1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 #include <asm/shmparam.h> 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/io_uring.h> 79 80 #include <uapi/linux/io_uring.h> 81 82 #include "io-wq.h" 83 84 #include "io_uring.h" 85 #include "opdef.h" 86 #include "refs.h" 87 #include "tctx.h" 88 #include "sqpoll.h" 89 #include "fdinfo.h" 90 #include "kbuf.h" 91 #include "rsrc.h" 92 #include "cancel.h" 93 #include "net.h" 94 #include "notif.h" 95 96 #include "timeout.h" 97 #include "poll.h" 98 #include "rw.h" 99 #include "alloc_cache.h" 100 101 #define IORING_MAX_ENTRIES 32768 102 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 103 104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 105 IORING_REGISTER_LAST + IORING_OP_LAST) 106 107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 108 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 109 110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 112 113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 115 REQ_F_ASYNC_DATA) 116 117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 118 IO_REQ_CLEAN_FLAGS) 119 120 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 121 122 #define IO_COMPL_BATCH 32 123 #define IO_REQ_ALLOC_BATCH 8 124 125 enum { 126 IO_CHECK_CQ_OVERFLOW_BIT, 127 IO_CHECK_CQ_DROPPED_BIT, 128 }; 129 130 enum { 131 IO_EVENTFD_OP_SIGNAL_BIT, 132 IO_EVENTFD_OP_FREE_BIT, 133 }; 134 135 struct io_defer_entry { 136 struct list_head list; 137 struct io_kiocb *req; 138 u32 seq; 139 }; 140 141 /* requests with any of those set should undergo io_disarm_next() */ 142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 144 145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 146 struct task_struct *task, 147 bool cancel_all); 148 149 static void io_queue_sqe(struct io_kiocb *req); 150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx); 151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx); 152 153 struct kmem_cache *req_cachep; 154 155 struct sock *io_uring_get_socket(struct file *file) 156 { 157 #if defined(CONFIG_UNIX) 158 if (io_is_uring_fops(file)) { 159 struct io_ring_ctx *ctx = file->private_data; 160 161 return ctx->ring_sock->sk; 162 } 163 #endif 164 return NULL; 165 } 166 EXPORT_SYMBOL(io_uring_get_socket); 167 168 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 169 { 170 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 171 ctx->submit_state.cqes_count) 172 __io_submit_flush_completions(ctx); 173 } 174 175 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 176 { 177 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 178 } 179 180 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 181 { 182 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 183 } 184 185 static bool io_match_linked(struct io_kiocb *head) 186 { 187 struct io_kiocb *req; 188 189 io_for_each_link(req, head) { 190 if (req->flags & REQ_F_INFLIGHT) 191 return true; 192 } 193 return false; 194 } 195 196 /* 197 * As io_match_task() but protected against racing with linked timeouts. 198 * User must not hold timeout_lock. 199 */ 200 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 201 bool cancel_all) 202 { 203 bool matched; 204 205 if (task && head->task != task) 206 return false; 207 if (cancel_all) 208 return true; 209 210 if (head->flags & REQ_F_LINK_TIMEOUT) { 211 struct io_ring_ctx *ctx = head->ctx; 212 213 /* protect against races with linked timeouts */ 214 spin_lock_irq(&ctx->timeout_lock); 215 matched = io_match_linked(head); 216 spin_unlock_irq(&ctx->timeout_lock); 217 } else { 218 matched = io_match_linked(head); 219 } 220 return matched; 221 } 222 223 static inline void req_fail_link_node(struct io_kiocb *req, int res) 224 { 225 req_set_fail(req); 226 io_req_set_res(req, res, 0); 227 } 228 229 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 230 { 231 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 232 kasan_poison_object_data(req_cachep, req); 233 } 234 235 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 236 { 237 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 238 239 complete(&ctx->ref_comp); 240 } 241 242 static __cold void io_fallback_req_func(struct work_struct *work) 243 { 244 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 245 fallback_work.work); 246 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 247 struct io_kiocb *req, *tmp; 248 struct io_tw_state ts = { .locked = true, }; 249 250 mutex_lock(&ctx->uring_lock); 251 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 252 req->io_task_work.func(req, &ts); 253 if (WARN_ON_ONCE(!ts.locked)) 254 return; 255 io_submit_flush_completions(ctx); 256 mutex_unlock(&ctx->uring_lock); 257 } 258 259 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 260 { 261 unsigned hash_buckets = 1U << bits; 262 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 263 264 table->hbs = kmalloc(hash_size, GFP_KERNEL); 265 if (!table->hbs) 266 return -ENOMEM; 267 268 table->hash_bits = bits; 269 init_hash_table(table, hash_buckets); 270 return 0; 271 } 272 273 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 274 { 275 struct io_ring_ctx *ctx; 276 int hash_bits; 277 278 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 279 if (!ctx) 280 return NULL; 281 282 xa_init(&ctx->io_bl_xa); 283 284 /* 285 * Use 5 bits less than the max cq entries, that should give us around 286 * 32 entries per hash list if totally full and uniformly spread, but 287 * don't keep too many buckets to not overconsume memory. 288 */ 289 hash_bits = ilog2(p->cq_entries) - 5; 290 hash_bits = clamp(hash_bits, 1, 8); 291 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 292 goto err; 293 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 294 goto err; 295 296 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL); 297 if (!ctx->dummy_ubuf) 298 goto err; 299 /* set invalid range, so io_import_fixed() fails meeting it */ 300 ctx->dummy_ubuf->ubuf = -1UL; 301 302 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 303 0, GFP_KERNEL)) 304 goto err; 305 306 ctx->flags = p->flags; 307 init_waitqueue_head(&ctx->sqo_sq_wait); 308 INIT_LIST_HEAD(&ctx->sqd_list); 309 INIT_LIST_HEAD(&ctx->cq_overflow_list); 310 INIT_LIST_HEAD(&ctx->io_buffers_cache); 311 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 312 sizeof(struct io_rsrc_node)); 313 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, 314 sizeof(struct async_poll)); 315 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 316 sizeof(struct io_async_msghdr)); 317 init_completion(&ctx->ref_comp); 318 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 319 mutex_init(&ctx->uring_lock); 320 init_waitqueue_head(&ctx->cq_wait); 321 init_waitqueue_head(&ctx->poll_wq); 322 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 323 spin_lock_init(&ctx->completion_lock); 324 spin_lock_init(&ctx->timeout_lock); 325 INIT_WQ_LIST(&ctx->iopoll_list); 326 INIT_LIST_HEAD(&ctx->io_buffers_pages); 327 INIT_LIST_HEAD(&ctx->io_buffers_comp); 328 INIT_LIST_HEAD(&ctx->defer_list); 329 INIT_LIST_HEAD(&ctx->timeout_list); 330 INIT_LIST_HEAD(&ctx->ltimeout_list); 331 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 332 init_llist_head(&ctx->work_llist); 333 INIT_LIST_HEAD(&ctx->tctx_list); 334 ctx->submit_state.free_list.next = NULL; 335 INIT_WQ_LIST(&ctx->locked_free_list); 336 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 337 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 338 return ctx; 339 err: 340 kfree(ctx->dummy_ubuf); 341 kfree(ctx->cancel_table.hbs); 342 kfree(ctx->cancel_table_locked.hbs); 343 kfree(ctx->io_bl); 344 xa_destroy(&ctx->io_bl_xa); 345 kfree(ctx); 346 return NULL; 347 } 348 349 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 350 { 351 struct io_rings *r = ctx->rings; 352 353 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 354 ctx->cq_extra--; 355 } 356 357 static bool req_need_defer(struct io_kiocb *req, u32 seq) 358 { 359 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 360 struct io_ring_ctx *ctx = req->ctx; 361 362 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 363 } 364 365 return false; 366 } 367 368 static void io_clean_op(struct io_kiocb *req) 369 { 370 if (req->flags & REQ_F_BUFFER_SELECTED) { 371 spin_lock(&req->ctx->completion_lock); 372 io_put_kbuf_comp(req); 373 spin_unlock(&req->ctx->completion_lock); 374 } 375 376 if (req->flags & REQ_F_NEED_CLEANUP) { 377 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 378 379 if (def->cleanup) 380 def->cleanup(req); 381 } 382 if ((req->flags & REQ_F_POLLED) && req->apoll) { 383 kfree(req->apoll->double_poll); 384 kfree(req->apoll); 385 req->apoll = NULL; 386 } 387 if (req->flags & REQ_F_INFLIGHT) { 388 struct io_uring_task *tctx = req->task->io_uring; 389 390 atomic_dec(&tctx->inflight_tracked); 391 } 392 if (req->flags & REQ_F_CREDS) 393 put_cred(req->creds); 394 if (req->flags & REQ_F_ASYNC_DATA) { 395 kfree(req->async_data); 396 req->async_data = NULL; 397 } 398 req->flags &= ~IO_REQ_CLEAN_FLAGS; 399 } 400 401 static inline void io_req_track_inflight(struct io_kiocb *req) 402 { 403 if (!(req->flags & REQ_F_INFLIGHT)) { 404 req->flags |= REQ_F_INFLIGHT; 405 atomic_inc(&req->task->io_uring->inflight_tracked); 406 } 407 } 408 409 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 410 { 411 if (WARN_ON_ONCE(!req->link)) 412 return NULL; 413 414 req->flags &= ~REQ_F_ARM_LTIMEOUT; 415 req->flags |= REQ_F_LINK_TIMEOUT; 416 417 /* linked timeouts should have two refs once prep'ed */ 418 io_req_set_refcount(req); 419 __io_req_set_refcount(req->link, 2); 420 return req->link; 421 } 422 423 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 424 { 425 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 426 return NULL; 427 return __io_prep_linked_timeout(req); 428 } 429 430 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 431 { 432 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 433 } 434 435 static inline void io_arm_ltimeout(struct io_kiocb *req) 436 { 437 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 438 __io_arm_ltimeout(req); 439 } 440 441 static void io_prep_async_work(struct io_kiocb *req) 442 { 443 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 444 struct io_ring_ctx *ctx = req->ctx; 445 446 if (!(req->flags & REQ_F_CREDS)) { 447 req->flags |= REQ_F_CREDS; 448 req->creds = get_current_cred(); 449 } 450 451 req->work.list.next = NULL; 452 req->work.flags = 0; 453 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 454 if (req->flags & REQ_F_FORCE_ASYNC) 455 req->work.flags |= IO_WQ_WORK_CONCURRENT; 456 457 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 458 req->flags |= io_file_get_flags(req->file); 459 460 if (req->file && (req->flags & REQ_F_ISREG)) { 461 bool should_hash = def->hash_reg_file; 462 463 /* don't serialize this request if the fs doesn't need it */ 464 if (should_hash && (req->file->f_flags & O_DIRECT) && 465 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) 466 should_hash = false; 467 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 468 io_wq_hash_work(&req->work, file_inode(req->file)); 469 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 470 if (def->unbound_nonreg_file) 471 req->work.flags |= IO_WQ_WORK_UNBOUND; 472 } 473 } 474 475 static void io_prep_async_link(struct io_kiocb *req) 476 { 477 struct io_kiocb *cur; 478 479 if (req->flags & REQ_F_LINK_TIMEOUT) { 480 struct io_ring_ctx *ctx = req->ctx; 481 482 spin_lock_irq(&ctx->timeout_lock); 483 io_for_each_link(cur, req) 484 io_prep_async_work(cur); 485 spin_unlock_irq(&ctx->timeout_lock); 486 } else { 487 io_for_each_link(cur, req) 488 io_prep_async_work(cur); 489 } 490 } 491 492 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) 493 { 494 struct io_kiocb *link = io_prep_linked_timeout(req); 495 struct io_uring_task *tctx = req->task->io_uring; 496 497 BUG_ON(!tctx); 498 BUG_ON(!tctx->io_wq); 499 500 /* init ->work of the whole link before punting */ 501 io_prep_async_link(req); 502 503 /* 504 * Not expected to happen, but if we do have a bug where this _can_ 505 * happen, catch it here and ensure the request is marked as 506 * canceled. That will make io-wq go through the usual work cancel 507 * procedure rather than attempt to run this request (or create a new 508 * worker for it). 509 */ 510 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 511 req->work.flags |= IO_WQ_WORK_CANCEL; 512 513 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 514 io_wq_enqueue(tctx->io_wq, &req->work); 515 if (link) 516 io_queue_linked_timeout(link); 517 } 518 519 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 520 { 521 while (!list_empty(&ctx->defer_list)) { 522 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 523 struct io_defer_entry, list); 524 525 if (req_need_defer(de->req, de->seq)) 526 break; 527 list_del_init(&de->list); 528 io_req_task_queue(de->req); 529 kfree(de); 530 } 531 } 532 533 534 static void io_eventfd_ops(struct rcu_head *rcu) 535 { 536 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 537 int ops = atomic_xchg(&ev_fd->ops, 0); 538 539 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 540 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 541 542 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 543 * ordering in a race but if references are 0 we know we have to free 544 * it regardless. 545 */ 546 if (atomic_dec_and_test(&ev_fd->refs)) { 547 eventfd_ctx_put(ev_fd->cq_ev_fd); 548 kfree(ev_fd); 549 } 550 } 551 552 static void io_eventfd_signal(struct io_ring_ctx *ctx) 553 { 554 struct io_ev_fd *ev_fd = NULL; 555 556 rcu_read_lock(); 557 /* 558 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 559 * and eventfd_signal 560 */ 561 ev_fd = rcu_dereference(ctx->io_ev_fd); 562 563 /* 564 * Check again if ev_fd exists incase an io_eventfd_unregister call 565 * completed between the NULL check of ctx->io_ev_fd at the start of 566 * the function and rcu_read_lock. 567 */ 568 if (unlikely(!ev_fd)) 569 goto out; 570 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 571 goto out; 572 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 573 goto out; 574 575 if (likely(eventfd_signal_allowed())) { 576 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 577 } else { 578 atomic_inc(&ev_fd->refs); 579 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 580 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 581 else 582 atomic_dec(&ev_fd->refs); 583 } 584 585 out: 586 rcu_read_unlock(); 587 } 588 589 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 590 { 591 bool skip; 592 593 spin_lock(&ctx->completion_lock); 594 595 /* 596 * Eventfd should only get triggered when at least one event has been 597 * posted. Some applications rely on the eventfd notification count 598 * only changing IFF a new CQE has been added to the CQ ring. There's 599 * no depedency on 1:1 relationship between how many times this 600 * function is called (and hence the eventfd count) and number of CQEs 601 * posted to the CQ ring. 602 */ 603 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 604 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 605 spin_unlock(&ctx->completion_lock); 606 if (skip) 607 return; 608 609 io_eventfd_signal(ctx); 610 } 611 612 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 613 { 614 if (ctx->poll_activated) 615 io_poll_wq_wake(ctx); 616 if (ctx->off_timeout_used) 617 io_flush_timeouts(ctx); 618 if (ctx->drain_active) { 619 spin_lock(&ctx->completion_lock); 620 io_queue_deferred(ctx); 621 spin_unlock(&ctx->completion_lock); 622 } 623 if (ctx->has_evfd) 624 io_eventfd_flush_signal(ctx); 625 } 626 627 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 628 { 629 if (!ctx->task_complete) 630 spin_lock(&ctx->completion_lock); 631 } 632 633 static inline void io_cq_lock(struct io_ring_ctx *ctx) 634 __acquires(ctx->completion_lock) 635 { 636 spin_lock(&ctx->completion_lock); 637 } 638 639 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 640 { 641 io_commit_cqring(ctx); 642 643 if (ctx->task_complete) { 644 /* 645 * ->task_complete implies that only current might be waiting 646 * for CQEs, and obviously, we currently don't. No one is 647 * waiting, wakeups are futile, skip them. 648 */ 649 io_commit_cqring_flush(ctx); 650 } else { 651 spin_unlock(&ctx->completion_lock); 652 io_commit_cqring_flush(ctx); 653 io_cqring_wake(ctx); 654 } 655 } 656 657 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 658 __releases(ctx->completion_lock) 659 { 660 io_commit_cqring(ctx); 661 