1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 76 #define CREATE_TRACE_POINTS 77 #include <trace/events/io_uring.h> 78 79 #include <uapi/linux/io_uring.h> 80 81 #include "io-wq.h" 82 83 #include "io_uring.h" 84 #include "opdef.h" 85 #include "refs.h" 86 #include "tctx.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 95 #include "timeout.h" 96 #include "poll.h" 97 #include "alloc_cache.h" 98 99 #define IORING_MAX_ENTRIES 32768 100 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 101 102 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 103 IORING_REGISTER_LAST + IORING_OP_LAST) 104 105 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 106 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 107 108 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 109 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 110 111 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 112 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 113 REQ_F_ASYNC_DATA) 114 115 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 116 IO_REQ_CLEAN_FLAGS) 117 118 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 119 120 #define IO_COMPL_BATCH 32 121 #define IO_REQ_ALLOC_BATCH 8 122 123 enum { 124 IO_CHECK_CQ_OVERFLOW_BIT, 125 IO_CHECK_CQ_DROPPED_BIT, 126 }; 127 128 enum { 129 IO_EVENTFD_OP_SIGNAL_BIT, 130 IO_EVENTFD_OP_FREE_BIT, 131 }; 132 133 struct io_defer_entry { 134 struct list_head list; 135 struct io_kiocb *req; 136 u32 seq; 137 }; 138 139 /* requests with any of those set should undergo io_disarm_next() */ 140 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 141 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 142 143 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 144 struct task_struct *task, 145 bool cancel_all); 146 147 static void io_dismantle_req(struct io_kiocb *req); 148 static void io_clean_op(struct io_kiocb *req); 149 static void io_queue_sqe(struct io_kiocb *req); 150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx); 151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx); 152 static __cold void io_fallback_tw(struct io_uring_task *tctx); 153 154 static struct kmem_cache *req_cachep; 155 156 struct sock *io_uring_get_socket(struct file *file) 157 { 158 #if defined(CONFIG_UNIX) 159 if (io_is_uring_fops(file)) { 160 struct io_ring_ctx *ctx = file->private_data; 161 162 return ctx->ring_sock->sk; 163 } 164 #endif 165 return NULL; 166 } 167 EXPORT_SYMBOL(io_uring_get_socket); 168 169 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 170 { 171 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 172 ctx->submit_state.cqes_count) 173 __io_submit_flush_completions(ctx); 174 } 175 176 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 177 { 178 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 179 } 180 181 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 182 { 183 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 184 } 185 186 static bool io_match_linked(struct io_kiocb *head) 187 { 188 struct io_kiocb *req; 189 190 io_for_each_link(req, head) { 191 if (req->flags & REQ_F_INFLIGHT) 192 return true; 193 } 194 return false; 195 } 196 197 /* 198 * As io_match_task() but protected against racing with linked timeouts. 199 * User must not hold timeout_lock. 200 */ 201 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 202 bool cancel_all) 203 { 204 bool matched; 205 206 if (task && head->task != task) 207 return false; 208 if (cancel_all) 209 return true; 210 211 if (head->flags & REQ_F_LINK_TIMEOUT) { 212 struct io_ring_ctx *ctx = head->ctx; 213 214 /* protect against races with linked timeouts */ 215 spin_lock_irq(&ctx->timeout_lock); 216 matched = io_match_linked(head); 217 spin_unlock_irq(&ctx->timeout_lock); 218 } else { 219 matched = io_match_linked(head); 220 } 221 return matched; 222 } 223 224 static inline void req_fail_link_node(struct io_kiocb *req, int res) 225 { 226 req_set_fail(req); 227 io_req_set_res(req, res, 0); 228 } 229 230 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 231 { 232 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 233 } 234 235 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 236 { 237 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 238 239 complete(&ctx->ref_comp); 240 } 241 242 static __cold void io_fallback_req_func(struct work_struct *work) 243 { 244 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 245 fallback_work.work); 246 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 247 struct io_kiocb *req, *tmp; 248 bool locked = false; 249 250 percpu_ref_get(&ctx->refs); 251 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 252 req->io_task_work.func(req, &locked); 253 254 if (locked) { 255 io_submit_flush_completions(ctx); 256 mutex_unlock(&ctx->uring_lock); 257 } 258 percpu_ref_put(&ctx->refs); 259 } 260 261 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 262 { 263 unsigned hash_buckets = 1U << bits; 264 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 265 266 table->hbs = kmalloc(hash_size, GFP_KERNEL); 267 if (!table->hbs) 268 return -ENOMEM; 269 270 table->hash_bits = bits; 271 init_hash_table(table, hash_buckets); 272 return 0; 273 } 274 275 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 276 { 277 struct io_ring_ctx *ctx; 278 int hash_bits; 279 280 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 281 if (!ctx) 282 return NULL; 283 284 xa_init(&ctx->io_bl_xa); 285 286 /* 287 * Use 5 bits less than the max cq entries, that should give us around 288 * 32 entries per hash list if totally full and uniformly spread, but 289 * don't keep too many buckets to not overconsume memory. 290 */ 291 hash_bits = ilog2(p->cq_entries) - 5; 292 hash_bits = clamp(hash_bits, 1, 8); 293 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 294 goto err; 295 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 296 goto err; 297 298 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL); 299 if (!ctx->dummy_ubuf) 300 goto err; 301 /* set invalid range, so io_import_fixed() fails meeting it */ 302 ctx->dummy_ubuf->ubuf = -1UL; 303 304 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 305 0, GFP_KERNEL)) 306 goto err; 307 308 ctx->flags = p->flags; 309 init_waitqueue_head(&ctx->sqo_sq_wait); 310 INIT_LIST_HEAD(&ctx->sqd_list); 311 INIT_LIST_HEAD(&ctx->cq_overflow_list); 312 INIT_LIST_HEAD(&ctx->io_buffers_cache); 313 io_alloc_cache_init(&ctx->apoll_cache); 314 io_alloc_cache_init(&ctx->netmsg_cache); 315 init_completion(&ctx->ref_comp); 316 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 317 mutex_init(&ctx->uring_lock); 318 init_waitqueue_head(&ctx->cq_wait); 319 spin_lock_init(&ctx->completion_lock); 320 spin_lock_init(&ctx->timeout_lock); 321 INIT_WQ_LIST(&ctx->iopoll_list); 322 INIT_LIST_HEAD(&ctx->io_buffers_pages); 323 INIT_LIST_HEAD(&ctx->io_buffers_comp); 324 INIT_LIST_HEAD(&ctx->defer_list); 325 INIT_LIST_HEAD(&ctx->timeout_list); 326 INIT_LIST_HEAD(&ctx->ltimeout_list); 327 spin_lock_init(&ctx->rsrc_ref_lock); 328 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 329 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work); 330 init_task_work(&ctx->rsrc_put_tw, io_rsrc_put_tw); 331 init_llist_head(&ctx->rsrc_put_llist); 332 init_llist_head(&ctx->work_llist); 333 INIT_LIST_HEAD(&ctx->tctx_list); 334 ctx->submit_state.free_list.next = NULL; 335 INIT_WQ_LIST(&ctx->locked_free_list); 336 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 337 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 338 return ctx; 339 err: 340 kfree(ctx->dummy_ubuf); 341 kfree(ctx->cancel_table.hbs); 342 kfree(ctx->cancel_table_locked.hbs); 343 kfree(ctx->io_bl); 344 xa_destroy(&ctx->io_bl_xa); 345 kfree(ctx); 346 return NULL; 347 } 348 349 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 350 { 351 struct io_rings *r = ctx->rings; 352 353 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 354 ctx->cq_extra--; 355 } 356 357 static bool req_need_defer(struct io_kiocb *req, u32 seq) 358 { 359 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 360 struct io_ring_ctx *ctx = req->ctx; 361 362 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 363 } 364 365 return false; 366 } 367 368 static inline void io_req_track_inflight(struct io_kiocb *req) 369 { 370 if (!(req->flags & REQ_F_INFLIGHT)) { 371 req->flags |= REQ_F_INFLIGHT; 372 atomic_inc(&req->task->io_uring->inflight_tracked); 373 } 374 } 375 376 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 377 { 378 if (WARN_ON_ONCE(!req->link)) 379 return NULL; 380 381 req->flags &= ~REQ_F_ARM_LTIMEOUT; 382 req->flags |= REQ_F_LINK_TIMEOUT; 383 384 /* linked timeouts should have two refs once prep'ed */ 385 io_req_set_refcount(req); 386 __io_req_set_refcount(req->link, 2); 387 return req->link; 388 } 389 390 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 391 { 392 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 393 return NULL; 394 return __io_prep_linked_timeout(req); 395 } 396 397 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 398 { 399 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 400 } 401 402 static inline void io_arm_ltimeout(struct io_kiocb *req) 403 { 404 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 405 __io_arm_ltimeout(req); 406 } 407 408 static void io_prep_async_work(struct io_kiocb *req) 409 { 410 const struct io_op_def *def = &io_op_defs[req->opcode]; 411 struct io_ring_ctx *ctx = req->ctx; 412 413 if (!(req->flags & REQ_F_CREDS)) { 414 req->flags |= REQ_F_CREDS; 415 req->creds = get_current_cred(); 416 } 417 418 req->work.list.next = NULL; 419 req->work.flags = 0; 420 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 421 if (req->flags & REQ_F_FORCE_ASYNC) 422 req->work.flags |= IO_WQ_WORK_CONCURRENT; 423 424 if (req->file && !io_req_ffs_set(req)) 425 req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT; 426 427 if (req->flags & REQ_F_ISREG) { 428 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL)) 429 io_wq_hash_work(&req->work, file_inode(req->file)); 430 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 431 if (def->unbound_nonreg_file) 432 req->work.flags |= IO_WQ_WORK_UNBOUND; 433 } 434 } 435 436 static void io_prep_async_link(struct io_kiocb *req) 437 { 438 struct io_kiocb *cur; 439 440 if (req->flags & REQ_F_LINK_TIMEOUT) { 441 struct io_ring_ctx *ctx = req->ctx; 442 443 spin_lock_irq(&ctx->timeout_lock); 444 io_for_each_link(cur, req) 445 io_prep_async_work(cur); 446 spin_unlock_irq(&ctx->timeout_lock); 447 } else { 448 io_for_each_link(cur, req) 449 io_prep_async_work(cur); 450 } 451 } 452 453 void io_queue_iowq(struct io_kiocb *req, bool *dont_use) 454 { 455 struct io_kiocb *link = io_prep_linked_timeout(req); 456 struct io_uring_task *tctx = req->task->io_uring; 457 458 BUG_ON(!tctx); 459 BUG_ON(!tctx->io_wq); 460 461 /* init ->work of the whole link before punting */ 462 io_prep_async_link(req); 463 464 /* 465 * Not expected to happen, but if we do have a bug where this _can_ 466 * happen, catch it here and ensure the request is marked as 467 * canceled. That will make io-wq go through the usual work cancel 468 * procedure rather than attempt to run this request (or create a new 469 * worker for it). 470 */ 471 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 472 req->work.flags |= IO_WQ_WORK_CANCEL; 473 474 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 475 io_wq_enqueue(tctx->io_wq, &req->work); 476 if (link) 477 io_queue_linked_timeout(link); 478 } 479 480 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 481 { 482 while (!list_empty(&ctx->defer_list)) { 483 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 484 struct io_defer_entry, list); 485 486 if (req_need_defer(de->req, de->seq)) 487 break; 488 list_del_init(&de->list); 489 io_req_task_queue(de->req); 490 kfree(de); 491 } 492 } 493 494 495 static void io_eventfd_ops(struct rcu_head *rcu) 496 { 497 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 498 int ops = atomic_xchg(&ev_fd->ops, 0); 499 500 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 501 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 502 503 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 504 * ordering in a race but if references are 0 we know we have to free 505 * it regardless. 506 */ 507 if (atomic_dec_and_test(&ev_fd->refs)) { 508 eventfd_ctx_put(ev_fd->cq_ev_fd); 509 kfree(ev_fd); 510 } 511 } 512 513 static void io_eventfd_signal(struct io_ring_ctx *ctx) 514 { 515 struct io_ev_fd *ev_fd = NULL; 516 517 rcu_read_lock(); 518 /* 519 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 520 * and eventfd_signal 521 */ 522 ev_fd = rcu_dereference(ctx->io_ev_fd); 523 524 /* 525 * Check again if ev_fd exists incase an io_eventfd_unregister call 526 * completed between the NULL check of ctx->io_ev_fd at the start of 527 * the function and rcu_read_lock. 528 */ 529 if (unlikely(!ev_fd)) 530 goto out; 531 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 532 goto out; 533 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 534 goto out; 535 536 if (likely(eventfd_signal_allowed())) { 537 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 538 } else { 539 atomic_inc(&ev_fd->refs); 540 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 541 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 542 else 543 atomic_dec(&ev_fd->refs); 544 } 545 546 out: 547 rcu_read_unlock(); 548 } 549 550 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 551 { 552 bool skip; 553 554 spin_lock(&ctx->completion_lock); 555 556 /* 557 * Eventfd should only get triggered when at least one event has been 558 * posted. Some applications rely on the eventfd notification count 559 * only changing IFF a new CQE has been added to the CQ ring. There's 560 * no depedency on 1:1 relationship between how many times this 561 * function is called (and hence the eventfd count) and number of CQEs 562 * posted to the CQ ring. 563 */ 564 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 565 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 566 spin_unlock(&ctx->completion_lock); 567 if (skip) 568 return; 569 570 io_eventfd_signal(ctx); 571 } 572 573 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 574 { 575 if (ctx->off_timeout_used) 576 io_flush_timeouts(ctx); 577 if (ctx->drain_active) { 578 spin_lock(&ctx->completion_lock); 579 io_queue_deferred(ctx); 580 spin_unlock(&ctx->completion_lock); 581 } 582 if (ctx->has_evfd) 583 io_eventfd_flush_signal(ctx); 584 } 585 586 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 587 __acquires(ctx->completion_lock) 588 { 589 if (!ctx->task_complete) 590 spin_lock(&ctx->completion_lock); 591 } 592 593 static inline void __io_cq_unlock(struct io_ring_ctx *ctx) 594 { 595 if (!ctx->task_complete) 596 spin_unlock(&ctx->completion_lock); 597 } 598 599 static inline void io_cq_lock(struct io_ring_ctx *ctx) 600 __acquires(ctx->completion_lock) 601 { 602 spin_lock(&ctx->completion_lock); 603 } 604 605 static inline void io_cq_unlock(struct io_ring_ctx *ctx) 606 __releases(ctx->completion_lock) 607 { 608 spin_unlock(&ctx->completion_lock); 609 } 610 611 /* keep it inlined for io_submit_flush_completions() */ 612 