xref: /openbmc/linux/io_uring/io_uring.c (revision 61ae993c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 #include <asm/shmparam.h>
76 
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/io_uring.h>
79 
80 #include <uapi/linux/io_uring.h>
81 
82 #include "io-wq.h"
83 
84 #include "io_uring.h"
85 #include "opdef.h"
86 #include "refs.h"
87 #include "tctx.h"
88 #include "sqpoll.h"
89 #include "fdinfo.h"
90 #include "kbuf.h"
91 #include "rsrc.h"
92 #include "cancel.h"
93 #include "net.h"
94 #include "notif.h"
95 
96 #include "timeout.h"
97 #include "poll.h"
98 #include "rw.h"
99 #include "alloc_cache.h"
100 
101 #define IORING_MAX_ENTRIES	32768
102 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
103 
104 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
105 				 IORING_REGISTER_LAST + IORING_OP_LAST)
106 
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109 
110 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112 
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 				REQ_F_ASYNC_DATA)
116 
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 				 IO_REQ_CLEAN_FLAGS)
119 
120 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
121 
122 #define IO_COMPL_BATCH			32
123 #define IO_REQ_ALLOC_BATCH		8
124 
125 enum {
126 	IO_CHECK_CQ_OVERFLOW_BIT,
127 	IO_CHECK_CQ_DROPPED_BIT,
128 };
129 
130 enum {
131 	IO_EVENTFD_OP_SIGNAL_BIT,
132 	IO_EVENTFD_OP_FREE_BIT,
133 };
134 
135 struct io_defer_entry {
136 	struct list_head	list;
137 	struct io_kiocb		*req;
138 	u32			seq;
139 };
140 
141 /* requests with any of those set should undergo io_disarm_next() */
142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
144 
145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
146 					 struct task_struct *task,
147 					 bool cancel_all);
148 
149 static void io_queue_sqe(struct io_kiocb *req);
150 
151 struct kmem_cache *req_cachep;
152 
153 static int __read_mostly sysctl_io_uring_disabled;
154 static int __read_mostly sysctl_io_uring_group = -1;
155 
156 #ifdef CONFIG_SYSCTL
157 static struct ctl_table kernel_io_uring_disabled_table[] = {
158 	{
159 		.procname	= "io_uring_disabled",
160 		.data		= &sysctl_io_uring_disabled,
161 		.maxlen		= sizeof(sysctl_io_uring_disabled),
162 		.mode		= 0644,
163 		.proc_handler	= proc_dointvec_minmax,
164 		.extra1		= SYSCTL_ZERO,
165 		.extra2		= SYSCTL_TWO,
166 	},
167 	{
168 		.procname	= "io_uring_group",
169 		.data		= &sysctl_io_uring_group,
170 		.maxlen		= sizeof(gid_t),
171 		.mode		= 0644,
172 		.proc_handler	= proc_dointvec,
173 	},
174 	{},
175 };
176 #endif
177 
178 struct sock *io_uring_get_socket(struct file *file)
179 {
180 #if defined(CONFIG_UNIX)
181 	if (io_is_uring_fops(file)) {
182 		struct io_ring_ctx *ctx = file->private_data;
183 
184 		return ctx->ring_sock->sk;
185 	}
186 #endif
187 	return NULL;
188 }
189 EXPORT_SYMBOL(io_uring_get_socket);
190 
191 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
192 {
193 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
194 	    ctx->submit_state.cqes_count)
195 		__io_submit_flush_completions(ctx);
196 }
197 
198 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
199 {
200 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
201 }
202 
203 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
204 {
205 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
206 }
207 
208 static bool io_match_linked(struct io_kiocb *head)
209 {
210 	struct io_kiocb *req;
211 
212 	io_for_each_link(req, head) {
213 		if (req->flags & REQ_F_INFLIGHT)
214 			return true;
215 	}
216 	return false;
217 }
218 
219 /*
220  * As io_match_task() but protected against racing with linked timeouts.
221  * User must not hold timeout_lock.
222  */
223 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
224 			bool cancel_all)
225 {
226 	bool matched;
227 
228 	if (task && head->task != task)
229 		return false;
230 	if (cancel_all)
231 		return true;
232 
233 	if (head->flags & REQ_F_LINK_TIMEOUT) {
234 		struct io_ring_ctx *ctx = head->ctx;
235 
236 		/* protect against races with linked timeouts */
237 		spin_lock_irq(&ctx->timeout_lock);
238 		matched = io_match_linked(head);
239 		spin_unlock_irq(&ctx->timeout_lock);
240 	} else {
241 		matched = io_match_linked(head);
242 	}
243 	return matched;
244 }
245 
246 static inline void req_fail_link_node(struct io_kiocb *req, int res)
247 {
248 	req_set_fail(req);
249 	io_req_set_res(req, res, 0);
250 }
251 
252 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
253 {
254 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
255 }
256 
257 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
258 {
259 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
260 
261 	complete(&ctx->ref_comp);
262 }
263 
264 static __cold void io_fallback_req_func(struct work_struct *work)
265 {
266 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
267 						fallback_work.work);
268 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
269 	struct io_kiocb *req, *tmp;
270 	struct io_tw_state ts = { .locked = true, };
271 
272 	mutex_lock(&ctx->uring_lock);
273 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
274 		req->io_task_work.func(req, &ts);
275 	if (WARN_ON_ONCE(!ts.locked))
276 		return;
277 	io_submit_flush_completions(ctx);
278 	mutex_unlock(&ctx->uring_lock);
279 }
280 
281 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
282 {
283 	unsigned hash_buckets = 1U << bits;
284 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
285 
286 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
287 	if (!table->hbs)
288 		return -ENOMEM;
289 
290 	table->hash_bits = bits;
291 	init_hash_table(table, hash_buckets);
292 	return 0;
293 }
294 
295 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
296 {
297 	struct io_ring_ctx *ctx;
298 	int hash_bits;
299 
300 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
301 	if (!ctx)
302 		return NULL;
303 
304 	xa_init(&ctx->io_bl_xa);
305 
306 	/*
307 	 * Use 5 bits less than the max cq entries, that should give us around
308 	 * 32 entries per hash list if totally full and uniformly spread, but
309 	 * don't keep too many buckets to not overconsume memory.
310 	 */
311 	hash_bits = ilog2(p->cq_entries) - 5;
312 	hash_bits = clamp(hash_bits, 1, 8);
313 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
314 		goto err;
315 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
316 		goto err;
317 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
318 			    0, GFP_KERNEL))
319 		goto err;
320 
321 	ctx->flags = p->flags;
322 	init_waitqueue_head(&ctx->sqo_sq_wait);
323 	INIT_LIST_HEAD(&ctx->sqd_list);
324 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
325 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
326 	INIT_HLIST_HEAD(&ctx->io_buf_list);
327 	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
328 			    sizeof(struct io_rsrc_node));
329 	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
330 			    sizeof(struct async_poll));
331 	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
332 			    sizeof(struct io_async_msghdr));
333 	init_completion(&ctx->ref_comp);
334 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
335 	mutex_init(&ctx->uring_lock);
336 	init_waitqueue_head(&ctx->cq_wait);
337 	init_waitqueue_head(&ctx->poll_wq);
338 	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
339 	spin_lock_init(&ctx->completion_lock);
340 	spin_lock_init(&ctx->timeout_lock);
341 	INIT_WQ_LIST(&ctx->iopoll_list);
342 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
343 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
344 	INIT_LIST_HEAD(&ctx->defer_list);
345 	INIT_LIST_HEAD(&ctx->timeout_list);
346 	INIT_LIST_HEAD(&ctx->ltimeout_list);
347 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
348 	init_llist_head(&ctx->work_llist);
349 	INIT_LIST_HEAD(&ctx->tctx_list);
350 	ctx->submit_state.free_list.next = NULL;
351 	INIT_WQ_LIST(&ctx->locked_free_list);
352 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
353 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
354 	return ctx;
355 err:
356 	kfree(ctx->cancel_table.hbs);
357 	kfree(ctx->cancel_table_locked.hbs);
358 	kfree(ctx->io_bl);
359 	xa_destroy(&ctx->io_bl_xa);
360 	kfree(ctx);
361 	return NULL;
362 }
363 
364 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
365 {
366 	struct io_rings *r = ctx->rings;
367 
368 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
369 	ctx->cq_extra--;
370 }
371 
372 static bool req_need_defer(struct io_kiocb *req, u32 seq)
373 {
374 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
375 		struct io_ring_ctx *ctx = req->ctx;
376 
377 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
378 	}
379 
380 	return false;
381 }
382 
383 static void io_clean_op(struct io_kiocb *req)
384 {
385 	if (req->flags & REQ_F_BUFFER_SELECTED) {
386 		spin_lock(&req->ctx->completion_lock);
387 		io_put_kbuf_comp(req);
388 		spin_unlock(&req->ctx->completion_lock);
389 	}
390 
391 	if (req->flags & REQ_F_NEED_CLEANUP) {
392 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
393 
394 		if (def->cleanup)
395 			def->cleanup(req);
396 	}
397 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
398 		kfree(req->apoll->double_poll);
399 		kfree(req->apoll);
400 		req->apoll = NULL;
401 	}
402 	if (req->flags & REQ_F_INFLIGHT) {
403 		struct io_uring_task *tctx = req->task->io_uring;
404 
405 		atomic_dec(&tctx->inflight_tracked);
406 	}
407 	if (req->flags & REQ_F_CREDS)
408 		put_cred(req->creds);
409 	if (req->flags & REQ_F_ASYNC_DATA) {
410 		kfree(req->async_data);
411 		req->async_data = NULL;
412 	}
413 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
414 }
415 
416 static inline void io_req_track_inflight(struct io_kiocb *req)
417 {
418 	if (!(req->flags & REQ_F_INFLIGHT)) {
419 		req->flags |= REQ_F_INFLIGHT;
420 		atomic_inc(&req->task->io_uring->inflight_tracked);
421 	}
422 }
423 
424 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
425 {
426 	if (WARN_ON_ONCE(!req->link))
427 		return NULL;
428 
429 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
430 	req->flags |= REQ_F_LINK_TIMEOUT;
431 
432 	/* linked timeouts should have two refs once prep'ed */
433 	io_req_set_refcount(req);
434 	__io_req_set_refcount(req->link, 2);
435 	return req->link;
436 }
437 
438 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
439 {
440 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
441 		return NULL;
442 	return __io_prep_linked_timeout(req);
443 }
444 
445 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
446 {
447 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
448 }
449 
450 static inline void io_arm_ltimeout(struct io_kiocb *req)
451 {
452 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
453 		__io_arm_ltimeout(req);
454 }
455 
456 static void io_prep_async_work(struct io_kiocb *req)
457 {
458 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
459 	struct io_ring_ctx *ctx = req->ctx;
460 
461 	if (!(req->flags & REQ_F_CREDS)) {
462 		req->flags |= REQ_F_CREDS;
463 		req->creds = get_current_cred();
464 	}
465 
466 	req->work.list.next = NULL;
467 	req->work.flags = 0;
468 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
469 	if (req->flags & REQ_F_FORCE_ASYNC)
470 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
471 
472 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
473 		req->flags |= io_file_get_flags(req->file);
474 
475 	if (req->file && (req->flags & REQ_F_ISREG)) {
476 		bool should_hash = def->hash_reg_file;
477 
478 		/* don't serialize this request if the fs doesn't need it */
479 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
480 		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
481 			should_hash = false;
482 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
483 			io_wq_hash_work(&req->work, file_inode(req->file));
484 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
485 		if (def->unbound_nonreg_file)
486 			req->work.flags |= IO_WQ_WORK_UNBOUND;
487 	}
488 }
489 
490 static void io_prep_async_link(struct io_kiocb *req)
491 {
492 	struct io_kiocb *cur;
493 
494 	if (req->flags & REQ_F_LINK_TIMEOUT) {
495 		struct io_ring_ctx *ctx = req->ctx;
496 
497 		spin_lock_irq(&ctx->timeout_lock);
498 		io_for_each_link(cur, req)
499 			io_prep_async_work(cur);
500 		spin_unlock_irq(&ctx->timeout_lock);
501 	} else {
502 		io_for_each_link(cur, req)
503 			io_prep_async_work(cur);
504 	}
505 }
506 
507 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
508 {
509 	struct io_kiocb *link = io_prep_linked_timeout(req);
510 	struct io_uring_task *tctx = req->task->io_uring;
511 
512 	BUG_ON(!tctx);
513 	BUG_ON(!tctx->io_wq);
514 
515 	/* init ->work of the whole link before punting */
516 	io_prep_async_link(req);
517 
518 	/*
519 	 * Not expected to happen, but if we do have a bug where this _can_
520 	 * happen, catch it here and ensure the request is marked as
521 	 * canceled. That will make io-wq go through the usual work cancel
522 	 * procedure rather than attempt to run this request (or create a new
523 	 * worker for it).
524 	 */
525 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
526 		req->work.flags |= IO_WQ_WORK_CANCEL;
527 
528 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
529 	io_wq_enqueue(tctx->io_wq, &req->work);
530 	if (link)
531 		io_queue_linked_timeout(link);
532 }
533 
534 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
535 {
536 	while (!list_empty(&ctx->defer_list)) {
537 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
538 						struct io_defer_entry, list);
539 
540 		if (req_need_defer(de->req, de->seq))
541 			break;
542 		list_del_init(&de->list);
543 		io_req_task_queue(de->req);
544 		kfree(de);
545 	}
546 }
547 
548 
549 static void io_eventfd_ops(struct rcu_head *rcu)
550 {
551 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
552 	int ops = atomic_xchg(&ev_fd->ops, 0);
553 
554 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
555 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
556 
557 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
558 	 * ordering in a race but if references are 0 we know we have to free
559 	 * it regardless.
560 	 */
561 	if (atomic_dec_and_test(&ev_fd->refs)) {
562 		eventfd_ctx_put(ev_fd->cq_ev_fd);
563 		kfree(ev_fd);
564 	}
565 }
566 
567 static void io_eventfd_signal(struct io_ring_ctx *ctx)
568 {
569 	struct io_ev_fd *ev_fd = NULL;
570 
571 	rcu_read_lock();
572 	/*
573 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
574 	 * and eventfd_signal
575 	 */
576 	ev_fd = rcu_dereference(ctx->io_ev_fd);
577 
578 	/*
579 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
580 	 * completed between the NULL check of ctx->io_ev_fd at the start of
581 	 * the function and rcu_read_lock.
