1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 #include <asm/shmparam.h> 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/io_uring.h> 79 80 #include <uapi/linux/io_uring.h> 81 82 #include "io-wq.h" 83 84 #include "io_uring.h" 85 #include "opdef.h" 86 #include "refs.h" 87 #include "tctx.h" 88 #include "sqpoll.h" 89 #include "fdinfo.h" 90 #include "kbuf.h" 91 #include "rsrc.h" 92 #include "cancel.h" 93 #include "net.h" 94 #include "notif.h" 95 96 #include "timeout.h" 97 #include "poll.h" 98 #include "rw.h" 99 #include "alloc_cache.h" 100 101 #define IORING_MAX_ENTRIES 32768 102 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 103 104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 105 IORING_REGISTER_LAST + IORING_OP_LAST) 106 107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 108 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 109 110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 112 113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 115 REQ_F_ASYNC_DATA) 116 117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 118 IO_REQ_CLEAN_FLAGS) 119 120 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 121 122 #define IO_COMPL_BATCH 32 123 #define IO_REQ_ALLOC_BATCH 8 124 125 enum { 126 IO_CHECK_CQ_OVERFLOW_BIT, 127 IO_CHECK_CQ_DROPPED_BIT, 128 }; 129 130 enum { 131 IO_EVENTFD_OP_SIGNAL_BIT, 132 IO_EVENTFD_OP_FREE_BIT, 133 }; 134 135 struct io_defer_entry { 136 struct list_head list; 137 struct io_kiocb *req; 138 u32 seq; 139 }; 140 141 /* requests with any of those set should undergo io_disarm_next() */ 142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 144 145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 146 struct task_struct *task, 147 bool cancel_all); 148 149 static void io_dismantle_req(struct io_kiocb *req); 150 static void io_clean_op(struct io_kiocb *req); 151 static void io_queue_sqe(struct io_kiocb *req); 152 static void io_move_task_work_from_local(struct io_ring_ctx *ctx); 153 static void __io_submit_flush_completions(struct io_ring_ctx *ctx); 154 static __cold void io_fallback_tw(struct io_uring_task *tctx); 155 156 struct kmem_cache *req_cachep; 157 158 struct sock *io_uring_get_socket(struct file *file) 159 { 160 #if defined(CONFIG_UNIX) 161 if (io_is_uring_fops(file)) { 162 struct io_ring_ctx *ctx = file->private_data; 163 164 return ctx->ring_sock->sk; 165 } 166 #endif 167 return NULL; 168 } 169 EXPORT_SYMBOL(io_uring_get_socket); 170 171 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 172 { 173 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 174 ctx->submit_state.cqes_count) 175 __io_submit_flush_completions(ctx); 176 } 177 178 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 179 { 180 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 181 } 182 183 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 184 { 185 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 186 } 187 188 static bool io_match_linked(struct io_kiocb *head) 189 { 190 struct io_kiocb *req; 191 192 io_for_each_link(req, head) { 193 if (req->flags & REQ_F_INFLIGHT) 194 return true; 195 } 196 return false; 197 } 198 199 /* 200 * As io_match_task() but protected against racing with linked timeouts. 201 * User must not hold timeout_lock. 202 */ 203 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 204 bool cancel_all) 205 { 206 bool matched; 207 208 if (task && head->task != task) 209 return false; 210 if (cancel_all) 211 return true; 212 213 if (head->flags & REQ_F_LINK_TIMEOUT) { 214 struct io_ring_ctx *ctx = head->ctx; 215 216 /* protect against races with linked timeouts */ 217 spin_lock_irq(&ctx->timeout_lock); 218 matched = io_match_linked(head); 219 spin_unlock_irq(&ctx->timeout_lock); 220 } else { 221 matched = io_match_linked(head); 222 } 223 return matched; 224 } 225 226 static inline void req_fail_link_node(struct io_kiocb *req, int res) 227 { 228 req_set_fail(req); 229 io_req_set_res(req, res, 0); 230 } 231 232 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 233 { 234 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 235 kasan_poison_object_data(req_cachep, req); 236 } 237 238 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 239 { 240 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 241 242 complete(&ctx->ref_comp); 243 } 244 245 static __cold void io_fallback_req_func(struct work_struct *work) 246 { 247 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 248 fallback_work.work); 249 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 250 struct io_kiocb *req, *tmp; 251 struct io_tw_state ts = { .locked = true, }; 252 253 mutex_lock(&ctx->uring_lock); 254 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 255 req->io_task_work.func(req, &ts); 256 if (WARN_ON_ONCE(!ts.locked)) 257 return; 258 io_submit_flush_completions(ctx); 259 mutex_unlock(&ctx->uring_lock); 260 } 261 262 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 263 { 264 unsigned hash_buckets = 1U << bits; 265 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 266 267 table->hbs = kmalloc(hash_size, GFP_KERNEL); 268 if (!table->hbs) 269 return -ENOMEM; 270 271 table->hash_bits = bits; 272 init_hash_table(table, hash_buckets); 273 return 0; 274 } 275 276 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 277 { 278 struct io_ring_ctx *ctx; 279 int hash_bits; 280 281 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 282 if (!ctx) 283 return NULL; 284 285 xa_init(&ctx->io_bl_xa); 286 287 /* 288 * Use 5 bits less than the max cq entries, that should give us around 289 * 32 entries per hash list if totally full and uniformly spread, but 290 * don't keep too many buckets to not overconsume memory. 291 */ 292 hash_bits = ilog2(p->cq_entries) - 5; 293 hash_bits = clamp(hash_bits, 1, 8); 294 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 295 goto err; 296 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 297 goto err; 298 299 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL); 300 if (!ctx->dummy_ubuf) 301 goto err; 302 /* set invalid range, so io_import_fixed() fails meeting it */ 303 ctx->dummy_ubuf->ubuf = -1UL; 304 305 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 306 0, GFP_KERNEL)) 307 goto err; 308 309 ctx->flags = p->flags; 310 init_waitqueue_head(&ctx->sqo_sq_wait); 311 INIT_LIST_HEAD(&ctx->sqd_list); 312 INIT_LIST_HEAD(&ctx->cq_overflow_list); 313 INIT_LIST_HEAD(&ctx->io_buffers_cache); 314 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 315 sizeof(struct io_rsrc_node)); 316 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, 317 sizeof(struct async_poll)); 318 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 319 sizeof(struct io_async_msghdr)); 320 init_completion(&ctx->ref_comp); 321 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 322 mutex_init(&ctx->uring_lock); 323 init_waitqueue_head(&ctx->cq_wait); 324 init_waitqueue_head(&ctx->poll_wq); 325 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 326 spin_lock_init(&ctx->completion_lock); 327 spin_lock_init(&ctx->timeout_lock); 328 INIT_WQ_LIST(&ctx->iopoll_list); 329 INIT_LIST_HEAD(&ctx->io_buffers_pages); 330 INIT_LIST_HEAD(&ctx->io_buffers_comp); 331 INIT_LIST_HEAD(&ctx->defer_list); 332 INIT_LIST_HEAD(&ctx->timeout_list); 333 INIT_LIST_HEAD(&ctx->ltimeout_list); 334 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 335 init_llist_head(&ctx->work_llist); 336 INIT_LIST_HEAD(&ctx->tctx_list); 337 ctx->submit_state.free_list.next = NULL; 338 INIT_WQ_LIST(&ctx->locked_free_list); 339 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 340 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 341 return ctx; 342 err: 343 kfree(ctx->dummy_ubuf); 344 kfree(ctx->cancel_table.hbs); 345 kfree(ctx->cancel_table_locked.hbs); 346 kfree(ctx->io_bl); 347 xa_destroy(&ctx->io_bl_xa); 348 kfree(ctx); 349 return NULL; 350 } 351 352 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 353 { 354 struct io_rings *r = ctx->rings; 355 356 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 357 ctx->cq_extra--; 358 } 359 360 static bool req_need_defer(struct io_kiocb *req, u32 seq) 361 { 362 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 363 struct io_ring_ctx *ctx = req->ctx; 364 365 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 366 } 367 368 return false; 369 } 370 371 static inline void io_req_track_inflight(struct io_kiocb *req) 372 { 373 if (!(req->flags & REQ_F_INFLIGHT)) { 374 req->flags |= REQ_F_INFLIGHT; 375 atomic_inc(&req->task->io_uring->inflight_tracked); 376 } 377 } 378 379 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 380 { 381 if (WARN_ON_ONCE(!req->link)) 382 return NULL; 383 384 req->flags &= ~REQ_F_ARM_LTIMEOUT; 385 req->flags |= REQ_F_LINK_TIMEOUT; 386 387 /* linked timeouts should have two refs once prep'ed */ 388 io_req_set_refcount(req); 389 __io_req_set_refcount(req->link, 2); 390 return req->link; 391 } 392 393 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 394 { 395 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 396 return NULL; 397 return __io_prep_linked_timeout(req); 398 } 399 400 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 401 { 402 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 403 } 404 405 static inline void io_arm_ltimeout(struct io_kiocb *req) 406 { 407 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 408 __io_arm_ltimeout(req); 409 } 410 411 static void io_prep_async_work(struct io_kiocb *req) 412 { 413 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 414 struct io_ring_ctx *ctx = req->ctx; 415 416 if (!(req->flags & REQ_F_CREDS)) { 417 req->flags |= REQ_F_CREDS; 418 req->creds = get_current_cred(); 419 } 420 421 req->work.list.next = NULL; 422 req->work.flags = 0; 423 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 424 if (req->flags & REQ_F_FORCE_ASYNC) 425 req->work.flags |= IO_WQ_WORK_CONCURRENT; 426 427 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 428 req->flags |= io_file_get_flags(req->file); 429 430 if (req->file && (req->flags & REQ_F_ISREG)) { 431 bool should_hash = def->hash_reg_file; 432 433 /* don't serialize this request if the fs doesn't need it */ 434 if (should_hash && (req->file->f_flags & O_DIRECT) && 435 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) 436 should_hash = false; 437 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 438 io_wq_hash_work(&req->work, file_inode(req->file)); 439 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 440 if (def->unbound_nonreg_file) 441 req->work.flags |= IO_WQ_WORK_UNBOUND; 442 } 443 } 444 445 static void io_prep_async_link(struct io_kiocb *req) 446 { 447 struct io_kiocb *cur; 448 449 if (req->flags & REQ_F_LINK_TIMEOUT) { 450 struct io_ring_ctx *ctx = req->ctx; 451 452 spin_lock_irq(&ctx->timeout_lock); 453 io_for_each_link(cur, req) 454 io_prep_async_work(cur); 455 spin_unlock_irq(&ctx->timeout_lock); 456 } else { 457 io_for_each_link(cur, req) 458 io_prep_async_work(cur); 459 } 460 } 461 462 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) 463 { 464 struct io_kiocb *link = io_prep_linked_timeout(req); 465 struct io_uring_task *tctx = req->task->io_uring; 466 467 BUG_ON(!tctx); 468 BUG_ON(!tctx->io_wq); 469 470 /* init ->work of the whole link before punting */ 471 io_prep_async_link(req); 472 473 /* 474 * Not expected to happen, but if we do have a bug where this _can_ 475 * happen, catch it here and ensure the request is marked as 476 * canceled. That will make io-wq go through the usual work cancel 477 * procedure rather than attempt to run this request (or create a new 478 * worker for it). 479 */ 480 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 481 req->work.flags |= IO_WQ_WORK_CANCEL; 482 483 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 484 io_wq_enqueue(tctx->io_wq, &req->work); 485 if (link) 486 io_queue_linked_timeout(link); 487 } 488 489 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 490 { 491 while (!list_empty(&ctx->defer_list)) { 492 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 493 struct io_defer_entry, list); 494 495 if (req_need_defer(de->req, de->seq)) 496 break; 497 list_del_init(&de->list); 498 io_req_task_queue(de->req); 499 kfree(de); 500 } 501 } 502 503 504 static void io_eventfd_ops(struct rcu_head *rcu) 505 { 506 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 507 int ops = atomic_xchg(&ev_fd->ops, 0); 508 509 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 510 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 511 512 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 513 * ordering in a race but if references are 0 we know we have to free 514 * it regardless. 515 */ 516 if (atomic_dec_and_test(&ev_fd->refs)) { 517 eventfd_ctx_put(ev_fd->cq_ev_fd); 518 kfree(ev_fd); 519 } 520 } 521 522 static void io_eventfd_signal(struct io_ring_ctx *ctx) 523 { 524 struct io_ev_fd *ev_fd = NULL; 525 526 rcu_read_lock(); 527 /* 528 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 529 * and eventfd_signal 530 */ 531 ev_fd = rcu_dereference(ctx->io_ev_fd); 532 533 /* 534 * Check again if ev_fd exists incase an io_eventfd_unregister call 535 * completed between the NULL check of ctx->io_ev_fd at the start of 536 * the function and rcu_read_lock. 537 */ 538 if (unlikely(!ev_fd)) 539 goto out; 540 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 541 goto out; 542 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 543 goto out; 544 545 if (likely(eventfd_signal_allowed())) { 546 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 547 } else { 548 atomic_inc(&ev_fd->refs); 549 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 550 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 551 else 552 atomic_dec(&ev_fd->refs); 553 } 554 555 out: 556 rcu_read_unlock(); 557 } 558 559 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 560 { 561 bool skip; 562 563 spin_lock(&ctx->completion_lock); 564 565 /* 566 * Eventfd should only get triggered when at least one event has been 567 * posted. Some applications rely on the eventfd notification count 568 * only changing IFF a new CQE has been added to the CQ ring. There's 569 * no depedency on 1:1 relationship between how many times this 570 * function is called (and hence the eventfd count) and number of CQEs 571 * posted to the CQ ring. 572 */ 573 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 574 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 575 spin_unlock(&ctx->completion_lock); 576 if (skip) 577 return; 578 579 io_eventfd_signal(ctx); 580 } 581 582 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 583 { 584 if (ctx->poll_activated) 585 io_poll_wq_wake(ctx); 586 if (ctx->off_timeout_used) 587 io_flush_timeouts(ctx); 588 if (ctx->drain_active) { 589 spin_lock(&ctx->completion_lock); 590 io_queue_deferred(ctx); 591 spin_unlock(&ctx->completion_lock); 592 } 593 if (ctx->has_evfd) 594 io_eventfd_flush_signal(ctx); 595 } 596 597 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 598 __acquires(ctx->completion_lock) 599 { 600 if (!ctx->task_complete) 601 spin_lock(&ctx->completion_lock); 602 } 603 604 static inline void __io_cq_unlock(struct io_ring_ctx *ctx) 605 { 606 if (!ctx->task_complete) 607 spin_unlock(&ctx->completion_lock); 608 } 609 610 static inline void io_cq_lock(struct io_ring_ctx *ctx) 611 __acquires(ctx->completion_lock) 612 { 613 spin_lock(&ctx->completion_lock); 614 } 615 616 static inline void io_cq_unlock(struct io_ring_ctx *ctx) 617 __releases(ctx->completion_lock) 618 { 619 spin_unlock(&ctx->completion_lock); 620 } 621 622 /* keep it inlined for io_submit_flush_completions() */ 623 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 624 __releases(ctx->completion_lock) 625 { 626 io_commit_cqring(ctx); 627 __io_cq_unlock(ctx); 628 io_commit_cqring_flush(ctx); 629 io_cqring_wake(ctx); 630 } 631 632 static void __io_cq_unlock_post_flush(struct io_ring_ctx *ctx) 633 __releases(ctx->completion_lock) 634 { 635 io_commit_cqring(ctx); 636 637 if (ctx->task_complete) { 638 /* 639 * ->task_complete implies that only current might be waiting 640 * for CQEs, and obviously, we currently don't. No one is 641 * waiting, wakeups are futile, skip them. 642 */ 643 io_commit_cqring_flush(ctx); 644 } else { 645 __io_cq_unlock(ctx); 646 io_commit_cqring_flush(ctx); 647 io_cqring_wake(ctx); 648 } 649 } 650 651 void io_cq_unlock_post(struct io_ring_ctx *ctx) 652 __releases(ctx->completion_lock) 653 { 654 io_commit_cqring(ctx); 655 spin_unlock(&ctx->completion_lock); 656 io_commit_cqring_flush(ctx); 657 io_cqring_wake(ctx); 