spin_unlock(&ctx->completion_lock); 662 io_commit_cqring_flush(ctx); 663 io_cqring_wake(ctx); 664 } 665 666 /* Returns true if there are no backlogged entries after the flush */ 667 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 668 { 669 struct io_overflow_cqe *ocqe; 670 LIST_HEAD(list); 671 672 spin_lock(&ctx->completion_lock); 673 list_splice_init(&ctx->cq_overflow_list, &list); 674 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 675 spin_unlock(&ctx->completion_lock); 676 677 while (!list_empty(&list)) { 678 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 679 list_del(&ocqe->list); 680 kfree(ocqe); 681 } 682 } 683 684 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 685 { 686 size_t cqe_size = sizeof(struct io_uring_cqe); 687 688 if (__io_cqring_events(ctx) == ctx->cq_entries) 689 return; 690 691 if (ctx->flags & IORING_SETUP_CQE32) 692 cqe_size <<= 1; 693 694 io_cq_lock(ctx); 695 while (!list_empty(&ctx->cq_overflow_list)) { 696 struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true); 697 struct io_overflow_cqe *ocqe; 698 699 if (!cqe) 700 break; 701 ocqe = list_first_entry(&ctx->cq_overflow_list, 702 struct io_overflow_cqe, list); 703 memcpy(cqe, &ocqe->cqe, cqe_size); 704 list_del(&ocqe->list); 705 kfree(ocqe); 706 } 707 708 if (list_empty(&ctx->cq_overflow_list)) { 709 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 710 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 711 } 712 io_cq_unlock_post(ctx); 713 } 714 715 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 716 { 717 /* iopoll syncs against uring_lock, not completion_lock */ 718 if (ctx->flags & IORING_SETUP_IOPOLL) 719 mutex_lock(&ctx->uring_lock); 720 __io_cqring_overflow_flush(ctx); 721 if (ctx->flags & IORING_SETUP_IOPOLL) 722 mutex_unlock(&ctx->uring_lock); 723 } 724 725 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 726 { 727 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 728 io_cqring_do_overflow_flush(ctx); 729 } 730 731 /* can be called by any task */ 732 static void io_put_task_remote(struct task_struct *task) 733 { 734 struct io_uring_task *tctx = task->io_uring; 735 736 percpu_counter_sub(&tctx->inflight, 1); 737 if (unlikely(atomic_read(&tctx->in_cancel))) 738 wake_up(&tctx->wait); 739 put_task_struct(task); 740 } 741 742 /* used by a task to put its own references */ 743 static void io_put_task_local(struct task_struct *task) 744 { 745 task->io_uring->cached_refs++; 746 } 747 748 /* must to be called somewhat shortly after putting a request */ 749 static inline void io_put_task(struct task_struct *task) 750 { 751 if (likely(task == current)) 752 io_put_task_local(task); 753 else 754 io_put_task_remote(task); 755 } 756 757 void io_task_refs_refill(struct io_uring_task *tctx) 758 { 759 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 760 761 percpu_counter_add(&tctx->inflight, refill); 762 refcount_add(refill, ¤t->usage); 763 tctx->cached_refs += refill; 764 } 765 766 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 767 { 768 struct io_uring_task *tctx = task->io_uring; 769 unsigned int refs = tctx->cached_refs; 770 771 if (refs) { 772 tctx->cached_refs = 0; 773 percpu_counter_sub(&tctx->inflight, refs); 774 put_task_struct_many(task, refs); 775 } 776 } 777 778 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 779 s32 res, u32 cflags, u64 extra1, u64 extra2) 780 { 781 struct io_overflow_cqe *ocqe; 782 size_t ocq_size = sizeof(struct io_overflow_cqe); 783 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 784 785 lockdep_assert_held(&ctx->completion_lock); 786 787 if (is_cqe32) 788 ocq_size += sizeof(struct io_uring_cqe); 789 790 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 791 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 792 if (!ocqe) { 793 /* 794 * If we're in ring overflow flush mode, or in task cancel mode, 795 * or cannot allocate an overflow entry, then we need to drop it 796 * on the floor. 797 */ 798 io_account_cq_overflow(ctx); 799 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 800 return false; 801 } 802 if (list_empty(&ctx->cq_overflow_list)) { 803 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 804 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 805 806 } 807 ocqe->cqe.user_data = user_data; 808 ocqe->cqe.res = res; 809 ocqe->cqe.flags = cflags; 810 if (is_cqe32) { 811 ocqe->cqe.big_cqe[0] = extra1; 812 ocqe->cqe.big_cqe[1] = extra2; 813 } 814 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 815 return true; 816 } 817 818 bool io_req_cqe_overflow(struct io_kiocb *req) 819 { 820 if (!(req->flags & REQ_F_CQE32_INIT)) { 821 req->extra1 = 0; 822 req->extra2 = 0; 823 } 824 return io_cqring_event_overflow(req->ctx, req->cqe.user_data, 825 req->cqe.res, req->cqe.flags, 826 req->extra1, req->extra2); 827 } 828 829 /* 830 * writes to the cq entry need to come after reading head; the 831 * control dependency is enough as we're using WRITE_ONCE to 832 * fill the cq entry 833 */ 834 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow) 835 { 836 struct io_rings *rings = ctx->rings; 837 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 838 unsigned int free, queued, len; 839 840 /* 841 * Posting into the CQ when there are pending overflowed CQEs may break 842 * ordering guarantees, which will affect links, F_MORE users and more. 843 * Force overflow the completion. 844 */ 845 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 846 return NULL; 847 848 /* userspace may cheat modifying the tail, be safe and do min */ 849 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 850 free = ctx->cq_entries - queued; 851 /* we need a contiguous range, limit based on the current array offset */ 852 len = min(free, ctx->cq_entries - off); 853 if (!len) 854 return NULL; 855 856 if (ctx->flags & IORING_SETUP_CQE32) { 857 off <<= 1; 858 len <<= 1; 859 } 860 861 ctx->cqe_cached = &rings->cqes[off]; 862 ctx->cqe_sentinel = ctx->cqe_cached + len; 863 864 ctx->cached_cq_tail++; 865 ctx->cqe_cached++; 866 if (ctx->flags & IORING_SETUP_CQE32) 867 ctx->cqe_cached++; 868 return &rings->cqes[off]; 869 } 870 871 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 872 u32 cflags) 873 { 874 struct io_uring_cqe *cqe; 875 876 ctx->cq_extra++; 877 878 /* 879 * If we can't get a cq entry, userspace overflowed the 880 * submission (by quite a lot). Increment the overflow count in 881 * the ring. 882 */ 883 cqe = io_get_cqe(ctx); 884 if (likely(cqe)) { 885 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 886 887 WRITE_ONCE(cqe->user_data, user_data); 888 WRITE_ONCE(cqe->res, res); 889 WRITE_ONCE(cqe->flags, cflags); 890 891 if (ctx->flags & IORING_SETUP_CQE32) { 892 WRITE_ONCE(cqe->big_cqe[0], 0); 893 WRITE_ONCE(cqe->big_cqe[1], 0); 894 } 895 return true; 896 } 897 return false; 898 } 899 900 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 901 __must_hold(&ctx->uring_lock) 902 { 903 struct io_submit_state *state = &ctx->submit_state; 904 unsigned int i; 905 906 lockdep_assert_held(&ctx->uring_lock); 907 for (i = 0; i < state->cqes_count; i++) { 908 struct io_uring_cqe *cqe = &state->cqes[i]; 909 910 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 911 if (ctx->task_complete) { 912 spin_lock(&ctx->completion_lock); 913 io_cqring_event_overflow(ctx, cqe->user_data, 914 cqe->res, cqe->flags, 0, 0); 915 spin_unlock(&ctx->completion_lock); 916 } else { 917 io_cqring_event_overflow(ctx, cqe->user_data, 918 cqe->res, cqe->flags, 0, 0); 919 } 920 } 921 } 922 state->cqes_count = 0; 923 } 924 925 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 926 bool allow_overflow) 927 { 928 bool filled; 929 930 io_cq_lock(ctx); 931 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 932 if (!filled && allow_overflow) 933 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 934 935 io_cq_unlock_post(ctx); 936 return filled; 937 } 938 939 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 940 { 941 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 942 } 943 944 bool io_aux_cqe(const struct io_kiocb *req, bool defer, s32 res, u32 cflags, 945 bool allow_overflow) 946 { 947 struct io_ring_ctx *ctx = req->ctx; 948 u64 user_data = req->cqe.user_data; 949 struct io_uring_cqe *cqe; 950 951 if (!defer) 952 return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow); 953 954 lockdep_assert_held(&ctx->uring_lock); 955 956 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->submit_state.cqes)) { 957 __io_cq_lock(ctx); 958 __io_flush_post_cqes(ctx); 959 /* no need to flush - flush is deferred */ 960 __io_cq_unlock_post(ctx); 961 } 962 963 /* For defered completions this is not as strict as it is otherwise, 964 * however it's main job is to prevent unbounded posted completions, 965 * and in that it works just as well. 966 */ 967 if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 968 return false; 969 970 cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++]; 971 cqe->user_data = user_data; 972 cqe->res = res; 973 cqe->flags = cflags; 974 return true; 975 } 976 977 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 978 { 979 struct io_ring_ctx *ctx = req->ctx; 980 struct io_rsrc_node *rsrc_node = NULL; 981 982 io_cq_lock(ctx); 983 if (!(req->flags & REQ_F_CQE_SKIP)) 984 io_fill_cqe_req(ctx, req); 985 986 /* 987 * If we're the last reference to this request, add to our locked 988 * free_list cache. 989 */ 990 if (req_ref_put_and_test(req)) { 991 if (req->flags & IO_REQ_LINK_FLAGS) { 992 if (req->flags & IO_DISARM_MASK) 993 io_disarm_next(req); 994 if (req->link) { 995 io_req_task_queue(req->link); 996 req->link = NULL; 997 } 998 } 999 io_put_kbuf_comp(req); 1000 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1001 io_clean_op(req); 1002 if (!(req->flags & REQ_F_FIXED_FILE)) 1003 io_put_file(req->file); 1004 1005 rsrc_node = req->rsrc_node; 1006 /* 1007 * Selected buffer deallocation in io_clean_op() assumes that 1008 * we don't hold ->completion_lock. Clean them here to avoid 1009 * deadlocks. 1010 */ 1011 io_put_task_remote(req->task); 1012 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1013 ctx->locked_free_nr++; 1014 } 1015 io_cq_unlock_post(ctx); 1016 1017 if (rsrc_node) { 1018 io_ring_submit_lock(ctx, issue_flags); 1019 io_put_rsrc_node(ctx, rsrc_node); 1020 io_ring_submit_unlock(ctx, issue_flags); 1021 } 1022 } 1023 1024 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1025 { 1026 if (req->ctx->task_complete && req->ctx->submitter_task != current) { 1027 req->io_task_work.func = io_req_task_complete; 1028 io_req_task_work_add(req); 1029 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1030 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 1031 __io_req_complete_post(req, issue_flags); 1032 } else { 1033 struct io_ring_ctx *ctx = req->ctx; 1034 1035 mutex_lock(&ctx->uring_lock); 1036 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); 1037 mutex_unlock(&ctx->uring_lock); 1038 } 1039 } 1040 1041 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1042 __must_hold(&ctx->uring_lock) 1043 { 1044 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1045 1046 lockdep_assert_held(&req->ctx->uring_lock); 1047 1048 req_set_fail(req); 1049 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1050 if (def->fail) 1051 def->fail(req); 1052 io_req_complete_defer(req); 1053 } 1054 1055 /* 1056 * Don't initialise the fields below on every allocation, but do that in 1057 * advance and keep them valid across allocations. 1058 */ 1059 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1060 { 1061 req->ctx = ctx; 1062 req->link = NULL; 1063 req->async_data = NULL; 1064 /* not necessary, but safer to zero */ 1065 req->cqe.res = 0; 1066 } 1067 1068 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1069 struct io_submit_state *state) 1070 { 1071 spin_lock(&ctx->completion_lock); 1072 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1073 ctx->locked_free_nr = 0; 1074 spin_unlock(&ctx->completion_lock); 1075 } 1076 1077 /* 1078 * A request might get retired back into the request caches even before opcode 1079 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1080 * Because of that, io_alloc_req() should be called only under ->uring_lock 1081 * and with extra caution to not get a request that is still worked on. 1082 */ 1083 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1084 __must_hold(&ctx->uring_lock) 1085 { 1086 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1087 void *reqs[IO_REQ_ALLOC_BATCH]; 1088 int ret, i; 1089 1090 /* 1091 * If we have more than a batch's worth of requests in our IRQ side 1092 * locked cache, grab the lock and move them over to our submission 1093 * side cache. 1094 */ 1095 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1096 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1097 if (!io_req_cache_empty(ctx)) 1098 return true; 1099 } 1100 1101 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1102 1103 /* 1104 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1105 * retry single alloc to be on the safe side. 1106 */ 1107 if (unlikely(ret <= 0)) { 1108 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1109 if (!reqs[0]) 1110 return false; 1111 ret = 1; 1112 } 1113 1114 percpu_ref_get_many(&ctx->refs, ret); 1115 for (i = 0; i < ret; i++) { 1116 struct io_kiocb *req = reqs[i]; 1117 1118 io_preinit_req(req, ctx); 1119 io_req_add_to_cache(req, ctx); 1120 } 1121 return true; 1122 } 1123 1124 __cold void io_free_req(struct io_kiocb *req) 1125 { 1126 /* refs were already put, restore them for io_req_task_complete() */ 1127 req->flags &= ~REQ_F_REFCOUNT; 1128 /* we only want to free it, don't post CQEs */ 1129 req->flags |= REQ_F_CQE_SKIP; 1130 req->io_task_work.func = io_req_task_complete; 1131 io_req_task_work_add(req); 1132 } 1133 1134 static void __io_req_find_next_prep(struct io_kiocb *req) 1135 { 1136 struct io_ring_ctx *ctx = req->ctx; 1137 1138 spin_lock(&ctx->completion_lock); 1139 io_disarm_next(req); 1140 spin_unlock(&ctx->completion_lock); 1141 } 1142 1143 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1144 { 1145 struct io_kiocb *nxt; 1146 1147 /* 1148 * If LINK is set, we have dependent requests in this chain. If we 1149 * didn't fail this request, queue the first one up, moving any other 1150 * dependencies to the next request. In case of failure, fail the rest 1151 * of the chain. 