1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 #include <asm/shmparam.h> 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/io_uring.h> 79 80 #include <uapi/linux/io_uring.h> 81 82 #include "io-wq.h" 83 84 #include "io_uring.h" 85 #include "opdef.h" 86 #include "refs.h" 87 #include "tctx.h" 88 #include "sqpoll.h" 89 #include "fdinfo.h" 90 #include "kbuf.h" 91 #include "rsrc.h" 92 #include "cancel.h" 93 #include "net.h" 94 #include "notif.h" 95 96 #include "timeout.h" 97 #include "poll.h" 98 #include "rw.h" 99 #include "alloc_cache.h" 100 101 #define IORING_MAX_ENTRIES 32768 102 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 103 104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 105 IORING_REGISTER_LAST + IORING_OP_LAST) 106 107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 108 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 109 110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 112 113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 115 REQ_F_ASYNC_DATA) 116 117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 118 IO_REQ_CLEAN_FLAGS) 119 120 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 121 122 #define IO_COMPL_BATCH 32 123 #define IO_REQ_ALLOC_BATCH 8 124 125 enum { 126 IO_CHECK_CQ_OVERFLOW_BIT, 127 IO_CHECK_CQ_DROPPED_BIT, 128 }; 129 130 enum { 131 IO_EVENTFD_OP_SIGNAL_BIT, 132 IO_EVENTFD_OP_FREE_BIT, 133 }; 134 135 struct io_defer_entry { 136 struct list_head list; 137 struct io_kiocb *req; 138 u32 seq; 139 }; 140 141 /* requests with any of those set should undergo io_disarm_next() */ 142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 144 145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 146 struct task_struct *task, 147 bool cancel_all); 148 149 static void io_queue_sqe(struct io_kiocb *req); 150 151 struct kmem_cache *req_cachep; 152 153 static int __read_mostly sysctl_io_uring_disabled; 154 static int __read_mostly sysctl_io_uring_group = -1; 155 156 #ifdef CONFIG_SYSCTL 157 static struct ctl_table kernel_io_uring_disabled_table[] = { 158 { 159 .procname = "io_uring_disabled", 160 .data = &sysctl_io_uring_disabled, 161 .maxlen = sizeof(sysctl_io_uring_disabled), 162 .mode = 0644, 163 .proc_handler = proc_dointvec_minmax, 164 .extra1 = SYSCTL_ZERO, 165 .extra2 = SYSCTL_TWO, 166 }, 167 { 168 .procname = "io_uring_group", 169 .data = &sysctl_io_uring_group, 170 .maxlen = sizeof(gid_t), 171 .mode = 0644, 172 .proc_handler = proc_dointvec, 173 }, 174 {}, 175 }; 176 #endif 177 178 struct sock *io_uring_get_socket(struct file *file) 179 { 180 #if defined(CONFIG_UNIX) 181 if (io_is_uring_fops(file)) { 182 struct io_ring_ctx *ctx = file->private_data; 183 184 return ctx->ring_sock->sk; 185 } 186 #endif 187 return NULL; 188 } 189 EXPORT_SYMBOL(io_uring_get_socket); 190 191 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 192 { 193 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 194 ctx->submit_state.cqes_count) 195 __io_submit_flush_completions(ctx); 196 } 197 198 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 199 { 200 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 201 } 202 203 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 204 { 205 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 206 } 207 208 static bool io_match_linked(struct io_kiocb *head) 209 { 210 struct io_kiocb *req; 211 212 io_for_each_link(req, head) { 213 if (req->flags & REQ_F_INFLIGHT) 214 return true; 215 } 216 return false; 217 } 218 219 /* 220 * As io_match_task() but protected against racing with linked timeouts. 221 * User must not hold timeout_lock. 222 */ 223 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 224 bool cancel_all) 225 { 226 bool matched; 227 228 if (task && head->task != task) 229 return false; 230 if (cancel_all) 231 return true; 232 233 if (head->flags & REQ_F_LINK_TIMEOUT) { 234 struct io_ring_ctx *ctx = head->ctx; 235 236 /* protect against races with linked timeouts */ 237 spin_lock_irq(&ctx->timeout_lock); 238 matched = io_match_linked(head); 239 spin_unlock_irq(&ctx->timeout_lock); 240 } else { 241 matched = io_match_linked(head); 242 } 243 return matched; 244 } 245 246 static inline void req_fail_link_node(struct io_kiocb *req, int res) 247 { 248 req_set_fail(req); 249 io_req_set_res(req, res, 0); 250 } 251 252 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 253 { 254 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 255 } 256 257 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 258 { 259 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 260 261 complete(&ctx->ref_comp); 262 } 263 264 static __cold void io_fallback_req_func(struct work_struct *work) 265 { 266 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 267 fallback_work.work); 268 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 269 struct io_kiocb *req, *tmp; 270 struct io_tw_state ts = { .locked = true, }; 271 272 mutex_lock(&ctx->uring_lock); 273 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 274 req->io_task_work.func(req, &ts); 275 if (WARN_ON_ONCE(!ts.locked)) 276 return; 277 io_submit_flush_completions(ctx); 278 mutex_unlock(&ctx->uring_lock); 279 } 280 281 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 282 { 283 unsigned hash_buckets = 1U << bits; 284 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 285 286 table->hbs = kmalloc(hash_size, GFP_KERNEL); 287 if (!table->hbs) 288 return -ENOMEM; 289 290 table->hash_bits = bits; 291 init_hash_table(table, hash_buckets); 292 return 0; 293 } 294 295 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 296 { 297 struct io_ring_ctx *ctx; 298 int hash_bits; 299 300 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 301 if (!ctx) 302 return NULL; 303 304 xa_init(&ctx->io_bl_xa); 305 306 /* 307 * Use 5 bits less than the max cq entries, that should give us around 308 * 32 entries per hash list if totally full and uniformly spread, but 309 * don't keep too many buckets to not overconsume memory. 310 */ 311 hash_bits = ilog2(p->cq_entries) - 5; 312 hash_bits = clamp(hash_bits, 1, 8); 313 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 314 goto err; 315 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 316 goto err; 317 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 318 0, GFP_KERNEL)) 319 goto err; 320 321 ctx->flags = p->flags; 322 init_waitqueue_head(&ctx->sqo_sq_wait); 323 INIT_LIST_HEAD(&ctx->sqd_list); 324 INIT_LIST_HEAD(&ctx->cq_overflow_list); 325 INIT_LIST_HEAD(&ctx->io_buffers_cache); 326 INIT_HLIST_HEAD(&ctx->io_buf_list); 327 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 328 sizeof(struct io_rsrc_node)); 329 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, 330 sizeof(struct async_poll)); 331 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 332 sizeof(struct io_async_msghdr)); 333 init_completion(&ctx->ref_comp); 334 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 335 mutex_init(&ctx->uring_lock); 336 init_waitqueue_head(&ctx->cq_wait); 337 init_waitqueue_head(&ctx->poll_wq); 338 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 339 spin_lock_init(&ctx->completion_lock); 340 spin_lock_init(&ctx->timeout_lock); 341 INIT_WQ_LIST(&ctx->iopoll_list); 342 INIT_LIST_HEAD(&ctx->io_buffers_pages); 343 INIT_LIST_HEAD(&ctx->io_buffers_comp); 344 INIT_LIST_HEAD(&ctx->defer_list); 345 INIT_LIST_HEAD(&ctx->timeout_list); 346 INIT_LIST_HEAD(&ctx->ltimeout_list); 347 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 348 init_llist_head(&ctx->work_llist); 349 INIT_LIST_HEAD(&ctx->tctx_list); 350 ctx->submit_state.free_list.next = NULL; 351 INIT_WQ_LIST(&ctx->locked_free_list); 352 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 353 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 354 return ctx; 355 err: 356 kfree(ctx->cancel_table.hbs); 357 kfree(ctx->cancel_table_locked.hbs); 358 kfree(ctx->io_bl); 359 xa_destroy(&ctx->io_bl_xa); 360 kfree(ctx); 361 return NULL; 362 } 363 364 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 365 { 366 struct io_rings *r = ctx->rings; 367 368 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 369 ctx->cq_extra--; 370 } 371 372 static bool req_need_defer(struct io_kiocb *req, u32 seq) 373 { 374 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 375 struct io_ring_ctx *ctx = req->ctx; 376 377 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 378 } 379 380 return false; 381 } 382 383 static void io_clean_op(struct io_kiocb *req) 384 { 385 if (req->flags & REQ_F_BUFFER_SELECTED) { 386 spin_lock(&req->ctx->completion_lock); 387 io_put_kbuf_comp(req); 388 spin_unlock(&req->ctx->completion_lock); 389 } 390 391 if (req->flags & REQ_F_NEED_CLEANUP) { 392 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 393 394 if (def->cleanup) 395 def->cleanup(req); 396 } 397 if ((req->flags & REQ_F_POLLED) && req->apoll) { 398 kfree(req->apoll->double_poll); 399 kfree(req->apoll); 400 req->apoll = NULL; 401 } 402 if (req->flags & REQ_F_INFLIGHT) { 403 struct io_uring_task *tctx = req->task->io_uring; 404 405 atomic_dec(&tctx->inflight_tracked); 406 } 407 if (req->flags & REQ_F_CREDS) 408 put_cred(req->creds); 409 if (req->flags & REQ_F_ASYNC_DATA) { 410 kfree(req->async_data); 411 req->async_data = NULL; 412 } 413 req->flags &= ~IO_REQ_CLEAN_FLAGS; 414 } 415 416 static inline void io_req_track_inflight(struct io_kiocb *req) 417 { 418 if (!(req->flags & REQ_F_INFLIGHT)) { 419 req->flags |= REQ_F_INFLIGHT; 420 atomic_inc(&req->task->io_uring->inflight_tracked); 421 } 422 } 423 424 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 425 { 426 if (WARN_ON_ONCE(!req->link)) 427 return NULL; 428 429 req->flags &= ~REQ_F_ARM_LTIMEOUT; 430 req->flags |= REQ_F_LINK_TIMEOUT; 431 432 /* linked timeouts should have two refs once prep'ed */ 433 io_req_set_refcount(req); 434 __io_req_set_refcount(req->link, 2); 435 return req->link; 436 } 437 438 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 439 { 440 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 441 return NULL; 442 return __io_prep_linked_timeout(req); 443 } 444 445 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 446 { 447 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 448 } 449 450 static inline void io_arm_ltimeout(struct io_kiocb *req) 451 { 452 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 453 __io_arm_ltimeout(req); 454 } 455 456 static void io_prep_async_work(struct io_kiocb *req) 457 { 458 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 459 struct io_ring_ctx *ctx = req->ctx; 460 461 if (!(req->flags & REQ_F_CREDS)) { 462 req->flags |= REQ_F_CREDS; 463 req->creds = get_current_cred(); 464 } 465 466 req->work.list.next = NULL; 467 req->work.flags = 0; 468 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 469 if (req->flags & REQ_F_FORCE_ASYNC) 470 req->work.flags |= IO_WQ_WORK_CONCURRENT; 471 472 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 473 req->flags |= io_file_get_flags(req->file); 474 475 if (req->file && (req->flags & REQ_F_ISREG)) { 476 bool should_hash = def->hash_reg_file; 477 478 /* don't serialize this request if the fs doesn't need it */ 479 if (should_hash && (req->file->f_flags & O_DIRECT) && 480 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) 481 should_hash = false; 482 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 483 io_wq_hash_work(&req->work, file_inode(req->file)); 484 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 485 if (def->unbound_nonreg_file) 486 req->work.flags |= IO_WQ_WORK_UNBOUND; 487 } 488 } 489 490 static void io_prep_async_link(struct io_kiocb *req) 491 { 492 struct io_kiocb *cur; 493 494 if (req->flags & REQ_F_LINK_TIMEOUT) { 495 struct io_ring_ctx *ctx = req->ctx; 496 497 spin_lock_irq(&ctx->timeout_lock); 498 io_for_each_link(cur, req) 499 io_prep_async_work(cur); 500 spin_unlock_irq(&ctx->timeout_lock); 501 } else { 502 io_for_each_link(cur, req) 503 io_prep_async_work(cur); 504 } 505 } 506 507 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) 508 { 509 struct io_kiocb *link = io_prep_linked_timeout(req); 510 struct io_uring_task *tctx = req->task->io_uring; 511 512 BUG_ON(!tctx); 513 BUG_ON(!tctx->io_wq); 514 515 /* init ->work of the whole link before punting */ 516 io_prep_async_link(req); 517 518 /* 519 * Not expected to happen, but if we do have a bug where this _can_ 520 * happen, catch it here and ensure the request is marked as 521 * canceled. That will make io-wq go through the usual work cancel 522 * procedure rather than attempt to run this request (or create a new 523 * worker for it). 524 */ 525 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 526 req->work.flags |= IO_WQ_WORK_CANCEL; 527 528 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 529 io_wq_enqueue(tctx->io_wq, &req->work); 530 if (link) 531 io_queue_linked_timeout(link); 532 } 533 534 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 535 { 536 while (!list_empty(&ctx->defer_list)) { 537 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 538 struct io_defer_entry, list); 539 540 if (req_need_defer(de->req, de->seq)) 541 break; 542 list_del_init(&de->list); 543 io_req_task_queue(de->req); 544 kfree(de); 545 } 546 } 547 548 549 static void io_eventfd_ops(struct rcu_head *rcu) 550 { 551 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 552 int ops = atomic_xchg(&ev_fd->ops, 0); 553 554 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 555 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 556 557 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 558 * ordering in a race but if references are 0 we know we have to free 559 * it regardless. 560 */ 561 if (atomic_dec_and_test(&ev_fd->refs)) { 562 eventfd_ctx_put(ev_fd->cq_ev_fd); 563 kfree(ev_fd); 564 } 565 } 566 567 static void io_eventfd_signal(struct io_ring_ctx *ctx) 568 { 569 struct io_ev_fd *ev_fd = NULL; 570 571 rcu_read_lock(); 572 /* 573 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 574 * and eventfd_signal 575 */ 576 ev_fd = rcu_dereference(ctx->io_ev_fd); 577 578 /* 579 * Check again if ev_fd exists incase an io_eventfd_unregister call 580 * completed between the NULL check of ctx->io_ev_fd at the start of 581 * the function and rcu_read_lock. 582 */ 583 if (unlikely(!ev_fd)) 584 goto out; 585 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 586 goto out; 587 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 588 goto out; 589 590 if (likely(eventfd_signal_allowed())) { 591 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 592 } else { 593 atomic_inc(&ev_fd->refs); 594 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 595 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 596 else 597 atomic_dec(&ev_fd->refs); 598 } 599 600 out: 601 rcu_read_unlock(); 602 } 603 604 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 605 { 606 bool skip; 607 608 spin_lock(&ctx->completion_lock); 609 610 /* 611 * Eventfd should only get triggered when at least one event has been 612 * posted. Some applications rely on the eventfd notification count 613 * only changing IFF a new CQE has been added to the CQ ring. There's 614 * no depedency on 1:1 relationship between how many times this 615 * function is called (and hence the eventfd count) and number of CQEs 616 * posted to the CQ ring. 617 */ 618 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 619 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 620 spin_unlock(&ctx->completion_lock); 621 if (skip) 622 return; 623 624 io_eventfd_signal(ctx); 625 } 626 627 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 628 { 629 if (ctx->poll_activated) 630 io_poll_wq_wake(ctx); 631 if (ctx->off_timeout_used) 632 io_flush_timeouts(ctx); 633 if (ctx->drain_active) { 634 spin_lock(&ctx->completion_lock); 635 io_queue_deferred(ctx); 636 spin_unlock(&ctx->completion_lock); 637 } 638 if (ctx->has_evfd) 639 io_eventfd_flush_signal(ctx); 640 } 641 642 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 643 { 644 if (!ctx->lockless_cq) 645 spin_lock(&ctx->completion_lock); 646 } 647 648 static inline void io_cq_lock(struct io_ring_ctx *ctx) 649 __acquires(ctx->completion_lock) 650 { 651 spin_lock(&ctx->completion_lock); 652 } 653 654 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 655 { 656 io_commit_cqring(ctx); 657 if (!ctx->task_complete) { 658 if (!ctx->lockless_cq) 659 spin_unlock(&ctx->completion_lock); 660 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 661 if (!ctx->syscall_iopoll) 662 io_cqring_wake(ctx); 663 } 664 io_commit_cqring_flush(ctx); 665 } 666 667 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 668 __releases(ctx->completion_lock) 669 { 670 io_commit_cqring(ctx); 671 spin_unlock(&ctx->completion_lock); 672 io_cqring_wake(ctx); 673 io_commit_cqring_flush(ctx); 674 } 675 676 /* Returns true if there are no backlogged entries after the flush */ 677 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 