658 } 659 660 /* Returns true if there are no backlogged entries after the flush */ 661 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 662 { 663 struct io_overflow_cqe *ocqe; 664 LIST_HEAD(list); 665 666 io_cq_lock(ctx); 667 list_splice_init(&ctx->cq_overflow_list, &list); 668 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 669 io_cq_unlock(ctx); 670 671 while (!list_empty(&list)) { 672 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 673 list_del(&ocqe->list); 674 kfree(ocqe); 675 } 676 } 677 678 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 679 { 680 size_t cqe_size = sizeof(struct io_uring_cqe); 681 682 if (__io_cqring_events(ctx) == ctx->cq_entries) 683 return; 684 685 if (ctx->flags & IORING_SETUP_CQE32) 686 cqe_size <<= 1; 687 688 io_cq_lock(ctx); 689 while (!list_empty(&ctx->cq_overflow_list)) { 690 struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true); 691 struct io_overflow_cqe *ocqe; 692 693 if (!cqe) 694 break; 695 ocqe = list_first_entry(&ctx->cq_overflow_list, 696 struct io_overflow_cqe, list); 697 memcpy(cqe, &ocqe->cqe, cqe_size); 698 list_del(&ocqe->list); 699 kfree(ocqe); 700 } 701 702 if (list_empty(&ctx->cq_overflow_list)) { 703 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 704 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 705 } 706 io_cq_unlock_post(ctx); 707 } 708 709 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 710 { 711 /* iopoll syncs against uring_lock, not completion_lock */ 712 if (ctx->flags & IORING_SETUP_IOPOLL) 713 mutex_lock(&ctx->uring_lock); 714 __io_cqring_overflow_flush(ctx); 715 if (ctx->flags & IORING_SETUP_IOPOLL) 716 mutex_unlock(&ctx->uring_lock); 717 } 718 719 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 720 { 721 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 722 io_cqring_do_overflow_flush(ctx); 723 } 724 725 /* can be called by any task */ 726 static void io_put_task_remote(struct task_struct *task, int nr) 727 { 728 struct io_uring_task *tctx = task->io_uring; 729 730 percpu_counter_sub(&tctx->inflight, nr); 731 if (unlikely(atomic_read(&tctx->in_cancel))) 732 wake_up(&tctx->wait); 733 put_task_struct_many(task, nr); 734 } 735 736 /* used by a task to put its own references */ 737 static void io_put_task_local(struct task_struct *task, int nr) 738 { 739 task->io_uring->cached_refs += nr; 740 } 741 742 /* must to be called somewhat shortly after putting a request */ 743 static inline void io_put_task(struct task_struct *task, int nr) 744 { 745 if (likely(task == current)) 746 io_put_task_local(task, nr); 747 else 748 io_put_task_remote(task, nr); 749 } 750 751 void io_task_refs_refill(struct io_uring_task *tctx) 752 { 753 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 754 755 percpu_counter_add(&tctx->inflight, refill); 756 refcount_add(refill, ¤t->usage); 757 tctx->cached_refs += refill; 758 } 759 760 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 761 { 762 struct io_uring_task *tctx = task->io_uring; 763 unsigned int refs = tctx->cached_refs; 764 765 if (refs) { 766 tctx->cached_refs = 0; 767 percpu_counter_sub(&tctx->inflight, refs); 768 put_task_struct_many(task, refs); 769 } 770 } 771 772 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 773 s32 res, u32 cflags, u64 extra1, u64 extra2) 774 { 775 struct io_overflow_cqe *ocqe; 776 size_t ocq_size = sizeof(struct io_overflow_cqe); 777 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 778 779 lockdep_assert_held(&ctx->completion_lock); 780 781 if (is_cqe32) 782 ocq_size += sizeof(struct io_uring_cqe); 783 784 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 785 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 786 if (!ocqe) { 787 /* 788 * If we're in ring overflow flush mode, or in task cancel mode, 789 * or cannot allocate an overflow entry, then we need to drop it 790 * on the floor. 791 */ 792 io_account_cq_overflow(ctx); 793 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 794 return false; 795 } 796 if (list_empty(&ctx->cq_overflow_list)) { 797 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 798 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 799 800 } 801 ocqe->cqe.user_data = user_data; 802 ocqe->cqe.res = res; 803 ocqe->cqe.flags = cflags; 804 if (is_cqe32) { 805 ocqe->cqe.big_cqe[0] = extra1; 806 ocqe->cqe.big_cqe[1] = extra2; 807 } 808 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 809 return true; 810 } 811 812 bool io_req_cqe_overflow(struct io_kiocb *req) 813 { 814 if (!(req->flags & REQ_F_CQE32_INIT)) { 815 req->extra1 = 0; 816 req->extra2 = 0; 817 } 818 return io_cqring_event_overflow(req->ctx, req->cqe.user_data, 819 req->cqe.res, req->cqe.flags, 820 req->extra1, req->extra2); 821 } 822 823 /* 824 * writes to the cq entry need to come after reading head; the 825 * control dependency is enough as we're using WRITE_ONCE to 826 * fill the cq entry 827 */ 828 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow) 829 { 830 struct io_rings *rings = ctx->rings; 831 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 832 unsigned int free, queued, len; 833 834 /* 835 * Posting into the CQ when there are pending overflowed CQEs may break 836 * ordering guarantees, which will affect links, F_MORE users and more. 837 * Force overflow the completion. 838 */ 839 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 840 return NULL; 841 842 /* userspace may cheat modifying the tail, be safe and do min */ 843 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 844 free = ctx->cq_entries - queued; 845 /* we need a contiguous range, limit based on the current array offset */ 846 len = min(free, ctx->cq_entries - off); 847 if (!len) 848 return NULL; 849 850 if (ctx->flags & IORING_SETUP_CQE32) { 851 off <<= 1; 852 len <<= 1; 853 } 854 855 ctx->cqe_cached = &rings->cqes[off]; 856 ctx->cqe_sentinel = ctx->cqe_cached + len; 857 858 ctx->cached_cq_tail++; 859 ctx->cqe_cached++; 860 if (ctx->flags & IORING_SETUP_CQE32) 861 ctx->cqe_cached++; 862 return &rings->cqes[off]; 863 } 864 865 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 866 u32 cflags) 867 { 868 struct io_uring_cqe *cqe; 869 870 ctx->cq_extra++; 871 872 /* 873 * If we can't get a cq entry, userspace overflowed the 874 * submission (by quite a lot). Increment the overflow count in 875 * the ring. 876 */ 877 cqe = io_get_cqe(ctx); 878 if (likely(cqe)) { 879 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 880 881 WRITE_ONCE(cqe->user_data, user_data); 882 WRITE_ONCE(cqe->res, res); 883 WRITE_ONCE(cqe->flags, cflags); 884 885 if (ctx->flags & IORING_SETUP_CQE32) { 886 WRITE_ONCE(cqe->big_cqe[0], 0); 887 WRITE_ONCE(cqe->big_cqe[1], 0); 888 } 889 return true; 890 } 891 return false; 892 } 893 894 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 895 __must_hold(&ctx->uring_lock) 896 { 897 struct io_submit_state *state = &ctx->submit_state; 898 unsigned int i; 899 900 lockdep_assert_held(&ctx->uring_lock); 901 for (i = 0; i < state->cqes_count; i++) { 902 struct io_uring_cqe *cqe = &state->cqes[i]; 903 904 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 905 if (ctx->task_complete) { 906 spin_lock(&ctx->completion_lock); 907 io_cqring_event_overflow(ctx, cqe->user_data, 908 cqe->res, cqe->flags, 0, 0); 909 spin_unlock(&ctx->completion_lock); 910 } else { 911 io_cqring_event_overflow(ctx, cqe->user_data, 912 cqe->res, cqe->flags, 0, 0); 913 } 914 } 915 } 916 state->cqes_count = 0; 917 } 918 919 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 920 bool allow_overflow) 921 { 922 bool filled; 923 924 io_cq_lock(ctx); 925 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 926 if (!filled && allow_overflow) 927 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 928 929 io_cq_unlock_post(ctx); 930 return filled; 931 } 932 933 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 934 { 935 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 936 } 937 938 bool io_aux_cqe(const struct io_kiocb *req, bool defer, s32 res, u32 cflags, 939 bool allow_overflow) 940 { 941 struct io_ring_ctx *ctx = req->ctx; 942 u64 user_data = req->cqe.user_data; 943 struct io_uring_cqe *cqe; 944 945 if (!defer) 946 return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow); 947 948 lockdep_assert_held(&ctx->uring_lock); 949 950 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->submit_state.cqes)) { 951 __io_cq_lock(ctx); 952 __io_flush_post_cqes(ctx); 953 /* no need to flush - flush is deferred */ 954 __io_cq_unlock_post(ctx); 955 } 956 957 /* For defered completions this is not as strict as it is otherwise, 958 * however it's main job is to prevent unbounded posted completions, 959 * and in that it works just as well. 960 */ 961 if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 962 return false; 963 964 cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++]; 965 cqe->user_data = user_data; 966 cqe->res = res; 967 cqe->flags = cflags; 968 return true; 969 } 970 971 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 972 { 973 struct io_ring_ctx *ctx = req->ctx; 974 struct io_rsrc_node *rsrc_node = NULL; 975 976 io_cq_lock(ctx); 977 if (!(req->flags & REQ_F_CQE_SKIP)) 978 io_fill_cqe_req(ctx, req); 979 980 /* 981 * If we're the last reference to this request, add to our locked 982 * free_list cache. 983 */ 984 if (req_ref_put_and_test(req)) { 985 if (req->flags & IO_REQ_LINK_FLAGS) { 986 if (req->flags & IO_DISARM_MASK) 987 io_disarm_next(req); 988 if (req->link) { 989 io_req_task_queue(req->link); 990 req->link = NULL; 991 } 992 } 993 io_put_kbuf_comp(req); 994 io_dismantle_req(req); 995 rsrc_node = req->rsrc_node; 996 /* 997 * Selected buffer deallocation in io_clean_op() assumes that 998 * we don't hold ->completion_lock. Clean them here to avoid 999 * deadlocks. 1000 */ 1001 io_put_task_remote(req->task, 1); 1002 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1003 ctx->locked_free_nr++; 1004 } 1005 io_cq_unlock_post(ctx); 1006 1007 if (rsrc_node) { 1008 io_ring_submit_lock(ctx, issue_flags); 1009 io_put_rsrc_node(ctx, rsrc_node); 1010 io_ring_submit_unlock(ctx, issue_flags); 1011 } 1012 } 1013 1014 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1015 { 1016 if (req->ctx->task_complete && req->ctx->submitter_task != current) { 1017 req->io_task_work.func = io_req_task_complete; 1018 io_req_task_work_add(req); 1019 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1020 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 1021 __io_req_complete_post(req, issue_flags); 1022 } else { 1023 struct io_ring_ctx *ctx = req->ctx; 1024 1025 mutex_lock(&ctx->uring_lock); 1026 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); 1027 mutex_unlock(&ctx->uring_lock); 1028 } 1029 } 1030 1031 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1032 __must_hold(&ctx->uring_lock) 1033 { 1034 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1035 1036 lockdep_assert_held(&req->ctx->uring_lock); 1037 1038 req_set_fail(req); 1039 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1040 if (def->fail) 1041 def->fail(req); 1042 io_req_complete_defer(req); 1043 } 1044 1045 /* 1046 * Don't initialise the fields below on every allocation, but do that in 1047 * advance and keep them valid across allocations. 1048 */ 1049 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1050 { 1051 req->ctx = ctx; 1052 req->link = NULL; 1053 req->async_data = NULL; 1054 /* not necessary, but safer to zero */ 1055 req->cqe.res = 0; 1056 } 1057 1058 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1059 struct io_submit_state *state) 1060 { 1061 spin_lock(&ctx->completion_lock); 1062 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1063 ctx->locked_free_nr = 0; 1064 spin_unlock(&ctx->completion_lock); 1065 } 1066 1067 /* 1068 * A request might get retired back into the request caches even before opcode 1069 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1070 * Because of that, io_alloc_req() should be called only under ->uring_lock 1071 * and with extra caution to not get a request that is still worked on. 1072 */ 1073 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1074 __must_hold(&ctx->uring_lock) 1075 { 1076 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1077 void *reqs[IO_REQ_ALLOC_BATCH]; 1078 int ret, i; 1079 1080 /* 1081 * If we have more than a batch's worth of requests in our IRQ side 1082 * locked cache, grab the lock and move them over to our submission 1083 * side cache. 1084 */ 1085 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1086 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1087 if (!io_req_cache_empty(ctx)) 1088 return true; 1089 } 1090 1091 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1092 1093 /* 1094 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1095 * retry single alloc to be on the safe side. 1096 */ 1097 if (unlikely(ret <= 0)) { 1098 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1099 if (!reqs[0]) 1100 return false; 1101 ret = 1; 1102 } 1103 1104 percpu_ref_get_many(&ctx->refs, ret); 1105 for (i = 0; i < ret; i++) { 1106 struct io_kiocb *req = reqs[i]; 1107 1108 io_preinit_req(req, ctx); 1109 io_req_add_to_cache(req, ctx); 1110 } 1111 return true; 1112 } 1113 1114 static inline void io_dismantle_req(struct io_kiocb *req) 1115 { 1116 unsigned int flags = req->flags; 1117 1118 if (unlikely(flags & IO_REQ_CLEAN_FLAGS)) 1119 io_clean_op(req); 1120 if (!(flags & REQ_F_FIXED_FILE)) 1121 io_put_file(req->file); 1122 } 1123 1124 __cold void io_free_req(struct io_kiocb *req) 1125 { 1126 /* refs were already put, restore them for io_req_task_complete() */ 1127 req->flags &= ~REQ_F_REFCOUNT; 1128 /* we only want to free it, don't post CQEs */ 1129 req->flags |= REQ_F_CQE_SKIP; 1130 req->io_task_work.func = io_req_task_complete; 1131 io_req_task_work_add(req); 1132 } 1133 1134 static void __io_req_find_next_prep(struct io_kiocb *req) 1135 { 1136 struct io_ring_ctx *ctx = req->ctx; 1137 1138 spin_lock(&ctx->completion_lock); 1139 io_disarm_next(req); 1140 spin_unlock(&ctx->completion_lock); 1141 } 1142 1143 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1144 { 1145 struct io_kiocb *nxt; 1146 1147 /* 1148 * If LINK is set, we have dependent requests in this chain. If we 1149 * didn't fail this request, queue the first one up, moving any other 1150 * dependencies to the next request. In case of failure, fail the rest 1151 * of the chain. 