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 613 __releases(ctx->completion_lock) 614 { 615 io_commit_cqring(ctx); 616 __io_cq_unlock(ctx); 617 io_commit_cqring_flush(ctx); 618 io_cqring_wake(ctx); 619 } 620 621 void io_cq_unlock_post(struct io_ring_ctx *ctx) 622 __releases(ctx->completion_lock) 623 { 624 io_commit_cqring(ctx); 625 spin_unlock(&ctx->completion_lock); 626 io_commit_cqring_flush(ctx); 627 io_cqring_wake(ctx); 628 } 629 630 /* Returns true if there are no backlogged entries after the flush */ 631 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 632 { 633 struct io_overflow_cqe *ocqe; 634 LIST_HEAD(list); 635 636 io_cq_lock(ctx); 637 list_splice_init(&ctx->cq_overflow_list, &list); 638 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 639 io_cq_unlock(ctx); 640 641 while (!list_empty(&list)) { 642 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 643 list_del(&ocqe->list); 644 kfree(ocqe); 645 } 646 } 647 648 /* Returns true if there are no backlogged entries after the flush */ 649 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 650 { 651 size_t cqe_size = sizeof(struct io_uring_cqe); 652 653 if (__io_cqring_events(ctx) == ctx->cq_entries) 654 return; 655 656 if (ctx->flags & IORING_SETUP_CQE32) 657 cqe_size <<= 1; 658 659 io_cq_lock(ctx); 660 while (!list_empty(&ctx->cq_overflow_list)) { 661 struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true); 662 struct io_overflow_cqe *ocqe; 663 664 if (!cqe) 665 break; 666 ocqe = list_first_entry(&ctx->cq_overflow_list, 667 struct io_overflow_cqe, list); 668 memcpy(cqe, &ocqe->cqe, cqe_size); 669 list_del(&ocqe->list); 670 kfree(ocqe); 671 } 672 673 if (list_empty(&ctx->cq_overflow_list)) { 674 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 675 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 676 } 677 io_cq_unlock_post(ctx); 678 } 679 680 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 681 { 682 /* iopoll syncs against uring_lock, not completion_lock */ 683 if (ctx->flags & IORING_SETUP_IOPOLL) 684 mutex_lock(&ctx->uring_lock); 685 __io_cqring_overflow_flush(ctx); 686 if (ctx->flags & IORING_SETUP_IOPOLL) 687 mutex_unlock(&ctx->uring_lock); 688 } 689 690 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 691 { 692 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 693 io_cqring_do_overflow_flush(ctx); 694 } 695 696 void __io_put_task(struct task_struct *task, int nr) 697 { 698 struct io_uring_task *tctx = task->io_uring; 699 700 percpu_counter_sub(&tctx->inflight, nr); 701 if (unlikely(atomic_read(&tctx->in_idle))) 702 wake_up(&tctx->wait); 703 put_task_struct_many(task, nr); 704 } 705 706 void io_task_refs_refill(struct io_uring_task *tctx) 707 { 708 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 709 710 percpu_counter_add(&tctx->inflight, refill); 711 refcount_add(refill, ¤t->usage); 712 tctx->cached_refs += refill; 713 } 714 715 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 716 { 717 struct io_uring_task *tctx = task->io_uring; 718 unsigned int refs = tctx->cached_refs; 719 720 if (refs) { 721 tctx->cached_refs = 0; 722 percpu_counter_sub(&tctx->inflight, refs); 723 put_task_struct_many(task, refs); 724 } 725 } 726 727 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 728 s32 res, u32 cflags, u64 extra1, u64 extra2) 729 { 730 struct io_overflow_cqe *ocqe; 731 size_t ocq_size = sizeof(struct io_overflow_cqe); 732 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 733 734 lockdep_assert_held(&ctx->completion_lock); 735 736 if (is_cqe32) 737 ocq_size += sizeof(struct io_uring_cqe); 738 739 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 740 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 741 if (!ocqe) { 742 /* 743 * If we're in ring overflow flush mode, or in task cancel mode, 744 * or cannot allocate an overflow entry, then we need to drop it 745 * on the floor. 746 */ 747 io_account_cq_overflow(ctx); 748 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 749 return false; 750 } 751 if (list_empty(&ctx->cq_overflow_list)) { 752 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 753 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 754 755 } 756 ocqe->cqe.user_data = user_data; 757 ocqe->cqe.res = res; 758 ocqe->cqe.flags = cflags; 759 if (is_cqe32) { 760 ocqe->cqe.big_cqe[0] = extra1; 761 ocqe->cqe.big_cqe[1] = extra2; 762 } 763 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 764 return true; 765 } 766 767 bool io_req_cqe_overflow(struct io_kiocb *req) 768 { 769 if (!(req->flags & REQ_F_CQE32_INIT)) { 770 req->extra1 = 0; 771 req->extra2 = 0; 772 } 773 return io_cqring_event_overflow(req->ctx, req->cqe.user_data, 774 req->cqe.res, req->cqe.flags, 775 req->extra1, req->extra2); 776 } 777 778 /* 779 * writes to the cq entry need to come after reading head; the 780 * control dependency is enough as we're using WRITE_ONCE to 781 * fill the cq entry 782 */ 783 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow) 784 { 785 struct io_rings *rings = ctx->rings; 786 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 787 unsigned int free, queued, len; 788 789 /* 790 * Posting into the CQ when there are pending overflowed CQEs may break 791 * ordering guarantees, which will affect links, F_MORE users and more. 792 * Force overflow the completion. 793 */ 794 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 795 return NULL; 796 797 /* userspace may cheat modifying the tail, be safe and do min */ 798 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 799 free = ctx->cq_entries - queued; 800 /* we need a contiguous range, limit based on the current array offset */ 801 len = min(free, ctx->cq_entries - off); 802 if (!len) 803 return NULL; 804 805 if (ctx->flags & IORING_SETUP_CQE32) { 806 off <<= 1; 807 len <<= 1; 808 } 809 810 ctx->cqe_cached = &rings->cqes[off]; 811 ctx->cqe_sentinel = ctx->cqe_cached + len; 812 813 ctx->cached_cq_tail++; 814 ctx->cqe_cached++; 815 if (ctx->flags & IORING_SETUP_CQE32) 816 ctx->cqe_cached++; 817 return &rings->cqes[off]; 818 } 819 820 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 821 u32 cflags) 822 { 823 struct io_uring_cqe *cqe; 824 825 ctx->cq_extra++; 826 827 /* 828 * If we can't get a cq entry, userspace overflowed the 829 * submission (by quite a lot). Increment the overflow count in 830 * the ring. 831 */ 832 cqe = io_get_cqe(ctx); 833 if (likely(cqe)) { 834 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 835 836 WRITE_ONCE(cqe->user_data, user_data); 837 WRITE_ONCE(cqe->res, res); 838 WRITE_ONCE(cqe->flags, cflags); 839 840 if (ctx->flags & IORING_SETUP_CQE32) { 841 WRITE_ONCE(cqe->big_cqe[0], 0); 842 WRITE_ONCE(cqe->big_cqe[1], 0); 843 } 844 return true; 845 } 846 return false; 847 } 848 849 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 850 __must_hold(&ctx->uring_lock) 851 { 852 struct io_submit_state *state = &ctx->submit_state; 853 unsigned int i; 854 855 lockdep_assert_held(&ctx->uring_lock); 856 for (i = 0; i < state->cqes_count; i++) { 857 struct io_uring_cqe *cqe = &state->cqes[i]; 858 859 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 860 if (ctx->task_complete) { 861 spin_lock(&ctx->completion_lock); 862 io_cqring_event_overflow(ctx, cqe->user_data, 863 cqe->res, cqe->flags, 0, 0); 864 spin_unlock(&ctx->completion_lock); 865 } else { 866 io_cqring_event_overflow(ctx, cqe->user_data, 867 cqe->res, cqe->flags, 0, 0); 868 } 869 } 870 } 871 state->cqes_count = 0; 872 } 873 874 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 875 bool allow_overflow) 876 { 877 bool filled; 878 879 io_cq_lock(ctx); 880 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 881 if (!filled && allow_overflow) 882 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 883 884 io_cq_unlock_post(ctx); 885 return filled; 886 } 887 888 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 889 { 890 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 891 } 892 893 bool io_aux_cqe(struct io_ring_ctx *ctx, bool defer, u64 user_data, s32 res, u32 cflags, 894 bool allow_overflow) 895 { 896 struct io_uring_cqe *cqe; 897 unsigned int length; 898 899 if (!defer) 900 return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow); 901 902 length = ARRAY_SIZE(ctx->submit_state.cqes); 903 904 lockdep_assert_held(&ctx->uring_lock); 905 906 if (ctx->submit_state.cqes_count == length) { 907 __io_cq_lock(ctx); 908 __io_flush_post_cqes(ctx); 909 /* no need to flush - flush is deferred */ 910 __io_cq_unlock_post(ctx); 911 } 912 913 /* For defered completions this is not as strict as it is otherwise, 914 * however it's main job is to prevent unbounded posted completions, 915 * and in that it works just as well. 916 */ 917 if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 918 return false; 919 920 cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++]; 921 cqe->user_data = user_data; 922 cqe->res = res; 923 cqe->flags = cflags; 924 return true; 925 } 926 927 static void __io_req_complete_post(struct io_kiocb *req) 928 { 929 struct io_ring_ctx *ctx = req->ctx; 930 931 io_cq_lock(ctx); 932 if (!(req->flags & REQ_F_CQE_SKIP)) 933 io_fill_cqe_req(ctx, req); 934 935 /* 936 * If we're the last reference to this request, add to our locked 937 * free_list cache. 938 */ 939 if (req_ref_put_and_test(req)) { 940 if (req->flags & IO_REQ_LINK_FLAGS) { 941 if (req->flags & IO_DISARM_MASK) 942 io_disarm_next(req); 943 if (req->link) { 944 io_req_task_queue(req->link); 945 req->link = NULL; 946 } 947 } 948 io_req_put_rsrc(req); 949 /* 950 * Selected buffer deallocation in io_clean_op() assumes that 951 * we don't hold ->completion_lock. Clean them here to avoid 952 * deadlocks. 953 */ 954 io_put_kbuf_comp(req); 955 io_dismantle_req(req); 956 io_put_task(req->task, 1); 957 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 958 ctx->locked_free_nr++; 959 } 960 io_cq_unlock_post(ctx); 961 } 962 963 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 964 { 965 if (req->ctx->task_complete && (issue_flags & IO_URING_F_IOWQ)) { 966 req->io_task_work.func = io_req_task_complete; 967 io_req_task_work_add(req); 968 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 969 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 970 __io_req_complete_post(req); 971 } else { 972 struct io_ring_ctx *ctx = req->ctx; 973 974 mutex_lock(&ctx->uring_lock); 975 __io_req_complete_post(req); 976 mutex_unlock(&ctx->uring_lock); 977 } 978 } 979 980 void io_req_defer_failed(struct io_kiocb *req, s32 res) 981 __must_hold(&ctx->uring_lock) 982 { 983 const struct io_op_def *def = &io_op_defs[req->opcode]; 984 985 lockdep_assert_held(&req->ctx->uring_lock); 986 987 req_set_fail(req); 988 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 989 if (def->fail) 990 def->fail(req); 991 io_req_complete_defer(req); 992 } 993 994 /* 995 * Don't initialise the fields below on every allocation, but do that in 996 * advance and keep them valid across allocations. 997 */ 998 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 999 { 1000 req->ctx = ctx; 1001 req->link = NULL; 1002 req->async_data = NULL; 1003 /* not necessary, but safer to zero */ 1004 req->cqe.res = 0; 1005 } 1006 1007 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1008 struct io_submit_state *state) 1009 { 1010 spin_lock(&ctx->completion_lock); 1011 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1012 ctx->locked_free_nr = 0; 1013 spin_unlock(&ctx->completion_lock); 1014 } 1015 1016 /* 1017 * A request might get retired back into the request caches even before opcode 1018 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1019 * Because of that, io_alloc_req() should be called only under ->uring_lock 1020 * and with extra caution to not get a request that is still worked on. 1021 */ 1022 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1023 __must_hold(&ctx->uring_lock) 1024 { 1025 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1026 void *reqs[IO_REQ_ALLOC_BATCH]; 1027 int ret, i; 1028 1029 /* 1030 * If we have more than a batch's worth of requests in our IRQ side 1031 * locked cache, grab the lock and move them over to our submission 1032 * side cache. 1033 */ 1034 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1035 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1036 if (!io_req_cache_empty(ctx)) 1037 return true; 1038 } 1039 1040 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1041 1042 /* 1043 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1044 * retry single alloc to be on the safe side. 1045 */ 1046 if (unlikely(ret <= 0)) { 1047 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1048 if (!reqs[0]) 1049 return false; 1050 ret = 1; 1051 } 1052 1053 percpu_ref_get_many(&ctx->refs, ret); 1054 for (i = 0; i < ret; i++) { 1055 struct io_kiocb *req = reqs[i]; 1056 1057 io_preinit_req(req, ctx); 1058 io_req_add_to_cache(req, ctx); 1059 } 1060 return true; 1061 } 1062 1063 static inline void io_dismantle_req(struct io_kiocb *req) 1064 { 1065 unsigned int flags = req->flags; 1066 1067 if (unlikely(flags & IO_REQ_CLEAN_FLAGS)) 1068 io_clean_op(req); 1069 if (!(flags & REQ_F_FIXED_FILE)) 1070 io_put_file(req->file); 1071 } 1072 1073 __cold void io_free_req(struct io_kiocb *req) 1074 { 1075 struct io_ring_ctx *ctx = req->ctx; 1076 1077 io_req_put_rsrc(req); 1078 io_dismantle_req(req); 1079 io_put_task(req->task, 1); 1080 1081 spin_lock(&ctx->completion_lock); 1082 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1083 ctx->locked_free_nr++; 1084 spin_unlock(&ctx->completion_lock); 1085 } 1086 1087 static void __io_req_find_next_prep(struct io_kiocb *req) 1088 { 1089 struct io_ring_ctx *ctx = req->ctx; 1090 1091 spin_lock(&ctx->completion_lock); 1092 io_disarm_next(req); 1093 spin_unlock(&ctx->completion_lock); 1094 } 1095 1096 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1097 { 1098 struct io_kiocb *nxt; 1099 1100 /* 1101 * If LINK is set, we have dependent requests in this chain. If we 1102 * didn't fail this request, queue the first one up, moving any other 1103 * dependencies to the next request. In case of failure, fail the rest 1104 * of the chain. 