678 { 679 struct io_overflow_cqe *ocqe; 680 LIST_HEAD(list); 681 682 spin_lock(&ctx->completion_lock); 683 list_splice_init(&ctx->cq_overflow_list, &list); 684 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 685 spin_unlock(&ctx->completion_lock); 686 687 while (!list_empty(&list)) { 688 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 689 list_del(&ocqe->list); 690 kfree(ocqe); 691 } 692 } 693 694 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 695 { 696 size_t cqe_size = sizeof(struct io_uring_cqe); 697 698 if (__io_cqring_events(ctx) == ctx->cq_entries) 699 return; 700 701 if (ctx->flags & IORING_SETUP_CQE32) 702 cqe_size <<= 1; 703 704 io_cq_lock(ctx); 705 while (!list_empty(&ctx->cq_overflow_list)) { 706 struct io_uring_cqe *cqe; 707 struct io_overflow_cqe *ocqe; 708 709 if (!io_get_cqe_overflow(ctx, &cqe, true)) 710 break; 711 ocqe = list_first_entry(&ctx->cq_overflow_list, 712 struct io_overflow_cqe, list); 713 memcpy(cqe, &ocqe->cqe, cqe_size); 714 list_del(&ocqe->list); 715 kfree(ocqe); 716 } 717 718 if (list_empty(&ctx->cq_overflow_list)) { 719 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 720 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 721 } 722 io_cq_unlock_post(ctx); 723 } 724 725 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 726 { 727 /* iopoll syncs against uring_lock, not completion_lock */ 728 if (ctx->flags & IORING_SETUP_IOPOLL) 729 mutex_lock(&ctx->uring_lock); 730 __io_cqring_overflow_flush(ctx); 731 if (ctx->flags & IORING_SETUP_IOPOLL) 732 mutex_unlock(&ctx->uring_lock); 733 } 734 735 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 736 { 737 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 738 io_cqring_do_overflow_flush(ctx); 739 } 740 741 /* can be called by any task */ 742 static void io_put_task_remote(struct task_struct *task) 743 { 744 struct io_uring_task *tctx = task->io_uring; 745 746 percpu_counter_sub(&tctx->inflight, 1); 747 if (unlikely(atomic_read(&tctx->in_cancel))) 748 wake_up(&tctx->wait); 749 put_task_struct(task); 750 } 751 752 /* used by a task to put its own references */ 753 static void io_put_task_local(struct task_struct *task) 754 { 755 task->io_uring->cached_refs++; 756 } 757 758 /* must to be called somewhat shortly after putting a request */ 759 static inline void io_put_task(struct task_struct *task) 760 { 761 if (likely(task == current)) 762 io_put_task_local(task); 763 else 764 io_put_task_remote(task); 765 } 766 767 void io_task_refs_refill(struct io_uring_task *tctx) 768 { 769 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 770 771 percpu_counter_add(&tctx->inflight, refill); 772 refcount_add(refill, ¤t->usage); 773 tctx->cached_refs += refill; 774 } 775 776 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 777 { 778 struct io_uring_task *tctx = task->io_uring; 779 unsigned int refs = tctx->cached_refs; 780 781 if (refs) { 782 tctx->cached_refs = 0; 783 percpu_counter_sub(&tctx->inflight, refs); 784 put_task_struct_many(task, refs); 785 } 786 } 787 788 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 789 s32 res, u32 cflags, u64 extra1, u64 extra2) 790 { 791 struct io_overflow_cqe *ocqe; 792 size_t ocq_size = sizeof(struct io_overflow_cqe); 793 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 794 795 lockdep_assert_held(&ctx->completion_lock); 796 797 if (is_cqe32) 798 ocq_size += sizeof(struct io_uring_cqe); 799 800 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 801 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 802 if (!ocqe) { 803 /* 804 * If we're in ring overflow flush mode, or in task cancel mode, 805 * or cannot allocate an overflow entry, then we need to drop it 806 * on the floor. 807 */ 808 io_account_cq_overflow(ctx); 809 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 810 return false; 811 } 812 if (list_empty(&ctx->cq_overflow_list)) { 813 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 814 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 815 816 } 817 ocqe->cqe.user_data = user_data; 818 ocqe->cqe.res = res; 819 ocqe->cqe.flags = cflags; 820 if (is_cqe32) { 821 ocqe->cqe.big_cqe[0] = extra1; 822 ocqe->cqe.big_cqe[1] = extra2; 823 } 824 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 825 return true; 826 } 827 828 void io_req_cqe_overflow(struct io_kiocb *req) 829 { 830 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 831 req->cqe.res, req->cqe.flags, 832 req->big_cqe.extra1, req->big_cqe.extra2); 833 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 834 } 835 836 /* 837 * writes to the cq entry need to come after reading head; the 838 * control dependency is enough as we're using WRITE_ONCE to 839 * fill the cq entry 840 */ 841 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 842 { 843 struct io_rings *rings = ctx->rings; 844 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 845 unsigned int free, queued, len; 846 847 /* 848 * Posting into the CQ when there are pending overflowed CQEs may break 849 * ordering guarantees, which will affect links, F_MORE users and more. 850 * Force overflow the completion. 851 */ 852 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 853 return false; 854 855 /* userspace may cheat modifying the tail, be safe and do min */ 856 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 857 free = ctx->cq_entries - queued; 858 /* we need a contiguous range, limit based on the current array offset */ 859 len = min(free, ctx->cq_entries - off); 860 if (!len) 861 return false; 862 863 if (ctx->flags & IORING_SETUP_CQE32) { 864 off <<= 1; 865 len <<= 1; 866 } 867 868 ctx->cqe_cached = &rings->cqes[off]; 869 ctx->cqe_sentinel = ctx->cqe_cached + len; 870 return true; 871 } 872 873 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 874 u32 cflags) 875 { 876 struct io_uring_cqe *cqe; 877 878 ctx->cq_extra++; 879 880 /* 881 * If we can't get a cq entry, userspace overflowed the 882 * submission (by quite a lot). Increment the overflow count in 883 * the ring. 884 */ 885 if (likely(io_get_cqe(ctx, &cqe))) { 886 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 887 888 WRITE_ONCE(cqe->user_data, user_data); 889 WRITE_ONCE(cqe->res, res); 890 WRITE_ONCE(cqe->flags, cflags); 891 892 if (ctx->flags & IORING_SETUP_CQE32) { 893 WRITE_ONCE(cqe->big_cqe[0], 0); 894 WRITE_ONCE(cqe->big_cqe[1], 0); 895 } 896 return true; 897 } 898 return false; 899 } 900 901 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 902 __must_hold(&ctx->uring_lock) 903 { 904 struct io_submit_state *state = &ctx->submit_state; 905 unsigned int i; 906 907 lockdep_assert_held(&ctx->uring_lock); 908 for (i = 0; i < state->cqes_count; i++) { 909 struct io_uring_cqe *cqe = &ctx->completion_cqes[i]; 910 911 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 912 if (ctx->lockless_cq) { 913 spin_lock(&ctx->completion_lock); 914 io_cqring_event_overflow(ctx, cqe->user_data, 915 cqe->res, cqe->flags, 0, 0); 916 spin_unlock(&ctx->completion_lock); 917 } else { 918 io_cqring_event_overflow(ctx, cqe->user_data, 919 cqe->res, cqe->flags, 0, 0); 920 } 921 } 922 } 923 state->cqes_count = 0; 924 } 925 926 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 927 bool allow_overflow) 928 { 929 bool filled; 930 931 io_cq_lock(ctx); 932 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 933 if (!filled && allow_overflow) 934 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 935 936 io_cq_unlock_post(ctx); 937 return filled; 938 } 939 940 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 941 { 942 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 943 } 944 945 /* 946 * A helper for multishot requests posting additional CQEs. 947 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 948 */ 949 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags) 950 { 951 struct io_ring_ctx *ctx = req->ctx; 952 u64 user_data = req->cqe.user_data; 953 struct io_uring_cqe *cqe; 954 955 if (!defer) 956 return __io_post_aux_cqe(ctx, user_data, res, cflags, false); 957 958 lockdep_assert_held(&ctx->uring_lock); 959 960 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) { 961 __io_cq_lock(ctx); 962 __io_flush_post_cqes(ctx); 963 /* no need to flush - flush is deferred */ 964 __io_cq_unlock_post(ctx); 965 } 966 967 /* For defered completions this is not as strict as it is otherwise, 968 * however it's main job is to prevent unbounded posted completions, 969 * and in that it works just as well. 970 */ 971 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 972 return false; 973 974 cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++]; 975 cqe->user_data = user_data; 976 cqe->res = res; 977 cqe->flags = cflags; 978 return true; 979 } 980 981 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 982 { 983 struct io_ring_ctx *ctx = req->ctx; 984 struct io_rsrc_node *rsrc_node = NULL; 985 986 io_cq_lock(ctx); 987 if (!(req->flags & REQ_F_CQE_SKIP)) { 988 if (!io_fill_cqe_req(ctx, req)) 989 io_req_cqe_overflow(req); 990 } 991 992 /* 993 * If we're the last reference to this request, add to our locked 994 * free_list cache. 995 */ 996 if (req_ref_put_and_test(req)) { 997 if (req->flags & IO_REQ_LINK_FLAGS) { 998 if (req->flags & IO_DISARM_MASK) 999 io_disarm_next(req); 1000 if (req->link) { 1001 io_req_task_queue(req->link); 1002 req->link = NULL; 1003 } 1004 } 1005 io_put_kbuf_comp(req); 1006 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1007 io_clean_op(req); 1008 io_put_file(req); 1009 1010 rsrc_node = req->rsrc_node; 1011 /* 1012 * Selected buffer deallocation in io_clean_op() assumes that 1013 * we don't hold ->completion_lock. Clean them here to avoid 1014 * deadlocks. 1015 */ 1016 io_put_task_remote(req->task); 1017 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1018 ctx->locked_free_nr++; 1019 } 1020 io_cq_unlock_post(ctx); 1021 1022 if (rsrc_node) { 1023 io_ring_submit_lock(ctx, issue_flags); 1024 io_put_rsrc_node(ctx, rsrc_node); 1025 io_ring_submit_unlock(ctx, issue_flags); 1026 } 1027 } 1028 1029 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1030 { 1031 if (req->ctx->task_complete && req->ctx->submitter_task != current) { 1032 req->io_task_work.func = io_req_task_complete; 1033 io_req_task_work_add(req); 1034 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1035 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 1036 __io_req_complete_post(req, issue_flags); 1037 } else { 1038 struct io_ring_ctx *ctx = req->ctx; 1039 1040 mutex_lock(&ctx->uring_lock); 1041 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); 1042 mutex_unlock(&ctx->uring_lock); 1043 } 1044 } 1045 1046 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1047 __must_hold(&ctx->uring_lock) 1048 { 1049 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1050 1051 lockdep_assert_held(&req->ctx->uring_lock); 1052 1053 req_set_fail(req); 1054 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1055 if (def->fail) 1056 def->fail(req); 1057 io_req_complete_defer(req); 1058 } 1059 1060 /* 1061 * Don't initialise the fields below on every allocation, but do that in 1062 * advance and keep them valid across allocations. 1063 */ 1064 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1065 { 1066 req->ctx = ctx; 1067 req->link = NULL; 1068 req->async_data = NULL; 1069 /* not necessary, but safer to zero */ 1070 memset(&req->cqe, 0, sizeof(req->cqe)); 1071 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 1072 } 1073 1074 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1075 struct io_submit_state *state) 1076 { 1077 spin_lock(&ctx->completion_lock); 1078 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1079 ctx->locked_free_nr = 0; 1080 spin_unlock(&ctx->completion_lock); 1081 } 1082 1083 /* 1084 * A request might get retired back into the request caches even before opcode 1085 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1086 * Because of that, io_alloc_req() should be called only under ->uring_lock 1087 * and with extra caution to not get a request that is still worked on. 1088 */ 1089 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1090 __must_hold(&ctx->uring_lock) 1091 { 1092 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1093 void *reqs[IO_REQ_ALLOC_BATCH]; 1094 int ret, i; 1095 1096 /* 1097 * If we have more than a batch's worth of requests in our IRQ side 1098 * locked cache, grab the lock and move them over to our submission 1099 * side cache. 1100 */ 1101 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1102 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1103 if (!io_req_cache_empty(ctx)) 1104 return true; 1105 } 1106 1107 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1108 1109 /* 1110 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1111 * retry single alloc to be on the safe side. 1112 */ 1113 if (unlikely(ret <= 0)) { 1114 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1115 if (!reqs[0]) 1116 return false; 1117 ret = 1; 1118 } 1119 1120 percpu_ref_get_many(&ctx->refs, ret); 1121 for (i = 0; i < ret; i++) { 1122 struct io_kiocb *req = reqs[i]; 1123 1124 io_preinit_req(req, ctx); 1125 io_req_add_to_cache(req, ctx); 1126 } 1127 return true; 1128 } 1129 1130 __cold void io_free_req(struct io_kiocb *req) 1131 { 1132 /* refs were already put, restore them for io_req_task_complete() */ 1133 req->flags &= ~REQ_F_REFCOUNT; 1134 /* we only want to free it, don't post CQEs */ 1135 req->flags |= REQ_F_CQE_SKIP; 1136 req->io_task_work.func = io_req_task_complete; 1137 io_req_task_work_add(req); 1138 } 1139 1140 static void __io_req_find_next_prep(struct io_kiocb *req) 1141 { 1142 struct io_ring_ctx *ctx = req->ctx; 1143 1144 spin_lock(&ctx->completion_lock); 1145 io_disarm_next(req); 1146 spin_unlock(&ctx->completion_lock); 1147 } 1148 1149 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1150 { 1151 struct io_kiocb *nxt; 1152 1153 /* 1154 * If LINK is set, we have dependent requests in this chain. If we 1155 * didn't fail this request, queue the first one up, moving any other 1156 * dependencies to the next request. In case of failure, fail the rest 1157 * of the chain. 1158 */ 1159 if (unlikely(req->flags & IO_DISARM_MASK)) 1160 __io_req_find_next_prep(req); 1161 nxt = req->link; 1162 req->link = NULL; 1163 return nxt; 1164 } 1165 1166 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1167 { 1168 if (!ctx) 1169 return; 1170 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1171 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1172 if (ts->locked) { 1173 io_submit_flush_completions(ctx); 1174 mutex_unlock(&ctx->uring_lock); 1175 ts->locked = false; 1176 } 1177 percpu_ref_put(&ctx->refs); 1178 } 1179 1180 static unsigned int handle_tw_list(struct llist_node *node, 1181 struct io_ring_ctx **ctx, 1182 struct io_tw_state *ts, 1183 struct llist_node *last) 1184 { 1185 unsigned int count = 0; 1186 1187 while (node && node != last) { 1188 struct llist_node *next = node->next; 1189 struct io_kiocb *req = container_of(node, struct io_kiocb, 1190 io_task_work.node); 1191 1192 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1193 1194 if (req->ctx != *ctx) { 1195 ctx_flush_and_put(*ctx, ts); 1196 *ctx = req->ctx; 1197 /* if not contended, grab and improve batching */ 1198 ts->locked = mutex_trylock(&(*ctx)->uring_lock); 1199 percpu_ref_get(&(*ctx)->refs); 1200 } 1201 INDIRECT_CALL_2(req->io_task_work.func, 1202 io_poll_task_func, io_req_rw_complete, 1203 req, ts); 1204 node = next; 1205 count++; 1206 if (unlikely(need_resched())) { 1207 ctx_flush_and_put(*ctx, ts); 1208 *ctx = NULL; 1209 cond_resched(); 1210 } 1211 } 1212 1213 return count; 1214 } 1215 1216 /** 1217 * io_llist_xchg - swap all entries in a lock-less list 1218 * @head: the head of lock-less list to delete all entries 1219 * @new: new entry as the head of the list 1220 * 1221 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1222 * The order of entries returned is from the newest to the oldest added one. 1223 */ 1224 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1225 struct llist_node *new) 1226 { 1227 return xchg(&head->first, new); 1228 } 1229 1230 /** 1231 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1232 * @head: the head of lock-less list to delete all entries 1233 * @old: expected old value of the first entry of the list 1234 * @new: new entry as the head of the list 1235 * 1236 * perform a cmpxchg on the first entry of the list. 1237 */ 1238 1239 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1240 struct llist_node *old, 1241 struct llist_node *new) 1242 { 1243 return cmpxchg(&head->first, old, new); 1244 } 1245 1246 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1247 { 1248 struct llist_node *node = llist_del_all(&tctx->task_list); 1249 struct io_ring_ctx *last_ctx = NULL; 1250 struct io_kiocb *req; 1251 1252 while (node) { 1253 req = container_of(node, struct