1152 */ 1153 if (unlikely(req->flags & IO_DISARM_MASK)) 1154 __io_req_find_next_prep(req); 1155 nxt = req->link; 1156 req->link = NULL; 1157 return nxt; 1158 } 1159 1160 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1161 { 1162 if (!ctx) 1163 return; 1164 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1165 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1166 if (ts->locked) { 1167 io_submit_flush_completions(ctx); 1168 mutex_unlock(&ctx->uring_lock); 1169 ts->locked = false; 1170 } 1171 percpu_ref_put(&ctx->refs); 1172 } 1173 1174 static unsigned int handle_tw_list(struct llist_node *node, 1175 struct io_ring_ctx **ctx, 1176 struct io_tw_state *ts, 1177 struct llist_node *last) 1178 { 1179 unsigned int count = 0; 1180 1181 while (node && node != last) { 1182 struct llist_node *next = node->next; 1183 struct io_kiocb *req = container_of(node, struct io_kiocb, 1184 io_task_work.node); 1185 1186 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1187 1188 if (req->ctx != *ctx) { 1189 ctx_flush_and_put(*ctx, ts); 1190 *ctx = req->ctx; 1191 /* if not contended, grab and improve batching */ 1192 ts->locked = mutex_trylock(&(*ctx)->uring_lock); 1193 percpu_ref_get(&(*ctx)->refs); 1194 } 1195 INDIRECT_CALL_2(req->io_task_work.func, 1196 io_poll_task_func, io_req_rw_complete, 1197 req, ts); 1198 node = next; 1199 count++; 1200 if (unlikely(need_resched())) { 1201 ctx_flush_and_put(*ctx, ts); 1202 *ctx = NULL; 1203 cond_resched(); 1204 } 1205 } 1206 1207 return count; 1208 } 1209 1210 /** 1211 * io_llist_xchg - swap all entries in a lock-less list 1212 * @head: the head of lock-less list to delete all entries 1213 * @new: new entry as the head of the list 1214 * 1215 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1216 * The order of entries returned is from the newest to the oldest added one. 1217 */ 1218 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1219 struct llist_node *new) 1220 { 1221 return xchg(&head->first, new); 1222 } 1223 1224 /** 1225 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1226 * @head: the head of lock-less list to delete all entries 1227 * @old: expected old value of the first entry of the list 1228 * @new: new entry as the head of the list 1229 * 1230 * perform a cmpxchg on the first entry of the list. 1231 */ 1232 1233 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1234 struct llist_node *old, 1235 struct llist_node *new) 1236 { 1237 return cmpxchg(&head->first, old, new); 1238 } 1239 1240 void tctx_task_work(struct callback_head *cb) 1241 { 1242 struct io_tw_state ts = {}; 1243 struct io_ring_ctx *ctx = NULL; 1244 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1245 task_work); 1246 struct llist_node fake = {}; 1247 struct llist_node *node; 1248 unsigned int loops = 0; 1249 unsigned int count = 0; 1250 1251 if (unlikely(current->flags & PF_EXITING)) { 1252 io_fallback_tw(tctx); 1253 return; 1254 } 1255 1256 do { 1257 loops++; 1258 node = io_llist_xchg(&tctx->task_list, &fake); 1259 count += handle_tw_list(node, &ctx, &ts, &fake); 1260 1261 /* skip expensive cmpxchg if there are items in the list */ 1262 if (READ_ONCE(tctx->task_list.first) != &fake) 1263 continue; 1264 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) { 1265 io_submit_flush_completions(ctx); 1266 if (READ_ONCE(tctx->task_list.first) != &fake) 1267 continue; 1268 } 1269 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1270 } while (node != &fake); 1271 1272 ctx_flush_and_put(ctx, &ts); 1273 1274 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1275 if (unlikely(atomic_read(&tctx->in_cancel))) 1276 io_uring_drop_tctx_refs(current); 1277 1278 trace_io_uring_task_work_run(tctx, count, loops); 1279 } 1280 1281 static __cold void io_fallback_tw(struct io_uring_task *tctx) 1282 { 1283 struct llist_node *node = llist_del_all(&tctx->task_list); 1284 struct io_kiocb *req; 1285 1286 while (node) { 1287 req = container_of(node, struct io_kiocb, io_task_work.node); 1288 node = node->next; 1289 if (llist_add(&req->io_task_work.node, 1290 &req->ctx->fallback_llist)) 1291 schedule_delayed_work(&req->ctx->fallback_work, 1); 1292 } 1293 } 1294 1295 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1296 { 1297 struct io_ring_ctx *ctx = req->ctx; 1298 unsigned nr_wait, nr_tw, nr_tw_prev; 1299 struct llist_node *first; 1300 1301 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1302 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1303 1304 first = READ_ONCE(ctx->work_llist.first); 1305 do { 1306 nr_tw_prev = 0; 1307 if (first) { 1308 struct io_kiocb *first_req = container_of(first, 1309 struct io_kiocb, 1310 io_task_work.node); 1311 /* 1312 * Might be executed at any moment, rely on 1313 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1314 */ 1315 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1316 } 1317 nr_tw = nr_tw_prev + 1; 1318 /* Large enough to fail the nr_wait comparison below */ 1319 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1320 nr_tw = -1U; 1321 1322 req->nr_tw = nr_tw; 1323 req->io_task_work.node.next = first; 1324 } while (!try_cmpxchg(&ctx->work_llist.first, &first, 1325 &req->io_task_work.node)); 1326 1327 if (!first) { 1328 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1329 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1330 if (ctx->has_evfd) 1331 io_eventfd_signal(ctx); 1332 } 1333 1334 nr_wait = atomic_read(&ctx->cq_wait_nr); 1335 /* no one is waiting */ 1336 if (!nr_wait) 1337 return; 1338 /* either not enough or the previous add has already woken it up */ 1339 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait) 1340 return; 1341 /* pairs with set_current_state() in io_cqring_wait() */ 1342 smp_mb__after_atomic(); 1343 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1344 } 1345 1346 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1347 { 1348 struct io_uring_task *tctx = req->task->io_uring; 1349 struct io_ring_ctx *ctx = req->ctx; 1350 1351 if (!(flags & IOU_F_TWQ_FORCE_NORMAL) && 1352 (ctx->flags & IORING_SETUP_DEFER_TASKRUN)) { 1353 rcu_read_lock(); 1354 io_req_local_work_add(req, flags); 1355 rcu_read_unlock(); 1356 return; 1357 } 1358 1359 /* task_work already pending, we're done */ 1360 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1361 return; 1362 1363 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1364 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1365 1366 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1367 return; 1368 1369 io_fallback_tw(tctx); 1370 } 1371 1372 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1373 { 1374 struct llist_node *node; 1375 1376 node = llist_del_all(&ctx->work_llist); 1377 while (node) { 1378 struct io_kiocb *req = container_of(node, struct io_kiocb, 1379 io_task_work.node); 1380 1381 node = node->next; 1382 __io_req_task_work_add(req, IOU_F_TWQ_FORCE_NORMAL); 1383 } 1384 } 1385 1386 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1387 { 1388 struct llist_node *node; 1389 unsigned int loops = 0; 1390 int ret = 0; 1391 1392 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1393 return -EEXIST; 1394 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1395 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1396 again: 1397 /* 1398 * llists are in reverse order, flip it back the right way before 1399 * running the pending items. 1400 */ 1401 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1402 while (node) { 1403 struct llist_node *next = node->next; 1404 struct io_kiocb *req = container_of(node, struct io_kiocb, 1405 io_task_work.node); 1406 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1407 INDIRECT_CALL_2(req->io_task_work.func, 1408 io_poll_task_func, io_req_rw_complete, 1409 req, ts); 1410 ret++; 1411 node = next; 1412 } 1413 loops++; 1414 1415 if (!llist_empty(&ctx->work_llist)) 1416 goto again; 1417 if (ts->locked) { 1418 io_submit_flush_completions(ctx); 1419 if (!llist_empty(&ctx->work_llist)) 1420 goto again; 1421 } 1422 trace_io_uring_local_work_run(ctx, ret, loops); 1423 return ret; 1424 } 1425 1426 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx) 1427 { 1428 struct io_tw_state ts = { .locked = true, }; 1429 int ret; 1430 1431 if (llist_empty(&ctx->work_llist)) 1432 return 0; 1433 1434 ret = __io_run_local_work(ctx, &ts); 1435 /* shouldn't happen! */ 1436 if (WARN_ON_ONCE(!ts.locked)) 1437 mutex_lock(&ctx->uring_lock); 1438 return ret; 1439 } 1440 1441 static int io_run_local_work(struct io_ring_ctx *ctx) 1442 { 1443 struct io_tw_state ts = {}; 1444 int ret; 1445 1446 ts.locked = mutex_trylock(&ctx->uring_lock); 1447 ret = __io_run_local_work(ctx, &ts); 1448 if (ts.locked) 1449 mutex_unlock(&ctx->uring_lock); 1450 1451 return ret; 1452 } 1453 1454 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1455 { 1456 io_tw_lock(req->ctx, ts); 1457 io_req_defer_failed(req, req->cqe.res); 1458 } 1459 1460 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1461 { 1462 io_tw_lock(req->ctx, ts); 1463 /* req->task == current here, checking PF_EXITING is safe */ 1464 if (unlikely(req->task->flags & PF_EXITING)) 1465 io_req_defer_failed(req, -EFAULT); 1466 else if (req->flags & REQ_F_FORCE_ASYNC) 1467 io_queue_iowq(req, ts); 1468 else 1469 io_queue_sqe(req); 1470 } 1471 1472 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1473 { 1474 io_req_set_res(req, ret, 0); 1475 req->io_task_work.func = io_req_task_cancel; 1476 io_req_task_work_add(req); 1477 } 1478 1479 void io_req_task_queue(struct io_kiocb *req) 1480 { 1481 req->io_task_work.func = io_req_task_submit; 1482 io_req_task_work_add(req); 1483 } 1484 1485 void io_queue_next(struct io_kiocb *req) 1486 { 1487 struct io_kiocb *nxt = io_req_find_next(req); 1488 1489 if (nxt) 1490 io_req_task_queue(nxt); 1491 } 1492 1493 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node) 1494 __must_hold(&ctx->uring_lock) 1495 { 1496 struct task_struct *task = NULL; 1497 int task_refs = 0; 1498 1499 do { 1500 struct io_kiocb *req = container_of(node, struct io_kiocb, 1501 comp_list); 1502 1503 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1504 if (req->flags & REQ_F_REFCOUNT) { 1505 node = req->comp_list.next; 1506 if (!req_ref_put_and_test(req)) 1507 continue; 1508 } 1509 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1510 struct async_poll *apoll = req->apoll; 1511 1512 if (apoll->double_poll) 1513 kfree(apoll->double_poll); 1514 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1515 kfree(apoll); 1516 req->flags &= ~REQ_F_POLLED; 1517 } 1518 if (req->flags & IO_REQ_LINK_FLAGS) 1519 io_queue_next(req); 1520 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1521 io_clean_op(req); 1522 } 1523 if (!(req->flags & REQ_F_FIXED_FILE)) 1524 io_put_file(req->file); 1525 1526 io_req_put_rsrc_locked(req, ctx); 1527 1528 if (req->task != task) { 1529 if (task) 1530 io_put_task(task, task_refs); 1531 task = req->task; 1532 task_refs = 0; 1533 } 1534 task_refs++; 1535 node = req->comp_list.next; 1536 io_req_add_to_cache(req, ctx); 1537 } while (node); 1538 1539 if (task) 1540 io_put_task(task, task_refs); 1541 } 1542 1543 static void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1544 __must_hold(&ctx->uring_lock) 1545 { 1546 struct io_submit_state *state = &ctx->submit_state; 1547 struct io_wq_work_node *node; 1548 1549 __io_cq_lock(ctx); 1550 /* must come first to preserve CQE ordering in failure cases */ 1551 if (state->cqes_count) 1552 __io_flush_post_cqes(ctx); 1553 __wq_list_for_each(node, &state->compl_reqs) { 1554 struct io_kiocb *req = container_of(node, struct io_kiocb, 1555 comp_list); 1556 1557 if (!(req->flags & REQ_F_CQE_SKIP) && 1558 unlikely(!__io_fill_cqe_req(ctx, req))) { 1559 if (ctx->task_complete) { 1560 spin_lock(&ctx->completion_lock); 1561 io_req_cqe_overflow(req); 1562 spin_unlock(&ctx->completion_lock); 1563 } else { 1564 io_req_cqe_overflow(req); 1565 } 1566 } 1567 } 1568 __io_cq_unlock_post_flush(ctx); 1569 1570 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1571 io_free_batch_list(ctx, state->compl_reqs.first); 1572 INIT_WQ_LIST(&state->compl_reqs); 1573 } 1574 } 1575 1576 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1577 { 1578 /* See comment at the top of this file */ 1579 smp_rmb(); 1580 return __io_cqring_events(ctx); 1581 } 1582 1583 /* 1584 * We can't just wait for polled events to come to us, we have to actively 1585 * find and complete them. 1586 */ 1587 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1588 { 1589 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1590 return; 1591 1592 mutex_lock(&ctx->uring_lock); 1593 while (!wq_list_empty(&ctx->iopoll_list)) { 1594 /* let it sleep and repeat later if can't complete a request */ 1595 if (io_do_iopoll(ctx, true) == 0) 1596 break; 1597 /* 1598 * Ensure we allow local-to-the-cpu processing to take place, 1599 * in this case we need to ensure that we reap all events. 1600 * Also let task_work, etc. to progress by releasing the mutex 1601 */ 1602 if (need_resched()) { 1603 mutex_unlock(&ctx->uring_lock); 1604 cond_resched(); 1605 mutex_lock(&ctx->uring_lock); 1606 } 1607 } 1608 mutex_unlock(&ctx->uring_lock); 1609 } 1610 1611 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1612 { 1613 unsigned int nr_events = 0; 1614 int ret = 0; 1615 unsigned long check_cq; 1616 1617 if (!io_allowed_run_tw(ctx)) 1618 return -EEXIST; 1619 1620 check_cq = READ_ONCE(ctx->check_cq); 1621 if (unlikely(check_cq)) { 1622 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1623 __io_cqring_overflow_flush(ctx); 1624 /* 1625 * Similarly do not spin if we have not informed the user of any 1626 * dropped CQE. 1627 */ 1628 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1629 return -EBADR; 1630 } 1631 /* 1632 * Don't enter poll loop if we already have events pending. 1633 * If we do, we can potentially be spinning for commands that 1634 * already triggered a CQE (eg in error). 1635 */ 1636 if (io_cqring_events(ctx)) 1637 return 0; 1638 1639 do { 1640 /* 1641 * If a submit got punted to a workqueue, we can have the 1642 * application entering polling for a command before it gets 1643 * issued. That app will hold the uring_lock for the duration 1644 * of the poll right here, so we need to take a breather every 1645 * now and then to ensure that the issue has a chance to add 1646 * the poll to the issued list. Otherwise we can spin here 1647 * forever, while the workqueue is stuck trying to acquire the 1648 * very same mutex. 1649 */ 1650 if (wq_list_empty(&ctx->iopoll_list) || 1651 io_task_work_pending(ctx)) { 1652 u32 tail = ctx->cached_cq_tail; 1653 1654 (void) io_run_local_work_locked(ctx); 1655 1656 if (task_work_pending(current) || 1657 wq_list_empty(&ctx->iopoll_list)) { 1658 mutex_unlock(&ctx->uring_lock); 1659 io_run_task_work(); 1660 mutex_lock(&ctx->uring_lock); 1661 } 1662 /* some requests don't go through iopoll_list */ 1663 if (tail != ctx->cached_cq_tail || 1664 wq_list_empty(&ctx->iopoll_list)) 1665 break; 1666 } 1667 ret = io_do_iopoll(ctx, !min); 1668 if (ret < 0) 1669 break; 1670 nr_events += ret; 1671 ret = 0; 1672 } while (nr_events < min && !need_resched()); 1673 1674 return ret; 1675 } 1676 1677 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1678 { 1679 if (ts->locked) 1680 io_req_complete_defer(req); 1681 else 1682 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1683 } 1684 1685 /* 1686 * After the iocb has been issued, it's safe to be found on the poll list. 1687 * Adding the kiocb to the list AFTER submission ensures that we don't 1688 * find it from a io_do_iopoll() thread before the issuer is done 1689 * accessing the kiocb cookie. 1690 */ 1691 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1692 { 1693 struct io_ring_ctx *ctx = req->ctx; 1694 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1695 1696 /* workqueue context doesn't hold uring_lock, grab it now */ 1697 if (unlikely(needs_lock)) 1698 mutex_lock(&ctx->uring_lock); 1699 1700 /* 1701 * Track whether we have multiple files in our lists. This will impact 1702 * how we do polling eventually, not spinning if we're on potentially 1703 * different devices. 1704 */ 1705 if (wq_list_empty(&ctx->iopoll_list)) { 1706 ctx->poll_multi_queue = false; 1707 } else if (!ctx->poll_multi_queue) { 1708 struct io_kiocb *list_req; 1709 1710 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1711 comp_list); 1712 if (list_req->file != req->file) 1713 ctx->poll_multi_queue = true; 1714 } 1715 1716 /* 1717 * For fast devices, IO may have already completed. If it has, add 1718 * it to the front so we find it first. 1719 */ 1720 if (READ_ONCE(req->iopoll_completed)) 1721 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1722 else 1723 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1724 1725 if (unlikely(needs_lock)) { 1726 /* 1727 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1728 * in sq thread task context or in io worker task context. If 1729 * current task context is sq thread, we don't need to check 1730 * whether should wake up sq thread. 