1152 */ 1153 if (unlikely(req->flags & IO_DISARM_MASK)) 1154 __io_req_find_next_prep(req); 1155 nxt = req->link; 1156 req->link = NULL; 1157 return nxt; 1158 } 1159 1160 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1161 { 1162 if (!ctx) 1163 return; 1164 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1165 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1166 if (ts->locked) { 1167 io_submit_flush_completions(ctx); 1168 mutex_unlock(&ctx->uring_lock); 1169 ts->locked = false; 1170 } 1171 percpu_ref_put(&ctx->refs); 1172 } 1173 1174 static unsigned int handle_tw_list(struct llist_node *node, 1175 struct io_ring_ctx **ctx, 1176 struct io_tw_state *ts, 1177 struct llist_node *last) 1178 { 1179 unsigned int count = 0; 1180 1181 while (node && node != last) { 1182 struct llist_node *next = node->next; 1183 struct io_kiocb *req = container_of(node, struct io_kiocb, 1184 io_task_work.node); 1185 1186 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1187 1188 if (req->ctx != *ctx) { 1189 ctx_flush_and_put(*ctx, ts); 1190 *ctx = req->ctx; 1191 /* if not contended, grab and improve batching */ 1192 ts->locked = mutex_trylock(&(*ctx)->uring_lock); 1193 percpu_ref_get(&(*ctx)->refs); 1194 } 1195 INDIRECT_CALL_2(req->io_task_work.func, 1196 io_poll_task_func, io_req_rw_complete, 1197 req, ts); 1198 node = next; 1199 count++; 1200 if (unlikely(need_resched())) { 1201 ctx_flush_and_put(*ctx, ts); 1202 *ctx = NULL; 1203 cond_resched(); 1204 } 1205 } 1206 1207 return count; 1208 } 1209 1210 /** 1211 * io_llist_xchg - swap all entries in a lock-less list 1212 * @head: the head of lock-less list to delete all entries 1213 * @new: new entry as the head of the list 1214 * 1215 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1216 * The order of entries returned is from the newest to the oldest added one. 1217 */ 1218 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1219 struct llist_node *new) 1220 { 1221 return xchg(&head->first, new); 1222 } 1223 1224 /** 1225 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1226 * @head: the head of lock-less list to delete all entries 1227 * @old: expected old value of the first entry of the list 1228 * @new: new entry as the head of the list 1229 * 1230 * perform a cmpxchg on the first entry of the list. 1231 */ 1232 1233 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1234 struct llist_node *old, 1235 struct llist_node *new) 1236 { 1237 return cmpxchg(&head->first, old, new); 1238 } 1239 1240 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1241 { 1242 struct llist_node *node = llist_del_all(&tctx->task_list); 1243 struct io_ring_ctx *last_ctx = NULL; 1244 struct io_kiocb *req; 1245 1246 while (node) { 1247 req = container_of(node, struct io_kiocb, io_task_work.node); 1248 node = node->next; 1249 if (sync && last_ctx != req->ctx) { 1250 if (last_ctx) { 1251 flush_delayed_work(&last_ctx->fallback_work); 1252 percpu_ref_put(&last_ctx->refs); 1253 } 1254 last_ctx = req->ctx; 1255 percpu_ref_get(&last_ctx->refs); 1256 } 1257 if (llist_add(&req->io_task_work.node, 1258 &req->ctx->fallback_llist)) 1259 schedule_delayed_work(&req->ctx->fallback_work, 1); 1260 } 1261 1262 if (last_ctx) { 1263 flush_delayed_work(&last_ctx->fallback_work); 1264 percpu_ref_put(&last_ctx->refs); 1265 } 1266 } 1267 1268 void tctx_task_work(struct callback_head *cb) 1269 { 1270 struct io_tw_state ts = {}; 1271 struct io_ring_ctx *ctx = NULL; 1272 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1273 task_work); 1274 struct llist_node fake = {}; 1275 struct llist_node *node; 1276 unsigned int loops = 0; 1277 unsigned int count = 0; 1278 1279 if (unlikely(current->flags & PF_EXITING)) { 1280 io_fallback_tw(tctx, true); 1281 return; 1282 } 1283 1284 do { 1285 loops++; 1286 node = io_llist_xchg(&tctx->task_list, &fake); 1287 count += handle_tw_list(node, &ctx, &ts, &fake); 1288 1289 /* skip expensive cmpxchg if there are items in the list */ 1290 if (READ_ONCE(tctx->task_list.first) != &fake) 1291 continue; 1292 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) { 1293 io_submit_flush_completions(ctx); 1294 if (READ_ONCE(tctx->task_list.first) != &fake) 1295 continue; 1296 } 1297 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1298 } while (node != &fake); 1299 1300 ctx_flush_and_put(ctx, &ts); 1301 1302 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1303 if (unlikely(atomic_read(&tctx->in_cancel))) 1304 io_uring_drop_tctx_refs(current); 1305 1306 trace_io_uring_task_work_run(tctx, count, loops); 1307 } 1308 1309 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1310 { 1311 struct io_ring_ctx *ctx = req->ctx; 1312 unsigned nr_wait, nr_tw, nr_tw_prev; 1313 struct llist_node *first; 1314 1315 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1316 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1317 1318 first = READ_ONCE(ctx->work_llist.first); 1319 do { 1320 nr_tw_prev = 0; 1321 if (first) { 1322 struct io_kiocb *first_req = container_of(first, 1323 struct io_kiocb, 1324 io_task_work.node); 1325 /* 1326 * Might be executed at any moment, rely on 1327 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1328 */ 1329 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1330 } 1331 nr_tw = nr_tw_prev + 1; 1332 /* Large enough to fail the nr_wait comparison below */ 1333 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1334 nr_tw = -1U; 1335 1336 req->nr_tw = nr_tw; 1337 req->io_task_work.node.next = first; 1338 } while (!try_cmpxchg(&ctx->work_llist.first, &first, 1339 &req->io_task_work.node)); 1340 1341 if (!first) { 1342 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1343 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1344 if (ctx->has_evfd) 1345 io_eventfd_signal(ctx); 1346 } 1347 1348 nr_wait = atomic_read(&ctx->cq_wait_nr); 1349 /* no one is waiting */ 1350 if (!nr_wait) 1351 return; 1352 /* either not enough or the previous add has already woken it up */ 1353 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait) 1354 return; 1355 /* pairs with set_current_state() in io_cqring_wait() */ 1356 smp_mb__after_atomic(); 1357 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1358 } 1359 1360 static void io_req_normal_work_add(struct io_kiocb *req) 1361 { 1362 struct io_uring_task *tctx = req->task->io_uring; 1363 struct io_ring_ctx *ctx = req->ctx; 1364 1365 /* task_work already pending, we're done */ 1366 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1367 return; 1368 1369 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1370 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1371 1372 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1373 return; 1374 1375 io_fallback_tw(tctx, false); 1376 } 1377 1378 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1379 { 1380 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1381 rcu_read_lock(); 1382 io_req_local_work_add(req, flags); 1383 rcu_read_unlock(); 1384 } else { 1385 io_req_normal_work_add(req); 1386 } 1387 } 1388 1389 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1390 { 1391 struct llist_node *node; 1392 1393 node = llist_del_all(&ctx->work_llist); 1394 while (node) { 1395 struct io_kiocb *req = container_of(node, struct io_kiocb, 1396 io_task_work.node); 1397 1398 node = node->next; 1399 io_req_normal_work_add(req); 1400 } 1401 } 1402 1403 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1404 { 1405 struct llist_node *node; 1406 unsigned int loops = 0; 1407 int ret = 0; 1408 1409 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1410 return -EEXIST; 1411 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1412 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1413 again: 1414 /* 1415 * llists are in reverse order, flip it back the right way before 1416 * running the pending items. 1417 */ 1418 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1419 while (node) { 1420 struct llist_node *next = node->next; 1421 struct io_kiocb *req = container_of(node, struct io_kiocb, 1422 io_task_work.node); 1423 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1424 INDIRECT_CALL_2(req->io_task_work.func, 1425 io_poll_task_func, io_req_rw_complete, 1426 req, ts); 1427 ret++; 1428 node = next; 1429 } 1430 loops++; 1431 1432 if (!llist_empty(&ctx->work_llist)) 1433 goto again; 1434 if (ts->locked) { 1435 io_submit_flush_completions(ctx); 1436 if (!llist_empty(&ctx->work_llist)) 1437 goto again; 1438 } 1439 trace_io_uring_local_work_run(ctx, ret, loops); 1440 return ret; 1441 } 1442 1443 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx) 1444 { 1445 struct io_tw_state ts = { .locked = true, }; 1446 int ret; 1447 1448 if (llist_empty(&ctx->work_llist)) 1449 return 0; 1450 1451 ret = __io_run_local_work(ctx, &ts); 1452 /* shouldn't happen! */ 1453 if (WARN_ON_ONCE(!ts.locked)) 1454 mutex_lock(&ctx->uring_lock); 1455 return ret; 1456 } 1457 1458 static int io_run_local_work(struct io_ring_ctx *ctx) 1459 { 1460 struct io_tw_state ts = {}; 1461 int ret; 1462 1463 ts.locked = mutex_trylock(&ctx->uring_lock); 1464 ret = __io_run_local_work(ctx, &ts); 1465 if (ts.locked) 1466 mutex_unlock(&ctx->uring_lock); 1467 1468 return ret; 1469 } 1470 1471 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1472 { 1473 io_tw_lock(req->ctx, ts); 1474 io_req_defer_failed(req, req->cqe.res); 1475 } 1476 1477 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1478 { 1479 io_tw_lock(req->ctx, ts); 1480 /* req->task == current here, checking PF_EXITING is safe */ 1481 if (unlikely(req->task->flags & PF_EXITING)) 1482 io_req_defer_failed(req, -EFAULT); 1483 else if (req->flags & REQ_F_FORCE_ASYNC) 1484 io_queue_iowq(req, ts); 1485 else 1486 io_queue_sqe(req); 1487 } 1488 1489 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1490 { 1491 io_req_set_res(req, ret, 0); 1492 req->io_task_work.func = io_req_task_cancel; 1493 io_req_task_work_add(req); 1494 } 1495 1496 void io_req_task_queue(struct io_kiocb *req) 1497 { 1498 req->io_task_work.func = io_req_task_submit; 1499 io_req_task_work_add(req); 1500 } 1501 1502 void io_queue_next(struct io_kiocb *req) 1503 { 1504 struct io_kiocb *nxt = io_req_find_next(req); 1505 1506 if (nxt) 1507 io_req_task_queue(nxt); 1508 } 1509 1510 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node) 1511 __must_hold(&ctx->uring_lock) 1512 { 1513 do { 1514 struct io_kiocb *req = container_of(node, struct io_kiocb, 1515 comp_list); 1516 1517 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1518 if (req->flags & REQ_F_REFCOUNT) { 1519 node = req->comp_list.next; 1520 if (!req_ref_put_and_test(req)) 1521 continue; 1522 } 1523 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1524 struct async_poll *apoll = req->apoll; 1525 1526 if (apoll->double_poll) 1527 kfree(apoll->double_poll); 1528 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1529 kfree(apoll); 1530 req->flags &= ~REQ_F_POLLED; 1531 } 1532 if (req->flags & IO_REQ_LINK_FLAGS) 1533 io_queue_next(req); 1534 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1535 io_clean_op(req); 1536 } 1537 if (!(req->flags & REQ_F_FIXED_FILE)) 1538 io_put_file(req->file); 1539 1540 io_req_put_rsrc_locked(req, ctx); 1541 1542 io_put_task(req->task); 1543 node = req->comp_list.next; 1544 io_req_add_to_cache(req, ctx); 1545 } while (node); 1546 } 1547 1548 static void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1549 __must_hold(&ctx->uring_lock) 1550 { 1551 struct io_submit_state *state = &ctx->submit_state; 1552 struct io_wq_work_node *node; 1553 1554 __io_cq_lock(ctx); 1555 /* must come first to preserve CQE ordering in failure cases */ 1556 if (state->cqes_count) 1557 __io_flush_post_cqes(ctx); 1558 __wq_list_for_each(node, &state->compl_reqs) { 1559 struct io_kiocb *req = container_of(node, struct io_kiocb, 1560 comp_list); 1561 1562 if (!(req->flags & REQ_F_CQE_SKIP) && 1563 unlikely(!__io_fill_cqe_req(ctx, req))) { 1564 if (ctx->task_complete) { 1565 spin_lock(&ctx->completion_lock); 1566 io_req_cqe_overflow(req); 1567 spin_unlock(&ctx->completion_lock); 1568 } else { 1569 io_req_cqe_overflow(req); 1570 } 1571 } 1572 } 1573 __io_cq_unlock_post(ctx); 1574 1575 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1576 io_free_batch_list(ctx, state->compl_reqs.first); 1577 INIT_WQ_LIST(&state->compl_reqs); 1578 } 1579 } 1580 1581 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1582 { 1583 /* See comment at the top of this file */ 1584 smp_rmb(); 1585 return __io_cqring_events(ctx); 1586 } 1587 1588 /* 1589 * We can't just wait for polled events to come to us, we have to actively 1590 * find and complete them. 1591 */ 1592 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1593 { 1594 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1595 return; 1596 1597 mutex_lock(&ctx->uring_lock); 1598 while (!wq_list_empty(&ctx->iopoll_list)) { 1599 /* let it sleep and repeat later if can't complete a request */ 1600 if (io_do_iopoll(ctx, true) == 0) 1601 break; 1602 /* 1603 * Ensure we allow local-to-the-cpu processing to take place, 1604 * in this case we need to ensure that we reap all events. 1605 * Also let task_work, etc. to progress by releasing the mutex 1606 */ 1607 if (need_resched()) { 1608 mutex_unlock(&ctx->uring_lock); 1609 cond_resched(); 1610 mutex_lock(&ctx->uring_lock); 1611 } 1612 } 1613 mutex_unlock(&ctx->uring_lock); 1614 } 1615 1616 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1617 { 1618 unsigned int nr_events = 0; 1619 int ret = 0; 1620 unsigned long check_cq; 1621 1622 if (!io_allowed_run_tw(ctx)) 1623 return -EEXIST; 1624 1625 check_cq = READ_ONCE(ctx->check_cq); 1626 if (unlikely(check_cq)) { 1627 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1628 __io_cqring_overflow_flush(ctx); 1629 /* 1630 * Similarly do not spin if we have not informed the user of any 1631 * dropped CQE. 1632 */ 1633 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1634 return -EBADR; 1635 } 1636 /* 1637 * Don't enter poll loop if we already have events pending. 1638 * If we do, we can potentially be spinning for commands that 1639 * already triggered a CQE (eg in error). 1640 */ 1641 if (io_cqring_events(ctx)) 1642 return 0; 1643 1644 do { 1645 /* 1646 * If a submit got punted to a workqueue, we can have the 1647 * application entering polling for a command before it gets 1648 * issued. That app will hold the uring_lock for the duration 1649 * of the poll right here, so we need to take a breather every 1650 * now and then to ensure that the issue has a chance to add 1651 * the poll to the issued list. Otherwise we can spin here 1652 * forever, while the workqueue is stuck trying to acquire the 1653 * very same mutex. 1654 */ 1655 if (wq_list_empty(&ctx->iopoll_list) || 1656 io_task_work_pending(ctx)) { 1657 u32 tail = ctx->cached_cq_tail; 1658 1659 (void) io_run_local_work_locked(ctx); 1660 1661 if (task_work_pending(current) || 1662 wq_list_empty(&ctx->iopoll_list)) { 1663 mutex_unlock(&ctx->uring_lock); 1664 io_run_task_work(); 1665 mutex_lock(&ctx->uring_lock); 1666 } 1667 /* some requests don't go through iopoll_list */ 1668 if (tail != ctx->cached_cq_tail || 1669 wq_list_empty(&ctx->iopoll_list)) 1670 break; 1671 } 1672 ret = io_do_iopoll(ctx, !min); 1673 if (ret < 0) 1674 break; 1675 nr_events += ret; 1676 ret = 0; 1677 } while (nr_events < min && !need_resched()); 1678 1679 return ret; 1680 } 1681 1682 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1683 { 1684 if (ts->locked) 1685 io_req_complete_defer(req); 1686 else 1687 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1688 } 1689 1690 /* 1691 * After the iocb has been issued, it's safe to be found on the poll list. 1692 * Adding the kiocb to the list AFTER submission ensures that we don't 1693 * find it from a io_do_iopoll() thread before the issuer is done 1694 * accessing the kiocb cookie. 1695 */ 1696 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1697 { 1698 struct io_ring_ctx *ctx = req->ctx; 1699 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1700 1701 /* workqueue context doesn't hold uring_lock, grab it now */ 1702 if (unlikely(needs_lock)) 1703 mutex_lock(&ctx->uring_lock); 1704 1705 /* 1706 * Track whether we have multiple files in our lists. This will impact 1707 * how we do polling eventually, not spinning if we're on potentially 1708 * different devices. 1709 */ 1710 if (wq_list_empty(&ctx->iopoll_list)) { 1711 ctx->poll_multi_queue = false; 1712 } else if (!ctx->poll_multi_queue) { 1713 struct io_kiocb *list_req; 1714 1715 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1716 comp_list); 1717 if (list_req->file != req->file) 1718 ctx->poll_multi_queue = true; 1719 } 1720 1721 /* 1722 * For fast devices, IO may have already completed. If it has, add 1723 * it to the front so we find it first. 1724 */ 1725 if (READ_ONCE(req->iopoll_completed)) 1726 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1727 else 1728 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1729 1730 if (unlikely(needs_lock)) { 1731 /* 1732 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1733 * in sq thread task context or in io worker task context. If 1734 * current task context is sq thread, we don't need to check 1735 * whether should wake up sq thread. 