io_kiocb, io_task_work.node); 1254 node = node->next; 1255 if (sync && last_ctx != req->ctx) { 1256 if (last_ctx) { 1257 flush_delayed_work(&last_ctx->fallback_work); 1258 percpu_ref_put(&last_ctx->refs); 1259 } 1260 last_ctx = req->ctx; 1261 percpu_ref_get(&last_ctx->refs); 1262 } 1263 if (llist_add(&req->io_task_work.node, 1264 &req->ctx->fallback_llist)) 1265 schedule_delayed_work(&req->ctx->fallback_work, 1); 1266 } 1267 1268 if (last_ctx) { 1269 flush_delayed_work(&last_ctx->fallback_work); 1270 percpu_ref_put(&last_ctx->refs); 1271 } 1272 } 1273 1274 void tctx_task_work(struct callback_head *cb) 1275 { 1276 struct io_tw_state ts = {}; 1277 struct io_ring_ctx *ctx = NULL; 1278 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1279 task_work); 1280 struct llist_node fake = {}; 1281 struct llist_node *node; 1282 unsigned int loops = 0; 1283 unsigned int count = 0; 1284 1285 if (unlikely(current->flags & PF_EXITING)) { 1286 io_fallback_tw(tctx, true); 1287 return; 1288 } 1289 1290 do { 1291 loops++; 1292 node = io_llist_xchg(&tctx->task_list, &fake); 1293 count += handle_tw_list(node, &ctx, &ts, &fake); 1294 1295 /* skip expensive cmpxchg if there are items in the list */ 1296 if (READ_ONCE(tctx->task_list.first) != &fake) 1297 continue; 1298 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) { 1299 io_submit_flush_completions(ctx); 1300 if (READ_ONCE(tctx->task_list.first) != &fake) 1301 continue; 1302 } 1303 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1304 } while (node != &fake); 1305 1306 ctx_flush_and_put(ctx, &ts); 1307 1308 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1309 if (unlikely(atomic_read(&tctx->in_cancel))) 1310 io_uring_drop_tctx_refs(current); 1311 1312 trace_io_uring_task_work_run(tctx, count, loops); 1313 } 1314 1315 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1316 { 1317 struct io_ring_ctx *ctx = req->ctx; 1318 unsigned nr_wait, nr_tw, nr_tw_prev; 1319 struct llist_node *first; 1320 1321 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1322 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1323 1324 first = READ_ONCE(ctx->work_llist.first); 1325 do { 1326 nr_tw_prev = 0; 1327 if (first) { 1328 struct io_kiocb *first_req = container_of(first, 1329 struct io_kiocb, 1330 io_task_work.node); 1331 /* 1332 * Might be executed at any moment, rely on 1333 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1334 */ 1335 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1336 } 1337 nr_tw = nr_tw_prev + 1; 1338 /* Large enough to fail the nr_wait comparison below */ 1339 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1340 nr_tw = -1U; 1341 1342 req->nr_tw = nr_tw; 1343 req->io_task_work.node.next = first; 1344 } while (!try_cmpxchg(&ctx->work_llist.first, &first, 1345 &req->io_task_work.node)); 1346 1347 if (!first) { 1348 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1349 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1350 if (ctx->has_evfd) 1351 io_eventfd_signal(ctx); 1352 } 1353 1354 nr_wait = atomic_read(&ctx->cq_wait_nr); 1355 /* no one is waiting */ 1356 if (!nr_wait) 1357 return; 1358 /* either not enough or the previous add has already woken it up */ 1359 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait) 1360 return; 1361 /* pairs with set_current_state() in io_cqring_wait() */ 1362 smp_mb__after_atomic(); 1363 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1364 } 1365 1366 static void io_req_normal_work_add(struct io_kiocb *req) 1367 { 1368 struct io_uring_task *tctx = req->task->io_uring; 1369 struct io_ring_ctx *ctx = req->ctx; 1370 1371 /* task_work already pending, we're done */ 1372 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1373 return; 1374 1375 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1376 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1377 1378 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1379 return; 1380 1381 io_fallback_tw(tctx, false); 1382 } 1383 1384 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1385 { 1386 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1387 rcu_read_lock(); 1388 io_req_local_work_add(req, flags); 1389 rcu_read_unlock(); 1390 } else { 1391 io_req_normal_work_add(req); 1392 } 1393 } 1394 1395 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1396 { 1397 struct llist_node *node; 1398 1399 node = llist_del_all(&ctx->work_llist); 1400 while (node) { 1401 struct io_kiocb *req = container_of(node, struct io_kiocb, 1402 io_task_work.node); 1403 1404 node = node->next; 1405 io_req_normal_work_add(req); 1406 } 1407 } 1408 1409 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1410 { 1411 struct llist_node *node; 1412 unsigned int loops = 0; 1413 int ret = 0; 1414 1415 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1416 return -EEXIST; 1417 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1418 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1419 again: 1420 /* 1421 * llists are in reverse order, flip it back the right way before 1422 * running the pending items. 1423 */ 1424 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1425 while (node) { 1426 struct llist_node *next = node->next; 1427 struct io_kiocb *req = container_of(node, struct io_kiocb, 1428 io_task_work.node); 1429 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1430 INDIRECT_CALL_2(req->io_task_work.func, 1431 io_poll_task_func, io_req_rw_complete, 1432 req, ts); 1433 ret++; 1434 node = next; 1435 } 1436 loops++; 1437 1438 if (!llist_empty(&ctx->work_llist)) 1439 goto again; 1440 if (ts->locked) { 1441 io_submit_flush_completions(ctx); 1442 if (!llist_empty(&ctx->work_llist)) 1443 goto again; 1444 } 1445 trace_io_uring_local_work_run(ctx, ret, loops); 1446 return ret; 1447 } 1448 1449 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx) 1450 { 1451 struct io_tw_state ts = { .locked = true, }; 1452 int ret; 1453 1454 if (llist_empty(&ctx->work_llist)) 1455 return 0; 1456 1457 ret = __io_run_local_work(ctx, &ts); 1458 /* shouldn't happen! */ 1459 if (WARN_ON_ONCE(!ts.locked)) 1460 mutex_lock(&ctx->uring_lock); 1461 return ret; 1462 } 1463 1464 static int io_run_local_work(struct io_ring_ctx *ctx) 1465 { 1466 struct io_tw_state ts = {}; 1467 int ret; 1468 1469 ts.locked = mutex_trylock(&ctx->uring_lock); 1470 ret = __io_run_local_work(ctx, &ts); 1471 if (ts.locked) 1472 mutex_unlock(&ctx->uring_lock); 1473 1474 return ret; 1475 } 1476 1477 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1478 { 1479 io_tw_lock(req->ctx, ts); 1480 io_req_defer_failed(req, req->cqe.res); 1481 } 1482 1483 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1484 { 1485 io_tw_lock(req->ctx, ts); 1486 /* req->task == current here, checking PF_EXITING is safe */ 1487 if (unlikely(req->task->flags & PF_EXITING)) 1488 io_req_defer_failed(req, -EFAULT); 1489 else if (req->flags & REQ_F_FORCE_ASYNC) 1490 io_queue_iowq(req, ts); 1491 else 1492 io_queue_sqe(req); 1493 } 1494 1495 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1496 { 1497 io_req_set_res(req, ret, 0); 1498 req->io_task_work.func = io_req_task_cancel; 1499 io_req_task_work_add(req); 1500 } 1501 1502 void io_req_task_queue(struct io_kiocb *req) 1503 { 1504 req->io_task_work.func = io_req_task_submit; 1505 io_req_task_work_add(req); 1506 } 1507 1508 void io_queue_next(struct io_kiocb *req) 1509 { 1510 struct io_kiocb *nxt = io_req_find_next(req); 1511 1512 if (nxt) 1513 io_req_task_queue(nxt); 1514 } 1515 1516 static void io_free_batch_list(struct io_ring_ctx *ctx, 1517 struct io_wq_work_node *node) 1518 __must_hold(&ctx->uring_lock) 1519 { 1520 do { 1521 struct io_kiocb *req = container_of(node, struct io_kiocb, 1522 comp_list); 1523 1524 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1525 if (req->flags & REQ_F_REFCOUNT) { 1526 node = req->comp_list.next; 1527 if (!req_ref_put_and_test(req)) 1528 continue; 1529 } 1530 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1531 struct async_poll *apoll = req->apoll; 1532 1533 if (apoll->double_poll) 1534 kfree(apoll->double_poll); 1535 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1536 kfree(apoll); 1537 req->flags &= ~REQ_F_POLLED; 1538 } 1539 if (req->flags & IO_REQ_LINK_FLAGS) 1540 io_queue_next(req); 1541 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1542 io_clean_op(req); 1543 } 1544 io_put_file(req); 1545 1546 io_req_put_rsrc_locked(req, ctx); 1547 1548 io_put_task(req->task); 1549 node = req->comp_list.next; 1550 io_req_add_to_cache(req, ctx); 1551 } while (node); 1552 } 1553 1554 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1555 __must_hold(&ctx->uring_lock) 1556 { 1557 struct io_submit_state *state = &ctx->submit_state; 1558 struct io_wq_work_node *node; 1559 1560 __io_cq_lock(ctx); 1561 /* must come first to preserve CQE ordering in failure cases */ 1562 if (state->cqes_count) 1563 __io_flush_post_cqes(ctx); 1564 __wq_list_for_each(node, &state->compl_reqs) { 1565 struct io_kiocb *req = container_of(node, struct io_kiocb, 1566 comp_list); 1567 1568 if (!(req->flags & REQ_F_CQE_SKIP) && 1569 unlikely(!io_fill_cqe_req(ctx, req))) { 1570 if (ctx->lockless_cq) { 1571 spin_lock(&ctx->completion_lock); 1572 io_req_cqe_overflow(req); 1573 spin_unlock(&ctx->completion_lock); 1574 } else { 1575 io_req_cqe_overflow(req); 1576 } 1577 } 1578 } 1579 __io_cq_unlock_post(ctx); 1580 1581 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1582 io_free_batch_list(ctx, state->compl_reqs.first); 1583 INIT_WQ_LIST(&state->compl_reqs); 1584 } 1585 } 1586 1587 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1588 { 1589 /* See comment at the top of this file */ 1590 smp_rmb(); 1591 return __io_cqring_events(ctx); 1592 } 1593 1594 /* 1595 * We can't just wait for polled events to come to us, we have to actively 1596 * find and complete them. 1597 */ 1598 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1599 { 1600 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1601 return; 1602 1603 mutex_lock(&ctx->uring_lock); 1604 while (!wq_list_empty(&ctx->iopoll_list)) { 1605 /* let it sleep and repeat later if can't complete a request */ 1606 if (io_do_iopoll(ctx, true) == 0) 1607 break; 1608 /* 1609 * Ensure we allow local-to-the-cpu processing to take place, 1610 * in this case we need to ensure that we reap all events. 1611 * Also let task_work, etc. to progress by releasing the mutex 1612 */ 1613 if (need_resched()) { 1614 mutex_unlock(&ctx->uring_lock); 1615 cond_resched(); 1616 mutex_lock(&ctx->uring_lock); 1617 } 1618 } 1619 mutex_unlock(&ctx->uring_lock); 1620 } 1621 1622 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1623 { 1624 unsigned int nr_events = 0; 1625 unsigned long check_cq; 1626 1627 if (!io_allowed_run_tw(ctx)) 1628 return -EEXIST; 1629 1630 check_cq = READ_ONCE(ctx->check_cq); 1631 if (unlikely(check_cq)) { 1632 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1633 __io_cqring_overflow_flush(ctx); 1634 /* 1635 * Similarly do not spin if we have not informed the user of any 1636 * dropped CQE. 1637 */ 1638 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1639 return -EBADR; 1640 } 1641 /* 1642 * Don't enter poll loop if we already have events pending. 1643 * If we do, we can potentially be spinning for commands that 1644 * already triggered a CQE (eg in error). 1645 */ 1646 if (io_cqring_events(ctx)) 1647 return 0; 1648 1649 do { 1650 int ret = 0; 1651 1652 /* 1653 * If a submit got punted to a workqueue, we can have the 1654 * application entering polling for a command before it gets 1655 * issued. That app will hold the uring_lock for the duration 1656 * of the poll right here, so we need to take a breather every 1657 * now and then to ensure that the issue has a chance to add 1658 * the poll to the issued list. Otherwise we can spin here 1659 * forever, while the workqueue is stuck trying to acquire the 1660 * very same mutex. 1661 */ 1662 if (wq_list_empty(&ctx->iopoll_list) || 1663 io_task_work_pending(ctx)) { 1664 u32 tail = ctx->cached_cq_tail; 1665 1666 (void) io_run_local_work_locked(ctx); 1667 1668 if (task_work_pending(current) || 1669 wq_list_empty(&ctx->iopoll_list)) { 1670 mutex_unlock(&ctx->uring_lock); 1671 io_run_task_work(); 1672 mutex_lock(&ctx->uring_lock); 1673 } 1674 /* some requests don't go through iopoll_list */ 1675 if (tail != ctx->cached_cq_tail || 1676 wq_list_empty(&ctx->iopoll_list)) 1677 break; 1678 } 1679 ret = io_do_iopoll(ctx, !min); 1680 if (unlikely(ret < 0)) 1681 return ret; 1682 1683 if (task_sigpending(current)) 1684 return -EINTR; 1685 if (need_resched()) 1686 break; 1687 1688 nr_events += ret; 1689 } while (nr_events < min); 1690 1691 return 0; 1692 } 1693 1694 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1695 { 1696 if (ts->locked) 1697 io_req_complete_defer(req); 1698 else 1699 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1700 } 1701 1702 /* 1703 * After the iocb has been issued, it's safe to be found on the poll list. 1704 * Adding the kiocb to the list AFTER submission ensures that we don't 1705 * find it from a io_do_iopoll() thread before the issuer is done 1706 * accessing the kiocb cookie. 1707 */ 1708 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1709 { 1710 struct io_ring_ctx *ctx = req->ctx; 1711 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1712 1713 /* workqueue context doesn't hold uring_lock, grab it now */ 1714 if (unlikely(needs_lock)) 1715 mutex_lock(&ctx->uring_lock); 1716 1717 /* 1718 * Track whether we have multiple files in our lists. This will impact 1719 * how we do polling eventually, not spinning if we're on potentially 1720 * different devices. 1721 */ 1722 if (wq_list_empty(&ctx->iopoll_list)) { 1723 ctx->poll_multi_queue = false; 1724 } else if (!ctx->poll_multi_queue) { 1725 struct io_kiocb *list_req; 1726 1727 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1728 comp_list); 1729 if (list_req->file != req->file) 1730 ctx->poll_multi_queue = true; 1731 } 1732 1733 /* 1734 * For fast devices, IO may have already completed. If it has, add 1735 * it to the front so we find it first. 1736 */ 1737 if (READ_ONCE(req->iopoll_completed)) 1738 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1739 else 1740 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1741 1742 if (unlikely(needs_lock)) { 1743 /* 1744 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1745 * in sq thread task context or in io worker task context. If 1746 * current task context is sq thread, we don't need to check 1747 * whether should wake up sq thread. 