1731 */ 1732 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1733 wq_has_sleeper(&ctx->sq_data->wait)) 1734 wake_up(&ctx->sq_data->wait); 1735 1736 mutex_unlock(&ctx->uring_lock); 1737 } 1738 } 1739 1740 unsigned int io_file_get_flags(struct file *file) 1741 { 1742 unsigned int res = 0; 1743 1744 if (S_ISREG(file_inode(file)->i_mode)) 1745 res |= REQ_F_ISREG; 1746 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1747 res |= REQ_F_SUPPORT_NOWAIT; 1748 return res; 1749 } 1750 1751 bool io_alloc_async_data(struct io_kiocb *req) 1752 { 1753 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1754 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1755 if (req->async_data) { 1756 req->flags |= REQ_F_ASYNC_DATA; 1757 return false; 1758 } 1759 return true; 1760 } 1761 1762 int io_req_prep_async(struct io_kiocb *req) 1763 { 1764 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1765 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1766 1767 /* assign early for deferred execution for non-fixed file */ 1768 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1769 req->file = io_file_get_normal(req, req->cqe.fd); 1770 if (!cdef->prep_async) 1771 return 0; 1772 if (WARN_ON_ONCE(req_has_async_data(req))) 1773 return -EFAULT; 1774 if (!def->manual_alloc) { 1775 if (io_alloc_async_data(req)) 1776 return -EAGAIN; 1777 } 1778 return cdef->prep_async(req); 1779 } 1780 1781 static u32 io_get_sequence(struct io_kiocb *req) 1782 { 1783 u32 seq = req->ctx->cached_sq_head; 1784 struct io_kiocb *cur; 1785 1786 /* need original cached_sq_head, but it was increased for each req */ 1787 io_for_each_link(cur, req) 1788 seq--; 1789 return seq; 1790 } 1791 1792 static __cold void io_drain_req(struct io_kiocb *req) 1793 __must_hold(&ctx->uring_lock) 1794 { 1795 struct io_ring_ctx *ctx = req->ctx; 1796 struct io_defer_entry *de; 1797 int ret; 1798 u32 seq = io_get_sequence(req); 1799 1800 /* Still need defer if there is pending req in defer list. */ 1801 spin_lock(&ctx->completion_lock); 1802 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1803 spin_unlock(&ctx->completion_lock); 1804 queue: 1805 ctx->drain_active = false; 1806 io_req_task_queue(req); 1807 return; 1808 } 1809 spin_unlock(&ctx->completion_lock); 1810 1811 io_prep_async_link(req); 1812 de = kmalloc(sizeof(*de), GFP_KERNEL); 1813 if (!de) { 1814 ret = -ENOMEM; 1815 io_req_defer_failed(req, ret); 1816 return; 1817 } 1818 1819 spin_lock(&ctx->completion_lock); 1820 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1821 spin_unlock(&ctx->completion_lock); 1822 kfree(de); 1823 goto queue; 1824 } 1825 1826 trace_io_uring_defer(req); 1827 de->req = req; 1828 de->seq = seq; 1829 list_add_tail(&de->list, &ctx->defer_list); 1830 spin_unlock(&ctx->completion_lock); 1831 } 1832 1833 static void io_clean_op(struct io_kiocb *req) 1834 { 1835 if (req->flags & REQ_F_BUFFER_SELECTED) { 1836 spin_lock(&req->ctx->completion_lock); 1837 io_put_kbuf_comp(req); 1838 spin_unlock(&req->ctx->completion_lock); 1839 } 1840 1841 if (req->flags & REQ_F_NEED_CLEANUP) { 1842 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1843 1844 if (def->cleanup) 1845 def->cleanup(req); 1846 } 1847 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1848 kfree(req->apoll->double_poll); 1849 kfree(req->apoll); 1850 req->apoll = NULL; 1851 } 1852 if (req->flags & REQ_F_INFLIGHT) { 1853 struct io_uring_task *tctx = req->task->io_uring; 1854 1855 atomic_dec(&tctx->inflight_tracked); 1856 } 1857 if (req->flags & REQ_F_CREDS) 1858 put_cred(req->creds); 1859 if (req->flags & REQ_F_ASYNC_DATA) { 1860 kfree(req->async_data); 1861 req->async_data = NULL; 1862 } 1863 req->flags &= ~IO_REQ_CLEAN_FLAGS; 1864 } 1865 1866 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1867 unsigned int issue_flags) 1868 { 1869 if (req->file || !def->needs_file) 1870 return true; 1871 1872 if (req->flags & REQ_F_FIXED_FILE) 1873 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1874 else 1875 req->file = io_file_get_normal(req, req->cqe.fd); 1876 1877 return !!req->file; 1878 } 1879 1880 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1881 { 1882 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1883 const struct cred *creds = NULL; 1884 int ret; 1885 1886 if (unlikely(!io_assign_file(req, def, issue_flags))) 1887 return -EBADF; 1888 1889 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1890 creds = override_creds(req->creds); 1891 1892 if (!def->audit_skip) 1893 audit_uring_entry(req->opcode); 1894 1895 ret = def->issue(req, issue_flags); 1896 1897 if (!def->audit_skip) 1898 audit_uring_exit(!ret, ret); 1899 1900 if (creds) 1901 revert_creds(creds); 1902 1903 if (ret == IOU_OK) { 1904 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1905 io_req_complete_defer(req); 1906 else 1907 io_req_complete_post(req, issue_flags); 1908 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1909 return ret; 1910 1911 /* If the op doesn't have a file, we're not polling for it */ 1912 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1913 io_iopoll_req_issued(req, issue_flags); 1914 1915 return 0; 1916 } 1917 1918 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1919 { 1920 io_tw_lock(req->ctx, ts); 1921 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1922 IO_URING_F_COMPLETE_DEFER); 1923 } 1924 1925 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1926 { 1927 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1928 struct io_kiocb *nxt = NULL; 1929 1930 if (req_ref_put_and_test(req)) { 1931 if (req->flags & IO_REQ_LINK_FLAGS) 1932 nxt = io_req_find_next(req); 1933 io_free_req(req); 1934 } 1935 return nxt ? &nxt->work : NULL; 1936 } 1937 1938 void io_wq_submit_work(struct io_wq_work *work) 1939 { 1940 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1941 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1942 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1943 bool needs_poll = false; 1944 int ret = 0, err = -ECANCELED; 1945 1946 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1947 if (!(req->flags & REQ_F_REFCOUNT)) 1948 __io_req_set_refcount(req, 2); 1949 else 1950 req_ref_get(req); 1951 1952 io_arm_ltimeout(req); 1953 1954 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1955 if (work->flags & IO_WQ_WORK_CANCEL) { 1956 fail: 1957 io_req_task_queue_fail(req, err); 1958 return; 1959 } 1960 if (!io_assign_file(req, def, issue_flags)) { 1961 err = -EBADF; 1962 work->flags |= IO_WQ_WORK_CANCEL; 1963 goto fail; 1964 } 1965 1966 if (req->flags & REQ_F_FORCE_ASYNC) { 1967 bool opcode_poll = def->pollin || def->pollout; 1968 1969 if (opcode_poll && file_can_poll(req->file)) { 1970 needs_poll = true; 1971 issue_flags |= IO_URING_F_NONBLOCK; 1972 } 1973 } 1974 1975 do { 1976 ret = io_issue_sqe(req, issue_flags); 1977 if (ret != -EAGAIN) 1978 break; 1979 /* 1980 * We can get EAGAIN for iopolled IO even though we're 1981 * forcing a sync submission from here, since we can't 1982 * wait for request slots on the block side. 1983 */ 1984 if (!needs_poll) { 1985 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1986 break; 1987 cond_resched(); 1988 continue; 1989 } 1990 1991 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1992 return; 1993 /* aborted or ready, in either case retry blocking */ 1994 needs_poll = false; 1995 issue_flags &= ~IO_URING_F_NONBLOCK; 1996 } while (1); 1997 1998 /* avoid locking problems by failing it from a clean context */ 1999 if (ret < 0) 2000 io_req_task_queue_fail(req, ret); 2001 } 2002 2003 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 2004 unsigned int issue_flags) 2005 { 2006 struct io_ring_ctx *ctx = req->ctx; 2007 struct io_fixed_file *slot; 2008 struct file *file = NULL; 2009 2010 io_ring_submit_lock(ctx, issue_flags); 2011 2012 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 2013 goto out; 2014 fd = array_index_nospec(fd, ctx->nr_user_files); 2015 slot = io_fixed_file_slot(&ctx->file_table, fd); 2016 file = io_slot_file(slot); 2017 req->flags |= io_slot_flags(slot); 2018 io_req_set_rsrc_node(req, ctx, 0); 2019 out: 2020 io_ring_submit_unlock(ctx, issue_flags); 2021 return file; 2022 } 2023 2024 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 2025 { 2026 struct file *file = fget(fd); 2027 2028 trace_io_uring_file_get(req, fd); 2029 2030 /* we don't allow fixed io_uring files */ 2031 if (file && io_is_uring_fops(file)) 2032 io_req_track_inflight(req); 2033 return file; 2034 } 2035 2036 static void io_queue_async(struct io_kiocb *req, int ret) 2037 __must_hold(&req->ctx->uring_lock) 2038 { 2039 struct io_kiocb *linked_timeout; 2040 2041 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2042 io_req_defer_failed(req, ret); 2043 return; 2044 } 2045 2046 linked_timeout = io_prep_linked_timeout(req); 2047 2048 switch (io_arm_poll_handler(req, 0)) { 2049 case IO_APOLL_READY: 2050 io_kbuf_recycle(req, 0); 2051 io_req_task_queue(req); 2052 break; 2053 case IO_APOLL_ABORTED: 2054 io_kbuf_recycle(req, 0); 2055 io_queue_iowq(req, NULL); 2056 break; 2057 case IO_APOLL_OK: 2058 break; 2059 } 2060 2061 if (linked_timeout) 2062 io_queue_linked_timeout(linked_timeout); 2063 } 2064 2065 static inline void io_queue_sqe(struct io_kiocb *req) 2066 __must_hold(&req->ctx->uring_lock) 2067 { 2068 int ret; 2069 2070 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2071 2072 /* 2073 * We async punt it if the file wasn't marked NOWAIT, or if the file 2074 * doesn't support non-blocking read/write attempts 2075 */ 2076 if (likely(!ret)) 2077 io_arm_ltimeout(req); 2078 else 2079 io_queue_async(req, ret); 2080 } 2081 2082 static void io_queue_sqe_fallback(struct io_kiocb *req) 2083 __must_hold(&req->ctx->uring_lock) 2084 { 2085 if (unlikely(req->flags & REQ_F_FAIL)) { 2086 /* 2087 * We don't submit, fail them all, for that replace hardlinks 2088 * with normal links. Extra REQ_F_LINK is tolerated. 2089 */ 2090 req->flags &= ~REQ_F_HARDLINK; 2091 req->flags |= REQ_F_LINK; 2092 io_req_defer_failed(req, req->cqe.res); 2093 } else { 2094 int ret = io_req_prep_async(req); 2095 2096 if (unlikely(ret)) { 2097 io_req_defer_failed(req, ret); 2098 return; 2099 } 2100 2101 if (unlikely(req->ctx->drain_active)) 2102 io_drain_req(req); 2103 else 2104 io_queue_iowq(req, NULL); 2105 } 2106 } 2107 2108 /* 2109 * Check SQE restrictions (opcode and flags). 2110 * 2111 * Returns 'true' if SQE is allowed, 'false' otherwise. 2112 */ 2113 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2114 struct io_kiocb *req, 2115 unsigned int sqe_flags) 2116 { 2117 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2118 return false; 2119 2120 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2121 ctx->restrictions.sqe_flags_required) 2122 return false; 2123 2124 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2125 ctx->restrictions.sqe_flags_required)) 2126 return false; 2127 2128 return true; 2129 } 2130 2131 static void io_init_req_drain(struct io_kiocb *req) 2132 { 2133 struct io_ring_ctx *ctx = req->ctx; 2134 struct io_kiocb *head = ctx->submit_state.link.head; 2135 2136 ctx->drain_active = true; 2137 if (head) { 2138 /* 2139 * If we need to drain a request in the middle of a link, drain 2140 * the head request and the next request/link after the current 2141 * link. Considering sequential execution of links, 2142 * REQ_F_IO_DRAIN will be maintained for every request of our 2143 * link. 2144 */ 2145 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2146 ctx->drain_next = true; 2147 } 2148 } 2149 2150 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2151 const struct io_uring_sqe *sqe) 2152 __must_hold(&ctx->uring_lock) 2153 { 2154 const struct io_issue_def *def; 2155 unsigned int sqe_flags; 2156 int personality; 2157 u8 opcode; 2158 2159 /* req is partially pre-initialised, see io_preinit_req() */ 2160 req->opcode = opcode = READ_ONCE(sqe->opcode); 2161 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2162 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2163 req->cqe.user_data = READ_ONCE(sqe->user_data); 2164 req->file = NULL; 2165 req->rsrc_node = NULL; 2166 req->task = current; 2167 2168 if (unlikely(opcode >= IORING_OP_LAST)) { 2169 req->opcode = 0; 2170 return -EINVAL; 2171 } 2172 def = &io_issue_defs[opcode]; 2173 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2174 /* enforce forwards compatibility on users */ 2175 if (sqe_flags & ~SQE_VALID_FLAGS) 2176 return -EINVAL; 2177 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2178 if (!def->buffer_select) 2179 return -EOPNOTSUPP; 2180 req->buf_index = READ_ONCE(sqe->buf_group); 2181 } 2182 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2183 ctx->drain_disabled = true; 2184 if (sqe_flags & IOSQE_IO_DRAIN) { 2185 if (ctx->drain_disabled) 2186 return -EOPNOTSUPP; 2187 io_init_req_drain(req); 2188 } 2189 } 2190 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2191 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2192 return -EACCES; 2193 /* knock it to the slow queue path, will be drained there */ 2194 if (ctx->drain_active) 2195 req->flags |= REQ_F_FORCE_ASYNC; 2196 /* if there is no link, we're at "next" request and need to drain */ 2197 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2198 ctx->drain_next = false; 2199 ctx->drain_active = true; 2200 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2201 } 2202 } 2203 2204 if (!def->ioprio && sqe->ioprio) 2205 return -EINVAL; 2206 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2207 return -EINVAL; 2208 2209 if (def->needs_file) { 2210 struct io_submit_state *state = &ctx->submit_state; 2211 2212 req->cqe.fd = READ_ONCE(sqe->fd); 2213 2214 /* 2215 * Plug now if we have more than 2 IO left after this, and the 2216 * target is potentially a read/write to block based storage. 2217 */ 2218 if (state->need_plug && def->plug) { 2219 state->plug_started = true; 2220 state->need_plug = false; 2221 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2222 } 2223 } 2224 2225 personality = READ_ONCE(sqe->personality); 2226 if (personality) { 2227 int ret; 2228 2229 req->creds = xa_load(&ctx->personalities, personality); 2230 if (!req->creds) 2231 return -EINVAL; 2232 get_cred(req->creds); 2233 ret = security_uring_override_creds(req->creds); 2234 if (ret) { 2235 put_cred(req->creds); 2236 return ret; 2237 } 2238 req->flags |= REQ_F_CREDS; 2239 } 2240 2241 return def->prep(req, sqe); 2242 } 2243 2244 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2245 struct io_kiocb *req, int ret) 2246 { 2247 struct io_ring_ctx *ctx = req->ctx; 2248 struct io_submit_link *link = &ctx->submit_state.link; 2249 struct io_kiocb *head = link->head; 2250 2251 trace_io_uring_req_failed(sqe, req, ret); 2252 2253 /* 2254 * Avoid breaking links in the middle as it renders links with SQPOLL 2255 * unusable. Instead of failing eagerly, continue assembling the link if 2256 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2257 * should find the flag and handle the rest. 2258 */ 2259 req_fail_link_node(req, ret); 2260 if (head && !(head->flags & REQ_F_FAIL)) 2261 req_fail_link_node(head, -ECANCELED); 2262 2263 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2264 if (head) { 2265 link->last->link = req; 2266 link->head = NULL; 2267 req = head; 2268 } 2269 io_queue_sqe_fallback(req); 2270 return ret; 2271 } 2272 2273 if (head) 2274 link->last->link = req; 2275 else 2276 link->head = req; 2277 link->last = req; 2278 return 0; 2279 } 2280 2281 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2282 const struct io_uring_sqe *sqe) 2283 __must_hold(&ctx->uring_lock) 2284 { 2285 struct io_submit_link *link = &ctx->submit_state.link; 2286 int ret; 2287 2288 ret = io_init_req(ctx, req, sqe); 2289 if (unlikely(ret)) 2290 return io_submit_fail_init(sqe, req, ret); 2291 2292 trace_io_uring_submit_req(req); 2293 2294 /* 2295 * If we already have a head request, queue this one for async 2296 * submittal once the head completes. If we don't have a head but 2297 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2298 * submitted sync once the chain is complete. If none of those 2299 * conditions are true (normal request), then just queue it. 2300 */ 2301 if (unlikely(link->head)) { 2302 ret = io_req_prep_async(req); 2303 if (unlikely(ret)) 2304 return io_submit_fail_init(sqe, req, ret); 2305 2306 trace_io_uring_link(req, link->head); 2307 link->last->link = req; 2308 link->last = req; 2309 2310 if (req->flags & IO_REQ_LINK_FLAGS) 2311 return 0; 2312 /* last request of the link, flush it */ 2313 req = link->head; 2314 link->head = NULL; 2315 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2316 goto fallback; 2317 2318 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2319 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2320 if (req->flags & IO_REQ_LINK_FLAGS) { 2321 link->head = req; 2322 link->last = req; 2323 } else { 2324 fallback: 2325 io_queue_sqe_fallback(req); 2326 } 2327 return 0; 2328 } 2329 2330 io_queue_sqe(req); 2331 return 0; 2332 } 2333 2334 /* 2335 * Batched submission is done, ensure local IO is flushed out. 2336 */ 2337 static void io_submit_state_end(struct io_ring_ctx *ctx) 2338 { 2339 struct io_submit_state *state = &ctx->submit_state; 2340 2341 if (unlikely(state->link.head)) 2342 io_queue_sqe_fallback(state->link.head); 2343 /* flush only after queuing links as they can generate completions */ 2344 io_submit_flush_completions(ctx); 2345 if (state->plug_started) 2346 blk_finish_plug(&state->plug); 2347 } 2348 2349 /* 2350 * Start submission side cache. 2351 */ 2352 static void io_submit_state_start(struct io_submit_state *state, 2353 unsigned int max_ios) 2354 { 2355 state->plug_started = false; 2356 state->need_plug = max_ios > 2; 2357 state->submit_nr = max_ios; 2358 /* set only head, no need to init link_last in advance */ 2359 state->link.head = NULL; 2360 } 2361 2362 static void io_commit_sqring(struct io_ring_ctx *ctx) 2363 { 2364 struct io_rings *rings = ctx->rings; 2365 2366 /* 2367 * Ensure any loads from the SQEs are done at this point, 2368 * since once we write the new head, the application could 2369 * write new data to them. 2370 */ 2371 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2372 } 2373 2374 /* 2375 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2376 * that is mapped by userspace. This means that care needs to be taken to 2377 * ensure that reads are stable, as we cannot rely on userspace always 2378 * being a good citizen. If members of the sqe are validated and then later 2379 * used, it's important that those reads are done through READ_ONCE() to 2380 * prevent a re-load down the line. 2381 */ 2382 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2383 { 2384 unsigned head, mask = ctx->sq_entries - 1; 2385 unsigned sq_idx = ctx->cached_sq_head++ & mask; 2386 2387 /* 2388 * The cached sq head (or cq tail) serves two purposes: 2389 * 2390 * 1) allows us to batch the cost of updating the user visible 2391 * head updates. 