) 3960 return -EFAULT; 3961 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3962 if (p.resv[i]) 3963 return -EINVAL; 3964 } 3965 3966 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3967 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3968 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3969 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3970 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3971 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3972 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN)) 3973 return -EINVAL; 3974 3975 return io_uring_create(entries, &p, params); 3976 } 3977 3978 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3979 struct io_uring_params __user *, params) 3980 { 3981 return io_uring_setup(entries, params); 3982 } 3983 3984 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 3985 unsigned nr_args) 3986 { 3987 struct io_uring_probe *p; 3988 size_t size; 3989 int i, ret; 3990 3991 size = struct_size(p, ops, nr_args); 3992 if (size == SIZE_MAX) 3993 return -EOVERFLOW; 3994 p = kzalloc(size, GFP_KERNEL); 3995 if (!p) 3996 return -ENOMEM; 3997 3998 ret = -EFAULT; 3999 if (copy_from_user(p, arg, size)) 4000 goto out; 4001 ret = -EINVAL; 4002 if (memchr_inv(p, 0, size)) 4003 goto out; 4004 4005 p->last_op = IORING_OP_LAST - 1; 4006 if (nr_args > IORING_OP_LAST) 4007 nr_args = IORING_OP_LAST; 4008 4009 for (i = 0; i < nr_args; i++) { 4010 p->ops[i].op = i; 4011 if (!io_issue_defs[i].not_supported) 4012 p->ops[i].flags = IO_URING_OP_SUPPORTED; 4013 } 4014 p->ops_len = i; 4015 4016 ret = 0; 4017 if (copy_to_user(arg, p, size)) 4018 ret = -EFAULT; 4019 out: 4020 kfree(p); 4021 return ret; 4022 } 4023 4024 static int io_register_personality(struct io_ring_ctx *ctx) 4025 { 4026 const struct cred *creds; 4027 u32 id; 4028 int ret; 4029 4030 creds = get_current_cred(); 4031 4032 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 4033 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 4034 if (ret < 0) { 4035 put_cred(creds); 4036 return ret; 4037 } 4038 return id; 4039 } 4040 4041 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 4042 void __user *arg, unsigned int nr_args) 4043 { 4044 struct io_uring_restriction *res; 4045 size_t size; 4046 int i, ret; 4047 4048 /* Restrictions allowed only if rings started disabled */ 4049 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4050 return -EBADFD; 4051 4052 /* We allow only a single restrictions registration */ 4053 if (ctx->restrictions.registered) 4054 return -EBUSY; 4055 4056 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 4057 return -EINVAL; 4058 4059 size = array_size(nr_args, sizeof(*res)); 4060 if (size == SIZE_MAX) 4061 return -EOVERFLOW; 4062 4063 res = memdup_user(arg, size); 4064 if (IS_ERR(res)) 4065 return PTR_ERR(res); 4066 4067 ret = 0; 4068 4069 for (i = 0; i < nr_args; i++) { 4070 switch (res[i].opcode) { 4071 case IORING_RESTRICTION_REGISTER_OP: 4072 if (res[i].register_op >= IORING_REGISTER_LAST) { 4073 ret = -EINVAL; 4074 goto out; 4075 } 4076 4077 __set_bit(res[i].register_op, 4078 ctx->restrictions.register_op); 4079 break; 4080 case IORING_RESTRICTION_SQE_OP: 4081 if (res[i].sqe_op >= IORING_OP_LAST) { 4082 ret = -EINVAL; 4083 goto out; 4084 } 4085 4086 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 4087 break; 4088 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 4089 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 4090 break; 4091 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 4092 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 4093 break; 4094 default: 4095 ret = -EINVAL; 4096 goto out; 4097 } 4098 } 4099 4100 out: 4101 /* Reset all restrictions if an error happened */ 4102 if (ret != 0) 4103 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 4104 else 4105 ctx->restrictions.registered = true; 4106 4107 kfree(res); 4108 return ret; 4109 } 4110 4111 static int io_register_enable_rings(struct io_ring_ctx *ctx) 4112 { 4113 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4114 return -EBADFD; 4115 4116 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) { 4117 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4118 /* 4119 * Lazy activation attempts would fail if it was polled before 4120 * submitter_task is set. 4121 */ 4122 if (wq_has_sleeper(&ctx->poll_wq)) 4123 io_activate_pollwq(ctx); 4124 } 4125 4126 if (ctx->restrictions.registered) 4127 