1105 */ 1106 if (unlikely(req->flags & IO_DISARM_MASK)) 1107 __io_req_find_next_prep(req); 1108 nxt = req->link; 1109 req->link = NULL; 1110 return nxt; 1111 } 1112 1113 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked) 1114 { 1115 if (!ctx) 1116 return; 1117 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1118 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1119 if (*locked) { 1120 io_submit_flush_completions(ctx); 1121 mutex_unlock(&ctx->uring_lock); 1122 *locked = false; 1123 } 1124 percpu_ref_put(&ctx->refs); 1125 } 1126 1127 static unsigned int handle_tw_list(struct llist_node *node, 1128 struct io_ring_ctx **ctx, bool *locked, 1129 struct llist_node *last) 1130 { 1131 unsigned int count = 0; 1132 1133 while (node != last) { 1134 struct llist_node *next = node->next; 1135 struct io_kiocb *req = container_of(node, struct io_kiocb, 1136 io_task_work.node); 1137 1138 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1139 1140 if (req->ctx != *ctx) { 1141 ctx_flush_and_put(*ctx, locked); 1142 *ctx = req->ctx; 1143 /* if not contended, grab and improve batching */ 1144 *locked = mutex_trylock(&(*ctx)->uring_lock); 1145 percpu_ref_get(&(*ctx)->refs); 1146 } 1147 req->io_task_work.func(req, locked); 1148 node = next; 1149 count++; 1150 } 1151 1152 return count; 1153 } 1154 1155 /** 1156 * io_llist_xchg - swap all entries in a lock-less list 1157 * @head: the head of lock-less list to delete all entries 1158 * @new: new entry as the head of the list 1159 * 1160 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1161 * The order of entries returned is from the newest to the oldest added one. 1162 */ 1163 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1164 struct llist_node *new) 1165 { 1166 return xchg(&head->first, new); 1167 } 1168 1169 /** 1170 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1171 * @head: the head of lock-less list to delete all entries 1172 * @old: expected old value of the first entry of the list 1173 * @new: new entry as the head of the list 1174 * 1175 * perform a cmpxchg on the first entry of the list. 1176 */ 1177 1178 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1179 struct llist_node *old, 1180 struct llist_node *new) 1181 { 1182 return cmpxchg(&head->first, old, new); 1183 } 1184 1185 void tctx_task_work(struct callback_head *cb) 1186 { 1187 bool uring_locked = false; 1188 struct io_ring_ctx *ctx = NULL; 1189 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1190 task_work); 1191 struct llist_node fake = {}; 1192 struct llist_node *node; 1193 unsigned int loops = 1; 1194 unsigned int count; 1195 1196 if (unlikely(current->flags & PF_EXITING)) { 1197 io_fallback_tw(tctx); 1198 return; 1199 } 1200 1201 node = io_llist_xchg(&tctx->task_list, &fake); 1202 count = handle_tw_list(node, &ctx, &uring_locked, NULL); 1203 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1204 while (node != &fake) { 1205 loops++; 1206 node = io_llist_xchg(&tctx->task_list, &fake); 1207 count += handle_tw_list(node, &ctx, &uring_locked, &fake); 1208 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1209 } 1210 1211 ctx_flush_and_put(ctx, &uring_locked); 1212 1213 /* relaxed read is enough as only the task itself sets ->in_idle */ 1214 if (unlikely(atomic_read(&tctx->in_idle))) 1215 io_uring_drop_tctx_refs(current); 1216 1217 trace_io_uring_task_work_run(tctx, count, loops); 1218 } 1219 1220 static __cold void io_fallback_tw(struct io_uring_task *tctx) 1221 { 1222 struct llist_node *node = llist_del_all(&tctx->task_list); 1223 struct io_kiocb *req; 1224 1225 while (node) { 1226 req = container_of(node, struct io_kiocb, io_task_work.node); 1227 node = node->next; 1228 if (llist_add(&req->io_task_work.node, 1229 &req->ctx->fallback_llist)) 1230 schedule_delayed_work(&req->ctx->fallback_work, 1); 1231 } 1232 } 1233 1234 static void io_req_local_work_add(struct io_kiocb *req) 1235 { 1236 struct io_ring_ctx *ctx = req->ctx; 1237 1238 percpu_ref_get(&ctx->refs); 1239 1240 if (!llist_add(&req->io_task_work.node, &ctx->work_llist)) { 1241 percpu_ref_put(&ctx->refs); 1242 return; 1243 } 1244 /* need it for the following io_cqring_wake() */ 1245 smp_mb__after_atomic(); 1246 1247 if (unlikely(atomic_read(&req->task->io_uring->in_idle))) { 1248 io_move_task_work_from_local(ctx); 1249 percpu_ref_put(&ctx->refs); 1250 return; 1251 } 1252 1253 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1254 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1255 1256 if (ctx->has_evfd) 1257 io_eventfd_signal(ctx); 1258 __io_cqring_wake(ctx); 1259 percpu_ref_put(&ctx->refs); 1260 } 1261 1262 void __io_req_task_work_add(struct io_kiocb *req, bool allow_local) 1263 { 1264 struct io_uring_task *tctx = req->task->io_uring; 1265 struct io_ring_ctx *ctx = req->ctx; 1266 1267 if (allow_local && ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1268 io_req_local_work_add(req); 1269 return; 1270 } 1271 1272 /* task_work already pending, we're done */ 1273 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1274 return; 1275 1276 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1277 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1278 1279 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1280 return; 1281 1282 io_fallback_tw(tctx); 1283 } 1284 1285 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1286 { 1287 struct llist_node *node; 1288 1289 node = llist_del_all(&ctx->work_llist); 1290 while (node) { 1291 struct io_kiocb *req = container_of(node, struct io_kiocb, 1292 io_task_work.node); 1293 1294 node = node->next; 1295 __io_req_task_work_add(req, false); 1296 } 1297 } 1298 1299 int __io_run_local_work(struct io_ring_ctx *ctx, bool *locked) 1300 { 1301 struct llist_node *node; 1302 struct llist_node fake; 1303 struct llist_node *current_final = NULL; 1304 int ret; 1305 unsigned int loops = 1; 1306 1307 if (unlikely(ctx->submitter_task != current)) 1308 return -EEXIST; 1309 1310 node = io_llist_xchg(&ctx->work_llist, &fake); 1311 ret = 0; 1312 again: 1313 while (node != current_final) { 1314 struct llist_node *next = node->next; 1315 struct io_kiocb *req = container_of(node, struct io_kiocb, 1316 io_task_work.node); 1317 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1318 req->io_task_work.func(req, locked); 1319 ret++; 1320 node = next; 1321 } 1322 1323 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1324 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1325 1326 node = io_llist_cmpxchg(&ctx->work_llist, &fake, NULL); 1327 if (node != &fake) { 1328 loops++; 1329 current_final = &fake; 1330 node = io_llist_xchg(&ctx->work_llist, &fake); 1331 goto again; 1332 } 1333 1334 if (*locked) 1335 io_submit_flush_completions(ctx); 1336 trace_io_uring_local_work_run(ctx, ret, loops); 1337 return ret; 1338 1339 } 1340 1341 int io_run_local_work(struct io_ring_ctx *ctx) 1342 { 1343 bool locked; 1344 int ret; 1345 1346 if (llist_empty(&ctx->work_llist)) 1347 return 0; 1348 1349 __set_current_state(TASK_RUNNING); 1350 locked = mutex_trylock(&ctx->uring_lock); 1351 ret = __io_run_local_work(ctx, &locked); 1352 if (locked) 1353 mutex_unlock(&ctx->uring_lock); 1354 1355 return ret; 1356 } 1357 1358 static void io_req_task_cancel(struct io_kiocb *req, bool *locked) 1359 { 1360 io_tw_lock(req->ctx, locked); 1361 io_req_defer_failed(req, req->cqe.res); 1362 } 1363 1364 void io_req_task_submit(struct io_kiocb *req, bool *locked) 1365 { 1366 io_tw_lock(req->ctx, locked); 1367 /* req->task == current here, checking PF_EXITING is safe */ 1368 if (likely(!(req->task->flags & PF_EXITING))) 1369 io_queue_sqe(req); 1370 else 1371 io_req_defer_failed(req, -EFAULT); 1372 } 1373 1374 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1375 { 1376 io_req_set_res(req, ret, 0); 1377 req->io_task_work.func = io_req_task_cancel; 1378 io_req_task_work_add(req); 1379 } 1380 1381 void io_req_task_queue(struct io_kiocb *req) 1382 { 1383 req->io_task_work.func = io_req_task_submit; 1384 io_req_task_work_add(req); 1385 } 1386 1387 void io_queue_next(struct io_kiocb *req) 1388 { 1389 struct io_kiocb *nxt = io_req_find_next(req); 1390 1391 if (nxt) 1392 io_req_task_queue(nxt); 1393 } 1394 1395 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node) 1396 __must_hold(&ctx->uring_lock) 1397 { 1398 struct task_struct *task = NULL; 1399 int task_refs = 0; 1400 1401 do { 1402 struct io_kiocb *req = container_of(node, struct io_kiocb, 1403 comp_list); 1404 1405 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1406 if (req->flags & REQ_F_REFCOUNT) { 1407 node = req->comp_list.next; 1408 if (!req_ref_put_and_test(req)) 1409 continue; 1410 } 1411 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1412 struct async_poll *apoll = req->apoll; 1413 1414 if (apoll->double_poll) 1415 kfree(apoll->double_poll); 1416 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1417 kfree(apoll); 1418 req->flags &= ~REQ_F_POLLED; 1419 } 1420 if (req->flags & IO_REQ_LINK_FLAGS) 1421 io_queue_next(req); 1422 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1423 io_clean_op(req); 1424 } 1425 if (!(req->flags & REQ_F_FIXED_FILE)) 1426 io_put_file(req->file); 1427 1428 io_req_put_rsrc_locked(req, ctx); 1429 1430 if (req->task != task) { 1431 if (task) 1432 io_put_task(task, task_refs); 1433 task = req->task; 1434 task_refs = 0; 1435 } 1436 task_refs++; 1437 node = req->comp_list.next; 1438 io_req_add_to_cache(req, ctx); 1439 } while (node); 1440 1441 if (task) 1442 io_put_task(task, task_refs); 1443 } 1444 1445 static void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1446 __must_hold(&ctx->uring_lock) 1447 { 1448 struct io_wq_work_node *node, *prev; 1449 struct io_submit_state *state = &ctx->submit_state; 1450 1451 __io_cq_lock(ctx); 1452 /* must come first to preserve CQE ordering in failure cases */ 1453 if (state->cqes_count) 1454 __io_flush_post_cqes(ctx); 1455 wq_list_for_each(node, prev, &state->compl_reqs) { 1456 struct io_kiocb *req = container_of(node, struct io_kiocb, 1457 comp_list); 1458 1459 if (!(req->flags & REQ_F_CQE_SKIP) && 1460 unlikely(!__io_fill_cqe_req(ctx, req))) { 1461 if (ctx->task_complete) { 1462 spin_lock(&ctx->completion_lock); 1463 io_req_cqe_overflow(req); 1464 spin_unlock(&ctx->completion_lock); 1465 } else { 1466 io_req_cqe_overflow(req); 1467 } 1468 } 1469 } 1470 __io_cq_unlock_post(ctx); 1471 1472 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1473 io_free_batch_list(ctx, state->compl_reqs.first); 1474 INIT_WQ_LIST(&state->compl_reqs); 1475 } 1476 } 1477 1478 /* 1479 * Drop reference to request, return next in chain (if there is one) if this 1480 * was the last reference to this request. 1481 */ 1482 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req) 1483 { 1484 struct io_kiocb *nxt = NULL; 1485 1486 if (req_ref_put_and_test(req)) { 1487 if (unlikely(req->flags & IO_REQ_LINK_FLAGS)) 1488 nxt = io_req_find_next(req); 1489 io_free_req(req); 1490 } 1491 return nxt; 1492 } 1493 1494 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1495 { 1496 /* See comment at the top of this file */ 1497 smp_rmb(); 1498 return __io_cqring_events(ctx); 1499 } 1500 1501 /* 1502 * We can't just wait for polled events to come to us, we have to actively 1503 * find and complete them. 1504 */ 1505 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1506 { 1507 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1508 return; 1509 1510 mutex_lock(&ctx->uring_lock); 1511 while (!wq_list_empty(&ctx->iopoll_list)) { 1512 /* let it sleep and repeat later if can't complete a request */ 1513 if (io_do_iopoll(ctx, true) == 0) 1514 break; 1515 /* 1516 * Ensure we allow local-to-the-cpu processing to take place, 1517 * in this case we need to ensure that we reap all events. 1518 * Also let task_work, etc. to progress by releasing the mutex 1519 */ 1520 if (need_resched()) { 1521 mutex_unlock(&ctx->uring_lock); 1522 cond_resched(); 1523 mutex_lock(&ctx->uring_lock); 1524 } 1525 } 1526 mutex_unlock(&ctx->uring_lock); 1527 } 1528 1529 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1530 { 1531 unsigned int nr_events = 0; 1532 int ret = 0; 1533 unsigned long check_cq; 1534 1535 if (!io_allowed_run_tw(ctx)) 1536 return -EEXIST; 1537 1538 check_cq = READ_ONCE(ctx->check_cq); 1539 if (unlikely(check_cq)) { 1540 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1541 __io_cqring_overflow_flush(ctx); 1542 /* 1543 * Similarly do not spin if we have not informed the user of any 1544 * dropped CQE. 1545 */ 1546 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1547 return -EBADR; 1548 } 1549 /* 1550 * Don't enter poll loop if we already have events pending. 1551 * If we do, we can potentially be spinning for commands that 1552 * already triggered a CQE (eg in error). 1553 */ 1554 if (io_cqring_events(ctx)) 1555 return 0; 1556 1557 do { 1558 /* 1559 * If a submit got punted to a workqueue, we can have the 1560 * application entering polling for a command before it gets 1561 * issued. That app will hold the uring_lock for the duration 1562 * of the poll right here, so we need to take a breather every 1563 * now and then to ensure that the issue has a chance to add 1564 * the poll to the issued list. Otherwise we can spin here 1565 * forever, while the workqueue is stuck trying to acquire the 1566 * very same mutex. 1567 */ 1568 if (wq_list_empty(&ctx->iopoll_list) || 1569 io_task_work_pending(ctx)) { 1570 u32 tail = ctx->cached_cq_tail; 1571 1572 (void) io_run_local_work_locked(ctx); 1573 1574 if (task_work_pending(current) || 1575 wq_list_empty(&ctx->iopoll_list)) { 1576 mutex_unlock(&ctx->uring_lock); 1577 io_run_task_work(); 1578 mutex_lock(&ctx->uring_lock); 1579 } 1580 /* some requests don't go through iopoll_list */ 1581 if (tail != ctx->cached_cq_tail || 1582 wq_list_empty(&ctx->iopoll_list)) 1583 break; 1584 } 1585 ret = io_do_iopoll(ctx, !min); 1586 if (ret < 0) 1587 break; 1588 nr_events += ret; 1589 ret = 0; 1590 } while (nr_events < min && !need_resched()); 1591 1592 return ret; 1593 } 1594 1595 void io_req_task_complete(struct io_kiocb *req, bool *locked) 1596 { 1597 if (*locked) 1598 io_req_complete_defer(req); 1599 else 1600 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1601 } 1602 1603 /* 1604 * After the iocb has been issued, it's safe to be found on the poll list. 1605 * Adding the kiocb to the list AFTER submission ensures that we don't 1606 * find it from a io_do_iopoll() thread before the issuer is done 1607 * accessing the kiocb cookie. 1608 */ 1609 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1610 { 1611 struct io_ring_ctx *ctx = req->ctx; 1612 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1613 1614 /* workqueue context doesn't hold uring_lock, grab it now */ 1615 if (unlikely(needs_lock)) 1616 mutex_lock(&ctx->uring_lock); 1617 1618 /* 1619 * Track whether we have multiple files in our lists. This will impact 1620 * how we do polling eventually, not spinning if we're on potentially 1621 * different devices. 1622 */ 1623 if (wq_list_empty(&ctx->iopoll_list)) { 1624 ctx->poll_multi_queue = false; 1625 } else if (!ctx->poll_multi_queue) { 1626 struct io_kiocb *list_req; 1627 1628 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1629 comp_list); 1630 if (list_req->file != req->file) 1631 ctx->poll_multi_queue = true; 1632 } 1633 1634 /* 1635 * For fast devices, IO may have already completed. If it has, add 1636 * it to the front so we find it first. 1637 */ 1638 if (READ_ONCE(req->iopoll_completed)) 1639 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1640 else 1641 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1642 1643 if (unlikely(needs_lock)) { 1644 /* 1645 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1646 * in sq thread task context or in io worker task context. If 1647 * current task context is sq thread, we don't need to check 1648 * whether should wake up sq thread. 1649 */ 1650 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1651 wq_has_sleeper(&ctx->sq_data->wait)) 1652 wake_up(&ctx->sq_data->wait); 1653 1654 mutex_unlock(&ctx->uring_lock); 1655 } 1656 } 1657 1658 static bool io_bdev_nowait(struct block_device *bdev) 1659 { 1660 return !bdev || bdev_nowait(bdev); 1661 } 1662 1663 /* 1664 * If we tracked the file through the SCM inflight mechanism, we could support 1665 * any file. For now, just ensure that anything potentially problematic is done 1666 * inline. 