xref: /openbmc/linux/io_uring/io_uring.c (revision 6ec9afc7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 #include <asm/shmparam.h>
76 
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/io_uring.h>
79 
80 #include <uapi/linux/io_uring.h>
81 
82 #include "io-wq.h"
83 
84 #include "io_uring.h"
85 #include "opdef.h"
86 #include "refs.h"
87 #include "tctx.h"
88 #include "sqpoll.h"
89 #include "fdinfo.h"
90 #include "kbuf.h"
91 #include "rsrc.h"
92 #include "cancel.h"
93 #include "net.h"
94 #include "notif.h"
95 
96 #include "timeout.h"
97 #include "poll.h"
98 #include "rw.h"
99 #include "alloc_cache.h"
100 
101 #define IORING_MAX_ENTRIES	32768
102 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
103 
104 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
105 				 IORING_REGISTER_LAST + IORING_OP_LAST)
106 
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109 
110 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112 
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 				REQ_F_ASYNC_DATA)
116 
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 				 IO_REQ_CLEAN_FLAGS)
119 
120 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
121 
122 #define IO_COMPL_BATCH			32
123 #define IO_REQ_ALLOC_BATCH		8
124 
125 enum {
126 	IO_CHECK_CQ_OVERFLOW_BIT,
127 	IO_CHECK_CQ_DROPPED_BIT,
128 };
129 
130 enum {
131 	IO_EVENTFD_OP_SIGNAL_BIT,
132 	IO_EVENTFD_OP_FREE_BIT,
133 };
134 
135 struct io_defer_entry {
136 	struct list_head	list;
137 	struct io_kiocb		*req;
138 	u32			seq;
139 };
140 
141 /* requests with any of those set should undergo io_disarm_next() */
142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
144 
145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
146 					 struct task_struct *task,
147 					 bool cancel_all);
148 
149 static void io_dismantle_req(struct io_kiocb *req);
150 static void io_clean_op(struct io_kiocb *req);
151 static void io_queue_sqe(struct io_kiocb *req);
152 static void io_move_task_work_from_local(struct io_ring_ctx *ctx);
153 static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
154 static __cold void io_fallback_tw(struct io_uring_task *tctx);
155 
156 struct kmem_cache *req_cachep;
157 
158 struct sock *io_uring_get_socket(struct file *file)
159 {
160 #if defined(CONFIG_UNIX)
161 	if (io_is_uring_fops(file)) {
162 		struct io_ring_ctx *ctx = file->private_data;
163 
164 		return ctx->ring_sock->sk;
165 	}
166 #endif
167 	return NULL;
168 }
169 EXPORT_SYMBOL(io_uring_get_socket);
170 
171 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
172 {
173 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
174 	    ctx->submit_state.cqes_count)
175 		__io_submit_flush_completions(ctx);
176 }
177 
178 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
179 {
180 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
181 }
182 
183 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
184 {
185 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
186 }
187 
188 static bool io_match_linked(struct io_kiocb *head)
189 {
190 	struct io_kiocb *req;
191 
192 	io_for_each_link(req, head) {
193 		if (req->flags & REQ_F_INFLIGHT)
194 			return true;
195 	}
196 	return false;
197 }
198 
199 /*
200  * As io_match_task() but protected against racing with linked timeouts.
201  * User must not hold timeout_lock.
202  */
203 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
204 			bool cancel_all)
205 {
206 	bool matched;
207 
208 	if (task && head->task != task)
209 		return false;
210 	if (cancel_all)
211 		return true;
212 
213 	if (head->flags & REQ_F_LINK_TIMEOUT) {
214 		struct io_ring_ctx *ctx = head->ctx;
215 
216 		/* protect against races with linked timeouts */
217 		spin_lock_irq(&ctx->timeout_lock);
218 		matched = io_match_linked(head);
219 		spin_unlock_irq(&ctx->timeout_lock);
220 	} else {
221 		matched = io_match_linked(head);
222 	}
223 	return matched;
224 }
225 
226 static inline void req_fail_link_node(struct io_kiocb *req, int res)
227 {
228 	req_set_fail(req);
229 	io_req_set_res(req, res, 0);
230 }
231 
232 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
233 {
234 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
235 	kasan_poison_object_data(req_cachep, req);
236 }
237 
238 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
239 {
240 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
241 
242 	complete(&ctx->ref_comp);
243 }
244 
245 static __cold void io_fallback_req_func(struct work_struct *work)
246 {
247 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
248 						fallback_work.work);
249 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
250 	struct io_kiocb *req, *tmp;
251 	struct io_tw_state ts = { .locked = true, };
252 
253 	mutex_lock(&ctx->uring_lock);
254 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
255 		req->io_task_work.func(req, &ts);
256 	if (WARN_ON_ONCE(!ts.locked))
257 		return;
258 	io_submit_flush_completions(ctx);
259 	mutex_unlock(&ctx->uring_lock);
260 }
261 
262 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
263 {
264 	unsigned hash_buckets = 1U << bits;
265 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
266 
267 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
268 	if (!table->hbs)
269 		return -ENOMEM;
270 
271 	table->hash_bits = bits;
272 	init_hash_table(table, hash_buckets);
273 	return 0;
274 }
275 
276 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
277 {
278 	struct io_ring_ctx *ctx;
279 	int hash_bits;
280 
281 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
282 	if (!ctx)
283 		return NULL;
284 
285 	xa_init(&ctx->io_bl_xa);
286 
287 	/*
288 	 * Use 5 bits less than the max cq entries, that should give us around
289 	 * 32 entries per hash list if totally full and uniformly spread, but
290 	 * don't keep too many buckets to not overconsume memory.
291 	 */
292 	hash_bits = ilog2(p->cq_entries) - 5;
293 	hash_bits = clamp(hash_bits, 1, 8);
294 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
295 		goto err;
296 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
297 		goto err;
298 
299 	ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
300 	if (!ctx->dummy_ubuf)
301 		goto err;
302 	/* set invalid range, so io_import_fixed() fails meeting it */
303 	ctx->dummy_ubuf->ubuf = -1UL;
304 
305 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
306 			    0, GFP_KERNEL))
307 		goto err;
308 
309 	ctx->flags = p->flags;
310 	init_waitqueue_head(&ctx->sqo_sq_wait);
311 	INIT_LIST_HEAD(&ctx->sqd_list);
312 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
313 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
314 	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
315 			    sizeof(struct io_rsrc_node));
316 	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
317 			    sizeof(struct async_poll));
318 	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
319 			    sizeof(struct io_async_msghdr));
320 	init_completion(&ctx->ref_comp);
321 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
322 	mutex_init(&ctx->uring_lock);
323 	init_waitqueue_head(&ctx->cq_wait);
324 	init_waitqueue_head(&ctx->poll_wq);
325 	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
326 	spin_lock_init(&ctx->completion_lock);
327 	spin_lock_init(&ctx->timeout_lock);
328 	INIT_WQ_LIST(&ctx->iopoll_list);
329 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
330 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
331 	INIT_LIST_HEAD(&ctx->defer_list);
332 	INIT_LIST_HEAD(&ctx->timeout_list);
333 	INIT_LIST_HEAD(&ctx->ltimeout_list);
334 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
335 	init_llist_head(&ctx->work_llist);
336 	INIT_LIST_HEAD(&ctx->tctx_list);
337 	ctx->submit_state.free_list.next = NULL;
338 	INIT_WQ_LIST(&ctx->locked_free_list);
339 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
340 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
341 	return ctx;
342 err:
343 	kfree(ctx->dummy_ubuf);
344 	kfree(ctx->cancel_table.hbs);
345 	kfree(ctx->cancel_table_locked.hbs);
346 	kfree(ctx->io_bl);
347 	xa_destroy(&ctx->io_bl_xa);
348 	kfree(ctx);
349 	return NULL;
350 }
351 
352 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
353 {
354 	struct io_rings *r = ctx->rings;
355 
356 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
357 	ctx->cq_extra--;
358 }
359 
360 static bool req_need_defer(struct io_kiocb *req, u32 seq)
361 {
362 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
363 		struct io_ring_ctx *ctx = req->ctx;
364 
365 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
366 	}
367 
368 	return false;
369 }
370 
371 static inline void io_req_track_inflight(struct io_kiocb *req)
372 {
373 	if (!(req->flags & REQ_F_INFLIGHT)) {
374 		req->flags |= REQ_F_INFLIGHT;
375 		atomic_inc(&req->task->io_uring->inflight_tracked);
376 	}
377 }
378 
379 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
380 {
381 	if (WARN_ON_ONCE(!req->link))
382 		return NULL;
383 
384 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
385 	req->flags |= REQ_F_LINK_TIMEOUT;
386 
387 	/* linked timeouts should have two refs once prep'ed */
388 	io_req_set_refcount(req);
389 	__io_req_set_refcount(req->link, 2);
390 	return req->link;
391 }
392 
393 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
394 {
395 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
396 		return NULL;
397 	return __io_prep_linked_timeout(req);
398 }
399 
400 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
401 {
402 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
403 }
404 
405 static inline void io_arm_ltimeout(struct io_kiocb *req)
406 {
407 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
408 		__io_arm_ltimeout(req);
409 }
410 
411 static void io_prep_async_work(struct io_kiocb *req)
412 {
413 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
414 	struct io_ring_ctx *ctx = req->ctx;
415 
416 	if (!(req->flags & REQ_F_CREDS)) {
417 		req->flags |= REQ_F_CREDS;
418 		req->creds = get_current_cred();
419 	}
420 
421 	req->work.list.next = NULL;
422 	req->work.flags = 0;
423 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
424 	if (req->flags & REQ_F_FORCE_ASYNC)
425 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
426 
427 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
428 		req->flags |= io_file_get_flags(req->file);
429 
430 	if (req->file && (req->flags & REQ_F_ISREG)) {
431 		bool should_hash = def->hash_reg_file;
432 
433 		/* don't serialize this request if the fs doesn't need it */
434 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
435 		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
436 			should_hash = false;
437 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
438 			io_wq_hash_work(&req->work, file_inode(req->file));
439 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
440 		if (def->unbound_nonreg_file)
441 			req->work.flags |= IO_WQ_WORK_UNBOUND;
442 	}
443 }
444 
445 static void io_prep_async_link(struct io_kiocb *req)
446 {
447 	struct io_kiocb *cur;
448 
449 	if (req->flags & REQ_F_LINK_TIMEOUT) {
450 		struct io_ring_ctx *ctx = req->ctx;
451 
452 		spin_lock_irq(&ctx->timeout_lock);
453 		io_for_each_link(cur, req)
454 			io_prep_async_work(cur);
455 		spin_unlock_irq(&ctx->timeout_lock);
456 	} else {
457 		io_for_each_link(cur, req)
458 			io_prep_async_work(cur);
459 	}
460 }
461 
462 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
463 {
464 	struct io_kiocb *link = io_prep_linked_timeout(req);
465 	struct io_uring_task *tctx = req->task->io_uring;
466 
467 	BUG_ON(!tctx);
468 	BUG_ON(!tctx->io_wq);
469 
470 	/* init ->work of the whole link before punting */
471 	io_prep_async_link(req);
472 
473 	/*
474 	 * Not expected to happen, but if we do have a bug where this _can_
475 	 * happen, catch it here and ensure the request is marked as
476 	 * canceled. That will make io-wq go through the usual work cancel
477 	 * procedure rather than attempt to run this request (or create a new
478 	 * worker for it).
479 	 */
480 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
481 		req->work.flags |= IO_WQ_WORK_CANCEL;
482 
483 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
484 	io_wq_enqueue(tctx->io_wq, &req->work);
485 	if (link)
486 		io_queue_linked_timeout(link);
487 }
488 
489 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
490 {
491 	while (!list_empty(&ctx->defer_list)) {
492 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
493 						struct io_defer_entry, list);
494 
495 		if (req_need_defer(de->req, de->seq))
496 			break;
497 		list_del_init(&de->list);
498 		io_req_task_queue(de->req);
499 		kfree(de);
500 	}
501 }
502 
503 
504 static void io_eventfd_ops(struct rcu_head *rcu)
505 {
506 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
507 	int ops = atomic_xchg(&ev_fd->ops, 0);
508 
509 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
510 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
511 
512 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
513 	 * ordering in a race but if references are 0 we know we have to free
514 	 * it regardless.
515 	 */
516 	if (atomic_dec_and_test(&ev_fd->refs)) {
517 		eventfd_ctx_put(ev_fd->cq_ev_fd);
518 		kfree(ev_fd);
519 	}
520 }
521 
522 static void io_eventfd_signal(struct io_ring_ctx *ctx)
523 {
524 	struct io_ev_fd *ev_fd = NULL;
525 
526 	rcu_read_lock();
527 	/*
528 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
529 	 * and eventfd_signal
530 	 */
531 	ev_fd = rcu_dereference(ctx->io_ev_fd);
532 
533 	/*
534 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
535 	 * completed between the NULL check of ctx->io_ev_fd at the start of
536 	 * the function and rcu_read_lock.
537 	 */
538 	if (unlikely(!ev_fd))
539 		goto out;
540 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
541 		goto out;
542 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
543 		goto out;
544 
545 	if (likely(eventfd_signal_allowed())) {
546 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
547 	} else {
548 		atomic_inc(&ev_fd->refs);
549 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
550 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
551 		else
552 			atomic_dec(&ev_fd->refs);
553 	}
554 
555 out:
556 	rcu_read_unlock();
557 }
558 
559 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
560 {
561 	bool skip;
562 
563 	spin_lock(&ctx->completion_lock);
564 
565 	/*
566 	 * Eventfd should only get triggered when at least one event has been
567 	 * posted. Some applications rely on the eventfd notification count
568 	 * only changing IFF a new CQE has been added to the CQ ring. There's
569 	 * no depedency on 1:1 relationship between how many times this
570 	 * function is called (and hence the eventfd count) and number of CQEs
571 	 * posted to the CQ ring.
572 	 */
573 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
574 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
575 	spin_unlock(&ctx->completion_lock);
576 	if (skip)
577 		return;
578 
579 	io_eventfd_signal(ctx);
580 }
581 
582 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
583 {
584 	if (ctx->poll_activated)
585 		io_poll_wq_wake(ctx);
586 	if (ctx->off_timeout_used)
587 		io_flush_timeouts(ctx);
588 	if (ctx->drain_active) {
589 		spin_lock(&ctx->completion_lock);
590 		io_queue_deferred(ctx);
591 		spin_unlock(&ctx->completion_lock);
592 	}
593 	if (ctx->has_evfd)
594 		io_eventfd_flush_signal(ctx);
595 }
596 
597 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
598 	__acquires(ctx->completion_lock)
599 {
600 	if (!ctx->task_complete)
601 		spin_lock(&ctx->completion_lock);
602 }
603 
604 static inline void __io_cq_unlock(struct io_ring_ctx *ctx)
605 {
606 	if (!ctx->task_complete)
607 		spin_unlock(&ctx->completion_lock);
608 }
609 
610 static inline void io_cq_lock(struct io_ring_ctx *ctx)
611 	__acquires(ctx->completion_lock)
612 {
613 	spin_lock(&ctx->completion_lock);
614 }
615 
616 static inline void io_cq_unlock(struct io_ring_ctx *ctx)
617 	__releases(ctx->completion_lock)
618 {
619 	spin_unlock(&ctx->completion_lock);
620 }
621 
622 /* keep it inlined for io_submit_flush_completions() */
623 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
624 	__releases(ctx->completion_lock)
625 {
626 	io_commit_cqring(ctx);
627 	__io_cq_unlock(ctx);
628 	io_commit_cqring_flush(ctx);
629 	io_cqring_wake(ctx);
630 }
631 
632 static void __io_cq_unlock_post_flush(struct io_ring_ctx *ctx)
633 	__releases(ctx->completion_lock)
634 {
635 	io_commit_cqring(ctx);
636 
637 	if (ctx->task_complete) {
638 		/*
639 		 * ->task_complete implies that only current might be waiting
640 		 * for CQEs, and obviously, we currently don't. No one is
641 		 * waiting, wakeups are futile, skip them.