582 	 */
583 	if (unlikely(!ev_fd))
584 		goto out;
585 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
586 		goto out;
587 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
588 		goto out;
589 
590 	if (likely(eventfd_signal_allowed())) {
591 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
592 	} else {
593 		atomic_inc(&ev_fd->refs);
594 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
595 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
596 		else
597 			atomic_dec(&ev_fd->refs);
598 	}
599 
600 out:
601 	rcu_read_unlock();
602 }
603 
604 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
605 {
606 	bool skip;
607 
608 	spin_lock(&ctx->completion_lock);
609 
610 	/*
611 	 * Eventfd should only get triggered when at least one event has been
612 	 * posted. Some applications rely on the eventfd notification count
613 	 * only changing IFF a new CQE has been added to the CQ ring. There's
614 	 * no depedency on 1:1 relationship between how many times this
615 	 * function is called (and hence the eventfd count) and number of CQEs
616 	 * posted to the CQ ring.
617 	 */
618 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
619 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
620 	spin_unlock(&ctx->completion_lock);
621 	if (skip)
622 		return;
623 
624 	io_eventfd_signal(ctx);
625 }
626 
627 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
628 {
629 	if (ctx->poll_activated)
630 		io_poll_wq_wake(ctx);
631 	if (ctx->off_timeout_used)
632 		io_flush_timeouts(ctx);
633 	if (ctx->drain_active) {
634 		spin_lock(&ctx->completion_lock);
635 		io_queue_deferred(ctx);
636 		spin_unlock(&ctx->completion_lock);
637 	}
638 	if (ctx->has_evfd)
639 		io_eventfd_flush_signal(ctx);
640 }
641 
642 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
643 {
644 	if (!ctx->lockless_cq)
645 		spin_lock(&ctx->completion_lock);
646 }
647 
648 static inline void io_cq_lock(struct io_ring_ctx *ctx)
649 	__acquires(ctx->completion_lock)
650 {
651 	spin_lock(&ctx->completion_lock);
652 }
653 
654 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
655 {
656 	io_commit_cqring(ctx);
657 	if (!ctx->task_complete) {
658 		if (!ctx->lockless_cq)
659 			spin_unlock(&ctx->completion_lock);
660 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
661 		if (!ctx->syscall_iopoll)
662 			io_cqring_wake(ctx);
663 	}
664 	io_commit_cqring_flush(ctx);
665 }
666 
667 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
668 	__releases(ctx->completion_lock)
669 {
670 	io_commit_cqring(ctx);
671 	spin_unlock(&ctx->completion_lock);
672 	io_cqring_wake(ctx);
673 	io_commit_cqring_flush(ctx);
674 }
675 
676 /* Returns true if there are no backlogged entries after the flush */
677 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
678 {
679 	struct io_overflow_cqe *ocqe;
680 	LIST_HEAD(list);
681 
682 	spin_lock(&ctx->completion_lock);
683 	list_splice_init(&ctx->cq_overflow_list, &list);
684 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
685 	spin_unlock(&ctx->completion_lock);
686 
687 	while (!list_empty(&list)) {
688 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
689 		list_del(&ocqe->list);
690 		kfree(ocqe);
691 	}
692 }
693 
694 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
695 {
696 	size_t cqe_size = sizeof(struct io_uring_cqe);
697 
698 	if (__io_cqring_events(ctx) == ctx->cq_entries)
699 		return;
700 
701 	if (ctx->flags & IORING_SETUP_CQE32)
702 		cqe_size <<= 1;
703 
704 	io_cq_lock(ctx);
705 	while (!list_empty(&ctx->cq_overflow_list)) {
706 		struct io_uring_cqe *cqe;
707 		struct io_overflow_cqe *ocqe;
708 
709 		if (!io_get_cqe_overflow(ctx, &cqe, true))
710 			break;
711 		ocqe = list_first_entry(&ctx->cq_overflow_list,
712 					struct io_overflow_cqe, list);
713 		memcpy(cqe, &ocqe->cqe, cqe_size);
714 		list_del(&ocqe->list);
715 		kfree(ocqe);
716 	}
717 
718 	if (list_empty(&ctx->cq_overflow_list)) {
719 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
720 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
721 	}
722 	io_cq_unlock_post(ctx);
723 }
724 
725 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
726 {
727 	/* iopoll syncs against uring_lock, not completion_lock */
728 	if (ctx->flags & IORING_SETUP_IOPOLL)
729 		mutex_lock(&ctx->uring_lock);
730 	__io_cqring_overflow_flush(ctx);
731 	if (ctx->flags & IORING_SETUP_IOPOLL)
732 		mutex_unlock(&ctx->uring_lock);
733 }
734 
735 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
736 {
737 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
738 		io_cqring_do_overflow_flush(ctx);
739 }
740 
741 /* can be called by any task */
742 static void io_put_task_remote(struct task_struct *task)
743 {
744 	struct io_uring_task *tctx = task->io_uring;
745 
746 	percpu_counter_sub(&tctx->inflight, 1);
747 	if (unlikely(atomic_read(&tctx->in_cancel)))
748 		wake_up(&tctx->wait);
749 	put_task_struct(task);
750 }
751 
752 /* used by a task to put its own references */
753 static void io_put_task_local(struct task_struct *task)
754 {
755 	task->io_uring->cached_refs++;
756 }
757 
758 /* must to be called somewhat shortly after putting a request */
759 static inline void io_put_task(struct task_struct *task)
760 {
761 	if (likely(task == current))
762 		io_put_task_local(task);
763 	else
764 		io_put_task_remote(task);
765 }
766 
767 void io_task_refs_refill(struct io_uring_task *tctx)
768 {
769 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
770 
771 	percpu_counter_add(&tctx->inflight, refill);
772 	refcount_add(refill, &current->usage);
773 	tctx->cached_refs += refill;
774 }
775 
776 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
777 {
778 	struct io_uring_task *tctx = task->io_uring;
779 	unsigned int refs = tctx->cached_refs;
780 
781 	if (refs) {
782 		tctx->cached_refs = 0;
783 		percpu_counter_sub(&tctx->inflight, refs);
784 		put_task_struct_many(task, refs);
785 	}
786 }
787 
788 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
789 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
790 {
791 	struct io_overflow_cqe *ocqe;
792 	size_t ocq_size = sizeof(struct io_overflow_cqe);
793 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
794 
795 	lockdep_assert_held(&ctx->completion_lock);
796 
797 	if (is_cqe32)
798 		ocq_size += sizeof(struct io_uring_cqe);
799 
800 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
801 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
802 	if (!ocqe) {
803 		/*
804 		 * If we're in ring overflow flush mode, or in task cancel mode,
805 		 * or cannot allocate an overflow entry, then we need to drop it
806 		 * on the floor.
807 		 */
808 		io_account_cq_overflow(ctx);
809 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
810 		return false;
811 	}
812 	if (list_empty(&ctx->cq_overflow_list)) {
813 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
814 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
815 
816 	}
817 	ocqe->cqe.user_data = user_data;
818 	ocqe->cqe.res = res;
819 	ocqe->cqe.flags = cflags;
820 	if (is_cqe32) {
821 		ocqe->cqe.big_cqe[0] = extra1;
822 		ocqe->cqe.big_cqe[1] = extra2;
823 	}
824 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
825 	return true;
826 }
827 
828 void io_req_cqe_overflow(struct io_kiocb *req)
829 {
830 	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
831 				req->cqe.res, req->cqe.flags,
832 				req->big_cqe.extra1, req->big_cqe.extra2);
833 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
834 }
835 
836 /*
837  * writes to the cq entry need to come after reading head; the
838  * control dependency is enough as we're using WRITE_ONCE to
839  * fill the cq entry
840  */
841 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
842 {
843 	struct io_rings *rings = ctx->rings;
844 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
845 	unsigned int free, queued, len;
846 
847 	/*
848 	 * Posting into the CQ when there are pending overflowed CQEs may break
849 	 * ordering guarantees, which will affect links, F_MORE users and more.
850 	 * Force overflow the completion.
851 	 */
852 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
853 		return false;
854 
855 	/* userspace may cheat modifying the tail, be safe and do min */
856 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
857 	free = ctx->cq_entries - queued;
858 	/* we need a contiguous range, limit based on the current array offset */
859 	len = min(free, ctx->cq_entries - off);
860 	if (!len)
861 		return false;
862 
863 	if (ctx->flags & IORING_SETUP_CQE32) {
864 		off <<= 1;
865 		len <<= 1;
866 	}
867 
868 	ctx->cqe_cached = &rings->cqes[off];
869 	ctx->cqe_sentinel = ctx->cqe_cached + len;
870 	return true;
871 }
872 
873 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
874 			      u32 cflags)
875 {
876 	struct io_uring_cqe *cqe;
877 
878 	ctx->cq_extra++;
879 
880 	/*
881 	 * If we can't get a cq entry, userspace overflowed the
882 	 * submission (by quite a lot). Increment the overflow count in
883 	 * the ring.
884 	 */
885 	if (likely(io_get_cqe(ctx, &cqe))) {
886 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
887 
888 		WRITE_ONCE(cqe->user_data, user_data);
889 		WRITE_ONCE(cqe->res, res);
890 		WRITE_ONCE(cqe->flags, cflags);
891 
892 		if (ctx->flags & IORING_SETUP_CQE32) {
893 			WRITE_ONCE(cqe->big_cqe[0], 0);
894 			WRITE_ONCE(cqe->big_cqe[1], 0);
895 		}
896 		return true;
897 	}
898 	return false;
899 }
900 
901 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
902 	__must_hold(&ctx->uring_lock)
903 {
904 	struct io_submit_state *state = &ctx->submit_state;
905 	unsigned int i;
906 
907 	lockdep_assert_held(&ctx->uring_lock);
908 	for (i = 0; i < state->cqes_count; i++) {
909 		struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
910 
911 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
912 			if (ctx->lockless_cq) {
913 				spin_lock(&ctx->completion_lock);
914 				io_cqring_event_overflow(ctx, cqe->user_data,
915 							cqe->res, cqe->flags, 0, 0);
916 				spin_unlock(&ctx->completion_lock);
917 			} else {
918 				io_cqring_event_overflow(ctx, cqe->user_data,
919 							cqe->res, cqe->flags, 0, 0);
920 			}
921 		}
922 	}
923 	state->cqes_count = 0;
924 }
925 
926 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
927 			      bool allow_overflow)
928 {
929 	bool filled;
930 
931 	io_cq_lock(ctx);
932 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
933 	if (!filled && allow_overflow)
934 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
935 
936 	io_cq_unlock_post(ctx);
937 	return filled;
938 }
939 
940 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
941 {
942 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
943 }
944 
945 /*
946  * A helper for multishot requests posting additional CQEs.
947  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
948  */
949 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
950 {
951 	struct io_ring_ctx *ctx = req->ctx;
952 	u64 user_data = req->cqe.user_data;
953 	struct io_uring_cqe *cqe;
954 
955 	if (!defer)
956 		return __io_post_aux_cqe(ctx, user_data, res, cflags, false);
957 
958 	lockdep_assert_held(&ctx->uring_lock);
959 
960 	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
961 		__io_cq_lock(ctx);
962 		__io_flush_post_cqes(ctx);
963 		/* no need to flush - flush is deferred */
964 		__io_cq_unlock_post(ctx);
965 	}
966 
967 	/* For defered completions this is not as strict as it is otherwise,
968 	 * however it's main job is to prevent unbounded posted completions,
969 	 * and in that it works just as well.
970 	 */
971 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
972 		return false;
973 
974 	cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
975 	cqe->user_data = user_data;
976 	cqe->res = res;
977 	cqe->flags = cflags;
978 	return true;
979 }
980 
981 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
982 {
983 	struct io_ring_ctx *ctx = req->ctx;
984 	struct io_rsrc_node *rsrc_node = NULL;
985 
986 	io_cq_lock(ctx);
987 	if (!(req->flags & REQ_F_CQE_SKIP)) {
988 		if (!io_fill_cqe_req(ctx, req))
989 			io_req_cqe_overflow(req);
990 	}
991 
992 	/*
993 	 * If we're the last reference to this request, add to our locked
994 	 * free_list cache.
995 	 */
996 	if (req_ref_put_and_test(req)) {
997 		if (req->flags & IO_REQ_LINK_FLAGS) {
998 			if (req->flags & IO_DISARM_MASK)
999 				io_disarm_next(req);
1000 			if (req->link) {
1001 				io_req_task_queue(req->link);
1002 				req->link = NULL;
1003 			}
1004 		}
1005 		io_put_kbuf_comp(req);
1006 		if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1007 			io_clean_op(req);
1008 		io_put_file(req);
1009 
1010 		rsrc_node = req->rsrc_node;
1011 		/*
1012 		 * Selected buffer deallocation in io_clean_op() assumes that
1013 		 * we don't hold ->completion_lock. Clean them here to avoid
1014 		 * deadlocks.
1015 		 */
1016 		io_put_task_remote(req->task);
1017 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1018 		ctx->locked_free_nr++;
1019 	}
1020 	io_cq_unlock_post(ctx);
1021 
1022 	if (rsrc_node) {
1023 		io_ring_submit_lock(ctx, issue_flags);
1024 		io_put_rsrc_node(ctx, rsrc_node);
1025 		io_ring_submit_unlock(ctx, issue_flags);
1026 	}
1027 }
1028 
1029 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1030 {
1031 	if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1032 		req->io_task_work.func = io_req_task_complete;
1033 		io_req_task_work_add(req);
1034 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1035 		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1036 		__io_req_complete_post(req, issue_flags);
1037 	} else {
1038 		struct io_ring_ctx *ctx = req->ctx;
1039 
1040 		mutex_lock(&ctx->uring_lock);
1041 		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1042 		mutex_unlock(&ctx->uring_lock);
1043 	}
1044 }
1045 
1046 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1047 	__must_hold(&ctx->uring_lock)
1048 {
1049 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1050 
1051 	lockdep_assert_held(&req->ctx->uring_lock);
1052 
1053 	req_set_fail(req);
1054 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1055 	if (def->fail)
1056 		def->fail(req);
1057 	io_req_complete_defer(req);
1058 }
1059 
1060 /*
1061  * Don't initialise the fields below on every allocation, but do that in
1062  * advance and keep them valid across allocations.
1063  */
1064 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1065 {
1066 	req->ctx = ctx;
1067 	req->link = NULL;
1068 	req->async_data = NULL;
1069 	/* not necessary, but safer to zero */
1070 	memset(&req->cqe, 0, sizeof(req->cqe));
1071 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1072 }
1073 
1074 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1075 					struct io_submit_state *state)
1076 {
1077 	spin_lock(&ctx->completion_lock);
1078 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1079 	ctx->locked_free_nr = 0;
1080 	spin_unlock(&ctx->completion_lock);
1081 }
1082 
1083 /*
1084  * A request might get retired back into the request caches even before opcode
1085  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1086  * Because of that, io_alloc_req() should be called only under ->uring_lock
1087  * and with extra caution to not get a request that is still worked on.