1736 */ 1737 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1738 wq_has_sleeper(&ctx->sq_data->wait)) 1739 wake_up(&ctx->sq_data->wait); 1740 1741 mutex_unlock(&ctx->uring_lock); 1742 } 1743 } 1744 1745 unsigned int io_file_get_flags(struct file *file) 1746 { 1747 unsigned int res = 0; 1748 1749 if (S_ISREG(file_inode(file)->i_mode)) 1750 res |= REQ_F_ISREG; 1751 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1752 res |= REQ_F_SUPPORT_NOWAIT; 1753 return res; 1754 } 1755 1756 bool io_alloc_async_data(struct io_kiocb *req) 1757 { 1758 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1759 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1760 if (req->async_data) { 1761 req->flags |= REQ_F_ASYNC_DATA; 1762 return false; 1763 } 1764 return true; 1765 } 1766 1767 int io_req_prep_async(struct io_kiocb *req) 1768 { 1769 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1770 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1771 1772 /* assign early for deferred execution for non-fixed file */ 1773 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1774 req->file = io_file_get_normal(req, req->cqe.fd); 1775 if (!cdef->prep_async) 1776 return 0; 1777 if (WARN_ON_ONCE(req_has_async_data(req))) 1778 return -EFAULT; 1779 if (!def->manual_alloc) { 1780 if (io_alloc_async_data(req)) 1781 return -EAGAIN; 1782 } 1783 return cdef->prep_async(req); 1784 } 1785 1786 static u32 io_get_sequence(struct io_kiocb *req) 1787 { 1788 u32 seq = req->ctx->cached_sq_head; 1789 struct io_kiocb *cur; 1790 1791 /* need original cached_sq_head, but it was increased for each req */ 1792 io_for_each_link(cur, req) 1793 seq--; 1794 return seq; 1795 } 1796 1797 static __cold void io_drain_req(struct io_kiocb *req) 1798 __must_hold(&ctx->uring_lock) 1799 { 1800 struct io_ring_ctx *ctx = req->ctx; 1801 struct io_defer_entry *de; 1802 int ret; 1803 u32 seq = io_get_sequence(req); 1804 1805 /* Still need defer if there is pending req in defer list. */ 1806 spin_lock(&ctx->completion_lock); 1807 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1808 spin_unlock(&ctx->completion_lock); 1809 queue: 1810 ctx->drain_active = false; 1811 io_req_task_queue(req); 1812 return; 1813 } 1814 spin_unlock(&ctx->completion_lock); 1815 1816 io_prep_async_link(req); 1817 de = kmalloc(sizeof(*de), GFP_KERNEL); 1818 if (!de) { 1819 ret = -ENOMEM; 1820 io_req_defer_failed(req, ret); 1821 return; 1822 } 1823 1824 spin_lock(&ctx->completion_lock); 1825 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1826 spin_unlock(&ctx->completion_lock); 1827 kfree(de); 1828 goto queue; 1829 } 1830 1831 trace_io_uring_defer(req); 1832 de->req = req; 1833 de->seq = seq; 1834 list_add_tail(&de->list, &ctx->defer_list); 1835 spin_unlock(&ctx->completion_lock); 1836 } 1837 1838 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1839 unsigned int issue_flags) 1840 { 1841 if (req->file || !def->needs_file) 1842 return true; 1843 1844 if (req->flags & REQ_F_FIXED_FILE) 1845 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1846 else 1847 req->file = io_file_get_normal(req, req->cqe.fd); 1848 1849 return !!req->file; 1850 } 1851 1852 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1853 { 1854 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1855 const struct cred *creds = NULL; 1856 int ret; 1857 1858 if (unlikely(!io_assign_file(req, def, issue_flags))) 1859 return -EBADF; 1860 1861 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1862 creds = override_creds(req->creds); 1863 1864 if (!def->audit_skip) 1865 audit_uring_entry(req->opcode); 1866 1867 ret = def->issue(req, issue_flags); 1868 1869 if (!def->audit_skip) 1870 audit_uring_exit(!ret, ret); 1871 1872 if (creds) 1873 revert_creds(creds); 1874 1875 if (ret == IOU_OK) { 1876 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1877 io_req_complete_defer(req); 1878 else 1879 io_req_complete_post(req, issue_flags); 1880 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1881 return ret; 1882 1883 /* If the op doesn't have a file, we're not polling for it */ 1884 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1885 io_iopoll_req_issued(req, issue_flags); 1886 1887 return 0; 1888 } 1889 1890 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1891 { 1892 io_tw_lock(req->ctx, ts); 1893 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1894 IO_URING_F_COMPLETE_DEFER); 1895 } 1896 1897 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1898 { 1899 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1900 struct io_kiocb *nxt = NULL; 1901 1902 if (req_ref_put_and_test(req)) { 1903 if (req->flags & IO_REQ_LINK_FLAGS) 1904 nxt = io_req_find_next(req); 1905 io_free_req(req); 1906 } 1907 return nxt ? &nxt->work : NULL; 1908 } 1909 1910 void io_wq_submit_work(struct io_wq_work *work) 1911 { 1912 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1913 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1914 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1915 bool needs_poll = false; 1916 int ret = 0, err = -ECANCELED; 1917 1918 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1919 if (!(req->flags & REQ_F_REFCOUNT)) 1920 __io_req_set_refcount(req, 2); 1921 else 1922 req_ref_get(req); 1923 1924 io_arm_ltimeout(req); 1925 1926 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1927 if (work->flags & IO_WQ_WORK_CANCEL) { 1928 fail: 1929 io_req_task_queue_fail(req, err); 1930 return; 1931 } 1932 if (!io_assign_file(req, def, issue_flags)) { 1933 err = -EBADF; 1934 work->flags |= IO_WQ_WORK_CANCEL; 1935 goto fail; 1936 } 1937 1938 if (req->flags & REQ_F_FORCE_ASYNC) { 1939 bool opcode_poll = def->pollin || def->pollout; 1940 1941 if (opcode_poll && file_can_poll(req->file)) { 1942 needs_poll = true; 1943 issue_flags |= IO_URING_F_NONBLOCK; 1944 } 1945 } 1946 1947 do { 1948 ret = io_issue_sqe(req, issue_flags); 1949 if (ret != -EAGAIN) 1950 break; 1951 1952 /* 1953 * If REQ_F_NOWAIT is set, then don't wait or retry with 1954 * poll. -EAGAIN is final for that case. 1955 */ 1956 if (req->flags & REQ_F_NOWAIT) 1957 break; 1958 1959 /* 1960 * We can get EAGAIN for iopolled IO even though we're 1961 * forcing a sync submission from here, since we can't 1962 * wait for request slots on the block side. 1963 */ 1964 if (!needs_poll) { 1965 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1966 break; 1967 cond_resched(); 1968 continue; 1969 } 1970 1971 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1972 return; 1973 /* aborted or ready, in either case retry blocking */ 1974 needs_poll = false; 1975 issue_flags &= ~IO_URING_F_NONBLOCK; 1976 } while (1); 1977 1978 /* avoid locking problems by failing it from a clean context */ 1979 if (ret < 0) 1980 io_req_task_queue_fail(req, ret); 1981 } 1982 1983 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1984 unsigned int issue_flags) 1985 { 1986 struct io_ring_ctx *ctx = req->ctx; 1987 struct io_fixed_file *slot; 1988 struct file *file = NULL; 1989 1990 io_ring_submit_lock(ctx, issue_flags); 1991 1992 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 1993 goto out; 1994 fd = array_index_nospec(fd, ctx->nr_user_files); 1995 slot = io_fixed_file_slot(&ctx->file_table, fd); 1996 file = io_slot_file(slot); 1997 req->flags |= io_slot_flags(slot); 1998 io_req_set_rsrc_node(req, ctx, 0); 1999 out: 2000 io_ring_submit_unlock(ctx, issue_flags); 2001 return file; 2002 } 2003 2004 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 2005 { 2006 struct file *file = fget(fd); 2007 2008 trace_io_uring_file_get(req, fd); 2009 2010 /* we don't allow fixed io_uring files */ 2011 if (file && io_is_uring_fops(file)) 2012 io_req_track_inflight(req); 2013 return file; 2014 } 2015 2016 static void io_queue_async(struct io_kiocb *req, int ret) 2017 __must_hold(&req->ctx->uring_lock) 2018 { 2019 struct io_kiocb *linked_timeout; 2020 2021 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2022 io_req_defer_failed(req, ret); 2023 return; 2024 } 2025 2026 linked_timeout = io_prep_linked_timeout(req); 2027 2028 switch (io_arm_poll_handler(req, 0)) { 2029 case IO_APOLL_READY: 2030 io_kbuf_recycle(req, 0); 2031 io_req_task_queue(req); 2032 break; 2033 case IO_APOLL_ABORTED: 2034 io_kbuf_recycle(req, 0); 2035 io_queue_iowq(req, NULL); 2036 break; 2037 case IO_APOLL_OK: 2038 break; 2039 } 2040 2041 if (linked_timeout) 2042 io_queue_linked_timeout(linked_timeout); 2043 } 2044 2045 static inline void io_queue_sqe(struct io_kiocb *req) 2046 __must_hold(&req->ctx->uring_lock) 2047 { 2048 int ret; 2049 2050 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2051 2052 /* 2053 * We async punt it if the file wasn't marked NOWAIT, or if the file 2054 * doesn't support non-blocking read/write attempts 2055 */ 2056 if (likely(!ret)) 2057 io_arm_ltimeout(req); 2058 else 2059 io_queue_async(req, ret); 2060 } 2061 2062 static void io_queue_sqe_fallback(struct io_kiocb *req) 2063 __must_hold(&req->ctx->uring_lock) 2064 { 2065 if (unlikely(req->flags & REQ_F_FAIL)) { 2066 /* 2067 * We don't submit, fail them all, for that replace hardlinks 2068 * with normal links. Extra REQ_F_LINK is tolerated. 2069 */ 2070 req->flags &= ~REQ_F_HARDLINK; 2071 req->flags |= REQ_F_LINK; 2072 io_req_defer_failed(req, req->cqe.res); 2073 } else { 2074 int ret = io_req_prep_async(req); 2075 2076 if (unlikely(ret)) { 2077 io_req_defer_failed(req, ret); 2078 return; 2079 } 2080 2081 if (unlikely(req->ctx->drain_active)) 2082 io_drain_req(req); 2083 else 2084 io_queue_iowq(req, NULL); 2085 } 2086 } 2087 2088 /* 2089 * Check SQE restrictions (opcode and flags). 2090 * 2091 * Returns 'true' if SQE is allowed, 'false' otherwise. 2092 */ 2093 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2094 struct io_kiocb *req, 2095 unsigned int sqe_flags) 2096 { 2097 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2098 return false; 2099 2100 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2101 ctx->restrictions.sqe_flags_required) 2102 return false; 2103 2104 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2105 ctx->restrictions.sqe_flags_required)) 2106 return false; 2107 2108 return true; 2109 } 2110 2111 static void io_init_req_drain(struct io_kiocb *req) 2112 { 2113 struct io_ring_ctx *ctx = req->ctx; 2114 struct io_kiocb *head = ctx->submit_state.link.head; 2115 2116 ctx->drain_active = true; 2117 if (head) { 2118 /* 2119 * If we need to drain a request in the middle of a link, drain 2120 * the head request and the next request/link after the current 2121 * link. Considering sequential execution of links, 2122 * REQ_F_IO_DRAIN will be maintained for every request of our 2123 * link. 2124 */ 2125 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2126 ctx->drain_next = true; 2127 } 2128 } 2129 2130 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2131 const struct io_uring_sqe *sqe) 2132 __must_hold(&ctx->uring_lock) 2133 { 2134 const struct io_issue_def *def; 2135 unsigned int sqe_flags; 2136 int personality; 2137 u8 opcode; 2138 2139 /* req is partially pre-initialised, see io_preinit_req() */ 2140 req->opcode = opcode = READ_ONCE(sqe->opcode); 2141 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2142 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2143 req->cqe.user_data = READ_ONCE(sqe->user_data); 2144 req->file = NULL; 2145 req->rsrc_node = NULL; 2146 req->task = current; 2147 2148 if (unlikely(opcode >= IORING_OP_LAST)) { 2149 req->opcode = 0; 2150 return -EINVAL; 2151 } 2152 def = &io_issue_defs[opcode]; 2153 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2154 /* enforce forwards compatibility on users */ 2155 if (sqe_flags & ~SQE_VALID_FLAGS) 2156 return -EINVAL; 2157 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2158 if (!def->buffer_select) 2159 return -EOPNOTSUPP; 2160 req->buf_index = READ_ONCE(sqe->buf_group); 2161 } 2162 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2163 ctx->drain_disabled = true; 2164 if (sqe_flags & IOSQE_IO_DRAIN) { 2165 if (ctx->drain_disabled) 2166 return -EOPNOTSUPP; 2167 io_init_req_drain(req); 2168 } 2169 } 2170 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2171 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2172 return -EACCES; 2173 /* knock it to the slow queue path, will be drained there */ 2174 if (ctx->drain_active) 2175 req->flags |= REQ_F_FORCE_ASYNC; 2176 /* if there is no link, we're at "next" request and need to drain */ 2177 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2178 ctx->drain_next = false; 2179 ctx->drain_active = true; 2180 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2181 } 2182 } 2183 2184 if (!def->ioprio && sqe->ioprio) 2185 return -EINVAL; 2186 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2187 return -EINVAL; 2188 2189 if (def->needs_file) { 2190 struct io_submit_state *state = &ctx->submit_state; 2191 2192 req->cqe.fd = READ_ONCE(sqe->fd); 2193 2194 /* 2195 * Plug now if we have more than 2 IO left after this, and the 2196 * target is potentially a read/write to block based storage. 2197 */ 2198 if (state->need_plug && def->plug) { 2199 state->plug_started = true; 2200 state->need_plug = false; 2201 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2202 } 2203 } 2204 2205 personality = READ_ONCE(sqe->personality); 2206 if (personality) { 2207 int ret; 2208 2209 req->creds = xa_load(&ctx->personalities, personality); 2210 if (!req->creds) 2211 return -EINVAL; 2212 get_cred(req->creds); 2213 ret = security_uring_override_creds(req->creds); 2214 if (ret) { 2215 put_cred(req->creds); 2216 return ret; 2217 } 2218 req->flags |= REQ_F_CREDS; 2219 } 2220 2221 return def->prep(req, sqe); 2222 } 2223 2224 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2225 struct io_kiocb *req, int ret) 2226 { 2227 struct io_ring_ctx *ctx = req->ctx; 2228 struct io_submit_link *link = &ctx->submit_state.link; 2229 struct io_kiocb *head = link->head; 2230 2231 trace_io_uring_req_failed(sqe, req, ret); 2232 2233 /* 2234 * Avoid breaking links in the middle as it renders links with SQPOLL 2235 * unusable. Instead of failing eagerly, continue assembling the link if 2236 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2237 * should find the flag and handle the rest. 2238 */ 2239 req_fail_link_node(req, ret); 2240 if (head && !(head->flags & REQ_F_FAIL)) 2241 req_fail_link_node(head, -ECANCELED); 2242 2243 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2244 if (head) { 2245 link->last->link = req; 2246 link->head = NULL; 2247 req = head; 2248 } 2249 io_queue_sqe_fallback(req); 2250 return ret; 2251 } 2252 2253 if (head) 2254 link->last->link = req; 2255 else 2256 link->head = req; 2257 link->last = req; 2258 return 0; 2259 } 2260 2261 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2262 const struct io_uring_sqe *sqe) 2263 __must_hold(&ctx->uring_lock) 2264 { 2265 struct io_submit_link *link = &ctx->submit_state.link; 2266 int ret; 2267 2268 ret = io_init_req(ctx, req, sqe); 2269 if (unlikely(ret)) 2270 return io_submit_fail_init(sqe, req, ret); 2271 2272 trace_io_uring_submit_req(req); 2273 2274 /* 2275 * If we already have a head request, queue this one for async 2276 * submittal once the head completes. If we don't have a head but 2277 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2278 * submitted sync once the chain is complete. If none of those 2279 * conditions are true (normal request), then just queue it. 2280 */ 2281 if (unlikely(link->head)) { 2282 ret = io_req_prep_async(req); 2283 if (unlikely(ret)) 2284 return io_submit_fail_init(sqe, req, ret); 2285 2286 trace_io_uring_link(req, link->head); 2287 link->last->link = req; 2288 link->last = req; 2289 2290 if (req->flags & IO_REQ_LINK_FLAGS) 2291 return 0; 2292 /* last request of the link, flush it */ 2293 req = link->head; 2294 link->head = NULL; 2295 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2296 goto fallback; 2297 2298 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2299 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2300 if (req->flags & IO_REQ_LINK_FLAGS) { 2301 link->head = req; 2302 link->last = req; 2303 } else { 2304 fallback: 2305 io_queue_sqe_fallback(req); 2306 } 2307 return 0; 2308 } 2309 2310 io_queue_sqe(req); 2311 return 0; 2312 } 2313 2314 /* 2315 * Batched submission is done, ensure local IO is flushed out. 2316 */ 2317 static void io_submit_state_end(struct io_ring_ctx *ctx) 2318 { 2319 struct io_submit_state *state = &ctx->submit_state; 2320 2321 if (unlikely(state->link.head)) 2322 io_queue_sqe_fallback(state->link.head); 2323 /* flush only after queuing links as they can generate completions */ 2324 io_submit_flush_completions(ctx); 2325 if (state->plug_started) 2326 blk_finish_plug(&state->plug); 2327 } 2328 2329 /* 2330 * Start submission side cache. 2331 */ 2332 static void io_submit_state_start(struct io_submit_state *state, 2333 unsigned int max_ios) 2334 { 2335 state->plug_started = false; 2336 state->need_plug = max_ios > 2; 2337 state->submit_nr = max_ios; 2338 /* set only head, no need to init link_last in advance */ 2339 state->link.head = NULL; 2340 } 2341 2342 static void io_commit_sqring(struct io_ring_ctx *ctx) 2343 { 2344 struct io_rings *rings = ctx->rings; 2345 2346 /* 2347 * Ensure any loads from the SQEs are done at this point, 2348 * since once we write the new head, the application could 2349 * write new data to them. 2350 */ 2351 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2352 } 2353 2354 /* 2355 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2356 * that is mapped by userspace. This means that care needs to be taken to 2357 * ensure that reads are stable, as we cannot rely on userspace always 2358 * being a good citizen. If members of the sqe are validated and then later 2359 * used, it's important that those reads are done through READ_ONCE() to 2360 * prevent a re-load down the line. 2361 */ 2362 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2363 { 2364 unsigned head, mask = ctx->sq_entries - 1; 2365 unsigned sq_idx = ctx->cached_sq_head++ & mask; 2366 2367 /* 2368 * The cached sq head (or cq tail) serves two purposes: 2369 * 2370 * 1) allows us to batch the cost of updating the user visible 2371 * head updates. 