642 		 */
643 		io_commit_cqring_flush(ctx);
644 	} else {
645 		__io_cq_unlock(ctx);
646 		io_commit_cqring_flush(ctx);
647 		io_cqring_wake(ctx);
648 	}
649 }
650 
651 void io_cq_unlock_post(struct io_ring_ctx *ctx)
652 	__releases(ctx->completion_lock)
653 {
654 	io_commit_cqring(ctx);
655 	spin_unlock(&ctx->completion_lock);
656 	io_commit_cqring_flush(ctx);
657 	io_cqring_wake(ctx);
658 }
659 
660 /* Returns true if there are no backlogged entries after the flush */
661 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
662 {
663 	struct io_overflow_cqe *ocqe;
664 	LIST_HEAD(list);
665 
666 	io_cq_lock(ctx);
667 	list_splice_init(&ctx->cq_overflow_list, &list);
668 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
669 	io_cq_unlock(ctx);
670 
671 	while (!list_empty(&list)) {
672 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
673 		list_del(&ocqe->list);
674 		kfree(ocqe);
675 	}
676 }
677 
678 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
679 {
680 	size_t cqe_size = sizeof(struct io_uring_cqe);
681 
682 	if (__io_cqring_events(ctx) == ctx->cq_entries)
683 		return;
684 
685 	if (ctx->flags & IORING_SETUP_CQE32)
686 		cqe_size <<= 1;
687 
688 	io_cq_lock(ctx);
689 	while (!list_empty(&ctx->cq_overflow_list)) {
690 		struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true);
691 		struct io_overflow_cqe *ocqe;
692 
693 		if (!cqe)
694 			break;
695 		ocqe = list_first_entry(&ctx->cq_overflow_list,
696 					struct io_overflow_cqe, list);
697 		memcpy(cqe, &ocqe->cqe, cqe_size);
698 		list_del(&ocqe->list);
699 		kfree(ocqe);
700 	}
701 
702 	if (list_empty(&ctx->cq_overflow_list)) {
703 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
704 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
705 	}
706 	io_cq_unlock_post(ctx);
707 }
708 
709 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
710 {
711 	/* iopoll syncs against uring_lock, not completion_lock */
712 	if (ctx->flags & IORING_SETUP_IOPOLL)
713 		mutex_lock(&ctx->uring_lock);
714 	__io_cqring_overflow_flush(ctx);
715 	if (ctx->flags & IORING_SETUP_IOPOLL)
716 		mutex_unlock(&ctx->uring_lock);
717 }
718 
719 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
720 {
721 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
722 		io_cqring_do_overflow_flush(ctx);
723 }
724 
725 /* can be called by any task */
726 static void io_put_task_remote(struct task_struct *task, int nr)
727 {
728 	struct io_uring_task *tctx = task->io_uring;
729 
730 	percpu_counter_sub(&tctx->inflight, nr);
731 	if (unlikely(atomic_read(&tctx->in_cancel)))
732 		wake_up(&tctx->wait);
733 	put_task_struct_many(task, nr);
734 }
735 
736 /* used by a task to put its own references */
737 static void io_put_task_local(struct task_struct *task, int nr)
738 {
739 	task->io_uring->cached_refs += nr;
740 }
741 
742 /* must to be called somewhat shortly after putting a request */
743 static inline void io_put_task(struct task_struct *task, int nr)
744 {
745 	if (likely(task == current))
746 		io_put_task_local(task, nr);
747 	else
748 		io_put_task_remote(task, nr);
749 }
750 
751 void io_task_refs_refill(struct io_uring_task *tctx)
752 {
753 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
754 
755 	percpu_counter_add(&tctx->inflight, refill);
756 	refcount_add(refill, &current->usage);
757 	tctx->cached_refs += refill;
758 }
759 
760 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
761 {
762 	struct io_uring_task *tctx = task->io_uring;
763 	unsigned int refs = tctx->cached_refs;
764 
765 	if (refs) {
766 		tctx->cached_refs = 0;
767 		percpu_counter_sub(&tctx->inflight, refs);
768 		put_task_struct_many(task, refs);
769 	}
770 }
771 
772 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
773 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
774 {
775 	struct io_overflow_cqe *ocqe;
776 	size_t ocq_size = sizeof(struct io_overflow_cqe);
777 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
778 
779 	lockdep_assert_held(&ctx->completion_lock);
780 
781 	if (is_cqe32)
782 		ocq_size += sizeof(struct io_uring_cqe);
783 
784 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
785 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
786 	if (!ocqe) {
787 		/*
788 		 * If we're in ring overflow flush mode, or in task cancel mode,
789 		 * or cannot allocate an overflow entry, then we need to drop it
790 		 * on the floor.
791 		 */
792 		io_account_cq_overflow(ctx);
793 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
794 		return false;
795 	}
796 	if (list_empty(&ctx->cq_overflow_list)) {
797 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
798 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
799 
800 	}
801 	ocqe->cqe.user_data = user_data;
802 	ocqe->cqe.res = res;
803 	ocqe->cqe.flags = cflags;
804 	if (is_cqe32) {
805 		ocqe->cqe.big_cqe[0] = extra1;
806 		ocqe->cqe.big_cqe[1] = extra2;
807 	}
808 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
809 	return true;
810 }
811 
812 bool io_req_cqe_overflow(struct io_kiocb *req)
813 {
814 	if (!(req->flags & REQ_F_CQE32_INIT)) {
815 		req->extra1 = 0;
816 		req->extra2 = 0;
817 	}
818 	return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
819 					req->cqe.res, req->cqe.flags,
820 					req->extra1, req->extra2);
821 }
822 
823 /*
824  * writes to the cq entry need to come after reading head; the
825  * control dependency is enough as we're using WRITE_ONCE to
826  * fill the cq entry
827  */
828 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow)
829 {
830 	struct io_rings *rings = ctx->rings;
831 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
832 	unsigned int free, queued, len;
833 
834 	/*
835 	 * Posting into the CQ when there are pending overflowed CQEs may break
836 	 * ordering guarantees, which will affect links, F_MORE users and more.
837 	 * Force overflow the completion.
838 	 */
839 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
840 		return NULL;
841 
842 	/* userspace may cheat modifying the tail, be safe and do min */
843 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
844 	free = ctx->cq_entries - queued;
845 	/* we need a contiguous range, limit based on the current array offset */
846 	len = min(free, ctx->cq_entries - off);
847 	if (!len)
848 		return NULL;
849 
850 	if (ctx->flags & IORING_SETUP_CQE32) {
851 		off <<= 1;
852 		len <<= 1;
853 	}
854 
855 	ctx->cqe_cached = &rings->cqes[off];
856 	ctx->cqe_sentinel = ctx->cqe_cached + len;
857 
858 	ctx->cached_cq_tail++;
859 	ctx->cqe_cached++;
860 	if (ctx->flags & IORING_SETUP_CQE32)
861 		ctx->cqe_cached++;
862 	return &rings->cqes[off];
863 }
864 
865 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
866 			      u32 cflags)
867 {
868 	struct io_uring_cqe *cqe;
869 
870 	ctx->cq_extra++;
871 
872 	/*
873 	 * If we can't get a cq entry, userspace overflowed the
874 	 * submission (by quite a lot). Increment the overflow count in
875 	 * the ring.
876 	 */
877 	cqe = io_get_cqe(ctx);
878 	if (likely(cqe)) {
879 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
880 
881 		WRITE_ONCE(cqe->user_data, user_data);
882 		WRITE_ONCE(cqe->res, res);
883 		WRITE_ONCE(cqe->flags, cflags);
884 
885 		if (ctx->flags & IORING_SETUP_CQE32) {
886 			WRITE_ONCE(cqe->big_cqe[0], 0);
887 			WRITE_ONCE(cqe->big_cqe[1], 0);
888 		}
889 		return true;
890 	}
891 	return false;
892 }
893 
894 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
895 	__must_hold(&ctx->uring_lock)
896 {
897 	struct io_submit_state *state = &ctx->submit_state;
898 	unsigned int i;
899 
900 	lockdep_assert_held(&ctx->uring_lock);
901 	for (i = 0; i < state->cqes_count; i++) {
902 		struct io_uring_cqe *cqe = &state->cqes[i];
903 
904 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
905 			if (ctx->task_complete) {
906 				spin_lock(&ctx->completion_lock);
907 				io_cqring_event_overflow(ctx, cqe->user_data,
908 							cqe->res, cqe->flags, 0, 0);
909 				spin_unlock(&ctx->completion_lock);
910 			} else {
911 				io_cqring_event_overflow(ctx, cqe->user_data,
912 							cqe->res, cqe->flags, 0, 0);
913 			}
914 		}
915 	}
916 	state->cqes_count = 0;
917 }
918 
919 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
920 			      bool allow_overflow)
921 {
922 	bool filled;
923 
924 	io_cq_lock(ctx);
925 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
926 	if (!filled && allow_overflow)
927 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
928 
929 	io_cq_unlock_post(ctx);
930 	return filled;
931 }
932 
933 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
934 {
935 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
936 }
937 
938 bool io_aux_cqe(const struct io_kiocb *req, bool defer, s32 res, u32 cflags,
939 		bool allow_overflow)
940 {
941 	struct io_ring_ctx *ctx = req->ctx;
942 	u64 user_data = req->cqe.user_data;
943 	struct io_uring_cqe *cqe;
944 
945 	if (!defer)
946 		return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow);
947 
948 	lockdep_assert_held(&ctx->uring_lock);
949 
950 	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->submit_state.cqes)) {
951 		__io_cq_lock(ctx);
952 		__io_flush_post_cqes(ctx);
953 		/* no need to flush - flush is deferred */
954 		__io_cq_unlock_post(ctx);
955 	}
956 
957 	/* For defered completions this is not as strict as it is otherwise,
958 	 * however it's main job is to prevent unbounded posted completions,
959 	 * and in that it works just as well.
960 	 */
961 	if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
962 		return false;
963 
964 	cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++];
965 	cqe->user_data = user_data;
966 	cqe->res = res;
967 	cqe->flags = cflags;
968 	return true;
969 }
970 
971 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
972 {
973 	struct io_ring_ctx *ctx = req->ctx;
974 	struct io_rsrc_node *rsrc_node = NULL;
975 
976 	io_cq_lock(ctx);
977 	if (!(req->flags & REQ_F_CQE_SKIP))
978 		io_fill_cqe_req(ctx, req);
979 
980 	/*
981 	 * If we're the last reference to this request, add to our locked
982 	 * free_list cache.
983 	 */
984 	if (req_ref_put_and_test(req)) {
985 		if (req->flags & IO_REQ_LINK_FLAGS) {
986 			if (req->flags & IO_DISARM_MASK)
987 				io_disarm_next(req);
988 			if (req->link) {
989 				io_req_task_queue(req->link);
990 				req->link = NULL;
991 			}
992 		}
993 		io_put_kbuf_comp(req);
994 		io_dismantle_req(req);
995 		rsrc_node = req->rsrc_node;
996 		/*
997 		 * Selected buffer deallocation in io_clean_op() assumes that
998 		 * we don't hold ->completion_lock. Clean them here to avoid
999 		 * deadlocks.
1000 		 */
1001 		io_put_task_remote(req->task, 1);
1002 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1003 		ctx->locked_free_nr++;
1004 	}
1005 	io_cq_unlock_post(ctx);
1006 
1007 	if (rsrc_node) {
1008 		io_ring_submit_lock(ctx, issue_flags);
1009 		io_put_rsrc_node(ctx, rsrc_node);
1010 		io_ring_submit_unlock(ctx, issue_flags);
1011 	}
1012 }
1013 
1014 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1015 {
1016 	if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1017 		req->io_task_work.func = io_req_task_complete;
1018 		io_req_task_work_add(req);
1019 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1020 		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1021 		__io_req_complete_post(req, issue_flags);
1022 	} else {
1023 		struct io_ring_ctx *ctx = req->ctx;
1024 
1025 		mutex_lock(&ctx->uring_lock);
1026 		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1027 		mutex_unlock(&ctx->uring_lock);
1028 	}
1029 }
1030 
1031 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1032 	__must_hold(&ctx->uring_lock)
1033 {
1034 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1035 
1036 	lockdep_assert_held(&req->ctx->uring_lock);
1037 
1038 	req_set_fail(req);
1039 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1040 	if (def->fail)
1041 		def->fail(req);
1042 	io_req_complete_defer(req);
1043 }
1044 
1045 /*
1046  * Don't initialise the fields below on every allocation, but do that in
1047  * advance and keep them valid across allocations.
1048  */
1049 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1050 {
1051 	req->ctx = ctx;
1052 	req->link = NULL;
1053 	req->async_data = NULL;
1054 	/* not necessary, but safer to zero */
1055 	req->cqe.res = 0;
1056 }
1057 
1058 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1059 					struct io_submit_state *state)
1060 {
1061 	spin_lock(&ctx->completion_lock);
1062 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1063 	ctx->locked_free_nr = 0;
1064 	spin_unlock(&ctx->completion_lock);
1065 }
1066 
1067 /*
1068  * A request might get retired back into the request caches even before opcode
1069  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1070  * Because of that, io_alloc_req() should be called only under ->uring_lock
1071  * and with extra caution to not get a request that is still worked on.
1072  */
1073 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1074 	__must_hold(&ctx->uring_lock)
1075 {
1076 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1077 	void *reqs[IO_REQ_ALLOC_BATCH];
1078 	int ret, i;
1079 
1080 	/*
1081 	 * If we have more than a batch's worth of requests in our IRQ side
1082 	 * locked cache, grab the lock and move them over to our submission
1083 	 * side cache.
1084 	 */
1085 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1086 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1087 		if (!io_req_cache_empty(ctx))
1088 			return true;
1089 	}
1090 
1091 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1092 
1093 	/*
1094 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1095 	 * retry single alloc to be on the safe side.
1096 	 */
1097 	if (unlikely(ret <= 0)) {
1098 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1099 		if (!reqs[0])
1100 			return false;
1101 		ret = 1;
1102 	}
1103 
1104 	percpu_ref_get_many(&ctx->refs, ret);
1105 	for (i = 0; i < ret; i++) {
1106 		struct io_kiocb *req = reqs[i];
1107 
1108 		io_preinit_req(req, ctx);
1109 		io_req_add_to_cache(req, ctx);
1110 	}
1111 	return true;
1112 }
1113 
1114 static inline void io_dismantle_req(struct io_kiocb *req)
1115 {
1116 	unsigned int flags = req->flags;
1117 
1118 	if (unlikely(flags & IO_REQ_CLEAN_FLAGS))
1119 		io_clean_op(req);
1120 	if (!(flags & REQ_F_FIXED_FILE))
1121 		io_put_file(req->file);
1122 }
1123 
1124 __cold void io_free_req(struct io_kiocb *req)
1125 {
1126 	/* refs were already put, restore them for io_req_task_complete() */
1127 	req->flags &= ~REQ_F_REFCOUNT;
1128 	/* we only want to free it, don't post CQEs */
1129 	req->flags |= REQ_F_CQE_SKIP;
1130 	req->io_task_work.func = io_req_task_complete;
1131 	io_req_task_work_add(req);
1132 }
1133 
1134 static void __io_req_find_next_prep(struct io_kiocb *req)
1135 {
1136 	struct io_ring_ctx *ctx = req->ctx;
1137 
1138 	spin_lock(&ctx->completion_lock);
1139 	io_disarm_next(req);
1140 	spin_unlock(&ctx->completion_lock);
1141 }
1142 
1143 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1144 {
1145 	struct io_kiocb *nxt;
1146 
1147 	/*
1148 	 * If LINK is set, we have dependent requests in this chain. If we
1149 	 * didn't fail this request, queue the first one up, moving any other
1150 	 * dependencies to the next request. In case of failure, fail the rest
1151 	 * of the chain.
1152 	 */
1153 	if (unlikely(req->flags & IO_DISARM_MASK))
1154 		__io_req_find_next_prep(req);
1155 	nxt = req->link;
1156 	req->link = NULL;
1157 	return nxt;
1158 }
1159 
1160 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1161 {
1162 	if (!ctx)
1163 		return;
1164 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1165 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1166 	if (ts->locked) {
1167 		io_submit_flush_completions(ctx);
1168 		mutex_unlock(&ctx->uring_lock);
1169 		ts->locked = false;
1170 	}
1171 	percpu_ref_put(&ctx->refs);
1172 }
1173 
1174 static unsigned int handle_tw_list(struct llist_node *node,
1175 				   struct io_ring_ctx **ctx,
1176 				   struct io_tw_state *ts,
1177 				   struct llist_node *last)
1178 {
1179 	unsigned int count = 0;
1180 
1181 	while (node && node != last) {
1182 		struct llist_node *next = node->next;
1183 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1184 						    io_task_work.node);
1185 
1186 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1187 
1188 		if (req->ctx != *ctx) {
1189 			ctx_flush_and_put(*ctx, ts);
1190 			*ctx = req->ctx;
1191 			/* if not contended, grab and improve batching */
1192 			ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1193 			percpu_ref_get(&(*ctx)->refs);
1194 		}
1195 		INDIRECT_CALL_2(req->io_task_work.func,
1196 				io_poll_task_func, io_req_rw_complete,
1197 				req, ts);
1198 		node = next;
1199 		count++;
1200 		if (unlikely(need_resched())) {
1201 			ctx_flush_and_put(*ctx, ts);
1202 			*ctx = NULL;
1203 			cond_resched();
1204 		}
1205 	}
1206 
1207 	return count;
1208 }
1209 
1210 /**
1211  * io_llist_xchg - swap all entries in a lock-less list
1212  * @head:	the head of lock-less list to delete all entries
1213  * @new:	new entry as the head of the list
1214  *
1215  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1216  * The order of entries returned is from the newest to the oldest added one.
1217  */
1218 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1219 					       struct llist_node *new)
1220 {
1221 	return xchg(&head->first, new);
1222 }
1223 
1224 /**
1225  * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1226  * @head:	the head of lock-less list to delete all entries
1227  * @old:	expected old value of the first entry of the list
1228  * @new:	new entry as the head of the list
1229  *
1230  * perform a cmpxchg on the first entry of the list.