1088  */
1089 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1090 	__must_hold(&ctx->uring_lock)
1091 {
1092 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1093 	void *reqs[IO_REQ_ALLOC_BATCH];
1094 	int ret, i;
1095 
1096 	/*
1097 	 * If we have more than a batch's worth of requests in our IRQ side
1098 	 * locked cache, grab the lock and move them over to our submission
1099 	 * side cache.
1100 	 */
1101 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1102 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1103 		if (!io_req_cache_empty(ctx))
1104 			return true;
1105 	}
1106 
1107 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1108 
1109 	/*
1110 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1111 	 * retry single alloc to be on the safe side.
1112 	 */
1113 	if (unlikely(ret <= 0)) {
1114 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1115 		if (!reqs[0])
1116 			return false;
1117 		ret = 1;
1118 	}
1119 
1120 	percpu_ref_get_many(&ctx->refs, ret);
1121 	for (i = 0; i < ret; i++) {
1122 		struct io_kiocb *req = reqs[i];
1123 
1124 		io_preinit_req(req, ctx);
1125 		io_req_add_to_cache(req, ctx);
1126 	}
1127 	return true;
1128 }
1129 
1130 __cold void io_free_req(struct io_kiocb *req)
1131 {
1132 	/* refs were already put, restore them for io_req_task_complete() */
1133 	req->flags &= ~REQ_F_REFCOUNT;
1134 	/* we only want to free it, don't post CQEs */
1135 	req->flags |= REQ_F_CQE_SKIP;
1136 	req->io_task_work.func = io_req_task_complete;
1137 	io_req_task_work_add(req);
1138 }
1139 
1140 static void __io_req_find_next_prep(struct io_kiocb *req)
1141 {
1142 	struct io_ring_ctx *ctx = req->ctx;
1143 
1144 	spin_lock(&ctx->completion_lock);
1145 	io_disarm_next(req);
1146 	spin_unlock(&ctx->completion_lock);
1147 }
1148 
1149 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1150 {
1151 	struct io_kiocb *nxt;
1152 
1153 	/*
1154 	 * If LINK is set, we have dependent requests in this chain. If we
1155 	 * didn't fail this request, queue the first one up, moving any other
1156 	 * dependencies to the next request. In case of failure, fail the rest
1157 	 * of the chain.
1158 	 */
1159 	if (unlikely(req->flags & IO_DISARM_MASK))
1160 		__io_req_find_next_prep(req);
1161 	nxt = req->link;
1162 	req->link = NULL;
1163 	return nxt;
1164 }
1165 
1166 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1167 {
1168 	if (!ctx)
1169 		return;
1170 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1171 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1172 	if (ts->locked) {
1173 		io_submit_flush_completions(ctx);
1174 		mutex_unlock(&ctx->uring_lock);
1175 		ts->locked = false;
1176 	}
1177 	percpu_ref_put(&ctx->refs);
1178 }
1179 
1180 static unsigned int handle_tw_list(struct llist_node *node,
1181 				   struct io_ring_ctx **ctx,
1182 				   struct io_tw_state *ts,
1183 				   struct llist_node *last)
1184 {
1185 	unsigned int count = 0;
1186 
1187 	while (node && node != last) {
1188 		struct llist_node *next = node->next;
1189 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1190 						    io_task_work.node);
1191 
1192 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1193 
1194 		if (req->ctx != *ctx) {
1195 			ctx_flush_and_put(*ctx, ts);
1196 			*ctx = req->ctx;
1197 			/* if not contended, grab and improve batching */
1198 			ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1199 			percpu_ref_get(&(*ctx)->refs);
1200 		}
1201 		INDIRECT_CALL_2(req->io_task_work.func,
1202 				io_poll_task_func, io_req_rw_complete,
1203 				req, ts);
1204 		node = next;
1205 		count++;
1206 		if (unlikely(need_resched())) {
1207 			ctx_flush_and_put(*ctx, ts);
1208 			*ctx = NULL;
1209 			cond_resched();
1210 		}
1211 	}
1212 
1213 	return count;
1214 }
1215 
1216 /**
1217  * io_llist_xchg - swap all entries in a lock-less list
1218  * @head:	the head of lock-less list to delete all entries
1219  * @new:	new entry as the head of the list
1220  *
1221  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1222  * The order of entries returned is from the newest to the oldest added one.
1223  */
1224 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1225 					       struct llist_node *new)
1226 {
1227 	return xchg(&head->first, new);
1228 }
1229 
1230 /**
1231  * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1232  * @head:	the head of lock-less list to delete all entries
1233  * @old:	expected old value of the first entry of the list
1234  * @new:	new entry as the head of the list
1235  *
1236  * perform a cmpxchg on the first entry of the list.
1237  */
1238 
1239 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1240 						  struct llist_node *old,
1241 						  struct llist_node *new)
1242 {
1243 	return cmpxchg(&head->first, old, new);
1244 }
1245 
1246 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1247 {
1248 	struct llist_node *node = llist_del_all(&tctx->task_list);
1249 	struct io_ring_ctx *last_ctx = NULL;
1250 	struct io_kiocb *req;
1251 
1252 	while (node) {
1253 		req = container_of(node, struct io_kiocb, io_task_work.node);
1254 		node = node->next;
1255 		if (sync && last_ctx != req->ctx) {
1256 			if (last_ctx) {
1257 				flush_delayed_work(&last_ctx->fallback_work);
1258 				percpu_ref_put(&last_ctx->refs);
1259 			}
1260 			last_ctx = req->ctx;
1261 			percpu_ref_get(&last_ctx->refs);
1262 		}
1263 		if (llist_add(&req->io_task_work.node,
1264 			      &req->ctx->fallback_llist))
1265 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1266 	}
1267 
1268 	if (last_ctx) {
1269 		flush_delayed_work(&last_ctx->fallback_work);
1270 		percpu_ref_put(&last_ctx->refs);
1271 	}
1272 }
1273 
1274 void tctx_task_work(struct callback_head *cb)
1275 {
1276 	struct io_tw_state ts = {};
1277 	struct io_ring_ctx *ctx = NULL;
1278 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1279 						  task_work);
1280 	struct llist_node fake = {};
1281 	struct llist_node *node;
1282 	unsigned int loops = 0;
1283 	unsigned int count = 0;
1284 
1285 	if (unlikely(current->flags & PF_EXITING)) {
1286 		io_fallback_tw(tctx, true);
1287 		return;
1288 	}
1289 
1290 	do {
1291 		loops++;
1292 		node = io_llist_xchg(&tctx->task_list, &fake);
1293 		count += handle_tw_list(node, &ctx, &ts, &fake);
1294 
1295 		/* skip expensive cmpxchg if there are items in the list */
1296 		if (READ_ONCE(tctx->task_list.first) != &fake)
1297 			continue;
1298 		if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1299 			io_submit_flush_completions(ctx);
1300 			if (READ_ONCE(tctx->task_list.first) != &fake)
1301 				continue;
1302 		}
1303 		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1304 	} while (node != &fake);
1305 
1306 	ctx_flush_and_put(ctx, &ts);
1307 
1308 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1309 	if (unlikely(atomic_read(&tctx->in_cancel)))
1310 		io_uring_drop_tctx_refs(current);
1311 
1312 	trace_io_uring_task_work_run(tctx, count, loops);
1313 }
1314 
1315 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1316 {
1317 	struct io_ring_ctx *ctx = req->ctx;
1318 	unsigned nr_wait, nr_tw, nr_tw_prev;
1319 	struct llist_node *first;
1320 
1321 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1322 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1323 
1324 	first = READ_ONCE(ctx->work_llist.first);
1325 	do {
1326 		nr_tw_prev = 0;
1327 		if (first) {
1328 			struct io_kiocb *first_req = container_of(first,
1329 							struct io_kiocb,
1330 							io_task_work.node);
1331 			/*
1332 			 * Might be executed at any moment, rely on
1333 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1334 			 */
1335 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1336 		}
1337 		nr_tw = nr_tw_prev + 1;
1338 		/* Large enough to fail the nr_wait comparison below */
1339 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1340 			nr_tw = -1U;
1341 
1342 		req->nr_tw = nr_tw;
1343 		req->io_task_work.node.next = first;
1344 	} while (!try_cmpxchg(&ctx->work_llist.first, &first,
1345 			      &req->io_task_work.node));
1346 
1347 	if (!first) {
1348 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1349 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1350 		if (ctx->has_evfd)
1351 			io_eventfd_signal(ctx);
1352 	}
1353 
1354 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1355 	/* no one is waiting */
1356 	if (!nr_wait)
1357 		return;
1358 	/* either not enough or the previous add has already woken it up */
1359 	if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1360 		return;
1361 	/* pairs with set_current_state() in io_cqring_wait() */
1362 	smp_mb__after_atomic();
1363 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1364 }
1365 
1366 static void io_req_normal_work_add(struct io_kiocb *req)
1367 {
1368 	struct io_uring_task *tctx = req->task->io_uring;
1369 	struct io_ring_ctx *ctx = req->ctx;
1370 
1371 	/* task_work already pending, we're done */
1372 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1373 		return;
1374 
1375 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1376 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1377 
1378 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1379 		return;
1380 
1381 	io_fallback_tw(tctx, false);
1382 }
1383 
1384 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1385 {
1386 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1387 		rcu_read_lock();
1388 		io_req_local_work_add(req, flags);
1389 		rcu_read_unlock();
1390 	} else {
1391 		io_req_normal_work_add(req);
1392 	}
1393 }
1394 
1395 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1396 {
1397 	struct llist_node *node;
1398 
1399 	node = llist_del_all(&ctx->work_llist);
1400 	while (node) {
1401 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1402 						    io_task_work.node);
1403 
1404 		node = node->next;
1405 		io_req_normal_work_add(req);
1406 	}
1407 }
1408 
1409 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1410 {
1411 	struct llist_node *node;
1412 	unsigned int loops = 0;
1413 	int ret = 0;
1414 
1415 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1416 		return -EEXIST;
1417 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1418 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1419 again:
1420 	/*
1421 	 * llists are in reverse order, flip it back the right way before
1422 	 * running the pending items.
1423 	 */
1424 	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1425 	while (node) {
1426 		struct llist_node *next = node->next;
1427 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1428 						    io_task_work.node);
1429 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1430 		INDIRECT_CALL_2(req->io_task_work.func,
1431 				io_poll_task_func, io_req_rw_complete,
1432 				req, ts);
1433 		ret++;
1434 		node = next;
1435 	}
1436 	loops++;
1437 
1438 	if (!llist_empty(&ctx->work_llist))
1439 		goto again;
1440 	if (ts->locked) {
1441 		io_submit_flush_completions(ctx);
1442 		if (!llist_empty(&ctx->work_llist))
1443 			goto again;
1444 	}
1445 	trace_io_uring_local_work_run(ctx, ret, loops);
1446 	return ret;
1447 }
1448 
1449 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1450 {
1451 	struct io_tw_state ts = { .locked = true, };
1452 	int ret;
1453 
1454 	if (llist_empty(&ctx->work_llist))
1455 		return 0;
1456 
1457 	ret = __io_run_local_work(ctx, &ts);
1458 	/* shouldn't happen! */
1459 	if (WARN_ON_ONCE(!ts.locked))
1460 		mutex_lock(&ctx->uring_lock);
1461 	return ret;
1462 }
1463 
1464 static int io_run_local_work(struct io_ring_ctx *ctx)
1465 {
1466 	struct io_tw_state ts = {};
1467 	int ret;
1468 
1469 	ts.locked = mutex_trylock(&ctx->uring_lock);
1470 	ret = __io_run_local_work(ctx, &ts);
1471 	if (ts.locked)
1472 		mutex_unlock(&ctx->uring_lock);
1473 
1474 	return ret;
1475 }
1476 
1477 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1478 {
1479 	io_tw_lock(req->ctx, ts);
1480 	io_req_defer_failed(req, req->cqe.res);
1481 }
1482 
1483 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1484 {
1485 	io_tw_lock(req->ctx, ts);
1486 	/* req->task == current here, checking PF_EXITING is safe */
1487 	if (unlikely(req->task->flags & PF_EXITING))
1488 		io_req_defer_failed(req, -EFAULT);
1489 	else if (req->flags & REQ_F_FORCE_ASYNC)
1490 		io_queue_iowq(req, ts);
1491 	else
1492 		io_queue_sqe(req);
1493 }
1494 
1495 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1496 {
1497 	io_req_set_res(req, ret, 0);
1498 	req->io_task_work.func = io_req_task_cancel;
1499 	io_req_task_work_add(req);
1500 }
1501 
1502 void io_req_task_queue(struct io_kiocb *req)
1503 {
1504 	req->io_task_work.func = io_req_task_submit;
1505 	io_req_task_work_add(req);
1506 }
1507 
1508 void io_queue_next(struct io_kiocb *req)
1509 {
1510 	struct io_kiocb *nxt = io_req_find_next(req);
1511 
1512 	if (nxt)
1513 		io_req_task_queue(nxt);
1514 }
1515 
1516 static void io_free_batch_list(struct io_ring_ctx *ctx,
1517 			       struct io_wq_work_node *node)
1518 	__must_hold(&ctx->uring_lock)
1519 {
1520 	do {
1521 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1522 						    comp_list);
1523 
1524 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1525 			if (req->flags & REQ_F_REFCOUNT) {
1526 				node = req->comp_list.next;
1527 				if (!req_ref_put_and_test(req))
1528 					continue;
1529 			}
1530 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1531 				struct async_poll *apoll = req->apoll;
1532 
1533 				if (apoll->double_poll)
1534 					kfree(apoll->double_poll);
1535 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1536 					kfree(apoll);
1537 				req->flags &= ~REQ_F_POLLED;
1538 			}
1539 			if (req->flags & IO_REQ_LINK_FLAGS)
1540 				io_queue_next(req);
1541 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1542 				io_clean_op(req);
1543 		}
1544 		io_put_file(req);
1545 
1546 		io_req_put_rsrc_locked(req, ctx);
1547 
1548 		io_put_task(req->task);
1549 		node = req->comp_list.next;
1550 		io_req_add_to_cache(req, ctx);
1551 	} while (node);
1552 }
1553 
1554 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1555 	__must_hold(&ctx->uring_lock)
1556 {
1557 	struct io_submit_state *state = &ctx->submit_state;
1558 	struct io_wq_work_node *node;
1559 
1560 	__io_cq_lock(ctx);
1561 	/* must come first to preserve CQE ordering in failure cases */
1562 	if (state->cqes_count)
1563 		__io_flush_post_cqes(ctx);
1564 	__wq_list_for_each(node, &state->compl_reqs) {
1565 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1566 					    comp_list);
1567 
1568 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1569 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1570 			if (ctx->lockless_cq) {
1571 				spin_lock(&ctx->completion_lock);
1572 				io_req_cqe_overflow(req);
1573 				spin_unlock(&ctx->completion_lock);
1574 			} else {
1575 				io_req_cqe_overflow(req);
1576 			}
1577 		}
1578 	}
1579 	__io_cq_unlock_post(ctx);
1580 
1581 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1582 		io_free_batch_list(ctx, state->compl_reqs.first);
1583 		INIT_WQ_LIST(&state->compl_reqs);
1584 	}
1585 }
1586 
1587 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1588 {
1589 	/* See comment at the top of this file */
1590 	smp_rmb();
1591 	return __io_cqring_events(ctx);
1592 }
1593 
1594 /*
1595  * We can't just wait for polled events to come to us, we have to actively
1596  * find and complete them.