2372 * 2) allows the kernel side to track the head on its own, even 2373 * though the application is the one updating it. 2374 */ 2375 head = READ_ONCE(ctx->sq_array[sq_idx]); 2376 if (likely(head < ctx->sq_entries)) { 2377 /* double index for 128-byte SQEs, twice as long */ 2378 if (ctx->flags & IORING_SETUP_SQE128) 2379 head <<= 1; 2380 *sqe = &ctx->sq_sqes[head]; 2381 return true; 2382 } 2383 2384 /* drop invalid entries */ 2385 ctx->cq_extra--; 2386 WRITE_ONCE(ctx->rings->sq_dropped, 2387 READ_ONCE(ctx->rings->sq_dropped) + 1); 2388 return false; 2389 } 2390 2391 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2392 __must_hold(&ctx->uring_lock) 2393 { 2394 unsigned int entries = io_sqring_entries(ctx); 2395 unsigned int left; 2396 int ret; 2397 2398 if (unlikely(!entries)) 2399 return 0; 2400 /* make sure SQ entry isn't read before tail */ 2401 ret = left = min(nr, entries); 2402 io_get_task_refs(left); 2403 io_submit_state_start(&ctx->submit_state, left); 2404 2405 do { 2406 const struct io_uring_sqe *sqe; 2407 struct io_kiocb *req; 2408 2409 if (unlikely(!io_alloc_req(ctx, &req))) 2410 break; 2411 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2412 io_req_add_to_cache(req, ctx); 2413 break; 2414 } 2415 2416 /* 2417 * Continue submitting even for sqe failure if the 2418 * ring was setup with IORING_SETUP_SUBMIT_ALL 2419 */ 2420 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2421 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2422 left--; 2423 break; 2424 } 2425 } while (--left); 2426 2427 if (unlikely(left)) { 2428 ret -= left; 2429 /* try again if it submitted nothing and can't allocate a req */ 2430 if (!ret && io_req_cache_empty(ctx)) 2431 ret = -EAGAIN; 2432 current->io_uring->cached_refs += left; 2433 } 2434 2435 io_submit_state_end(ctx); 2436 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2437 io_commit_sqring(ctx); 2438 return ret; 2439 } 2440 2441 struct io_wait_queue { 2442 struct wait_queue_entry wq; 2443 struct io_ring_ctx *ctx; 2444 unsigned cq_tail; 2445 unsigned nr_timeouts; 2446 ktime_t timeout; 2447 }; 2448 2449 static inline bool io_has_work(struct io_ring_ctx *ctx) 2450 { 2451 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2452 !llist_empty(&ctx->work_llist); 2453 } 2454 2455 static inline bool io_should_wake(struct io_wait_queue *iowq) 2456 { 2457 struct io_ring_ctx *ctx = iowq->ctx; 2458 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2459 2460 /* 2461 * Wake up if we have enough events, or if a timeout occurred since we 2462 * started waiting. For timeouts, we always want to return to userspace, 2463 * regardless of event count. 2464 */ 2465 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2466 } 2467 2468 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2469 int wake_flags, void *key) 2470 { 2471 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2472 2473 /* 2474 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2475 * the task, and the next invocation will do it. 2476 */ 2477 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2478 return autoremove_wake_function(curr, mode, wake_flags, key); 2479 return -1; 2480 } 2481 2482 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2483 { 2484 if (!llist_empty(&ctx->work_llist)) { 2485 __set_current_state(TASK_RUNNING); 2486 if (io_run_local_work(ctx) > 0) 2487 return 1; 2488 } 2489 if (io_run_task_work() > 0) 2490 return 1; 2491 if (task_sigpending(current)) 2492 return -EINTR; 2493 return 0; 2494 } 2495 2496 /* when returns >0, the caller should retry */ 2497 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2498 struct io_wait_queue *iowq) 2499 { 2500 int token, ret; 2501 2502 if (unlikely(READ_ONCE(ctx->check_cq))) 2503 return 1; 2504 if (unlikely(!llist_empty(&ctx->work_llist))) 2505 return 1; 2506 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) 2507 return 1; 2508 if (unlikely(task_sigpending(current))) 2509 return -EINTR; 2510 if (unlikely(io_should_wake(iowq))) 2511 return 0; 2512 2513 /* 2514 * Use io_schedule_prepare/finish, so cpufreq can take into account 2515 * that the task is waiting for IO - turns out to be important for low 2516 * QD IO. 2517 */ 2518 token = io_schedule_prepare(); 2519 ret = 0; 2520 if (iowq->timeout == KTIME_MAX) 2521 schedule(); 2522 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2523 ret = -ETIME; 2524 io_schedule_finish(token); 2525 return ret; 2526 } 2527 2528 /* 2529 * Wait until events become available, if we don't already have some. The 2530 * application must reap them itself, as they reside on the shared cq ring. 2531 */ 2532 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2533 const sigset_t __user *sig, size_t sigsz, 2534 struct __kernel_timespec __user *uts) 2535 { 2536 struct io_wait_queue iowq; 2537 struct io_rings *rings = ctx->rings; 2538 int ret; 2539 2540 if (!io_allowed_run_tw(ctx)) 2541 return -EEXIST; 2542 if (!llist_empty(&ctx->work_llist)) 2543 io_run_local_work(ctx); 2544 io_run_task_work(); 2545 io_cqring_overflow_flush(ctx); 2546 /* if user messes with these they will just get an early return */ 2547 if (__io_cqring_events_user(ctx) >= min_events) 2548 return 0; 2549 2550 if (sig) { 2551 #ifdef CONFIG_COMPAT 2552 if (in_compat_syscall()) 2553 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2554 sigsz); 2555 else 2556 #endif 2557 ret = set_user_sigmask(sig, sigsz); 2558 2559 if (ret) 2560 return ret; 2561 } 2562 2563 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2564 iowq.wq.private = current; 2565 INIT_LIST_HEAD(&iowq.wq.entry); 2566 iowq.ctx = ctx; 2567 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2568 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2569 iowq.timeout = KTIME_MAX; 2570 2571 if (uts) { 2572 struct timespec64 ts; 2573 2574 if (get_timespec64(&ts, uts)) 2575 return -EFAULT; 2576 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2577 } 2578 2579 trace_io_uring_cqring_wait(ctx, min_events); 2580 do { 2581 unsigned long check_cq; 2582 2583 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2584 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2585 2586 atomic_set(&ctx->cq_wait_nr, nr_wait); 2587 set_current_state(TASK_INTERRUPTIBLE); 2588 } else { 2589 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2590 TASK_INTERRUPTIBLE); 2591 } 2592 2593 ret = io_cqring_wait_schedule(ctx, &iowq); 2594 __set_current_state(TASK_RUNNING); 2595 atomic_set(&ctx->cq_wait_nr, 0); 2596 2597 if (ret < 0) 2598 break; 2599 /* 2600 * Run task_work after scheduling and before io_should_wake(). 2601 * If we got woken because of task_work being processed, run it 2602 * now rather than let the caller do another wait loop. 2603 */ 2604 io_run_task_work(); 2605 if (!llist_empty(&ctx->work_llist)) 2606 io_run_local_work(ctx); 2607 2608 check_cq = READ_ONCE(ctx->check_cq); 2609 if (unlikely(check_cq)) { 2610 /* let the caller flush overflows, retry */ 2611 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2612 io_cqring_do_overflow_flush(ctx); 2613 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2614 ret = -EBADR; 2615 break; 2616 } 2617 } 2618 2619 if (io_should_wake(&iowq)) { 2620 ret = 0; 2621 break; 2622 } 2623 cond_resched(); 2624 } while (1); 2625 2626 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2627 finish_wait(&ctx->cq_wait, &iowq.wq); 2628 restore_saved_sigmask_unless(ret == -EINTR); 2629 2630 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2631 } 2632 2633 static void io_mem_free(void *ptr) 2634 { 2635 struct page *page; 2636 2637 if (!ptr) 2638 return; 2639 2640 page = virt_to_head_page(ptr); 2641 if (put_page_testzero(page)) 2642 free_compound_page(page); 2643 } 2644 2645 static void io_pages_free(struct page ***pages, int npages) 2646 { 2647 struct page **page_array; 2648 int i; 2649 2650 if (!pages) 2651 return; 2652 page_array = *pages; 2653 for (i = 0; i < npages; i++) 2654 unpin_user_page(page_array[i]); 2655 kvfree(page_array); 2656 *pages = NULL; 2657 } 2658 2659 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, 2660 unsigned long uaddr, size_t size) 2661 { 2662 struct page **page_array; 2663 unsigned int nr_pages; 2664 int ret; 2665 2666 *npages = 0; 2667 2668 if (uaddr & (PAGE_SIZE - 1) || !size) 2669 return ERR_PTR(-EINVAL); 2670 2671 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2672 if (nr_pages > USHRT_MAX) 2673 return ERR_PTR(-EINVAL); 2674 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); 2675 if (!page_array) 2676 return ERR_PTR(-ENOMEM); 2677 2678 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, 2679 page_array); 2680 if (ret != nr_pages) { 2681 err: 2682 io_pages_free(&page_array, ret > 0 ? ret : 0); 2683 return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT); 2684 } 2685 /* 2686 * Should be a single page. If the ring is small enough that we can 2687 * use a normal page, that is fine. If we need multiple pages, then 2688 * userspace should use a huge page. That's the only way to guarantee 2689 * that we get contigious memory, outside of just being lucky or 2690 * (currently) having low memory fragmentation. 2691 */ 2692 if (page_array[0] != page_array[ret - 1]) 2693 goto err; 2694 *pages = page_array; 2695 *npages = nr_pages; 2696 return page_to_virt(page_array[0]); 2697 } 2698 2699 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2700 size_t size) 2701 { 2702 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2703 size); 2704 } 2705 2706 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2707 size_t size) 2708 { 2709 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2710 size); 2711 } 2712 2713 static void io_rings_free(struct io_ring_ctx *ctx) 2714 { 2715 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2716 io_mem_free(ctx->rings); 2717 io_mem_free(ctx->sq_sqes); 2718 ctx->rings = NULL; 2719 ctx->sq_sqes = NULL; 2720 } else { 2721 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2722 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2723 } 2724 } 2725 2726 static void *io_mem_alloc(size_t size) 2727 { 2728 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2729 void *ret; 2730 2731 ret = (void *) __get_free_pages(gfp, get_order(size)); 2732 if (ret) 2733 return ret; 2734 return ERR_PTR(-ENOMEM); 2735 } 2736 2737 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2738 unsigned int cq_entries, size_t *sq_offset) 2739 { 2740 struct io_rings *rings; 2741 size_t off, sq_array_size; 2742 2743 off = struct_size(rings, cqes, cq_entries); 2744 if (off == SIZE_MAX) 2745 return SIZE_MAX; 2746 if (ctx->flags & IORING_SETUP_CQE32) { 2747 if (check_shl_overflow(off, 1, &off)) 2748 return SIZE_MAX; 2749 } 2750 2751 #ifdef CONFIG_SMP 2752 off = ALIGN(off, SMP_CACHE_BYTES); 2753 if (off == 0) 2754 return SIZE_MAX; 2755 #endif 2756 2757 if (sq_offset) 2758 *sq_offset = off; 2759 2760 sq_array_size = array_size(sizeof(u32), sq_entries); 2761 if (sq_array_size == SIZE_MAX) 2762 return SIZE_MAX; 2763 2764 if (check_add_overflow(off, sq_array_size, &off)) 2765 return SIZE_MAX; 2766 2767 return off; 2768 } 2769 2770 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2771 unsigned int eventfd_async) 2772 { 2773 struct io_ev_fd *ev_fd; 2774 __s32 __user *fds = arg; 2775 int fd; 2776 2777 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2778 lockdep_is_held(&ctx->uring_lock)); 2779 if (ev_fd) 2780 return -EBUSY; 2781 2782 if (copy_from_user(&fd, fds, sizeof(*fds))) 2783 return -EFAULT; 2784 2785 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2786 if (!ev_fd) 2787 return -ENOMEM; 2788 2789 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2790 if (IS_ERR(ev_fd->cq_ev_fd)) { 2791 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2792 kfree(ev_fd); 2793 return ret; 2794 } 2795 2796 spin_lock(&ctx->completion_lock); 2797 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2798 spin_unlock(&ctx->completion_lock); 2799 2800 ev_fd->eventfd_async = eventfd_async; 2801 ctx->has_evfd = true; 2802 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2803 atomic_set(&ev_fd->refs, 1); 2804 atomic_set(&ev_fd->ops, 0); 2805 return 0; 2806 } 2807 2808 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2809 { 2810 struct io_ev_fd *ev_fd; 2811 2812 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2813 lockdep_is_held(&ctx->uring_lock)); 2814 if (ev_fd) { 2815 ctx->has_evfd = false; 2816 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2817 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2818 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2819 return 0; 2820 } 2821 2822 return -ENXIO; 2823 } 2824 2825 static void io_req_caches_free(struct io_ring_ctx *ctx) 2826 { 2827 struct io_kiocb *req; 2828 int nr = 0; 2829 2830 mutex_lock(&ctx->uring_lock); 2831 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2832 2833 while (!io_req_cache_empty(ctx)) { 2834 req = io_extract_req(ctx); 2835 kmem_cache_free(req_cachep, req); 2836 nr++; 2837 } 2838 if (nr) 2839 percpu_ref_put_many(&ctx->refs, nr); 2840 mutex_unlock(&ctx->uring_lock); 2841 } 2842 2843 static void io_rsrc_node_cache_free(struct io_cache_entry *entry) 2844 { 2845 kfree(container_of(entry, struct io_rsrc_node, cache)); 2846 } 2847 2848 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2849 { 2850 io_sq_thread_finish(ctx); 2851 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2852 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2853 return; 2854 2855 mutex_lock(&ctx->uring_lock); 2856 if (ctx->buf_data) 2857 __io_sqe_buffers_unregister(ctx); 2858 if (ctx->file_data) 2859 __io_sqe_files_unregister(ctx); 2860 io_cqring_overflow_kill(ctx); 2861 io_eventfd_unregister(ctx); 2862 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2863 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2864 io_destroy_buffers(ctx); 2865 mutex_unlock(&ctx->uring_lock); 2866 if (ctx->sq_creds) 2867 put_cred(ctx->sq_creds); 2868 if (ctx->submitter_task) 2869 put_task_struct(ctx->submitter_task); 2870 2871 /* there are no registered resources left, nobody uses it */ 2872 if (ctx->rsrc_node) 2873 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2874 2875 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2876 2877 #if defined(CONFIG_UNIX) 2878 if (ctx->ring_sock) { 2879 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2880 sock_release(ctx->ring_sock); 2881 } 2882 #endif 2883 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2884 2885 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); 2886 if (ctx->mm_account) { 2887 mmdrop(ctx->mm_account); 2888 ctx->mm_account = NULL; 2889 } 2890 io_rings_free(ctx); 2891 2892 percpu_ref_exit(&ctx->refs); 2893 free_uid(ctx->user); 2894 io_req_caches_free(ctx); 2895 if (ctx->hash_map) 2896 io_wq_put_hash(ctx->hash_map); 2897 kfree(ctx->cancel_table.hbs); 2898 kfree(ctx->cancel_table_locked.hbs); 2899 kfree(ctx->dummy_ubuf); 2900 kfree(ctx->io_bl); 2901 xa_destroy(&ctx->io_bl_xa); 2902 kfree(ctx); 2903 } 2904 2905 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2906 { 2907 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2908 poll_wq_task_work); 2909 2910 mutex_lock(&ctx->uring_lock); 2911 ctx->poll_activated = true; 2912 mutex_unlock(&ctx->uring_lock); 2913 2914 /* 2915 * Wake ups for some events between start of polling and activation 2916 * might've been lost due to loose synchronisation. 2917 */ 2918 wake_up_all(&ctx->poll_wq); 2919 percpu_ref_put(&ctx->refs); 2920 } 2921 2922 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2923 { 2924 spin_lock(&ctx->completion_lock); 2925 /* already activated or in progress */ 2926 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2927 goto out; 2928 if (WARN_ON_ONCE(!ctx->task_complete)) 2929 goto out; 2930 if (!ctx->submitter_task) 2931 goto out; 2932 /* 2933 * with ->submitter_task only the submitter task completes requests, we 2934 * only need to sync with it, which is done by injecting a tw 2935 */ 2936 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2937 percpu_ref_get(&ctx->refs); 2938 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2939 percpu_ref_put(&ctx->refs); 2940 out: 2941 spin_unlock(&ctx->completion_lock); 2942 } 2943 2944 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2945 { 2946 struct io_ring_ctx *ctx = file->private_data; 2947 __poll_t mask = 0; 2948 2949 if (unlikely(!ctx->poll_activated)) 2950 io_activate_pollwq(ctx); 2951 2952 poll_wait(file, &ctx->poll_wq, wait); 2953 /* 2954 * synchronizes with barrier from wq_has_sleeper call in 2955 * io_commit_cqring 2956 */ 2957 smp_rmb(); 2958 if (!io_sqring_full(ctx)) 2959 mask |= EPOLLOUT | EPOLLWRNORM; 2960 2961 /* 2962 * Don't flush cqring overflow list here, just do a simple check. 