1231  */
1232 
1233 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1234 						  struct llist_node *old,
1235 						  struct llist_node *new)
1236 {
1237 	return cmpxchg(&head->first, old, new);
1238 }
1239 
1240 void tctx_task_work(struct callback_head *cb)
1241 {
1242 	struct io_tw_state ts = {};
1243 	struct io_ring_ctx *ctx = NULL;
1244 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1245 						  task_work);
1246 	struct llist_node fake = {};
1247 	struct llist_node *node;
1248 	unsigned int loops = 0;
1249 	unsigned int count = 0;
1250 
1251 	if (unlikely(current->flags & PF_EXITING)) {
1252 		io_fallback_tw(tctx);
1253 		return;
1254 	}
1255 
1256 	do {
1257 		loops++;
1258 		node = io_llist_xchg(&tctx->task_list, &fake);
1259 		count += handle_tw_list(node, &ctx, &ts, &fake);
1260 
1261 		/* skip expensive cmpxchg if there are items in the list */
1262 		if (READ_ONCE(tctx->task_list.first) != &fake)
1263 			continue;
1264 		if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1265 			io_submit_flush_completions(ctx);
1266 			if (READ_ONCE(tctx->task_list.first) != &fake)
1267 				continue;
1268 		}
1269 		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1270 	} while (node != &fake);
1271 
1272 	ctx_flush_and_put(ctx, &ts);
1273 
1274 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1275 	if (unlikely(atomic_read(&tctx->in_cancel)))
1276 		io_uring_drop_tctx_refs(current);
1277 
1278 	trace_io_uring_task_work_run(tctx, count, loops);
1279 }
1280 
1281 static __cold void io_fallback_tw(struct io_uring_task *tctx)
1282 {
1283 	struct llist_node *node = llist_del_all(&tctx->task_list);
1284 	struct io_kiocb *req;
1285 
1286 	while (node) {
1287 		req = container_of(node, struct io_kiocb, io_task_work.node);
1288 		node = node->next;
1289 		if (llist_add(&req->io_task_work.node,
1290 			      &req->ctx->fallback_llist))
1291 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1292 	}
1293 }
1294 
1295 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1296 {
1297 	struct io_ring_ctx *ctx = req->ctx;
1298 	unsigned nr_wait, nr_tw, nr_tw_prev;
1299 	struct llist_node *first;
1300 
1301 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1302 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1303 
1304 	first = READ_ONCE(ctx->work_llist.first);
1305 	do {
1306 		nr_tw_prev = 0;
1307 		if (first) {
1308 			struct io_kiocb *first_req = container_of(first,
1309 							struct io_kiocb,
1310 							io_task_work.node);
1311 			/*
1312 			 * Might be executed at any moment, rely on
1313 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1314 			 */
1315 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1316 		}
1317 		nr_tw = nr_tw_prev + 1;
1318 		/* Large enough to fail the nr_wait comparison below */
1319 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1320 			nr_tw = -1U;
1321 
1322 		req->nr_tw = nr_tw;
1323 		req->io_task_work.node.next = first;
1324 	} while (!try_cmpxchg(&ctx->work_llist.first, &first,
1325 			      &req->io_task_work.node));
1326 
1327 	if (!first) {
1328 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1329 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1330 		if (ctx->has_evfd)
1331 			io_eventfd_signal(ctx);
1332 	}
1333 
1334 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1335 	/* no one is waiting */
1336 	if (!nr_wait)
1337 		return;
1338 	/* either not enough or the previous add has already woken it up */
1339 	if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1340 		return;
1341 	/* pairs with set_current_state() in io_cqring_wait() */
1342 	smp_mb__after_atomic();
1343 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1344 }
1345 
1346 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1347 {
1348 	struct io_uring_task *tctx = req->task->io_uring;
1349 	struct io_ring_ctx *ctx = req->ctx;
1350 
1351 	if (!(flags & IOU_F_TWQ_FORCE_NORMAL) &&
1352 	    (ctx->flags & IORING_SETUP_DEFER_TASKRUN)) {
1353 		rcu_read_lock();
1354 		io_req_local_work_add(req, flags);
1355 		rcu_read_unlock();
1356 		return;
1357 	}
1358 
1359 	/* task_work already pending, we're done */
1360 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1361 		return;
1362 
1363 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1364 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1365 
1366 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1367 		return;
1368 
1369 	io_fallback_tw(tctx);
1370 }
1371 
1372 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1373 {
1374 	struct llist_node *node;
1375 
1376 	node = llist_del_all(&ctx->work_llist);
1377 	while (node) {
1378 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1379 						    io_task_work.node);
1380 
1381 		node = node->next;
1382 		__io_req_task_work_add(req, IOU_F_TWQ_FORCE_NORMAL);
1383 	}
1384 }
1385 
1386 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1387 {
1388 	struct llist_node *node;
1389 	unsigned int loops = 0;
1390 	int ret = 0;
1391 
1392 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1393 		return -EEXIST;
1394 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1395 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1396 again:
1397 	/*
1398 	 * llists are in reverse order, flip it back the right way before
1399 	 * running the pending items.
1400 	 */
1401 	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1402 	while (node) {
1403 		struct llist_node *next = node->next;
1404 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1405 						    io_task_work.node);
1406 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1407 		INDIRECT_CALL_2(req->io_task_work.func,
1408 				io_poll_task_func, io_req_rw_complete,
1409 				req, ts);
1410 		ret++;
1411 		node = next;
1412 	}
1413 	loops++;
1414 
1415 	if (!llist_empty(&ctx->work_llist))
1416 		goto again;
1417 	if (ts->locked) {
1418 		io_submit_flush_completions(ctx);
1419 		if (!llist_empty(&ctx->work_llist))
1420 			goto again;
1421 	}
1422 	trace_io_uring_local_work_run(ctx, ret, loops);
1423 	return ret;
1424 }
1425 
1426 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1427 {
1428 	struct io_tw_state ts = { .locked = true, };
1429 	int ret;
1430 
1431 	if (llist_empty(&ctx->work_llist))
1432 		return 0;
1433 
1434 	ret = __io_run_local_work(ctx, &ts);
1435 	/* shouldn't happen! */
1436 	if (WARN_ON_ONCE(!ts.locked))
1437 		mutex_lock(&ctx->uring_lock);
1438 	return ret;
1439 }
1440 
1441 static int io_run_local_work(struct io_ring_ctx *ctx)
1442 {
1443 	struct io_tw_state ts = {};
1444 	int ret;
1445 
1446 	ts.locked = mutex_trylock(&ctx->uring_lock);
1447 	ret = __io_run_local_work(ctx, &ts);
1448 	if (ts.locked)
1449 		mutex_unlock(&ctx->uring_lock);
1450 
1451 	return ret;
1452 }
1453 
1454 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1455 {
1456 	io_tw_lock(req->ctx, ts);
1457 	io_req_defer_failed(req, req->cqe.res);
1458 }
1459 
1460 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1461 {
1462 	io_tw_lock(req->ctx, ts);
1463 	/* req->task == current here, checking PF_EXITING is safe */
1464 	if (unlikely(req->task->flags & PF_EXITING))
1465 		io_req_defer_failed(req, -EFAULT);
1466 	else if (req->flags & REQ_F_FORCE_ASYNC)
1467 		io_queue_iowq(req, ts);
1468 	else
1469 		io_queue_sqe(req);
1470 }
1471 
1472 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1473 {
1474 	io_req_set_res(req, ret, 0);
1475 	req->io_task_work.func = io_req_task_cancel;
1476 	io_req_task_work_add(req);
1477 }
1478 
1479 void io_req_task_queue(struct io_kiocb *req)
1480 {
1481 	req->io_task_work.func = io_req_task_submit;
1482 	io_req_task_work_add(req);
1483 }
1484 
1485 void io_queue_next(struct io_kiocb *req)
1486 {
1487 	struct io_kiocb *nxt = io_req_find_next(req);
1488 
1489 	if (nxt)
1490 		io_req_task_queue(nxt);
1491 }
1492 
1493 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1494 	__must_hold(&ctx->uring_lock)
1495 {
1496 	struct task_struct *task = NULL;
1497 	int task_refs = 0;
1498 
1499 	do {
1500 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1501 						    comp_list);
1502 
1503 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1504 			if (req->flags & REQ_F_REFCOUNT) {
1505 				node = req->comp_list.next;
1506 				if (!req_ref_put_and_test(req))
1507 					continue;
1508 			}
1509 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1510 				struct async_poll *apoll = req->apoll;
1511 
1512 				if (apoll->double_poll)
1513 					kfree(apoll->double_poll);
1514 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1515 					kfree(apoll);
1516 				req->flags &= ~REQ_F_POLLED;
1517 			}
1518 			if (req->flags & IO_REQ_LINK_FLAGS)
1519 				io_queue_next(req);
1520 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1521 				io_clean_op(req);
1522 		}
1523 		if (!(req->flags & REQ_F_FIXED_FILE))
1524 			io_put_file(req->file);
1525 
1526 		io_req_put_rsrc_locked(req, ctx);
1527 
1528 		if (req->task != task) {
1529 			if (task)
1530 				io_put_task(task, task_refs);
1531 			task = req->task;
1532 			task_refs = 0;
1533 		}
1534 		task_refs++;
1535 		node = req->comp_list.next;
1536 		io_req_add_to_cache(req, ctx);
1537 	} while (node);
1538 
1539 	if (task)
1540 		io_put_task(task, task_refs);
1541 }
1542 
1543 static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1544 	__must_hold(&ctx->uring_lock)
1545 {
1546 	struct io_submit_state *state = &ctx->submit_state;
1547 	struct io_wq_work_node *node;
1548 
1549 	__io_cq_lock(ctx);
1550 	/* must come first to preserve CQE ordering in failure cases */
1551 	if (state->cqes_count)
1552 		__io_flush_post_cqes(ctx);
1553 	__wq_list_for_each(node, &state->compl_reqs) {
1554 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1555 					    comp_list);
1556 
1557 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1558 		    unlikely(!__io_fill_cqe_req(ctx, req))) {
1559 			if (ctx->task_complete) {
1560 				spin_lock(&ctx->completion_lock);
1561 				io_req_cqe_overflow(req);
1562 				spin_unlock(&ctx->completion_lock);
1563 			} else {
1564 				io_req_cqe_overflow(req);
1565 			}
1566 		}
1567 	}
1568 	__io_cq_unlock_post_flush(ctx);
1569 
1570 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1571 		io_free_batch_list(ctx, state->compl_reqs.first);
1572 		INIT_WQ_LIST(&state->compl_reqs);
1573 	}
1574 }
1575 
1576 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1577 {
1578 	/* See comment at the top of this file */
1579 	smp_rmb();
1580 	return __io_cqring_events(ctx);
1581 }
1582 
1583 /*
1584  * We can't just wait for polled events to come to us, we have to actively
1585  * find and complete them.
1586  */
1587 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1588 {
1589 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1590 		return;
1591 
1592 	mutex_lock(&ctx->uring_lock);
1593 	while (!wq_list_empty(&ctx->iopoll_list)) {
1594 		/* let it sleep and repeat later if can't complete a request */
1595 		if (io_do_iopoll(ctx, true) == 0)
1596 			break;
1597 		/*
1598 		 * Ensure we allow local-to-the-cpu processing to take place,
1599 		 * in this case we need to ensure that we reap all events.
1600 		 * Also let task_work, etc. to progress by releasing the mutex
1601 		 */
1602 		if (need_resched()) {
1603 			mutex_unlock(&ctx->uring_lock);
1604 			cond_resched();
1605 			mutex_lock(&ctx->uring_lock);
1606 		}
1607 	}
1608 	mutex_unlock(&ctx->uring_lock);
1609 }
1610 
1611 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1612 {
1613 	unsigned int nr_events = 0;
1614 	int ret = 0;
1615 	unsigned long check_cq;
1616 
1617 	if (!io_allowed_run_tw(ctx))
1618 		return -EEXIST;
1619 
1620 	check_cq = READ_ONCE(ctx->check_cq);
1621 	if (unlikely(check_cq)) {
1622 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1623 			__io_cqring_overflow_flush(ctx);
1624 		/*
1625 		 * Similarly do not spin if we have not informed the user of any
1626 		 * dropped CQE.
1627 		 */
1628 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1629 			return -EBADR;
1630 	}
1631 	/*
1632 	 * Don't enter poll loop if we already have events pending.
1633 	 * If we do, we can potentially be spinning for commands that
1634 	 * already triggered a CQE (eg in error).
1635 	 */
1636 	if (io_cqring_events(ctx))
1637 		return 0;
1638 
1639 	do {
1640 		/*
1641 		 * If a submit got punted to a workqueue, we can have the
1642 		 * application entering polling for a command before it gets
1643 		 * issued. That app will hold the uring_lock for the duration
1644 		 * of the poll right here, so we need to take a breather every
1645 		 * now and then to ensure that the issue has a chance to add
1646 		 * the poll to the issued list. Otherwise we can spin here
1647 		 * forever, while the workqueue is stuck trying to acquire the
1648 		 * very same mutex.
1649 		 */
1650 		if (wq_list_empty(&ctx->iopoll_list) ||
1651 		    io_task_work_pending(ctx)) {
1652 			u32 tail = ctx->cached_cq_tail;
1653 
1654 			(void) io_run_local_work_locked(ctx);
1655 
1656 			if (task_work_pending(current) ||
1657 			    wq_list_empty(&ctx->iopoll_list)) {
1658 				mutex_unlock(&ctx->uring_lock);
1659 				io_run_task_work();
1660 				mutex_lock(&ctx->uring_lock);
1661 			}
1662 			/* some requests don't go through iopoll_list */
1663 			if (tail != ctx->cached_cq_tail ||
1664 			    wq_list_empty(&ctx->iopoll_list))
1665 				break;
1666 		}
1667 		ret = io_do_iopoll(ctx, !min);
1668 		if (ret < 0)
1669 			break;
1670 		nr_events += ret;
1671 		ret = 0;
1672 	} while (nr_events < min && !need_resched());
1673 
1674 	return ret;
1675 }
1676 
1677 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1678 {
1679 	if (ts->locked)
1680 		io_req_complete_defer(req);
1681 	else
1682 		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1683 }
1684 
1685 /*
1686  * After the iocb has been issued, it's safe to be found on the poll list.
1687  * Adding the kiocb to the list AFTER submission ensures that we don't
1688  * find it from a io_do_iopoll() thread before the issuer is done
1689  * accessing the kiocb cookie.
1690  */
1691 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1692 {
1693 	struct io_ring_ctx *ctx = req->ctx;
1694 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1695 
1696 	/* workqueue context doesn't hold uring_lock, grab it now */
1697 	if (unlikely(needs_lock))
1698 		mutex_lock(&ctx->uring_lock);
1699 
1700 	/*
1701 	 * Track whether we have multiple files in our lists. This will impact
1702 	 * how we do polling eventually, not spinning if we're on potentially
1703 	 * different devices.
1704 	 */
1705 	if (wq_list_empty(&ctx->iopoll_list)) {
1706 		ctx->poll_multi_queue = false;
1707 	} else if (!ctx->poll_multi_queue) {
1708 		struct io_kiocb *list_req;
1709 
1710 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1711 					comp_list);
1712 		if (list_req->file != req->file)
1713 			ctx->poll_multi_queue = true;
1714 	}
1715 
1716 	/*
1717 	 * For fast devices, IO may have already completed. If it has, add
1718 	 * it to the front so we find it first.
1719 	 */
1720 	if (READ_ONCE(req->iopoll_completed))
1721 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1722 	else
1723 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1724 
1725 	if (unlikely(needs_lock)) {
1726 		/*
1727 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1728 		 * in sq thread task context or in io worker task context. If
1729 		 * current task context is sq thread, we don't need to check
1730 		 * whether should wake up sq thread.