1748 */ 1749 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1750 wq_has_sleeper(&ctx->sq_data->wait)) 1751 wake_up(&ctx->sq_data->wait); 1752 1753 mutex_unlock(&ctx->uring_lock); 1754 } 1755 } 1756 1757 unsigned int io_file_get_flags(struct file *file) 1758 { 1759 unsigned int res = 0; 1760 1761 if (S_ISREG(file_inode(file)->i_mode)) 1762 res |= REQ_F_ISREG; 1763 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1764 res |= REQ_F_SUPPORT_NOWAIT; 1765 return res; 1766 } 1767 1768 bool io_alloc_async_data(struct io_kiocb *req) 1769 { 1770 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1771 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1772 if (req->async_data) { 1773 req->flags |= REQ_F_ASYNC_DATA; 1774 return false; 1775 } 1776 return true; 1777 } 1778 1779 int io_req_prep_async(struct io_kiocb *req) 1780 { 1781 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1782 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1783 1784 /* assign early for deferred execution for non-fixed file */ 1785 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1786 req->file = io_file_get_normal(req, req->cqe.fd); 1787 if (!cdef->prep_async) 1788 return 0; 1789 if (WARN_ON_ONCE(req_has_async_data(req))) 1790 return -EFAULT; 1791 if (!def->manual_alloc) { 1792 if (io_alloc_async_data(req)) 1793 return -EAGAIN; 1794 } 1795 return cdef->prep_async(req); 1796 } 1797 1798 static u32 io_get_sequence(struct io_kiocb *req) 1799 { 1800 u32 seq = req->ctx->cached_sq_head; 1801 struct io_kiocb *cur; 1802 1803 /* need original cached_sq_head, but it was increased for each req */ 1804 io_for_each_link(cur, req) 1805 seq--; 1806 return seq; 1807 } 1808 1809 static __cold void io_drain_req(struct io_kiocb *req) 1810 __must_hold(&ctx->uring_lock) 1811 { 1812 struct io_ring_ctx *ctx = req->ctx; 1813 struct io_defer_entry *de; 1814 int ret; 1815 u32 seq = io_get_sequence(req); 1816 1817 /* Still need defer if there is pending req in defer list. */ 1818 spin_lock(&ctx->completion_lock); 1819 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1820 spin_unlock(&ctx->completion_lock); 1821 queue: 1822 ctx->drain_active = false; 1823 io_req_task_queue(req); 1824 return; 1825 } 1826 spin_unlock(&ctx->completion_lock); 1827 1828 io_prep_async_link(req); 1829 de = kmalloc(sizeof(*de), GFP_KERNEL); 1830 if (!de) { 1831 ret = -ENOMEM; 1832 io_req_defer_failed(req, ret); 1833 return; 1834 } 1835 1836 spin_lock(&ctx->completion_lock); 1837 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1838 spin_unlock(&ctx->completion_lock); 1839 kfree(de); 1840 goto queue; 1841 } 1842 1843 trace_io_uring_defer(req); 1844 de->req = req; 1845 de->seq = seq; 1846 list_add_tail(&de->list, &ctx->defer_list); 1847 spin_unlock(&ctx->completion_lock); 1848 } 1849 1850 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1851 unsigned int issue_flags) 1852 { 1853 if (req->file || !def->needs_file) 1854 return true; 1855 1856 if (req->flags & REQ_F_FIXED_FILE) 1857 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1858 else 1859 req->file = io_file_get_normal(req, req->cqe.fd); 1860 1861 return !!req->file; 1862 } 1863 1864 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1865 { 1866 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1867 const struct cred *creds = NULL; 1868 int ret; 1869 1870 if (unlikely(!io_assign_file(req, def, issue_flags))) 1871 return -EBADF; 1872 1873 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1874 creds = override_creds(req->creds); 1875 1876 if (!def->audit_skip) 1877 audit_uring_entry(req->opcode); 1878 1879 ret = def->issue(req, issue_flags); 1880 1881 if (!def->audit_skip) 1882 audit_uring_exit(!ret, ret); 1883 1884 if (creds) 1885 revert_creds(creds); 1886 1887 if (ret == IOU_OK) { 1888 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1889 io_req_complete_defer(req); 1890 else 1891 io_req_complete_post(req, issue_flags); 1892 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1893 return ret; 1894 1895 /* If the op doesn't have a file, we're not polling for it */ 1896 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1897 io_iopoll_req_issued(req, issue_flags); 1898 1899 return 0; 1900 } 1901 1902 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1903 { 1904 io_tw_lock(req->ctx, ts); 1905 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1906 IO_URING_F_COMPLETE_DEFER); 1907 } 1908 1909 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1910 { 1911 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1912 struct io_kiocb *nxt = NULL; 1913 1914 if (req_ref_put_and_test(req)) { 1915 if (req->flags & IO_REQ_LINK_FLAGS) 1916 nxt = io_req_find_next(req); 1917 io_free_req(req); 1918 } 1919 return nxt ? &nxt->work : NULL; 1920 } 1921 1922 void io_wq_submit_work(struct io_wq_work *work) 1923 { 1924 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1925 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1926 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1927 bool needs_poll = false; 1928 int ret = 0, err = -ECANCELED; 1929 1930 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1931 if (!(req->flags & REQ_F_REFCOUNT)) 1932 __io_req_set_refcount(req, 2); 1933 else 1934 req_ref_get(req); 1935 1936 io_arm_ltimeout(req); 1937 1938 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1939 if (work->flags & IO_WQ_WORK_CANCEL) { 1940 fail: 1941 io_req_task_queue_fail(req, err); 1942 return; 1943 } 1944 if (!io_assign_file(req, def, issue_flags)) { 1945 err = -EBADF; 1946 work->flags |= IO_WQ_WORK_CANCEL; 1947 goto fail; 1948 } 1949 1950 if (req->flags & REQ_F_FORCE_ASYNC) { 1951 bool opcode_poll = def->pollin || def->pollout; 1952 1953 if (opcode_poll && file_can_poll(req->file)) { 1954 needs_poll = true; 1955 issue_flags |= IO_URING_F_NONBLOCK; 1956 } 1957 } 1958 1959 do { 1960 ret = io_issue_sqe(req, issue_flags); 1961 if (ret != -EAGAIN) 1962 break; 1963 1964 /* 1965 * If REQ_F_NOWAIT is set, then don't wait or retry with 1966 * poll. -EAGAIN is final for that case. 1967 */ 1968 if (req->flags & REQ_F_NOWAIT) 1969 break; 1970 1971 /* 1972 * We can get EAGAIN for iopolled IO even though we're 1973 * forcing a sync submission from here, since we can't 1974 * wait for request slots on the block side. 1975 */ 1976 if (!needs_poll) { 1977 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1978 break; 1979 if (io_wq_worker_stopped()) 1980 break; 1981 cond_resched(); 1982 continue; 1983 } 1984 1985 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1986 return; 1987 /* aborted or ready, in either case retry blocking */ 1988 needs_poll = false; 1989 issue_flags &= ~IO_URING_F_NONBLOCK; 1990 } while (1); 1991 1992 /* avoid locking problems by failing it from a clean context */ 1993 if (ret < 0) 1994 io_req_task_queue_fail(req, ret); 1995 } 1996 1997 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1998 unsigned int issue_flags) 1999 { 2000 struct io_ring_ctx *ctx = req->ctx; 2001 struct io_fixed_file *slot; 2002 struct file *file = NULL; 2003 2004 io_ring_submit_lock(ctx, issue_flags); 2005 2006 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 2007 goto out; 2008 fd = array_index_nospec(fd, ctx->nr_user_files); 2009 slot = io_fixed_file_slot(&ctx->file_table, fd); 2010 file = io_slot_file(slot); 2011 req->flags |= io_slot_flags(slot); 2012 io_req_set_rsrc_node(req, ctx, 0); 2013 out: 2014 io_ring_submit_unlock(ctx, issue_flags); 2015 return file; 2016 } 2017 2018 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 2019 { 2020 struct file *file = fget(fd); 2021 2022 trace_io_uring_file_get(req, fd); 2023 2024 /* we don't allow fixed io_uring files */ 2025 if (file && io_is_uring_fops(file)) 2026 io_req_track_inflight(req); 2027 return file; 2028 } 2029 2030 static void io_queue_async(struct io_kiocb *req, int ret) 2031 __must_hold(&req->ctx->uring_lock) 2032 { 2033 struct io_kiocb *linked_timeout; 2034 2035 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2036 io_req_defer_failed(req, ret); 2037 return; 2038 } 2039 2040 linked_timeout = io_prep_linked_timeout(req); 2041 2042 switch (io_arm_poll_handler(req, 0)) { 2043 case IO_APOLL_READY: 2044 io_kbuf_recycle(req, 0); 2045 io_req_task_queue(req); 2046 break; 2047 case IO_APOLL_ABORTED: 2048 io_kbuf_recycle(req, 0); 2049 io_queue_iowq(req, NULL); 2050 break; 2051 case IO_APOLL_OK: 2052 break; 2053 } 2054 2055 if (linked_timeout) 2056 io_queue_linked_timeout(linked_timeout); 2057 } 2058 2059 static inline void io_queue_sqe(struct io_kiocb *req) 2060 __must_hold(&req->ctx->uring_lock) 2061 { 2062 int ret; 2063 2064 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2065 2066 /* 2067 * We async punt it if the file wasn't marked NOWAIT, or if the file 2068 * doesn't support non-blocking read/write attempts 2069 */ 2070 if (likely(!ret)) 2071 io_arm_ltimeout(req); 2072 else 2073 io_queue_async(req, ret); 2074 } 2075 2076 static void io_queue_sqe_fallback(struct io_kiocb *req) 2077 __must_hold(&req->ctx->uring_lock) 2078 { 2079 if (unlikely(req->flags & REQ_F_FAIL)) { 2080 /* 2081 * We don't submit, fail them all, for that replace hardlinks 2082 * with normal links. Extra REQ_F_LINK is tolerated. 2083 */ 2084 req->flags &= ~REQ_F_HARDLINK; 2085 req->flags |= REQ_F_LINK; 2086 io_req_defer_failed(req, req->cqe.res); 2087 } else { 2088 int ret = io_req_prep_async(req); 2089 2090 if (unlikely(ret)) { 2091 io_req_defer_failed(req, ret); 2092 return; 2093 } 2094 2095 if (unlikely(req->ctx->drain_active)) 2096 io_drain_req(req); 2097 else 2098 io_queue_iowq(req, NULL); 2099 } 2100 } 2101 2102 /* 2103 * Check SQE restrictions (opcode and flags). 2104 * 2105 * Returns 'true' if SQE is allowed, 'false' otherwise. 2106 */ 2107 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2108 struct io_kiocb *req, 2109 unsigned int sqe_flags) 2110 { 2111 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2112 return false; 2113 2114 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2115 ctx->restrictions.sqe_flags_required) 2116 return false; 2117 2118 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2119 ctx->restrictions.sqe_flags_required)) 2120 return false; 2121 2122 return true; 2123 } 2124 2125 static void io_init_req_drain(struct io_kiocb *req) 2126 { 2127 struct io_ring_ctx *ctx = req->ctx; 2128 struct io_kiocb *head = ctx->submit_state.link.head; 2129 2130 ctx->drain_active = true; 2131 if (head) { 2132 /* 2133 * If we need to drain a request in the middle of a link, drain 2134 * the head request and the next request/link after the current 2135 * link. Considering sequential execution of links, 2136 * REQ_F_IO_DRAIN will be maintained for every request of our 2137 * link. 2138 */ 2139 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2140 ctx->drain_next = true; 2141 } 2142 } 2143 2144 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2145 const struct io_uring_sqe *sqe) 2146 __must_hold(&ctx->uring_lock) 2147 { 2148 const struct io_issue_def *def; 2149 unsigned int sqe_flags; 2150 int personality; 2151 u8 opcode; 2152 2153 /* req is partially pre-initialised, see io_preinit_req() */ 2154 req->opcode = opcode = READ_ONCE(sqe->opcode); 2155 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2156 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2157 req->cqe.user_data = READ_ONCE(sqe->user_data); 2158 req->file = NULL; 2159 req->rsrc_node = NULL; 2160 req->task = current; 2161 2162 if (unlikely(opcode >= IORING_OP_LAST)) { 2163 req->opcode = 0; 2164 return -EINVAL; 2165 } 2166 def = &io_issue_defs[opcode]; 2167 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2168 /* enforce forwards compatibility on users */ 2169 if (sqe_flags & ~SQE_VALID_FLAGS) 2170 return -EINVAL; 2171 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2172 if (!def->buffer_select) 2173 return -EOPNOTSUPP; 2174 req->buf_index = READ_ONCE(sqe->buf_group); 2175 } 2176 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2177 ctx->drain_disabled = true; 2178 if (sqe_flags & IOSQE_IO_DRAIN) { 2179 if (ctx->drain_disabled) 2180 return -EOPNOTSUPP; 2181 io_init_req_drain(req); 2182 } 2183 } 2184 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2185 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2186 return -EACCES; 2187 /* knock it to the slow queue path, will be drained there */ 2188 if (ctx->drain_active) 2189 req->flags |= REQ_F_FORCE_ASYNC; 2190 /* if there is no link, we're at "next" request and need to drain */ 2191 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2192 ctx->drain_next = false; 2193 ctx->drain_active = true; 2194 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2195 } 2196 } 2197 2198 if (!def->ioprio && sqe->ioprio) 2199 return -EINVAL; 2200 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2201 return -EINVAL; 2202 2203 if (def->needs_file) { 2204 struct io_submit_state *state = &ctx->submit_state; 2205 2206 req->cqe.fd = READ_ONCE(sqe->fd); 2207 2208 /* 2209 * Plug now if we have more than 2 IO left after this, and the 2210 * target is potentially a read/write to block based storage. 2211 */ 2212 if (state->need_plug && def->plug) { 2213 state->plug_started = true; 2214 state->need_plug = false; 2215 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2216 } 2217 } 2218 2219 personality = READ_ONCE(sqe->personality); 2220 if (personality) { 2221 int ret; 2222 2223 req->creds = xa_load(&ctx->personalities, personality); 2224 if (!req->creds) 2225 return -EINVAL; 2226 get_cred(req->creds); 2227 ret = security_uring_override_creds(req->creds); 2228 if (ret) { 2229 put_cred(req->creds); 2230 return ret; 2231 } 2232 req->flags |= REQ_F_CREDS; 2233 } 2234 2235 return def->prep(req, sqe); 2236 } 2237 2238 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2239 struct io_kiocb *req, int ret) 2240 { 2241 struct io_ring_ctx *ctx = req->ctx; 2242 struct io_submit_link *link = &ctx->submit_state.link; 2243 struct io_kiocb *head = link->head; 2244 2245 trace_io_uring_req_failed(sqe, req, ret); 2246 2247 /* 2248 * Avoid breaking links in the middle as it renders links with SQPOLL 2249 * unusable. Instead of failing eagerly, continue assembling the link if 2250 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2251 * should find the flag and handle the rest. 2252 */ 2253 req_fail_link_node(req, ret); 2254 if (head && !(head->flags & REQ_F_FAIL)) 2255 req_fail_link_node(head, -ECANCELED); 2256 2257 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2258 if (head) { 2259 link->last->link = req; 2260 link->head = NULL; 2261 req = head; 2262 } 2263 io_queue_sqe_fallback(req); 2264 return ret; 2265 } 2266 2267 if (head) 2268 link->last->link = req; 2269 else 2270 link->head = req; 2271 link->last = req; 2272 return 0; 2273 } 2274 2275 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2276 const struct io_uring_sqe *sqe) 2277 __must_hold(&ctx->uring_lock) 2278 { 2279 struct io_submit_link *link = &ctx->submit_state.link; 2280 int ret; 2281 2282 ret = io_init_req(ctx, req, sqe); 2283 if (unlikely(ret)) 2284 return io_submit_fail_init(sqe, req, ret); 2285 2286 trace_io_uring_submit_req(req); 2287 2288 /* 2289 * If we already have a head request, queue this one for async 2290 * submittal once the head completes. If we don't have a head but 2291 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2292 * submitted sync once the chain is complete. If none of those 2293 * conditions are true (normal request), then just queue it. 2294 */ 2295 if (unlikely(link->head)) { 2296 ret = io_req_prep_async(req); 2297 if (unlikely(ret)) 2298 return io_submit_fail_init(sqe, req, ret); 2299 2300 trace_io_uring_link(req, link->head); 2301 link->last->link = req; 2302 link->last = req; 2303 2304 if (req->flags & IO_REQ_LINK_FLAGS) 2305 return 0; 2306 /* last request of the link, flush it */ 2307 req = link->head; 2308 link->head = NULL; 2309 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2310 goto fallback; 2311 2312 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2313 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2314 if (req->flags & IO_REQ_LINK_FLAGS) { 2315 link->head = req; 2316 link->last = req; 2317 } else { 2318 fallback: 2319 io_queue_sqe_fallback(req); 2320 } 2321 return 0; 2322 } 2323 2324 io_queue_sqe(req); 2325 return 0; 2326 } 2327 2328 /* 2329 * Batched submission is done, ensure local IO is flushed out. 2330 */ 2331 static void io_submit_state_end(struct io_ring_ctx *ctx) 2332 { 2333 struct io_submit_state *state = &ctx->submit_state; 2334 2335 if (unlikely(state->link.head)) 2336 io_queue_sqe_fallback(state->link.head); 2337 /* flush only after queuing links as they can generate completions */ 2338 io_submit_flush_completions(ctx); 2339 if (state->plug_started) 2340 blk_finish_plug(&state->plug); 2341 } 2342 2343 /* 2344 * Start submission side cache. 2345 */ 2346 static void io_submit_state_start(struct io_submit_state *state, 2347 unsigned int max_ios) 2348 { 2349 state->plug_started = false; 2350 state->need_plug = max_ios > 2; 2351 state->submit_nr = max_ios; 2352 /* set only head, no need to init link_last in advance */ 2353 state->link.head = NULL; 2354 } 2355 2356 static void io_commit_sqring(struct io_ring_ctx *ctx) 2357 { 2358 struct io_rings *rings = ctx->rings; 2359 2360 /* 2361 * Ensure any loads from the SQEs are done at this point, 2362 * since once we write the new head, the application could 2363 * write new data to them. 2364 */ 2365 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2366 } 2367 2368 /* 2369 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2370 * that is mapped by userspace. This means that care needs to be taken to 2371 * ensure that reads are stable, as we cannot rely on userspace always 2372 * being a good citizen. If members of the sqe are validated and then later 2373 * used, it's important that those reads are done through READ_ONCE() to 2374 * prevent a re-load down the line. 2375 */ 2376 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2377 { 2378 unsigned mask = ctx->sq_entries - 1; 2379 unsigned head = ctx->cached_sq_head++ & mask; 2380 2381 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) { 2382 head = READ_ONCE(ctx->sq_array[head]); 2383 if (unlikely(head >= ctx->sq_entries)) { 2384 /* drop invalid entries */ 2385 spin_lock(&ctx->completion_lock); 2386 ctx->cq_extra--; 2387 spin_unlock(&ctx->completion_lock); 2388 WRITE_ONCE(ctx->rings->sq_dropped, 2389 READ_ONCE(ctx->rings->sq_dropped) + 1); 2390 return false; 2391 } 2392 } 2393 2394 /* 2395 * The cached sq head (or cq tail) serves two purposes: 2396 * 2397 * 1) allows us to batch the cost of updating the user visible 2398 * head updates. 