2963 * Otherwise there could possible be ABBA deadlock: 2964 * CPU0 CPU1 2965 * ---- ---- 2966 * lock(&ctx->uring_lock); 2967 * lock(&ep->mtx); 2968 * lock(&ctx->uring_lock); 2969 * lock(&ep->mtx); 2970 * 2971 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2972 * pushes them to do the flush. 2973 */ 2974 2975 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2976 mask |= EPOLLIN | EPOLLRDNORM; 2977 2978 return mask; 2979 } 2980 2981 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 2982 { 2983 const struct cred *creds; 2984 2985 creds = xa_erase(&ctx->personalities, id); 2986 if (creds) { 2987 put_cred(creds); 2988 return 0; 2989 } 2990 2991 return -EINVAL; 2992 } 2993 2994 struct io_tctx_exit { 2995 struct callback_head task_work; 2996 struct completion completion; 2997 struct io_ring_ctx *ctx; 2998 }; 2999 3000 static __cold void io_tctx_exit_cb(struct callback_head *cb) 3001 { 3002 struct io_uring_task *tctx = current->io_uring; 3003 struct io_tctx_exit *work; 3004 3005 work = container_of(cb, struct io_tctx_exit, task_work); 3006 /* 3007 * When @in_cancel, we're in cancellation and it's racy to remove the 3008 * node. It'll be removed by the end of cancellation, just ignore it. 3009 * tctx can be NULL if the queueing of this task_work raced with 3010 * work cancelation off the exec path. 3011 */ 3012 if (tctx && !atomic_read(&tctx->in_cancel)) 3013 io_uring_del_tctx_node((unsigned long)work->ctx); 3014 complete(&work->completion); 3015 } 3016 3017 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 3018 { 3019 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3020 3021 return req->ctx == data; 3022 } 3023 3024 static __cold void io_ring_exit_work(struct work_struct *work) 3025 { 3026 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 3027 unsigned long timeout = jiffies + HZ * 60 * 5; 3028 unsigned long interval = HZ / 20; 3029 struct io_tctx_exit exit; 3030 struct io_tctx_node *node; 3031 int ret; 3032 3033 /* 3034 * If we're doing polled IO and end up having requests being 3035 * submitted async (out-of-line), then completions can come in while 3036 * we're waiting for refs to drop. We need to reap these manually, 3037 * as nobody else will be looking for them. 3038 */ 3039 do { 3040 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 3041 mutex_lock(&ctx->uring_lock); 3042 io_cqring_overflow_kill(ctx); 3043 mutex_unlock(&ctx->uring_lock); 3044 } 3045 3046 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3047 io_move_task_work_from_local(ctx); 3048 3049 while (io_uring_try_cancel_requests(ctx, NULL, true)) 3050 cond_resched(); 3051 3052 if (ctx->sq_data) { 3053 struct io_sq_data *sqd = ctx->sq_data; 3054 struct task_struct *tsk; 3055 3056 io_sq_thread_park(sqd); 3057 tsk = sqd->thread; 3058 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 3059 io_wq_cancel_cb(tsk->io_uring->io_wq, 3060 io_cancel_ctx_cb, ctx, true); 3061 io_sq_thread_unpark(sqd); 3062 } 3063 3064 io_req_caches_free(ctx); 3065 3066 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3067 /* there is little hope left, don't run it too often */ 3068 interval = HZ * 60; 3069 } 3070 /* 3071 * This is really an uninterruptible wait, as it has to be 3072 * complete. But it's also run from a kworker, which doesn't 3073 * take signals, so it's fine to make it interruptible. This 3074 * avoids scenarios where we knowingly can wait much longer 3075 * on completions, for example if someone does a SIGSTOP on 3076 * a task that needs to finish task_work to make this loop 3077 * complete. That's a synthetic situation that should not 3078 * cause a stuck task backtrace, and hence a potential panic 3079 * on stuck tasks if that is enabled. 3080 */ 3081 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 3082 3083 init_completion(&exit.completion); 3084 init_task_work(&exit.task_work, io_tctx_exit_cb); 3085 exit.ctx = ctx; 3086 /* 3087 * Some may use context even when all refs and requests have been put, 3088 * and they are free to do so while still holding uring_lock or 3089 * completion_lock, see io_req_task_submit(). Apart from other work, 3090 * this lock/unlock section also waits them to finish. 3091 */ 3092 mutex_lock(&ctx->uring_lock); 3093 while (!list_empty(&ctx->tctx_list)) { 3094 WARN_ON_ONCE(time_after(jiffies, timeout)); 3095 3096 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3097 ctx_node); 3098 /* don't spin on a single task if cancellation failed */ 3099 list_rotate_left(&ctx->tctx_list); 3100 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3101 if (WARN_ON_ONCE(ret)) 3102 continue; 3103 3104 mutex_unlock(&ctx->uring_lock); 3105 /* 3106 * See comment above for 3107 * wait_for_completion_interruptible_timeout() on why this 3108 * wait is marked as interruptible. 3109 */ 3110 wait_for_completion_interruptible(&exit.completion); 3111 mutex_lock(&ctx->uring_lock); 3112 } 3113 mutex_unlock(&ctx->uring_lock); 3114 spin_lock(&ctx->completion_lock); 3115 spin_unlock(&ctx->completion_lock); 3116 3117 /* pairs with RCU read section in io_req_local_work_add() */ 3118 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3119 synchronize_rcu(); 3120 3121 io_ring_ctx_free(ctx); 3122 } 3123 3124 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3125 { 3126 unsigned long index; 3127 struct creds *creds; 3128 3129 mutex_lock(&ctx->uring_lock); 3130 percpu_ref_kill(&ctx->refs); 3131 xa_for_each(&ctx->personalities, index, creds) 3132 io_unregister_personality(ctx, index); 3133 if (ctx->rings) 3134 io_poll_remove_all(ctx, NULL, true); 3135 mutex_unlock(&ctx->uring_lock); 3136 3137 /* 3138 * If we failed setting up the ctx, we might not have any rings 3139 * and therefore did not submit any requests 3140 */ 3141 if (ctx->rings) 3142 io_kill_timeouts(ctx, NULL, true); 3143 3144 flush_delayed_work(&ctx->fallback_work); 3145 3146 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3147 /* 3148 * Use system_unbound_wq to avoid spawning tons of event kworkers 3149 * if we're exiting a ton of rings at the same time. It just adds 3150 * noise and overhead, there's no discernable change in runtime 3151 * over using system_wq. 3152 */ 3153 queue_work(system_unbound_wq, &ctx->exit_work); 3154 } 3155 3156 static int io_uring_release(struct inode *inode, struct file *file) 3157 { 3158 struct io_ring_ctx *ctx = file->private_data; 3159 3160 file->private_data = NULL; 3161 io_ring_ctx_wait_and_kill(ctx); 3162 return 0; 3163 } 3164 3165 struct io_task_cancel { 3166 struct task_struct *task; 3167 bool all; 3168 }; 3169 3170 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3171 { 3172 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3173 struct io_task_cancel *cancel = data; 3174 3175 return io_match_task_safe(req, cancel->task, cancel->all); 3176 } 3177 3178 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3179 struct task_struct *task, 3180 bool cancel_all) 3181 { 3182 struct io_defer_entry *de; 3183 LIST_HEAD(list); 3184 3185 spin_lock(&ctx->completion_lock); 3186 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3187 if (io_match_task_safe(de->req, task, cancel_all)) { 3188 list_cut_position(&list, &ctx->defer_list, &de->list); 3189 break; 3190 } 3191 } 3192 spin_unlock(&ctx->completion_lock); 3193 if (list_empty(&list)) 3194 return false; 3195 3196 while (!list_empty(&list)) { 3197 de = list_first_entry(&list, struct io_defer_entry, list); 3198 list_del_init(&de->list); 3199 io_req_task_queue_fail(de->req, -ECANCELED); 3200 kfree(de); 3201 } 3202 return true; 3203 } 3204 3205 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3206 { 3207 struct io_tctx_node *node; 3208 enum io_wq_cancel cret; 3209 bool ret = false; 3210 3211 mutex_lock(&ctx->uring_lock); 3212 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3213 struct io_uring_task *tctx = node->task->io_uring; 3214 3215 /* 3216 * io_wq will stay alive while we hold uring_lock, because it's 3217 * killed after ctx nodes, which requires to take the lock. 3218 */ 3219 if (!tctx || !tctx->io_wq) 3220 continue; 3221 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3222 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3223 } 3224 mutex_unlock(&ctx->uring_lock); 3225 3226 return ret; 3227 } 3228 3229 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3230 struct task_struct *task, 3231 bool cancel_all) 3232 { 3233 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3234 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3235 enum io_wq_cancel cret; 3236 bool ret = false; 3237 3238 /* set it so io_req_local_work_add() would wake us up */ 3239 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3240 atomic_set(&ctx->cq_wait_nr, 1); 3241 smp_mb(); 3242 } 3243 3244 /* failed during ring init, it couldn't have issued any requests */ 3245 if (!ctx->rings) 3246 return false; 3247 3248 if (!task) { 3249 ret |= io_uring_try_cancel_iowq(ctx); 3250 } else if (tctx && tctx->io_wq) { 3251 /* 3252 * Cancels requests of all rings, not only @ctx, but 3253 * it's fine as the task is in exit/exec. 3254 */ 3255 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3256 &cancel, true); 3257 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3258 } 3259 3260 /* SQPOLL thread does its own polling */ 3261 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3262 (ctx->sq_data && ctx->sq_data->thread == current)) { 3263 while (!wq_list_empty(&ctx->iopoll_list)) { 3264 io_iopoll_try_reap_events(ctx); 3265 ret = true; 3266 cond_resched(); 3267 } 3268 } 3269 3270 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3271 io_allowed_defer_tw_run(ctx)) 3272 ret |= io_run_local_work(ctx) > 0; 3273 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3274 mutex_lock(&ctx->uring_lock); 3275 ret |= io_poll_remove_all(ctx, task, cancel_all); 3276 mutex_unlock(&ctx->uring_lock); 3277 ret |= io_kill_timeouts(ctx, task, cancel_all); 3278 if (task) 3279 ret |= io_run_task_work() > 0; 3280 return ret; 3281 } 3282 3283 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3284 { 3285 if (tracked) 3286 return atomic_read(&tctx->inflight_tracked); 3287 return percpu_counter_sum(&tctx->inflight); 3288 } 3289 3290 /* 3291 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3292 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3293 */ 3294 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3295 { 3296 struct io_uring_task *tctx = current->io_uring; 3297 struct io_ring_ctx *ctx; 3298 struct io_tctx_node *node; 3299 unsigned long index; 3300 s64 inflight; 3301 DEFINE_WAIT(wait); 3302 3303 WARN_ON_ONCE(sqd && sqd->thread != current); 3304 3305 if (!current->io_uring) 3306 return; 3307 if (tctx->io_wq) 3308 io_wq_exit_start(tctx->io_wq); 3309 3310 atomic_inc(&tctx->in_cancel); 3311 do { 3312 bool loop = false; 3313 3314 io_uring_drop_tctx_refs(current); 3315 /* read completions before cancelations */ 3316 inflight = tctx_inflight(tctx, !cancel_all); 3317 if (!inflight) 3318 break; 3319 3320 if (!sqd) { 3321 xa_for_each(&tctx->xa, index, node) { 3322 /* sqpoll task will cancel all its requests */ 3323 if (node->ctx->sq_data) 3324 continue; 3325 loop |= io_uring_try_cancel_requests(node->ctx, 3326 current, cancel_all); 3327 } 3328 } else { 3329 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3330 loop |= io_uring_try_cancel_requests(ctx, 3331 current, 3332 cancel_all); 3333 } 3334 3335 if (loop) { 3336 cond_resched(); 3337 continue; 3338 } 3339 3340 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3341 io_run_task_work(); 3342 io_uring_drop_tctx_refs(current); 3343 xa_for_each(&tctx->xa, index, node) { 3344 if (!llist_empty(&node->ctx->work_llist)) { 3345 WARN_ON_ONCE(node->ctx->submitter_task && 3346 node->ctx->submitter_task != current); 3347 goto end_wait; 3348 } 3349 } 3350 /* 3351 * If we've seen completions, retry without waiting. This 3352 * avoids a race where a completion comes in before we did 3353 * prepare_to_wait(). 3354 */ 3355 if (inflight == tctx_inflight(tctx, !cancel_all)) 3356 schedule(); 3357 end_wait: 3358 finish_wait(&tctx->wait, &wait); 3359 } while (1); 3360 3361 io_uring_clean_tctx(tctx); 3362 if (cancel_all) { 3363 /* 3364 * We shouldn't run task_works after cancel, so just leave 3365 * ->in_cancel set for normal exit. 3366 */ 3367 atomic_dec(&tctx->in_cancel); 3368 /* for exec all current's requests should be gone, kill tctx */ 3369 __io_uring_free(current); 3370 } 3371 } 3372 3373 void __io_uring_cancel(bool cancel_all) 3374 { 3375 io_uring_cancel_generic(cancel_all, NULL); 3376 } 3377 3378 static void *io_uring_validate_mmap_request(struct file *file, 3379 loff_t pgoff, size_t sz) 3380 { 3381 struct io_ring_ctx *ctx = file->private_data; 3382 loff_t offset = pgoff << PAGE_SHIFT; 3383 struct page *page; 3384 void *ptr; 3385 3386 /* Don't allow mmap if the ring was setup without it */ 3387 if (ctx->flags & IORING_SETUP_NO_MMAP) 3388 return ERR_PTR(-EINVAL); 3389 3390 switch (offset & IORING_OFF_MMAP_MASK) { 3391 case IORING_OFF_SQ_RING: 3392 case IORING_OFF_CQ_RING: 3393 ptr = ctx->rings; 3394 break; 3395 case IORING_OFF_SQES: 3396 ptr = ctx->sq_sqes; 3397 break; 3398 case IORING_OFF_PBUF_RING: { 3399 unsigned int bgid; 3400 3401 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; 3402 mutex_lock(&ctx->uring_lock); 3403 ptr = io_pbuf_get_address(ctx, bgid); 3404 mutex_unlock(&ctx->uring_lock); 3405 if (!ptr) 3406 return ERR_PTR(-EINVAL); 3407 break; 3408 } 3409 default: 3410 return ERR_PTR(-EINVAL); 3411 } 3412 3413 page = virt_to_head_page(ptr); 3414 if (sz > page_size(page)) 3415 return ERR_PTR(-EINVAL); 3416 3417 return ptr; 3418 } 3419 3420 #ifdef CONFIG_MMU 3421 3422 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3423 { 3424 size_t sz = vma->vm_end - vma->vm_start; 3425 unsigned long pfn; 3426 void *ptr; 3427 3428 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3429 if (IS_ERR(ptr)) 3430 return PTR_ERR(ptr); 3431 3432 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3433 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3434 } 3435 3436 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, 3437 unsigned long addr, unsigned long len, 3438 unsigned long pgoff, unsigned long flags) 3439 { 3440 void *ptr; 3441 3442 /* 3443 * Do not allow to map to user-provided address to avoid breaking the 3444 * aliasing rules. Userspace is not able to guess the offset address of 3445 * kernel kmalloc()ed memory area. 3446 */ 3447 if (addr) 3448 return -EINVAL; 3449 3450 ptr = io_uring_validate_mmap_request(filp, pgoff, len); 3451 if (IS_ERR(ptr)) 3452 return -ENOMEM; 3453 3454 /* 3455 * Some architectures have strong cache aliasing requirements. 3456 * For such architectures we need a coherent mapping which aliases 3457 * kernel memory *and* userspace memory. To achieve that: 3458 * - use a NULL file pointer to reference physical memory, and 3459 * - use the kernel virtual address of the shared io_uring context 3460 * (instead of the userspace-provided address, which has to be 0UL 3461 * anyway). 3462 * For architectures without such aliasing requirements, the 3463 * architecture will return any suitable mapping because addr is 0. 3464 */ 3465 filp = NULL; 3466 flags |= MAP_SHARED; 3467 pgoff = 0; /* has been translated to ptr above */ 3468 #ifdef SHM_COLOUR 3469 addr = (uintptr_t) ptr; 3470 #else 3471 addr = 0UL; 3472 #endif 3473 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 3474 } 3475 3476 #else /* !CONFIG_MMU */ 3477 3478 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3479 { 3480 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3481 } 3482 3483 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3484 { 3485 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3486 } 3487 3488 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3489 unsigned long addr, unsigned long len, 3490 unsigned long pgoff, unsigned long flags) 3491 { 3492 void *ptr; 3493 3494 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3495 if (IS_ERR(ptr)) 3496 return PTR_ERR(ptr); 3497 3498 return (unsigned long) ptr; 3499 } 3500 3501 #endif /* !CONFIG_MMU */ 3502 3503 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3504 { 3505 if (flags & IORING_ENTER_EXT_ARG) { 3506 struct io_uring_getevents_arg arg; 3507 3508 if (argsz != sizeof(arg)) 3509 return -EINVAL; 3510 if (copy_from_user(&arg, argp, sizeof(arg))) 3511 return -EFAULT; 3512 } 3513 return 0; 3514 } 3515 3516 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3517 struct __kernel_timespec __user **ts, 3518 const sigset_t __user **sig) 3519 { 3520 struct io_uring_getevents_arg arg; 3521 3522 /* 3523 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3524 * is just a pointer to the sigset_t. 3525 */ 3526 if (!