1731 		 */
1732 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1733 		    wq_has_sleeper(&ctx->sq_data->wait))
1734 			wake_up(&ctx->sq_data->wait);
1735 
1736 		mutex_unlock(&ctx->uring_lock);
1737 	}
1738 }
1739 
1740 unsigned int io_file_get_flags(struct file *file)
1741 {
1742 	unsigned int res = 0;
1743 
1744 	if (S_ISREG(file_inode(file)->i_mode))
1745 		res |= REQ_F_ISREG;
1746 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1747 		res |= REQ_F_SUPPORT_NOWAIT;
1748 	return res;
1749 }
1750 
1751 bool io_alloc_async_data(struct io_kiocb *req)
1752 {
1753 	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1754 	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1755 	if (req->async_data) {
1756 		req->flags |= REQ_F_ASYNC_DATA;
1757 		return false;
1758 	}
1759 	return true;
1760 }
1761 
1762 int io_req_prep_async(struct io_kiocb *req)
1763 {
1764 	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1765 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1766 
1767 	/* assign early for deferred execution for non-fixed file */
1768 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1769 		req->file = io_file_get_normal(req, req->cqe.fd);
1770 	if (!cdef->prep_async)
1771 		return 0;
1772 	if (WARN_ON_ONCE(req_has_async_data(req)))
1773 		return -EFAULT;
1774 	if (!def->manual_alloc) {
1775 		if (io_alloc_async_data(req))
1776 			return -EAGAIN;
1777 	}
1778 	return cdef->prep_async(req);
1779 }
1780 
1781 static u32 io_get_sequence(struct io_kiocb *req)
1782 {
1783 	u32 seq = req->ctx->cached_sq_head;
1784 	struct io_kiocb *cur;
1785 
1786 	/* need original cached_sq_head, but it was increased for each req */
1787 	io_for_each_link(cur, req)
1788 		seq--;
1789 	return seq;
1790 }
1791 
1792 static __cold void io_drain_req(struct io_kiocb *req)
1793 	__must_hold(&ctx->uring_lock)
1794 {
1795 	struct io_ring_ctx *ctx = req->ctx;
1796 	struct io_defer_entry *de;
1797 	int ret;
1798 	u32 seq = io_get_sequence(req);
1799 
1800 	/* Still need defer if there is pending req in defer list. */
1801 	spin_lock(&ctx->completion_lock);
1802 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1803 		spin_unlock(&ctx->completion_lock);
1804 queue:
1805 		ctx->drain_active = false;
1806 		io_req_task_queue(req);
1807 		return;
1808 	}
1809 	spin_unlock(&ctx->completion_lock);
1810 
1811 	io_prep_async_link(req);
1812 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1813 	if (!de) {
1814 		ret = -ENOMEM;
1815 		io_req_defer_failed(req, ret);
1816 		return;
1817 	}
1818 
1819 	spin_lock(&ctx->completion_lock);
1820 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1821 		spin_unlock(&ctx->completion_lock);
1822 		kfree(de);
1823 		goto queue;
1824 	}
1825 
1826 	trace_io_uring_defer(req);
1827 	de->req = req;
1828 	de->seq = seq;
1829 	list_add_tail(&de->list, &ctx->defer_list);
1830 	spin_unlock(&ctx->completion_lock);
1831 }
1832 
1833 static void io_clean_op(struct io_kiocb *req)
1834 {
1835 	if (req->flags & REQ_F_BUFFER_SELECTED) {
1836 		spin_lock(&req->ctx->completion_lock);
1837 		io_put_kbuf_comp(req);
1838 		spin_unlock(&req->ctx->completion_lock);
1839 	}
1840 
1841 	if (req->flags & REQ_F_NEED_CLEANUP) {
1842 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
1843 
1844 		if (def->cleanup)
1845 			def->cleanup(req);
1846 	}
1847 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
1848 		kfree(req->apoll->double_poll);
1849 		kfree(req->apoll);
1850 		req->apoll = NULL;
1851 	}
1852 	if (req->flags & REQ_F_INFLIGHT) {
1853 		struct io_uring_task *tctx = req->task->io_uring;
1854 
1855 		atomic_dec(&tctx->inflight_tracked);
1856 	}
1857 	if (req->flags & REQ_F_CREDS)
1858 		put_cred(req->creds);
1859 	if (req->flags & REQ_F_ASYNC_DATA) {
1860 		kfree(req->async_data);
1861 		req->async_data = NULL;
1862 	}
1863 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
1864 }
1865 
1866 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1867 			   unsigned int issue_flags)
1868 {
1869 	if (req->file || !def->needs_file)
1870 		return true;
1871 
1872 	if (req->flags & REQ_F_FIXED_FILE)
1873 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1874 	else
1875 		req->file = io_file_get_normal(req, req->cqe.fd);
1876 
1877 	return !!req->file;
1878 }
1879 
1880 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1881 {
1882 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1883 	const struct cred *creds = NULL;
1884 	int ret;
1885 
1886 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1887 		return -EBADF;
1888 
1889 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1890 		creds = override_creds(req->creds);
1891 
1892 	if (!def->audit_skip)
1893 		audit_uring_entry(req->opcode);
1894 
1895 	ret = def->issue(req, issue_flags);
1896 
1897 	if (!def->audit_skip)
1898 		audit_uring_exit(!ret, ret);
1899 
1900 	if (creds)
1901 		revert_creds(creds);
1902 
1903 	if (ret == IOU_OK) {
1904 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1905 			io_req_complete_defer(req);
1906 		else
1907 			io_req_complete_post(req, issue_flags);
1908 	} else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1909 		return ret;
1910 
1911 	/* If the op doesn't have a file, we're not polling for it */
1912 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1913 		io_iopoll_req_issued(req, issue_flags);
1914 
1915 	return 0;
1916 }
1917 
1918 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1919 {
1920 	io_tw_lock(req->ctx, ts);
1921 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1922 				 IO_URING_F_COMPLETE_DEFER);
1923 }
1924 
1925 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1926 {
1927 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1928 	struct io_kiocb *nxt = NULL;
1929 
1930 	if (req_ref_put_and_test(req)) {
1931 		if (req->flags & IO_REQ_LINK_FLAGS)
1932 			nxt = io_req_find_next(req);
1933 		io_free_req(req);
1934 	}
1935 	return nxt ? &nxt->work : NULL;
1936 }
1937 
1938 void io_wq_submit_work(struct io_wq_work *work)
1939 {
1940 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1941 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1942 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1943 	bool needs_poll = false;
1944 	int ret = 0, err = -ECANCELED;
1945 
1946 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1947 	if (!(req->flags & REQ_F_REFCOUNT))
1948 		__io_req_set_refcount(req, 2);
1949 	else
1950 		req_ref_get(req);
1951 
1952 	io_arm_ltimeout(req);
1953 
1954 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1955 	if (work->flags & IO_WQ_WORK_CANCEL) {
1956 fail:
1957 		io_req_task_queue_fail(req, err);
1958 		return;
1959 	}
1960 	if (!io_assign_file(req, def, issue_flags)) {
1961 		err = -EBADF;
1962 		work->flags |= IO_WQ_WORK_CANCEL;
1963 		goto fail;
1964 	}
1965 
1966 	if (req->flags & REQ_F_FORCE_ASYNC) {
1967 		bool opcode_poll = def->pollin || def->pollout;
1968 
1969 		if (opcode_poll && file_can_poll(req->file)) {
1970 			needs_poll = true;
1971 			issue_flags |= IO_URING_F_NONBLOCK;
1972 		}
1973 	}
1974 
1975 	do {
1976 		ret = io_issue_sqe(req, issue_flags);
1977 		if (ret != -EAGAIN)
1978 			break;
1979 		/*
1980 		 * We can get EAGAIN for iopolled IO even though we're
1981 		 * forcing a sync submission from here, since we can't
1982 		 * wait for request slots on the block side.
1983 		 */
1984 		if (!needs_poll) {
1985 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1986 				break;
1987 			cond_resched();
1988 			continue;
1989 		}
1990 
1991 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1992 			return;
1993 		/* aborted or ready, in either case retry blocking */
1994 		needs_poll = false;
1995 		issue_flags &= ~IO_URING_F_NONBLOCK;
1996 	} while (1);
1997 
1998 	/* avoid locking problems by failing it from a clean context */
1999 	if (ret < 0)
2000 		io_req_task_queue_fail(req, ret);
2001 }
2002 
2003 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
2004 				      unsigned int issue_flags)
2005 {
2006 	struct io_ring_ctx *ctx = req->ctx;
2007 	struct io_fixed_file *slot;
2008 	struct file *file = NULL;
2009 
2010 	io_ring_submit_lock(ctx, issue_flags);
2011 
2012 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2013 		goto out;
2014 	fd = array_index_nospec(fd, ctx->nr_user_files);
2015 	slot = io_fixed_file_slot(&ctx->file_table, fd);
2016 	file = io_slot_file(slot);
2017 	req->flags |= io_slot_flags(slot);
2018 	io_req_set_rsrc_node(req, ctx, 0);
2019 out:
2020 	io_ring_submit_unlock(ctx, issue_flags);
2021 	return file;
2022 }
2023 
2024 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2025 {
2026 	struct file *file = fget(fd);
2027 
2028 	trace_io_uring_file_get(req, fd);
2029 
2030 	/* we don't allow fixed io_uring files */
2031 	if (file && io_is_uring_fops(file))
2032 		io_req_track_inflight(req);
2033 	return file;
2034 }
2035 
2036 static void io_queue_async(struct io_kiocb *req, int ret)
2037 	__must_hold(&req->ctx->uring_lock)
2038 {
2039 	struct io_kiocb *linked_timeout;
2040 
2041 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2042 		io_req_defer_failed(req, ret);
2043 		return;
2044 	}
2045 
2046 	linked_timeout = io_prep_linked_timeout(req);
2047 
2048 	switch (io_arm_poll_handler(req, 0)) {
2049 	case IO_APOLL_READY:
2050 		io_kbuf_recycle(req, 0);
2051 		io_req_task_queue(req);
2052 		break;
2053 	case IO_APOLL_ABORTED:
2054 		io_kbuf_recycle(req, 0);
2055 		io_queue_iowq(req, NULL);
2056 		break;
2057 	case IO_APOLL_OK:
2058 		break;
2059 	}
2060 
2061 	if (linked_timeout)
2062 		io_queue_linked_timeout(linked_timeout);
2063 }
2064 
2065 static inline void io_queue_sqe(struct io_kiocb *req)
2066 	__must_hold(&req->ctx->uring_lock)
2067 {
2068 	int ret;
2069 
2070 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2071 
2072 	/*
2073 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2074 	 * doesn't support non-blocking read/write attempts
2075 	 */
2076 	if (likely(!ret))
2077 		io_arm_ltimeout(req);
2078 	else
2079 		io_queue_async(req, ret);
2080 }
2081 
2082 static void io_queue_sqe_fallback(struct io_kiocb *req)
2083 	__must_hold(&req->ctx->uring_lock)
2084 {
2085 	if (unlikely(req->flags & REQ_F_FAIL)) {
2086 		/*
2087 		 * We don't submit, fail them all, for that replace hardlinks
2088 		 * with normal links. Extra REQ_F_LINK is tolerated.
2089 		 */
2090 		req->flags &= ~REQ_F_HARDLINK;
2091 		req->flags |= REQ_F_LINK;
2092 		io_req_defer_failed(req, req->cqe.res);
2093 	} else {
2094 		int ret = io_req_prep_async(req);
2095 
2096 		if (unlikely(ret)) {
2097 			io_req_defer_failed(req, ret);
2098 			return;
2099 		}
2100 
2101 		if (unlikely(req->ctx->drain_active))
2102 			io_drain_req(req);
2103 		else
2104 			io_queue_iowq(req, NULL);
2105 	}
2106 }
2107 
2108 /*
2109  * Check SQE restrictions (opcode and flags).
2110  *
2111  * Returns 'true' if SQE is allowed, 'false' otherwise.
2112  */
2113 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2114 					struct io_kiocb *req,
2115 					unsigned int sqe_flags)
2116 {
2117 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2118 		return false;
2119 
2120 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2121 	    ctx->restrictions.sqe_flags_required)
2122 		return false;
2123 
2124 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2125 			  ctx->restrictions.sqe_flags_required))
2126 		return false;
2127 
2128 	return true;
2129 }
2130 
2131 static void io_init_req_drain(struct io_kiocb *req)
2132 {
2133 	struct io_ring_ctx *ctx = req->ctx;
2134 	struct io_kiocb *head = ctx->submit_state.link.head;
2135 
2136 	ctx->drain_active = true;
2137 	if (head) {
2138 		/*
2139 		 * If we need to drain a request in the middle of a link, drain
2140 		 * the head request and the next request/link after the current
2141 		 * link. Considering sequential execution of links,
2142 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2143 		 * link.
2144 		 */
2145 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2146 		ctx->drain_next = true;
2147 	}
2148 }
2149 
2150 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2151 		       const struct io_uring_sqe *sqe)
2152 	__must_hold(&ctx->uring_lock)
2153 {
2154 	const struct io_issue_def *def;
2155 	unsigned int sqe_flags;
2156 	int personality;
2157 	u8 opcode;
2158 
2159 	/* req is partially pre-initialised, see io_preinit_req() */
2160 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2161 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2162 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2163 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2164 	req->file = NULL;
2165 	req->rsrc_node = NULL;
2166 	req->task = current;
2167 
2168 	if (unlikely(opcode >= IORING_OP_LAST)) {
2169 		req->opcode = 0;
2170 		return -EINVAL;
2171 	}
2172 	def = &io_issue_defs[opcode];
2173 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2174 		/* enforce forwards compatibility on users */
2175 		if (sqe_flags & ~SQE_VALID_FLAGS)
2176 			return -EINVAL;
2177 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2178 			if (!def->buffer_select)
2179 				return -EOPNOTSUPP;
2180 			req->buf_index = READ_ONCE(sqe->buf_group);
2181 		}
2182 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2183 			ctx->drain_disabled = true;
2184 		if (sqe_flags & IOSQE_IO_DRAIN) {
2185 			if (ctx->drain_disabled)
2186 				return -EOPNOTSUPP;
2187 			io_init_req_drain(req);
2188 		}
2189 	}
2190 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2191 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2192 			return -EACCES;
2193 		/* knock it to the slow queue path, will be drained there */
2194 		if (ctx->drain_active)
2195 			req->flags |= REQ_F_FORCE_ASYNC;
2196 		/* if there is no link, we're at "next" request and need to drain */
2197 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2198 			ctx->drain_next = false;
2199 			ctx->drain_active = true;
2200 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2201 		}
2202 	}
2203 
2204 	if (!def->ioprio && sqe->ioprio)
2205 		return -EINVAL;
2206 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2207 		return -EINVAL;
2208 
2209 	if (def->needs_file) {
2210 		struct io_submit_state *state = &ctx->submit_state;
2211 
2212 		req->cqe.fd = READ_ONCE(sqe->fd);
2213 
2214 		/*
2215 		 * Plug now if we have more than 2 IO left after this, and the
2216 		 * target is potentially a read/write to block based storage.
2217 		 */
2218 		if (state->need_plug && def->plug) {
2219 			state->plug_started = true;
2220 			state->need_plug = false;
2221 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2222 		}
2223 	}
2224 
2225 	personality = READ_ONCE(sqe->personality);
2226 	if (personality) {
2227 		int ret;
2228 
2229 		req->creds = xa_load(&ctx->personalities, personality);
2230 		if (!req->creds)
2231 			return -EINVAL;
2232 		get_cred(req->creds);
2233 		ret = security_uring_override_creds(req->creds);
2234 		if (ret) {
2235 			put_cred(req->creds);
2236 			return ret;
2237 		}
2238 		req->flags |= REQ_F_CREDS;
2239 	}
2240 
2241 	return def->prep(req, sqe);
2242 }
2243 
2244 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2245 				      struct io_kiocb *req, int ret)
2246 {
2247 	struct io_ring_ctx *ctx = req->ctx;
2248 	struct io_submit_link *link = &ctx->submit_state.link;
2249 	struct io_kiocb *head = link->head;
2250 
2251 	trace_io_uring_req_failed(sqe, req, ret);
2252 
2253 	/*
2254 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2255 	 * unusable. Instead of failing eagerly, continue assembling the link if
2256 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2257 	 * should find the flag and handle the rest.
2258 	 */
2259 	req_fail_link_node(req, ret);
2260 	if (head && !(head->flags & REQ_F_FAIL))
2261 		req_fail_link_node(head, -ECANCELED);
2262 
2263 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2264 		if (head) {
2265 			link->last->link = req;
2266 			link->head = NULL;
2267 			req = head;
2268 		}
2269 		io_queue_sqe_fallback(req);
2270 		return ret;
2271 	}
2272 
2273 	if (head)
2274 		link->last->link = req;
2275 	else
2276 		link->head = req;
2277 	link->last = req;
2278 	return 0;
2279 }
2280 
2281 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2282 			 const struct io_uring_sqe *sqe)
2283 	__must_hold(&ctx->uring_lock)
2284 {
2285 	struct io_submit_link *link = &ctx->submit_state.link;
2286 	int ret;
2287 
2288 	ret = io_init_req(ctx, req, sqe);
2289 	if (unlikely(ret))
2290 		return io_submit_fail_init(sqe, req, ret);
2291 
2292 	trace_io_uring_submit_req(req);
2293 
2294 	/*
2295 	 * If we already have a head request, queue this one for async
2296 	 * submittal once the head completes. If we don't have a head but
2297 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2298 	 * submitted sync once the chain is complete. If none of those
2299 	 * conditions are true (normal request), then just queue it.
2300 	 */
2301 	if (unlikely(link->head)) {
2302 		ret = io_req_prep_async(req);
2303 		if (unlikely(ret))
2304 			return io_submit_fail_init(sqe, req, ret);
2305 
2306 		trace_io_uring_link(req, link->head);
2307 		link->last->link = req;
2308 		link->last = req;
2309 
2310 		if (req->flags & IO_REQ_LINK_FLAGS)
2311 			return 0;
2312 		/* last request of the link, flush it */
2313 		req = link->head;
2314 		link->head = NULL;
2315 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2316 			goto fallback;
2317 
2318 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2319 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2320 		if (req->flags & IO_REQ_LINK_FLAGS) {
2321 			link->head = req;
2322 			link->last = req;
2323 		} else {
2324 fallback:
2325 			io_queue_sqe_fallback(req);
2326 		}
2327 		return 0;
2328 	}
2329 
2330 	io_queue_sqe(req);
2331 	return 0;
2332 }
2333 
2334 /*
2335  * Batched submission is done, ensure local IO is flushed out.
2336  */
2337 static void io_submit_state_end(struct io_ring_ctx *ctx)
2338 {
2339 	struct io_submit_state *state = &ctx->submit_state;
2340 
2341 	if (unlikely(state->link.head))
2342 		io_queue_sqe_fallback(state->link.head);
2343 	/* flush only after queuing links as they can generate completions */
2344 	io_submit_flush_completions(ctx);
2345 	if (state->plug_started)
2346 		blk_finish_plug(&state->plug);
2347 }
2348 
2349 /*
2350  * Start submission side cache.