1667 */ 1668 static bool __io_file_supports_nowait(struct file *file, umode_t mode) 1669 { 1670 if (S_ISBLK(mode)) { 1671 if (IS_ENABLED(CONFIG_BLOCK) && 1672 io_bdev_nowait(I_BDEV(file->f_mapping->host))) 1673 return true; 1674 return false; 1675 } 1676 if (S_ISSOCK(mode)) 1677 return true; 1678 if (S_ISREG(mode)) { 1679 if (IS_ENABLED(CONFIG_BLOCK) && 1680 io_bdev_nowait(file->f_inode->i_sb->s_bdev) && 1681 !io_is_uring_fops(file)) 1682 return true; 1683 return false; 1684 } 1685 1686 /* any ->read/write should understand O_NONBLOCK */ 1687 if (file->f_flags & O_NONBLOCK) 1688 return true; 1689 return file->f_mode & FMODE_NOWAIT; 1690 } 1691 1692 /* 1693 * If we tracked the file through the SCM inflight mechanism, we could support 1694 * any file. For now, just ensure that anything potentially problematic is done 1695 * inline. 1696 */ 1697 unsigned int io_file_get_flags(struct file *file) 1698 { 1699 umode_t mode = file_inode(file)->i_mode; 1700 unsigned int res = 0; 1701 1702 if (S_ISREG(mode)) 1703 res |= FFS_ISREG; 1704 if (__io_file_supports_nowait(file, mode)) 1705 res |= FFS_NOWAIT; 1706 return res; 1707 } 1708 1709 bool io_alloc_async_data(struct io_kiocb *req) 1710 { 1711 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size); 1712 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL); 1713 if (req->async_data) { 1714 req->flags |= REQ_F_ASYNC_DATA; 1715 return false; 1716 } 1717 return true; 1718 } 1719 1720 int io_req_prep_async(struct io_kiocb *req) 1721 { 1722 const struct io_op_def *def = &io_op_defs[req->opcode]; 1723 1724 /* assign early for deferred execution for non-fixed file */ 1725 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE)) 1726 req->file = io_file_get_normal(req, req->cqe.fd); 1727 if (!def->prep_async) 1728 return 0; 1729 if (WARN_ON_ONCE(req_has_async_data(req))) 1730 return -EFAULT; 1731 if (!io_op_defs[req->opcode].manual_alloc) { 1732 if (io_alloc_async_data(req)) 1733 return -EAGAIN; 1734 } 1735 return def->prep_async(req); 1736 } 1737 1738 static u32 io_get_sequence(struct io_kiocb *req) 1739 { 1740 u32 seq = req->ctx->cached_sq_head; 1741 struct io_kiocb *cur; 1742 1743 /* need original cached_sq_head, but it was increased for each req */ 1744 io_for_each_link(cur, req) 1745 seq--; 1746 return seq; 1747 } 1748 1749 static __cold void io_drain_req(struct io_kiocb *req) 1750 __must_hold(&ctx->uring_lock) 1751 { 1752 struct io_ring_ctx *ctx = req->ctx; 1753 struct io_defer_entry *de; 1754 int ret; 1755 u32 seq = io_get_sequence(req); 1756 1757 /* Still need defer if there is pending req in defer list. */ 1758 spin_lock(&ctx->completion_lock); 1759 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1760 spin_unlock(&ctx->completion_lock); 1761 queue: 1762 ctx->drain_active = false; 1763 io_req_task_queue(req); 1764 return; 1765 } 1766 spin_unlock(&ctx->completion_lock); 1767 1768 io_prep_async_link(req); 1769 de = kmalloc(sizeof(*de), GFP_KERNEL); 1770 if (!de) { 1771 ret = -ENOMEM; 1772 io_req_defer_failed(req, ret); 1773 return; 1774 } 1775 1776 spin_lock(&ctx->completion_lock); 1777 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1778 spin_unlock(&ctx->completion_lock); 1779 kfree(de); 1780 goto queue; 1781 } 1782 1783 trace_io_uring_defer(req); 1784 de->req = req; 1785 de->seq = seq; 1786 list_add_tail(&de->list, &ctx->defer_list); 1787 spin_unlock(&ctx->completion_lock); 1788 } 1789 1790 static void io_clean_op(struct io_kiocb *req) 1791 { 1792 if (req->flags & REQ_F_BUFFER_SELECTED) { 1793 spin_lock(&req->ctx->completion_lock); 1794 io_put_kbuf_comp(req); 1795 spin_unlock(&req->ctx->completion_lock); 1796 } 1797 1798 if (req->flags & REQ_F_NEED_CLEANUP) { 1799 const struct io_op_def *def = &io_op_defs[req->opcode]; 1800 1801 if (def->cleanup) 1802 def->cleanup(req); 1803 } 1804 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1805 kfree(req->apoll->double_poll); 1806 kfree(req->apoll); 1807 req->apoll = NULL; 1808 } 1809 if (req->flags & REQ_F_INFLIGHT) { 1810 struct io_uring_task *tctx = req->task->io_uring; 1811 1812 atomic_dec(&tctx->inflight_tracked); 1813 } 1814 if (req->flags & REQ_F_CREDS) 1815 put_cred(req->creds); 1816 if (req->flags & REQ_F_ASYNC_DATA) { 1817 kfree(req->async_data); 1818 req->async_data = NULL; 1819 } 1820 req->flags &= ~IO_REQ_CLEAN_FLAGS; 1821 } 1822 1823 static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags) 1824 { 1825 if (req->file || !io_op_defs[req->opcode].needs_file) 1826 return true; 1827 1828 if (req->flags & REQ_F_FIXED_FILE) 1829 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1830 else 1831 req->file = io_file_get_normal(req, req->cqe.fd); 1832 1833 return !!req->file; 1834 } 1835 1836 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1837 { 1838 const struct io_op_def *def = &io_op_defs[req->opcode]; 1839 const struct cred *creds = NULL; 1840 int ret; 1841 1842 if (unlikely(!io_assign_file(req, issue_flags))) 1843 return -EBADF; 1844 1845 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1846 creds = override_creds(req->creds); 1847 1848 if (!def->audit_skip) 1849 audit_uring_entry(req->opcode); 1850 1851 ret = def->issue(req, issue_flags); 1852 1853 if (!def->audit_skip) 1854 audit_uring_exit(!ret, ret); 1855 1856 if (creds) 1857 revert_creds(creds); 1858 1859 if (ret == IOU_OK) { 1860 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1861 io_req_complete_defer(req); 1862 else 1863 io_req_complete_post(req, issue_flags); 1864 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1865 return ret; 1866 1867 /* If the op doesn't have a file, we're not polling for it */ 1868 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1869 io_iopoll_req_issued(req, issue_flags); 1870 1871 return 0; 1872 } 1873 1874 int io_poll_issue(struct io_kiocb *req, bool *locked) 1875 { 1876 io_tw_lock(req->ctx, locked); 1877 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1878 IO_URING_F_COMPLETE_DEFER); 1879 } 1880 1881 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1882 { 1883 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1884 1885 req = io_put_req_find_next(req); 1886 return req ? &req->work : NULL; 1887 } 1888 1889 void io_wq_submit_work(struct io_wq_work *work) 1890 { 1891 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1892 const struct io_op_def *def = &io_op_defs[req->opcode]; 1893 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1894 bool needs_poll = false; 1895 int ret = 0, err = -ECANCELED; 1896 1897 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1898 if (!(req->flags & REQ_F_REFCOUNT)) 1899 __io_req_set_refcount(req, 2); 1900 else 1901 req_ref_get(req); 1902 1903 io_arm_ltimeout(req); 1904 1905 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1906 if (work->flags & IO_WQ_WORK_CANCEL) { 1907 fail: 1908 io_req_task_queue_fail(req, err); 1909 return; 1910 } 1911 if (!io_assign_file(req, issue_flags)) { 1912 err = -EBADF; 1913 work->flags |= IO_WQ_WORK_CANCEL; 1914 goto fail; 1915 } 1916 1917 if (req->flags & REQ_F_FORCE_ASYNC) { 1918 bool opcode_poll = def->pollin || def->pollout; 1919 1920 if (opcode_poll && file_can_poll(req->file)) { 1921 needs_poll = true; 1922 issue_flags |= IO_URING_F_NONBLOCK; 1923 } 1924 } 1925 1926 do { 1927 ret = io_issue_sqe(req, issue_flags); 1928 if (ret != -EAGAIN) 1929 break; 1930 /* 1931 * We can get EAGAIN for iopolled IO even though we're 1932 * forcing a sync submission from here, since we can't 1933 * wait for request slots on the block side. 1934 */ 1935 if (!needs_poll) { 1936 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1937 break; 1938 cond_resched(); 1939 continue; 1940 } 1941 1942 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1943 return; 1944 /* aborted or ready, in either case retry blocking */ 1945 needs_poll = false; 1946 issue_flags &= ~IO_URING_F_NONBLOCK; 1947 } while (1); 1948 1949 /* avoid locking problems by failing it from a clean context */ 1950 if (ret < 0) 1951 io_req_task_queue_fail(req, ret); 1952 } 1953 1954 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1955 unsigned int issue_flags) 1956 { 1957 struct io_ring_ctx *ctx = req->ctx; 1958 struct file *file = NULL; 1959 unsigned long file_ptr; 1960 1961 io_ring_submit_lock(ctx, issue_flags); 1962 1963 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 1964 goto out; 1965 fd = array_index_nospec(fd, ctx->nr_user_files); 1966 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr; 1967 file = (struct file *) (file_ptr & FFS_MASK); 1968 file_ptr &= ~FFS_MASK; 1969 /* mask in overlapping REQ_F and FFS bits */ 1970 req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT); 1971 io_req_set_rsrc_node(req, ctx, 0); 1972 out: 1973 io_ring_submit_unlock(ctx, issue_flags); 1974 return file; 1975 } 1976 1977 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1978 { 1979 struct file *file = fget(fd); 1980 1981 trace_io_uring_file_get(req, fd); 1982 1983 /* we don't allow fixed io_uring files */ 1984 if (file && io_is_uring_fops(file)) 1985 io_req_track_inflight(req); 1986 return file; 1987 } 1988 1989 static void io_queue_async(struct io_kiocb *req, int ret) 1990 __must_hold(&req->ctx->uring_lock) 1991 { 1992 struct io_kiocb *linked_timeout; 1993 1994 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1995 io_req_defer_failed(req, ret); 1996 return; 1997 } 1998 1999 linked_timeout = io_prep_linked_timeout(req); 2000 2001 switch (io_arm_poll_handler(req, 0)) { 2002 case IO_APOLL_READY: 2003 io_kbuf_recycle(req, 0); 2004 io_req_task_queue(req); 2005 break; 2006 case IO_APOLL_ABORTED: 2007 io_kbuf_recycle(req, 0); 2008 io_queue_iowq(req, NULL); 2009 break; 2010 case IO_APOLL_OK: 2011 break; 2012 } 2013 2014 if (linked_timeout) 2015 io_queue_linked_timeout(linked_timeout); 2016 } 2017 2018 static inline void io_queue_sqe(struct io_kiocb *req) 2019 __must_hold(&req->ctx->uring_lock) 2020 { 2021 int ret; 2022 2023 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2024 2025 /* 2026 * We async punt it if the file wasn't marked NOWAIT, or if the file 2027 * doesn't support non-blocking read/write attempts 2028 */ 2029 if (likely(!ret)) 2030 io_arm_ltimeout(req); 2031 else 2032 io_queue_async(req, ret); 2033 } 2034 2035 static void io_queue_sqe_fallback(struct io_kiocb *req) 2036 __must_hold(&req->ctx->uring_lock) 2037 { 2038 if (unlikely(req->flags & REQ_F_FAIL)) { 2039 /* 2040 * We don't submit, fail them all, for that replace hardlinks 2041 * with normal links. Extra REQ_F_LINK is tolerated. 2042 */ 2043 req->flags &= ~REQ_F_HARDLINK; 2044 req->flags |= REQ_F_LINK; 2045 io_req_defer_failed(req, req->cqe.res); 2046 } else { 2047 int ret = io_req_prep_async(req); 2048 2049 if (unlikely(ret)) { 2050 io_req_defer_failed(req, ret); 2051 return; 2052 } 2053 2054 if (unlikely(req->ctx->drain_active)) 2055 io_drain_req(req); 2056 else 2057 io_queue_iowq(req, NULL); 2058 } 2059 } 2060 2061 /* 2062 * Check SQE restrictions (opcode and flags). 2063 * 2064 * Returns 'true' if SQE is allowed, 'false' otherwise. 2065 */ 2066 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2067 struct io_kiocb *req, 2068 unsigned int sqe_flags) 2069 { 2070 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2071 return false; 2072 2073 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2074 ctx->restrictions.sqe_flags_required) 2075 return false; 2076 2077 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2078 ctx->restrictions.sqe_flags_required)) 2079 return false; 2080 2081 return true; 2082 } 2083 2084 static void io_init_req_drain(struct io_kiocb *req) 2085 { 2086 struct io_ring_ctx *ctx = req->ctx; 2087 struct io_kiocb *head = ctx->submit_state.link.head; 2088 2089 ctx->drain_active = true; 2090 if (head) { 2091 /* 2092 * If we need to drain a request in the middle of a link, drain 2093 * the head request and the next request/link after the current 2094 * link. Considering sequential execution of links, 2095 * REQ_F_IO_DRAIN will be maintained for every request of our 2096 * link. 2097 */ 2098 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2099 ctx->drain_next = true; 2100 } 2101 } 2102 2103 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2104 const struct io_uring_sqe *sqe) 2105 __must_hold(&ctx->uring_lock) 2106 { 2107 const struct io_op_def *def; 2108 unsigned int sqe_flags; 2109 int personality; 2110 u8 opcode; 2111 2112 /* req is partially pre-initialised, see io_preinit_req() */ 2113 req->opcode = opcode = READ_ONCE(sqe->opcode); 2114 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2115 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2116 req->cqe.user_data = READ_ONCE(sqe->user_data); 2117 req->file = NULL; 2118 req->rsrc_node = NULL; 2119 req->task = current; 2120 2121 if (unlikely(opcode >= IORING_OP_LAST)) { 2122 req->opcode = 0; 2123 return -EINVAL; 2124 } 2125 def = &io_op_defs[opcode]; 2126 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2127 /* enforce forwards compatibility on users */ 2128 if (sqe_flags & ~SQE_VALID_FLAGS) 2129 return -EINVAL; 2130 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2131 if (!def->buffer_select) 2132 return -EOPNOTSUPP; 2133 req->buf_index = READ_ONCE(sqe->buf_group); 2134 } 2135 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2136 ctx->drain_disabled = true; 2137 if (sqe_flags & IOSQE_IO_DRAIN) { 2138 if (ctx->drain_disabled) 2139 return -EOPNOTSUPP; 2140 io_init_req_drain(req); 2141 } 2142 } 2143 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2144 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2145 return -EACCES; 2146 /* knock it to the slow queue path, will be drained there */ 2147 if (ctx->drain_active) 2148 req->flags |= REQ_F_FORCE_ASYNC; 2149 /* if there is no link, we're at "next" request and need to drain */ 2150 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2151 ctx->drain_next = false; 2152 ctx->drain_active = true; 2153 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2154 } 2155 } 2156 2157 if (!def->ioprio && sqe->ioprio) 2158 return -EINVAL; 2159 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2160 return -EINVAL; 2161 2162 if (def->needs_file) { 2163 struct io_submit_state *state = &ctx->submit_state; 2164 2165 req->cqe.fd = READ_ONCE(sqe->fd); 2166 2167 /* 2168 * Plug now if we have more than 2 IO left after this, and the 2169 * target is potentially a read/write to block based storage. 2170 */ 2171 if (state->need_plug && def->plug) { 2172 state->plug_started = true; 2173 state->need_plug = false; 2174 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2175 } 2176 } 2177 2178 personality = READ_ONCE(sqe->personality); 2179 if (personality) { 2180 int ret; 2181 2182 req->creds = xa_load(&ctx->personalities, personality); 2183 if (!req->creds) 2184 return -EINVAL; 2185 get_cred(req->creds); 2186 ret = security_uring_override_creds(req->creds); 2187 if (ret) { 2188 put_cred(req->creds); 2189 return ret; 2190 } 2191 req->flags |= REQ_F_CREDS; 2192 } 2193 2194 return def->prep(req, sqe); 2195 } 2196 2197 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2198 struct io_kiocb *req, int ret) 2199 { 2200 struct io_ring_ctx *ctx = req->ctx; 2201 struct io_submit_link *link = &ctx->submit_state.link; 2202 struct io_kiocb *head = link->head; 2203 2204 trace_io_uring_req_failed(sqe, req, ret); 2205 2206 /* 2207 * Avoid breaking links in the middle as it renders links with SQPOLL 2208 * unusable. Instead of failing eagerly, continue assembling the link if 2209 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2210 * should find the flag and handle the rest. 2211 */ 2212 req_fail_link_node(req, ret); 2213 if (head && !