2399 * 2) allows the kernel side to track the head on its own, even 2400 * though the application is the one updating it. 2401 */ 2402 2403 /* double index for 128-byte SQEs, twice as long */ 2404 if (ctx->flags & IORING_SETUP_SQE128) 2405 head <<= 1; 2406 *sqe = &ctx->sq_sqes[head]; 2407 return true; 2408 } 2409 2410 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2411 __must_hold(&ctx->uring_lock) 2412 { 2413 unsigned int entries = io_sqring_entries(ctx); 2414 unsigned int left; 2415 int ret; 2416 2417 if (unlikely(!entries)) 2418 return 0; 2419 /* make sure SQ entry isn't read before tail */ 2420 ret = left = min(nr, entries); 2421 io_get_task_refs(left); 2422 io_submit_state_start(&ctx->submit_state, left); 2423 2424 do { 2425 const struct io_uring_sqe *sqe; 2426 struct io_kiocb *req; 2427 2428 if (unlikely(!io_alloc_req(ctx, &req))) 2429 break; 2430 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2431 io_req_add_to_cache(req, ctx); 2432 break; 2433 } 2434 2435 /* 2436 * Continue submitting even for sqe failure if the 2437 * ring was setup with IORING_SETUP_SUBMIT_ALL 2438 */ 2439 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2440 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2441 left--; 2442 break; 2443 } 2444 } while (--left); 2445 2446 if (unlikely(left)) { 2447 ret -= left; 2448 /* try again if it submitted nothing and can't allocate a req */ 2449 if (!ret && io_req_cache_empty(ctx)) 2450 ret = -EAGAIN; 2451 current->io_uring->cached_refs += left; 2452 } 2453 2454 io_submit_state_end(ctx); 2455 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2456 io_commit_sqring(ctx); 2457 return ret; 2458 } 2459 2460 struct io_wait_queue { 2461 struct wait_queue_entry wq; 2462 struct io_ring_ctx *ctx; 2463 unsigned cq_tail; 2464 unsigned nr_timeouts; 2465 ktime_t timeout; 2466 }; 2467 2468 static inline bool io_has_work(struct io_ring_ctx *ctx) 2469 { 2470 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2471 !llist_empty(&ctx->work_llist); 2472 } 2473 2474 static inline bool io_should_wake(struct io_wait_queue *iowq) 2475 { 2476 struct io_ring_ctx *ctx = iowq->ctx; 2477 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2478 2479 /* 2480 * Wake up if we have enough events, or if a timeout occurred since we 2481 * started waiting. For timeouts, we always want to return to userspace, 2482 * regardless of event count. 2483 */ 2484 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2485 } 2486 2487 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2488 int wake_flags, void *key) 2489 { 2490 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2491 2492 /* 2493 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2494 * the task, and the next invocation will do it. 2495 */ 2496 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2497 return autoremove_wake_function(curr, mode, wake_flags, key); 2498 return -1; 2499 } 2500 2501 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2502 { 2503 if (!llist_empty(&ctx->work_llist)) { 2504 __set_current_state(TASK_RUNNING); 2505 if (io_run_local_work(ctx) > 0) 2506 return 0; 2507 } 2508 if (io_run_task_work() > 0) 2509 return 0; 2510 if (task_sigpending(current)) 2511 return -EINTR; 2512 return 0; 2513 } 2514 2515 static bool current_pending_io(void) 2516 { 2517 struct io_uring_task *tctx = current->io_uring; 2518 2519 if (!tctx) 2520 return false; 2521 return percpu_counter_read_positive(&tctx->inflight); 2522 } 2523 2524 /* when returns >0, the caller should retry */ 2525 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2526 struct io_wait_queue *iowq) 2527 { 2528 int io_wait, ret; 2529 2530 if (unlikely(READ_ONCE(ctx->check_cq))) 2531 return 1; 2532 if (unlikely(!llist_empty(&ctx->work_llist))) 2533 return 1; 2534 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) 2535 return 1; 2536 if (unlikely(task_sigpending(current))) 2537 return -EINTR; 2538 if (unlikely(io_should_wake(iowq))) 2539 return 0; 2540 2541 /* 2542 * Mark us as being in io_wait if we have pending requests, so cpufreq 2543 * can take into account that the task is waiting for IO - turns out 2544 * to be important for low QD IO. 2545 */ 2546 io_wait = current->in_iowait; 2547 if (current_pending_io()) 2548 current->in_iowait = 1; 2549 ret = 0; 2550 if (iowq->timeout == KTIME_MAX) 2551 schedule(); 2552 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2553 ret = -ETIME; 2554 current->in_iowait = io_wait; 2555 return ret; 2556 } 2557 2558 /* 2559 * Wait until events become available, if we don't already have some. The 2560 * application must reap them itself, as they reside on the shared cq ring. 2561 */ 2562 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2563 const sigset_t __user *sig, size_t sigsz, 2564 struct __kernel_timespec __user *uts) 2565 { 2566 struct io_wait_queue iowq; 2567 struct io_rings *rings = ctx->rings; 2568 int ret; 2569 2570 if (!io_allowed_run_tw(ctx)) 2571 return -EEXIST; 2572 if (!llist_empty(&ctx->work_llist)) 2573 io_run_local_work(ctx); 2574 io_run_task_work(); 2575 io_cqring_overflow_flush(ctx); 2576 /* if user messes with these they will just get an early return */ 2577 if (__io_cqring_events_user(ctx) >= min_events) 2578 return 0; 2579 2580 if (sig) { 2581 #ifdef CONFIG_COMPAT 2582 if (in_compat_syscall()) 2583 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2584 sigsz); 2585 else 2586 #endif 2587 ret = set_user_sigmask(sig, sigsz); 2588 2589 if (ret) 2590 return ret; 2591 } 2592 2593 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2594 iowq.wq.private = current; 2595 INIT_LIST_HEAD(&iowq.wq.entry); 2596 iowq.ctx = ctx; 2597 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2598 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2599 iowq.timeout = KTIME_MAX; 2600 2601 if (uts) { 2602 struct timespec64 ts; 2603 2604 if (get_timespec64(&ts, uts)) 2605 return -EFAULT; 2606 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2607 } 2608 2609 trace_io_uring_cqring_wait(ctx, min_events); 2610 do { 2611 unsigned long check_cq; 2612 2613 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2614 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2615 2616 atomic_set(&ctx->cq_wait_nr, nr_wait); 2617 set_current_state(TASK_INTERRUPTIBLE); 2618 } else { 2619 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2620 TASK_INTERRUPTIBLE); 2621 } 2622 2623 ret = io_cqring_wait_schedule(ctx, &iowq); 2624 __set_current_state(TASK_RUNNING); 2625 atomic_set(&ctx->cq_wait_nr, 0); 2626 2627 if (ret < 0) 2628 break; 2629 /* 2630 * Run task_work after scheduling and before io_should_wake(). 2631 * If we got woken because of task_work being processed, run it 2632 * now rather than let the caller do another wait loop. 2633 */ 2634 io_run_task_work(); 2635 if (!llist_empty(&ctx->work_llist)) 2636 io_run_local_work(ctx); 2637 2638 check_cq = READ_ONCE(ctx->check_cq); 2639 if (unlikely(check_cq)) { 2640 /* let the caller flush overflows, retry */ 2641 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2642 io_cqring_do_overflow_flush(ctx); 2643 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2644 ret = -EBADR; 2645 break; 2646 } 2647 } 2648 2649 if (io_should_wake(&iowq)) { 2650 ret = 0; 2651 break; 2652 } 2653 cond_resched(); 2654 } while (1); 2655 2656 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2657 finish_wait(&ctx->cq_wait, &iowq.wq); 2658 restore_saved_sigmask_unless(ret == -EINTR); 2659 2660 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2661 } 2662 2663 void io_mem_free(void *ptr) 2664 { 2665 if (!ptr) 2666 return; 2667 2668 folio_put(virt_to_folio(ptr)); 2669 } 2670 2671 static void io_pages_free(struct page ***pages, int npages) 2672 { 2673 struct page **page_array; 2674 int i; 2675 2676 if (!pages) 2677 return; 2678 2679 page_array = *pages; 2680 if (!page_array) 2681 return; 2682 2683 for (i = 0; i < npages; i++) 2684 unpin_user_page(page_array[i]); 2685 kvfree(page_array); 2686 *pages = NULL; 2687 } 2688 2689 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, 2690 unsigned long uaddr, size_t size) 2691 { 2692 struct page **page_array; 2693 unsigned int nr_pages; 2694 void *page_addr; 2695 int ret, i; 2696 2697 *npages = 0; 2698 2699 if (uaddr & (PAGE_SIZE - 1) || !size) 2700 return ERR_PTR(-EINVAL); 2701 2702 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2703 if (nr_pages > USHRT_MAX) 2704 return ERR_PTR(-EINVAL); 2705 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); 2706 if (!page_array) 2707 return ERR_PTR(-ENOMEM); 2708 2709 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, 2710 page_array); 2711 if (ret != nr_pages) { 2712 err: 2713 io_pages_free(&page_array, ret > 0 ? ret : 0); 2714 return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT); 2715 } 2716 2717 page_addr = page_address(page_array[0]); 2718 for (i = 0; i < nr_pages; i++) { 2719 ret = -EINVAL; 2720 2721 /* 2722 * Can't support mapping user allocated ring memory on 32-bit 2723 * archs where it could potentially reside in highmem. Just 2724 * fail those with -EINVAL, just like we did on kernels that 2725 * didn't support this feature. 2726 */ 2727 if (PageHighMem(page_array[i])) 2728 goto err; 2729 2730 /* 2731 * No support for discontig pages for now, should either be a 2732 * single normal page, or a huge page. Later on we can add 2733 * support for remapping discontig pages, for now we will 2734 * just fail them with EINVAL. 2735 */ 2736 if (page_address(page_array[i]) != page_addr) 2737 goto err; 2738 page_addr += PAGE_SIZE; 2739 } 2740 2741 *pages = page_array; 2742 *npages = nr_pages; 2743 return page_to_virt(page_array[0]); 2744 } 2745 2746 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2747 size_t size) 2748 { 2749 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2750 size); 2751 } 2752 2753 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2754 size_t size) 2755 { 2756 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2757 size); 2758 } 2759 2760 static void io_rings_free(struct io_ring_ctx *ctx) 2761 { 2762 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2763 io_mem_free(ctx->rings); 2764 io_mem_free(ctx->sq_sqes); 2765 ctx->rings = NULL; 2766 ctx->sq_sqes = NULL; 2767 } else { 2768 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2769 ctx->n_ring_pages = 0; 2770 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2771 ctx->n_sqe_pages = 0; 2772 } 2773 } 2774 2775 void *io_mem_alloc(size_t size) 2776 { 2777 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2778 void *ret; 2779 2780 ret = (void *) __get_free_pages(gfp, get_order(size)); 2781 if (ret) 2782 return ret; 2783 return ERR_PTR(-ENOMEM); 2784 } 2785 2786 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2787 unsigned int cq_entries, size_t *sq_offset) 2788 { 2789 struct io_rings *rings; 2790 size_t off, sq_array_size; 2791 2792 off = struct_size(rings, cqes, cq_entries); 2793 if (off == SIZE_MAX) 2794 return SIZE_MAX; 2795 if (ctx->flags & IORING_SETUP_CQE32) { 2796 if (check_shl_overflow(off, 1, &off)) 2797 return SIZE_MAX; 2798 } 2799 2800 #ifdef CONFIG_SMP 2801 off = ALIGN(off, SMP_CACHE_BYTES); 2802 if (off == 0) 2803 return SIZE_MAX; 2804 #endif 2805 2806 if (ctx->flags & IORING_SETUP_NO_SQARRAY) { 2807 if (sq_offset) 2808 *sq_offset = SIZE_MAX; 2809 return off; 2810 } 2811 2812 if (sq_offset) 2813 *sq_offset = off; 2814 2815 sq_array_size = array_size(sizeof(u32), sq_entries); 2816 if (sq_array_size == SIZE_MAX) 2817 return SIZE_MAX; 2818 2819 if (check_add_overflow(off, sq_array_size, &off)) 2820 return SIZE_MAX; 2821 2822 return off; 2823 } 2824 2825 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2826 unsigned int eventfd_async) 2827 { 2828 struct io_ev_fd *ev_fd; 2829 __s32 __user *fds = arg; 2830 int fd; 2831 2832 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2833 lockdep_is_held(&ctx->uring_lock)); 2834 if (ev_fd) 2835 return -EBUSY; 2836 2837 if (copy_from_user(&fd, fds, sizeof(*fds))) 2838 return -EFAULT; 2839 2840 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2841 if (!ev_fd) 2842 return -ENOMEM; 2843 2844 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2845 if (IS_ERR(ev_fd->cq_ev_fd)) { 2846 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2847 kfree(ev_fd); 2848 return ret; 2849 } 2850 2851 spin_lock(&ctx->completion_lock); 2852 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2853 spin_unlock(&ctx->completion_lock); 2854 2855 ev_fd->eventfd_async = eventfd_async; 2856 ctx->has_evfd = true; 2857 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2858 atomic_set(&ev_fd->refs, 1); 2859 atomic_set(&ev_fd->ops, 0); 2860 return 0; 2861 } 2862 2863 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2864 { 2865 struct io_ev_fd *ev_fd; 2866 2867 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2868 lockdep_is_held(&ctx->uring_lock)); 2869 if (ev_fd) { 2870 ctx->has_evfd = false; 2871 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2872 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2873 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2874 return 0; 2875 } 2876 2877 return -ENXIO; 2878 } 2879 2880 static void io_req_caches_free(struct io_ring_ctx *ctx) 2881 { 2882 struct io_kiocb *req; 2883 int nr = 0; 2884 2885 mutex_lock(&ctx->uring_lock); 2886 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2887 2888 while (!io_req_cache_empty(ctx)) { 2889 req = io_extract_req(ctx); 2890 kmem_cache_free(req_cachep, req); 2891 nr++; 2892 } 2893 if (nr) 2894 percpu_ref_put_many(&ctx->refs, nr); 2895 mutex_unlock(&ctx->uring_lock); 2896 } 2897 2898 static void io_rsrc_node_cache_free(struct io_cache_entry *entry) 2899 { 2900 kfree(container_of(entry, struct io_rsrc_node, cache)); 2901 } 2902 2903 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2904 { 2905 io_sq_thread_finish(ctx); 2906 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2907 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2908 return; 2909 2910 mutex_lock(&ctx->uring_lock); 2911 if (ctx->buf_data) 2912 __io_sqe_buffers_unregister(ctx); 2913 if (ctx->file_data) 2914 __io_sqe_files_unregister(ctx); 2915 io_cqring_overflow_kill(ctx); 2916 io_eventfd_unregister(ctx); 2917 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2918 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2919 io_destroy_buffers(ctx); 2920 mutex_unlock(&ctx->uring_lock); 2921 if (ctx->sq_creds) 2922 put_cred(ctx->sq_creds); 2923 if (ctx->submitter_task) 2924 put_task_struct(ctx->submitter_task); 2925 2926 /* there are no registered resources left, nobody uses it */ 2927 if (ctx->rsrc_node) 2928 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2929 2930 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2931 2932 #if defined(CONFIG_UNIX) 2933 if (ctx->ring_sock) { 2934 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2935 sock_release(ctx->ring_sock); 2936 } 2937 #endif 2938 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2939 2940 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); 2941 if (ctx->mm_account) { 2942 mmdrop(ctx->mm_account); 2943 ctx->mm_account = NULL; 2944 } 2945 io_rings_free(ctx); 2946 io_kbuf_mmap_list_free(ctx); 2947 2948 percpu_ref_exit(&ctx->refs); 2949 free_uid(ctx->user); 2950 io_req_caches_free(ctx); 2951 if (ctx->hash_map) 2952 io_wq_put_hash(ctx->hash_map); 2953 kfree(ctx->cancel_table.hbs); 2954 kfree(ctx->cancel_table_locked.hbs); 2955 kfree(ctx->io_bl); 2956 xa_destroy(&ctx->io_bl_xa); 2957 kfree(ctx); 2958 } 2959 2960 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2961 { 2962 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2963 poll_wq_task_work); 2964 2965 mutex_lock(&ctx->uring_lock); 2966 ctx->poll_activated = true; 2967 mutex_unlock(&ctx->uring_lock); 2968 2969 /* 2970 * Wake ups for some events between start of polling and activation 2971 * might've been lost due to loose synchronisation. 2972 */ 2973 wake_up_all(&ctx->poll_wq); 2974 percpu_ref_put(&ctx->refs); 2975 } 2976 2977 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2978 { 2979 spin_lock(&ctx->completion_lock); 2980 /* already activated or in progress */ 2981 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2982 goto out; 2983 if (WARN_ON_ONCE(!ctx->task_complete)) 2984 goto out; 2985 if (!ctx->submitter_task) 2986 goto out; 2987 /* 2988 * with ->submitter_task only the submitter task completes requests, we 2989 * only need to sync with it, which is done by injecting a tw 2990 */ 2991 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2992 percpu_ref_get(&ctx->refs); 2993 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2994 percpu_ref_put(&ctx->refs); 2995 out: 2996 spin_unlock(&ctx->completion_lock); 2997 } 2998 2999 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 3000 { 3001 struct io_ring_ctx *ctx = file->private_data; 3002 __poll_t mask = 0; 3003 3004 if (unlikely(!ctx->poll_activated)) 3005 io_activate_pollwq(ctx); 3006 3007 poll_wait(file, &ctx->poll_wq, wait); 3008 /* 3009 * synchronizes with barrier from wq_has_sleeper call in 3010 * io_commit_cqring 3011 */ 3012 smp_rmb(); 3013 if (!io_sqring_full(ctx)) 3014 mask |= EPOLLOUT | EPOLLWRNORM; 3015 3016 /* 3017 * Don't flush cqring overflow list here, just do a simple check. 3018 * Otherwise there could possible be ABBA deadlock: 3019 * CPU0 CPU1 3020 * ---- ---- 3021 * lock(&ctx->uring_lock); 3022 * lock(&ep->mtx); 3023 * lock(&ctx->uring_lock); 3024 * lock(&ep->mtx); 3025 * 3026 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 3027 * pushes them to do the flush. 