1597  */
1598 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1599 {
1600 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1601 		return;
1602 
1603 	mutex_lock(&ctx->uring_lock);
1604 	while (!wq_list_empty(&ctx->iopoll_list)) {
1605 		/* let it sleep and repeat later if can't complete a request */
1606 		if (io_do_iopoll(ctx, true) == 0)
1607 			break;
1608 		/*
1609 		 * Ensure we allow local-to-the-cpu processing to take place,
1610 		 * in this case we need to ensure that we reap all events.
1611 		 * Also let task_work, etc. to progress by releasing the mutex
1612 		 */
1613 		if (need_resched()) {
1614 			mutex_unlock(&ctx->uring_lock);
1615 			cond_resched();
1616 			mutex_lock(&ctx->uring_lock);
1617 		}
1618 	}
1619 	mutex_unlock(&ctx->uring_lock);
1620 }
1621 
1622 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1623 {
1624 	unsigned int nr_events = 0;
1625 	unsigned long check_cq;
1626 
1627 	if (!io_allowed_run_tw(ctx))
1628 		return -EEXIST;
1629 
1630 	check_cq = READ_ONCE(ctx->check_cq);
1631 	if (unlikely(check_cq)) {
1632 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1633 			__io_cqring_overflow_flush(ctx);
1634 		/*
1635 		 * Similarly do not spin if we have not informed the user of any
1636 		 * dropped CQE.
1637 		 */
1638 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1639 			return -EBADR;
1640 	}
1641 	/*
1642 	 * Don't enter poll loop if we already have events pending.
1643 	 * If we do, we can potentially be spinning for commands that
1644 	 * already triggered a CQE (eg in error).
1645 	 */
1646 	if (io_cqring_events(ctx))
1647 		return 0;
1648 
1649 	do {
1650 		int ret = 0;
1651 
1652 		/*
1653 		 * If a submit got punted to a workqueue, we can have the
1654 		 * application entering polling for a command before it gets
1655 		 * issued. That app will hold the uring_lock for the duration
1656 		 * of the poll right here, so we need to take a breather every
1657 		 * now and then to ensure that the issue has a chance to add
1658 		 * the poll to the issued list. Otherwise we can spin here
1659 		 * forever, while the workqueue is stuck trying to acquire the
1660 		 * very same mutex.
1661 		 */
1662 		if (wq_list_empty(&ctx->iopoll_list) ||
1663 		    io_task_work_pending(ctx)) {
1664 			u32 tail = ctx->cached_cq_tail;
1665 
1666 			(void) io_run_local_work_locked(ctx);
1667 
1668 			if (task_work_pending(current) ||
1669 			    wq_list_empty(&ctx->iopoll_list)) {
1670 				mutex_unlock(&ctx->uring_lock);
1671 				io_run_task_work();
1672 				mutex_lock(&ctx->uring_lock);
1673 			}
1674 			/* some requests don't go through iopoll_list */
1675 			if (tail != ctx->cached_cq_tail ||
1676 			    wq_list_empty(&ctx->iopoll_list))
1677 				break;
1678 		}
1679 		ret = io_do_iopoll(ctx, !min);
1680 		if (unlikely(ret < 0))
1681 			return ret;
1682 
1683 		if (task_sigpending(current))
1684 			return -EINTR;
1685 		if (need_resched())
1686 			break;
1687 
1688 		nr_events += ret;
1689 	} while (nr_events < min);
1690 
1691 	return 0;
1692 }
1693 
1694 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1695 {
1696 	if (ts->locked)
1697 		io_req_complete_defer(req);
1698 	else
1699 		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1700 }
1701 
1702 /*
1703  * After the iocb has been issued, it's safe to be found on the poll list.
1704  * Adding the kiocb to the list AFTER submission ensures that we don't
1705  * find it from a io_do_iopoll() thread before the issuer is done
1706  * accessing the kiocb cookie.
1707  */
1708 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1709 {
1710 	struct io_ring_ctx *ctx = req->ctx;
1711 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1712 
1713 	/* workqueue context doesn't hold uring_lock, grab it now */
1714 	if (unlikely(needs_lock))
1715 		mutex_lock(&ctx->uring_lock);
1716 
1717 	/*
1718 	 * Track whether we have multiple files in our lists. This will impact
1719 	 * how we do polling eventually, not spinning if we're on potentially
1720 	 * different devices.
1721 	 */
1722 	if (wq_list_empty(&ctx->iopoll_list)) {
1723 		ctx->poll_multi_queue = false;
1724 	} else if (!ctx->poll_multi_queue) {
1725 		struct io_kiocb *list_req;
1726 
1727 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1728 					comp_list);
1729 		if (list_req->file != req->file)
1730 			ctx->poll_multi_queue = true;
1731 	}
1732 
1733 	/*
1734 	 * For fast devices, IO may have already completed. If it has, add
1735 	 * it to the front so we find it first.
1736 	 */
1737 	if (READ_ONCE(req->iopoll_completed))
1738 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1739 	else
1740 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1741 
1742 	if (unlikely(needs_lock)) {
1743 		/*
1744 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1745 		 * in sq thread task context or in io worker task context. If
1746 		 * current task context is sq thread, we don't need to check
1747 		 * whether should wake up sq thread.
1748 		 */
1749 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1750 		    wq_has_sleeper(&ctx->sq_data->wait))
1751 			wake_up(&ctx->sq_data->wait);
1752 
1753 		mutex_unlock(&ctx->uring_lock);
1754 	}
1755 }
1756 
1757 unsigned int io_file_get_flags(struct file *file)
1758 {
1759 	unsigned int res = 0;
1760 
1761 	if (S_ISREG(file_inode(file)->i_mode))
1762 		res |= REQ_F_ISREG;
1763 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1764 		res |= REQ_F_SUPPORT_NOWAIT;
1765 	return res;
1766 }
1767 
1768 bool io_alloc_async_data(struct io_kiocb *req)
1769 {
1770 	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1771 	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1772 	if (req->async_data) {
1773 		req->flags |= REQ_F_ASYNC_DATA;
1774 		return false;
1775 	}
1776 	return true;
1777 }
1778 
1779 int io_req_prep_async(struct io_kiocb *req)
1780 {
1781 	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1782 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1783 
1784 	/* assign early for deferred execution for non-fixed file */
1785 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1786 		req->file = io_file_get_normal(req, req->cqe.fd);
1787 	if (!cdef->prep_async)
1788 		return 0;
1789 	if (WARN_ON_ONCE(req_has_async_data(req)))
1790 		return -EFAULT;
1791 	if (!def->manual_alloc) {
1792 		if (io_alloc_async_data(req))
1793 			return -EAGAIN;
1794 	}
1795 	return cdef->prep_async(req);
1796 }
1797 
1798 static u32 io_get_sequence(struct io_kiocb *req)
1799 {
1800 	u32 seq = req->ctx->cached_sq_head;
1801 	struct io_kiocb *cur;
1802 
1803 	/* need original cached_sq_head, but it was increased for each req */
1804 	io_for_each_link(cur, req)
1805 		seq--;
1806 	return seq;
1807 }
1808 
1809 static __cold void io_drain_req(struct io_kiocb *req)
1810 	__must_hold(&ctx->uring_lock)
1811 {
1812 	struct io_ring_ctx *ctx = req->ctx;
1813 	struct io_defer_entry *de;
1814 	int ret;
1815 	u32 seq = io_get_sequence(req);
1816 
1817 	/* Still need defer if there is pending req in defer list. */
1818 	spin_lock(&ctx->completion_lock);
1819 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1820 		spin_unlock(&ctx->completion_lock);
1821 queue:
1822 		ctx->drain_active = false;
1823 		io_req_task_queue(req);
1824 		return;
1825 	}
1826 	spin_unlock(&ctx->completion_lock);
1827 
1828 	io_prep_async_link(req);
1829 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1830 	if (!de) {
1831 		ret = -ENOMEM;
1832 		io_req_defer_failed(req, ret);
1833 		return;
1834 	}
1835 
1836 	spin_lock(&ctx->completion_lock);
1837 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1838 		spin_unlock(&ctx->completion_lock);
1839 		kfree(de);
1840 		goto queue;
1841 	}
1842 
1843 	trace_io_uring_defer(req);
1844 	de->req = req;
1845 	de->seq = seq;
1846 	list_add_tail(&de->list, &ctx->defer_list);
1847 	spin_unlock(&ctx->completion_lock);
1848 }
1849 
1850 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1851 			   unsigned int issue_flags)
1852 {
1853 	if (req->file || !def->needs_file)
1854 		return true;
1855 
1856 	if (req->flags & REQ_F_FIXED_FILE)
1857 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1858 	else
1859 		req->file = io_file_get_normal(req, req->cqe.fd);
1860 
1861 	return !!req->file;
1862 }
1863 
1864 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1865 {
1866 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1867 	const struct cred *creds = NULL;
1868 	int ret;
1869 
1870 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1871 		return -EBADF;
1872 
1873 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1874 		creds = override_creds(req->creds);
1875 
1876 	if (!def->audit_skip)
1877 		audit_uring_entry(req->opcode);
1878 
1879 	ret = def->issue(req, issue_flags);
1880 
1881 	if (!def->audit_skip)
1882 		audit_uring_exit(!ret, ret);
1883 
1884 	if (creds)
1885 		revert_creds(creds);
1886 
1887 	if (ret == IOU_OK) {
1888 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1889 			io_req_complete_defer(req);
1890 		else
1891 			io_req_complete_post(req, issue_flags);
1892 	} else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1893 		return ret;
1894 
1895 	/* If the op doesn't have a file, we're not polling for it */
1896 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1897 		io_iopoll_req_issued(req, issue_flags);
1898 
1899 	return 0;
1900 }
1901 
1902 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1903 {
1904 	io_tw_lock(req->ctx, ts);
1905 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1906 				 IO_URING_F_COMPLETE_DEFER);
1907 }
1908 
1909 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1910 {
1911 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1912 	struct io_kiocb *nxt = NULL;
1913 
1914 	if (req_ref_put_and_test(req)) {
1915 		if (req->flags & IO_REQ_LINK_FLAGS)
1916 			nxt = io_req_find_next(req);
1917 		io_free_req(req);
1918 	}
1919 	return nxt ? &nxt->work : NULL;
1920 }
1921 
1922 void io_wq_submit_work(struct io_wq_work *work)
1923 {
1924 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1925 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1926 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1927 	bool needs_poll = false;
1928 	int ret = 0, err = -ECANCELED;
1929 
1930 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1931 	if (!(req->flags & REQ_F_REFCOUNT))
1932 		__io_req_set_refcount(req, 2);
1933 	else
1934 		req_ref_get(req);
1935 
1936 	io_arm_ltimeout(req);
1937 
1938 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1939 	if (work->flags & IO_WQ_WORK_CANCEL) {
1940 fail:
1941 		io_req_task_queue_fail(req, err);
1942 		return;
1943 	}
1944 	if (!io_assign_file(req, def, issue_flags)) {
1945 		err = -EBADF;
1946 		work->flags |= IO_WQ_WORK_CANCEL;
1947 		goto fail;
1948 	}
1949 
1950 	if (req->flags & REQ_F_FORCE_ASYNC) {
1951 		bool opcode_poll = def->pollin || def->pollout;
1952 
1953 		if (opcode_poll && file_can_poll(req->file)) {
1954 			needs_poll = true;
1955 			issue_flags |= IO_URING_F_NONBLOCK;
1956 		}
1957 	}
1958 
1959 	do {
1960 		ret = io_issue_sqe(req, issue_flags);
1961 		if (ret != -EAGAIN)
1962 			break;
1963 
1964 		/*
1965 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1966 		 * poll. -EAGAIN is final for that case.
1967 		 */
1968 		if (req->flags & REQ_F_NOWAIT)
1969 			break;
1970 
1971 		/*
1972 		 * We can get EAGAIN for iopolled IO even though we're
1973 		 * forcing a sync submission from here, since we can't
1974 		 * wait for request slots on the block side.
1975 		 */
1976 		if (!needs_poll) {
1977 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1978 				break;
1979 			if (io_wq_worker_stopped())
1980 				break;
1981 			cond_resched();
1982 			continue;
1983 		}
1984 
1985 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1986 			return;
1987 		/* aborted or ready, in either case retry blocking */
1988 		needs_poll = false;
1989 		issue_flags &= ~IO_URING_F_NONBLOCK;
1990 	} while (1);
1991 
1992 	/* avoid locking problems by failing it from a clean context */
1993 	if (ret < 0)
1994 		io_req_task_queue_fail(req, ret);
1995 }
1996 
1997 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1998 				      unsigned int issue_flags)
1999 {
2000 	struct io_ring_ctx *ctx = req->ctx;
2001 	struct io_fixed_file *slot;
2002 	struct file *file = NULL;
2003 
2004 	io_ring_submit_lock(ctx, issue_flags);
2005 
2006 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2007 		goto out;
2008 	fd = array_index_nospec(fd, ctx->nr_user_files);
2009 	slot = io_fixed_file_slot(&ctx->file_table, fd);
2010 	file = io_slot_file(slot);
2011 	req->flags |= io_slot_flags(slot);
2012 	io_req_set_rsrc_node(req, ctx, 0);
2013 out:
2014 	io_ring_submit_unlock(ctx, issue_flags);
2015 	return file;
2016 }
2017 
2018 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2019 {
2020 	struct file *file = fget(fd);
2021 
2022 	trace_io_uring_file_get(req, fd);
2023 
2024 	/* we don't allow fixed io_uring files */
2025 	if (file && io_is_uring_fops(file))
2026 		io_req_track_inflight(req);
2027 	return file;
2028 }
2029 
2030 static void io_queue_async(struct io_kiocb *req, int ret)
2031 	__must_hold(&req->ctx->uring_lock)
2032 {
2033 	struct io_kiocb *linked_timeout;
2034 
2035 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2036 		io_req_defer_failed(req, ret);
2037 		return;
2038 	}
2039 
2040 	linked_timeout = io_prep_linked_timeout(req);
2041 
2042 	switch (io_arm_poll_handler(req, 0)) {
2043 	case IO_APOLL_READY:
2044 		io_kbuf_recycle(req, 0);
2045 		io_req_task_queue(req);
2046 		break;
2047 	case IO_APOLL_ABORTED:
2048 		io_kbuf_recycle(req, 0);
2049 		io_queue_iowq(req, NULL);
2050 		break;
2051 	case IO_APOLL_OK:
2052 		break;
2053 	}
2054 
2055 	if (linked_timeout)
2056 		io_queue_linked_timeout(linked_timeout);
2057 }
2058 
2059 static inline void io_queue_sqe(struct io_kiocb *req)
2060 	__must_hold(&req->ctx->uring_lock)
2061 {
2062 	int ret;
2063 
2064 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2065 
2066 	/*
2067 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2068 	 * doesn't support non-blocking read/write attempts
2069 	 */
2070 	if (likely(!ret))
2071 		io_arm_ltimeout(req);
2072 	else
2073 		io_queue_async(req, ret);
2074 }
2075 
2076 static void io_queue_sqe_fallback(struct io_kiocb *req)
2077 	__must_hold(&req->ctx->uring_lock)
2078 {
2079 	if (unlikely(req->flags & REQ_F_FAIL)) {
2080 		/*
2081 		 * We don't submit, fail them all, for that replace hardlinks
2082 		 * with normal links. Extra REQ_F_LINK is tolerated.