(head->flags & REQ_F_FAIL)) 2214 req_fail_link_node(head, -ECANCELED); 2215 2216 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2217 if (head) { 2218 link->last->link = req; 2219 link->head = NULL; 2220 req = head; 2221 } 2222 io_queue_sqe_fallback(req); 2223 return ret; 2224 } 2225 2226 if (head) 2227 link->last->link = req; 2228 else 2229 link->head = req; 2230 link->last = req; 2231 return 0; 2232 } 2233 2234 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2235 const struct io_uring_sqe *sqe) 2236 __must_hold(&ctx->uring_lock) 2237 { 2238 struct io_submit_link *link = &ctx->submit_state.link; 2239 int ret; 2240 2241 ret = io_init_req(ctx, req, sqe); 2242 if (unlikely(ret)) 2243 return io_submit_fail_init(sqe, req, ret); 2244 2245 /* don't need @sqe from now on */ 2246 trace_io_uring_submit_sqe(req, true); 2247 2248 /* 2249 * If we already have a head request, queue this one for async 2250 * submittal once the head completes. If we don't have a head but 2251 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2252 * submitted sync once the chain is complete. If none of those 2253 * conditions are true (normal request), then just queue it. 2254 */ 2255 if (unlikely(link->head)) { 2256 ret = io_req_prep_async(req); 2257 if (unlikely(ret)) 2258 return io_submit_fail_init(sqe, req, ret); 2259 2260 trace_io_uring_link(req, link->head); 2261 link->last->link = req; 2262 link->last = req; 2263 2264 if (req->flags & IO_REQ_LINK_FLAGS) 2265 return 0; 2266 /* last request of the link, flush it */ 2267 req = link->head; 2268 link->head = NULL; 2269 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2270 goto fallback; 2271 2272 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2273 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2274 if (req->flags & IO_REQ_LINK_FLAGS) { 2275 link->head = req; 2276 link->last = req; 2277 } else { 2278 fallback: 2279 io_queue_sqe_fallback(req); 2280 } 2281 return 0; 2282 } 2283 2284 io_queue_sqe(req); 2285 return 0; 2286 } 2287 2288 /* 2289 * Batched submission is done, ensure local IO is flushed out. 2290 */ 2291 static void io_submit_state_end(struct io_ring_ctx *ctx) 2292 { 2293 struct io_submit_state *state = &ctx->submit_state; 2294 2295 if (unlikely(state->link.head)) 2296 io_queue_sqe_fallback(state->link.head); 2297 /* flush only after queuing links as they can generate completions */ 2298 io_submit_flush_completions(ctx); 2299 if (state->plug_started) 2300 blk_finish_plug(&state->plug); 2301 } 2302 2303 /* 2304 * Start submission side cache. 2305 */ 2306 static void io_submit_state_start(struct io_submit_state *state, 2307 unsigned int max_ios) 2308 { 2309 state->plug_started = false; 2310 state->need_plug = max_ios > 2; 2311 state->submit_nr = max_ios; 2312 /* set only head, no need to init link_last in advance */ 2313 state->link.head = NULL; 2314 } 2315 2316 static void io_commit_sqring(struct io_ring_ctx *ctx) 2317 { 2318 struct io_rings *rings = ctx->rings; 2319 2320 /* 2321 * Ensure any loads from the SQEs are done at this point, 2322 * since once we write the new head, the application could 2323 * write new data to them. 2324 */ 2325 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2326 } 2327 2328 /* 2329 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2330 * that is mapped by userspace. This means that care needs to be taken to 2331 * ensure that reads are stable, as we cannot rely on userspace always 2332 * being a good citizen. If members of the sqe are validated and then later 2333 * used, it's important that those reads are done through READ_ONCE() to 2334 * prevent a re-load down the line. 2335 */ 2336 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx) 2337 { 2338 unsigned head, mask = ctx->sq_entries - 1; 2339 unsigned sq_idx = ctx->cached_sq_head++ & mask; 2340 2341 /* 2342 * The cached sq head (or cq tail) serves two purposes: 2343 * 2344 * 1) allows us to batch the cost of updating the user visible 2345 * head updates. 2346 * 2) allows the kernel side to track the head on its own, even 2347 * though the application is the one updating it. 2348 */ 2349 head = READ_ONCE(ctx->sq_array[sq_idx]); 2350 if (likely(head < ctx->sq_entries)) { 2351 /* double index for 128-byte SQEs, twice as long */ 2352 if (ctx->flags & IORING_SETUP_SQE128) 2353 head <<= 1; 2354 return &ctx->sq_sqes[head]; 2355 } 2356 2357 /* drop invalid entries */ 2358 ctx->cq_extra--; 2359 WRITE_ONCE(ctx->rings->sq_dropped, 2360 READ_ONCE(ctx->rings->sq_dropped) + 1); 2361 return NULL; 2362 } 2363 2364 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2365 __must_hold(&ctx->uring_lock) 2366 { 2367 unsigned int entries = io_sqring_entries(ctx); 2368 unsigned int left; 2369 int ret; 2370 2371 if (unlikely(!entries)) 2372 return 0; 2373 /* make sure SQ entry isn't read before tail */ 2374 ret = left = min3(nr, ctx->sq_entries, entries); 2375 io_get_task_refs(left); 2376 io_submit_state_start(&ctx->submit_state, left); 2377 2378 do { 2379 const struct io_uring_sqe *sqe; 2380 struct io_kiocb *req; 2381 2382 if (unlikely(!io_alloc_req_refill(ctx))) 2383 break; 2384 req = io_alloc_req(ctx); 2385 sqe = io_get_sqe(ctx); 2386 if (unlikely(!sqe)) { 2387 io_req_add_to_cache(req, ctx); 2388 break; 2389 } 2390 2391 /* 2392 * Continue submitting even for sqe failure if the 2393 * ring was setup with IORING_SETUP_SUBMIT_ALL 2394 */ 2395 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2396 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2397 left--; 2398 break; 2399 } 2400 } while (--left); 2401 2402 if (unlikely(left)) { 2403 ret -= left; 2404 /* try again if it submitted nothing and can't allocate a req */ 2405 if (!ret && io_req_cache_empty(ctx)) 2406 ret = -EAGAIN; 2407 current->io_uring->cached_refs += left; 2408 } 2409 2410 io_submit_state_end(ctx); 2411 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2412 io_commit_sqring(ctx); 2413 return ret; 2414 } 2415 2416 struct io_wait_queue { 2417 struct wait_queue_entry wq; 2418 struct io_ring_ctx *ctx; 2419 unsigned cq_tail; 2420 unsigned nr_timeouts; 2421 }; 2422 2423 static inline bool io_has_work(struct io_ring_ctx *ctx) 2424 { 2425 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2426 ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 2427 !llist_empty(&ctx->work_llist)); 2428 } 2429 2430 static inline bool io_should_wake(struct io_wait_queue *iowq) 2431 { 2432 struct io_ring_ctx *ctx = iowq->ctx; 2433 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2434 2435 /* 2436 * Wake up if we have enough events, or if a timeout occurred since we 2437 * started waiting. For timeouts, we always want to return to userspace, 2438 * regardless of event count. 2439 */ 2440 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2441 } 2442 2443 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2444 int wake_flags, void *key) 2445 { 2446 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, 2447 wq); 2448 struct io_ring_ctx *ctx = iowq->ctx; 2449 2450 /* 2451 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2452 * the task, and the next invocation will do it. 2453 */ 2454 if (io_should_wake(iowq) || io_has_work(ctx)) 2455 return autoremove_wake_function(curr, mode, wake_flags, key); 2456 return -1; 2457 } 2458 2459 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2460 { 2461 if (io_run_task_work_ctx(ctx) > 0) 2462 return 1; 2463 if (task_sigpending(current)) 2464 return -EINTR; 2465 return 0; 2466 } 2467 2468 /* when returns >0, the caller should retry */ 2469 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2470 struct io_wait_queue *iowq, 2471 ktime_t *timeout) 2472 { 2473 int ret; 2474 unsigned long check_cq; 2475 2476 /* make sure we run task_work before checking for signals */ 2477 ret = io_run_task_work_sig(ctx); 2478 if (ret || io_should_wake(iowq)) 2479 return ret; 2480 2481 check_cq = READ_ONCE(ctx->check_cq); 2482 if (unlikely(check_cq)) { 2483 /* let the caller flush overflows, retry */ 2484 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2485 return 1; 2486 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 2487 return -EBADR; 2488 } 2489 if (!schedule_hrtimeout(timeout, HRTIMER_MODE_ABS)) 2490 return -ETIME; 2491 2492 /* 2493 * Run task_work after scheduling. If we got woken because of 2494 * task_work being processed, run it now rather than let the caller 2495 * do another wait loop. 2496 */ 2497 ret = io_run_task_work_sig(ctx); 2498 return ret < 0 ? ret : 1; 2499 } 2500 2501 /* 2502 * Wait until events become available, if we don't already have some. The 2503 * application must reap them itself, as they reside on the shared cq ring. 2504 */ 2505 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2506 const sigset_t __user *sig, size_t sigsz, 2507 struct __kernel_timespec __user *uts) 2508 { 2509 struct io_wait_queue iowq; 2510 struct io_rings *rings = ctx->rings; 2511 ktime_t timeout = KTIME_MAX; 2512 int ret; 2513 2514 if (!io_allowed_run_tw(ctx)) 2515 return -EEXIST; 2516 2517 do { 2518 /* always run at least 1 task work to process local work */ 2519 ret = io_run_task_work_ctx(ctx); 2520 if (ret < 0) 2521 return ret; 2522 io_cqring_overflow_flush(ctx); 2523 2524 /* if user messes with these they will just get an early return */ 2525 if (__io_cqring_events_user(ctx) >= min_events) 2526 return 0; 2527 } while (ret > 0); 2528 2529 if (sig) { 2530 #ifdef CONFIG_COMPAT 2531 if (in_compat_syscall()) 2532 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2533 sigsz); 2534 else 2535 #endif 2536 ret = set_user_sigmask(sig, sigsz); 2537 2538 if (ret) 2539 return ret; 2540 } 2541 2542 if (uts) { 2543 struct timespec64 ts; 2544 2545 if (get_timespec64(&ts, uts)) 2546 return -EFAULT; 2547 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2548 } 2549 2550 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2551 iowq.wq.private = current; 2552 INIT_LIST_HEAD(&iowq.wq.entry); 2553 iowq.ctx = ctx; 2554 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2555 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2556 2557 trace_io_uring_cqring_wait(ctx, min_events); 2558 do { 2559 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2560 finish_wait(&ctx->cq_wait, &iowq.wq); 2561 io_cqring_do_overflow_flush(ctx); 2562 } 2563 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2564 TASK_INTERRUPTIBLE); 2565 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout); 2566 if (__io_cqring_events_user(ctx) >= min_events) 2567 break; 2568 cond_resched(); 2569 } while (ret > 0); 2570 2571 finish_wait(&ctx->cq_wait, &iowq.wq); 2572 restore_saved_sigmask_unless(ret == -EINTR); 2573 2574 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2575 } 2576 2577 static void io_mem_free(void *ptr) 2578 { 2579 struct page *page; 2580 2581 if (!ptr) 2582 return; 2583 2584 page = virt_to_head_page(ptr); 2585 if (put_page_testzero(page)) 2586 free_compound_page(page); 2587 } 2588 2589 static void *io_mem_alloc(size_t size) 2590 { 2591 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2592 2593 return (void *) __get_free_pages(gfp, get_order(size)); 2594 } 2595 2596 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2597 unsigned int cq_entries, size_t *sq_offset) 2598 { 2599 struct io_rings *rings; 2600 size_t off, sq_array_size; 2601 2602 off = struct_size(rings, cqes, cq_entries); 2603 if (off == SIZE_MAX) 2604 return SIZE_MAX; 2605 if (ctx->flags & IORING_SETUP_CQE32) { 2606 if (check_shl_overflow(off, 1, &off)) 2607 return SIZE_MAX; 2608 } 2609 2610 #ifdef CONFIG_SMP 2611 off = ALIGN(off, SMP_CACHE_BYTES); 2612 if (off == 0) 2613 return SIZE_MAX; 2614 #endif 2615 2616 if (sq_offset) 2617 *sq_offset = off; 2618 2619 sq_array_size = array_size(sizeof(u32), sq_entries); 2620 if (sq_array_size == SIZE_MAX) 2621 return SIZE_MAX; 2622 2623 if (check_add_overflow(off, sq_array_size, &off)) 2624 return SIZE_MAX; 2625 2626 return off; 2627 } 2628 2629 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2630 unsigned int eventfd_async) 2631 { 2632 struct io_ev_fd *ev_fd; 2633 __s32 __user *fds = arg; 2634 int fd; 2635 2636 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2637 lockdep_is_held(&ctx->uring_lock)); 2638 if (ev_fd) 2639 return -EBUSY; 2640 2641 if (copy_from_user(&fd, fds, sizeof(*fds))) 2642 return -EFAULT; 2643 2644 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2645 if (!ev_fd) 2646 return -ENOMEM; 2647 2648 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2649 if (IS_ERR(ev_fd->cq_ev_fd)) { 2650 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2651 kfree(ev_fd); 2652 return ret; 2653 } 2654 2655 spin_lock(&ctx->completion_lock); 2656 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2657 spin_unlock(&ctx->completion_lock); 2658 2659 ev_fd->eventfd_async = eventfd_async; 2660 ctx->has_evfd = true; 2661 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2662 atomic_set(&ev_fd->refs, 1); 2663 atomic_set(&ev_fd->ops, 0); 2664 return 0; 2665 } 2666 2667 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2668 { 2669 struct io_ev_fd *ev_fd; 2670 2671 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2672 lockdep_is_held(&ctx->uring_lock)); 2673 if (ev_fd) { 2674 ctx->has_evfd = false; 2675 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2676 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2677 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2678 return 0; 2679 } 2680 2681 return -ENXIO; 2682 } 2683 2684 static void io_req_caches_free(struct io_ring_ctx *ctx) 2685 { 2686 int nr = 0; 2687 2688 mutex_lock(&ctx->uring_lock); 2689 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2690 2691 while (!io_req_cache_empty(ctx)) { 2692 struct io_kiocb *req = io_alloc_req(ctx); 2693 2694 kmem_cache_free(req_cachep, req); 2695 nr++; 2696 } 2697 if (nr) 2698 percpu_ref_put_many(&ctx->refs, nr); 2699 mutex_unlock(&ctx->uring_lock); 2700 } 2701 2702 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2703 { 2704 io_sq_thread_finish(ctx); 2705 io_rsrc_refs_drop(ctx); 2706 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2707 io_wait_rsrc_data(ctx->buf_data); 2708 io_wait_rsrc_data(ctx->file_data); 2709 2710 mutex_lock(&ctx->uring_lock); 2711 if (ctx->buf_data) 2712 __io_sqe_buffers_unregister(ctx); 2713 if (ctx->file_data) 2714 __io_sqe_files_unregister(ctx); 2715 io_cqring_overflow_kill(ctx); 2716 io_eventfd_unregister(ctx); 2717 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2718 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2719 mutex_unlock(&ctx->uring_lock); 2720 io_destroy_buffers(ctx); 2721 if (ctx->sq_creds) 2722 put_cred(ctx->sq_creds); 2723 if (ctx->submitter_task) 2724 put_task_struct(ctx->submitter_task); 2725 2726 /* there are no registered resources left, nobody uses it */ 2727 if (ctx->rsrc_node) 2728 io_rsrc_node_destroy(ctx->rsrc_node); 2729 if (ctx->rsrc_backup_node) 2730 io_rsrc_node_destroy(ctx->rsrc_backup_node); 2731 flush_delayed_work(&ctx->rsrc_put_work); 2732 flush_delayed_work(&ctx->fallback_work); 2733 2734 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2735 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist)); 2736 2737 #if defined(CONFIG_UNIX) 2738 if (ctx->ring_sock) { 2739 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2740 sock_release(ctx->ring_sock); 2741 } 2742 #endif 2743 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2744 2745 if (ctx->mm_account) { 2746 mmdrop(ctx->mm_account); 2747 ctx->mm_account = NULL; 2748 } 2749 io_mem_free(ctx->rings); 2750 io_mem_free(ctx->sq_sqes); 2751 2752 percpu_ref_exit(&ctx->refs); 2753 free_uid(ctx->user); 2754 io_req_caches_free(ctx); 2755 if (ctx->hash_map) 2756 io_wq_put_hash(ctx->hash_map); 2757 kfree(ctx->cancel_table.hbs); 2758 kfree(ctx->cancel_table_locked.hbs); 2759 kfree(ctx->dummy_ubuf); 2760 kfree(ctx->io_bl); 2761 xa_destroy(&ctx->io_bl_xa); 2762 kfree(ctx); 2763 } 2764 2765 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2766 { 2767 struct io_ring_ctx *ctx = file->private_data; 2768 __poll_t mask = 0; 2769 2770 poll_wait(file, &ctx->cq_wait, wait); 2771 /* 2772 * synchronizes with barrier from wq_has_sleeper call in 2773 * io_commit_cqring 2774 */ 2775 smp_rmb(); 2776 if (!io_sqring_full(ctx)) 2777 mask |= EPOLLOUT | EPOLLWRNORM; 2778 2779 /* 2780 * Don't flush cqring overflow list here, just do a simple check. 