3028 */ 3029 3030 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 3031 mask |= EPOLLIN | EPOLLRDNORM; 3032 3033 return mask; 3034 } 3035 3036 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 3037 { 3038 const struct cred *creds; 3039 3040 creds = xa_erase(&ctx->personalities, id); 3041 if (creds) { 3042 put_cred(creds); 3043 return 0; 3044 } 3045 3046 return -EINVAL; 3047 } 3048 3049 struct io_tctx_exit { 3050 struct callback_head task_work; 3051 struct completion completion; 3052 struct io_ring_ctx *ctx; 3053 }; 3054 3055 static __cold void io_tctx_exit_cb(struct callback_head *cb) 3056 { 3057 struct io_uring_task *tctx = current->io_uring; 3058 struct io_tctx_exit *work; 3059 3060 work = container_of(cb, struct io_tctx_exit, task_work); 3061 /* 3062 * When @in_cancel, we're in cancellation and it's racy to remove the 3063 * node. It'll be removed by the end of cancellation, just ignore it. 3064 * tctx can be NULL if the queueing of this task_work raced with 3065 * work cancelation off the exec path. 3066 */ 3067 if (tctx && !atomic_read(&tctx->in_cancel)) 3068 io_uring_del_tctx_node((unsigned long)work->ctx); 3069 complete(&work->completion); 3070 } 3071 3072 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 3073 { 3074 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3075 3076 return req->ctx == data; 3077 } 3078 3079 static __cold void io_ring_exit_work(struct work_struct *work) 3080 { 3081 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 3082 unsigned long timeout = jiffies + HZ * 60 * 5; 3083 unsigned long interval = HZ / 20; 3084 struct io_tctx_exit exit; 3085 struct io_tctx_node *node; 3086 int ret; 3087 3088 /* 3089 * If we're doing polled IO and end up having requests being 3090 * submitted async (out-of-line), then completions can come in while 3091 * we're waiting for refs to drop. We need to reap these manually, 3092 * as nobody else will be looking for them. 3093 */ 3094 do { 3095 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 3096 mutex_lock(&ctx->uring_lock); 3097 io_cqring_overflow_kill(ctx); 3098 mutex_unlock(&ctx->uring_lock); 3099 } 3100 3101 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3102 io_move_task_work_from_local(ctx); 3103 3104 while (io_uring_try_cancel_requests(ctx, NULL, true)) 3105 cond_resched(); 3106 3107 if (ctx->sq_data) { 3108 struct io_sq_data *sqd = ctx->sq_data; 3109 struct task_struct *tsk; 3110 3111 io_sq_thread_park(sqd); 3112 tsk = sqd->thread; 3113 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 3114 io_wq_cancel_cb(tsk->io_uring->io_wq, 3115 io_cancel_ctx_cb, ctx, true); 3116 io_sq_thread_unpark(sqd); 3117 } 3118 3119 io_req_caches_free(ctx); 3120 3121 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3122 /* there is little hope left, don't run it too often */ 3123 interval = HZ * 60; 3124 } 3125 /* 3126 * This is really an uninterruptible wait, as it has to be 3127 * complete. But it's also run from a kworker, which doesn't 3128 * take signals, so it's fine to make it interruptible. This 3129 * avoids scenarios where we knowingly can wait much longer 3130 * on completions, for example if someone does a SIGSTOP on 3131 * a task that needs to finish task_work to make this loop 3132 * complete. That's a synthetic situation that should not 3133 * cause a stuck task backtrace, and hence a potential panic 3134 * on stuck tasks if that is enabled. 3135 */ 3136 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 3137 3138 init_completion(&exit.completion); 3139 init_task_work(&exit.task_work, io_tctx_exit_cb); 3140 exit.ctx = ctx; 3141 /* 3142 * Some may use context even when all refs and requests have been put, 3143 * and they are free to do so while still holding uring_lock or 3144 * completion_lock, see io_req_task_submit(). Apart from other work, 3145 * this lock/unlock section also waits them to finish. 3146 */ 3147 mutex_lock(&ctx->uring_lock); 3148 while (!list_empty(&ctx->tctx_list)) { 3149 WARN_ON_ONCE(time_after(jiffies, timeout)); 3150 3151 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3152 ctx_node); 3153 /* don't spin on a single task if cancellation failed */ 3154 list_rotate_left(&ctx->tctx_list); 3155 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3156 if (WARN_ON_ONCE(ret)) 3157 continue; 3158 3159 mutex_unlock(&ctx->uring_lock); 3160 /* 3161 * See comment above for 3162 * wait_for_completion_interruptible_timeout() on why this 3163 * wait is marked as interruptible. 3164 */ 3165 wait_for_completion_interruptible(&exit.completion); 3166 mutex_lock(&ctx->uring_lock); 3167 } 3168 mutex_unlock(&ctx->uring_lock); 3169 spin_lock(&ctx->completion_lock); 3170 spin_unlock(&ctx->completion_lock); 3171 3172 /* pairs with RCU read section in io_req_local_work_add() */ 3173 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3174 synchronize_rcu(); 3175 3176 io_ring_ctx_free(ctx); 3177 } 3178 3179 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3180 { 3181 unsigned long index; 3182 struct creds *creds; 3183 3184 mutex_lock(&ctx->uring_lock); 3185 percpu_ref_kill(&ctx->refs); 3186 xa_for_each(&ctx->personalities, index, creds) 3187 io_unregister_personality(ctx, index); 3188 if (ctx->rings) 3189 io_poll_remove_all(ctx, NULL, true); 3190 mutex_unlock(&ctx->uring_lock); 3191 3192 /* 3193 * If we failed setting up the ctx, we might not have any rings 3194 * and therefore did not submit any requests 3195 */ 3196 if (ctx->rings) 3197 io_kill_timeouts(ctx, NULL, true); 3198 3199 flush_delayed_work(&ctx->fallback_work); 3200 3201 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3202 /* 3203 * Use system_unbound_wq to avoid spawning tons of event kworkers 3204 * if we're exiting a ton of rings at the same time. It just adds 3205 * noise and overhead, there's no discernable change in runtime 3206 * over using system_wq. 3207 */ 3208 queue_work(system_unbound_wq, &ctx->exit_work); 3209 } 3210 3211 static int io_uring_release(struct inode *inode, struct file *file) 3212 { 3213 struct io_ring_ctx *ctx = file->private_data; 3214 3215 file->private_data = NULL; 3216 io_ring_ctx_wait_and_kill(ctx); 3217 return 0; 3218 } 3219 3220 struct io_task_cancel { 3221 struct task_struct *task; 3222 bool all; 3223 }; 3224 3225 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3226 { 3227 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3228 struct io_task_cancel *cancel = data; 3229 3230 return io_match_task_safe(req, cancel->task, cancel->all); 3231 } 3232 3233 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3234 struct task_struct *task, 3235 bool cancel_all) 3236 { 3237 struct io_defer_entry *de; 3238 LIST_HEAD(list); 3239 3240 spin_lock(&ctx->completion_lock); 3241 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3242 if (io_match_task_safe(de->req, task, cancel_all)) { 3243 list_cut_position(&list, &ctx->defer_list, &de->list); 3244 break; 3245 } 3246 } 3247 spin_unlock(&ctx->completion_lock); 3248 if (list_empty(&list)) 3249 return false; 3250 3251 while (!list_empty(&list)) { 3252 de = list_first_entry(&list, struct io_defer_entry, list); 3253 list_del_init(&de->list); 3254 io_req_task_queue_fail(de->req, -ECANCELED); 3255 kfree(de); 3256 } 3257 return true; 3258 } 3259 3260 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3261 { 3262 struct io_tctx_node *node; 3263 enum io_wq_cancel cret; 3264 bool ret = false; 3265 3266 mutex_lock(&ctx->uring_lock); 3267 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3268 struct io_uring_task *tctx = node->task->io_uring; 3269 3270 /* 3271 * io_wq will stay alive while we hold uring_lock, because it's 3272 * killed after ctx nodes, which requires to take the lock. 3273 */ 3274 if (!tctx || !tctx->io_wq) 3275 continue; 3276 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3277 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3278 } 3279 mutex_unlock(&ctx->uring_lock); 3280 3281 return ret; 3282 } 3283 3284 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3285 struct task_struct *task, 3286 bool cancel_all) 3287 { 3288 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3289 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3290 enum io_wq_cancel cret; 3291 bool ret = false; 3292 3293 /* set it so io_req_local_work_add() would wake us up */ 3294 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3295 atomic_set(&ctx->cq_wait_nr, 1); 3296 smp_mb(); 3297 } 3298 3299 /* failed during ring init, it couldn't have issued any requests */ 3300 if (!ctx->rings) 3301 return false; 3302 3303 if (!task) { 3304 ret |= io_uring_try_cancel_iowq(ctx); 3305 } else if (tctx && tctx->io_wq) { 3306 /* 3307 * Cancels requests of all rings, not only @ctx, but 3308 * it's fine as the task is in exit/exec. 3309 */ 3310 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3311 &cancel, true); 3312 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3313 } 3314 3315 /* SQPOLL thread does its own polling */ 3316 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3317 (ctx->sq_data && ctx->sq_data->thread == current)) { 3318 while (!wq_list_empty(&ctx->iopoll_list)) { 3319 io_iopoll_try_reap_events(ctx); 3320 ret = true; 3321 cond_resched(); 3322 } 3323 } 3324 3325 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3326 io_allowed_defer_tw_run(ctx)) 3327 ret |= io_run_local_work(ctx) > 0; 3328 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3329 mutex_lock(&ctx->uring_lock); 3330 ret |= io_poll_remove_all(ctx, task, cancel_all); 3331 mutex_unlock(&ctx->uring_lock); 3332 ret |= io_kill_timeouts(ctx, task, cancel_all); 3333 if (task) 3334 ret |= io_run_task_work() > 0; 3335 return ret; 3336 } 3337 3338 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3339 { 3340 if (tracked) 3341 return atomic_read(&tctx->inflight_tracked); 3342 return percpu_counter_sum(&tctx->inflight); 3343 } 3344 3345 /* 3346 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3347 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3348 */ 3349 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3350 { 3351 struct io_uring_task *tctx = current->io_uring; 3352 struct io_ring_ctx *ctx; 3353 struct io_tctx_node *node; 3354 unsigned long index; 3355 s64 inflight; 3356 DEFINE_WAIT(wait); 3357 3358 WARN_ON_ONCE(sqd && sqd->thread != current); 3359 3360 if (!current->io_uring) 3361 return; 3362 if (tctx->io_wq) 3363 io_wq_exit_start(tctx->io_wq); 3364 3365 atomic_inc(&tctx->in_cancel); 3366 do { 3367 bool loop = false; 3368 3369 io_uring_drop_tctx_refs(current); 3370 /* read completions before cancelations */ 3371 inflight = tctx_inflight(tctx, !cancel_all); 3372 if (!inflight) 3373 break; 3374 3375 if (!sqd) { 3376 xa_for_each(&tctx->xa, index, node) { 3377 /* sqpoll task will cancel all its requests */ 3378 if (node->ctx->sq_data) 3379 continue; 3380 loop |= io_uring_try_cancel_requests(node->ctx, 3381 current, cancel_all); 3382 } 3383 } else { 3384 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3385 loop |= io_uring_try_cancel_requests(ctx, 3386 current, 3387 cancel_all); 3388 } 3389 3390 if (loop) { 3391 cond_resched(); 3392 continue; 3393 } 3394 3395 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3396 io_run_task_work(); 3397 io_uring_drop_tctx_refs(current); 3398 xa_for_each(&tctx->xa, index, node) { 3399 if (!llist_empty(&node->ctx->work_llist)) { 3400 WARN_ON_ONCE(node->ctx->submitter_task && 3401 node->ctx->submitter_task != current); 3402 goto end_wait; 3403 } 3404 } 3405 /* 3406 * If we've seen completions, retry without waiting. This 3407 * avoids a race where a completion comes in before we did 3408 * prepare_to_wait(). 3409 */ 3410 if (inflight == tctx_inflight(tctx, !cancel_all)) 3411 schedule(); 3412 end_wait: 3413 finish_wait(&tctx->wait, &wait); 3414 } while (1); 3415 3416 io_uring_clean_tctx(tctx); 3417 if (cancel_all) { 3418 /* 3419 * We shouldn't run task_works after cancel, so just leave 3420 * ->in_cancel set for normal exit. 3421 */ 3422 atomic_dec(&tctx->in_cancel); 3423 /* for exec all current's requests should be gone, kill tctx */ 3424 __io_uring_free(current); 3425 } 3426 } 3427 3428 void __io_uring_cancel(bool cancel_all) 3429 { 3430 io_uring_cancel_generic(cancel_all, NULL); 3431 } 3432 3433 static void *io_uring_validate_mmap_request(struct file *file, 3434 loff_t pgoff, size_t sz) 3435 { 3436 struct io_ring_ctx *ctx = file->private_data; 3437 loff_t offset = pgoff << PAGE_SHIFT; 3438 struct page *page; 3439 void *ptr; 3440 3441 switch (offset & IORING_OFF_MMAP_MASK) { 3442 case IORING_OFF_SQ_RING: 3443 case IORING_OFF_CQ_RING: 3444 /* Don't allow mmap if the ring was setup without it */ 3445 if (ctx->flags & IORING_SETUP_NO_MMAP) 3446 return ERR_PTR(-EINVAL); 3447 ptr = ctx->rings; 3448 break; 3449 case IORING_OFF_SQES: 3450 /* Don't allow mmap if the ring was setup without it */ 3451 if (ctx->flags & IORING_SETUP_NO_MMAP) 3452 return ERR_PTR(-EINVAL); 3453 ptr = ctx->sq_sqes; 3454 break; 3455 case IORING_OFF_PBUF_RING: { 3456 unsigned int bgid; 3457 3458 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; 3459 rcu_read_lock(); 3460 ptr = io_pbuf_get_address(ctx, bgid); 3461 rcu_read_unlock(); 3462 if (!ptr) 3463 return ERR_PTR(-EINVAL); 3464 break; 3465 } 3466 default: 3467 return ERR_PTR(-EINVAL); 3468 } 3469 3470 page = virt_to_head_page(ptr); 3471 if (sz > page_size(page)) 3472 return ERR_PTR(-EINVAL); 3473 3474 return ptr; 3475 } 3476 3477 #ifdef CONFIG_MMU 3478 3479 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3480 { 3481 size_t sz = vma->vm_end - vma->vm_start; 3482 unsigned long pfn; 3483 void *ptr; 3484 3485 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3486 if (IS_ERR(ptr)) 3487 return PTR_ERR(ptr); 3488 3489 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3490 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3491 } 3492 3493 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, 3494 unsigned long addr, unsigned long len, 3495 unsigned long pgoff, unsigned long flags) 3496 { 3497 void *ptr; 3498 3499 /* 3500 * Do not allow to map to user-provided address to avoid breaking the 3501 * aliasing rules. Userspace is not able to guess the offset address of 3502 * kernel kmalloc()ed memory area. 3503 */ 3504 if (addr) 3505 return -EINVAL; 3506 3507 ptr = io_uring_validate_mmap_request(filp, pgoff, len); 3508 if (IS_ERR(ptr)) 3509 return -ENOMEM; 3510 3511 /* 3512 * Some architectures have strong cache aliasing requirements. 3513 * For such architectures we need a coherent mapping which aliases 3514 * kernel memory *and* userspace memory. To achieve that: 3515 * - use a NULL file pointer to reference physical memory, and 3516 * - use the kernel virtual address of the shared io_uring context 3517 * (instead of the userspace-provided address, which has to be 0UL 3518 * anyway). 3519 * - use the same pgoff which the get_unmapped_area() uses to 3520 * calculate the page colouring. 3521 * For architectures without such aliasing requirements, the 3522 * architecture will return any suitable mapping because addr is 0. 3523 */ 3524 filp = NULL; 3525 flags |= MAP_SHARED; 3526 pgoff = 0; /* has been translated to ptr above */ 3527 #ifdef SHM_COLOUR 3528 addr = (uintptr_t) ptr; 3529 pgoff = addr >> PAGE_SHIFT; 3530 #else 3531 addr = 0UL; 3532 #endif 3533 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 3534 } 3535 3536 #else /* !CONFIG_MMU */ 3537 3538 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3539 { 3540 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3541 } 3542 3543 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3544 { 3545 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3546 } 3547 3548 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3549 unsigned long addr, unsigned long len, 3550 unsigned long pgoff, unsigned long flags) 3551 { 3552 void *ptr; 3553 3554 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3555 if (IS_ERR(ptr)) 3556 return PTR_ERR(ptr); 3557 3558 return (unsigned long) ptr; 3559 } 3560 3561 #endif /* !CONFIG_MMU */ 3562 3563 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3564 { 3565 if (flags & IORING_ENTER_EXT_ARG) { 3566 struct io_uring_getevents_arg arg; 3567 3568 if (argsz != sizeof(arg)) 3569 return -EINVAL; 3570 if (copy_from_user(&arg, argp, sizeof(arg))) 3571 return -EFAULT; 3572 } 3573 return 0; 3574 } 3575 3576 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3577 struct __kernel_timespec __user **ts, 3578 const sigset_t __user **sig) 3579 { 3580 struct io_uring_getevents_arg arg; 3581 3582 /* 3583 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3584 * is just a pointer to the sigset_t. 3585 */ 3586 if (!