2351  */
2352 static void io_submit_state_start(struct io_submit_state *state,
2353 				  unsigned int max_ios)
2354 {
2355 	state->plug_started = false;
2356 	state->need_plug = max_ios > 2;
2357 	state->submit_nr = max_ios;
2358 	/* set only head, no need to init link_last in advance */
2359 	state->link.head = NULL;
2360 }
2361 
2362 static void io_commit_sqring(struct io_ring_ctx *ctx)
2363 {
2364 	struct io_rings *rings = ctx->rings;
2365 
2366 	/*
2367 	 * Ensure any loads from the SQEs are done at this point,
2368 	 * since once we write the new head, the application could
2369 	 * write new data to them.
2370 	 */
2371 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2372 }
2373 
2374 /*
2375  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2376  * that is mapped by userspace. This means that care needs to be taken to
2377  * ensure that reads are stable, as we cannot rely on userspace always
2378  * being a good citizen. If members of the sqe are validated and then later
2379  * used, it's important that those reads are done through READ_ONCE() to
2380  * prevent a re-load down the line.
2381  */
2382 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2383 {
2384 	unsigned head, mask = ctx->sq_entries - 1;
2385 	unsigned sq_idx = ctx->cached_sq_head++ & mask;
2386 
2387 	/*
2388 	 * The cached sq head (or cq tail) serves two purposes:
2389 	 *
2390 	 * 1) allows us to batch the cost of updating the user visible
2391 	 *    head updates.
2392 	 * 2) allows the kernel side to track the head on its own, even
2393 	 *    though the application is the one updating it.
2394 	 */
2395 	head = READ_ONCE(ctx->sq_array[sq_idx]);
2396 	if (likely(head < ctx->sq_entries)) {
2397 		/* double index for 128-byte SQEs, twice as long */
2398 		if (ctx->flags & IORING_SETUP_SQE128)
2399 			head <<= 1;
2400 		*sqe = &ctx->sq_sqes[head];
2401 		return true;
2402 	}
2403 
2404 	/* drop invalid entries */
2405 	ctx->cq_extra--;
2406 	WRITE_ONCE(ctx->rings->sq_dropped,
2407 		   READ_ONCE(ctx->rings->sq_dropped) + 1);
2408 	return false;
2409 }
2410 
2411 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2412 	__must_hold(&ctx->uring_lock)
2413 {
2414 	unsigned int entries = io_sqring_entries(ctx);
2415 	unsigned int left;
2416 	int ret;
2417 
2418 	if (unlikely(!entries))
2419 		return 0;
2420 	/* make sure SQ entry isn't read before tail */
2421 	ret = left = min(nr, entries);
2422 	io_get_task_refs(left);
2423 	io_submit_state_start(&ctx->submit_state, left);
2424 
2425 	do {
2426 		const struct io_uring_sqe *sqe;
2427 		struct io_kiocb *req;
2428 
2429 		if (unlikely(!io_alloc_req(ctx, &req)))
2430 			break;
2431 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2432 			io_req_add_to_cache(req, ctx);
2433 			break;
2434 		}
2435 
2436 		/*
2437 		 * Continue submitting even for sqe failure if the
2438 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2439 		 */
2440 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2441 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2442 			left--;
2443 			break;
2444 		}
2445 	} while (--left);
2446 
2447 	if (unlikely(left)) {
2448 		ret -= left;
2449 		/* try again if it submitted nothing and can't allocate a req */
2450 		if (!ret && io_req_cache_empty(ctx))
2451 			ret = -EAGAIN;
2452 		current->io_uring->cached_refs += left;
2453 	}
2454 
2455 	io_submit_state_end(ctx);
2456 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2457 	io_commit_sqring(ctx);
2458 	return ret;
2459 }
2460 
2461 struct io_wait_queue {
2462 	struct wait_queue_entry wq;
2463 	struct io_ring_ctx *ctx;
2464 	unsigned cq_tail;
2465 	unsigned nr_timeouts;
2466 	ktime_t timeout;
2467 };
2468 
2469 static inline bool io_has_work(struct io_ring_ctx *ctx)
2470 {
2471 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2472 	       !llist_empty(&ctx->work_llist);
2473 }
2474 
2475 static inline bool io_should_wake(struct io_wait_queue *iowq)
2476 {
2477 	struct io_ring_ctx *ctx = iowq->ctx;
2478 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2479 
2480 	/*
2481 	 * Wake up if we have enough events, or if a timeout occurred since we
2482 	 * started waiting. For timeouts, we always want to return to userspace,
2483 	 * regardless of event count.
2484 	 */
2485 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2486 }
2487 
2488 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2489 			    int wake_flags, void *key)
2490 {
2491 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2492 
2493 	/*
2494 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2495 	 * the task, and the next invocation will do it.
2496 	 */
2497 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2498 		return autoremove_wake_function(curr, mode, wake_flags, key);
2499 	return -1;
2500 }
2501 
2502 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2503 {
2504 	if (!llist_empty(&ctx->work_llist)) {
2505 		__set_current_state(TASK_RUNNING);
2506 		if (io_run_local_work(ctx) > 0)
2507 			return 1;
2508 	}
2509 	if (io_run_task_work() > 0)
2510 		return 1;
2511 	if (task_sigpending(current))
2512 		return -EINTR;
2513 	return 0;
2514 }
2515 
2516 /* when returns >0, the caller should retry */
2517 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2518 					  struct io_wait_queue *iowq)
2519 {
2520 	if (unlikely(READ_ONCE(ctx->check_cq)))
2521 		return 1;
2522 	if (unlikely(!llist_empty(&ctx->work_llist)))
2523 		return 1;
2524 	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2525 		return 1;
2526 	if (unlikely(task_sigpending(current)))
2527 		return -EINTR;
2528 	if (unlikely(io_should_wake(iowq)))
2529 		return 0;
2530 	if (iowq->timeout == KTIME_MAX)
2531 		schedule();
2532 	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2533 		return -ETIME;
2534 	return 0;
2535 }
2536 
2537 /*
2538  * Wait until events become available, if we don't already have some. The
2539  * application must reap them itself, as they reside on the shared cq ring.
2540  */
2541 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2542 			  const sigset_t __user *sig, size_t sigsz,
2543 			  struct __kernel_timespec __user *uts)
2544 {
2545 	struct io_wait_queue iowq;
2546 	struct io_rings *rings = ctx->rings;
2547 	int ret;
2548 
2549 	if (!io_allowed_run_tw(ctx))
2550 		return -EEXIST;
2551 	if (!llist_empty(&ctx->work_llist))
2552 		io_run_local_work(ctx);
2553 	io_run_task_work();
2554 	io_cqring_overflow_flush(ctx);
2555 	/* if user messes with these they will just get an early return */
2556 	if (__io_cqring_events_user(ctx) >= min_events)
2557 		return 0;
2558 
2559 	if (sig) {
2560 #ifdef CONFIG_COMPAT
2561 		if (in_compat_syscall())
2562 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2563 						      sigsz);
2564 		else
2565 #endif
2566 			ret = set_user_sigmask(sig, sigsz);
2567 
2568 		if (ret)
2569 			return ret;
2570 	}
2571 
2572 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2573 	iowq.wq.private = current;
2574 	INIT_LIST_HEAD(&iowq.wq.entry);
2575 	iowq.ctx = ctx;
2576 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2577 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2578 	iowq.timeout = KTIME_MAX;
2579 
2580 	if (uts) {
2581 		struct timespec64 ts;
2582 
2583 		if (get_timespec64(&ts, uts))
2584 			return -EFAULT;
2585 		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2586 	}
2587 
2588 	trace_io_uring_cqring_wait(ctx, min_events);
2589 	do {
2590 		unsigned long check_cq;
2591 
2592 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2593 			int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2594 
2595 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2596 			set_current_state(TASK_INTERRUPTIBLE);
2597 		} else {
2598 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2599 							TASK_INTERRUPTIBLE);
2600 		}
2601 
2602 		ret = io_cqring_wait_schedule(ctx, &iowq);
2603 		__set_current_state(TASK_RUNNING);
2604 		atomic_set(&ctx->cq_wait_nr, 0);
2605 
2606 		if (ret < 0)
2607 			break;
2608 		/*
2609 		 * Run task_work after scheduling and before io_should_wake().
2610 		 * If we got woken because of task_work being processed, run it
2611 		 * now rather than let the caller do another wait loop.
2612 		 */
2613 		io_run_task_work();
2614 		if (!llist_empty(&ctx->work_llist))
2615 			io_run_local_work(ctx);
2616 
2617 		check_cq = READ_ONCE(ctx->check_cq);
2618 		if (unlikely(check_cq)) {
2619 			/* let the caller flush overflows, retry */
2620 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2621 				io_cqring_do_overflow_flush(ctx);
2622 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2623 				ret = -EBADR;
2624 				break;
2625 			}
2626 		}
2627 
2628 		if (io_should_wake(&iowq)) {
2629 			ret = 0;
2630 			break;
2631 		}
2632 		cond_resched();
2633 	} while (1);
2634 
2635 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2636 		finish_wait(&ctx->cq_wait, &iowq.wq);
2637 	restore_saved_sigmask_unless(ret == -EINTR);
2638 
2639 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2640 }
2641 
2642 static void io_mem_free(void *ptr)
2643 {
2644 	struct page *page;
2645 
2646 	if (!ptr)
2647 		return;
2648 
2649 	page = virt_to_head_page(ptr);
2650 	if (put_page_testzero(page))
2651 		free_compound_page(page);
2652 }
2653 
2654 static void io_pages_free(struct page ***pages, int npages)
2655 {
2656 	struct page **page_array;
2657 	int i;
2658 
2659 	if (!pages)
2660 		return;
2661 	page_array = *pages;
2662 	for (i = 0; i < npages; i++)
2663 		unpin_user_page(page_array[i]);
2664 	kvfree(page_array);
2665 	*pages = NULL;
2666 }
2667 
2668 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2669 			    unsigned long uaddr, size_t size)
2670 {
2671 	struct page **page_array;
2672 	unsigned int nr_pages;
2673 	int ret;
2674 
2675 	*npages = 0;
2676 
2677 	if (uaddr & (PAGE_SIZE - 1) || !size)
2678 		return ERR_PTR(-EINVAL);
2679 
2680 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2681 	if (nr_pages > USHRT_MAX)
2682 		return ERR_PTR(-EINVAL);
2683 	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2684 	if (!page_array)
2685 		return ERR_PTR(-ENOMEM);
2686 
2687 	ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2688 					page_array);
2689 	if (ret != nr_pages) {
2690 err:
2691 		io_pages_free(&page_array, ret > 0 ? ret : 0);
2692 		return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT);
2693 	}
2694 	/*
2695 	 * Should be a single page. If the ring is small enough that we can
2696 	 * use a normal page, that is fine. If we need multiple pages, then
2697 	 * userspace should use a huge page. That's the only way to guarantee
2698 	 * that we get contigious memory, outside of just being lucky or
2699 	 * (currently) having low memory fragmentation.
2700 	 */
2701 	if (page_array[0] != page_array[ret - 1])
2702 		goto err;
2703 	*pages = page_array;
2704 	*npages = nr_pages;
2705 	return page_to_virt(page_array[0]);
2706 }
2707 
2708 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2709 			  size_t size)
2710 {
2711 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2712 				size);
2713 }
2714 
2715 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2716 			 size_t size)
2717 {
2718 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2719 				size);
2720 }
2721 
2722 static void io_rings_free(struct io_ring_ctx *ctx)
2723 {
2724 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2725 		io_mem_free(ctx->rings);
2726 		io_mem_free(ctx->sq_sqes);
2727 		ctx->rings = NULL;
2728 		ctx->sq_sqes = NULL;
2729 	} else {
2730 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2731 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2732 	}
2733 }
2734 
2735 static void *io_mem_alloc(size_t size)
2736 {
2737 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2738 	void *ret;
2739 
2740 	ret = (void *) __get_free_pages(gfp, get_order(size));
2741 	if (ret)
2742 		return ret;
2743 	return ERR_PTR(-ENOMEM);
2744 }
2745 
2746 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2747 				unsigned int cq_entries, size_t *sq_offset)
2748 {
2749 	struct io_rings *rings;
2750 	size_t off, sq_array_size;
2751 
2752 	off = struct_size(rings, cqes, cq_entries);
2753 	if (off == SIZE_MAX)
2754 		return SIZE_MAX;
2755 	if (ctx->flags & IORING_SETUP_CQE32) {
2756 		if (check_shl_overflow(off, 1, &off))
2757 			return SIZE_MAX;
2758 	}
2759 
2760 #ifdef CONFIG_SMP
2761 	off = ALIGN(off, SMP_CACHE_BYTES);
2762 	if (off == 0)
2763 		return SIZE_MAX;
2764 #endif
2765 
2766 	if (sq_offset)
2767 		*sq_offset = off;
2768 
2769 	sq_array_size = array_size(sizeof(u32), sq_entries);
2770 	if (sq_array_size == SIZE_MAX)
2771 		return SIZE_MAX;
2772 
2773 	if (check_add_overflow(off, sq_array_size, &off))
2774 		return SIZE_MAX;
2775 
2776 	return off;
2777 }
2778 
2779 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2780 			       unsigned int eventfd_async)
2781 {
2782 	struct io_ev_fd *ev_fd;
2783 	__s32 __user *fds = arg;
2784 	int fd;
2785 
2786 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2787 					lockdep_is_held(&ctx->uring_lock));
2788 	if (ev_fd)
2789 		return -EBUSY;
2790 
2791 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2792 		return -EFAULT;
2793 
2794 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2795 	if (!ev_fd)
2796 		return -ENOMEM;
2797 
2798 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2799 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2800 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2801 		kfree(ev_fd);
2802 		return ret;
2803 	}
2804 
2805 	spin_lock(&ctx->completion_lock);
2806 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2807 	spin_unlock(&ctx->completion_lock);
2808 
2809 	ev_fd->eventfd_async = eventfd_async;
2810 	ctx->has_evfd = true;
2811 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2812 	atomic_set(&ev_fd->refs, 1);
2813 	atomic_set(&ev_fd->ops, 0);
2814 	return 0;
2815 }
2816 
2817 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2818 {
2819 	struct io_ev_fd *ev_fd;
2820 
2821 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2822 					lockdep_is_held(&ctx->uring_lock));
2823 	if (ev_fd) {
2824 		ctx->has_evfd = false;
2825 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2826 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2827 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2828 		return 0;
2829 	}
2830 
2831 	return -ENXIO;
2832 }
2833 
2834 static void io_req_caches_free(struct io_ring_ctx *ctx)
2835 {
2836 	struct io_kiocb *req;
2837 	int nr = 0;
2838 
2839 	mutex_lock(&ctx->uring_lock);
2840 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2841 
2842 	while (!io_req_cache_empty(ctx)) {
2843 		req = io_extract_req(ctx);
2844 		kmem_cache_free(req_cachep, req);
2845 		nr++;
2846 	}
2847 	if (nr)
2848 		percpu_ref_put_many(&ctx->refs, nr);
2849 	mutex_unlock(&ctx->uring_lock);
2850 }
2851 
2852 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2853 {
2854 	kfree(container_of(entry, struct io_rsrc_node, cache));
2855 }
2856 
2857 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2858 {
2859 	io_sq_thread_finish(ctx);
2860 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2861 	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2862 		return;
2863 
2864 	mutex_lock(&ctx->uring_lock);
2865 	if (ctx->buf_data)
2866 		__io_sqe_buffers_unregister(ctx);
2867 	if (ctx->file_data)
2868 		__io_sqe_files_unregister(ctx);
2869 	io_cqring_overflow_kill(ctx);
2870 	io_eventfd_unregister(ctx);
2871 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2872 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2873 	io_destroy_buffers(ctx);
2874 	mutex_unlock(&ctx->uring_lock);
2875 	if (ctx->sq_creds)
2876 		put_cred(ctx->sq_creds);
2877 	if (ctx->submitter_task)
2878 		put_task_struct(ctx->submitter_task);
2879 
2880 	/* there are no registered resources left, nobody uses it */
2881 	if (ctx->rsrc_node)
2882 		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2883 
2884 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2885 
2886 #if defined(CONFIG_UNIX)
2887 	if (ctx->ring_sock) {
2888 		ctx->ring_sock->file = NULL; /* so that iput() is called */
2889 		sock_release(ctx->ring_sock);
2890 	}
2891 #endif
2892 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2893 
2894 	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2895 	if (ctx->mm_account) {
2896 		mmdrop(ctx->mm_account);
2897 		ctx->mm_account = NULL;
2898 	}
2899 	io_rings_free(ctx);
2900 
2901 	percpu_ref_exit(&ctx->refs);
2902 	free_uid(ctx->user);
2903 	io_req_caches_free(ctx);
2904 	if (ctx->hash_map)
2905 		io_wq_put_hash(ctx->hash_map);
2906 	kfree(ctx->cancel_table.hbs);
2907 	kfree(ctx->cancel_table_locked.hbs);
2908 	kfree(ctx->dummy_ubuf);
2909 	kfree(ctx->io_bl);
2910 	xa_destroy(&ctx->io_bl_xa);
2911 	kfree(ctx);
2912 }
2913 
2914 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2915 {
2916 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2917 					       poll_wq_task_work);
2918 
2919 	mutex_lock(&ctx->uring_lock);
2920 	ctx->poll_activated = true;
2921 	mutex_unlock(&ctx->uring_lock);
2922 
2923 	/*
2924 	 * Wake ups for some events between start of polling and activation
2925 	 * might've been lost due to loose synchronisation.