2392 * 2) allows the kernel side to track the head on its own, even 2393 * though the application is the one updating it. 2394 */ 2395 head = READ_ONCE(ctx->sq_array[sq_idx]); 2396 if (likely(head < ctx->sq_entries)) { 2397 /* double index for 128-byte SQEs, twice as long */ 2398 if (ctx->flags & IORING_SETUP_SQE128) 2399 head <<= 1; 2400 *sqe = &ctx->sq_sqes[head]; 2401 return true; 2402 } 2403 2404 /* drop invalid entries */ 2405 ctx->cq_extra--; 2406 WRITE_ONCE(ctx->rings->sq_dropped, 2407 READ_ONCE(ctx->rings->sq_dropped) + 1); 2408 return false; 2409 } 2410 2411 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2412 __must_hold(&ctx->uring_lock) 2413 { 2414 unsigned int entries = io_sqring_entries(ctx); 2415 unsigned int left; 2416 int ret; 2417 2418 if (unlikely(!entries)) 2419 return 0; 2420 /* make sure SQ entry isn't read before tail */ 2421 ret = left = min(nr, entries); 2422 io_get_task_refs(left); 2423 io_submit_state_start(&ctx->submit_state, left); 2424 2425 do { 2426 const struct io_uring_sqe *sqe; 2427 struct io_kiocb *req; 2428 2429 if (unlikely(!io_alloc_req(ctx, &req))) 2430 break; 2431 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2432 io_req_add_to_cache(req, ctx); 2433 break; 2434 } 2435 2436 /* 2437 * Continue submitting even for sqe failure if the 2438 * ring was setup with IORING_SETUP_SUBMIT_ALL 2439 */ 2440 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2441 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2442 left--; 2443 break; 2444 } 2445 } while (--left); 2446 2447 if (unlikely(left)) { 2448 ret -= left; 2449 /* try again if it submitted nothing and can't allocate a req */ 2450 if (!ret && io_req_cache_empty(ctx)) 2451 ret = -EAGAIN; 2452 current->io_uring->cached_refs += left; 2453 } 2454 2455 io_submit_state_end(ctx); 2456 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2457 io_commit_sqring(ctx); 2458 return ret; 2459 } 2460 2461 struct io_wait_queue { 2462 struct wait_queue_entry wq; 2463 struct io_ring_ctx *ctx; 2464 unsigned cq_tail; 2465 unsigned nr_timeouts; 2466 ktime_t timeout; 2467 }; 2468 2469 static inline bool io_has_work(struct io_ring_ctx *ctx) 2470 { 2471 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2472 !llist_empty(&ctx->work_llist); 2473 } 2474 2475 static inline bool io_should_wake(struct io_wait_queue *iowq) 2476 { 2477 struct io_ring_ctx *ctx = iowq->ctx; 2478 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2479 2480 /* 2481 * Wake up if we have enough events, or if a timeout occurred since we 2482 * started waiting. For timeouts, we always want to return to userspace, 2483 * regardless of event count. 2484 */ 2485 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2486 } 2487 2488 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2489 int wake_flags, void *key) 2490 { 2491 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2492 2493 /* 2494 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2495 * the task, and the next invocation will do it. 2496 */ 2497 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2498 return autoremove_wake_function(curr, mode, wake_flags, key); 2499 return -1; 2500 } 2501 2502 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2503 { 2504 if (!llist_empty(&ctx->work_llist)) { 2505 __set_current_state(TASK_RUNNING); 2506 if (io_run_local_work(ctx) > 0) 2507 return 1; 2508 } 2509 if (io_run_task_work() > 0) 2510 return 1; 2511 if (task_sigpending(current)) 2512 return -EINTR; 2513 return 0; 2514 } 2515 2516 /* when returns >0, the caller should retry */ 2517 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2518 struct io_wait_queue *iowq) 2519 { 2520 if (unlikely(READ_ONCE(ctx->check_cq))) 2521 return 1; 2522 if (unlikely(!llist_empty(&ctx->work_llist))) 2523 return 1; 2524 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) 2525 return 1; 2526 if (unlikely(task_sigpending(current))) 2527 return -EINTR; 2528 if (unlikely(io_should_wake(iowq))) 2529 return 0; 2530 if (iowq->timeout == KTIME_MAX) 2531 schedule(); 2532 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2533 return -ETIME; 2534 return 0; 2535 } 2536 2537 /* 2538 * Wait until events become available, if we don't already have some. The 2539 * application must reap them itself, as they reside on the shared cq ring. 2540 */ 2541 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2542 const sigset_t __user *sig, size_t sigsz, 2543 struct __kernel_timespec __user *uts) 2544 { 2545 struct io_wait_queue iowq; 2546 struct io_rings *rings = ctx->rings; 2547 int ret; 2548 2549 if (!io_allowed_run_tw(ctx)) 2550 return -EEXIST; 2551 if (!llist_empty(&ctx->work_llist)) 2552 io_run_local_work(ctx); 2553 io_run_task_work(); 2554 io_cqring_overflow_flush(ctx); 2555 /* if user messes with these they will just get an early return */ 2556 if (__io_cqring_events_user(ctx) >= min_events) 2557 return 0; 2558 2559 if (sig) { 2560 #ifdef CONFIG_COMPAT 2561 if (in_compat_syscall()) 2562 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2563 sigsz); 2564 else 2565 #endif 2566 ret = set_user_sigmask(sig, sigsz); 2567 2568 if (ret) 2569 return ret; 2570 } 2571 2572 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2573 iowq.wq.private = current; 2574 INIT_LIST_HEAD(&iowq.wq.entry); 2575 iowq.ctx = ctx; 2576 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2577 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2578 iowq.timeout = KTIME_MAX; 2579 2580 if (uts) { 2581 struct timespec64 ts; 2582 2583 if (get_timespec64(&ts, uts)) 2584 return -EFAULT; 2585 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2586 } 2587 2588 trace_io_uring_cqring_wait(ctx, min_events); 2589 do { 2590 unsigned long check_cq; 2591 2592 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2593 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2594 2595 atomic_set(&ctx->cq_wait_nr, nr_wait); 2596 set_current_state(TASK_INTERRUPTIBLE); 2597 } else { 2598 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2599 TASK_INTERRUPTIBLE); 2600 } 2601 2602 ret = io_cqring_wait_schedule(ctx, &iowq); 2603 __set_current_state(TASK_RUNNING); 2604 atomic_set(&ctx->cq_wait_nr, 0); 2605 2606 if (ret < 0) 2607 break; 2608 /* 2609 * Run task_work after scheduling and before io_should_wake(). 2610 * If we got woken because of task_work being processed, run it 2611 * now rather than let the caller do another wait loop. 2612 */ 2613 io_run_task_work(); 2614 if (!llist_empty(&ctx->work_llist)) 2615 io_run_local_work(ctx); 2616 2617 check_cq = READ_ONCE(ctx->check_cq); 2618 if (unlikely(check_cq)) { 2619 /* let the caller flush overflows, retry */ 2620 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2621 io_cqring_do_overflow_flush(ctx); 2622 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2623 ret = -EBADR; 2624 break; 2625 } 2626 } 2627 2628 if (io_should_wake(&iowq)) { 2629 ret = 0; 2630 break; 2631 } 2632 cond_resched(); 2633 } while (1); 2634 2635 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2636 finish_wait(&ctx->cq_wait, &iowq.wq); 2637 restore_saved_sigmask_unless(ret == -EINTR); 2638 2639 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2640 } 2641 2642 static void io_mem_free(void *ptr) 2643 { 2644 struct page *page; 2645 2646 if (!ptr) 2647 return; 2648 2649 page = virt_to_head_page(ptr); 2650 if (put_page_testzero(page)) 2651 free_compound_page(page); 2652 } 2653 2654 static void io_pages_free(struct page ***pages, int npages) 2655 { 2656 struct page **page_array; 2657 int i; 2658 2659 if (!pages) 2660 return; 2661 page_array = *pages; 2662 for (i = 0; i < npages; i++) 2663 unpin_user_page(page_array[i]); 2664 kvfree(page_array); 2665 *pages = NULL; 2666 } 2667 2668 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, 2669 unsigned long uaddr, size_t size) 2670 { 2671 struct page **page_array; 2672 unsigned int nr_pages; 2673 int ret; 2674 2675 *npages = 0; 2676 2677 if (uaddr & (PAGE_SIZE - 1) || !size) 2678 return ERR_PTR(-EINVAL); 2679 2680 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2681 if (nr_pages > USHRT_MAX) 2682 return ERR_PTR(-EINVAL); 2683 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); 2684 if (!page_array) 2685 return ERR_PTR(-ENOMEM); 2686 2687 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, 2688 page_array); 2689 if (ret != nr_pages) { 2690 err: 2691 io_pages_free(&page_array, ret > 0 ? ret : 0); 2692 return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT); 2693 } 2694 /* 2695 * Should be a single page. If the ring is small enough that we can 2696 * use a normal page, that is fine. If we need multiple pages, then 2697 * userspace should use a huge page. That's the only way to guarantee 2698 * that we get contigious memory, outside of just being lucky or 2699 * (currently) having low memory fragmentation. 2700 */ 2701 if (page_array[0] != page_array[ret - 1]) 2702 goto err; 2703 *pages = page_array; 2704 *npages = nr_pages; 2705 return page_to_virt(page_array[0]); 2706 } 2707 2708 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2709 size_t size) 2710 { 2711 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2712 size); 2713 } 2714 2715 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2716 size_t size) 2717 { 2718 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2719 size); 2720 } 2721 2722 static void io_rings_free(struct io_ring_ctx *ctx) 2723 { 2724 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2725 io_mem_free(ctx->rings); 2726 io_mem_free(ctx->sq_sqes); 2727 ctx->rings = NULL; 2728 ctx->sq_sqes = NULL; 2729 } else { 2730 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2731 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2732 } 2733 } 2734 2735 static void *io_mem_alloc(size_t size) 2736 { 2737 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2738 void *ret; 2739 2740 ret = (void *) __get_free_pages(gfp, get_order(size)); 2741 if (ret) 2742 return ret; 2743 return ERR_PTR(-ENOMEM); 2744 } 2745 2746 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2747 unsigned int cq_entries, size_t *sq_offset) 2748 { 2749 struct io_rings *rings; 2750 size_t off, sq_array_size; 2751 2752 off = struct_size(rings, cqes, cq_entries); 2753 if (off == SIZE_MAX) 2754 return SIZE_MAX; 2755 if (ctx->flags & IORING_SETUP_CQE32) { 2756 if (check_shl_overflow(off, 1, &off)) 2757 return SIZE_MAX; 2758 } 2759 2760 #ifdef CONFIG_SMP 2761 off = ALIGN(off, SMP_CACHE_BYTES); 2762 if (off == 0) 2763 return SIZE_MAX; 2764 #endif 2765 2766 if (sq_offset) 2767 *sq_offset = off; 2768 2769 sq_array_size = array_size(sizeof(u32), sq_entries); 2770 if (sq_array_size == SIZE_MAX) 2771 return SIZE_MAX; 2772 2773 if (check_add_overflow(off, sq_array_size, &off)) 2774 return SIZE_MAX; 2775 2776 return off; 2777 } 2778 2779 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2780 unsigned int eventfd_async) 2781 { 2782 struct io_ev_fd *ev_fd; 2783 __s32 __user *fds = arg; 2784 int fd; 2785 2786 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2787 lockdep_is_held(&ctx->uring_lock)); 2788 if (ev_fd) 2789 return -EBUSY; 2790 2791 if (copy_from_user(&fd, fds, sizeof(*fds))) 2792 return -EFAULT; 2793 2794 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2795 if (!ev_fd) 2796 return -ENOMEM; 2797 2798 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2799 if (IS_ERR(ev_fd->cq_ev_fd)) { 2800 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2801 kfree(ev_fd); 2802 return ret; 2803 } 2804 2805 spin_lock(&ctx->completion_lock); 2806 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2807 spin_unlock(&ctx->completion_lock); 2808 2809 ev_fd->eventfd_async = eventfd_async; 2810 ctx->has_evfd = true; 2811 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2812 atomic_set(&ev_fd->refs, 1); 2813 atomic_set(&ev_fd->ops, 0); 2814 return 0; 2815 } 2816 2817 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2818 { 2819 struct io_ev_fd *ev_fd; 2820 2821 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2822 lockdep_is_held(&ctx->uring_lock)); 2823 if (ev_fd) { 2824 ctx->has_evfd = false; 2825 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2826 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2827 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2828 return 0; 2829 } 2830 2831 return -ENXIO; 2832 } 2833 2834 static void io_req_caches_free(struct io_ring_ctx *ctx) 2835 { 2836 struct io_kiocb *req; 2837 int nr = 0; 2838 2839 mutex_lock(&ctx->uring_lock); 2840 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2841 2842 while (!io_req_cache_empty(ctx)) { 2843 req = io_extract_req(ctx); 2844 kmem_cache_free(req_cachep, req); 2845 nr++; 2846 } 2847 if (nr) 2848 percpu_ref_put_many(&ctx->refs, nr); 2849 mutex_unlock(&ctx->uring_lock); 2850 } 2851 2852 static void io_rsrc_node_cache_free(struct io_cache_entry *entry) 2853 { 2854 kfree(container_of(entry, struct io_rsrc_node, cache)); 2855 } 2856 2857 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2858 { 2859 io_sq_thread_finish(ctx); 2860 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2861 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2862 return; 2863 2864 mutex_lock(&ctx->uring_lock); 2865 if (ctx->buf_data) 2866 __io_sqe_buffers_unregister(ctx); 2867 if (ctx->file_data) 2868 __io_sqe_files_unregister(ctx); 2869 io_cqring_overflow_kill(ctx); 2870 io_eventfd_unregister(ctx); 2871 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2872 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2873 io_destroy_buffers(ctx); 2874 mutex_unlock(&ctx->uring_lock); 2875 if (ctx->sq_creds) 2876 put_cred(ctx->sq_creds); 2877 if (ctx->submitter_task) 2878 put_task_struct(ctx->submitter_task); 2879 2880 /* there are no registered resources left, nobody uses it */ 2881 if (ctx->rsrc_node) 2882 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2883 2884 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2885 2886 #if defined(CONFIG_UNIX) 2887 if (ctx->ring_sock) { 2888 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2889 sock_release(ctx->ring_sock); 2890 } 2891 #endif 2892 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2893 2894 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); 2895 if (ctx->mm_account) { 2896 mmdrop(ctx->mm_account); 2897 ctx->mm_account = NULL; 2898 } 2899 io_rings_free(ctx); 2900 2901 percpu_ref_exit(&ctx->refs); 2902 free_uid(ctx->user); 2903 io_req_caches_free(ctx); 2904 if (ctx->hash_map) 2905 io_wq_put_hash(ctx->hash_map); 2906 kfree(ctx->cancel_table.hbs); 2907 kfree(ctx->cancel_table_locked.hbs); 2908 kfree(ctx->dummy_ubuf); 2909 kfree(ctx->io_bl); 2910 xa_destroy(&ctx->io_bl_xa); 2911 kfree(ctx); 2912 } 2913 2914 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2915 { 2916 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2917 poll_wq_task_work); 2918 2919 mutex_lock(&ctx->uring_lock); 2920 ctx->poll_activated = true; 2921 mutex_unlock(&ctx->uring_lock); 2922 2923 /* 2924 * Wake ups for some events between start of polling and activation 2925 * might've been lost due to loose synchronisation. 2926 */ 2927 wake_up_all(&ctx->poll_wq); 2928 percpu_ref_put(&ctx->refs); 2929 } 2930 2931 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2932 { 2933 spin_lock(&ctx->completion_lock); 2934 /* already activated or in progress */ 2935 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2936 goto out; 2937 if (WARN_ON_ONCE(!ctx->task_complete)) 2938 goto out; 2939 if (!ctx->submitter_task) 2940 goto out; 2941 /* 2942 * with ->submitter_task only the submitter task completes requests, we 2943 * only need to sync with it, which is done by injecting a tw 2944 */ 2945 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2946 percpu_ref_get(&ctx->refs); 2947 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2948 percpu_ref_put(&ctx->refs); 2949 out: 2950 spin_unlock(&ctx->completion_lock); 2951 } 2952 2953 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2954 { 2955 struct io_ring_ctx *ctx = file->private_data; 2956 __poll_t mask = 0; 2957 2958 if (unlikely(!ctx->poll_activated)) 2959 io_activate_pollwq(ctx); 2960 2961 poll_wait(file, &ctx->poll_wq, wait); 2962 /* 2963 * synchronizes with barrier from wq_has_sleeper call in 2964 * io_commit_cqring 2965 */ 2966 smp_rmb(); 2967 if (!io_sqring_full(ctx)) 2968 mask |= EPOLLOUT | EPOLLWRNORM; 2969 2970 /* 2971 * Don't flush cqring overflow list here, just do a simple check. 