(flags & IORING_ENTER_EXT_ARG)) { 3587 *sig = (const sigset_t __user *) argp; 3588 *ts = NULL; 3589 return 0; 3590 } 3591 3592 /* 3593 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3594 * timespec and sigset_t pointers if good. 3595 */ 3596 if (*argsz != sizeof(arg)) 3597 return -EINVAL; 3598 if (copy_from_user(&arg, argp, sizeof(arg))) 3599 return -EFAULT; 3600 if (arg.pad) 3601 return -EINVAL; 3602 *sig = u64_to_user_ptr(arg.sigmask); 3603 *argsz = arg.sigmask_sz; 3604 *ts = u64_to_user_ptr(arg.ts); 3605 return 0; 3606 } 3607 3608 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3609 u32, min_complete, u32, flags, const void __user *, argp, 3610 size_t, argsz) 3611 { 3612 struct io_ring_ctx *ctx; 3613 struct fd f; 3614 long ret; 3615 3616 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3617 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3618 IORING_ENTER_REGISTERED_RING))) 3619 return -EINVAL; 3620 3621 /* 3622 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3623 * need only dereference our task private array to find it. 3624 */ 3625 if (flags & IORING_ENTER_REGISTERED_RING) { 3626 struct io_uring_task *tctx = current->io_uring; 3627 3628 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3629 return -EINVAL; 3630 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3631 f.file = tctx->registered_rings[fd]; 3632 f.flags = 0; 3633 if (unlikely(!f.file)) 3634 return -EBADF; 3635 } else { 3636 f = fdget(fd); 3637 if (unlikely(!f.file)) 3638 return -EBADF; 3639 ret = -EOPNOTSUPP; 3640 if (unlikely(!io_is_uring_fops(f.file))) 3641 goto out; 3642 } 3643 3644 ctx = f.file->private_data; 3645 ret = -EBADFD; 3646 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3647 goto out; 3648 3649 /* 3650 * For SQ polling, the thread will do all submissions and completions. 3651 * Just return the requested submit count, and wake the thread if 3652 * we were asked to. 3653 */ 3654 ret = 0; 3655 if (ctx->flags & IORING_SETUP_SQPOLL) { 3656 io_cqring_overflow_flush(ctx); 3657 3658 if (unlikely(ctx->sq_data->thread == NULL)) { 3659 ret = -EOWNERDEAD; 3660 goto out; 3661 } 3662 if (flags & IORING_ENTER_SQ_WAKEUP) 3663 wake_up(&ctx->sq_data->wait); 3664 if (flags & IORING_ENTER_SQ_WAIT) 3665 io_sqpoll_wait_sq(ctx); 3666 3667 ret = to_submit; 3668 } else if (to_submit) { 3669 ret = io_uring_add_tctx_node(ctx); 3670 if (unlikely(ret)) 3671 goto out; 3672 3673 mutex_lock(&ctx->uring_lock); 3674 ret = io_submit_sqes(ctx, to_submit); 3675 if (ret != to_submit) { 3676 mutex_unlock(&ctx->uring_lock); 3677 goto out; 3678 } 3679 if (flags & IORING_ENTER_GETEVENTS) { 3680 if (ctx->syscall_iopoll) 3681 goto iopoll_locked; 3682 /* 3683 * Ignore errors, we'll soon call io_cqring_wait() and 3684 * it should handle ownership problems if any. 3685 */ 3686 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3687 (void)io_run_local_work_locked(ctx); 3688 } 3689 mutex_unlock(&ctx->uring_lock); 3690 } 3691 3692 if (flags & IORING_ENTER_GETEVENTS) { 3693 int ret2; 3694 3695 if (ctx->syscall_iopoll) { 3696 /* 3697 * We disallow the app entering submit/complete with 3698 * polling, but we still need to lock the ring to 3699 * prevent racing with polled issue that got punted to 3700 * a workqueue. 3701 */ 3702 mutex_lock(&ctx->uring_lock); 3703 iopoll_locked: 3704 ret2 = io_validate_ext_arg(flags, argp, argsz); 3705 if (likely(!ret2)) { 3706 min_complete = min(min_complete, 3707 ctx->cq_entries); 3708 ret2 = io_iopoll_check(ctx, min_complete); 3709 } 3710 mutex_unlock(&ctx->uring_lock); 3711 } else { 3712 const sigset_t __user *sig; 3713 struct __kernel_timespec __user *ts; 3714 3715 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3716 if (likely(!ret2)) { 3717 min_complete = min(min_complete, 3718 ctx->cq_entries); 3719 ret2 = io_cqring_wait(ctx, min_complete, sig, 3720 argsz, ts); 3721 } 3722 } 3723 3724 if (!ret) { 3725 ret = ret2; 3726 3727 /* 3728 * EBADR indicates that one or more CQE were dropped. 3729 * Once the user has been informed we can clear the bit 3730 * as they are obviously ok with those drops. 3731 */ 3732 if (unlikely(ret2 == -EBADR)) 3733 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3734 &ctx->check_cq); 3735 } 3736 } 3737 out: 3738 fdput(f); 3739 return ret; 3740 } 3741 3742 static const struct file_operations io_uring_fops = { 3743 .release = io_uring_release, 3744 .mmap = io_uring_mmap, 3745 #ifndef CONFIG_MMU 3746 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3747 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3748 #else 3749 .get_unmapped_area = io_uring_mmu_get_unmapped_area, 3750 #endif 3751 .poll = io_uring_poll, 3752 #ifdef CONFIG_PROC_FS 3753 .show_fdinfo = io_uring_show_fdinfo, 3754 #endif 3755 }; 3756 3757 bool io_is_uring_fops(struct file *file) 3758 { 3759 return file->f_op == &io_uring_fops; 3760 } 3761 3762 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3763 struct io_uring_params *p) 3764 { 3765 struct io_rings *rings; 3766 size_t size, sq_array_offset; 3767 void *ptr; 3768 3769 /* make sure these are sane, as we already accounted them */ 3770 ctx->sq_entries = p->sq_entries; 3771 ctx->cq_entries = p->cq_entries; 3772 3773 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3774 if (size == SIZE_MAX) 3775 return -EOVERFLOW; 3776 3777 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3778 rings = io_mem_alloc(size); 3779 else 3780 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3781 3782 if (IS_ERR(rings)) 3783 return PTR_ERR(rings); 3784 3785 ctx->rings = rings; 3786 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3787 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3788 rings->sq_ring_mask = p->sq_entries - 1; 3789 rings->cq_ring_mask = p->cq_entries - 1; 3790 rings->sq_ring_entries = p->sq_entries; 3791 rings->cq_ring_entries = p->cq_entries; 3792 3793 if (p->flags & IORING_SETUP_SQE128) 3794 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3795 else 3796 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3797 if (size == SIZE_MAX) { 3798 io_rings_free(ctx); 3799 return -EOVERFLOW; 3800 } 3801 3802 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3803 ptr = io_mem_alloc(size); 3804 else 3805 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3806 3807 if (IS_ERR(ptr)) { 3808 io_rings_free(ctx); 3809 return PTR_ERR(ptr); 3810 } 3811 3812 ctx->sq_sqes = ptr; 3813 return 0; 3814 } 3815 3816 static int io_uring_install_fd(struct file *file) 3817 { 3818 int fd; 3819 3820 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3821 if (fd < 0) 3822 return fd; 3823 fd_install(fd, file); 3824 return fd; 3825 } 3826 3827 /* 3828 * Allocate an anonymous fd, this is what constitutes the application 3829 * visible backing of an io_uring instance. The application mmaps this 3830 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3831 * we have to tie this fd to a socket for file garbage collection purposes. 3832 */ 3833 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3834 { 3835 struct file *file; 3836 #if defined(CONFIG_UNIX) 3837 int ret; 3838 3839 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3840 &ctx->ring_sock); 3841 if (ret) 3842 return ERR_PTR(ret); 3843 #endif 3844 3845 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3846 O_RDWR | O_CLOEXEC, NULL); 3847 #if defined(CONFIG_UNIX) 3848 if (IS_ERR(file)) { 3849 sock_release(ctx->ring_sock); 3850 ctx->ring_sock = NULL; 3851 } else { 3852 ctx->ring_sock->file = file; 3853 } 3854 #endif 3855 return file; 3856 } 3857 3858 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3859 struct io_uring_params __user *params) 3860 { 3861 struct io_ring_ctx *ctx; 3862 struct io_uring_task *tctx; 3863 struct file *file; 3864 int ret; 3865 3866 if (!entries) 3867 return -EINVAL; 3868 if (entries > IORING_MAX_ENTRIES) { 3869 if (!(p->flags & IORING_SETUP_CLAMP)) 3870 return -EINVAL; 3871 entries = IORING_MAX_ENTRIES; 3872 } 3873 3874 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3875 && !(p->flags & IORING_SETUP_NO_MMAP)) 3876 return -EINVAL; 3877 3878 /* 3879 * Use twice as many entries for the CQ ring. It's possible for the 3880 * application to drive a higher depth than the size of the SQ ring, 3881 * since the sqes are only used at submission time. This allows for 3882 * some flexibility in overcommitting a bit. If the application has 3883 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3884 * of CQ ring entries manually. 3885 */ 3886 p->sq_entries = roundup_pow_of_two(entries); 3887 if (p->flags & IORING_SETUP_CQSIZE) { 3888 /* 3889 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3890 * to a power-of-two, if it isn't already. We do NOT impose 3891 * any cq vs sq ring sizing. 3892 */ 3893 if (!p->cq_entries) 3894 return -EINVAL; 3895 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3896 if (!(p->flags & IORING_SETUP_CLAMP)) 3897 return -EINVAL; 3898 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3899 } 3900 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3901 if (p->cq_entries < p->sq_entries) 3902 return -EINVAL; 3903 } else { 3904 p->cq_entries = 2 * p->sq_entries; 3905 } 3906 3907 ctx = io_ring_ctx_alloc(p); 3908 if (!ctx) 3909 return -ENOMEM; 3910 3911 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3912 !(ctx->flags & IORING_SETUP_IOPOLL) && 3913 !(ctx->flags & IORING_SETUP_SQPOLL)) 3914 ctx->task_complete = true; 3915 3916 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3917 ctx->lockless_cq = true; 3918 3919 /* 3920 * lazy poll_wq activation relies on ->task_complete for synchronisation 3921 * purposes, see io_activate_pollwq() 3922 */ 3923 if (!ctx->task_complete) 3924 ctx->poll_activated = true; 3925 3926 /* 3927 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3928 * space applications don't need to do io completion events 3929 * polling again, they can rely on io_sq_thread to do polling 3930 * work, which can reduce cpu usage and uring_lock contention. 3931 */ 3932 if (ctx->flags & IORING_SETUP_IOPOLL && 3933 !(ctx->flags & IORING_SETUP_SQPOLL)) 3934 ctx->syscall_iopoll = 1; 3935 3936 ctx->compat = in_compat_syscall(); 3937 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3938 ctx->user = get_uid(current_user()); 3939 3940 /* 3941 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3942 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3943 */ 3944 ret = -EINVAL; 3945 if (ctx->flags & IORING_SETUP_SQPOLL) { 3946 /* IPI related flags don't make sense with SQPOLL */ 3947 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3948 IORING_SETUP_TASKRUN_FLAG | 3949 IORING_SETUP_DEFER_TASKRUN)) 3950 goto err; 3951 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3952 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3953 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3954 } else { 3955 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3956 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3957 goto err; 3958 ctx->notify_method = TWA_SIGNAL; 3959 } 3960 3961 /* 3962 * For DEFER_TASKRUN we require the completion task to be the same as the 3963 * submission task. This implies that there is only one submitter, so enforce 3964 * that. 3965 */ 3966 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3967 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3968 goto err; 3969 } 3970 3971 /* 3972 * This is just grabbed for accounting purposes. When a process exits, 3973 * the mm is exited and dropped before the files, hence we need to hang 3974 * on to this mm purely for the purposes of being able to unaccount 3975 * memory (locked/pinned vm). It's not used for anything else. 3976 */ 3977 mmgrab(current->mm); 3978 ctx->mm_account = current->mm; 3979 3980 ret = io_allocate_scq_urings(ctx, p); 3981 if (ret) 3982 goto err; 3983 3984 ret = io_sq_offload_create(ctx, p); 3985 if (ret) 3986 goto err; 3987 3988 ret = io_rsrc_init(ctx); 3989 if (ret) 3990 goto err; 3991 3992 p->sq_off.head = offsetof(struct io_rings, sq.head); 3993 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3994 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3995 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3996 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3997 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3998 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3999 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 4000 p->sq_off.resv1 = 0; 4001 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 4002 p->sq_off.user_addr = 0; 4003 4004 p->cq_off.head = offsetof(struct io_rings, cq.head); 4005 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 4006 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 4007 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 4008 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 4009 p->cq_off.cqes = offsetof(struct io_rings, cqes); 4010 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 4011 p->cq_off.resv1 = 0; 4012 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 4013 p->cq_off.user_addr = 0; 4014 4015 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 4016 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 4017 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 4018 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 4019 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 4020 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 4021 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 4022 4023 if (copy_to_user(params, p, sizeof(*p))) { 4024 ret = -EFAULT; 4025 goto err; 4026 } 4027 4028 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 4029 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 4030 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4031 4032 file = io_uring_get_file(ctx); 4033 if (IS_ERR(file)) { 4034 ret = PTR_ERR(file); 4035 goto err; 4036 } 4037 4038 ret = __io_uring_add_tctx_node(ctx); 4039 if (ret) 4040 goto err_fput; 4041 tctx = current->io_uring; 4042 4043 /* 4044 * Install ring fd as the very last thing, so we don't risk someone 4045 * having closed it before we finish setup 4046 */ 4047 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 4048 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 4049 else 4050 ret = io_uring_install_fd(file); 4051 if (ret < 0) 4052 goto err_fput; 4053 4054 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 4055 return ret; 4056 err: 4057 io_ring_ctx_wait_and_kill(ctx); 4058 return ret; 4059 err_fput: 4060 fput(file); 4061 return ret; 4062 } 4063 4064 /* 4065 * Sets up an aio uring context, and returns the fd. Applications asks for a 4066 * ring size, we return the actual sq/cq ring sizes (among other things) in the 4067 * params structure passed in. 4068 */ 4069 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 4070 { 4071 struct io_uring_params p; 4072 int i; 4073 4074 if (copy_from_user(&p, params, sizeof(p))) 4075 return -EFAULT; 4076 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 4077 if (p.resv[i]) 4078 return -EINVAL; 4079 } 4080 4081 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 4082 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 4083 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 4084 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 4085 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 4086 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 4087 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 4088 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 4089 IORING_SETUP_NO_SQARRAY)) 4090 return -EINVAL; 4091 4092 return io_uring_create(entries, &p, params); 4093 } 4094 4095 static inline bool io_uring_allowed(void) 4096 { 4097 int disabled = READ_ONCE(sysctl_io_uring_disabled); 4098 kgid_t io_uring_group; 4099 4100 if (disabled == 2) 4101 return false; 4102 4103 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 4104 return true; 4105 4106 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 4107 if (!gid_valid(io_uring_group)) 4108 return false; 4109 4110 return in_group_p(io_uring_group); 4111 } 4112 4113 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 4114 struct io_uring_params __user *, params) 4115 { 4116 if (!io_uring_allowed()) 4117 return -EPERM; 4118 4119 return io_uring_setup(entries, params); 4120 } 4121 4122 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 4123 unsigned nr_args) 4124 { 4125 struct io_uring_probe *p; 4126 size_t size; 4127 int i, ret; 4128 4129 size = struct_size(p, ops, nr_args); 4130 if (size == SIZE_MAX) 4131 return -EOVERFLOW; 4132 p = kzalloc(size, GFP_KERNEL); 4133 if (!p) 4134 return -ENOMEM; 4135 4136 ret = -EFAULT; 4137 if (copy_from_user(p, arg, size)) 4138 goto out; 4139 ret = -EINVAL; 4140 if (memchr_inv(p, 0, size)) 4141 goto out; 4142 4143 p->last_op = IORING_OP_LAST - 1; 4144 if (nr_args > IORING_OP_LAST) 4145 nr_args = IORING_OP_LAST; 4146 4147 for (i = 0; i < nr_args; i++) { 4148 p->ops[i].op = i; 4149 if (!io_issue_defs[i].not_supported) 4150 p->ops[i].flags = IO_URING_OP_SUPPORTED; 4151 } 4152 p->ops_len = i; 4153 4154 ret = 0; 4155 if (copy_to_user(arg, p, size)) 