2781 * Otherwise there could possible be ABBA deadlock: 2782 * CPU0 CPU1 2783 * ---- ---- 2784 * lock(&ctx->uring_lock); 2785 * lock(&ep->mtx); 2786 * lock(&ctx->uring_lock); 2787 * lock(&ep->mtx); 2788 * 2789 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2790 * pushes them to do the flush. 2791 */ 2792 2793 if (io_cqring_events(ctx) || io_has_work(ctx)) 2794 mask |= EPOLLIN | EPOLLRDNORM; 2795 2796 return mask; 2797 } 2798 2799 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 2800 { 2801 const struct cred *creds; 2802 2803 creds = xa_erase(&ctx->personalities, id); 2804 if (creds) { 2805 put_cred(creds); 2806 return 0; 2807 } 2808 2809 return -EINVAL; 2810 } 2811 2812 struct io_tctx_exit { 2813 struct callback_head task_work; 2814 struct completion completion; 2815 struct io_ring_ctx *ctx; 2816 }; 2817 2818 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2819 { 2820 struct io_uring_task *tctx = current->io_uring; 2821 struct io_tctx_exit *work; 2822 2823 work = container_of(cb, struct io_tctx_exit, task_work); 2824 /* 2825 * When @in_idle, we're in cancellation and it's racy to remove the 2826 * node. It'll be removed by the end of cancellation, just ignore it. 2827 * tctx can be NULL if the queueing of this task_work raced with 2828 * work cancelation off the exec path. 2829 */ 2830 if (tctx && !atomic_read(&tctx->in_idle)) 2831 io_uring_del_tctx_node((unsigned long)work->ctx); 2832 complete(&work->completion); 2833 } 2834 2835 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2836 { 2837 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2838 2839 return req->ctx == data; 2840 } 2841 2842 static __cold void io_ring_exit_work(struct work_struct *work) 2843 { 2844 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2845 unsigned long timeout = jiffies + HZ * 60 * 5; 2846 unsigned long interval = HZ / 20; 2847 struct io_tctx_exit exit; 2848 struct io_tctx_node *node; 2849 int ret; 2850 2851 /* 2852 * If we're doing polled IO and end up having requests being 2853 * submitted async (out-of-line), then completions can come in while 2854 * we're waiting for refs to drop. We need to reap these manually, 2855 * as nobody else will be looking for them. 2856 */ 2857 do { 2858 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2859 mutex_lock(&ctx->uring_lock); 2860 io_cqring_overflow_kill(ctx); 2861 mutex_unlock(&ctx->uring_lock); 2862 } 2863 2864 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2865 io_move_task_work_from_local(ctx); 2866 2867 while (io_uring_try_cancel_requests(ctx, NULL, true)) 2868 cond_resched(); 2869 2870 if (ctx->sq_data) { 2871 struct io_sq_data *sqd = ctx->sq_data; 2872 struct task_struct *tsk; 2873 2874 io_sq_thread_park(sqd); 2875 tsk = sqd->thread; 2876 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2877 io_wq_cancel_cb(tsk->io_uring->io_wq, 2878 io_cancel_ctx_cb, ctx, true); 2879 io_sq_thread_unpark(sqd); 2880 } 2881 2882 io_req_caches_free(ctx); 2883 2884 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2885 /* there is little hope left, don't run it too often */ 2886 interval = HZ * 60; 2887 } 2888 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval)); 2889 2890 init_completion(&exit.completion); 2891 init_task_work(&exit.task_work, io_tctx_exit_cb); 2892 exit.ctx = ctx; 2893 /* 2894 * Some may use context even when all refs and requests have been put, 2895 * and they are free to do so while still holding uring_lock or 2896 * completion_lock, see io_req_task_submit(). Apart from other work, 2897 * this lock/unlock section also waits them to finish. 2898 */ 2899 mutex_lock(&ctx->uring_lock); 2900 while (!list_empty(&ctx->tctx_list)) { 2901 WARN_ON_ONCE(time_after(jiffies, timeout)); 2902 2903 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 2904 ctx_node); 2905 /* don't spin on a single task if cancellation failed */ 2906 list_rotate_left(&ctx->tctx_list); 2907 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 2908 if (WARN_ON_ONCE(ret)) 2909 continue; 2910 2911 mutex_unlock(&ctx->uring_lock); 2912 wait_for_completion(&exit.completion); 2913 mutex_lock(&ctx->uring_lock); 2914 } 2915 mutex_unlock(&ctx->uring_lock); 2916 spin_lock(&ctx->completion_lock); 2917 spin_unlock(&ctx->completion_lock); 2918 2919 io_ring_ctx_free(ctx); 2920 } 2921 2922 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 2923 { 2924 unsigned long index; 2925 struct creds *creds; 2926 2927 mutex_lock(&ctx->uring_lock); 2928 percpu_ref_kill(&ctx->refs); 2929 xa_for_each(&ctx->personalities, index, creds) 2930 io_unregister_personality(ctx, index); 2931 if (ctx->rings) 2932 io_poll_remove_all(ctx, NULL, true); 2933 mutex_unlock(&ctx->uring_lock); 2934 2935 /* 2936 * If we failed setting up the ctx, we might not have any rings 2937 * and therefore did not submit any requests 2938 */ 2939 if (ctx->rings) 2940 io_kill_timeouts(ctx, NULL, true); 2941 2942 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 2943 /* 2944 * Use system_unbound_wq to avoid spawning tons of event kworkers 2945 * if we're exiting a ton of rings at the same time. It just adds 2946 * noise and overhead, there's no discernable change in runtime 2947 * over using system_wq. 2948 */ 2949 queue_work(system_unbound_wq, &ctx->exit_work); 2950 } 2951 2952 static int io_uring_release(struct inode *inode, struct file *file) 2953 { 2954 struct io_ring_ctx *ctx = file->private_data; 2955 2956 file->private_data = NULL; 2957 io_ring_ctx_wait_and_kill(ctx); 2958 return 0; 2959 } 2960 2961 struct io_task_cancel { 2962 struct task_struct *task; 2963 bool all; 2964 }; 2965 2966 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 2967 { 2968 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2969 struct io_task_cancel *cancel = data; 2970 2971 return io_match_task_safe(req, cancel->task, cancel->all); 2972 } 2973 2974 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 2975 struct task_struct *task, 2976 bool cancel_all) 2977 { 2978 struct io_defer_entry *de; 2979 LIST_HEAD(list); 2980 2981 spin_lock(&ctx->completion_lock); 2982 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 2983 if (io_match_task_safe(de->req, task, cancel_all)) { 2984 list_cut_position(&list, &ctx->defer_list, &de->list); 2985 break; 2986 } 2987 } 2988 spin_unlock(&ctx->completion_lock); 2989 if (list_empty(&list)) 2990 return false; 2991 2992 while (!list_empty(&list)) { 2993 de = list_first_entry(&list, struct io_defer_entry, list); 2994 list_del_init(&de->list); 2995 io_req_task_queue_fail(de->req, -ECANCELED); 2996 kfree(de); 2997 } 2998 return true; 2999 } 3000 3001 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3002 { 3003 struct io_tctx_node *node; 3004 enum io_wq_cancel cret; 3005 bool ret = false; 3006 3007 mutex_lock(&ctx->uring_lock); 3008 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3009 struct io_uring_task *tctx = node->task->io_uring; 3010 3011 /* 3012 * io_wq will stay alive while we hold uring_lock, because it's 3013 * killed after ctx nodes, which requires to take the lock. 3014 */ 3015 if (!tctx || !tctx->io_wq) 3016 continue; 3017 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3018 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3019 } 3020 mutex_unlock(&ctx->uring_lock); 3021 3022 return ret; 3023 } 3024 3025 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3026 struct task_struct *task, 3027 bool cancel_all) 3028 { 3029 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3030 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3031 enum io_wq_cancel cret; 3032 bool ret = false; 3033 3034 /* failed during ring init, it couldn't have issued any requests */ 3035 if (!ctx->rings) 3036 return false; 3037 3038 if (!task) { 3039 ret |= io_uring_try_cancel_iowq(ctx); 3040 } else if (tctx && tctx->io_wq) { 3041 /* 3042 * Cancels requests of all rings, not only @ctx, but 3043 * it's fine as the task is in exit/exec. 3044 */ 3045 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3046 &cancel, true); 3047 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3048 } 3049 3050 /* SQPOLL thread does its own polling */ 3051 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3052 (ctx->sq_data && ctx->sq_data->thread == current)) { 3053 while (!wq_list_empty(&ctx->iopoll_list)) { 3054 io_iopoll_try_reap_events(ctx); 3055 ret = true; 3056 } 3057 } 3058 3059 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3060 ret |= io_run_local_work(ctx) > 0; 3061 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3062 mutex_lock(&ctx->uring_lock); 3063 ret |= io_poll_remove_all(ctx, task, cancel_all); 3064 mutex_unlock(&ctx->uring_lock); 3065 ret |= io_kill_timeouts(ctx, task, cancel_all); 3066 if (task) 3067 ret |= io_run_task_work() > 0; 3068 return ret; 3069 } 3070 3071 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3072 { 3073 if (tracked) 3074 return atomic_read(&tctx->inflight_tracked); 3075 return percpu_counter_sum(&tctx->inflight); 3076 } 3077 3078 /* 3079 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3080 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3081 */ 3082 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3083 { 3084 struct io_uring_task *tctx = current->io_uring; 3085 struct io_ring_ctx *ctx; 3086 s64 inflight; 3087 DEFINE_WAIT(wait); 3088 3089 WARN_ON_ONCE(sqd && sqd->thread != current); 3090 3091 if (!current->io_uring) 3092 return; 3093 if (tctx->io_wq) 3094 io_wq_exit_start(tctx->io_wq); 3095 3096 atomic_inc(&tctx->in_idle); 3097 do { 3098 bool loop = false; 3099 3100 io_uring_drop_tctx_refs(current); 3101 /* read completions before cancelations */ 3102 inflight = tctx_inflight(tctx, !cancel_all); 3103 if (!inflight) 3104 break; 3105 3106 if (!sqd) { 3107 struct io_tctx_node *node; 3108 unsigned long index; 3109 3110 xa_for_each(&tctx->xa, index, node) { 3111 /* sqpoll task will cancel all its requests */ 3112 if (node->ctx->sq_data) 3113 continue; 3114 loop |= io_uring_try_cancel_requests(node->ctx, 3115 current, cancel_all); 3116 } 3117 } else { 3118 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3119 loop |= io_uring_try_cancel_requests(ctx, 3120 current, 3121 cancel_all); 3122 } 3123 3124 if (loop) { 3125 cond_resched(); 3126 continue; 3127 } 3128 3129 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3130 io_run_task_work(); 3131 io_uring_drop_tctx_refs(current); 3132 3133 /* 3134 * If we've seen completions, retry without waiting. This 3135 * avoids a race where a completion comes in before we did 3136 * prepare_to_wait(). 3137 */ 3138 if (inflight == tctx_inflight(tctx, !cancel_all)) 3139 schedule(); 3140 finish_wait(&tctx->wait, &wait); 3141 } while (1); 3142 3143 io_uring_clean_tctx(tctx); 3144 if (cancel_all) { 3145 /* 3146 * We shouldn't run task_works after cancel, so just leave 3147 * ->in_idle set for normal exit. 3148 */ 3149 atomic_dec(&tctx->in_idle); 3150 /* for exec all current's requests should be gone, kill tctx */ 3151 __io_uring_free(current); 3152 } 3153 } 3154 3155 void __io_uring_cancel(bool cancel_all) 3156 { 3157 io_uring_cancel_generic(cancel_all, NULL); 3158 } 3159 3160 static void *io_uring_validate_mmap_request(struct file *file, 3161 loff_t pgoff, size_t sz) 3162 { 3163 struct io_ring_ctx *ctx = file->private_data; 3164 loff_t offset = pgoff << PAGE_SHIFT; 3165 struct page *page; 3166 void *ptr; 3167 3168 switch (offset) { 3169 case IORING_OFF_SQ_RING: 3170 case IORING_OFF_CQ_RING: 3171 ptr = ctx->rings; 3172 break; 3173 case IORING_OFF_SQES: 3174 ptr = ctx->sq_sqes; 3175 break; 3176 default: 3177 return ERR_PTR(-EINVAL); 3178 } 3179 3180 page = virt_to_head_page(ptr); 3181 if (sz > page_size(page)) 3182 return ERR_PTR(-EINVAL); 3183 3184 return ptr; 3185 } 3186 3187 #ifdef CONFIG_MMU 3188 3189 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3190 { 3191 size_t sz = vma->vm_end - vma->vm_start; 3192 unsigned long pfn; 3193 void *ptr; 3194 3195 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3196 if (IS_ERR(ptr)) 3197 return PTR_ERR(ptr); 3198 3199 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3200 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3201 } 3202 3203 #else /* !CONFIG_MMU */ 3204 3205 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3206 { 3207 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL; 3208 } 3209 3210 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3211 { 3212 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3213 } 3214 3215 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3216 unsigned long addr, unsigned long len, 3217 unsigned long pgoff, unsigned long flags) 3218 { 3219 void *ptr; 3220 3221 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3222 if (IS_ERR(ptr)) 3223 return PTR_ERR(ptr); 3224 3225 return (unsigned long) ptr; 3226 } 3227 3228 #endif /* !CONFIG_MMU */ 3229 3230 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3231 { 3232 if (flags & IORING_ENTER_EXT_ARG) { 3233 struct io_uring_getevents_arg arg; 3234 3235 if (argsz != sizeof(arg)) 3236 return -EINVAL; 3237 if (copy_from_user(&arg, argp, sizeof(arg))) 3238 return -EFAULT; 3239 } 3240 return 0; 3241 } 3242 3243 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3244 struct __kernel_timespec __user **ts, 3245 const sigset_t __user **sig) 3246 { 3247 struct io_uring_getevents_arg arg; 3248 3249 /* 3250 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3251 * is just a pointer to the sigset_t. 3252 */ 3253 if (!