2972 * Otherwise there could possible be ABBA deadlock: 2973 * CPU0 CPU1 2974 * ---- ---- 2975 * lock(&ctx->uring_lock); 2976 * lock(&ep->mtx); 2977 * lock(&ctx->uring_lock); 2978 * lock(&ep->mtx); 2979 * 2980 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2981 * pushes them to do the flush. 2982 */ 2983 2984 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2985 mask |= EPOLLIN | EPOLLRDNORM; 2986 2987 return mask; 2988 } 2989 2990 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 2991 { 2992 const struct cred *creds; 2993 2994 creds = xa_erase(&ctx->personalities, id); 2995 if (creds) { 2996 put_cred(creds); 2997 return 0; 2998 } 2999 3000 return -EINVAL; 3001 } 3002 3003 struct io_tctx_exit { 3004 struct callback_head task_work; 3005 struct completion completion; 3006 struct io_ring_ctx *ctx; 3007 }; 3008 3009 static __cold void io_tctx_exit_cb(struct callback_head *cb) 3010 { 3011 struct io_uring_task *tctx = current->io_uring; 3012 struct io_tctx_exit *work; 3013 3014 work = container_of(cb, struct io_tctx_exit, task_work); 3015 /* 3016 * When @in_cancel, we're in cancellation and it's racy to remove the 3017 * node. It'll be removed by the end of cancellation, just ignore it. 3018 * tctx can be NULL if the queueing of this task_work raced with 3019 * work cancelation off the exec path. 3020 */ 3021 if (tctx && !atomic_read(&tctx->in_cancel)) 3022 io_uring_del_tctx_node((unsigned long)work->ctx); 3023 complete(&work->completion); 3024 } 3025 3026 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 3027 { 3028 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3029 3030 return req->ctx == data; 3031 } 3032 3033 static __cold void io_ring_exit_work(struct work_struct *work) 3034 { 3035 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 3036 unsigned long timeout = jiffies + HZ * 60 * 5; 3037 unsigned long interval = HZ / 20; 3038 struct io_tctx_exit exit; 3039 struct io_tctx_node *node; 3040 int ret; 3041 3042 /* 3043 * If we're doing polled IO and end up having requests being 3044 * submitted async (out-of-line), then completions can come in while 3045 * we're waiting for refs to drop. We need to reap these manually, 3046 * as nobody else will be looking for them. 3047 */ 3048 do { 3049 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 3050 mutex_lock(&ctx->uring_lock); 3051 io_cqring_overflow_kill(ctx); 3052 mutex_unlock(&ctx->uring_lock); 3053 } 3054 3055 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3056 io_move_task_work_from_local(ctx); 3057 3058 while (io_uring_try_cancel_requests(ctx, NULL, true)) 3059 cond_resched(); 3060 3061 if (ctx->sq_data) { 3062 struct io_sq_data *sqd = ctx->sq_data; 3063 struct task_struct *tsk; 3064 3065 io_sq_thread_park(sqd); 3066 tsk = sqd->thread; 3067 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 3068 io_wq_cancel_cb(tsk->io_uring->io_wq, 3069 io_cancel_ctx_cb, ctx, true); 3070 io_sq_thread_unpark(sqd); 3071 } 3072 3073 io_req_caches_free(ctx); 3074 3075 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3076 /* there is little hope left, don't run it too often */ 3077 interval = HZ * 60; 3078 } 3079 /* 3080 * This is really an uninterruptible wait, as it has to be 3081 * complete. But it's also run from a kworker, which doesn't 3082 * take signals, so it's fine to make it interruptible. This 3083 * avoids scenarios where we knowingly can wait much longer 3084 * on completions, for example if someone does a SIGSTOP on 3085 * a task that needs to finish task_work to make this loop 3086 * complete. That's a synthetic situation that should not 3087 * cause a stuck task backtrace, and hence a potential panic 3088 * on stuck tasks if that is enabled. 3089 */ 3090 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 3091 3092 init_completion(&exit.completion); 3093 init_task_work(&exit.task_work, io_tctx_exit_cb); 3094 exit.ctx = ctx; 3095 /* 3096 * Some may use context even when all refs and requests have been put, 3097 * and they are free to do so while still holding uring_lock or 3098 * completion_lock, see io_req_task_submit(). Apart from other work, 3099 * this lock/unlock section also waits them to finish. 3100 */ 3101 mutex_lock(&ctx->uring_lock); 3102 while (!list_empty(&ctx->tctx_list)) { 3103 WARN_ON_ONCE(time_after(jiffies, timeout)); 3104 3105 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3106 ctx_node); 3107 /* don't spin on a single task if cancellation failed */ 3108 list_rotate_left(&ctx->tctx_list); 3109 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3110 if (WARN_ON_ONCE(ret)) 3111 continue; 3112 3113 mutex_unlock(&ctx->uring_lock); 3114 /* 3115 * See comment above for 3116 * wait_for_completion_interruptible_timeout() on why this 3117 * wait is marked as interruptible. 3118 */ 3119 wait_for_completion_interruptible(&exit.completion); 3120 mutex_lock(&ctx->uring_lock); 3121 } 3122 mutex_unlock(&ctx->uring_lock); 3123 spin_lock(&ctx->completion_lock); 3124 spin_unlock(&ctx->completion_lock); 3125 3126 /* pairs with RCU read section in io_req_local_work_add() */ 3127 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3128 synchronize_rcu(); 3129 3130 io_ring_ctx_free(ctx); 3131 } 3132 3133 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3134 { 3135 unsigned long index; 3136 struct creds *creds; 3137 3138 mutex_lock(&ctx->uring_lock); 3139 percpu_ref_kill(&ctx->refs); 3140 xa_for_each(&ctx->personalities, index, creds) 3141 io_unregister_personality(ctx, index); 3142 if (ctx->rings) 3143 io_poll_remove_all(ctx, NULL, true); 3144 mutex_unlock(&ctx->uring_lock); 3145 3146 /* 3147 * If we failed setting up the ctx, we might not have any rings 3148 * and therefore did not submit any requests 3149 */ 3150 if (ctx->rings) 3151 io_kill_timeouts(ctx, NULL, true); 3152 3153 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3154 /* 3155 * Use system_unbound_wq to avoid spawning tons of event kworkers 3156 * if we're exiting a ton of rings at the same time. It just adds 3157 * noise and overhead, there's no discernable change in runtime 3158 * over using system_wq. 3159 */ 3160 queue_work(system_unbound_wq, &ctx->exit_work); 3161 } 3162 3163 static int io_uring_release(struct inode *inode, struct file *file) 3164 { 3165 struct io_ring_ctx *ctx = file->private_data; 3166 3167 file->private_data = NULL; 3168 io_ring_ctx_wait_and_kill(ctx); 3169 return 0; 3170 } 3171 3172 struct io_task_cancel { 3173 struct task_struct *task; 3174 bool all; 3175 }; 3176 3177 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3178 { 3179 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3180 struct io_task_cancel *cancel = data; 3181 3182 return io_match_task_safe(req, cancel->task, cancel->all); 3183 } 3184 3185 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3186 struct task_struct *task, 3187 bool cancel_all) 3188 { 3189 struct io_defer_entry *de; 3190 LIST_HEAD(list); 3191 3192 spin_lock(&ctx->completion_lock); 3193 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3194 if (io_match_task_safe(de->req, task, cancel_all)) { 3195 list_cut_position(&list, &ctx->defer_list, &de->list); 3196 break; 3197 } 3198 } 3199 spin_unlock(&ctx->completion_lock); 3200 if (list_empty(&list)) 3201 return false; 3202 3203 while (!list_empty(&list)) { 3204 de = list_first_entry(&list, struct io_defer_entry, list); 3205 list_del_init(&de->list); 3206 io_req_task_queue_fail(de->req, -ECANCELED); 3207 kfree(de); 3208 } 3209 return true; 3210 } 3211 3212 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3213 { 3214 struct io_tctx_node *node; 3215 enum io_wq_cancel cret; 3216 bool ret = false; 3217 3218 mutex_lock(&ctx->uring_lock); 3219 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3220 struct io_uring_task *tctx = node->task->io_uring; 3221 3222 /* 3223 * io_wq will stay alive while we hold uring_lock, because it's 3224 * killed after ctx nodes, which requires to take the lock. 3225 */ 3226 if (!tctx || !tctx->io_wq) 3227 continue; 3228 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3229 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3230 } 3231 mutex_unlock(&ctx->uring_lock); 3232 3233 return ret; 3234 } 3235 3236 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3237 struct task_struct *task, 3238 bool cancel_all) 3239 { 3240 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3241 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3242 enum io_wq_cancel cret; 3243 bool ret = false; 3244 3245 /* set it so io_req_local_work_add() would wake us up */ 3246 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3247 atomic_set(&ctx->cq_wait_nr, 1); 3248 smp_mb(); 3249 } 3250 3251 /* failed during ring init, it couldn't have issued any requests */ 3252 if (!ctx->rings) 3253 return false; 3254 3255 if (!task) { 3256 ret |= io_uring_try_cancel_iowq(ctx); 3257 } else if (tctx && tctx->io_wq) { 3258 /* 3259 * Cancels requests of all rings, not only @ctx, but 3260 * it's fine as the task is in exit/exec. 3261 */ 3262 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3263 &cancel, true); 3264 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3265 } 3266 3267 /* SQPOLL thread does its own polling */ 3268 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3269 (ctx->sq_data && ctx->sq_data->thread == current)) { 3270 while (!wq_list_empty(&ctx->iopoll_list)) { 3271 io_iopoll_try_reap_events(ctx); 3272 ret = true; 3273 cond_resched(); 3274 } 3275 } 3276 3277 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3278 io_allowed_defer_tw_run(ctx)) 3279 ret |= io_run_local_work(ctx) > 0; 3280 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3281 mutex_lock(&ctx->uring_lock); 3282 ret |= io_poll_remove_all(ctx, task, cancel_all); 3283 mutex_unlock(&ctx->uring_lock); 3284 ret |= io_kill_timeouts(ctx, task, cancel_all); 3285 if (task) 3286 ret |= io_run_task_work() > 0; 3287 return ret; 3288 } 3289 3290 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3291 { 3292 if (tracked) 3293 return atomic_read(&tctx->inflight_tracked); 3294 return percpu_counter_sum(&tctx->inflight); 3295 } 3296 3297 /* 3298 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3299 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3300 */ 3301 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3302 { 3303 struct io_uring_task *tctx = current->io_uring; 3304 struct io_ring_ctx *ctx; 3305 struct io_tctx_node *node; 3306 unsigned long index; 3307 s64 inflight; 3308 DEFINE_WAIT(wait); 3309 3310 WARN_ON_ONCE(sqd && sqd->thread != current); 3311 3312 if (!current->io_uring) 3313 return; 3314 if (tctx->io_wq) 3315 io_wq_exit_start(tctx->io_wq); 3316 3317 atomic_inc(&tctx->in_cancel); 3318 do { 3319 bool loop = false; 3320 3321 io_uring_drop_tctx_refs(current); 3322 /* read completions before cancelations */ 3323 inflight = tctx_inflight(tctx, !cancel_all); 3324 if (!inflight) 3325 break; 3326 3327 if (!sqd) { 3328 xa_for_each(&tctx->xa, index, node) { 3329 /* sqpoll task will cancel all its requests */ 3330 if (node->ctx->sq_data) 3331 continue; 3332 loop |= io_uring_try_cancel_requests(node->ctx, 3333 current, cancel_all); 3334 } 3335 } else { 3336 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3337 loop |= io_uring_try_cancel_requests(ctx, 3338 current, 3339 cancel_all); 3340 } 3341 3342 if (loop) { 3343 cond_resched(); 3344 continue; 3345 } 3346 3347 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3348 io_run_task_work(); 3349 io_uring_drop_tctx_refs(current); 3350 xa_for_each(&tctx->xa, index, node) { 3351 if (!llist_empty(&node->ctx->work_llist)) { 3352 WARN_ON_ONCE(node->ctx->submitter_task && 3353 node->ctx->submitter_task != current); 3354 goto end_wait; 3355 } 3356 } 3357 /* 3358 * If we've seen completions, retry without waiting. This 3359 * avoids a race where a completion comes in before we did 3360 * prepare_to_wait(). 3361 */ 3362 if (inflight == tctx_inflight(tctx, !cancel_all)) 3363 schedule(); 3364 end_wait: 3365 finish_wait(&tctx->wait, &wait); 3366 } while (1); 3367 3368 io_uring_clean_tctx(tctx); 3369 if (cancel_all) { 3370 /* 3371 * We shouldn't run task_works after cancel, so just leave 3372 * ->in_cancel set for normal exit. 3373 */ 3374 atomic_dec(&tctx->in_cancel); 3375 /* for exec all current's requests should be gone, kill tctx */ 3376 __io_uring_free(current); 3377 } 3378 } 3379 3380 void __io_uring_cancel(bool cancel_all) 3381 { 3382 io_uring_cancel_generic(cancel_all, NULL); 3383 } 3384 3385 static void *io_uring_validate_mmap_request(struct file *file, 3386 loff_t pgoff, size_t sz) 3387 { 3388 struct io_ring_ctx *ctx = file->private_data; 3389 loff_t offset = pgoff << PAGE_SHIFT; 3390 struct page *page; 3391 void *ptr; 3392 3393 /* Don't allow mmap if the ring was setup without it */ 3394 if (ctx->flags & IORING_SETUP_NO_MMAP) 3395 return ERR_PTR(-EINVAL); 3396 3397 switch (offset & IORING_OFF_MMAP_MASK) { 3398 case IORING_OFF_SQ_RING: 3399 case IORING_OFF_CQ_RING: 3400 ptr = ctx->rings; 3401 break; 3402 case IORING_OFF_SQES: 3403 ptr = ctx->sq_sqes; 3404 break; 3405 case IORING_OFF_PBUF_RING: { 3406 unsigned int bgid; 3407 3408 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; 3409 mutex_lock(&ctx->uring_lock); 3410 ptr = io_pbuf_get_address(ctx, bgid); 3411 mutex_unlock(&ctx->uring_lock); 3412 if (!ptr) 3413 return ERR_PTR(-EINVAL); 3414 break; 3415 } 3416 default: 3417 return ERR_PTR(-EINVAL); 3418 } 3419 3420 page = virt_to_head_page(ptr); 3421 if (sz > page_size(page)) 3422 return ERR_PTR(-EINVAL); 3423 3424 return ptr; 3425 } 3426 3427 #ifdef CONFIG_MMU 3428 3429 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3430 { 3431 size_t sz = vma->vm_end - vma->vm_start; 3432 unsigned long pfn; 3433 void *ptr; 3434 3435 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3436 if (IS_ERR(ptr)) 3437 return PTR_ERR(ptr); 3438 3439 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3440 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3441 } 3442 3443 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, 3444 unsigned long addr, unsigned long len, 3445 unsigned long pgoff, unsigned long flags) 3446 { 3447 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 3448 struct vm_unmapped_area_info info; 3449 void *ptr; 3450 3451 /* 3452 * Do not allow to map to user-provided address to avoid breaking the 3453 * aliasing rules. Userspace is not able to guess the offset address of 3454 * kernel kmalloc()ed memory area. 3455 */ 3456 if (addr) 3457 return -EINVAL; 3458 3459 ptr = io_uring_validate_mmap_request(filp, pgoff, len); 3460 if (IS_ERR(ptr)) 3461 return -ENOMEM; 3462 3463 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 3464 info.length = len; 3465 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 3466 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base); 3467 #ifdef SHM_COLOUR 3468 info.align_mask = PAGE_MASK & (SHM_COLOUR - 1UL); 3469 #else 3470 info.align_mask = PAGE_MASK & (SHMLBA - 1UL); 3471 #endif 3472 info.align_offset = (unsigned long) ptr; 3473 3474 /* 3475 * A failed mmap() very likely causes application failure, 3476 * so fall back to the bottom-up function here. This scenario 3477 * can happen with large stack limits and large mmap() 3478 * allocations. 3479 */ 3480 addr = vm_unmapped_area(&info); 3481 if (offset_in_page(addr)) { 3482 info.flags = 0; 3483 info.low_limit = TASK_UNMAPPED_BASE; 3484 info.high_limit = mmap_end; 3485 addr = vm_unmapped_area(&info); 3486 } 3487 3488 return addr; 3489 } 3490 3491 #else /* !CONFIG_MMU */ 3492 3493 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3494 { 3495 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3496 } 3497 3498 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3499 { 3500 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3501 } 3502 3503 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3504 unsigned long addr, unsigned long len, 3505 unsigned long pgoff, unsigned long flags) 3506 { 3507 void *ptr; 3508 3509 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3510 if (IS_ERR(ptr)) 3511 return PTR_ERR(ptr); 3512 3513 return (unsigned long) ptr; 3514 } 3515 3516 #endif /* !CONFIG_MMU */ 3517 3518 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3519 { 3520 if (flags & IORING_ENTER_EXT_ARG) { 3521 struct io_uring_getevents_arg arg; 3522 3523 if (argsz != sizeof(arg)) 3524 return -EINVAL; 3525 if (copy_from_user(&arg, argp, sizeof(arg))) 3526 return -EFAULT; 3527 } 3528 return 0; 3529 } 3530 3531 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3532 struct __kernel_timespec __user **ts, 3533 const sigset_t __user **sig) 3534 { 3535 struct io_uring_getevents_arg arg; 3536 3537 /* 3538 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3539 * is just a pointer to the sigset_t. 3540 */ 3541 if (!