2926 	 */
2927 	wake_up_all(&ctx->poll_wq);
2928 	percpu_ref_put(&ctx->refs);
2929 }
2930 
2931 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2932 {
2933 	spin_lock(&ctx->completion_lock);
2934 	/* already activated or in progress */
2935 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2936 		goto out;
2937 	if (WARN_ON_ONCE(!ctx->task_complete))
2938 		goto out;
2939 	if (!ctx->submitter_task)
2940 		goto out;
2941 	/*
2942 	 * with ->submitter_task only the submitter task completes requests, we
2943 	 * only need to sync with it, which is done by injecting a tw
2944 	 */
2945 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2946 	percpu_ref_get(&ctx->refs);
2947 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2948 		percpu_ref_put(&ctx->refs);
2949 out:
2950 	spin_unlock(&ctx->completion_lock);
2951 }
2952 
2953 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2954 {
2955 	struct io_ring_ctx *ctx = file->private_data;
2956 	__poll_t mask = 0;
2957 
2958 	if (unlikely(!ctx->poll_activated))
2959 		io_activate_pollwq(ctx);
2960 
2961 	poll_wait(file, &ctx->poll_wq, wait);
2962 	/*
2963 	 * synchronizes with barrier from wq_has_sleeper call in
2964 	 * io_commit_cqring
2965 	 */
2966 	smp_rmb();
2967 	if (!io_sqring_full(ctx))
2968 		mask |= EPOLLOUT | EPOLLWRNORM;
2969 
2970 	/*
2971 	 * Don't flush cqring overflow list here, just do a simple check.
2972 	 * Otherwise there could possible be ABBA deadlock:
2973 	 *      CPU0                    CPU1
2974 	 *      ----                    ----
2975 	 * lock(&ctx->uring_lock);
2976 	 *                              lock(&ep->mtx);
2977 	 *                              lock(&ctx->uring_lock);
2978 	 * lock(&ep->mtx);
2979 	 *
2980 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2981 	 * pushes them to do the flush.
2982 	 */
2983 
2984 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2985 		mask |= EPOLLIN | EPOLLRDNORM;
2986 
2987 	return mask;
2988 }
2989 
2990 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2991 {
2992 	const struct cred *creds;
2993 
2994 	creds = xa_erase(&ctx->personalities, id);
2995 	if (creds) {
2996 		put_cred(creds);
2997 		return 0;
2998 	}
2999 
3000 	return -EINVAL;
3001 }
3002 
3003 struct io_tctx_exit {
3004 	struct callback_head		task_work;
3005 	struct completion		completion;
3006 	struct io_ring_ctx		*ctx;
3007 };
3008 
3009 static __cold void io_tctx_exit_cb(struct callback_head *cb)
3010 {
3011 	struct io_uring_task *tctx = current->io_uring;
3012 	struct io_tctx_exit *work;
3013 
3014 	work = container_of(cb, struct io_tctx_exit, task_work);
3015 	/*
3016 	 * When @in_cancel, we're in cancellation and it's racy to remove the
3017 	 * node. It'll be removed by the end of cancellation, just ignore it.
3018 	 * tctx can be NULL if the queueing of this task_work raced with
3019 	 * work cancelation off the exec path.
3020 	 */
3021 	if (tctx && !atomic_read(&tctx->in_cancel))
3022 		io_uring_del_tctx_node((unsigned long)work->ctx);
3023 	complete(&work->completion);
3024 }
3025 
3026 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3027 {
3028 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3029 
3030 	return req->ctx == data;
3031 }
3032 
3033 static __cold void io_ring_exit_work(struct work_struct *work)
3034 {
3035 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3036 	unsigned long timeout = jiffies + HZ * 60 * 5;
3037 	unsigned long interval = HZ / 20;
3038 	struct io_tctx_exit exit;
3039 	struct io_tctx_node *node;
3040 	int ret;
3041 
3042 	/*
3043 	 * If we're doing polled IO and end up having requests being
3044 	 * submitted async (out-of-line), then completions can come in while
3045 	 * we're waiting for refs to drop. We need to reap these manually,
3046 	 * as nobody else will be looking for them.
3047 	 */
3048 	do {
3049 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3050 			mutex_lock(&ctx->uring_lock);
3051 			io_cqring_overflow_kill(ctx);
3052 			mutex_unlock(&ctx->uring_lock);
3053 		}
3054 
3055 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3056 			io_move_task_work_from_local(ctx);
3057 
3058 		while (io_uring_try_cancel_requests(ctx, NULL, true))
3059 			cond_resched();
3060 
3061 		if (ctx->sq_data) {
3062 			struct io_sq_data *sqd = ctx->sq_data;
3063 			struct task_struct *tsk;
3064 
3065 			io_sq_thread_park(sqd);
3066 			tsk = sqd->thread;
3067 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3068 				io_wq_cancel_cb(tsk->io_uring->io_wq,
3069 						io_cancel_ctx_cb, ctx, true);
3070 			io_sq_thread_unpark(sqd);
3071 		}
3072 
3073 		io_req_caches_free(ctx);
3074 
3075 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3076 			/* there is little hope left, don't run it too often */
3077 			interval = HZ * 60;
3078 		}
3079 		/*
3080 		 * This is really an uninterruptible wait, as it has to be
3081 		 * complete. But it's also run from a kworker, which doesn't
3082 		 * take signals, so it's fine to make it interruptible. This
3083 		 * avoids scenarios where we knowingly can wait much longer
3084 		 * on completions, for example if someone does a SIGSTOP on
3085 		 * a task that needs to finish task_work to make this loop
3086 		 * complete. That's a synthetic situation that should not
3087 		 * cause a stuck task backtrace, and hence a potential panic
3088 		 * on stuck tasks if that is enabled.
3089 		 */
3090 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3091 
3092 	init_completion(&exit.completion);
3093 	init_task_work(&exit.task_work, io_tctx_exit_cb);
3094 	exit.ctx = ctx;
3095 	/*
3096 	 * Some may use context even when all refs and requests have been put,
3097 	 * and they are free to do so while still holding uring_lock or
3098 	 * completion_lock, see io_req_task_submit(). Apart from other work,
3099 	 * this lock/unlock section also waits them to finish.
3100 	 */
3101 	mutex_lock(&ctx->uring_lock);
3102 	while (!list_empty(&ctx->tctx_list)) {
3103 		WARN_ON_ONCE(time_after(jiffies, timeout));
3104 
3105 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3106 					ctx_node);
3107 		/* don't spin on a single task if cancellation failed */
3108 		list_rotate_left(&ctx->tctx_list);
3109 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3110 		if (WARN_ON_ONCE(ret))
3111 			continue;
3112 
3113 		mutex_unlock(&ctx->uring_lock);
3114 		/*
3115 		 * See comment above for
3116 		 * wait_for_completion_interruptible_timeout() on why this
3117 		 * wait is marked as interruptible.
3118 		 */
3119 		wait_for_completion_interruptible(&exit.completion);
3120 		mutex_lock(&ctx->uring_lock);
3121 	}
3122 	mutex_unlock(&ctx->uring_lock);
3123 	spin_lock(&ctx->completion_lock);
3124 	spin_unlock(&ctx->completion_lock);
3125 
3126 	/* pairs with RCU read section in io_req_local_work_add() */
3127 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3128 		synchronize_rcu();
3129 
3130 	io_ring_ctx_free(ctx);
3131 }
3132 
3133 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3134 {
3135 	unsigned long index;
3136 	struct creds *creds;
3137 
3138 	mutex_lock(&ctx->uring_lock);
3139 	percpu_ref_kill(&ctx->refs);
3140 	xa_for_each(&ctx->personalities, index, creds)
3141 		io_unregister_personality(ctx, index);
3142 	if (ctx->rings)
3143 		io_poll_remove_all(ctx, NULL, true);
3144 	mutex_unlock(&ctx->uring_lock);
3145 
3146 	/*
3147 	 * If we failed setting up the ctx, we might not have any rings
3148 	 * and therefore did not submit any requests
3149 	 */
3150 	if (ctx->rings)
3151 		io_kill_timeouts(ctx, NULL, true);
3152 
3153 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3154 	/*
3155 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3156 	 * if we're exiting a ton of rings at the same time. It just adds
3157 	 * noise and overhead, there's no discernable change in runtime
3158 	 * over using system_wq.
3159 	 */
3160 	queue_work(system_unbound_wq, &ctx->exit_work);
3161 }
3162 
3163 static int io_uring_release(struct inode *inode, struct file *file)
3164 {
3165 	struct io_ring_ctx *ctx = file->private_data;
3166 
3167 	file->private_data = NULL;
3168 	io_ring_ctx_wait_and_kill(ctx);
3169 	return 0;
3170 }
3171 
3172 struct io_task_cancel {
3173 	struct task_struct *task;
3174 	bool all;
3175 };
3176 
3177 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3178 {
3179 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3180 	struct io_task_cancel *cancel = data;
3181 
3182 	return io_match_task_safe(req, cancel->task, cancel->all);
3183 }
3184 
3185 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3186 					 struct task_struct *task,
3187 					 bool cancel_all)
3188 {
3189 	struct io_defer_entry *de;
3190 	LIST_HEAD(list);
3191 
3192 	spin_lock(&ctx->completion_lock);
3193 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3194 		if (io_match_task_safe(de->req, task, cancel_all)) {
3195 			list_cut_position(&list, &ctx->defer_list, &de->list);
3196 			break;
3197 		}
3198 	}
3199 	spin_unlock(&ctx->completion_lock);
3200 	if (list_empty(&list))
3201 		return false;
3202 
3203 	while (!list_empty(&list)) {
3204 		de = list_first_entry(&list, struct io_defer_entry, list);
3205 		list_del_init(&de->list);
3206 		io_req_task_queue_fail(de->req, -ECANCELED);
3207 		kfree(de);
3208 	}
3209 	return true;
3210 }
3211 
3212 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3213 {
3214 	struct io_tctx_node *node;
3215 	enum io_wq_cancel cret;
3216 	bool ret = false;
3217 
3218 	mutex_lock(&ctx->uring_lock);
3219 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3220 		struct io_uring_task *tctx = node->task->io_uring;
3221 
3222 		/*
3223 		 * io_wq will stay alive while we hold uring_lock, because it's
3224 		 * killed after ctx nodes, which requires to take the lock.
3225 		 */
3226 		if (!tctx || !tctx->io_wq)
3227 			continue;
3228 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3229 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3230 	}
3231 	mutex_unlock(&ctx->uring_lock);
3232 
3233 	return ret;
3234 }
3235 
3236 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3237 						struct task_struct *task,
3238 						bool cancel_all)
3239 {
3240 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3241 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3242 	enum io_wq_cancel cret;
3243 	bool ret = false;
3244 
3245 	/* set it so io_req_local_work_add() would wake us up */
3246 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3247 		atomic_set(&ctx->cq_wait_nr, 1);
3248 		smp_mb();
3249 	}
3250 
3251 	/* failed during ring init, it couldn't have issued any requests */
3252 	if (!ctx->rings)
3253 		return false;
3254 
3255 	if (!task) {
3256 		ret |= io_uring_try_cancel_iowq(ctx);
3257 	} else if (tctx && tctx->io_wq) {
3258 		/*
3259 		 * Cancels requests of all rings, not only @ctx, but
3260 		 * it's fine as the task is in exit/exec.
3261 		 */
3262 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3263 				       &cancel, true);
3264 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3265 	}
3266 
3267 	/* SQPOLL thread does its own polling */
3268 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3269 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3270 		while (!wq_list_empty(&ctx->iopoll_list)) {
3271 			io_iopoll_try_reap_events(ctx);
3272 			ret = true;
3273 			cond_resched();
3274 		}
3275 	}
3276 
3277 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3278 	    io_allowed_defer_tw_run(ctx))
3279 		ret |= io_run_local_work(ctx) > 0;
3280 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3281 	mutex_lock(&ctx->uring_lock);
3282 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3283 	mutex_unlock(&ctx->uring_lock);
3284 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3285 	if (task)
3286 		ret |= io_run_task_work() > 0;
3287 	return ret;
3288 }
3289 
3290 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3291 {
3292 	if (tracked)
3293 		return atomic_read(&tctx->inflight_tracked);
3294 	return percpu_counter_sum(&tctx->inflight);
3295 }
3296 
3297 /*
3298  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3299  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3300  */
3301 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3302 {
3303 	struct io_uring_task *tctx = current->io_uring;
3304 	struct io_ring_ctx *ctx;
3305 	struct io_tctx_node *node;
3306 	unsigned long index;
3307 	s64 inflight;
3308 	DEFINE_WAIT(wait);
3309 
3310 	WARN_ON_ONCE(sqd && sqd->thread != current);
3311 
3312 	if (!current->io_uring)
3313 		return;
3314 	if (tctx->io_wq)
3315 		io_wq_exit_start(tctx->io_wq);
3316 
3317 	atomic_inc(&tctx->in_cancel);
3318 	do {
3319 		bool loop = false;
3320 
3321 		io_uring_drop_tctx_refs(current);
3322 		/* read completions before cancelations */
3323 		inflight = tctx_inflight(tctx, !cancel_all);
3324 		if (!inflight)
3325 			break;
3326 
3327 		if (!sqd) {
3328 			xa_for_each(&tctx->xa, index, node) {
3329 				/* sqpoll task will cancel all its requests */
3330 				if (node->ctx->sq_data)
3331 					continue;
3332 				loop |= io_uring_try_cancel_requests(node->ctx,
3333 							current, cancel_all);
3334 			}
3335 		} else {
3336 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3337 				loop |= io_uring_try_cancel_requests(ctx,
3338 								     current,
3339 								     cancel_all);
3340 		}
3341 
3342 		if (loop) {
3343 			cond_resched();
3344 			continue;
3345 		}
3346 
3347 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3348 		io_run_task_work();
3349 		io_uring_drop_tctx_refs(current);
3350 		xa_for_each(&tctx->xa, index, node) {
3351 			if (!llist_empty(&node->ctx->work_llist)) {
3352 				WARN_ON_ONCE(node->ctx->submitter_task &&
3353 					     node->ctx->submitter_task != current);
3354 				goto end_wait;
3355 			}
3356 		}
3357 		/*
3358 		 * If we've seen completions, retry without waiting. This
3359 		 * avoids a race where a completion comes in before we did
3360 		 * prepare_to_wait().
3361 		 */
3362 		if (inflight == tctx_inflight(tctx, !cancel_all))
3363 			schedule();
3364 end_wait:
3365 		finish_wait(&tctx->wait, &wait);
3366 	} while (1);
3367 
3368 	io_uring_clean_tctx(tctx);
3369 	if (cancel_all) {
3370 		/*
3371 		 * We shouldn't run task_works after cancel, so just leave
3372 		 * ->in_cancel set for normal exit.
3373 		 */
3374 		atomic_dec(&tctx->in_cancel);
3375 		/* for exec all current's requests should be gone, kill tctx */
3376 		__io_uring_free(current);
3377 	}
3378 }
3379 
3380 void __io_uring_cancel(bool cancel_all)
3381 {
3382 	io_uring_cancel_generic(cancel_all, NULL);
3383 }
3384 
3385 static void *io_uring_validate_mmap_request(struct file *file,
3386 					    loff_t pgoff, size_t sz)
3387 {
3388 	struct io_ring_ctx *ctx = file->private_data;
3389 	loff_t offset = pgoff << PAGE_SHIFT;
3390 	struct page *page;
3391 	void *ptr;
3392 
3393 	/* Don't allow mmap if the ring was setup without it */
3394 	if (ctx->flags & IORING_SETUP_NO_MMAP)
3395 		return ERR_PTR(-EINVAL);
3396 
3397 	switch (offset & IORING_OFF_MMAP_MASK) {
3398 	case IORING_OFF_SQ_RING:
3399 	case IORING_OFF_CQ_RING:
3400 		ptr = ctx->rings;
3401 		break;
3402 	case IORING_OFF_SQES:
3403 		ptr = ctx->sq_sqes;
3404 		break;
3405 	case IORING_OFF_PBUF_RING: {
3406 		unsigned int bgid;
3407 
3408 		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3409 		mutex_lock(&ctx->uring_lock);
3410 		ptr = io_pbuf_get_address(ctx, bgid);
3411 		mutex_unlock(&ctx->uring_lock);
3412 		if (!ptr)
3413 			return ERR_PTR(-EINVAL);
3414 		break;
3415 		}
3416 	default:
3417 		return ERR_PTR(-EINVAL);
3418 	}
3419 
3420 	page = virt_to_head_page(ptr);
3421 	if (sz > page_size(page))
3422 		return ERR_PTR(-EINVAL);
3423 
3424 	return ptr;
3425 }
3426 
3427 #ifdef CONFIG_MMU
3428 
3429 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3430 {
3431 	size_t sz = vma->vm_end - vma->vm_start;
3432 	unsigned long pfn;
3433 	void *ptr;
3434 
3435 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3436 	if (IS_ERR(ptr))
3437 		return PTR_ERR(ptr);
3438 
3439 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3440 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3441 }
3442 
3443 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3444 			unsigned long addr, unsigned long len,
3445 			unsigned long pgoff, unsigned long flags)
3446 {
3447 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
3448 	struct vm_unmapped_area_info info;
3449 	void *ptr;
3450 
3451 	/*
3452 	 * Do not allow to map to user-provided address to avoid breaking the
3453 	 * aliasing rules. Userspace is not able to guess the offset address of
3454 	 * kernel kmalloc()ed memory area.