2083 		 */
2084 		req->flags &= ~REQ_F_HARDLINK;
2085 		req->flags |= REQ_F_LINK;
2086 		io_req_defer_failed(req, req->cqe.res);
2087 	} else {
2088 		int ret = io_req_prep_async(req);
2089 
2090 		if (unlikely(ret)) {
2091 			io_req_defer_failed(req, ret);
2092 			return;
2093 		}
2094 
2095 		if (unlikely(req->ctx->drain_active))
2096 			io_drain_req(req);
2097 		else
2098 			io_queue_iowq(req, NULL);
2099 	}
2100 }
2101 
2102 /*
2103  * Check SQE restrictions (opcode and flags).
2104  *
2105  * Returns 'true' if SQE is allowed, 'false' otherwise.
2106  */
2107 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2108 					struct io_kiocb *req,
2109 					unsigned int sqe_flags)
2110 {
2111 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2112 		return false;
2113 
2114 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2115 	    ctx->restrictions.sqe_flags_required)
2116 		return false;
2117 
2118 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2119 			  ctx->restrictions.sqe_flags_required))
2120 		return false;
2121 
2122 	return true;
2123 }
2124 
2125 static void io_init_req_drain(struct io_kiocb *req)
2126 {
2127 	struct io_ring_ctx *ctx = req->ctx;
2128 	struct io_kiocb *head = ctx->submit_state.link.head;
2129 
2130 	ctx->drain_active = true;
2131 	if (head) {
2132 		/*
2133 		 * If we need to drain a request in the middle of a link, drain
2134 		 * the head request and the next request/link after the current
2135 		 * link. Considering sequential execution of links,
2136 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2137 		 * link.
2138 		 */
2139 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2140 		ctx->drain_next = true;
2141 	}
2142 }
2143 
2144 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2145 		       const struct io_uring_sqe *sqe)
2146 	__must_hold(&ctx->uring_lock)
2147 {
2148 	const struct io_issue_def *def;
2149 	unsigned int sqe_flags;
2150 	int personality;
2151 	u8 opcode;
2152 
2153 	/* req is partially pre-initialised, see io_preinit_req() */
2154 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2155 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2156 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2157 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2158 	req->file = NULL;
2159 	req->rsrc_node = NULL;
2160 	req->task = current;
2161 
2162 	if (unlikely(opcode >= IORING_OP_LAST)) {
2163 		req->opcode = 0;
2164 		return -EINVAL;
2165 	}
2166 	def = &io_issue_defs[opcode];
2167 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2168 		/* enforce forwards compatibility on users */
2169 		if (sqe_flags & ~SQE_VALID_FLAGS)
2170 			return -EINVAL;
2171 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2172 			if (!def->buffer_select)
2173 				return -EOPNOTSUPP;
2174 			req->buf_index = READ_ONCE(sqe->buf_group);
2175 		}
2176 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2177 			ctx->drain_disabled = true;
2178 		if (sqe_flags & IOSQE_IO_DRAIN) {
2179 			if (ctx->drain_disabled)
2180 				return -EOPNOTSUPP;
2181 			io_init_req_drain(req);
2182 		}
2183 	}
2184 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2185 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2186 			return -EACCES;
2187 		/* knock it to the slow queue path, will be drained there */
2188 		if (ctx->drain_active)
2189 			req->flags |= REQ_F_FORCE_ASYNC;
2190 		/* if there is no link, we're at "next" request and need to drain */
2191 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2192 			ctx->drain_next = false;
2193 			ctx->drain_active = true;
2194 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2195 		}
2196 	}
2197 
2198 	if (!def->ioprio && sqe->ioprio)
2199 		return -EINVAL;
2200 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2201 		return -EINVAL;
2202 
2203 	if (def->needs_file) {
2204 		struct io_submit_state *state = &ctx->submit_state;
2205 
2206 		req->cqe.fd = READ_ONCE(sqe->fd);
2207 
2208 		/*
2209 		 * Plug now if we have more than 2 IO left after this, and the
2210 		 * target is potentially a read/write to block based storage.
2211 		 */
2212 		if (state->need_plug && def->plug) {
2213 			state->plug_started = true;
2214 			state->need_plug = false;
2215 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2216 		}
2217 	}
2218 
2219 	personality = READ_ONCE(sqe->personality);
2220 	if (personality) {
2221 		int ret;
2222 
2223 		req->creds = xa_load(&ctx->personalities, personality);
2224 		if (!req->creds)
2225 			return -EINVAL;
2226 		get_cred(req->creds);
2227 		ret = security_uring_override_creds(req->creds);
2228 		if (ret) {
2229 			put_cred(req->creds);
2230 			return ret;
2231 		}
2232 		req->flags |= REQ_F_CREDS;
2233 	}
2234 
2235 	return def->prep(req, sqe);
2236 }
2237 
2238 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2239 				      struct io_kiocb *req, int ret)
2240 {
2241 	struct io_ring_ctx *ctx = req->ctx;
2242 	struct io_submit_link *link = &ctx->submit_state.link;
2243 	struct io_kiocb *head = link->head;
2244 
2245 	trace_io_uring_req_failed(sqe, req, ret);
2246 
2247 	/*
2248 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2249 	 * unusable. Instead of failing eagerly, continue assembling the link if
2250 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2251 	 * should find the flag and handle the rest.
2252 	 */
2253 	req_fail_link_node(req, ret);
2254 	if (head && !(head->flags & REQ_F_FAIL))
2255 		req_fail_link_node(head, -ECANCELED);
2256 
2257 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2258 		if (head) {
2259 			link->last->link = req;
2260 			link->head = NULL;
2261 			req = head;
2262 		}
2263 		io_queue_sqe_fallback(req);
2264 		return ret;
2265 	}
2266 
2267 	if (head)
2268 		link->last->link = req;
2269 	else
2270 		link->head = req;
2271 	link->last = req;
2272 	return 0;
2273 }
2274 
2275 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2276 			 const struct io_uring_sqe *sqe)
2277 	__must_hold(&ctx->uring_lock)
2278 {
2279 	struct io_submit_link *link = &ctx->submit_state.link;
2280 	int ret;
2281 
2282 	ret = io_init_req(ctx, req, sqe);
2283 	if (unlikely(ret))
2284 		return io_submit_fail_init(sqe, req, ret);
2285 
2286 	trace_io_uring_submit_req(req);
2287 
2288 	/*
2289 	 * If we already have a head request, queue this one for async
2290 	 * submittal once the head completes. If we don't have a head but
2291 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2292 	 * submitted sync once the chain is complete. If none of those
2293 	 * conditions are true (normal request), then just queue it.
2294 	 */
2295 	if (unlikely(link->head)) {
2296 		ret = io_req_prep_async(req);
2297 		if (unlikely(ret))
2298 			return io_submit_fail_init(sqe, req, ret);
2299 
2300 		trace_io_uring_link(req, link->head);
2301 		link->last->link = req;
2302 		link->last = req;
2303 
2304 		if (req->flags & IO_REQ_LINK_FLAGS)
2305 			return 0;
2306 		/* last request of the link, flush it */
2307 		req = link->head;
2308 		link->head = NULL;
2309 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2310 			goto fallback;
2311 
2312 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2313 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2314 		if (req->flags & IO_REQ_LINK_FLAGS) {
2315 			link->head = req;
2316 			link->last = req;
2317 		} else {
2318 fallback:
2319 			io_queue_sqe_fallback(req);
2320 		}
2321 		return 0;
2322 	}
2323 
2324 	io_queue_sqe(req);
2325 	return 0;
2326 }
2327 
2328 /*
2329  * Batched submission is done, ensure local IO is flushed out.
2330  */
2331 static void io_submit_state_end(struct io_ring_ctx *ctx)
2332 {
2333 	struct io_submit_state *state = &ctx->submit_state;
2334 
2335 	if (unlikely(state->link.head))
2336 		io_queue_sqe_fallback(state->link.head);
2337 	/* flush only after queuing links as they can generate completions */
2338 	io_submit_flush_completions(ctx);
2339 	if (state->plug_started)
2340 		blk_finish_plug(&state->plug);
2341 }
2342 
2343 /*
2344  * Start submission side cache.
2345  */
2346 static void io_submit_state_start(struct io_submit_state *state,
2347 				  unsigned int max_ios)
2348 {
2349 	state->plug_started = false;
2350 	state->need_plug = max_ios > 2;
2351 	state->submit_nr = max_ios;
2352 	/* set only head, no need to init link_last in advance */
2353 	state->link.head = NULL;
2354 }
2355 
2356 static void io_commit_sqring(struct io_ring_ctx *ctx)
2357 {
2358 	struct io_rings *rings = ctx->rings;
2359 
2360 	/*
2361 	 * Ensure any loads from the SQEs are done at this point,
2362 	 * since once we write the new head, the application could
2363 	 * write new data to them.
2364 	 */
2365 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2366 }
2367 
2368 /*
2369  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2370  * that is mapped by userspace. This means that care needs to be taken to
2371  * ensure that reads are stable, as we cannot rely on userspace always
2372  * being a good citizen. If members of the sqe are validated and then later
2373  * used, it's important that those reads are done through READ_ONCE() to
2374  * prevent a re-load down the line.
2375  */
2376 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2377 {
2378 	unsigned mask = ctx->sq_entries - 1;
2379 	unsigned head = ctx->cached_sq_head++ & mask;
2380 
2381 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2382 		head = READ_ONCE(ctx->sq_array[head]);
2383 		if (unlikely(head >= ctx->sq_entries)) {
2384 			/* drop invalid entries */
2385 			spin_lock(&ctx->completion_lock);
2386 			ctx->cq_extra--;
2387 			spin_unlock(&ctx->completion_lock);
2388 			WRITE_ONCE(ctx->rings->sq_dropped,
2389 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2390 			return false;
2391 		}
2392 	}
2393 
2394 	/*
2395 	 * The cached sq head (or cq tail) serves two purposes:
2396 	 *
2397 	 * 1) allows us to batch the cost of updating the user visible
2398 	 *    head updates.
2399 	 * 2) allows the kernel side to track the head on its own, even
2400 	 *    though the application is the one updating it.
2401 	 */
2402 
2403 	/* double index for 128-byte SQEs, twice as long */
2404 	if (ctx->flags & IORING_SETUP_SQE128)
2405 		head <<= 1;
2406 	*sqe = &ctx->sq_sqes[head];
2407 	return true;
2408 }
2409 
2410 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2411 	__must_hold(&ctx->uring_lock)
2412 {
2413 	unsigned int entries = io_sqring_entries(ctx);
2414 	unsigned int left;
2415 	int ret;
2416 
2417 	if (unlikely(!entries))
2418 		return 0;
2419 	/* make sure SQ entry isn't read before tail */
2420 	ret = left = min(nr, entries);
2421 	io_get_task_refs(left);
2422 	io_submit_state_start(&ctx->submit_state, left);
2423 
2424 	do {
2425 		const struct io_uring_sqe *sqe;
2426 		struct io_kiocb *req;
2427 
2428 		if (unlikely(!io_alloc_req(ctx, &req)))
2429 			break;
2430 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2431 			io_req_add_to_cache(req, ctx);
2432 			break;
2433 		}
2434 
2435 		/*
2436 		 * Continue submitting even for sqe failure if the
2437 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2438 		 */
2439 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2440 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2441 			left--;
2442 			break;
2443 		}
2444 	} while (--left);
2445 
2446 	if (unlikely(left)) {
2447 		ret -= left;
2448 		/* try again if it submitted nothing and can't allocate a req */
2449 		if (!ret && io_req_cache_empty(ctx))
2450 			ret = -EAGAIN;
2451 		current->io_uring->cached_refs += left;
2452 	}
2453 
2454 	io_submit_state_end(ctx);
2455 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2456 	io_commit_sqring(ctx);
2457 	return ret;
2458 }
2459 
2460 struct io_wait_queue {
2461 	struct wait_queue_entry wq;
2462 	struct io_ring_ctx *ctx;
2463 	unsigned cq_tail;
2464 	unsigned nr_timeouts;
2465 	ktime_t timeout;
2466 };
2467 
2468 static inline bool io_has_work(struct io_ring_ctx *ctx)
2469 {
2470 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2471 	       !llist_empty(&ctx->work_llist);
2472 }
2473 
2474 static inline bool io_should_wake(struct io_wait_queue *iowq)
2475 {
2476 	struct io_ring_ctx *ctx = iowq->ctx;
2477 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2478 
2479 	/*
2480 	 * Wake up if we have enough events, or if a timeout occurred since we
2481 	 * started waiting. For timeouts, we always want to return to userspace,
2482 	 * regardless of event count.
2483 	 */
2484 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2485 }
2486 
2487 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2488 			    int wake_flags, void *key)
2489 {
2490 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2491 
2492 	/*
2493 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2494 	 * the task, and the next invocation will do it.