(flags & IORING_ENTER_EXT_ARG)) { 3542 *sig = (const sigset_t __user *) argp; 3543 *ts = NULL; 3544 return 0; 3545 } 3546 3547 /* 3548 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3549 * timespec and sigset_t pointers if good. 3550 */ 3551 if (*argsz != sizeof(arg)) 3552 return -EINVAL; 3553 if (copy_from_user(&arg, argp, sizeof(arg))) 3554 return -EFAULT; 3555 if (arg.pad) 3556 return -EINVAL; 3557 *sig = u64_to_user_ptr(arg.sigmask); 3558 *argsz = arg.sigmask_sz; 3559 *ts = u64_to_user_ptr(arg.ts); 3560 return 0; 3561 } 3562 3563 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3564 u32, min_complete, u32, flags, const void __user *, argp, 3565 size_t, argsz) 3566 { 3567 struct io_ring_ctx *ctx; 3568 struct fd f; 3569 long ret; 3570 3571 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3572 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3573 IORING_ENTER_REGISTERED_RING))) 3574 return -EINVAL; 3575 3576 /* 3577 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3578 * need only dereference our task private array to find it. 3579 */ 3580 if (flags & IORING_ENTER_REGISTERED_RING) { 3581 struct io_uring_task *tctx = current->io_uring; 3582 3583 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3584 return -EINVAL; 3585 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3586 f.file = tctx->registered_rings[fd]; 3587 f.flags = 0; 3588 if (unlikely(!f.file)) 3589 return -EBADF; 3590 } else { 3591 f = fdget(fd); 3592 if (unlikely(!f.file)) 3593 return -EBADF; 3594 ret = -EOPNOTSUPP; 3595 if (unlikely(!io_is_uring_fops(f.file))) 3596 goto out; 3597 } 3598 3599 ctx = f.file->private_data; 3600 ret = -EBADFD; 3601 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3602 goto out; 3603 3604 /* 3605 * For SQ polling, the thread will do all submissions and completions. 3606 * Just return the requested submit count, and wake the thread if 3607 * we were asked to. 3608 */ 3609 ret = 0; 3610 if (ctx->flags & IORING_SETUP_SQPOLL) { 3611 io_cqring_overflow_flush(ctx); 3612 3613 if (unlikely(ctx->sq_data->thread == NULL)) { 3614 ret = -EOWNERDEAD; 3615 goto out; 3616 } 3617 if (flags & IORING_ENTER_SQ_WAKEUP) 3618 wake_up(&ctx->sq_data->wait); 3619 if (flags & IORING_ENTER_SQ_WAIT) 3620 io_sqpoll_wait_sq(ctx); 3621 3622 ret = to_submit; 3623 } else if (to_submit) { 3624 ret = io_uring_add_tctx_node(ctx); 3625 if (unlikely(ret)) 3626 goto out; 3627 3628 mutex_lock(&ctx->uring_lock); 3629 ret = io_submit_sqes(ctx, to_submit); 3630 if (ret != to_submit) { 3631 mutex_unlock(&ctx->uring_lock); 3632 goto out; 3633 } 3634 if (flags & IORING_ENTER_GETEVENTS) { 3635 if (ctx->syscall_iopoll) 3636 goto iopoll_locked; 3637 /* 3638 * Ignore errors, we'll soon call io_cqring_wait() and 3639 * it should handle ownership problems if any. 3640 */ 3641 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3642 (void)io_run_local_work_locked(ctx); 3643 } 3644 mutex_unlock(&ctx->uring_lock); 3645 } 3646 3647 if (flags & IORING_ENTER_GETEVENTS) { 3648 int ret2; 3649 3650 if (ctx->syscall_iopoll) { 3651 /* 3652 * We disallow the app entering submit/complete with 3653 * polling, but we still need to lock the ring to 3654 * prevent racing with polled issue that got punted to 3655 * a workqueue. 3656 */ 3657 mutex_lock(&ctx->uring_lock); 3658 iopoll_locked: 3659 ret2 = io_validate_ext_arg(flags, argp, argsz); 3660 if (likely(!ret2)) { 3661 min_complete = min(min_complete, 3662 ctx->cq_entries); 3663 ret2 = io_iopoll_check(ctx, min_complete); 3664 } 3665 mutex_unlock(&ctx->uring_lock); 3666 } else { 3667 const sigset_t __user *sig; 3668 struct __kernel_timespec __user *ts; 3669 3670 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3671 if (likely(!ret2)) { 3672 min_complete = min(min_complete, 3673 ctx->cq_entries); 3674 ret2 = io_cqring_wait(ctx, min_complete, sig, 3675 argsz, ts); 3676 } 3677 } 3678 3679 if (!ret) { 3680 ret = ret2; 3681 3682 /* 3683 * EBADR indicates that one or more CQE were dropped. 3684 * Once the user has been informed we can clear the bit 3685 * as they are obviously ok with those drops. 3686 */ 3687 if (unlikely(ret2 == -EBADR)) 3688 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3689 &ctx->check_cq); 3690 } 3691 } 3692 out: 3693 fdput(f); 3694 return ret; 3695 } 3696 3697 static const struct file_operations io_uring_fops = { 3698 .release = io_uring_release, 3699 .mmap = io_uring_mmap, 3700 #ifndef CONFIG_MMU 3701 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3702 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3703 #else 3704 .get_unmapped_area = io_uring_mmu_get_unmapped_area, 3705 #endif 3706 .poll = io_uring_poll, 3707 #ifdef CONFIG_PROC_FS 3708 .show_fdinfo = io_uring_show_fdinfo, 3709 #endif 3710 }; 3711 3712 bool io_is_uring_fops(struct file *file) 3713 { 3714 return file->f_op == &io_uring_fops; 3715 } 3716 3717 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3718 struct io_uring_params *p) 3719 { 3720 struct io_rings *rings; 3721 size_t size, sq_array_offset; 3722 void *ptr; 3723 3724 /* make sure these are sane, as we already accounted them */ 3725 ctx->sq_entries = p->sq_entries; 3726 ctx->cq_entries = p->cq_entries; 3727 3728 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3729 if (size == SIZE_MAX) 3730 return -EOVERFLOW; 3731 3732 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3733 rings = io_mem_alloc(size); 3734 else 3735 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3736 3737 if (IS_ERR(rings)) 3738 return PTR_ERR(rings); 3739 3740 ctx->rings = rings; 3741 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3742 rings->sq_ring_mask = p->sq_entries - 1; 3743 rings->cq_ring_mask = p->cq_entries - 1; 3744 rings->sq_ring_entries = p->sq_entries; 3745 rings->cq_ring_entries = p->cq_entries; 3746 3747 if (p->flags & IORING_SETUP_SQE128) 3748 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3749 else 3750 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3751 if (size == SIZE_MAX) { 3752 io_rings_free(ctx); 3753 return -EOVERFLOW; 3754 } 3755 3756 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3757 ptr = io_mem_alloc(size); 3758 else 3759 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3760 3761 if (IS_ERR(ptr)) { 3762 io_rings_free(ctx); 3763 return PTR_ERR(ptr); 3764 } 3765 3766 ctx->sq_sqes = ptr; 3767 return 0; 3768 } 3769 3770 static int io_uring_install_fd(struct file *file) 3771 { 3772 int fd; 3773 3774 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3775 if (fd < 0) 3776 return fd; 3777 fd_install(fd, file); 3778 return fd; 3779 } 3780 3781 /* 3782 * Allocate an anonymous fd, this is what constitutes the application 3783 * visible backing of an io_uring instance. The application mmaps this 3784 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3785 * we have to tie this fd to a socket for file garbage collection purposes. 3786 */ 3787 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3788 { 3789 struct file *file; 3790 #if defined(CONFIG_UNIX) 3791 int ret; 3792 3793 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3794 &ctx->ring_sock); 3795 if (ret) 3796 return ERR_PTR(ret); 3797 #endif 3798 3799 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3800 O_RDWR | O_CLOEXEC, NULL); 3801 #if defined(CONFIG_UNIX) 3802 if (IS_ERR(file)) { 3803 sock_release(ctx->ring_sock); 3804 ctx->ring_sock = NULL; 3805 } else { 3806 ctx->ring_sock->file = file; 3807 } 3808 #endif 3809 return file; 3810 } 3811 3812 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3813 struct io_uring_params __user *params) 3814 { 3815 struct io_ring_ctx *ctx; 3816 struct io_uring_task *tctx; 3817 struct file *file; 3818 int ret; 3819 3820 if (!entries) 3821 return -EINVAL; 3822 if (entries > IORING_MAX_ENTRIES) { 3823 if (!(p->flags & IORING_SETUP_CLAMP)) 3824 return -EINVAL; 3825 entries = IORING_MAX_ENTRIES; 3826 } 3827 3828 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3829 && !(p->flags & IORING_SETUP_NO_MMAP)) 3830 return -EINVAL; 3831 3832 /* 3833 * Use twice as many entries for the CQ ring. It's possible for the 3834 * application to drive a higher depth than the size of the SQ ring, 3835 * since the sqes are only used at submission time. This allows for 3836 * some flexibility in overcommitting a bit. If the application has 3837 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3838 * of CQ ring entries manually. 3839 */ 3840 p->sq_entries = roundup_pow_of_two(entries); 3841 if (p->flags & IORING_SETUP_CQSIZE) { 3842 /* 3843 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3844 * to a power-of-two, if it isn't already. We do NOT impose 3845 * any cq vs sq ring sizing. 3846 */ 3847 if (!p->cq_entries) 3848 return -EINVAL; 3849 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3850 if (!(p->flags & IORING_SETUP_CLAMP)) 3851 return -EINVAL; 3852 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3853 } 3854 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3855 if (p->cq_entries < p->sq_entries) 3856 return -EINVAL; 3857 } else { 3858 p->cq_entries = 2 * p->sq_entries; 3859 } 3860 3861 ctx = io_ring_ctx_alloc(p); 3862 if (!ctx) 3863 return -ENOMEM; 3864 3865 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3866 !(ctx->flags & IORING_SETUP_IOPOLL) && 3867 !(ctx->flags & IORING_SETUP_SQPOLL)) 3868 ctx->task_complete = true; 3869 3870 /* 3871 * lazy poll_wq activation relies on ->task_complete for synchronisation 3872 * purposes, see io_activate_pollwq() 3873 */ 3874 if (!ctx->task_complete) 3875 ctx->poll_activated = true; 3876 3877 /* 3878 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3879 * space applications don't need to do io completion events 3880 * polling again, they can rely on io_sq_thread to do polling 3881 * work, which can reduce cpu usage and uring_lock contention. 3882 */ 3883 if (ctx->flags & IORING_SETUP_IOPOLL && 3884 !(ctx->flags & IORING_SETUP_SQPOLL)) 3885 ctx->syscall_iopoll = 1; 3886 3887 ctx->compat = in_compat_syscall(); 3888 if (!capable(CAP_IPC_LOCK)) 3889 ctx->user = get_uid(current_user()); 3890 3891 /* 3892 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3893 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3894 */ 3895 ret = -EINVAL; 3896 if (ctx->flags & IORING_SETUP_SQPOLL) { 3897 /* IPI related flags don't make sense with SQPOLL */ 3898 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3899 IORING_SETUP_TASKRUN_FLAG | 3900 IORING_SETUP_DEFER_TASKRUN)) 3901 goto err; 3902 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3903 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3904 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3905 } else { 3906 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3907 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3908 goto err; 3909 ctx->notify_method = TWA_SIGNAL; 3910 } 3911 3912 /* 3913 * For DEFER_TASKRUN we require the completion task to be the same as the 3914 * submission task. This implies that there is only one submitter, so enforce 3915 * that. 3916 */ 3917 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3918 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3919 goto err; 3920 } 3921 3922 /* 3923 * This is just grabbed for accounting purposes. When a process exits, 3924 * the mm is exited and dropped before the files, hence we need to hang 3925 * on to this mm purely for the purposes of being able to unaccount 3926 * memory (locked/pinned vm). It's not used for anything else. 3927 */ 3928 mmgrab(current->mm); 3929 ctx->mm_account = current->mm; 3930 3931 ret = io_allocate_scq_urings(ctx, p); 3932 if (ret) 3933 goto err; 3934 3935 ret = io_sq_offload_create(ctx, p); 3936 if (ret) 3937 goto err; 3938 3939 ret = io_rsrc_init(ctx); 3940 if (ret) 3941 goto err; 3942 3943 p->sq_off.head = offsetof(struct io_rings, sq.head); 3944 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3945 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3946 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3947 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3948 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3949 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3950 p->sq_off.resv1 = 0; 3951 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3952 p->sq_off.user_addr = 0; 3953 3954 p->cq_off.head = offsetof(struct io_rings, cq.head); 3955 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3956 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3957 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3958 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3959 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3960 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3961 p->cq_off.resv1 = 0; 3962 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3963 p->cq_off.user_addr = 0; 3964 3965 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3966 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3967 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3968 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3969 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3970 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3971 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 3972 3973 if (copy_to_user(params, p, sizeof(*p))) { 3974 ret = -EFAULT; 3975 goto err; 3976 } 3977 3978 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3979 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3980 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3981 3982 file = io_uring_get_file(ctx); 3983 if (IS_ERR(file)) { 3984 ret = PTR_ERR(file); 3985 goto err; 3986 } 3987 3988 ret = __io_uring_add_tctx_node(ctx); 3989 if (ret) 3990 goto err_fput; 3991 tctx = current->io_uring; 3992 3993 /* 3994 * Install ring fd as the very last thing, so we don't risk someone 3995 * having closed it before we finish setup 3996 */ 3997 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3998 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3999 else 4000 ret = io_uring_install_fd(file); 4001 if (ret < 0) 4002 goto err_fput; 4003 4004 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 4005 return ret; 4006 err: 4007 io_ring_ctx_wait_and_kill(ctx); 4008 return ret; 4009 err_fput: 4010 fput(file); 4011 return ret; 4012 } 4013 4014 /* 4015 * Sets up an aio uring context, and returns the fd. Applications asks for a 4016 * ring size, we return the actual sq/cq ring sizes (among other things) in the 4017 * params structure passed in. 4018 */ 4019 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 4020 { 4021 struct io_uring_params p; 4022 int i; 4023 4024 if (copy_from_user(&p, params, sizeof(p))) 4025 return -EFAULT; 4026 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 4027 if (p.resv[i]) 4028 return -EINVAL; 4029 } 4030 4031 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 4032 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 4033 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 4034 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 4035 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 4036 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 4037 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 4038 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY)) 4039 return -EINVAL; 4040 4041 return io_uring_create(entries, &p, params); 4042 } 4043 4044 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 4045 struct io_uring_params __user *, params) 4046 { 4047 return io_uring_setup(entries, params); 4048 } 4049 4050 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 4051 unsigned nr_args) 4052 { 4053 struct io_uring_probe *p; 4054 size_t size; 4055 int i, ret; 4056 4057 size = struct_size(p, ops, nr_args); 4058 if (size == SIZE_MAX) 4059 return -EOVERFLOW; 4060 p = kzalloc(size, GFP_KERNEL); 4061 if (!p) 4062 return -ENOMEM; 4063 