(flags & IORING_ENTER_EXT_ARG)) { 3527 *sig = (const sigset_t __user *) argp; 3528 *ts = NULL; 3529 return 0; 3530 } 3531 3532 /* 3533 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3534 * timespec and sigset_t pointers if good. 3535 */ 3536 if (*argsz != sizeof(arg)) 3537 return -EINVAL; 3538 if (copy_from_user(&arg, argp, sizeof(arg))) 3539 return -EFAULT; 3540 if (arg.pad) 3541 return -EINVAL; 3542 *sig = u64_to_user_ptr(arg.sigmask); 3543 *argsz = arg.sigmask_sz; 3544 *ts = u64_to_user_ptr(arg.ts); 3545 return 0; 3546 } 3547 3548 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3549 u32, min_complete, u32, flags, const void __user *, argp, 3550 size_t, argsz) 3551 { 3552 struct io_ring_ctx *ctx; 3553 struct fd f; 3554 long ret; 3555 3556 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3557 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3558 IORING_ENTER_REGISTERED_RING))) 3559 return -EINVAL; 3560 3561 /* 3562 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3563 * need only dereference our task private array to find it. 3564 */ 3565 if (flags & IORING_ENTER_REGISTERED_RING) { 3566 struct io_uring_task *tctx = current->io_uring; 3567 3568 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3569 return -EINVAL; 3570 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3571 f.file = tctx->registered_rings[fd]; 3572 f.flags = 0; 3573 if (unlikely(!f.file)) 3574 return -EBADF; 3575 } else { 3576 f = fdget(fd); 3577 if (unlikely(!f.file)) 3578 return -EBADF; 3579 ret = -EOPNOTSUPP; 3580 if (unlikely(!io_is_uring_fops(f.file))) 3581 goto out; 3582 } 3583 3584 ctx = f.file->private_data; 3585 ret = -EBADFD; 3586 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3587 goto out; 3588 3589 /* 3590 * For SQ polling, the thread will do all submissions and completions. 3591 * Just return the requested submit count, and wake the thread if 3592 * we were asked to. 3593 */ 3594 ret = 0; 3595 if (ctx->flags & IORING_SETUP_SQPOLL) { 3596 io_cqring_overflow_flush(ctx); 3597 3598 if (unlikely(ctx->sq_data->thread == NULL)) { 3599 ret = -EOWNERDEAD; 3600 goto out; 3601 } 3602 if (flags & IORING_ENTER_SQ_WAKEUP) 3603 wake_up(&ctx->sq_data->wait); 3604 if (flags & IORING_ENTER_SQ_WAIT) 3605 io_sqpoll_wait_sq(ctx); 3606 3607 ret = to_submit; 3608 } else if (to_submit) { 3609 ret = io_uring_add_tctx_node(ctx); 3610 if (unlikely(ret)) 3611 goto out; 3612 3613 mutex_lock(&ctx->uring_lock); 3614 ret = io_submit_sqes(ctx, to_submit); 3615 if (ret != to_submit) { 3616 mutex_unlock(&ctx->uring_lock); 3617 goto out; 3618 } 3619 if (flags & IORING_ENTER_GETEVENTS) { 3620 if (ctx->syscall_iopoll) 3621 goto iopoll_locked; 3622 /* 3623 * Ignore errors, we'll soon call io_cqring_wait() and 3624 * it should handle ownership problems if any. 3625 */ 3626 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3627 (void)io_run_local_work_locked(ctx); 3628 } 3629 mutex_unlock(&ctx->uring_lock); 3630 } 3631 3632 if (flags & IORING_ENTER_GETEVENTS) { 3633 int ret2; 3634 3635 if (ctx->syscall_iopoll) { 3636 /* 3637 * We disallow the app entering submit/complete with 3638 * polling, but we still need to lock the ring to 3639 * prevent racing with polled issue that got punted to 3640 * a workqueue. 3641 */ 3642 mutex_lock(&ctx->uring_lock); 3643 iopoll_locked: 3644 ret2 = io_validate_ext_arg(flags, argp, argsz); 3645 if (likely(!ret2)) { 3646 min_complete = min(min_complete, 3647 ctx->cq_entries); 3648 ret2 = io_iopoll_check(ctx, min_complete); 3649 } 3650 mutex_unlock(&ctx->uring_lock); 3651 } else { 3652 const sigset_t __user *sig; 3653 struct __kernel_timespec __user *ts; 3654 3655 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3656 if (likely(!ret2)) { 3657 min_complete = min(min_complete, 3658 ctx->cq_entries); 3659 ret2 = io_cqring_wait(ctx, min_complete, sig, 3660 argsz, ts); 3661 } 3662 } 3663 3664 if (!ret) { 3665 ret = ret2; 3666 3667 /* 3668 * EBADR indicates that one or more CQE were dropped. 3669 * Once the user has been informed we can clear the bit 3670 * as they are obviously ok with those drops. 3671 */ 3672 if (unlikely(ret2 == -EBADR)) 3673 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3674 &ctx->check_cq); 3675 } 3676 } 3677 out: 3678 fdput(f); 3679 return ret; 3680 } 3681 3682 static const struct file_operations io_uring_fops = { 3683 .release = io_uring_release, 3684 .mmap = io_uring_mmap, 3685 #ifndef CONFIG_MMU 3686 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3687 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3688 #else 3689 .get_unmapped_area = io_uring_mmu_get_unmapped_area, 3690 #endif 3691 .poll = io_uring_poll, 3692 #ifdef CONFIG_PROC_FS 3693 .show_fdinfo = io_uring_show_fdinfo, 3694 #endif 3695 }; 3696 3697 bool io_is_uring_fops(struct file *file) 3698 { 3699 return file->f_op == &io_uring_fops; 3700 } 3701 3702 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3703 struct io_uring_params *p) 3704 { 3705 struct io_rings *rings; 3706 size_t size, sq_array_offset; 3707 void *ptr; 3708 3709 /* make sure these are sane, as we already accounted them */ 3710 ctx->sq_entries = p->sq_entries; 3711 ctx->cq_entries = p->cq_entries; 3712 3713 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3714 if (size == SIZE_MAX) 3715 return -EOVERFLOW; 3716 3717 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3718 rings = io_mem_alloc(size); 3719 else 3720 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3721 3722 if (IS_ERR(rings)) 3723 return PTR_ERR(rings); 3724 3725 ctx->rings = rings; 3726 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3727 rings->sq_ring_mask = p->sq_entries - 1; 3728 rings->cq_ring_mask = p->cq_entries - 1; 3729 rings->sq_ring_entries = p->sq_entries; 3730 rings->cq_ring_entries = p->cq_entries; 3731 3732 if (p->flags & IORING_SETUP_SQE128) 3733 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3734 else 3735 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3736 if (size == SIZE_MAX) { 3737 io_rings_free(ctx); 3738 return -EOVERFLOW; 3739 } 3740 3741 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3742 ptr = io_mem_alloc(size); 3743 else 3744 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3745 3746 if (IS_ERR(ptr)) { 3747 io_rings_free(ctx); 3748 return PTR_ERR(ptr); 3749 } 3750 3751 ctx->sq_sqes = ptr; 3752 return 0; 3753 } 3754 3755 static int io_uring_install_fd(struct file *file) 3756 { 3757 int fd; 3758 3759 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3760 if (fd < 0) 3761 return fd; 3762 fd_install(fd, file); 3763 return fd; 3764 } 3765 3766 /* 3767 * Allocate an anonymous fd, this is what constitutes the application 3768 * visible backing of an io_uring instance. The application mmaps this 3769 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3770 * we have to tie this fd to a socket for file garbage collection purposes. 3771 */ 3772 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3773 { 3774 struct file *file; 3775 #if defined(CONFIG_UNIX) 3776 int ret; 3777 3778 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3779 &ctx->ring_sock); 3780 if (ret) 3781 return ERR_PTR(ret); 3782 #endif 3783 3784 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3785 O_RDWR | O_CLOEXEC, NULL); 3786 #if defined(CONFIG_UNIX) 3787 if (IS_ERR(file)) { 3788 sock_release(ctx->ring_sock); 3789 ctx->ring_sock = NULL; 3790 } else { 3791 ctx->ring_sock->file = file; 3792 } 3793 #endif 3794 return file; 3795 } 3796 3797 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3798 struct io_uring_params __user *params) 3799 { 3800 struct io_ring_ctx *ctx; 3801 struct io_uring_task *tctx; 3802 struct file *file; 3803 int ret; 3804 3805 if (!entries) 3806 return -EINVAL; 3807 if (entries > IORING_MAX_ENTRIES) { 3808 if (!(p->flags & IORING_SETUP_CLAMP)) 3809 return -EINVAL; 3810 entries = IORING_MAX_ENTRIES; 3811 } 3812 3813 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3814 && !(p->flags & IORING_SETUP_NO_MMAP)) 3815 return -EINVAL; 3816 3817 /* 3818 * Use twice as many entries for the CQ ring. It's possible for the 3819 * application to drive a higher depth than the size of the SQ ring, 3820 * since the sqes are only used at submission time. This allows for 3821 * some flexibility in overcommitting a bit. If the application has 3822 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3823 * of CQ ring entries manually. 3824 */ 3825 p->sq_entries = roundup_pow_of_two(entries); 3826 if (p->flags & IORING_SETUP_CQSIZE) { 3827 /* 3828 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3829 * to a power-of-two, if it isn't already. We do NOT impose 3830 * any cq vs sq ring sizing. 3831 */ 3832 if (!p->cq_entries) 3833 return -EINVAL; 3834 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3835 if (!(p->flags & IORING_SETUP_CLAMP)) 3836 return -EINVAL; 3837 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3838 } 3839 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3840 if (p->cq_entries < p->sq_entries) 3841 return -EINVAL; 3842 } else { 3843 p->cq_entries = 2 * p->sq_entries; 3844 } 3845 3846 ctx = io_ring_ctx_alloc(p); 3847 if (!ctx) 3848 return -ENOMEM; 3849 3850 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3851 !(ctx->flags & IORING_SETUP_IOPOLL) && 3852 !(ctx->flags & IORING_SETUP_SQPOLL)) 3853 ctx->task_complete = true; 3854 3855 /* 3856 * lazy poll_wq activation relies on ->task_complete for synchronisation 3857 * purposes, see io_activate_pollwq() 3858 */ 3859 if (!ctx->task_complete) 3860 ctx->poll_activated = true; 3861 3862 /* 3863 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3864 * space applications don't need to do io completion events 3865 * polling again, they can rely on io_sq_thread to do polling 3866 * work, which can reduce cpu usage and uring_lock contention. 3867 */ 3868 if (ctx->flags & IORING_SETUP_IOPOLL && 3869 !(ctx->flags & IORING_SETUP_SQPOLL)) 3870 ctx->syscall_iopoll = 1; 3871 3872 ctx->compat = in_compat_syscall(); 3873 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3874 ctx->user = get_uid(current_user()); 3875 3876 /* 3877 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3878 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3879 */ 3880 ret = -EINVAL; 3881 if (ctx->flags & IORING_SETUP_SQPOLL) { 3882 /* IPI related flags don't make sense with SQPOLL */ 3883 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3884 IORING_SETUP_TASKRUN_FLAG | 3885 IORING_SETUP_DEFER_TASKRUN)) 3886 goto err; 3887 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3888 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3889 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3890 } else { 3891 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3892 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3893 goto err; 3894 ctx->notify_method = TWA_SIGNAL; 3895 } 3896 3897 /* 3898 * For DEFER_TASKRUN we require the completion task to be the same as the 3899 * submission task. This implies that there is only one submitter, so enforce 3900 * that. 3901 */ 3902 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3903 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3904 goto err; 3905 } 3906 3907 /* 3908 * This is just grabbed for accounting purposes. When a process exits, 3909 * the mm is exited and dropped before the files, hence we need to hang 3910 * on to this mm purely for the purposes of being able to unaccount 3911 * memory (locked/pinned vm). It's not used for anything else. 3912 */ 3913 mmgrab(current->mm); 3914 ctx->mm_account = current->mm; 3915 3916 ret = io_allocate_scq_urings(ctx, p); 3917 if (ret) 3918 goto err; 3919 3920 ret = io_sq_offload_create(ctx, p); 3921 if (ret) 3922 goto err; 3923 3924 ret = io_rsrc_init(ctx); 3925 if (ret) 3926 goto err; 3927 3928 p->sq_off.head = offsetof(struct io_rings, sq.head); 3929 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3930 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3931 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3932 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3933 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3934 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3935 p->sq_off.resv1 = 0; 3936 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3937 p->sq_off.user_addr = 0; 3938 3939 p->cq_off.head = offsetof(struct io_rings, cq.head); 3940 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3941 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3942 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3943 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3944 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3945 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3946 p->cq_off.resv1 = 0; 3947 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3948 p->cq_off.user_addr = 0; 3949 3950 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3951 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3952 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3953 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3954 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3955 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3956 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 3957 3958 if (copy_to_user(params, p, sizeof(*p))) { 3959 ret = -EFAULT; 3960 goto err; 3961 } 3962 3963 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3964 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3965 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3966 3967 file = io_uring_get_file(ctx); 3968 if (IS_ERR(file)) { 3969 ret = PTR_ERR(file); 3970 goto err; 3971 } 3972 3973 ret = __io_uring_add_tctx_node(ctx); 3974 if (ret) 3975 goto err_fput; 3976 tctx = current->io_uring; 3977 3978 /* 3979 * Install ring fd as the very last thing, so we don't risk someone 3980 * having closed it before we finish setup 3981 */ 3982 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3983 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3984 else 3985 ret = io_uring_install_fd(file); 3986 if (ret < 0) 3987 goto err_fput; 3988 3989 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3990 return ret; 3991 err: 3992 io_ring_ctx_wait_and_kill(ctx); 3993 return ret; 3994 err_fput: 3995 fput(file); 3996 return ret; 3997 } 3998 3999 /* 4000 * Sets up an aio uring context, and returns the fd. Applications asks for a 4001 * ring size, we return the actual sq/cq ring sizes (among other things) in the 4002 * params structure passed in. 4003 */ 4004 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 4005 { 4006 struct io_uring_params p; 4007 int i; 4008 4009 if (copy_from_user(&p, params, sizeof(p))) 4010 return -EFAULT; 4011 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 4012 if (p.resv[i]) 4013 return -EINVAL; 4014 } 4015 4016 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 4017 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 4018 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 4019 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 4020 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 4021 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 4022 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 4023 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY)) 4024 return -EINVAL; 4025 4026 return io_uring_create(entries, &p, params); 4027 } 4028 4029 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 4030 struct io_uring_params __user *, params) 4031 { 4032 return io_uring_setup(entries, params); 4033 } 4034 4035 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 4036 unsigned nr_args) 4037 { 4038 struct io_uring_probe *p; 4039 size_t size; 4040 int i, ret; 4041 4042 size = struct_size(p, ops, nr_args); 4043 if (size == SIZE_MAX) 4044 return -EOVERFLOW; 4045 p = kzalloc(size, GFP_KERNEL); 4046 if (!p) 4047 return -ENOMEM; 4048 4049 ret = -EFAULT; 4050 if (copy_from_user(p, arg, size)) 