3455 	 */
3456 	if (addr)
3457 		return -EINVAL;
3458 
3459 	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3460 	if (IS_ERR(ptr))
3461 		return -ENOMEM;
3462 
3463 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
3464 	info.length = len;
3465 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
3466 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
3467 #ifdef SHM_COLOUR
3468 	info.align_mask = PAGE_MASK & (SHM_COLOUR - 1UL);
3469 #else
3470 	info.align_mask = PAGE_MASK & (SHMLBA - 1UL);
3471 #endif
3472 	info.align_offset = (unsigned long) ptr;
3473 
3474 	/*
3475 	 * A failed mmap() very likely causes application failure,
3476 	 * so fall back to the bottom-up function here. This scenario
3477 	 * can happen with large stack limits and large mmap()
3478 	 * allocations.
3479 	 */
3480 	addr = vm_unmapped_area(&info);
3481 	if (offset_in_page(addr)) {
3482 		info.flags = 0;
3483 		info.low_limit = TASK_UNMAPPED_BASE;
3484 		info.high_limit = mmap_end;
3485 		addr = vm_unmapped_area(&info);
3486 	}
3487 
3488 	return addr;
3489 }
3490 
3491 #else /* !CONFIG_MMU */
3492 
3493 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3494 {
3495 	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3496 }
3497 
3498 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3499 {
3500 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3501 }
3502 
3503 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3504 	unsigned long addr, unsigned long len,
3505 	unsigned long pgoff, unsigned long flags)
3506 {
3507 	void *ptr;
3508 
3509 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3510 	if (IS_ERR(ptr))
3511 		return PTR_ERR(ptr);
3512 
3513 	return (unsigned long) ptr;
3514 }
3515 
3516 #endif /* !CONFIG_MMU */
3517 
3518 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3519 {
3520 	if (flags & IORING_ENTER_EXT_ARG) {
3521 		struct io_uring_getevents_arg arg;
3522 
3523 		if (argsz != sizeof(arg))
3524 			return -EINVAL;
3525 		if (copy_from_user(&arg, argp, sizeof(arg)))
3526 			return -EFAULT;
3527 	}
3528 	return 0;
3529 }
3530 
3531 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3532 			  struct __kernel_timespec __user **ts,
3533 			  const sigset_t __user **sig)
3534 {
3535 	struct io_uring_getevents_arg arg;
3536 
3537 	/*
3538 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3539 	 * is just a pointer to the sigset_t.
3540 	 */
3541 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3542 		*sig = (const sigset_t __user *) argp;
3543 		*ts = NULL;
3544 		return 0;
3545 	}
3546 
3547 	/*
3548 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3549 	 * timespec and sigset_t pointers if good.
3550 	 */
3551 	if (*argsz != sizeof(arg))
3552 		return -EINVAL;
3553 	if (copy_from_user(&arg, argp, sizeof(arg)))
3554 		return -EFAULT;
3555 	if (arg.pad)
3556 		return -EINVAL;
3557 	*sig = u64_to_user_ptr(arg.sigmask);
3558 	*argsz = arg.sigmask_sz;
3559 	*ts = u64_to_user_ptr(arg.ts);
3560 	return 0;
3561 }
3562 
3563 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3564 		u32, min_complete, u32, flags, const void __user *, argp,
3565 		size_t, argsz)
3566 {
3567 	struct io_ring_ctx *ctx;
3568 	struct fd f;
3569 	long ret;
3570 
3571 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3572 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3573 			       IORING_ENTER_REGISTERED_RING)))
3574 		return -EINVAL;
3575 
3576 	/*
3577 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3578 	 * need only dereference our task private array to find it.
3579 	 */
3580 	if (flags & IORING_ENTER_REGISTERED_RING) {
3581 		struct io_uring_task *tctx = current->io_uring;
3582 
3583 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3584 			return -EINVAL;
3585 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3586 		f.file = tctx->registered_rings[fd];
3587 		f.flags = 0;
3588 		if (unlikely(!f.file))
3589 			return -EBADF;
3590 	} else {
3591 		f = fdget(fd);
3592 		if (unlikely(!f.file))
3593 			return -EBADF;
3594 		ret = -EOPNOTSUPP;
3595 		if (unlikely(!io_is_uring_fops(f.file)))
3596 			goto out;
3597 	}
3598 
3599 	ctx = f.file->private_data;
3600 	ret = -EBADFD;
3601 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3602 		goto out;
3603 
3604 	/*
3605 	 * For SQ polling, the thread will do all submissions and completions.
3606 	 * Just return the requested submit count, and wake the thread if
3607 	 * we were asked to.
3608 	 */
3609 	ret = 0;
3610 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3611 		io_cqring_overflow_flush(ctx);
3612 
3613 		if (unlikely(ctx->sq_data->thread == NULL)) {
3614 			ret = -EOWNERDEAD;
3615 			goto out;
3616 		}
3617 		if (flags & IORING_ENTER_SQ_WAKEUP)
3618 			wake_up(&ctx->sq_data->wait);
3619 		if (flags & IORING_ENTER_SQ_WAIT)
3620 			io_sqpoll_wait_sq(ctx);
3621 
3622 		ret = to_submit;
3623 	} else if (to_submit) {
3624 		ret = io_uring_add_tctx_node(ctx);
3625 		if (unlikely(ret))
3626 			goto out;
3627 
3628 		mutex_lock(&ctx->uring_lock);
3629 		ret = io_submit_sqes(ctx, to_submit);
3630 		if (ret != to_submit) {
3631 			mutex_unlock(&ctx->uring_lock);
3632 			goto out;
3633 		}
3634 		if (flags & IORING_ENTER_GETEVENTS) {
3635 			if (ctx->syscall_iopoll)
3636 				goto iopoll_locked;
3637 			/*
3638 			 * Ignore errors, we'll soon call io_cqring_wait() and
3639 			 * it should handle ownership problems if any.
3640 			 */
3641 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3642 				(void)io_run_local_work_locked(ctx);
3643 		}
3644 		mutex_unlock(&ctx->uring_lock);
3645 	}
3646 
3647 	if (flags & IORING_ENTER_GETEVENTS) {
3648 		int ret2;
3649 
3650 		if (ctx->syscall_iopoll) {
3651 			/*
3652 			 * We disallow the app entering submit/complete with
3653 			 * polling, but we still need to lock the ring to
3654 			 * prevent racing with polled issue that got punted to
3655 			 * a workqueue.
3656 			 */
3657 			mutex_lock(&ctx->uring_lock);
3658 iopoll_locked:
3659 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3660 			if (likely(!ret2)) {
3661 				min_complete = min(min_complete,
3662 						   ctx->cq_entries);
3663 				ret2 = io_iopoll_check(ctx, min_complete);
3664 			}
3665 			mutex_unlock(&ctx->uring_lock);
3666 		} else {
3667 			const sigset_t __user *sig;
3668 			struct __kernel_timespec __user *ts;
3669 
3670 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3671 			if (likely(!ret2)) {
3672 				min_complete = min(min_complete,
3673 						   ctx->cq_entries);
3674 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3675 						      argsz, ts);
3676 			}
3677 		}
3678 
3679 		if (!ret) {
3680 			ret = ret2;
3681 
3682 			/*
3683 			 * EBADR indicates that one or more CQE were dropped.
3684 			 * Once the user has been informed we can clear the bit
3685 			 * as they are obviously ok with those drops.
3686 			 */
3687 			if (unlikely(ret2 == -EBADR))
3688 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3689 					  &ctx->check_cq);
3690 		}
3691 	}
3692 out:
3693 	fdput(f);
3694 	return ret;
3695 }
3696 
3697 static const struct file_operations io_uring_fops = {
3698 	.release	= io_uring_release,
3699 	.mmap		= io_uring_mmap,
3700 #ifndef CONFIG_MMU
3701 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3702 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3703 #else
3704 	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3705 #endif
3706 	.poll		= io_uring_poll,
3707 #ifdef CONFIG_PROC_FS
3708 	.show_fdinfo	= io_uring_show_fdinfo,
3709 #endif
3710 };
3711 
3712 bool io_is_uring_fops(struct file *file)
3713 {
3714 	return file->f_op == &io_uring_fops;
3715 }
3716 
3717 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3718 					 struct io_uring_params *p)
3719 {
3720 	struct io_rings *rings;
3721 	size_t size, sq_array_offset;
3722 	void *ptr;
3723 
3724 	/* make sure these are sane, as we already accounted them */
3725 	ctx->sq_entries = p->sq_entries;
3726 	ctx->cq_entries = p->cq_entries;
3727 
3728 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3729 	if (size == SIZE_MAX)
3730 		return -EOVERFLOW;
3731 
3732 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3733 		rings = io_mem_alloc(size);
3734 	else
3735 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3736 
3737 	if (IS_ERR(rings))
3738 		return PTR_ERR(rings);
3739 
3740 	ctx->rings = rings;
3741 	ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3742 	rings->sq_ring_mask = p->sq_entries - 1;
3743 	rings->cq_ring_mask = p->cq_entries - 1;
3744 	rings->sq_ring_entries = p->sq_entries;
3745 	rings->cq_ring_entries = p->cq_entries;
3746 
3747 	if (p->flags & IORING_SETUP_SQE128)
3748 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3749 	else
3750 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3751 	if (size == SIZE_MAX) {
3752 		io_rings_free(ctx);
3753 		return -EOVERFLOW;
3754 	}
3755 
3756 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3757 		ptr = io_mem_alloc(size);
3758 	else
3759 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3760 
3761 	if (IS_ERR(ptr)) {
3762 		io_rings_free(ctx);
3763 		return PTR_ERR(ptr);
3764 	}
3765 
3766 	ctx->sq_sqes = ptr;
3767 	return 0;
3768 }
3769 
3770 static int io_uring_install_fd(struct file *file)
3771 {
3772 	int fd;
3773 
3774 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3775 	if (fd < 0)
3776 		return fd;
3777 	fd_install(fd, file);
3778 	return fd;
3779 }
3780 
3781 /*
3782  * Allocate an anonymous fd, this is what constitutes the application
3783  * visible backing of an io_uring instance. The application mmaps this
3784  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3785  * we have to tie this fd to a socket for file garbage collection purposes.
3786  */
3787 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3788 {
3789 	struct file *file;
3790 #if defined(CONFIG_UNIX)
3791 	int ret;
3792 
3793 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3794 				&ctx->ring_sock);
3795 	if (ret)
3796 		return ERR_PTR(ret);
3797 #endif
3798 
3799 	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3800 					 O_RDWR | O_CLOEXEC, NULL);
3801 #if defined(CONFIG_UNIX)
3802 	if (IS_ERR(file)) {
3803 		sock_release(ctx->ring_sock);
3804 		ctx->ring_sock = NULL;
3805 	} else {
3806 		ctx->ring_sock->file = file;
3807 	}
3808 #endif
3809 	return file;
3810 }
3811 
3812 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3813 				  struct io_uring_params __user *params)
3814 {
3815 	struct io_ring_ctx *ctx;
3816 	struct io_uring_task *tctx;
3817 	struct file *file;
3818 	int ret;
3819 
3820 	if (!entries)
3821 		return -EINVAL;
3822 	if (entries > IORING_MAX_ENTRIES) {
3823 		if (!(p->flags & IORING_SETUP_CLAMP))
3824 			return -EINVAL;
3825 		entries = IORING_MAX_ENTRIES;
3826 	}
3827 
3828 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3829 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3830 		return -EINVAL;
3831 
3832 	/*
3833 	 * Use twice as many entries for the CQ ring. It's possible for the
3834 	 * application to drive a higher depth than the size of the SQ ring,
3835 	 * since the sqes are only used at submission time. This allows for
3836 	 * some flexibility in overcommitting a bit. If the application has
3837 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3838 	 * of CQ ring entries manually.
3839 	 */
3840 	p->sq_entries = roundup_pow_of_two(entries);
3841 	if (p->flags & IORING_SETUP_CQSIZE) {
3842 		/*
3843 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3844 		 * to a power-of-two, if it isn't already. We do NOT impose
3845 		 * any cq vs sq ring sizing.
3846 		 */
3847 		if (!p->cq_entries)
3848 			return -EINVAL;
3849 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3850 			if (!(p->flags & IORING_SETUP_CLAMP))
3851 				return -EINVAL;
3852 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3853 		}
3854 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3855 		if (p->cq_entries < p->sq_entries)
3856 			return -EINVAL;
3857 	} else {
3858 		p->cq_entries = 2 * p->sq_entries;
3859 	}
3860 
3861 	ctx = io_ring_ctx_alloc(p);
3862 	if (!ctx)
3863 		return -ENOMEM;
3864 
3865 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3866 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3867 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3868 		ctx->task_complete = true;
3869 
3870 	/*
3871 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3872 	 * purposes, see io_activate_pollwq()
3873 	 */
3874 	if (!ctx->task_complete)
3875 		ctx->poll_activated = true;
3876 
3877 	/*
3878 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3879 	 * space applications don't need to do io completion events
3880 	 * polling again, they can rely on io_sq_thread to do polling
3881 	 * work, which can reduce cpu usage and uring_lock contention.
3882 	 */
3883 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3884 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3885 		ctx->syscall_iopoll = 1;
3886 
3887 	ctx->compat = in_compat_syscall();
3888 	if (!capable(CAP_IPC_LOCK))
3889 		ctx->user = get_uid(current_user());
3890 
3891 	/*
3892 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3893 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3894 	 */
3895 	ret = -EINVAL;
3896 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3897 		/* IPI related flags don't make sense with SQPOLL */
3898 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3899 				  IORING_SETUP_TASKRUN_FLAG |
3900 				  IORING_SETUP_DEFER_TASKRUN))
3901 			goto err;
3902 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3903 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3904 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3905 	} else {
3906 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3907 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3908 			goto err;
3909 		ctx->notify_method = TWA_SIGNAL;
3910 	}
3911 
3912 	/*
3913 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3914 	 * submission task. This implies that there is only one submitter, so enforce
3915 	 * that.
3916 	 */
3917 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3918 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3919 		goto err;
3920 	}
3921 
3922 	/*
3923 	 * This is just grabbed for accounting purposes. When a process exits,
3924 	 * the mm is exited and dropped before the files, hence we need to hang
3925 	 * on to this mm purely for the purposes of being able to unaccount
3926 	 * memory (locked/pinned vm). It's not used for anything else.
3927 	 */
3928 	mmgrab(current->mm);
3929 	ctx->mm_account = current->mm;
3930 
3931 	ret = io_allocate_scq_urings(ctx, p);
3932 	if (ret)
3933 		goto err;
3934 
3935 	ret = io_sq_offload_create(ctx, p);
3936 	if (ret)
3937 		goto err;
3938 
3939 	ret = io_rsrc_init(ctx);
3940 	if (ret)
3941 		goto err;
3942 
3943 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3944 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3945 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3946 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3947 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3948 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3949 	p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3950 	p->sq_off.resv1 = 0;
3951 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3952 		p->sq_off.user_addr = 0;
3953 
3954 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3955 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3956 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3957 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3958 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3959 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3960 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3961 	p->cq_off.resv1 = 0;
3962 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3963 		p->cq_off.user_addr = 0;
3964 
3965 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3966 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3967 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3968 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3969 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3970 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3971 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
3972 
3973 	if (copy_to_user(params, p, sizeof(*p))) {
3974 		ret = -EFAULT;
3975 		goto err;
3976 	}
3977 
3978 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3979 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3980 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3981 
3982 	file = io_uring_get_file(ctx);
3983 	if (IS_ERR(file)) {
3984 		ret = PTR_ERR(file);
3985 		goto err;
3986 	}
3987 
3988 	ret = __io_uring_add_tctx_node(ctx);
3989 	if (ret)
3990 		goto err_fput;
3991 	tctx = current->io_uring;
3992 
3993 	/*
3994 	 * Install ring fd as the very last thing, so we don't risk someone
3995 	 * having closed it before we finish setup
3996 	 */
3997 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3998 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3999 	else
4000 		ret = io_uring_install_fd(file);
4001 	if (ret < 0)
4002 		goto err_fput;
4003 
4004 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4005 	return ret;
4006 err:
4007 	io_ring_ctx_wait_and_kill(ctx);
4008 	return ret;
4009 err_fput:
4010 	fput(file);
4011 	return ret;
4012 }
4013 
4014 /*
4015  * Sets up an aio uring context, and returns the fd. Applications asks for a
4016  * ring size, we return the actual sq/cq ring sizes (among other things) in the
4017  * params structure passed in.