2495 	 */
2496 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2497 		return autoremove_wake_function(curr, mode, wake_flags, key);
2498 	return -1;
2499 }
2500 
2501 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2502 {
2503 	if (!llist_empty(&ctx->work_llist)) {
2504 		__set_current_state(TASK_RUNNING);
2505 		if (io_run_local_work(ctx) > 0)
2506 			return 0;
2507 	}
2508 	if (io_run_task_work() > 0)
2509 		return 0;
2510 	if (task_sigpending(current))
2511 		return -EINTR;
2512 	return 0;
2513 }
2514 
2515 static bool current_pending_io(void)
2516 {
2517 	struct io_uring_task *tctx = current->io_uring;
2518 
2519 	if (!tctx)
2520 		return false;
2521 	return percpu_counter_read_positive(&tctx->inflight);
2522 }
2523 
2524 /* when returns >0, the caller should retry */
2525 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2526 					  struct io_wait_queue *iowq)
2527 {
2528 	int io_wait, ret;
2529 
2530 	if (unlikely(READ_ONCE(ctx->check_cq)))
2531 		return 1;
2532 	if (unlikely(!llist_empty(&ctx->work_llist)))
2533 		return 1;
2534 	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2535 		return 1;
2536 	if (unlikely(task_sigpending(current)))
2537 		return -EINTR;
2538 	if (unlikely(io_should_wake(iowq)))
2539 		return 0;
2540 
2541 	/*
2542 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2543 	 * can take into account that the task is waiting for IO - turns out
2544 	 * to be important for low QD IO.
2545 	 */
2546 	io_wait = current->in_iowait;
2547 	if (current_pending_io())
2548 		current->in_iowait = 1;
2549 	ret = 0;
2550 	if (iowq->timeout == KTIME_MAX)
2551 		schedule();
2552 	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2553 		ret = -ETIME;
2554 	current->in_iowait = io_wait;
2555 	return ret;
2556 }
2557 
2558 /*
2559  * Wait until events become available, if we don't already have some. The
2560  * application must reap them itself, as they reside on the shared cq ring.
2561  */
2562 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2563 			  const sigset_t __user *sig, size_t sigsz,
2564 			  struct __kernel_timespec __user *uts)
2565 {
2566 	struct io_wait_queue iowq;
2567 	struct io_rings *rings = ctx->rings;
2568 	int ret;
2569 
2570 	if (!io_allowed_run_tw(ctx))
2571 		return -EEXIST;
2572 	if (!llist_empty(&ctx->work_llist))
2573 		io_run_local_work(ctx);
2574 	io_run_task_work();
2575 	io_cqring_overflow_flush(ctx);
2576 	/* if user messes with these they will just get an early return */
2577 	if (__io_cqring_events_user(ctx) >= min_events)
2578 		return 0;
2579 
2580 	if (sig) {
2581 #ifdef CONFIG_COMPAT
2582 		if (in_compat_syscall())
2583 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2584 						      sigsz);
2585 		else
2586 #endif
2587 			ret = set_user_sigmask(sig, sigsz);
2588 
2589 		if (ret)
2590 			return ret;
2591 	}
2592 
2593 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2594 	iowq.wq.private = current;
2595 	INIT_LIST_HEAD(&iowq.wq.entry);
2596 	iowq.ctx = ctx;
2597 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2598 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2599 	iowq.timeout = KTIME_MAX;
2600 
2601 	if (uts) {
2602 		struct timespec64 ts;
2603 
2604 		if (get_timespec64(&ts, uts))
2605 			return -EFAULT;
2606 		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2607 	}
2608 
2609 	trace_io_uring_cqring_wait(ctx, min_events);
2610 	do {
2611 		unsigned long check_cq;
2612 
2613 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2614 			int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2615 
2616 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2617 			set_current_state(TASK_INTERRUPTIBLE);
2618 		} else {
2619 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2620 							TASK_INTERRUPTIBLE);
2621 		}
2622 
2623 		ret = io_cqring_wait_schedule(ctx, &iowq);
2624 		__set_current_state(TASK_RUNNING);
2625 		atomic_set(&ctx->cq_wait_nr, 0);
2626 
2627 		if (ret < 0)
2628 			break;
2629 		/*
2630 		 * Run task_work after scheduling and before io_should_wake().
2631 		 * If we got woken because of task_work being processed, run it
2632 		 * now rather than let the caller do another wait loop.
2633 		 */
2634 		io_run_task_work();
2635 		if (!llist_empty(&ctx->work_llist))
2636 			io_run_local_work(ctx);
2637 
2638 		check_cq = READ_ONCE(ctx->check_cq);
2639 		if (unlikely(check_cq)) {
2640 			/* let the caller flush overflows, retry */
2641 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2642 				io_cqring_do_overflow_flush(ctx);
2643 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2644 				ret = -EBADR;
2645 				break;
2646 			}
2647 		}
2648 
2649 		if (io_should_wake(&iowq)) {
2650 			ret = 0;
2651 			break;
2652 		}
2653 		cond_resched();
2654 	} while (1);
2655 
2656 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2657 		finish_wait(&ctx->cq_wait, &iowq.wq);
2658 	restore_saved_sigmask_unless(ret == -EINTR);
2659 
2660 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2661 }
2662 
2663 void io_mem_free(void *ptr)
2664 {
2665 	if (!ptr)
2666 		return;
2667 
2668 	folio_put(virt_to_folio(ptr));
2669 }
2670 
2671 static void io_pages_free(struct page ***pages, int npages)
2672 {
2673 	struct page **page_array;
2674 	int i;
2675 
2676 	if (!pages)
2677 		return;
2678 
2679 	page_array = *pages;
2680 	if (!page_array)
2681 		return;
2682 
2683 	for (i = 0; i < npages; i++)
2684 		unpin_user_page(page_array[i]);
2685 	kvfree(page_array);
2686 	*pages = NULL;
2687 }
2688 
2689 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2690 			    unsigned long uaddr, size_t size)
2691 {
2692 	struct page **page_array;
2693 	unsigned int nr_pages;
2694 	void *page_addr;
2695 	int ret, i;
2696 
2697 	*npages = 0;
2698 
2699 	if (uaddr & (PAGE_SIZE - 1) || !size)
2700 		return ERR_PTR(-EINVAL);
2701 
2702 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2703 	if (nr_pages > USHRT_MAX)
2704 		return ERR_PTR(-EINVAL);
2705 	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2706 	if (!page_array)
2707 		return ERR_PTR(-ENOMEM);
2708 
2709 	ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2710 					page_array);
2711 	if (ret != nr_pages) {
2712 err:
2713 		io_pages_free(&page_array, ret > 0 ? ret : 0);
2714 		return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT);
2715 	}
2716 
2717 	page_addr = page_address(page_array[0]);
2718 	for (i = 0; i < nr_pages; i++) {
2719 		ret = -EINVAL;
2720 
2721 		/*
2722 		 * Can't support mapping user allocated ring memory on 32-bit
2723 		 * archs where it could potentially reside in highmem. Just
2724 		 * fail those with -EINVAL, just like we did on kernels that
2725 		 * didn't support this feature.
2726 		 */
2727 		if (PageHighMem(page_array[i]))
2728 			goto err;
2729 
2730 		/*
2731 		 * No support for discontig pages for now, should either be a
2732 		 * single normal page, or a huge page. Later on we can add
2733 		 * support for remapping discontig pages, for now we will
2734 		 * just fail them with EINVAL.
2735 		 */
2736 		if (page_address(page_array[i]) != page_addr)
2737 			goto err;
2738 		page_addr += PAGE_SIZE;
2739 	}
2740 
2741 	*pages = page_array;
2742 	*npages = nr_pages;
2743 	return page_to_virt(page_array[0]);
2744 }
2745 
2746 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2747 			  size_t size)
2748 {
2749 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2750 				size);
2751 }
2752 
2753 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2754 			 size_t size)
2755 {
2756 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2757 				size);
2758 }
2759 
2760 static void io_rings_free(struct io_ring_ctx *ctx)
2761 {
2762 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2763 		io_mem_free(ctx->rings);
2764 		io_mem_free(ctx->sq_sqes);
2765 		ctx->rings = NULL;
2766 		ctx->sq_sqes = NULL;
2767 	} else {
2768 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2769 		ctx->n_ring_pages = 0;
2770 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2771 		ctx->n_sqe_pages = 0;
2772 	}
2773 }
2774 
2775 void *io_mem_alloc(size_t size)
2776 {
2777 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2778 	void *ret;
2779 
2780 	ret = (void *) __get_free_pages(gfp, get_order(size));
2781 	if (ret)
2782 		return ret;
2783 	return ERR_PTR(-ENOMEM);
2784 }
2785 
2786 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2787 				unsigned int cq_entries, size_t *sq_offset)
2788 {
2789 	struct io_rings *rings;
2790 	size_t off, sq_array_size;
2791 
2792 	off = struct_size(rings, cqes, cq_entries);
2793 	if (off == SIZE_MAX)
2794 		return SIZE_MAX;
2795 	if (ctx->flags & IORING_SETUP_CQE32) {
2796 		if (check_shl_overflow(off, 1, &off))
2797 			return SIZE_MAX;
2798 	}
2799 
2800 #ifdef CONFIG_SMP
2801 	off = ALIGN(off, SMP_CACHE_BYTES);
2802 	if (off == 0)
2803 		return SIZE_MAX;
2804 #endif
2805 
2806 	if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2807 		if (sq_offset)
2808 			*sq_offset = SIZE_MAX;
2809 		return off;
2810 	}
2811 
2812 	if (sq_offset)
2813 		*sq_offset = off;
2814 
2815 	sq_array_size = array_size(sizeof(u32), sq_entries);
2816 	if (sq_array_size == SIZE_MAX)
2817 		return SIZE_MAX;
2818 
2819 	if (check_add_overflow(off, sq_array_size, &off))
2820 		return SIZE_MAX;
2821 
2822 	return off;
2823 }
2824 
2825 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2826 			       unsigned int eventfd_async)
2827 {
2828 	struct io_ev_fd *ev_fd;
2829 	__s32 __user *fds = arg;
2830 	int fd;
2831 
2832 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2833 					lockdep_is_held(&ctx->uring_lock));
2834 	if (ev_fd)
2835 		return -EBUSY;
2836 
2837 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2838 		return -EFAULT;
2839 
2840 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2841 	if (!ev_fd)
2842 		return -ENOMEM;
2843 
2844 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2845 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2846 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2847 		kfree(ev_fd);
2848 		return ret;
2849 	}
2850 
2851 	spin_lock(&ctx->completion_lock);
2852 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2853 	spin_unlock(&ctx->completion_lock);
2854 
2855 	ev_fd->eventfd_async = eventfd_async;
2856 	ctx->has_evfd = true;
2857 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2858 	atomic_set(&ev_fd->refs, 1);
2859 	atomic_set(&ev_fd->ops, 0);
2860 	return 0;
2861 }
2862 
2863 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2864 {
2865 	struct io_ev_fd *ev_fd;
2866 
2867 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2868 					lockdep_is_held(&ctx->uring_lock));
2869 	if (ev_fd) {
2870 		ctx->has_evfd = false;
2871 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2872 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2873 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2874 		return 0;
2875 	}
2876 
2877 	return -ENXIO;
2878 }
2879 
2880 static void io_req_caches_free(struct io_ring_ctx *ctx)
2881 {
2882 	struct io_kiocb *req;
2883 	int nr = 0;
2884 
2885 	mutex_lock(&ctx->uring_lock);
2886 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2887 
2888 	while (!io_req_cache_empty(ctx)) {
2889 		req = io_extract_req(ctx);
2890 		kmem_cache_free(req_cachep, req);
2891 		nr++;
2892 	}
2893 	if (nr)
2894 		percpu_ref_put_many(&ctx->refs, nr);
2895 	mutex_unlock(&ctx->uring_lock);
2896 }
2897 
2898 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2899 {
2900 	kfree(container_of(entry, struct io_rsrc_node, cache));
2901 }
2902 
2903 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2904 {
2905 	io_sq_thread_finish(ctx);
2906 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2907 	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2908 		return;
2909 
2910 	mutex_lock(&ctx->uring_lock);
2911 	if (ctx->buf_data)
2912 		__io_sqe_buffers_unregister(ctx);
2913 	if (ctx->file_data)
2914 		__io_sqe_files_unregister(ctx);
2915 	io_cqring_overflow_kill(ctx);
2916 	io_eventfd_unregister(ctx);
2917 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2918 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2919 	io_destroy_buffers(ctx);
2920 	mutex_unlock(&ctx->uring_lock);
2921 	if (ctx->sq_creds)
2922 		put_cred(ctx->sq_creds);
2923 	if (ctx->submitter_task)
2924 		put_task_struct(ctx->submitter_task);
2925 
2926 	/* there are no registered resources left, nobody uses it */
2927 	if (ctx->rsrc_node)
2928 		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2929 
2930 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2931 
2932 #if defined(CONFIG_UNIX)
2933 	if (ctx->ring_sock) {
2934 		ctx->ring_sock->file = NULL; /* so that iput() is called */
2935 		sock_release(ctx->ring_sock);
2936 	}
2937 #endif
2938 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2939 
2940 	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2941 	if (ctx->mm_account) {
2942 		mmdrop(ctx->mm_account);
2943 		ctx->mm_account = NULL;
2944 	}
2945 	io_rings_free(ctx);
2946 	io_kbuf_mmap_list_free(ctx);
2947 
2948 	percpu_ref_exit(&ctx->refs);
2949 	free_uid(ctx->user);
2950 	io_req_caches_free(ctx);
2951 	if (ctx->hash_map)
2952 		io_wq_put_hash(ctx->hash_map);
2953 	kfree(ctx->cancel_table.hbs);
2954 	kfree(ctx->cancel_table_locked.hbs);
2955 	kfree(ctx->io_bl);
2956 	xa_destroy(&ctx->io_bl_xa);
2957 	kfree(ctx);
2958 }
2959 
2960 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2961 {
2962 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2963 					       poll_wq_task_work);
2964 
2965 	mutex_lock(&ctx->uring_lock);
2966 	ctx->poll_activated = true;
2967 	mutex_unlock(&ctx->uring_lock);
2968 
2969 	/*
2970 	 * Wake ups for some events between start of polling and activation
2971 	 * might've been lost due to loose synchronisation.
2972 	 */
2973 	wake_up_all(&ctx->poll_wq);
2974 	percpu_ref_put(&ctx->refs);
2975 }
2976 
2977 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2978 {
2979 	spin_lock(&ctx->completion_lock);
2980 	/* already activated or in progress */
2981 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2982 		goto out;
2983 	if (WARN_ON_ONCE(!ctx->task_complete))
2984 		goto out;
2985 	if (!ctx->submitter_task)
2986 		goto out;
2987 	/*
2988 	 * with ->submitter_task only the submitter task completes requests, we
2989 	 * only need to sync with it, which is done by injecting a tw
2990 	 */
2991 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2992 	percpu_ref_get(&ctx->refs);
2993 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2994 		percpu_ref_put(&ctx->refs);
2995 out:
2996 	spin_unlock(&ctx->completion_lock);
2997 }
2998 
2999 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
3000 {
3001 	struct io_ring_ctx *ctx = file->private_data;
3002 	__poll_t mask = 0;
3003 
3004 	if (unlikely(!ctx->poll_activated))
3005 		io_activate_pollwq(ctx);
3006 
3007 	poll_wait(file, &ctx->poll_wq, wait);
3008 	/*
3009 	 * synchronizes with barrier from wq_has_sleeper call in
3010 	 * io_commit_cqring
3011 	 */
3012 	smp_rmb();
3013 	if (!io_sqring_full(ctx))
3014 		mask |= EPOLLOUT | EPOLLWRNORM;
3015 
3016 	/*
3017 	 * Don't flush cqring overflow list here, just do a simple check.