4051 goto out; 4052 ret = -EINVAL; 4053 if (memchr_inv(p, 0, size)) 4054 goto out; 4055 4056 p->last_op = IORING_OP_LAST - 1; 4057 if (nr_args > IORING_OP_LAST) 4058 nr_args = IORING_OP_LAST; 4059 4060 for (i = 0; i < nr_args; i++) { 4061 p->ops[i].op = i; 4062 if (!io_issue_defs[i].not_supported) 4063 p->ops[i].flags = IO_URING_OP_SUPPORTED; 4064 } 4065 p->ops_len = i; 4066 4067 ret = 0; 4068 if (copy_to_user(arg, p, size)) 4069 ret = -EFAULT; 4070 out: 4071 kfree(p); 4072 return ret; 4073 } 4074 4075 static int io_register_personality(struct io_ring_ctx *ctx) 4076 { 4077 const struct cred *creds; 4078 u32 id; 4079 int ret; 4080 4081 creds = get_current_cred(); 4082 4083 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 4084 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 4085 if (ret < 0) { 4086 put_cred(creds); 4087 return ret; 4088 } 4089 return id; 4090 } 4091 4092 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 4093 void __user *arg, unsigned int nr_args) 4094 { 4095 struct io_uring_restriction *res; 4096 size_t size; 4097 int i, ret; 4098 4099 /* Restrictions allowed only if rings started disabled */ 4100 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4101 return -EBADFD; 4102 4103 /* We allow only a single restrictions registration */ 4104 if (ctx->restrictions.registered) 4105 return -EBUSY; 4106 4107 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 4108 return -EINVAL; 4109 4110 size = array_size(nr_args, sizeof(*res)); 4111 if (size == SIZE_MAX) 4112 return -EOVERFLOW; 4113 4114 res = memdup_user(arg, size); 4115 if (IS_ERR(res)) 4116 return PTR_ERR(res); 4117 4118 ret = 0; 4119 4120 for (i = 0; i < nr_args; i++) { 4121 switch (res[i].opcode) { 4122 case IORING_RESTRICTION_REGISTER_OP: 4123 if (res[i].register_op >= IORING_REGISTER_LAST) { 4124 ret = -EINVAL; 4125 goto out; 4126 } 4127 4128 __set_bit(res[i].register_op, 4129 ctx->restrictions.register_op); 4130 break; 4131 case IORING_RESTRICTION_SQE_OP: 4132 if (res[i].sqe_op >= IORING_OP_LAST) { 4133 ret = -EINVAL; 4134 goto out; 4135 } 4136 4137 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 4138 break; 4139 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 4140 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 4141 break; 4142 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 4143 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 4144 break; 4145 default: 4146 ret = -EINVAL; 4147 goto out; 4148 } 4149 } 4150 4151 out: 4152 /* Reset all restrictions if an error happened */ 4153 if (ret != 0) 4154 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 4155 else 4156 ctx->restrictions.registered = true; 4157 4158 kfree(res); 4159 return ret; 4160 } 4161 4162 static int io_register_enable_rings(struct io_ring_ctx *ctx) 4163 { 4164 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4165 return -EBADFD; 4166 4167 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) { 4168 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4169 /* 4170 * Lazy activation attempts would fail if it was polled before 4171 * submitter_task is set. 4172 */ 4173 if (wq_has_sleeper(&ctx->poll_wq)) 4174 io_activate_pollwq(ctx); 4175 } 4176 4177 if (ctx->restrictions.registered) 4178 ctx->restricted = 1; 4179 4180 ctx->flags &= ~IORING_SETUP_R_DISABLED; 4181 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 4182 wake_up(&ctx->sq_data->wait); 4183 return 0; 4184 } 4185 4186 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 4187 void __user *arg, unsigned len) 4188 { 4189 struct io_uring_task *tctx = current->io_uring; 4190 cpumask_var_t new_mask; 4191 int ret; 4192 4193 if (!tctx || !tctx->io_wq) 4194 return -EINVAL; 4195 4196 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4197 return -ENOMEM; 4198 4199 cpumask_clear(new_mask); 4200 if (len > cpumask_size()) 4201 len = cpumask_size(); 4202 4203 if (in_compat_syscall()) { 4204 ret = compat_get_bitmap(cpumask_bits(new_mask), 4205 (const compat_ulong_t __user *)arg, 4206 len * 8 /* CHAR_BIT */); 4207 } else { 4208 ret = copy_from_user(new_mask, arg, len); 4209 } 4210 4211 if (ret) { 4212 free_cpumask_var(new_mask); 4213 return -EFAULT; 4214 } 4215 4216 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask); 4217 free_cpumask_var(new_mask); 4218 return ret; 4219 } 4220 4221 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 4222 { 4223 struct io_uring_task *tctx = current->io_uring; 4224 4225 if (!tctx || !tctx->io_wq) 4226 return -EINVAL; 4227 4228 return io_wq_cpu_affinity(tctx->io_wq, NULL); 4229 } 4230 4231 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 4232 void __user *arg) 4233 __must_hold(&ctx->uring_lock) 4234 { 4235 struct io_tctx_node *node; 4236 struct io_uring_task *tctx = NULL; 4237 struct io_sq_data *sqd = NULL; 4238 __u32 new_count[2]; 4239 int i, ret; 4240 4241 if (copy_from_user(new_count, arg, sizeof(new_count))) 4242 return -EFAULT; 4243 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4244 if (new_count[i] > INT_MAX) 4245 return -EINVAL; 4246 4247 if (ctx->flags & IORING_SETUP_SQPOLL) { 4248 sqd = ctx->sq_data; 4249 if (sqd) { 4250 /* 4251 * Observe the correct sqd->lock -> ctx->uring_lock 4252 * ordering. Fine to drop uring_lock here, we hold 4253 * a ref to the ctx. 4254 */ 4255 refcount_inc(&sqd->refs); 4256 mutex_unlock(&ctx->uring_lock); 4257 mutex_lock(&sqd->lock); 4258 mutex_lock(&ctx->uring_lock); 4259 if (sqd->thread) 4260 tctx = sqd->thread->io_uring; 4261 } 4262 } else { 4263 tctx = current->io_uring; 4264 } 4265 4266 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 4267 4268 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4269 if (new_count[i]) 4270 ctx->iowq_limits[i] = new_count[i]; 4271 ctx->iowq_limits_set = true; 4272 4273 if (tctx && tctx->io_wq) { 4274 ret = io_wq_max_workers(tctx->io_wq, new_count); 4275 if (ret) 4276 goto err; 4277 } else { 4278 memset(new_count, 0, sizeof(new_count)); 4279 } 4280 4281 if (sqd) { 4282 mutex_unlock(&sqd->lock); 4283 io_put_sq_data(sqd); 4284 } 4285 4286 if (copy_to_user(arg, new_count, sizeof(new_count))) 4287 return -EFAULT; 4288 4289 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 4290 if (sqd) 4291 return 0; 4292 4293 /* now propagate the restriction to all registered users */ 4294 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 4295 struct io_uring_task *tctx = node->task->io_uring; 4296 4297 if (WARN_ON_ONCE(!tctx->io_wq)) 4298 continue; 4299 4300 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4301 new_count[i] = ctx->iowq_limits[i]; 4302 /* ignore errors, it always returns zero anyway */ 4303 (void)io_wq_max_workers(tctx->io_wq, new_count); 4304 } 4305 return 0; 4306 err: 4307 if (sqd) { 4308 mutex_unlock(&sqd->lock); 4309 io_put_sq_data(sqd); 4310 } 4311 return ret; 4312 } 4313 4314 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4315 void __user *arg, unsigned nr_args) 4316 __releases(ctx->uring_lock) 4317 __acquires(ctx->uring_lock) 4318 { 4319 int ret; 4320 4321 /* 4322 * We don't quiesce the refs for register anymore and so it can't be 4323 * dying as we're holding a file ref here. 4324 */ 4325 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4326 return -ENXIO; 4327 4328 if (ctx->submitter_task && ctx->submitter_task != current) 4329 return -EEXIST; 4330 4331 if (ctx->restricted) { 4332 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4333 if (!test_bit(opcode, ctx->restrictions.register_op)) 4334 return -EACCES; 4335 } 4336 4337 switch (opcode) { 4338 case IORING_REGISTER_BUFFERS: 4339 ret = -EFAULT; 4340 if (!arg) 4341 break; 4342 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4343 break; 4344 case IORING_UNREGISTER_BUFFERS: 4345 ret = -EINVAL; 4346 if (arg || nr_args) 4347 break; 4348 ret = io_sqe_buffers_unregister(ctx); 4349 break; 4350 case IORING_REGISTER_FILES: 4351 ret = -EFAULT; 4352 if (!arg) 4353 break; 4354 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4355 break; 4356 case IORING_UNREGISTER_FILES: 4357 ret = -EINVAL; 4358 if (arg || nr_args) 4359 break; 4360 ret = io_sqe_files_unregister(ctx); 4361 break; 4362 case IORING_REGISTER_FILES_UPDATE: 4363 ret = io_register_files_update(ctx, arg, nr_args); 4364 break; 4365 case IORING_REGISTER_EVENTFD: 4366 ret = -EINVAL; 4367 if (nr_args != 1) 4368 break; 4369 ret = io_eventfd_register(ctx, arg, 0); 4370 break; 4371 case IORING_REGISTER_EVENTFD_ASYNC: 4372 ret = -EINVAL; 4373 if (nr_args != 1) 4374 break; 4375 ret = io_eventfd_register(ctx, arg, 1); 4376 break; 4377 case IORING_UNREGISTER_EVENTFD: 4378 ret = -EINVAL; 4379 if (arg || nr_args) 4380 break; 4381 ret = io_eventfd_unregister(ctx); 4382 break; 4383 case IORING_REGISTER_PROBE: 4384 ret = -EINVAL; 4385 if (!arg || nr_args > 256) 4386 break; 4387 ret = io_probe(ctx, arg, nr_args); 4388 break; 4389 case IORING_REGISTER_PERSONALITY: 4390 ret = -EINVAL; 4391 if (arg || nr_args) 4392 break; 4393 ret = io_register_personality(ctx); 4394 break; 4395 case IORING_UNREGISTER_PERSONALITY: 4396 ret = -EINVAL; 4397 if (arg) 4398 break; 4399 ret = io_unregister_personality(ctx, nr_args); 4400 break; 4401 case IORING_REGISTER_ENABLE_RINGS: 4402 ret = -EINVAL; 4403 if (arg || nr_args) 4404 break; 4405 ret = io_register_enable_rings(ctx); 4406 break; 4407 case IORING_REGISTER_RESTRICTIONS: 4408 ret = io_register_restrictions(ctx, arg, nr_args); 4409 break; 4410 case IORING_REGISTER_FILES2: 4411 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4412 break; 4413 case IORING_REGISTER_FILES_UPDATE2: 4414 ret = io_register_rsrc_update(ctx, arg, nr_args, 4415 IORING_RSRC_FILE); 4416 break; 4417 case IORING_REGISTER_BUFFERS2: 4418 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4419 break; 4420 case IORING_REGISTER_BUFFERS_UPDATE: 4421 ret = io_register_rsrc_update(ctx, arg, nr_args, 4422 IORING_RSRC_BUFFER); 4423 break; 4424 case IORING_REGISTER_IOWQ_AFF: 4425 ret = -EINVAL; 4426 if (!arg || !nr_args) 4427 break; 4428 ret = io_register_iowq_aff(ctx, arg, nr_args); 4429 break; 4430 case IORING_UNREGISTER_IOWQ_AFF: 4431 ret = -EINVAL; 4432 if (arg || nr_args) 4433 break; 4434 ret = io_unregister_iowq_aff(ctx); 4435 break; 4436 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4437 ret = -EINVAL; 4438 if (!arg || nr_args != 2) 4439 break; 4440 ret = io_register_iowq_max_workers(ctx, arg); 4441 break; 4442 case IORING_REGISTER_RING_FDS: 4443 ret = io_ringfd_register(ctx, arg, nr_args); 4444 break; 4445 case IORING_UNREGISTER_RING_FDS: 4446 ret = io_ringfd_unregister(ctx, arg, nr_args); 4447 break; 4448 case IORING_REGISTER_PBUF_RING: 4449 ret = -EINVAL; 4450 if (!arg || nr_args != 1) 4451 break; 4452 ret = io_register_pbuf_ring(ctx, arg); 4453 break; 4454 case IORING_UNREGISTER_PBUF_RING: 4455 ret = -EINVAL; 4456 if (!arg || nr_args != 1) 4457 break; 4458 ret = io_unregister_pbuf_ring(ctx, arg); 4459 break; 4460 case IORING_REGISTER_SYNC_CANCEL: 4461 ret = -EINVAL; 4462 if (!arg || nr_args != 1) 4463 break; 4464 ret = io_sync_cancel(ctx, arg); 4465 break; 4466 case IORING_REGISTER_FILE_ALLOC_RANGE: 4467 ret = -EINVAL; 4468 if (!arg || nr_args) 4469 break; 4470 ret = io_register_file_alloc_range(ctx, arg); 4471 break; 4472 default: 4473 ret = -EINVAL; 4474 break; 4475 } 4476 4477 return ret; 4478 } 4479 4480 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4481 void __user *, arg, unsigned int, nr_args) 4482 { 4483 struct io_ring_ctx *ctx; 4484 long ret = -EBADF; 4485 struct fd f; 4486 bool use_registered_ring; 4487 4488 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING); 4489 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING; 4490 4491 if (opcode >= IORING_REGISTER_LAST) 4492 return -EINVAL; 4493 4494 if (use_registered_ring) { 4495 /* 4496 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 4497 * need only dereference our task private array to find it. 4498 */ 4499 struct io_uring_task *tctx = current->io_uring; 4500 4501 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 4502 return -EINVAL; 4503 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 4504 f.file = tctx->registered_rings[fd]; 4505 f.flags = 0; 4506 if (unlikely(!f.file)) 4507 return -EBADF; 4508 } else { 4509 f = fdget(fd); 4510 if (unlikely(!f.file)) 4511 return -EBADF; 4512 ret = -EOPNOTSUPP; 4513 if (!io_is_uring_fops(f.file)) 4514 goto out_fput; 4515 } 4516 4517 ctx = f.file->private_data; 4518 4519 mutex_lock(&ctx->uring_lock); 4520 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4521 mutex_unlock(&ctx->uring_lock); 4522 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4523 out_fput: 4524 fdput(f); 4525 return ret; 4526 } 4527 4528 static int __init io_uring_init(void) 4529 { 4530 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4531 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4532 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4533 } while (0) 4534 4535 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4536 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4537 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4538 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4539 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4540 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4541 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4542 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4543 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4544 BUILD_BUG_SQE_ELEM(8, __u64, off); 4545 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4546 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4547 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4548 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4549 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4550 BUILD_BUG_SQE_ELEM(24, __u32, len); 4551 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4552 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4553 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4554 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4555 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4556 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4557 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4558 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4559 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4560 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4561 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4562 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4563 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4564 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4565 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4566 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4567 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4568 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4569 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4570 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4571 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4572 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4573 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4574 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4575 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4576 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4577 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4578 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4579 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4580 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4581 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4582 4583 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4584 sizeof(struct io_uring_rsrc_update)); 4585 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4586 sizeof(struct io_uring_rsrc_update2)); 4587 4588 /* ->buf_index is u16 */ 4589 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4590 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4591 offsetof(struct io_uring_buf_ring, tail)); 4592 4593 /* should fit into one byte */ 4594 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4595 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4596 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4597 4598 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4599 4600 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4601 4602 io_uring_optable_init(); 4603 4604 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4605 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU); 4606 return 0; 4607 }; 4608 __initcall(io_uring_init); 4609