(flags & IORING_ENTER_EXT_ARG)) { 3254 *sig = (const sigset_t __user *) argp; 3255 *ts = NULL; 3256 return 0; 3257 } 3258 3259 /* 3260 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3261 * timespec and sigset_t pointers if good. 3262 */ 3263 if (*argsz != sizeof(arg)) 3264 return -EINVAL; 3265 if (copy_from_user(&arg, argp, sizeof(arg))) 3266 return -EFAULT; 3267 if (arg.pad) 3268 return -EINVAL; 3269 *sig = u64_to_user_ptr(arg.sigmask); 3270 *argsz = arg.sigmask_sz; 3271 *ts = u64_to_user_ptr(arg.ts); 3272 return 0; 3273 } 3274 3275 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3276 u32, min_complete, u32, flags, const void __user *, argp, 3277 size_t, argsz) 3278 { 3279 struct io_ring_ctx *ctx; 3280 struct fd f; 3281 long ret; 3282 3283 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3284 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3285 IORING_ENTER_REGISTERED_RING))) 3286 return -EINVAL; 3287 3288 /* 3289 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3290 * need only dereference our task private array to find it. 3291 */ 3292 if (flags & IORING_ENTER_REGISTERED_RING) { 3293 struct io_uring_task *tctx = current->io_uring; 3294 3295 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3296 return -EINVAL; 3297 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3298 f.file = tctx->registered_rings[fd]; 3299 f.flags = 0; 3300 if (unlikely(!f.file)) 3301 return -EBADF; 3302 } else { 3303 f = fdget(fd); 3304 if (unlikely(!f.file)) 3305 return -EBADF; 3306 ret = -EOPNOTSUPP; 3307 if (unlikely(!io_is_uring_fops(f.file))) 3308 goto out; 3309 } 3310 3311 ctx = f.file->private_data; 3312 ret = -EBADFD; 3313 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3314 goto out; 3315 3316 /* 3317 * For SQ polling, the thread will do all submissions and completions. 3318 * Just return the requested submit count, and wake the thread if 3319 * we were asked to. 3320 */ 3321 ret = 0; 3322 if (ctx->flags & IORING_SETUP_SQPOLL) { 3323 io_cqring_overflow_flush(ctx); 3324 3325 if (unlikely(ctx->sq_data->thread == NULL)) { 3326 ret = -EOWNERDEAD; 3327 goto out; 3328 } 3329 if (flags & IORING_ENTER_SQ_WAKEUP) 3330 wake_up(&ctx->sq_data->wait); 3331 if (flags & IORING_ENTER_SQ_WAIT) { 3332 ret = io_sqpoll_wait_sq(ctx); 3333 if (ret) 3334 goto out; 3335 } 3336 ret = to_submit; 3337 } else if (to_submit) { 3338 ret = io_uring_add_tctx_node(ctx); 3339 if (unlikely(ret)) 3340 goto out; 3341 3342 mutex_lock(&ctx->uring_lock); 3343 ret = io_submit_sqes(ctx, to_submit); 3344 if (ret != to_submit) { 3345 mutex_unlock(&ctx->uring_lock); 3346 goto out; 3347 } 3348 if (flags & IORING_ENTER_GETEVENTS) { 3349 if (ctx->syscall_iopoll) 3350 goto iopoll_locked; 3351 /* 3352 * Ignore errors, we'll soon call io_cqring_wait() and 3353 * it should handle ownership problems if any. 3354 */ 3355 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3356 (void)io_run_local_work_locked(ctx); 3357 } 3358 mutex_unlock(&ctx->uring_lock); 3359 } 3360 3361 if (flags & IORING_ENTER_GETEVENTS) { 3362 int ret2; 3363 3364 if (ctx->syscall_iopoll) { 3365 /* 3366 * We disallow the app entering submit/complete with 3367 * polling, but we still need to lock the ring to 3368 * prevent racing with polled issue that got punted to 3369 * a workqueue. 3370 */ 3371 mutex_lock(&ctx->uring_lock); 3372 iopoll_locked: 3373 ret2 = io_validate_ext_arg(flags, argp, argsz); 3374 if (likely(!ret2)) { 3375 min_complete = min(min_complete, 3376 ctx->cq_entries); 3377 ret2 = io_iopoll_check(ctx, min_complete); 3378 } 3379 mutex_unlock(&ctx->uring_lock); 3380 } else { 3381 const sigset_t __user *sig; 3382 struct __kernel_timespec __user *ts; 3383 3384 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3385 if (likely(!ret2)) { 3386 min_complete = min(min_complete, 3387 ctx->cq_entries); 3388 ret2 = io_cqring_wait(ctx, min_complete, sig, 3389 argsz, ts); 3390 } 3391 } 3392 3393 if (!ret) { 3394 ret = ret2; 3395 3396 /* 3397 * EBADR indicates that one or more CQE were dropped. 3398 * Once the user has been informed we can clear the bit 3399 * as they are obviously ok with those drops. 3400 */ 3401 if (unlikely(ret2 == -EBADR)) 3402 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3403 &ctx->check_cq); 3404 } 3405 } 3406 out: 3407 fdput(f); 3408 return ret; 3409 } 3410 3411 static const struct file_operations io_uring_fops = { 3412 .release = io_uring_release, 3413 .mmap = io_uring_mmap, 3414 #ifndef CONFIG_MMU 3415 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3416 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3417 #endif 3418 .poll = io_uring_poll, 3419 #ifdef CONFIG_PROC_FS 3420 .show_fdinfo = io_uring_show_fdinfo, 3421 #endif 3422 }; 3423 3424 bool io_is_uring_fops(struct file *file) 3425 { 3426 return file->f_op == &io_uring_fops; 3427 } 3428 3429 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3430 struct io_uring_params *p) 3431 { 3432 struct io_rings *rings; 3433 size_t size, sq_array_offset; 3434 3435 /* make sure these are sane, as we already accounted them */ 3436 ctx->sq_entries = p->sq_entries; 3437 ctx->cq_entries = p->cq_entries; 3438 3439 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3440 if (size == SIZE_MAX) 3441 return -EOVERFLOW; 3442 3443 rings = io_mem_alloc(size); 3444 if (!rings) 3445 return -ENOMEM; 3446 3447 ctx->rings = rings; 3448 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3449 rings->sq_ring_mask = p->sq_entries - 1; 3450 rings->cq_ring_mask = p->cq_entries - 1; 3451 rings->sq_ring_entries = p->sq_entries; 3452 rings->cq_ring_entries = p->cq_entries; 3453 3454 if (p->flags & IORING_SETUP_SQE128) 3455 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3456 else 3457 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3458 if (size == SIZE_MAX) { 3459 io_mem_free(ctx->rings); 3460 ctx->rings = NULL; 3461 return -EOVERFLOW; 3462 } 3463 3464 ctx->sq_sqes = io_mem_alloc(size); 3465 if (!ctx->sq_sqes) { 3466 io_mem_free(ctx->rings); 3467 ctx->rings = NULL; 3468 return -ENOMEM; 3469 } 3470 3471 return 0; 3472 } 3473 3474 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file) 3475 { 3476 int ret, fd; 3477 3478 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3479 if (fd < 0) 3480 return fd; 3481 3482 ret = __io_uring_add_tctx_node(ctx); 3483 if (ret) { 3484 put_unused_fd(fd); 3485 return ret; 3486 } 3487 fd_install(fd, file); 3488 return fd; 3489 } 3490 3491 /* 3492 * Allocate an anonymous fd, this is what constitutes the application 3493 * visible backing of an io_uring instance. The application mmaps this 3494 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3495 * we have to tie this fd to a socket for file garbage collection purposes. 3496 */ 3497 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3498 { 3499 struct file *file; 3500 #if defined(CONFIG_UNIX) 3501 int ret; 3502 3503 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3504 &ctx->ring_sock); 3505 if (ret) 3506 return ERR_PTR(ret); 3507 #endif 3508 3509 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3510 O_RDWR | O_CLOEXEC, NULL); 3511 #if defined(CONFIG_UNIX) 3512 if (IS_ERR(file)) { 3513 sock_release(ctx->ring_sock); 3514 ctx->ring_sock = NULL; 3515 } else { 3516 ctx->ring_sock->file = file; 3517 } 3518 #endif 3519 return file; 3520 } 3521 3522 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3523 struct io_uring_params __user *params) 3524 { 3525 struct io_ring_ctx *ctx; 3526 struct file *file; 3527 int ret; 3528 3529 if (!entries) 3530 return -EINVAL; 3531 if (entries > IORING_MAX_ENTRIES) { 3532 if (!(p->flags & IORING_SETUP_CLAMP)) 3533 return -EINVAL; 3534 entries = IORING_MAX_ENTRIES; 3535 } 3536 3537 /* 3538 * Use twice as many entries for the CQ ring. It's possible for the 3539 * application to drive a higher depth than the size of the SQ ring, 3540 * since the sqes are only used at submission time. This allows for 3541 * some flexibility in overcommitting a bit. If the application has 3542 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3543 * of CQ ring entries manually. 3544 */ 3545 p->sq_entries = roundup_pow_of_two(entries); 3546 if (p->flags & IORING_SETUP_CQSIZE) { 3547 /* 3548 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3549 * to a power-of-two, if it isn't already. We do NOT impose 3550 * any cq vs sq ring sizing. 3551 */ 3552 if (!p->cq_entries) 3553 return -EINVAL; 3554 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3555 if (!(p->flags & IORING_SETUP_CLAMP)) 3556 return -EINVAL; 3557 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3558 } 3559 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3560 if (p->cq_entries < p->sq_entries) 3561 return -EINVAL; 3562 } else { 3563 p->cq_entries = 2 * p->sq_entries; 3564 } 3565 3566 ctx = io_ring_ctx_alloc(p); 3567 if (!ctx) 3568 return -ENOMEM; 3569 3570 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3571 !(ctx->flags & IORING_SETUP_IOPOLL) && 3572 !(ctx->flags & IORING_SETUP_SQPOLL)) 3573 ctx->task_complete = true; 3574 3575 /* 3576 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3577 * space applications don't need to do io completion events 3578 * polling again, they can rely on io_sq_thread to do polling 3579 * work, which can reduce cpu usage and uring_lock contention. 3580 */ 3581 if (ctx->flags & IORING_SETUP_IOPOLL && 3582 !(ctx->flags & IORING_SETUP_SQPOLL)) 3583 ctx->syscall_iopoll = 1; 3584 3585 ctx->compat = in_compat_syscall(); 3586 if (!capable(CAP_IPC_LOCK)) 3587 ctx->user = get_uid(current_user()); 3588 3589 /* 3590 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3591 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3592 */ 3593 ret = -EINVAL; 3594 if (ctx->flags & IORING_SETUP_SQPOLL) { 3595 /* IPI related flags don't make sense with SQPOLL */ 3596 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3597 IORING_SETUP_TASKRUN_FLAG | 3598 IORING_SETUP_DEFER_TASKRUN)) 3599 goto err; 3600 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3601 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3602 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3603 } else { 3604 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3605 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3606 goto err; 3607 ctx->notify_method = TWA_SIGNAL; 3608 } 3609 3610 /* 3611 * For DEFER_TASKRUN we require the completion task to be the same as the 3612 * submission task. This implies that there is only one submitter, so enforce 3613 * that. 3614 */ 3615 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3616 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3617 goto err; 3618 } 3619 3620 /* 3621 * This is just grabbed for accounting purposes. When a process exits, 3622 * the mm is exited and dropped before the files, hence we need to hang 3623 * on to this mm purely for the purposes of being able to unaccount 3624 * memory (locked/pinned vm). It's not used for anything else. 3625 */ 3626 mmgrab(current->mm); 3627 ctx->mm_account = current->mm; 3628 3629 ret = io_allocate_scq_urings(ctx, p); 3630 if (ret) 3631 goto err; 3632 3633 ret = io_sq_offload_create(ctx, p); 3634 if (ret) 3635 goto err; 3636 /* always set a rsrc node */ 3637 ret = io_rsrc_node_switch_start(ctx); 3638 if (ret) 3639 goto err; 3640 io_rsrc_node_switch(ctx, NULL); 3641 3642 memset(&p->sq_off, 0, sizeof(p->sq_off)); 3643 p->sq_off.head = offsetof(struct io_rings, sq.head); 3644 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3645 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3646 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3647 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3648 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3649 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3650 3651 memset(&p->cq_off, 0, sizeof(p->cq_off)); 3652 p->cq_off.head = offsetof(struct io_rings, cq.head); 3653 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3654 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3655 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3656 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3657 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3658 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3659 3660 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3661 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3662 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3663 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3664 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3665 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3666 IORING_FEAT_LINKED_FILE; 3667 3668 if (copy_to_user(params, p, sizeof(*p))) { 3669 ret = -EFAULT; 3670 goto err; 3671 } 3672 3673 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3674 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3675 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3676 3677 file = io_uring_get_file(ctx); 3678 if (IS_ERR(file)) { 3679 ret = PTR_ERR(file); 3680 goto err; 3681 } 3682 3683 /* 3684 * Install ring fd as the very last thing, so we don't risk someone 3685 * having closed it before we finish setup 3686 */ 3687 ret = io_uring_install_fd(ctx, file); 3688 if (ret < 0) { 3689 /* fput will clean it up */ 3690 fput(file); 3691 return ret; 3692 } 3693 3694 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3695 return ret; 3696 err: 3697 io_ring_ctx_wait_and_kill(ctx); 3698 return ret; 3699 } 3700 3701 /* 3702 * Sets up an aio uring context, and returns the fd. Applications asks for a 3703 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3704 * params structure passed in. 3705 */ 3706 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3707 { 3708 struct io_uring_params p; 3709 int i; 3710 3711 if (copy_from_user(&p, params, sizeof(p))) 3712 return -EFAULT; 3713 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3714 if (p.resv[i]) 3715 return -EINVAL; 3716 } 3717 3718 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3719 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3720 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3721 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3722 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3723 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3724 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN)) 3725 return -EINVAL; 3726 3727 return io_uring_create(entries, &p, params); 3728 } 3729 3730 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3731 struct io_uring_params __user *, params) 3732 { 3733 return io_uring_setup(entries, params); 3734 } 3735 3736 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 3737 unsigned nr_args) 3738 { 3739 struct io_uring_probe *p; 3740 size_t size; 3741 int i, ret; 3742 3743 size = struct_size(p, ops, nr_args); 3744 if (size == SIZE_MAX) 3745 return -EOVERFLOW; 3746 p = kzalloc(size, GFP_KERNEL); 3747 if (!p) 3748 return -ENOMEM; 3749 3750 ret = -EFAULT; 3751 if (copy_from_user(p, arg, size)) 3752 goto out; 3753 ret = -EINVAL; 3754 if (memchr_inv(p, 0, size)) 3755 goto out; 3756 3757 p->last_op = IORING_OP_LAST - 1; 3758 if (nr_args > IORING_OP_LAST) 3759 nr_args = IORING_OP_LAST; 3760 3761 for (i = 0; i < nr_args; i++) { 3762 p->ops[i].op = i; 3763 if (!io_op_defs[i].not_supported) 3764 p->ops[i].flags = IO_URING_OP_SUPPORTED; 3765 } 3766 p->ops_len = i; 3767 3768 ret = 0; 3769 if (copy_to_user(arg, p, size)) 3770 ret = -EFAULT; 3771 out: 3772 kfree(p); 3773 return ret; 3774 } 3775 3776 static int io_register_personality(struct io_ring_ctx *ctx) 3777 { 3778 const struct cred *creds; 3779 u32 id; 3780 int ret; 3781 3782 creds = get_current_cred(); 3783 3784 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 3785 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 3786 if (ret < 0) { 3787 put_cred(creds); 3788 return ret; 3789 } 3790 return id; 3791 } 3792 3793 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 3794 void __user *arg, unsigned int nr_args) 3795 { 3796 struct io_uring_restriction *res; 3797 size_t size; 3798 int i, ret; 3799 3800 /* Restrictions allowed only if rings started disabled */ 3801 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 3802 return -EBADFD; 3803 3804 /* We allow only a single restrictions registration */ 3805 if (ctx->restrictions.registered) 3806 return -EBUSY; 3807 3808 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 3809 return -EINVAL; 3810 3811 size = array_size(nr_args, sizeof(*res)); 3812 if (size == SIZE_MAX) 3813 return -EOVERFLOW; 3814 3815 res = memdup_user(arg, size); 3816 if (IS_ERR(res)) 3817 return PTR_ERR(res); 3818 3819 ret = 0; 3820 3821 for (i = 0; i < nr_args; i++) { 3822 switch (res[i].opcode) { 3823 case IORING_RESTRICTION_REGISTER_OP: 3824 if (res[i].register_op >= IORING_REGISTER_LAST) { 3825 ret = -EINVAL; 3826 goto out; 3827 } 3828 3829 __set_bit(res[i].register_op, 3830 ctx->restrictions.register_op); 3831 break; 3832 case IORING_RESTRICTION_SQE_OP: 3833 if (res[i].sqe_op >= IORING_OP_LAST) { 3834 ret = -EINVAL; 3835 goto out; 3836 } 3837 3838 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 3839 break; 3840 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 3841 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 3842 break; 3843 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 3844 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 3845 break; 3846 default: 3847 ret = -EINVAL; 3848 goto out; 3849 } 3850 } 3851 3852 out: 3853 /* Reset all restrictions if an error happened */ 3854 if (ret != 0) 3855 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 3856 else 3857 ctx->restrictions.registered = true; 3858 3859 kfree(res); 3860 return ret; 3861 } 3862 3863 static int io_register_enable_rings(struct io_ring_ctx *ctx) 3864 { 3865 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 3866 return -EBADFD; 3867 3868 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) 3869 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3870 3871 if (ctx->restrictions.registered) 3872 ctx->restricted = 1; 3873 3874 ctx->flags &= ~IORING_SETUP_R_DISABLED; 3875 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 3876 wake_up(&ctx->sq_data->wait); 3877 return 0; 3878 } 3879 3880 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 3881 void __user *arg, unsigned len) 3882 { 3883 struct io_uring_task *tctx = current->io_uring; 3884 cpumask_var_t new_mask; 3885 int ret; 3886 3887 if (!tctx || !tctx->io_wq) 3888 return -EINVAL; 3889 3890 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 3891 return -ENOMEM; 3892 3893 cpumask_clear(new_mask); 3894 if (len > cpumask_size()) 3895 len = cpumask_size(); 3896 3897 if (in_compat_syscall()) { 3898 ret = compat_get_bitmap(cpumask_bits(new_mask), 3899 (const compat_ulong_t __user *)arg, 3900 len * 8 /* CHAR_BIT */); 3901 } else { 3902 ret = copy_from_user(new_mask, arg, len); 3903 } 3904 3905 if (ret) { 3906 free_cpumask_var(new_mask); 3907 return -EFAULT; 3908 } 3909 3910 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask); 3911 free_cpumask_var(new_mask); 3912 return ret; 3913 } 3914 3915 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 3916 { 3917 struct io_uring_task *tctx = current->io_uring; 3918 3919 if (!tctx || !tctx->io_wq) 3920 return -EINVAL; 3921 3922 return io_wq_cpu_affinity(tctx->io_wq, NULL); 3923 } 3924 3925 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 3926 void __user *arg) 3927 __must_hold(&ctx->uring_lock) 3928 { 3929 struct io_tctx_node *node; 3930 struct io_uring_task *tctx = NULL; 3931 struct io_sq_data *sqd = NULL; 3932 __u32 new_count[2]; 3933 int i, ret; 3934 3935 if (copy_from_user(new_count, arg, sizeof(new_count))) 3936 return -EFAULT; 3937 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3938 if (new_count[i] > INT_MAX) 3939 return -EINVAL; 3940 3941 if (ctx->flags & IORING_SETUP_SQPOLL) { 3942 sqd = ctx->sq_data; 3943 if (sqd) { 3944 /* 3945 * Observe the correct sqd->lock -> ctx->uring_lock 3946 * ordering. Fine to drop uring_lock here, we hold 3947 * a ref to the ctx. 3948 */ 3949 refcount_inc(&sqd->refs); 3950 mutex_unlock(&ctx->uring_lock); 3951 mutex_lock(&sqd->lock); 3952 mutex_lock(&ctx->uring_lock); 3953 if (sqd->thread) 3954 tctx = sqd->thread->io_uring; 3955 } 3956 } else { 3957 tctx = current->io_uring; 3958 } 3959 3960 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 3961 3962 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3963 if (new_count[i]) 3964 ctx->iowq_limits[i] = new_count[i]; 3965 ctx->iowq_limits_set = true; 3966 3967 if (tctx && tctx->io_wq) { 3968 ret = io_wq_max_workers(tctx->io_wq, new_count); 3969 if (ret) 3970 goto err; 3971 } else { 3972 memset(new_count, 0, sizeof(new_count)); 3973 } 3974 3975 if (sqd) { 3976 mutex_unlock(&sqd->lock); 3977 io_put_sq_data(sqd); 3978 } 3979 3980 if (copy_to_user(arg, new_count, sizeof(new_count))) 3981 return -EFAULT; 3982 3983 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 3984 if (sqd) 3985 return 0; 3986 3987 /* now propagate the restriction to all registered users */ 3988 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3989 struct io_uring_task *tctx = node->task->io_uring; 3990 3991 if (WARN_ON_ONCE(!tctx->io_wq)) 3992 continue; 3993 3994 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3995 new_count[i] = ctx->iowq_limits[i]; 3996 /* ignore errors, it always returns zero anyway */ 3997 (void)io_wq_max_workers(tctx->io_wq, new_count); 3998 } 3999 return 0; 4000 err: 4001 if (sqd) { 4002 mutex_unlock(&sqd->lock); 4003 io_put_sq_data(sqd); 4004 } 4005 return ret; 4006 } 4007 4008 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4009 void __user *arg, unsigned nr_args) 4010 __releases(ctx->uring_lock) 4011 __acquires(ctx->uring_lock) 4012 { 4013 int ret; 4014 4015 /* 4016 * We don't quiesce the refs for register anymore and so it can't be 4017 * dying as we're holding a file ref here. 4018 */ 4019 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4020 return -ENXIO; 4021 4022 if (ctx->submitter_task && ctx->submitter_task != current) 4023 return -EEXIST; 4024 4025 if (ctx->restricted) { 4026 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4027 if (!test_bit(opcode, ctx->restrictions.register_op)) 4028 return -EACCES; 4029 } 4030 4031 switch (opcode) { 4032 case IORING_REGISTER_BUFFERS: 4033 ret = -EFAULT; 4034 if (!arg) 4035 break; 4036 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4037 break; 4038 case IORING_UNREGISTER_BUFFERS: 4039 ret = -EINVAL; 4040 if (arg || nr_args) 4041 break; 4042 ret = io_sqe_buffers_unregister(ctx); 4043 break; 4044 case IORING_REGISTER_FILES: 4045 ret = -EFAULT; 4046 if (!arg) 4047 break; 4048 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4049 break; 4050 case IORING_UNREGISTER_FILES: 4051 ret = -EINVAL; 4052 if (arg || nr_args) 4053 break; 4054 ret = io_sqe_files_unregister(ctx); 4055 break; 4056 case IORING_REGISTER_FILES_UPDATE: 4057 ret = io_register_files_update(ctx, arg, nr_args); 4058 break; 4059 case IORING_REGISTER_EVENTFD: 4060 ret = -EINVAL; 4061 if (nr_args != 1) 4062 break; 4063 ret = io_eventfd_register(ctx, arg, 0); 4064 break; 4065 case IORING_REGISTER_EVENTFD_ASYNC: 4066 ret = -EINVAL; 4067 if (nr_args != 1) 4068 break; 4069 ret = io_eventfd_register(ctx, arg, 1); 4070 break; 4071 case IORING_UNREGISTER_EVENTFD: 4072 ret = -EINVAL; 4073 if (arg || nr_args) 4074 break; 4075 ret = io_eventfd_unregister(ctx); 4076 break; 4077 case IORING_REGISTER_PROBE: 4078 ret = -EINVAL; 4079 if (!arg || nr_args > 256) 4080 break; 4081 ret = io_probe(ctx, arg, nr_args); 4082 break; 4083 case IORING_REGISTER_PERSONALITY: 4084 ret = -EINVAL; 4085 if (arg || nr_args) 4086 break; 4087 ret = io_register_personality(ctx); 4088 break; 4089 case IORING_UNREGISTER_PERSONALITY: 4090 ret = -EINVAL; 4091 if (arg) 4092 break; 4093 ret = io_unregister_personality(ctx, nr_args); 4094 break; 4095 case IORING_REGISTER_ENABLE_RINGS: 4096 ret = -EINVAL; 4097 if (arg || nr_args) 4098 break; 4099 ret = io_register_enable_rings(ctx); 4100 break; 4101 case IORING_REGISTER_RESTRICTIONS: 4102 ret = io_register_restrictions(ctx, arg, nr_args); 4103 break; 4104 case IORING_REGISTER_FILES2: 4105 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4106 break; 4107 case IORING_REGISTER_FILES_UPDATE2: 4108 ret = io_register_rsrc_update(ctx, arg, nr_args, 4109 IORING_RSRC_FILE); 4110 break; 4111 case IORING_REGISTER_BUFFERS2: 4112 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4113 break; 4114 case IORING_REGISTER_BUFFERS_UPDATE: 4115 ret = io_register_rsrc_update(ctx, arg, nr_args, 4116 IORING_RSRC_BUFFER); 4117 break; 4118 case IORING_REGISTER_IOWQ_AFF: 4119 ret = -EINVAL; 4120 if (!arg || !nr_args) 4121 break; 4122 ret = io_register_iowq_aff(ctx, arg, nr_args); 4123 break; 4124 case IORING_UNREGISTER_IOWQ_AFF: 4125 ret = -EINVAL; 4126 if (arg || nr_args) 4127 break; 4128 ret = io_unregister_iowq_aff(ctx); 4129 break; 4130 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4131 ret = -EINVAL; 4132 if (!arg || nr_args != 2) 4133 break; 4134 ret = io_register_iowq_max_workers(ctx, arg); 4135 break; 4136 case IORING_REGISTER_RING_FDS: 4137 ret = io_ringfd_register(ctx, arg, nr_args); 4138 break; 4139 case IORING_UNREGISTER_RING_FDS: 4140 ret = io_ringfd_unregister(ctx, arg, nr_args); 4141 break; 4142 case IORING_REGISTER_PBUF_RING: 4143 ret = -EINVAL; 4144 if (!arg || nr_args != 1) 4145 break; 4146 ret = io_register_pbuf_ring(ctx, arg); 4147 break; 4148 case IORING_UNREGISTER_PBUF_RING: 4149 ret = -EINVAL; 4150 if (!arg || nr_args != 1) 4151 break; 4152 ret = io_unregister_pbuf_ring(ctx, arg); 4153 break; 4154 case IORING_REGISTER_SYNC_CANCEL: 4155 ret = -EINVAL; 4156 if (!arg || nr_args != 1) 4157 break; 4158 ret = io_sync_cancel(ctx, arg); 4159 break; 4160 case IORING_REGISTER_FILE_ALLOC_RANGE: 4161 ret = -EINVAL; 4162 if (!arg || nr_args) 4163 break; 4164 ret = io_register_file_alloc_range(ctx, arg); 4165 break; 4166 default: 4167 ret = -EINVAL; 4168 break; 4169 } 4170 4171 return ret; 4172 } 4173 4174 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4175 void __user *, arg, unsigned int, nr_args) 4176 { 4177 struct io_ring_ctx *ctx; 4178 long ret = -EBADF; 4179 struct fd f; 4180 4181 if (opcode >= IORING_REGISTER_LAST) 4182 return -EINVAL; 4183 4184 f = fdget(fd); 4185 if (!f.file) 4186 return -EBADF; 4187 4188 ret = -EOPNOTSUPP; 4189 if (!io_is_uring_fops(f.file)) 4190 goto out_fput; 4191 4192 ctx = f.file->private_data; 4193 4194 mutex_lock(&ctx->uring_lock); 4195 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4196 mutex_unlock(&ctx->uring_lock); 4197 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4198 out_fput: 4199 fdput(f); 4200 return ret; 4201 } 4202 4203 static int __init io_uring_init(void) 4204 { 4205 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4206 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4207 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4208 } while (0) 4209 4210 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4211 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4212 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4213 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4214 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4215 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4216 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4217 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4218 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4219 BUILD_BUG_SQE_ELEM(8, __u64, off); 4220 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4221 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4222 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4223 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4224 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4225 BUILD_BUG_SQE_ELEM(24, __u32, len); 4226 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4227 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4228 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4229 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4230 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4231 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4232 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4233 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4234 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4235 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4236 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4237 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4238 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4239 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4240 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4241 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4242 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4243 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4244 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4245 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4246 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4247 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4248 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4249 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4250 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4251 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4252 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4253 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4254 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4255 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4256 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4257 4258 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4259 sizeof(struct io_uring_rsrc_update)); 4260 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4261 sizeof(struct io_uring_rsrc_update2)); 4262 4263 /* ->buf_index is u16 */ 4264 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4265 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4266 offsetof(struct io_uring_buf_ring, tail)); 4267 4268 /* should fit into one byte */ 4269 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4270 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4271 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4272 4273 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4274 4275 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4276 4277 io_uring_optable_init(); 4278 4279 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4280 SLAB_ACCOUNT); 4281 return 0; 4282 }; 4283 __initcall(io_uring_init); 4284