ctx->restricted = 1; 4128 4129 ctx->flags &= ~IORING_SETUP_R_DISABLED; 4130 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 4131 wake_up(&ctx->sq_data->wait); 4132 return 0; 4133 } 4134 4135 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 4136 void __user *arg, unsigned len) 4137 { 4138 struct io_uring_task *tctx = current->io_uring; 4139 cpumask_var_t new_mask; 4140 int ret; 4141 4142 if (!tctx || !tctx->io_wq) 4143 return -EINVAL; 4144 4145 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4146 return -ENOMEM; 4147 4148 cpumask_clear(new_mask); 4149 if (len > cpumask_size()) 4150 len = cpumask_size(); 4151 4152 if (in_compat_syscall()) { 4153 ret = compat_get_bitmap(cpumask_bits(new_mask), 4154 (const compat_ulong_t __user *)arg, 4155 len * 8 /* CHAR_BIT */); 4156 } else { 4157 ret = copy_from_user(new_mask, arg, len); 4158 } 4159 4160 if (ret) { 4161 free_cpumask_var(new_mask); 4162 return -EFAULT; 4163 } 4164 4165 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask); 4166 free_cpumask_var(new_mask); 4167 return ret; 4168 } 4169 4170 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 4171 { 4172 struct io_uring_task *tctx = current->io_uring; 4173 4174 if (!tctx || !tctx->io_wq) 4175 return -EINVAL; 4176 4177 return io_wq_cpu_affinity(tctx->io_wq, NULL); 4178 } 4179 4180 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 4181 void __user *arg) 4182 __must_hold(&ctx->uring_lock) 4183 { 4184 struct io_tctx_node *node; 4185 struct io_uring_task *tctx = NULL; 4186 struct io_sq_data *sqd = NULL; 4187 __u32 new_count[2]; 4188 int i, ret; 4189 4190 if (copy_from_user(new_count, arg, sizeof(new_count))) 4191 return -EFAULT; 4192 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4193 if (new_count[i] > INT_MAX) 4194 return -EINVAL; 4195 4196 if (ctx->flags & IORING_SETUP_SQPOLL) { 4197 sqd = ctx->sq_data; 4198 if (sqd) { 4199 /* 4200 * Observe the correct sqd->lock -> ctx->uring_lock 4201 * ordering. Fine to drop uring_lock here, we hold 4202 * a ref to the ctx. 4203 */ 4204 refcount_inc(&sqd->refs); 4205 mutex_unlock(&ctx->uring_lock); 4206 mutex_lock(&sqd->lock); 4207 mutex_lock(&ctx->uring_lock); 4208 if (sqd->thread) 4209 tctx = sqd->thread->io_uring; 4210 } 4211 } else { 4212 tctx = current->io_uring; 4213 } 4214 4215 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 4216 4217 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4218 if (new_count[i]) 4219 ctx->iowq_limits[i] = new_count[i]; 4220 ctx->iowq_limits_set = true; 4221 4222 if (tctx && tctx->io_wq) { 4223 ret = io_wq_max_workers(tctx->io_wq, new_count); 4224 if (ret) 4225 goto err; 4226 } else { 4227 memset(new_count, 0, sizeof(new_count)); 4228 } 4229 4230 if (sqd) { 4231 mutex_unlock(&sqd->lock); 4232 io_put_sq_data(sqd); 4233 } 4234 4235 if (copy_to_user(arg, new_count, sizeof(new_count))) 4236 return -EFAULT; 4237 4238 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 4239 if (sqd) 4240 return 0; 4241 4242 /* now propagate the restriction to all registered users */ 4243 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 4244 struct io_uring_task *tctx = node->task->io_uring; 4245 4246 if (WARN_ON_ONCE(!tctx->io_wq)) 4247 continue; 4248 4249 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4250 new_count[i] = ctx->iowq_limits[i]; 4251 /* ignore errors, it always returns zero anyway */ 4252 (void)io_wq_max_workers(tctx->io_wq, new_count); 4253 } 4254 return 0; 4255 err: 4256 if (sqd) { 4257 mutex_unlock(&sqd->lock); 4258 io_put_sq_data(sqd); 4259 } 4260 return ret; 4261 } 4262 4263 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4264 void __user *arg, unsigned nr_args) 4265 __releases(ctx->uring_lock) 4266 __acquires(ctx->uring_lock) 4267 { 4268 int ret; 4269 4270 /* 4271 * We don't quiesce the refs for register anymore and so it can't be 4272 * dying as we're holding a file ref here. 4273 */ 4274 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4275 return -ENXIO; 4276 4277 if (ctx->submitter_task && ctx->submitter_task != current) 4278 return -EEXIST; 4279 4280 if (ctx->restricted) { 4281 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4282 if (!test_bit(opcode, ctx->restrictions.register_op)) 4283 return -EACCES; 4284 } 4285 4286 switch (opcode) { 4287 case IORING_REGISTER_BUFFERS: 4288 ret = -EFAULT; 4289 if (!arg) 4290 break; 4291 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4292 break; 4293 case