4064 ret = -EFAULT; 4065 if (copy_from_user(p, arg, size)) 4066 goto out; 4067 ret = -EINVAL; 4068 if (memchr_inv(p, 0, size)) 4069 goto out; 4070 4071 p->last_op = IORING_OP_LAST - 1; 4072 if (nr_args > IORING_OP_LAST) 4073 nr_args = IORING_OP_LAST; 4074 4075 for (i = 0; i < nr_args; i++) { 4076 p->ops[i].op = i; 4077 if (!io_issue_defs[i].not_supported) 4078 p->ops[i].flags = IO_URING_OP_SUPPORTED; 4079 } 4080 p->ops_len = i; 4081 4082 ret = 0; 4083 if (copy_to_user(arg, p, size)) 4084 ret = -EFAULT; 4085 out: 4086 kfree(p); 4087 return ret; 4088 } 4089 4090 static int io_register_personality(struct io_ring_ctx *ctx) 4091 { 4092 const struct cred *creds; 4093 u32 id; 4094 int ret; 4095 4096 creds = get_current_cred(); 4097 4098 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 4099 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 4100 if (ret < 0) { 4101 put_cred(creds); 4102 return ret; 4103 } 4104 return id; 4105 } 4106 4107 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 4108 void __user *arg, unsigned int nr_args) 4109 { 4110 struct io_uring_restriction *res; 4111 size_t size; 4112 int i, ret; 4113 4114 /* Restrictions allowed only if rings started disabled */ 4115 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4116 return -EBADFD; 4117 4118 /* We allow only a single restrictions registration */ 4119 if (ctx->restrictions.registered) 4120 return -EBUSY; 4121 4122 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 4123 return -EINVAL; 4124 4125 size = array_size(nr_args, sizeof(*res)); 4126 if (size == SIZE_MAX) 4127 return -EOVERFLOW; 4128 4129 res = memdup_user(arg, size); 4130 if (IS_ERR(res)) 4131 return PTR_ERR(res); 4132 4133 ret = 0; 4134 4135 for (i = 0; i < nr_args; i++) { 4136 switch (res[i].opcode) { 4137 case IORING_RESTRICTION_REGISTER_OP: 4138 if (res[i].register_op >= IORING_REGISTER_LAST) { 4139 ret = -EINVAL; 4140 goto out; 4141 } 4142 4143 __set_bit(res[i].register_op, 4144 ctx->restrictions.register_op); 4145 break; 4146 case IORING_RESTRICTION_SQE_OP: 4147 if (res[i].sqe_op >= IORING_OP_LAST) { 4148 ret = -EINVAL; 4149 goto out; 4150 } 4151 4152 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 4153 break; 4154 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 4155 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 4156 break; 4157 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 4158 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 4159 break; 4160 default: 4161 ret = -EINVAL; 4162 goto out; 4163 } 4164 } 4165 4166 out: 4167 /* Reset all restrictions if an error happened */ 4168 if (ret != 0) 4169 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 4170 else 4171 ctx->restrictions.registered = true; 4172 4173 kfree(res); 4174 return ret; 4175 } 4176 4177 static int io_register_enable_rings(struct io_ring_ctx *ctx) 4178 { 4179 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4180 return -EBADFD; 4181 4182 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) { 4183 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4184 /* 4185 * Lazy activation attempts would fail if it was polled before 4186 * submitter_task is set. 4187 */ 4188 if (wq_has_sleeper(&ctx->poll_wq)) 4189 io_activate_pollwq(ctx); 4190 } 4191 4192 if (ctx->restrictions.registered) 4193 ctx->restricted = 1; 4194 4195 ctx->flags &= ~IORING_SETUP_R_DISABLED; 4196 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 4197 wake_up(&ctx->sq_data->wait); 4198 return 0; 4199 } 4200 4201 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 4202 void __user *arg, unsigned len) 4203 { 4204 struct io_uring_task *tctx = current->io_uring; 4205 cpumask_var_t new_mask; 4206 int ret; 4207 4208 if (!tctx || !tctx->io_wq) 4209 return -EINVAL; 4210 4211 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4212 return -ENOMEM; 4213 4214 cpumask_clear(new_mask); 4215 if (len > cpumask_size()) 4216 len = cpumask_size(); 4217 4218 if (in_compat_syscall()) { 4219 ret = compat_get_bitmap(cpumask_bits(new_mask), 4220 (const compat_ulong_t __user *)arg, 4221 len * 8 /* CHAR_BIT */); 4222 } else { 4223 ret = copy_from_user(new_mask, arg, len); 4224 } 4225 4226 if (ret) { 4227 free_cpumask_var(new_mask); 4228 return -EFAULT; 4229 } 4230 4231 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask); 4232 free_cpumask_var(new_mask); 4233 return ret; 4234 } 4235 4236 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 4237 { 4238 struct io_uring_task *tctx = current->io_uring; 4239 4240 if (!tctx || !tctx->io_wq) 4241 return -EINVAL; 4242 4243 return io_wq_cpu_affinity(tctx->io_wq, NULL); 4244 } 4245 4246 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 4247 void __user *arg) 4248 __must_hold(&ctx->uring_lock) 4249 { 4250 struct io_tctx_node *node; 4251 struct io_uring_task *tctx = NULL; 4252 struct io_sq_data *sqd = NULL; 4253 __u32 new_count[2]; 4254 int i, ret; 4255 4256 if (copy_from_user(new_count, arg, sizeof(new_count))) 4257 return -EFAULT; 4258 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4259 if (new_count[i] > INT_MAX) 4260 return -EINVAL; 4261 4262 if (ctx->flags & IORING_SETUP_SQPOLL) { 4263 sqd = ctx->sq_data; 4264 if (sqd) { 4265 /* 4266 * Observe the correct sqd->lock -> ctx->uring_lock 4267 * ordering. Fine to drop uring_lock here, we hold 4268 * a ref to the ctx. 4269 */ 4270 refcount_inc(&sqd->refs); 4271 mutex_unlock(&ctx->uring_lock); 4272 mutex_lock(&sqd->lock); 4273 mutex_lock(&ctx->uring_lock); 4274 if (sqd->thread) 4275 tctx = sqd->thread->io_uring; 4276 } 4277 } else { 4278 tctx = current->io_uring; 4279 } 4280 4281 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 4282 4283 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4284 if (new_count[i]) 4285 ctx->iowq_limits[i] = new_count[i]; 4286 ctx->iowq_limits_set = true; 4287 4288 if (tctx && tctx->io_wq) { 4289 ret = io_wq_max_workers(tctx->io_wq, new_count); 4290 if (ret) 4291 goto err; 4292 } else { 4293 memset(new_count, 0, sizeof(new_count)); 4294 } 4295 4296 if (sqd) { 4297 mutex_unlock(&sqd->lock); 4298 io_put_sq_data(sqd); 4299 } 4300 4301 if (copy_to_user(arg, new_count, sizeof(new_count))) 4302 return -EFAULT; 4303 4304 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 4305 if (sqd) 4306 return 0; 4307 4308 /* now propagate the restriction to all registered users */ 4309 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 4310 struct io_uring_task *tctx = node->task->io_uring; 4311 4312 if (WARN_ON_ONCE(!tctx->io_wq)) 4313 continue; 4314 4315 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4316 new_count[i] = ctx->iowq_limits[i]; 4317 /* ignore errors, it always returns zero anyway */ 4318 (void)io_wq_max_workers(tctx->io_wq, new_count); 4319 } 4320 return 0; 4321 err: 4322 if (sqd) { 4323 mutex_unlock(&sqd->lock); 4324 io_put_sq_data(sqd); 4325 } 4326 return ret; 4327 } 4328 4329 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4330 void __user *arg, unsigned nr_args) 4331 __releases(ctx->uring_lock) 4332 __acquires(ctx->uring_lock) 4333 { 4334 int ret; 4335 4336 /* 4337 * We don't quiesce the refs for register anymore and so it can't be 4338 * dying as we're holding a file ref here. 4339 */ 4340 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4341 return -ENXIO; 4342 4343 if (ctx->submitter_task && ctx->submitter_task != current) 4344 return -EEXIST; 4345 4346 if (ctx->restricted) { 4347 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4348 if (!test_bit(opcode, ctx->restrictions.register_op)) 4349 return -EACCES; 4350 } 4351 4352 switch (opcode) { 4353 case IORING_REGISTER_BUFFERS: 4354 ret = -EFAULT; 4355 if (!arg) 4356 break; 4357 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4358 break; 4359 case IORING_UNREGISTER_BUFFERS: 4360 ret = -EINVAL; 4361 if (arg || nr_args) 4362 break; 4363 ret = io_sqe_buffers_unregister(ctx); 4364 break; 4365 case IORING_REGISTER_FILES: 4366 ret = -EFAULT; 4367 if (!arg) 4368 break; 4369 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4370 break; 4371 case IORING_UNREGISTER_FILES: 4372 ret = -EINVAL; 4373 if (arg || nr_args) 4374 break; 4375 ret = io_sqe_files_unregister(ctx); 4376 break; 4377 case IORING_REGISTER_FILES_UPDATE: 4378 ret = io_register_files_update(ctx, arg, nr_args); 4379 break; 4380 case IORING_REGISTER_EVENTFD: 4381 ret = -EINVAL; 4382 if (nr_args != 1) 4383 break; 4384 ret = io_eventfd_register(ctx, arg, 0); 4385 break; 4386 case IORING_REGISTER_EVENTFD_ASYNC: 4387 ret = -EINVAL; 4388 if (nr_args != 1) 4389 break; 4390 ret = io_eventfd_register(ctx, arg, 1); 4391 break; 4392 case IORING_UNREGISTER_EVENTFD: 4393 ret = -EINVAL; 4394 if (arg || nr_args) 4395 break; 4396 ret = io_eventfd_unregister(ctx); 4397 break; 4398 case IORING_REGISTER_PROBE: 4399 ret = -EINVAL; 4400 if (!arg || nr_args > 256) 4401 break; 4402 ret = io_probe(ctx, arg, nr_args); 4403 break; 4404 case IORING_REGISTER_PERSONALITY: 4405 ret = -EINVAL; 4406 if (arg || nr_args) 4407 break; 4408 ret = io_register_personality(ctx); 4409 break; 4410 case IORING_UNREGISTER_PERSONALITY: 4411 ret = -EINVAL; 4412 if (arg) 4413 break; 4414 ret = io_unregister_personality(ctx, nr_args); 4415 break; 4416 case IORING_REGISTER_ENABLE_RINGS: 4417 ret = -EINVAL; 4418 if (arg || nr_args) 4419 break; 4420 ret = io_register_enable_rings(ctx); 4421 break; 4422 case IORING_REGISTER_RESTRICTIONS: 4423 ret = io_register_restrictions(ctx, arg, nr_args); 4424 break; 4425 case IORING_REGISTER_FILES2: 4426 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4427 break; 4428 case IORING_REGISTER_FILES_UPDATE2: 4429 ret = io_register_rsrc_update(ctx, arg, nr_args, 4430 IORING_RSRC_FILE); 4431 break; 4432 case IORING_REGISTER_BUFFERS2: 4433 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4434 break; 4435 case IORING_REGISTER_BUFFERS_UPDATE: 4436 ret = io_register_rsrc_update(ctx, arg, nr_args, 4437 IORING_RSRC_BUFFER); 4438 break; 4439 case IORING_REGISTER_IOWQ_AFF: 4440 ret = -EINVAL; 4441 if (!arg || !nr_args) 4442 break; 4443 ret = io_register_iowq_aff(ctx, arg, nr_args); 4444 break; 4445 case IORING_UNREGISTER_IOWQ_AFF: 4446 ret = -EINVAL; 4447 if (arg || nr_args) 4448 break; 4449 ret = io_unregister_iowq_aff(ctx); 4450 break; 4451 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4452 ret = -EINVAL; 4453 if (!arg || nr_args != 2) 4454 break; 4455 ret = io_register_iowq_max_workers(ctx, arg); 4456 break; 4457 case IORING_REGISTER_RING_FDS: 4458 ret = io_ringfd_register(ctx, arg, nr_args); 4459 break; 4460 case IORING_UNREGISTER_RING_FDS: 4461 ret = io_ringfd_unregister(ctx, arg, nr_args); 4462 break; 4463 case IORING_REGISTER_PBUF_RING: 4464 ret = -EINVAL; 4465 if (!arg || nr_args != 1) 4466 break; 4467 ret = io_register_pbuf_ring(ctx, arg); 4468 break; 4469 case IORING_UNREGISTER_PBUF_RING: 4470 ret = -EINVAL; 4471 if (!arg || nr_args != 1) 4472 break; 4473 ret = io_unregister_pbuf_ring(ctx, arg); 4474 break; 4475 case IORING_REGISTER_SYNC_CANCEL: 4476 ret = -EINVAL; 4477 if (!arg || nr_args != 1) 4478 break; 4479 ret = io_sync_cancel(ctx, arg); 4480 break; 4481 case IORING_REGISTER_FILE_ALLOC_RANGE: 4482 ret = -EINVAL; 4483 if (!arg || nr_args) 4484 break; 4485 ret = io_register_file_alloc_range(ctx, arg); 4486 break; 4487 default: 4488 ret = -EINVAL; 4489 break; 4490 } 4491 4492 return ret; 4493 } 4494 4495 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4496 void __user *, arg, unsigned int, nr_args) 4497 { 4498 struct io_ring_ctx *ctx; 4499 long ret = -EBADF; 4500 struct fd f; 4501 bool use_registered_ring; 4502 4503 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING); 4504 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING; 4505 4506 if (opcode >= IORING_REGISTER_LAST) 4507 return -EINVAL; 4508 4509 if (use_registered_ring) { 4510 /* 4511 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 4512 * need only dereference our task private array to find it. 4513 */ 4514 struct io_uring_task *tctx = current->io_uring; 4515 4516 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 4517 return -EINVAL; 4518 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 4519 f.file = tctx->registered_rings[fd]; 4520 f.flags = 0; 4521 if (unlikely(!f.file)) 4522 return -EBADF; 4523 } else { 4524 f = fdget(fd); 4525 if (unlikely(!f.file)) 4526 return -EBADF; 4527 ret = -EOPNOTSUPP; 4528 if (!io_is_uring_fops(f.file)) 4529 goto out_fput; 4530 } 4531 4532 ctx = f.file->private_data; 4533 4534 mutex_lock(&ctx->uring_lock); 4535 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4536 mutex_unlock(&ctx->uring_lock); 4537 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4538 out_fput: 4539 fdput(f); 4540 return ret; 4541 } 4542 4543 static int __init io_uring_init(void) 4544 { 4545 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4546 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4547 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4548 } while (0) 4549 4550 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4551 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4552 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4553 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4554 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4555 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4556 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4557 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4558 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4559 BUILD_BUG_SQE_ELEM(8, __u64, off); 4560 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4561 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4562 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4563 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4564 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4565 BUILD_BUG_SQE_ELEM(24, __u32, len); 4566 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4567 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4568 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4569 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4570 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4571 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4572 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4573 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4574 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4575 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4576 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4577 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4578 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4579 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4580 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4581 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4582 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4583 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4584 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4585 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4586 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4587 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4588 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4589 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4590 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4591 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4592 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4593 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4594 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4595 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4596 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4597 4598 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4599 sizeof(struct io_uring_rsrc_update)); 4600 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4601 sizeof(struct io_uring_rsrc_update2)); 4602 4603 /* ->buf_index is u16 */ 4604 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4605 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4606 offsetof(struct io_uring_buf_ring, tail)); 4607 4608 /* should fit into one byte */ 4609 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4610 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4611 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4612 4613 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4614 4615 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4616 4617 io_uring_optable_init(); 4618 4619 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4620 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU); 4621 return 0; 4622 }; 4623 __initcall(io_uring_init); 4624