3018 	 * Otherwise there could possible be ABBA deadlock:
3019 	 *      CPU0                    CPU1
3020 	 *      ----                    ----
3021 	 * lock(&ctx->uring_lock);
3022 	 *                              lock(&ep->mtx);
3023 	 *                              lock(&ctx->uring_lock);
3024 	 * lock(&ep->mtx);
3025 	 *
3026 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
3027 	 * pushes them to do the flush.
3028 	 */
3029 
3030 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
3031 		mask |= EPOLLIN | EPOLLRDNORM;
3032 
3033 	return mask;
3034 }
3035 
3036 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
3037 {
3038 	const struct cred *creds;
3039 
3040 	creds = xa_erase(&ctx->personalities, id);
3041 	if (creds) {
3042 		put_cred(creds);
3043 		return 0;
3044 	}
3045 
3046 	return -EINVAL;
3047 }
3048 
3049 struct io_tctx_exit {
3050 	struct callback_head		task_work;
3051 	struct completion		completion;
3052 	struct io_ring_ctx		*ctx;
3053 };
3054 
3055 static __cold void io_tctx_exit_cb(struct callback_head *cb)
3056 {
3057 	struct io_uring_task *tctx = current->io_uring;
3058 	struct io_tctx_exit *work;
3059 
3060 	work = container_of(cb, struct io_tctx_exit, task_work);
3061 	/*
3062 	 * When @in_cancel, we're in cancellation and it's racy to remove the
3063 	 * node. It'll be removed by the end of cancellation, just ignore it.
3064 	 * tctx can be NULL if the queueing of this task_work raced with
3065 	 * work cancelation off the exec path.
3066 	 */
3067 	if (tctx && !atomic_read(&tctx->in_cancel))
3068 		io_uring_del_tctx_node((unsigned long)work->ctx);
3069 	complete(&work->completion);
3070 }
3071 
3072 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3073 {
3074 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3075 
3076 	return req->ctx == data;
3077 }
3078 
3079 static __cold void io_ring_exit_work(struct work_struct *work)
3080 {
3081 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3082 	unsigned long timeout = jiffies + HZ * 60 * 5;
3083 	unsigned long interval = HZ / 20;
3084 	struct io_tctx_exit exit;
3085 	struct io_tctx_node *node;
3086 	int ret;
3087 
3088 	/*
3089 	 * If we're doing polled IO and end up having requests being
3090 	 * submitted async (out-of-line), then completions can come in while
3091 	 * we're waiting for refs to drop. We need to reap these manually,
3092 	 * as nobody else will be looking for them.
3093 	 */
3094 	do {
3095 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3096 			mutex_lock(&ctx->uring_lock);
3097 			io_cqring_overflow_kill(ctx);
3098 			mutex_unlock(&ctx->uring_lock);
3099 		}
3100 
3101 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3102 			io_move_task_work_from_local(ctx);
3103 
3104 		while (io_uring_try_cancel_requests(ctx, NULL, true))
3105 			cond_resched();
3106 
3107 		if (ctx->sq_data) {
3108 			struct io_sq_data *sqd = ctx->sq_data;
3109 			struct task_struct *tsk;
3110 
3111 			io_sq_thread_park(sqd);
3112 			tsk = sqd->thread;
3113 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3114 				io_wq_cancel_cb(tsk->io_uring->io_wq,
3115 						io_cancel_ctx_cb, ctx, true);
3116 			io_sq_thread_unpark(sqd);
3117 		}
3118 
3119 		io_req_caches_free(ctx);
3120 
3121 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3122 			/* there is little hope left, don't run it too often */
3123 			interval = HZ * 60;
3124 		}
3125 		/*
3126 		 * This is really an uninterruptible wait, as it has to be
3127 		 * complete. But it's also run from a kworker, which doesn't
3128 		 * take signals, so it's fine to make it interruptible. This
3129 		 * avoids scenarios where we knowingly can wait much longer
3130 		 * on completions, for example if someone does a SIGSTOP on
3131 		 * a task that needs to finish task_work to make this loop
3132 		 * complete. That's a synthetic situation that should not
3133 		 * cause a stuck task backtrace, and hence a potential panic
3134 		 * on stuck tasks if that is enabled.
3135 		 */
3136 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3137 
3138 	init_completion(&exit.completion);
3139 	init_task_work(&exit.task_work, io_tctx_exit_cb);
3140 	exit.ctx = ctx;
3141 	/*
3142 	 * Some may use context even when all refs and requests have been put,
3143 	 * and they are free to do so while still holding uring_lock or
3144 	 * completion_lock, see io_req_task_submit(). Apart from other work,
3145 	 * this lock/unlock section also waits them to finish.
3146 	 */
3147 	mutex_lock(&ctx->uring_lock);
3148 	while (!list_empty(&ctx->tctx_list)) {
3149 		WARN_ON_ONCE(time_after(jiffies, timeout));
3150 
3151 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3152 					ctx_node);
3153 		/* don't spin on a single task if cancellation failed */
3154 		list_rotate_left(&ctx->tctx_list);
3155 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3156 		if (WARN_ON_ONCE(ret))
3157 			continue;
3158 
3159 		mutex_unlock(&ctx->uring_lock);
3160 		/*
3161 		 * See comment above for
3162 		 * wait_for_completion_interruptible_timeout() on why this
3163 		 * wait is marked as interruptible.
3164 		 */
3165 		wait_for_completion_interruptible(&exit.completion);
3166 		mutex_lock(&ctx->uring_lock);
3167 	}
3168 	mutex_unlock(&ctx->uring_lock);
3169 	spin_lock(&ctx->completion_lock);
3170 	spin_unlock(&ctx->completion_lock);
3171 
3172 	/* pairs with RCU read section in io_req_local_work_add() */
3173 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3174 		synchronize_rcu();
3175 
3176 	io_ring_ctx_free(ctx);
3177 }
3178 
3179 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3180 {
3181 	unsigned long index;
3182 	struct creds *creds;
3183 
3184 	mutex_lock(&ctx->uring_lock);
3185 	percpu_ref_kill(&ctx->refs);
3186 	xa_for_each(&ctx->personalities, index, creds)
3187 		io_unregister_personality(ctx, index);
3188 	if (ctx->rings)
3189 		io_poll_remove_all(ctx, NULL, true);
3190 	mutex_unlock(&ctx->uring_lock);
3191 
3192 	/*
3193 	 * If we failed setting up the ctx, we might not have any rings
3194 	 * and therefore did not submit any requests
3195 	 */
3196 	if (ctx->rings)
3197 		io_kill_timeouts(ctx, NULL, true);
3198 
3199 	flush_delayed_work(&ctx->fallback_work);
3200 
3201 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3202 	/*
3203 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3204 	 * if we're exiting a ton of rings at the same time. It just adds
3205 	 * noise and overhead, there's no discernable change in runtime
3206 	 * over using system_wq.
3207 	 */
3208 	queue_work(system_unbound_wq, &ctx->exit_work);
3209 }
3210 
3211 static int io_uring_release(struct inode *inode, struct file *file)
3212 {
3213 	struct io_ring_ctx *ctx = file->private_data;
3214 
3215 	file->private_data = NULL;
3216 	io_ring_ctx_wait_and_kill(ctx);
3217 	return 0;
3218 }
3219 
3220 struct io_task_cancel {
3221 	struct task_struct *task;
3222 	bool all;
3223 };
3224 
3225 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3226 {
3227 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3228 	struct io_task_cancel *cancel = data;
3229 
3230 	return io_match_task_safe(req, cancel->task, cancel->all);
3231 }
3232 
3233 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3234 					 struct task_struct *task,
3235 					 bool cancel_all)
3236 {
3237 	struct io_defer_entry *de;
3238 	LIST_HEAD(list);
3239 
3240 	spin_lock(&ctx->completion_lock);
3241 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3242 		if (io_match_task_safe(de->req, task, cancel_all)) {
3243 			list_cut_position(&list, &ctx->defer_list, &de->list);
3244 			break;
3245 		}
3246 	}
3247 	spin_unlock(&ctx->completion_lock);
3248 	if (list_empty(&list))
3249 		return false;
3250 
3251 	while (!list_empty(&list)) {
3252 		de = list_first_entry(&list, struct io_defer_entry, list);
3253 		list_del_init(&de->list);
3254 		io_req_task_queue_fail(de->req, -ECANCELED);
3255 		kfree(de);
3256 	}
3257 	return true;
3258 }
3259 
3260 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3261 {
3262 	struct io_tctx_node *node;
3263 	enum io_wq_cancel cret;
3264 	bool ret = false;
3265 
3266 	mutex_lock(&ctx->uring_lock);
3267 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3268 		struct io_uring_task *tctx = node->task->io_uring;
3269 
3270 		/*
3271 		 * io_wq will stay alive while we hold uring_lock, because it's
3272 		 * killed after ctx nodes, which requires to take the lock.
3273 		 */
3274 		if (!tctx || !tctx->io_wq)
3275 			continue;
3276 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3277 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3278 	}
3279 	mutex_unlock(&ctx->uring_lock);
3280 
3281 	return ret;
3282 }
3283 
3284 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3285 						struct task_struct *task,
3286 						bool cancel_all)
3287 {
3288 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3289 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3290 	enum io_wq_cancel cret;
3291 	bool ret = false;
3292 
3293 	/* set it so io_req_local_work_add() would wake us up */
3294 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3295 		atomic_set(&ctx->cq_wait_nr, 1);
3296 		smp_mb();
3297 	}
3298 
3299 	/* failed during ring init, it couldn't have issued any requests */
3300 	if (!ctx->rings)
3301 		return false;
3302 
3303 	if (!task) {
3304 		ret |= io_uring_try_cancel_iowq(ctx);
3305 	} else if (tctx && tctx->io_wq) {
3306 		/*
3307 		 * Cancels requests of all rings, not only @ctx, but
3308 		 * it's fine as the task is in exit/exec.
3309 		 */
3310 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3311 				       &cancel, true);
3312 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3313 	}
3314 
3315 	/* SQPOLL thread does its own polling */
3316 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3317 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3318 		while (!wq_list_empty(&ctx->iopoll_list)) {
3319 			io_iopoll_try_reap_events(ctx);
3320 			ret = true;
3321 			cond_resched();
3322 		}
3323 	}
3324 
3325 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3326 	    io_allowed_defer_tw_run(ctx))
3327 		ret |= io_run_local_work(ctx) > 0;
3328 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3329 	mutex_lock(&ctx->uring_lock);
3330 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3331 	mutex_unlock(&ctx->uring_lock);
3332 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3333 	if (task)
3334 		ret |= io_run_task_work() > 0;
3335 	return ret;
3336 }
3337 
3338 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3339 {
3340 	if (tracked)
3341 		return atomic_read(&tctx->inflight_tracked);
3342 	return percpu_counter_sum(&tctx->inflight);
3343 }
3344 
3345 /*
3346  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3347  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3348  */
3349 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3350 {
3351 	struct io_uring_task *tctx = current->io_uring;
3352 	struct io_ring_ctx *ctx;
3353 	struct io_tctx_node *node;
3354 	unsigned long index;
3355 	s64 inflight;
3356 	DEFINE_WAIT(wait);
3357 
3358 	WARN_ON_ONCE(sqd && sqd->thread != current);
3359 
3360 	if (!current->io_uring)
3361 		return;
3362 	if (tctx->io_wq)
3363 		io_wq_exit_start(tctx->io_wq);
3364 
3365 	atomic_inc(&tctx->in_cancel);
3366 	do {
3367 		bool loop = false;
3368 
3369 		io_uring_drop_tctx_refs(current);
3370 		/* read completions before cancelations */
3371 		inflight = tctx_inflight(tctx, !cancel_all);
3372 		if (!inflight)
3373 			break;
3374 
3375 		if (!sqd) {
3376 			xa_for_each(&tctx->xa, index, node) {
3377 				/* sqpoll task will cancel all its requests */
3378 				if (node->ctx->sq_data)
3379 					continue;
3380 				loop |= io_uring_try_cancel_requests(node->ctx,
3381 							current, cancel_all);
3382 			}
3383 		} else {
3384 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3385 				loop |= io_uring_try_cancel_requests(ctx,
3386 								     current,
3387 								     cancel_all);
3388 		}
3389 
3390 		if (loop) {
3391 			cond_resched();
3392 			continue;
3393 		}
3394 
3395 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3396 		io_run_task_work();
3397 		io_uring_drop_tctx_refs(current);
3398 		xa_for_each(&tctx->xa, index, node) {
3399 			if (!llist_empty(&node->ctx->work_llist)) {
3400 				WARN_ON_ONCE(node->ctx->submitter_task &&
3401 					     node->ctx->submitter_task != current);
3402 				goto end_wait;
3403 			}
3404 		}
3405 		/*
3406 		 * If we've seen completions, retry without waiting. This
3407 		 * avoids a race where a completion comes in before we did
3408 		 * prepare_to_wait().
3409 		 */
3410 		if (inflight == tctx_inflight(tctx, !cancel_all))
3411 			schedule();
3412 end_wait:
3413 		finish_wait(&tctx->wait, &wait);
3414 	} while (1);
3415 
3416 	io_uring_clean_tctx(tctx);
3417 	if (cancel_all) {
3418 		/*
3419 		 * We shouldn't run task_works after cancel, so just leave
3420 		 * ->in_cancel set for normal exit.