IORING_UNREGISTER_BUFFERS: 4294 ret = -EINVAL; 4295 if (arg || nr_args) 4296 break; 4297 ret = io_sqe_buffers_unregister(ctx); 4298 break; 4299 case IORING_REGISTER_FILES: 4300 ret = -EFAULT; 4301 if (!arg) 4302 break; 4303 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4304 break; 4305 case IORING_UNREGISTER_FILES: 4306 ret = -EINVAL; 4307 if (arg || nr_args) 4308 break; 4309 ret = io_sqe_files_unregister(ctx); 4310 break; 4311 case IORING_REGISTER_FILES_UPDATE: 4312 ret = io_register_files_update(ctx, arg, nr_args); 4313 break; 4314 case IORING_REGISTER_EVENTFD: 4315 ret = -EINVAL; 4316 if (nr_args != 1) 4317 break; 4318 ret = io_eventfd_register(ctx, arg, 0); 4319 break; 4320 case IORING_REGISTER_EVENTFD_ASYNC: 4321 ret = -EINVAL; 4322 if (nr_args != 1) 4323 break; 4324 ret = io_eventfd_register(ctx, arg, 1); 4325 break; 4326 case IORING_UNREGISTER_EVENTFD: 4327 ret = -EINVAL; 4328 if (arg || nr_args) 4329 break; 4330 ret = io_eventfd_unregister(ctx); 4331 break; 4332 case IORING_REGISTER_PROBE: 4333 ret = -EINVAL; 4334 if (!arg || nr_args > 256) 4335 break; 4336 ret = io_probe(ctx, arg, nr_args); 4337 break; 4338 case IORING_REGISTER_PERSONALITY: 4339 ret = -EINVAL; 4340 if (arg || nr_args) 4341 break; 4342 ret = io_register_personality(ctx); 4343 break; 4344 case IORING_UNREGISTER_PERSONALITY: 4345 ret = -EINVAL; 4346 if (arg) 4347 break; 4348 ret = io_unregister_personality(ctx, nr_args); 4349 break; 4350 case IORING_REGISTER_ENABLE_RINGS: 4351 ret = -EINVAL; 4352 if (arg || nr_args) 4353 break; 4354 ret = io_register_enable_rings(ctx); 4355 break; 4356 case IORING_REGISTER_RESTRICTIONS: 4357 ret = io_register_restrictions(ctx, arg, nr_args); 4358 break; 4359 case IORING_REGISTER_FILES2: 4360 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4361 break; 4362 case IORING_REGISTER_FILES_UPDATE2: 4363 ret = io_register_rsrc_update(ctx, arg, nr_args, 4364 IORING_RSRC_FILE); 4365 break; 4366 case IORING_REGISTER_BUFFERS2: 4367 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4368 break; 4369 case IORING_REGISTER_BUFFERS_UPDATE: 4370 ret = io_register_rsrc_update(ctx, arg, nr_args, 4371 IORING_RSRC_BUFFER); 4372 break; 4373 case IORING_REGISTER_IOWQ_AFF: 4374 ret = -EINVAL; 4375 if (!arg || !nr_args) 4376 break; 4377 ret = io_register_iowq_aff(ctx, arg, nr_args); 4378 break; 4379 case IORING_UNREGISTER_IOWQ_AFF: 4380 ret = -EINVAL; 4381 if (arg || nr_args) 4382 break; 4383 ret = io_unregister_iowq_aff(ctx); 4384 break; 4385 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4386 ret = -EINVAL; 4387 if (!arg || nr_args != 2) 4388 break; 4389 ret = io_register_iowq_max_workers(ctx, arg); 4390 break; 4391 case IORING_REGISTER_RING_FDS: 4392 ret = io_ringfd_register(ctx, arg, nr_args); 4393 break; 4394 case IORING_UNREGISTER_RING_FDS: 4395 ret = io_ringfd_unregister(ctx, arg, nr_args); 4396 break; 4397 case IORING_REGISTER_PBUF_RING: 4398 ret = -EINVAL; 4399 if (!arg || nr_args != 1) 4400 break; 4401 ret = io_register_pbuf_ring(ctx, arg); 4402 break; 4403 case IORING_UNREGISTER_PBUF_RING: 4404 ret = -EINVAL; 4405 if (!arg || nr_args != 1) 4406 break; 4407 ret = io_unregister_pbuf_ring(ctx, arg); 4408 break; 4409 case IORING_REGISTER_SYNC_CANCEL: 4410 ret = -EINVAL; 4411 if (!arg || nr_args != 1) 4412 break; 4413 ret = io_sync_cancel(ctx, arg); 4414 break; 4415 case IORING_REGISTER_FILE_ALLOC_RANGE: 4416 ret = -EINVAL; 4417 if (!arg || nr_args) 4418 break; 4419 ret = io_register_file_alloc_range(ctx, arg); 4420 break; 4421 default: 4422 ret = -EINVAL; 4423 break; 4424 } 4425 4426 return ret; 4427 } 4428 4429 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4430 void __user *, arg, unsigned int, nr_args) 4431 { 4432 struct io_ring_ctx *ctx; 4433 long ret = -EBADF; 4434 struct fd f; 4435 bool use_registered_ring; 4436 4437 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING); 4438 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING; 4439 4440 if (opcode >= IORING_REGISTER_LAST) 4441 return -EINVAL; 4442 4443 if (use_registered_ring) { 4444 /* 4445 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 4446 * need only dereference our task private array to find it. 4447 */ 4448 struct io_uring_task *tctx = current->io_uring; 4449 4450 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 4451 return -EINVAL; 4452 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 4453 f.file = tctx->registered_rings[fd]; 4454 f.flags = 0; 4455 if (unlikely(!f.file)) 4456 return -EBADF; 4457 } else { 4458 f = fdget(fd); 4459 if (unlikely(!f.file)) 4460 return -EBADF; 4461 ret = -EOPNOTSUPP; 4462 if (!io_is_uring_fops(f.file)) 4463 goto out_fput; 4464 } 4465 4466 ctx = f.file->private_data; 4467 4468 mutex_lock(&ctx->uring_lock); 4469 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4470 mutex_unlock(&ctx->uring_lock); 4471 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4472 out_fput: 4473 fdput(f); 4474 return ret; 4475 } 4476 4477 static int __init io_uring_init(void) 4478 { 4479 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4480 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4481 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4482 } while (0) 4483 4484 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4485 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4486 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4487 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4488 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4489 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4490 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4491 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4492 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4493 BUILD_BUG_SQE_ELEM(8, __u64, off); 4494 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4495 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4496 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4497 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4498 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4499 BUILD_BUG_SQE_ELEM(24, __u32, len); 4500 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4501 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4502 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4503 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4504 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4505 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4506 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4507 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4508 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4509 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4510 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4511 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4512 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4513 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4514 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4515 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4516 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4517 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4518 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4519 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4520 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4521 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4522 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4523 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4524 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4525 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4526 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4527 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4528 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4529 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4530 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4531 4532 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4533 sizeof(struct io_uring_rsrc_update)); 4534 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4535 sizeof(struct io_uring_rsrc_update2)); 4536 4537 /* ->buf_index is u16 */ 4538 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4539 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4540 offsetof(struct io_uring_buf_ring, tail)); 4541 4542 /* should fit into one byte */ 4543 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4544 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4545 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4546 4547 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4548 4549 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4550 4551 io_uring_optable_init(); 4552 4553 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4554 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU); 4555 return 0; 4556 }; 4557 __initcall(io_uring_init); 4558