4156 ret = -EFAULT; 4157 out: 4158 kfree(p); 4159 return ret; 4160 } 4161 4162 static int io_register_personality(struct io_ring_ctx *ctx) 4163 { 4164 const struct cred *creds; 4165 u32 id; 4166 int ret; 4167 4168 creds = get_current_cred(); 4169 4170 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 4171 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 4172 if (ret < 0) { 4173 put_cred(creds); 4174 return ret; 4175 } 4176 return id; 4177 } 4178 4179 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 4180 void __user *arg, unsigned int nr_args) 4181 { 4182 struct io_uring_restriction *res; 4183 size_t size; 4184 int i, ret; 4185 4186 /* Restrictions allowed only if rings started disabled */ 4187 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4188 return -EBADFD; 4189 4190 /* We allow only a single restrictions registration */ 4191 if (ctx->restrictions.registered) 4192 return -EBUSY; 4193 4194 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 4195 return -EINVAL; 4196 4197 size = array_size(nr_args, sizeof(*res)); 4198 if (size == SIZE_MAX) 4199 return -EOVERFLOW; 4200 4201 res = memdup_user(arg, size); 4202 if (IS_ERR(res)) 4203 return PTR_ERR(res); 4204 4205 ret = 0; 4206 4207 for (i = 0; i < nr_args; i++) { 4208 switch (res[i].opcode) { 4209 case IORING_RESTRICTION_REGISTER_OP: 4210 if (res[i].register_op >= IORING_REGISTER_LAST) { 4211 ret = -EINVAL; 4212 goto out; 4213 } 4214 4215 __set_bit(res[i].register_op, 4216 ctx->restrictions.register_op); 4217 break; 4218 case IORING_RESTRICTION_SQE_OP: 4219 if (res[i].sqe_op >= IORING_OP_LAST) { 4220 ret = -EINVAL; 4221 goto out; 4222 } 4223 4224 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 4225 break; 4226 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 4227 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 4228 break; 4229 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 4230 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 4231 break; 4232 default: 4233 ret = -EINVAL; 4234 goto out; 4235 } 4236 } 4237 4238 out: 4239 /* Reset all restrictions if an error happened */ 4240 if (ret != 0) 4241 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 4242 else 4243 ctx->restrictions.registered = true; 4244 4245 kfree(res); 4246 return ret; 4247 } 4248 4249 static int io_register_enable_rings(struct io_ring_ctx *ctx) 4250 { 4251 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4252 return -EBADFD; 4253 4254 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) { 4255 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4256 /* 4257 * Lazy activation attempts would fail if it was polled before 4258 * submitter_task is set. 4259 */ 4260 if (wq_has_sleeper(&ctx->poll_wq)) 4261 io_activate_pollwq(ctx); 4262 } 4263 4264 if (ctx->restrictions.registered) 4265 ctx->restricted = 1; 4266 4267 ctx->flags &= ~IORING_SETUP_R_DISABLED; 4268 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 4269 wake_up(&ctx->sq_data->wait); 4270 return 0; 4271 } 4272 4273 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx, 4274 cpumask_var_t new_mask) 4275 { 4276 int ret; 4277 4278 if (!(ctx->flags & IORING_SETUP_SQPOLL)) { 4279 ret = io_wq_cpu_affinity(current->io_uring, new_mask); 4280 } else { 4281 mutex_unlock(&ctx->uring_lock); 4282 ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask); 4283 mutex_lock(&ctx->uring_lock); 4284 } 4285 4286 return ret; 4287 } 4288 4289 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 4290 void __user *arg, unsigned len) 4291 { 4292 cpumask_var_t new_mask; 4293 int ret; 4294 4295 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4296 return -ENOMEM; 4297 4298 cpumask_clear(new_mask); 4299 if (len > cpumask_size()) 4300 len = cpumask_size(); 4301 4302 if (in_compat_syscall()) { 4303 ret = compat_get_bitmap(cpumask_bits(new_mask), 4304 (const compat_ulong_t __user *)arg, 4305 len * 8 /* CHAR_BIT */); 4306 } else { 4307 ret = copy_from_user(new_mask, arg, len); 4308 } 4309 4310 if (ret) { 4311 free_cpumask_var(new_mask); 4312 return -EFAULT; 4313 } 4314 4315 ret = __io_register_iowq_aff(ctx, new_mask); 4316 free_cpumask_var(new_mask); 4317 return ret; 4318 } 4319 4320 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 4321 { 4322 return __io_register_iowq_aff(ctx, NULL); 4323 } 4324 4325 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 4326 void __user *arg) 4327 __must_hold(&ctx->uring_lock) 4328 { 4329 struct io_tctx_node *node; 4330 struct io_uring_task *tctx = NULL; 4331 struct io_sq_data *sqd = NULL; 4332 __u32 new_count[2]; 4333 int i, ret; 4334 4335 if (copy_from_user(new_count, arg, sizeof(new_count))) 4336 return -EFAULT; 4337 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4338 if (new_count[i] > INT_MAX) 4339 return -EINVAL; 4340 4341 if (ctx->flags & IORING_SETUP_SQPOLL) { 4342 sqd = ctx->sq_data; 4343 if (sqd) { 4344 /* 4345 * Observe the correct sqd->lock -> ctx->uring_lock 4346 * ordering. Fine to drop uring_lock here, we hold 4347 * a ref to the ctx. 4348 */ 4349 refcount_inc(&sqd->refs); 4350 mutex_unlock(&ctx->uring_lock); 4351 mutex_lock(&sqd->lock); 4352 mutex_lock(&ctx->uring_lock); 4353 if (sqd->thread) 4354 tctx = sqd->thread->io_uring; 4355 } 4356 } else { 4357 tctx = current->io_uring; 4358 } 4359 4360 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 4361 4362 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4363 if (new_count[i]) 4364 ctx->iowq_limits[i] = new_count[i]; 4365 ctx->iowq_limits_set = true; 4366 4367 if (tctx && tctx->io_wq) { 4368 ret = io_wq_max_workers(tctx->io_wq, new_count); 4369 if (ret) 4370 goto err; 4371 } else { 4372 memset(new_count, 0, sizeof(new_count)); 4373 } 4374 4375 if (sqd) { 4376 mutex_unlock(&sqd->lock); 4377 io_put_sq_data(sqd); 4378 } 4379 4380 if (copy_to_user(arg, new_count, sizeof(new_count))) 4381 return -EFAULT; 4382 4383 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 4384 if (sqd) 4385 return 0; 4386 4387 /* now propagate the restriction to all registered users */ 4388 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 4389 struct io_uring_task *tctx = node->task->io_uring; 4390 4391 if (WARN_ON_ONCE(!tctx->io_wq)) 4392 continue; 4393 4394 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4395 new_count[i] = ctx->iowq_limits[i]; 4396 /* ignore errors, it always returns zero anyway */ 4397 (void)io_wq_max_workers(tctx->io_wq, new_count); 4398 } 4399 return 0; 4400 err: 4401 if (sqd) { 4402 mutex_unlock(&sqd->lock); 4403 io_put_sq_data(sqd); 4404 } 4405 return ret; 4406 } 4407 4408 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4409 void __user *arg, unsigned nr_args) 4410 __releases(ctx->uring_lock) 4411 __acquires(ctx->uring_lock) 4412 { 4413 int ret; 4414 4415 /* 4416 * We don't quiesce the refs for register anymore and so it can't be 4417 * dying as we're holding a file ref here. 4418 */ 4419 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4420 return -ENXIO; 4421 4422 if (ctx->submitter_task && ctx->submitter_task != current) 4423 return -EEXIST; 4424 4425 if (ctx->restricted) { 4426 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4427 if (!test_bit(opcode, ctx->restrictions.register_op)) 4428 return -EACCES; 4429 } 4430 4431 switch (opcode) { 4432 case IORING_REGISTER_BUFFERS: 4433 ret = -EFAULT; 4434 if (!arg) 4435 break; 4436 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4437 break; 4438 case IORING_UNREGISTER_BUFFERS: 4439 ret = -EINVAL; 4440 if (arg || nr_args) 4441 break; 4442 ret = io_sqe_buffers_unregister(ctx); 4443 break; 4444 case IORING_REGISTER_FILES: 4445 ret = -EFAULT; 4446 if (!arg) 4447 break; 4448 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4449 break; 4450 case IORING_UNREGISTER_FILES: 4451 ret = -EINVAL; 4452 if (arg || nr_args) 4453 break; 4454 ret = io_sqe_files_unregister(ctx); 4455 break; 4456 case IORING_REGISTER_FILES_UPDATE: 4457 ret = io_register_files_update(ctx, arg, nr_args); 4458 break; 4459 case IORING_REGISTER_EVENTFD: 4460 ret = -EINVAL; 4461 if (nr_args != 1) 4462 break; 4463 ret = io_eventfd_register(ctx, arg, 0); 4464 break; 4465 case IORING_REGISTER_EVENTFD_ASYNC: 4466 ret = -EINVAL; 4467 if (nr_args != 1) 4468 break; 4469 ret = io_eventfd_register(ctx, arg, 1); 4470 break; 4471 case IORING_UNREGISTER_EVENTFD: 4472 ret = -EINVAL; 4473 if (arg || nr_args) 4474 break; 4475 ret = io_eventfd_unregister(ctx); 4476 break; 4477 case IORING_REGISTER_PROBE: 4478 ret = -EINVAL; 4479 if (!arg || nr_args > 256) 4480 break; 4481 ret = io_probe(ctx, arg, nr_args); 4482 break; 4483 case IORING_REGISTER_PERSONALITY: 4484 ret = -EINVAL; 4485 if (arg || nr_args) 4486 break; 4487 ret = io_register_personality(ctx); 4488 break; 4489 case IORING_UNREGISTER_PERSONALITY: 4490 ret = -EINVAL; 4491 if (arg) 4492 break; 4493 ret = io_unregister_personality(ctx, nr_args); 4494 break; 4495 case IORING_REGISTER_ENABLE_RINGS: 4496 ret = -EINVAL; 4497 if (arg || nr_args) 4498 break; 4499 ret = io_register_enable_rings(ctx); 4500 break; 4501 case IORING_REGISTER_RESTRICTIONS: 4502 ret = io_register_restrictions(ctx, arg, nr_args); 4503 break; 4504 case IORING_REGISTER_FILES2: 4505 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4506 break; 4507 case IORING_REGISTER_FILES_UPDATE2: 4508 ret = io_register_rsrc_update(ctx, arg, nr_args, 4509 IORING_RSRC_FILE); 4510 break; 4511 case IORING_REGISTER_BUFFERS2: 4512 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4513 break; 4514 case IORING_REGISTER_BUFFERS_UPDATE: 4515 ret = io_register_rsrc_update(ctx, arg, nr_args, 4516 IORING_RSRC_BUFFER); 4517 break; 4518 case IORING_REGISTER_IOWQ_AFF: 4519 ret = -EINVAL; 4520 if (!arg || !nr_args) 4521 break; 4522 ret = io_register_iowq_aff(ctx, arg, nr_args); 4523 break; 4524 case IORING_UNREGISTER_IOWQ_AFF: 4525 ret = -EINVAL; 4526 if (arg || nr_args) 4527 break; 4528 ret = io_unregister_iowq_aff(ctx); 4529 break; 4530 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4531 ret = -EINVAL; 4532 if (!arg || nr_args != 2) 4533 break; 4534 ret = io_register_iowq_max_workers(ctx, arg); 4535 break; 4536 case IORING_REGISTER_RING_FDS: 4537 ret = io_ringfd_register(ctx, arg, nr_args); 4538 break; 4539 case IORING_UNREGISTER_RING_FDS: 4540 ret = io_ringfd_unregister(ctx, arg, nr_args); 4541 break; 4542 case IORING_REGISTER_PBUF_RING: 4543 ret = -EINVAL; 4544 if (!arg || nr_args != 1) 4545 break; 4546 ret = io_register_pbuf_ring(ctx, arg); 4547 break; 4548 case IORING_UNREGISTER_PBUF_RING: 4549 ret = -EINVAL; 4550 if (!arg || nr_args != 1) 4551 break; 4552 ret = io_unregister_pbuf_ring(ctx, arg); 4553 break; 4554 case IORING_REGISTER_SYNC_CANCEL: 4555 ret = -EINVAL; 4556 if (!arg || nr_args != 1) 4557 break; 4558 ret = io_sync_cancel(ctx, arg); 4559 break; 4560 case IORING_REGISTER_FILE_ALLOC_RANGE: 4561 ret = -EINVAL; 4562 if (!arg || nr_args) 4563 break; 4564 ret = io_register_file_alloc_range(ctx, arg); 4565 break; 4566 default: 4567 ret = -EINVAL; 4568 break; 4569 } 4570 4571 return ret; 4572 } 4573 4574 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4575 void __user *, arg, unsigned int, nr_args) 4576 { 4577 struct io_ring_ctx *ctx; 4578 long ret = -EBADF; 4579 struct fd f; 4580 bool use_registered_ring; 4581 4582 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING); 4583 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING; 4584 4585 if (opcode >= IORING_REGISTER_LAST) 4586 return -EINVAL; 4587 4588 if (use_registered_ring) { 4589 /* 4590 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 4591 * need only dereference our task private array to find it. 4592 */ 4593 struct io_uring_task *tctx = current->io_uring; 4594 4595 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 4596 return -EINVAL; 4597 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 4598 f.file = tctx->registered_rings[fd]; 4599 f.flags = 0; 4600 if (unlikely(!f.file)) 4601 return -EBADF; 4602 } else { 4603 f = fdget(fd); 4604 if (unlikely(!f.file)) 4605 return -EBADF; 4606 ret = -EOPNOTSUPP; 4607 if (!io_is_uring_fops(f.file)) 4608 goto out_fput; 4609 } 4610 4611 ctx = f.file->private_data; 4612 4613 mutex_lock(&ctx->uring_lock); 4614 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4615 mutex_unlock(&ctx->uring_lock); 4616 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4617 out_fput: 4618 fdput(f); 4619 return ret; 4620 } 4621 4622 static int __init io_uring_init(void) 4623 { 4624 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4625 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4626 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4627 } while (0) 4628 4629 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4630 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4631 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4632 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4633 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4634 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4635 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4636 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4637 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4638 BUILD_BUG_SQE_ELEM(8, __u64, off); 4639 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4640 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4641 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4642 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4643 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4644 BUILD_BUG_SQE_ELEM(24, __u32, len); 4645 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4646 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4647 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4648 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4649 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4650 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4651 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4652 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4653 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4654 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4655 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4656 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4657 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4658 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4659 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4660 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4661 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4662 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4663 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4664 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4665 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4666 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4667 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4668 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4669 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4670 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4671 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4672 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4673 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4674 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4675 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4676 4677 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4678 sizeof(struct io_uring_rsrc_update)); 4679 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4680 sizeof(struct io_uring_rsrc_update2)); 4681 4682 /* ->buf_index is u16 */ 4683 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4684 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4685 offsetof(struct io_uring_buf_ring, tail)); 4686 4687 /* should fit into one byte */ 4688 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4689 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4690 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4691 4692 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4693 4694 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4695 4696 io_uring_optable_init(); 4697 4698 /* 4699 * Allow user copy in the per-command field, which starts after the 4700 * file in io_kiocb and until the opcode field. The openat2 handling 4701 * requires copying in user memory into the io_kiocb object in that 4702 * range, and HARDENED_USERCOPY will complain if we haven't 4703 * correctly annotated this range. 4704 */ 4705 req_cachep = kmem_cache_create_usercopy("io_kiocb", 4706 sizeof(struct io_kiocb), 0, 4707 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4708 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU, 4709 offsetof(struct io_kiocb, cmd.data), 4710 sizeof_field(struct io_kiocb, cmd.data), NULL); 4711 4712 #ifdef CONFIG_SYSCTL 4713 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 4714 #endif 4715 4716 return 0; 4717 }; 4718 __initcall(io_uring_init); 4719