4018  */
4019 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4020 {
4021 	struct io_uring_params p;
4022 	int i;
4023 
4024 	if (copy_from_user(&p, params, sizeof(p)))
4025 		return -EFAULT;
4026 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4027 		if (p.resv[i])
4028 			return -EINVAL;
4029 	}
4030 
4031 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4032 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4033 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4034 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4035 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4036 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4037 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4038 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY))
4039 		return -EINVAL;
4040 
4041 	return io_uring_create(entries, &p, params);
4042 }
4043 
4044 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4045 		struct io_uring_params __user *, params)
4046 {
4047 	return io_uring_setup(entries, params);
4048 }
4049 
4050 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4051 			   unsigned nr_args)
4052 {
4053 	struct io_uring_probe *p;
4054 	size_t size;
4055 	int i, ret;
4056 
4057 	size = struct_size(p, ops, nr_args);
4058 	if (size == SIZE_MAX)
4059 		return -EOVERFLOW;
4060 	p = kzalloc(size, GFP_KERNEL);
4061 	if (!p)
4062 		return -ENOMEM;
4063 
4064 	ret = -EFAULT;
4065 	if (copy_from_user(p, arg, size))
4066 		goto out;
4067 	ret = -EINVAL;
4068 	if (memchr_inv(p, 0, size))
4069 		goto out;
4070 
4071 	p->last_op = IORING_OP_LAST - 1;
4072 	if (nr_args > IORING_OP_LAST)
4073 		nr_args = IORING_OP_LAST;
4074 
4075 	for (i = 0; i < nr_args; i++) {
4076 		p->ops[i].op = i;
4077 		if (!io_issue_defs[i].not_supported)
4078 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
4079 	}
4080 	p->ops_len = i;
4081 
4082 	ret = 0;
4083 	if (copy_to_user(arg, p, size))
4084 		ret = -EFAULT;
4085 out:
4086 	kfree(p);
4087 	return ret;
4088 }
4089 
4090 static int io_register_personality(struct io_ring_ctx *ctx)
4091 {
4092 	const struct cred *creds;
4093 	u32 id;
4094 	int ret;
4095 
4096 	creds = get_current_cred();
4097 
4098 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4099 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4100 	if (ret < 0) {
4101 		put_cred(creds);
4102 		return ret;
4103 	}
4104 	return id;
4105 }
4106 
4107 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4108 					   void __user *arg, unsigned int nr_args)
4109 {
4110 	struct io_uring_restriction *res;
4111 	size_t size;
4112 	int i, ret;
4113 
4114 	/* Restrictions allowed only if rings started disabled */
4115 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4116 		return -EBADFD;
4117 
4118 	/* We allow only a single restrictions registration */
4119 	if (ctx->restrictions.registered)
4120 		return -EBUSY;
4121 
4122 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4123 		return -EINVAL;
4124 
4125 	size = array_size(nr_args, sizeof(*res));
4126 	if (size == SIZE_MAX)
4127 		return -EOVERFLOW;
4128 
4129 	res = memdup_user(arg, size);
4130 	if (IS_ERR(res))
4131 		return PTR_ERR(res);
4132 
4133 	ret = 0;
4134 
4135 	for (i = 0; i < nr_args; i++) {
4136 		switch (res[i].opcode) {
4137 		case IORING_RESTRICTION_REGISTER_OP:
4138 			if (res[i].register_op >= IORING_REGISTER_LAST) {
4139 				ret = -EINVAL;
4140 				goto out;
4141 			}
4142 
4143 			__set_bit(res[i].register_op,
4144 				  ctx->restrictions.register_op);
4145 			break;
4146 		case IORING_RESTRICTION_SQE_OP:
4147 			if (res[i].sqe_op >= IORING_OP_LAST) {
4148 				ret = -EINVAL;
4149 				goto out;
4150 			}
4151 
4152 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4153 			break;
4154 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4155 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4156 			break;
4157 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4158 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4159 			break;
4160 		default:
4161 			ret = -EINVAL;
4162 			goto out;
4163 		}
4164 	}
4165 
4166 out:
4167 	/* Reset all restrictions if an error happened */
4168 	if (ret != 0)
4169 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4170 	else
4171 		ctx->restrictions.registered = true;
4172 
4173 	kfree(res);
4174 	return ret;
4175 }
4176 
4177 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4178 {
4179 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4180 		return -EBADFD;
4181 
4182 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4183 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4184 		/*
4185 		 * Lazy activation attempts would fail if it was polled before
4186 		 * submitter_task is set.
4187 		 */
4188 		if (wq_has_sleeper(&ctx->poll_wq))
4189 			io_activate_pollwq(ctx);
4190 	}
4191 
4192 	if (ctx->restrictions.registered)
4193 		ctx->restricted = 1;
4194 
4195 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
4196 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4197 		wake_up(&ctx->sq_data->wait);
4198 	return 0;
4199 }
4200 
4201 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4202 				       void __user *arg, unsigned len)
4203 {
4204 	struct io_uring_task *tctx = current->io_uring;
4205 	cpumask_var_t new_mask;
4206 	int ret;
4207 
4208 	if (!tctx || !tctx->io_wq)
4209 		return -EINVAL;
4210 
4211 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4212 		return -ENOMEM;
4213 
4214 	cpumask_clear(new_mask);
4215 	if (len > cpumask_size())
4216 		len = cpumask_size();
4217 
4218 	if (in_compat_syscall()) {
4219 		ret = compat_get_bitmap(cpumask_bits(new_mask),
4220 					(const compat_ulong_t __user *)arg,
4221 					len * 8 /* CHAR_BIT */);
4222 	} else {
4223 		ret = copy_from_user(new_mask, arg, len);
4224 	}
4225 
4226 	if (ret) {
4227 		free_cpumask_var(new_mask);
4228 		return -EFAULT;
4229 	}
4230 
4231 	ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
4232 	free_cpumask_var(new_mask);
4233 	return ret;
4234 }
4235 
4236 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4237 {
4238 	struct io_uring_task *tctx = current->io_uring;
4239 
4240 	if (!tctx || !tctx->io_wq)
4241 		return -EINVAL;
4242 
4243 	return io_wq_cpu_affinity(tctx->io_wq, NULL);
4244 }
4245 
4246 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4247 					       void __user *arg)
4248 	__must_hold(&ctx->uring_lock)
4249 {
4250 	struct io_tctx_node *node;
4251 	struct io_uring_task *tctx = NULL;
4252 	struct io_sq_data *sqd = NULL;
4253 	__u32 new_count[2];
4254 	int i, ret;
4255 
4256 	if (copy_from_user(new_count, arg, sizeof(new_count)))
4257 		return -EFAULT;
4258 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4259 		if (new_count[i] > INT_MAX)
4260 			return -EINVAL;
4261 
4262 	if (ctx->flags & IORING_SETUP_SQPOLL) {
4263 		sqd = ctx->sq_data;
4264 		if (sqd) {
4265 			/*
4266 			 * Observe the correct sqd->lock -> ctx->uring_lock
4267 			 * ordering. Fine to drop uring_lock here, we hold
4268 			 * a ref to the ctx.
4269 			 */
4270 			refcount_inc(&sqd->refs);
4271 			mutex_unlock(&ctx->uring_lock);
4272 			mutex_lock(&sqd->lock);
4273 			mutex_lock(&ctx->uring_lock);
4274 			if (sqd->thread)
4275 				tctx = sqd->thread->io_uring;
4276 		}
4277 	} else {
4278 		tctx = current->io_uring;
4279 	}
4280 
4281 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4282 
4283 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4284 		if (new_count[i])
4285 			ctx->iowq_limits[i] = new_count[i];
4286 	ctx->iowq_limits_set = true;
4287 
4288 	if (tctx && tctx->io_wq) {
4289 		ret = io_wq_max_workers(tctx->io_wq, new_count);
4290 		if (ret)
4291 			goto err;
4292 	} else {
4293 		memset(new_count, 0, sizeof(new_count));
4294 	}
4295 
4296 	if (sqd) {
4297 		mutex_unlock(&sqd->lock);
4298 		io_put_sq_data(sqd);
4299 	}
4300 
4301 	if (copy_to_user(arg, new_count, sizeof(new_count)))
4302 		return -EFAULT;
4303 
4304 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
4305 	if (sqd)
4306 		return 0;
4307 
4308 	/* now propagate the restriction to all registered users */
4309 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4310 		struct io_uring_task *tctx = node->task->io_uring;
4311 
4312 		if (WARN_ON_ONCE(!tctx->io_wq))
4313 			continue;
4314 
4315 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
4316 			new_count[i] = ctx->iowq_limits[i];
4317 		/* ignore errors, it always returns zero anyway */
4318 		(void)io_wq_max_workers(tctx->io_wq, new_count);
4319 	}
4320 	return 0;
4321 err:
4322 	if (sqd) {
4323 		mutex_unlock(&sqd->lock);
4324 		io_put_sq_data(sqd);
4325 	}
4326 	return ret;
4327 }
4328 
4329 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4330 			       void __user *arg, unsigned nr_args)
4331 	__releases(ctx->uring_lock)
4332 	__acquires(ctx->uring_lock)
4333 {
4334 	int ret;
4335 
4336 	/*
4337 	 * We don't quiesce the refs for register anymore and so it can't be
4338 	 * dying as we're holding a file ref here.
4339 	 */
4340 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4341 		return -ENXIO;
4342 
4343 	if (ctx->submitter_task && ctx->submitter_task != current)
4344 		return -EEXIST;
4345 
4346 	if (ctx->restricted) {
4347 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4348 		if (!test_bit(opcode, ctx->restrictions.register_op))
4349 			return -EACCES;
4350 	}
4351 
4352 	switch (opcode) {
4353 	case IORING_REGISTER_BUFFERS:
4354 		ret = -EFAULT;
4355 		if (!arg)
4356 			break;
4357 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4358 		break;
4359 	case IORING_UNREGISTER_BUFFERS:
4360 		ret = -EINVAL;
4361 		if (arg || nr_args)
4362 			break;
4363 		ret = io_sqe_buffers_unregister(ctx);
4364 		break;
4365 	case IORING_REGISTER_FILES:
4366 		ret = -EFAULT;
4367 		if (!arg)
4368 			break;
4369 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4370 		break;
4371 	case IORING_UNREGISTER_FILES:
4372 		ret = -EINVAL;
4373 		if (arg || nr_args)
4374 			break;
4375 		ret = io_sqe_files_unregister(ctx);
4376 		break;
4377 	case IORING_REGISTER_FILES_UPDATE:
4378 		ret = io_register_files_update(ctx, arg, nr_args);
4379 		break;
4380 	case IORING_REGISTER_EVENTFD:
4381 		ret = -EINVAL;
4382 		if (nr_args != 1)
4383 			break;
4384 		ret = io_eventfd_register(ctx, arg, 0);
4385 		break;
4386 	case IORING_REGISTER_EVENTFD_ASYNC:
4387 		ret = -EINVAL;
4388 		if (nr_args != 1)
4389 			break;
4390 		ret = io_eventfd_register(ctx, arg, 1);
4391 		break;
4392 	case IORING_UNREGISTER_EVENTFD:
4393 		ret = -EINVAL;
4394 		if (arg || nr_args)
4395 			break;
4396 		ret = io_eventfd_unregister(ctx);
4397 		break;
4398 	case IORING_REGISTER_PROBE:
4399 		ret = -EINVAL;
4400 		if (!arg || nr_args > 256)
4401 			break;
4402 		ret = io_probe(ctx, arg, nr_args);
4403 		break;
4404 	case IORING_REGISTER_PERSONALITY:
4405 		ret = -EINVAL;
4406 		if (arg || nr_args)
4407 			break;
4408 		ret = io_register_personality(ctx);
4409 		break;
4410 	case IORING_UNREGISTER_PERSONALITY:
4411 		ret = -EINVAL;
4412 		if (arg)
4413 			break;
4414 		ret = io_unregister_personality(ctx, nr_args);
4415 		break;
4416 	case IORING_REGISTER_ENABLE_RINGS:
4417 		ret = -EINVAL;
4418 		if (arg || nr_args)
4419 			break;
4420 		ret = io_register_enable_rings(ctx);
4421 		break;
4422 	case IORING_REGISTER_RESTRICTIONS:
4423 		ret = io_register_restrictions(ctx, arg, nr_args);
4424 		break;
4425 	case IORING_REGISTER_FILES2:
4426 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4427 		break;
4428 	case IORING_REGISTER_FILES_UPDATE2:
4429 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4430 					      IORING_RSRC_FILE);
4431 		break;
4432 	case IORING_REGISTER_BUFFERS2:
4433 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4434 		break;
4435 	case IORING_REGISTER_BUFFERS_UPDATE:
4436 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4437 					      IORING_RSRC_BUFFER);
4438 		break;
4439 	case IORING_REGISTER_IOWQ_AFF:
4440 		ret = -EINVAL;
4441 		if (!arg || !nr_args)
4442 			break;
4443 		ret = io_register_iowq_aff(ctx, arg, nr_args);
4444 		break;
4445 	case IORING_UNREGISTER_IOWQ_AFF:
4446 		ret = -EINVAL;
4447 		if (arg || nr_args)
4448 			break;
4449 		ret = io_unregister_iowq_aff(ctx);
4450 		break;
4451 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4452 		ret = -EINVAL;
4453 		if (!arg || nr_args != 2)
4454 			break;
4455 		ret = io_register_iowq_max_workers(ctx, arg);
4456 		break;
4457 	case IORING_REGISTER_RING_FDS:
4458 		ret = io_ringfd_register(ctx, arg, nr_args);
4459 		break;
4460 	case IORING_UNREGISTER_RING_FDS:
4461 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4462 		break;
4463 	case IORING_REGISTER_PBUF_RING:
4464 		ret = -EINVAL;
4465 		if (!arg || nr_args != 1)
4466 			break;
4467 		ret = io_register_pbuf_ring(ctx, arg);
4468 		break;
4469 	case IORING_UNREGISTER_PBUF_RING:
4470 		ret = -EINVAL;
4471 		if (!arg || nr_args != 1)
4472 			break;
4473 		ret = io_unregister_pbuf_ring(ctx, arg);
4474 		break;
4475 	case IORING_REGISTER_SYNC_CANCEL:
4476 		ret = -EINVAL;
4477 		if (!arg || nr_args != 1)
4478 			break;
4479 		ret = io_sync_cancel(ctx, arg);
4480 		break;
4481 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4482 		ret = -EINVAL;
4483 		if (!arg || nr_args)
4484 			break;
4485 		ret = io_register_file_alloc_range(ctx, arg);
4486 		break;
4487 	default:
4488 		ret = -EINVAL;
4489 		break;
4490 	}
4491 
4492 	return ret;
4493 }
4494 
4495 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4496 		void __user *, arg, unsigned int, nr_args)
4497 {
4498 	struct io_ring_ctx *ctx;
4499 	long ret = -EBADF;
4500 	struct fd f;
4501 	bool use_registered_ring;
4502 
4503 	use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4504 	opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4505 
4506 	if (opcode >= IORING_REGISTER_LAST)
4507 		return -EINVAL;
4508 
4509 	if (use_registered_ring) {
4510 		/*
4511 		 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4512 		 * need only dereference our task private array to find it.
4513 		 */
4514 		struct io_uring_task *tctx = current->io_uring;
4515 
4516 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4517 			return -EINVAL;
4518 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4519 		f.file = tctx->registered_rings[fd];
4520 		f.flags = 0;
4521 		if (unlikely(!f.file))
4522 			return -EBADF;
4523 	} else {
4524 		f = fdget(fd);
4525 		if (unlikely(!f.file))
4526 			return -EBADF;
4527 		ret = -EOPNOTSUPP;
4528 		if (!io_is_uring_fops(f.file))
4529 			goto out_fput;
4530 	}
4531 
4532 	ctx = f.file->private_data;
4533 
4534 	mutex_lock(&ctx->uring_lock);
4535 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4536 	mutex_unlock(&ctx->uring_lock);
4537 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4538 out_fput:
4539 	fdput(f);
4540 	return ret;
4541 }
4542 
4543 static int __init io_uring_init(void)
4544 {
4545 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4546 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4547 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4548 } while (0)
4549 
4550 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4551 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4552 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4553 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4554 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4555 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4556 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4557 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4558 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4559 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4560 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4561 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4562 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4563 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4564 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4565 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4566 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4567 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4568 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4569 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4570 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4571 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4572 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4573 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4574 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4575 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4576 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4577 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4578 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4579 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4580 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4581 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4582 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4583 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4584 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4585 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4586 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4587 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4588 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4589 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4590 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4591 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4592 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4593 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4594 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4595 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4596 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4597 
4598 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4599 		     sizeof(struct io_uring_rsrc_update));
4600 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4601 		     sizeof(struct io_uring_rsrc_update2));
4602 
4603 	/* ->buf_index is u16 */
4604 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4605 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4606 		     offsetof(struct io_uring_buf_ring, tail));
4607 
4608 	/* should fit into one byte */
4609 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4610 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4611 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4612 
4613 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4614 
4615 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4616 
4617 	io_uring_optable_init();
4618 
4619 	req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4620 				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU);
4621 	return 0;
4622 };
4623 __initcall(io_uring_init);
4624