3421 		 */
3422 		atomic_dec(&tctx->in_cancel);
3423 		/* for exec all current's requests should be gone, kill tctx */
3424 		__io_uring_free(current);
3425 	}
3426 }
3427 
3428 void __io_uring_cancel(bool cancel_all)
3429 {
3430 	io_uring_cancel_generic(cancel_all, NULL);
3431 }
3432 
3433 static void *io_uring_validate_mmap_request(struct file *file,
3434 					    loff_t pgoff, size_t sz)
3435 {
3436 	struct io_ring_ctx *ctx = file->private_data;
3437 	loff_t offset = pgoff << PAGE_SHIFT;
3438 	struct page *page;
3439 	void *ptr;
3440 
3441 	switch (offset & IORING_OFF_MMAP_MASK) {
3442 	case IORING_OFF_SQ_RING:
3443 	case IORING_OFF_CQ_RING:
3444 		/* Don't allow mmap if the ring was setup without it */
3445 		if (ctx->flags & IORING_SETUP_NO_MMAP)
3446 			return ERR_PTR(-EINVAL);
3447 		ptr = ctx->rings;
3448 		break;
3449 	case IORING_OFF_SQES:
3450 		/* Don't allow mmap if the ring was setup without it */
3451 		if (ctx->flags & IORING_SETUP_NO_MMAP)
3452 			return ERR_PTR(-EINVAL);
3453 		ptr = ctx->sq_sqes;
3454 		break;
3455 	case IORING_OFF_PBUF_RING: {
3456 		unsigned int bgid;
3457 
3458 		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3459 		rcu_read_lock();
3460 		ptr = io_pbuf_get_address(ctx, bgid);
3461 		rcu_read_unlock();
3462 		if (!ptr)
3463 			return ERR_PTR(-EINVAL);
3464 		break;
3465 		}
3466 	default:
3467 		return ERR_PTR(-EINVAL);
3468 	}
3469 
3470 	page = virt_to_head_page(ptr);
3471 	if (sz > page_size(page))
3472 		return ERR_PTR(-EINVAL);
3473 
3474 	return ptr;
3475 }
3476 
3477 #ifdef CONFIG_MMU
3478 
3479 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3480 {
3481 	size_t sz = vma->vm_end - vma->vm_start;
3482 	unsigned long pfn;
3483 	void *ptr;
3484 
3485 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3486 	if (IS_ERR(ptr))
3487 		return PTR_ERR(ptr);
3488 
3489 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3490 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3491 }
3492 
3493 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3494 			unsigned long addr, unsigned long len,
3495 			unsigned long pgoff, unsigned long flags)
3496 {
3497 	void *ptr;
3498 
3499 	/*
3500 	 * Do not allow to map to user-provided address to avoid breaking the
3501 	 * aliasing rules. Userspace is not able to guess the offset address of
3502 	 * kernel kmalloc()ed memory area.
3503 	 */
3504 	if (addr)
3505 		return -EINVAL;
3506 
3507 	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3508 	if (IS_ERR(ptr))
3509 		return -ENOMEM;
3510 
3511 	/*
3512 	 * Some architectures have strong cache aliasing requirements.
3513 	 * For such architectures we need a coherent mapping which aliases
3514 	 * kernel memory *and* userspace memory. To achieve that:
3515 	 * - use a NULL file pointer to reference physical memory, and
3516 	 * - use the kernel virtual address of the shared io_uring context
3517 	 *   (instead of the userspace-provided address, which has to be 0UL
3518 	 *   anyway).
3519 	 * - use the same pgoff which the get_unmapped_area() uses to
3520 	 *   calculate the page colouring.
3521 	 * For architectures without such aliasing requirements, the
3522 	 * architecture will return any suitable mapping because addr is 0.
3523 	 */
3524 	filp = NULL;
3525 	flags |= MAP_SHARED;
3526 	pgoff = 0;	/* has been translated to ptr above */
3527 #ifdef SHM_COLOUR
3528 	addr = (uintptr_t) ptr;
3529 	pgoff = addr >> PAGE_SHIFT;
3530 #else
3531 	addr = 0UL;
3532 #endif
3533 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3534 }
3535 
3536 #else /* !CONFIG_MMU */
3537 
3538 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3539 {
3540 	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3541 }
3542 
3543 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3544 {
3545 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3546 }
3547 
3548 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3549 	unsigned long addr, unsigned long len,
3550 	unsigned long pgoff, unsigned long flags)
3551 {
3552 	void *ptr;
3553 
3554 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3555 	if (IS_ERR(ptr))
3556 		return PTR_ERR(ptr);
3557 
3558 	return (unsigned long) ptr;
3559 }
3560 
3561 #endif /* !CONFIG_MMU */
3562 
3563 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3564 {
3565 	if (flags & IORING_ENTER_EXT_ARG) {
3566 		struct io_uring_getevents_arg arg;
3567 
3568 		if (argsz != sizeof(arg))
3569 			return -EINVAL;
3570 		if (copy_from_user(&arg, argp, sizeof(arg)))
3571 			return -EFAULT;
3572 	}
3573 	return 0;
3574 }
3575 
3576 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3577 			  struct __kernel_timespec __user **ts,
3578 			  const sigset_t __user **sig)
3579 {
3580 	struct io_uring_getevents_arg arg;
3581 
3582 	/*
3583 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3584 	 * is just a pointer to the sigset_t.
3585 	 */
3586 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3587 		*sig = (const sigset_t __user *) argp;
3588 		*ts = NULL;
3589 		return 0;
3590 	}
3591 
3592 	/*
3593 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3594 	 * timespec and sigset_t pointers if good.
3595 	 */
3596 	if (*argsz != sizeof(arg))
3597 		return -EINVAL;
3598 	if (copy_from_user(&arg, argp, sizeof(arg)))
3599 		return -EFAULT;
3600 	if (arg.pad)
3601 		return -EINVAL;
3602 	*sig = u64_to_user_ptr(arg.sigmask);
3603 	*argsz = arg.sigmask_sz;
3604 	*ts = u64_to_user_ptr(arg.ts);
3605 	return 0;
3606 }
3607 
3608 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3609 		u32, min_complete, u32, flags, const void __user *, argp,
3610 		size_t, argsz)
3611 {
3612 	struct io_ring_ctx *ctx;
3613 	struct fd f;
3614 	long ret;
3615 
3616 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3617 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3618 			       IORING_ENTER_REGISTERED_RING)))
3619 		return -EINVAL;
3620 
3621 	/*
3622 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3623 	 * need only dereference our task private array to find it.
3624 	 */
3625 	if (flags & IORING_ENTER_REGISTERED_RING) {
3626 		struct io_uring_task *tctx = current->io_uring;
3627 
3628 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3629 			return -EINVAL;
3630 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3631 		f.file = tctx->registered_rings[fd];
3632 		f.flags = 0;
3633 		if (unlikely(!f.file))
3634 			return -EBADF;
3635 	} else {
3636 		f = fdget(fd);
3637 		if (unlikely(!f.file))
3638 			return -EBADF;
3639 		ret = -EOPNOTSUPP;
3640 		if (unlikely(!io_is_uring_fops(f.file)))
3641 			goto out;
3642 	}
3643 
3644 	ctx = f.file->private_data;
3645 	ret = -EBADFD;
3646 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3647 		goto out;
3648 
3649 	/*
3650 	 * For SQ polling, the thread will do all submissions and completions.
3651 	 * Just return the requested submit count, and wake the thread if
3652 	 * we were asked to.
3653 	 */
3654 	ret = 0;
3655 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3656 		io_cqring_overflow_flush(ctx);
3657 
3658 		if (unlikely(ctx->sq_data->thread == NULL)) {
3659 			ret = -EOWNERDEAD;
3660 			goto out;
3661 		}
3662 		if (flags & IORING_ENTER_SQ_WAKEUP)
3663 			wake_up(&ctx->sq_data->wait);
3664 		if (flags & IORING_ENTER_SQ_WAIT)
3665 			io_sqpoll_wait_sq(ctx);
3666 
3667 		ret = to_submit;
3668 	} else if (to_submit) {
3669 		ret = io_uring_add_tctx_node(ctx);
3670 		if (unlikely(ret))
3671 			goto out;
3672 
3673 		mutex_lock(&ctx->uring_lock);
3674 		ret = io_submit_sqes(ctx, to_submit);
3675 		if (ret != to_submit) {
3676 			mutex_unlock(&ctx->uring_lock);
3677 			goto out;
3678 		}
3679 		if (flags & IORING_ENTER_GETEVENTS) {
3680 			if (ctx->syscall_iopoll)
3681 				goto iopoll_locked;
3682 			/*
3683 			 * Ignore errors, we'll soon call io_cqring_wait() and
3684 			 * it should handle ownership problems if any.
3685 			 */
3686 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3687 				(void)io_run_local_work_locked(ctx);
3688 		}
3689 		mutex_unlock(&ctx->uring_lock);
3690 	}
3691 
3692 	if (flags & IORING_ENTER_GETEVENTS) {
3693 		int ret2;
3694 
3695 		if (ctx->syscall_iopoll) {
3696 			/*
3697 			 * We disallow the app entering submit/complete with
3698 			 * polling, but we still need to lock the ring to
3699 			 * prevent racing with polled issue that got punted to
3700 			 * a workqueue.
3701 			 */
3702 			mutex_lock(&ctx->uring_lock);
3703 iopoll_locked:
3704 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3705 			if (likely(!ret2)) {
3706 				min_complete = min(min_complete,
3707 						   ctx->cq_entries);
3708 				ret2 = io_iopoll_check(ctx, min_complete);
3709 			}
3710 			mutex_unlock(&ctx->uring_lock);
3711 		} else {
3712 			const sigset_t __user *sig;
3713 			struct __kernel_timespec __user *ts;
3714 
3715 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3716 			if (likely(!ret2)) {
3717 				min_complete = min(min_complete,
3718 						   ctx->cq_entries);
3719 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3720 						      argsz, ts);
3721 			}
3722 		}
3723 
3724 		if (!ret) {
3725 			ret = ret2;
3726 
3727 			/*
3728 			 * EBADR indicates that one or more CQE were dropped.
3729 			 * Once the user has been informed we can clear the bit
3730 			 * as they are obviously ok with those drops.
3731 			 */
3732 			if (unlikely(ret2 == -EBADR))
3733 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3734 					  &ctx->check_cq);
3735 		}
3736 	}
3737 out:
3738 	fdput(f);
3739 	return ret;
3740 }
3741 
3742 static const struct file_operations io_uring_fops = {
3743 	.release	= io_uring_release,
3744 	.mmap		= io_uring_mmap,
3745 #ifndef CONFIG_MMU
3746 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3747 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3748 #else
3749 	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3750 #endif
3751 	.poll		= io_uring_poll,
3752 #ifdef CONFIG_PROC_FS
3753 	.show_fdinfo	= io_uring_show_fdinfo,
3754 #endif
3755 };
3756 
3757 bool io_is_uring_fops(struct file *file)
3758 {
3759 	return file->f_op == &io_uring_fops;
3760 }
3761 
3762 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3763 					 struct io_uring_params *p)
3764 {
3765 	struct io_rings *rings;
3766 	size_t size, sq_array_offset;
3767 	void *ptr;
3768 
3769 	/* make sure these are sane, as we already accounted them */
3770 	ctx->sq_entries = p->sq_entries;
3771 	ctx->cq_entries = p->cq_entries;
3772 
3773 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3774 	if (size == SIZE_MAX)
3775 		return -EOVERFLOW;
3776 
3777 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3778 		rings = io_mem_alloc(size);
3779 	else
3780 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3781 
3782 	if (IS_ERR(rings))
3783 		return PTR_ERR(rings);
3784 
3785 	ctx->rings = rings;
3786 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3787 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3788 	rings->sq_ring_mask = p->sq_entries - 1;
3789 	rings->cq_ring_mask = p->cq_entries - 1;
3790 	rings->sq_ring_entries = p->sq_entries;
3791 	rings->cq_ring_entries = p->cq_entries;
3792 
3793 	if (p->flags & IORING_SETUP_SQE128)
3794 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3795 	else
3796 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3797 	if (size == SIZE_MAX) {
3798 		io_rings_free(ctx);
3799 		return -EOVERFLOW;
3800 	}
3801 
3802 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3803 		ptr = io_mem_alloc(size);
3804 	else
3805 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3806 
3807 	if (IS_ERR(ptr)) {
3808 		io_rings_free(ctx);
3809 		return PTR_ERR(ptr);
3810 	}
3811 
3812 	ctx->sq_sqes = ptr;
3813 	return 0;
3814 }
3815 
3816 static int io_uring_install_fd(struct file *file)
3817 {
3818 	int fd;
3819 
3820 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3821 	if (fd < 0)
3822 		return fd;
3823 	fd_install(fd, file);
3824 	return fd;
3825 }
3826 
3827 /*
3828  * Allocate an anonymous fd, this is what constitutes the application
3829  * visible backing of an io_uring instance. The application mmaps this
3830  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3831  * we have to tie this fd to a socket for file garbage collection purposes.
3832  */
3833 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3834 {
3835 	struct file *file;
3836 #if defined(CONFIG_UNIX)
3837 	int ret;
3838 
3839 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3840 				&ctx->ring_sock);
3841 	if (ret)
3842 		return ERR_PTR(ret);
3843 #endif
3844 
3845 	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3846 					 O_RDWR | O_CLOEXEC, NULL);
3847 #if defined(CONFIG_UNIX)
3848 	if (IS_ERR(file)) {
3849 		sock_release(ctx->ring_sock);
3850 		ctx->ring_sock = NULL;
3851 	} else {
3852 		ctx->ring_sock->file = file;
3853 	}
3854 #endif
3855 	return file;
3856 }
3857 
3858 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3859 				  struct io_uring_params __user *params)
3860 {
3861 	struct io_ring_ctx *ctx;
3862 	struct io_uring_task *tctx;
3863 	struct file *file;
3864 	int ret;
3865 
3866 	if (!entries)
3867 		return -EINVAL;
3868 	if (entries > IORING_MAX_ENTRIES) {
3869 		if (!(p->flags & IORING_SETUP_CLAMP))
3870 			return -EINVAL;
3871 		entries = IORING_MAX_ENTRIES;
3872 	}
3873 
3874 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3875 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3876 		return -EINVAL;
3877 
3878 	/*
3879 	 * Use twice as many entries for the CQ ring. It's possible for the
3880 	 * application to drive a higher depth than the size of the SQ ring,
3881 	 * since the sqes are only used at submission time. This allows for
3882 	 * some flexibility in overcommitting a bit. If the application has
3883 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3884 	 * of CQ ring entries manually.
3885 	 */
3886 	p->sq_entries = roundup_pow_of_two(entries);
3887 	if (p->flags & IORING_SETUP_CQSIZE) {
3888 		/*
3889 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3890 		 * to a power-of-two, if it isn't already. We do NOT impose
3891 		 * any cq vs sq ring sizing.
3892 		 */
3893 		if (!p->cq_entries)
3894 			return -EINVAL;
3895 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3896 			if (!(p->flags & IORING_SETUP_CLAMP))
3897 				return -EINVAL;
3898 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3899 		}
3900 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3901 		if (p->cq_entries < p->sq_entries)
3902 			return -EINVAL;
3903 	} else {
3904 		p->cq_entries = 2 * p->sq_entries;
3905 	}
3906 
3907 	ctx = io_ring_ctx_alloc(p);
3908 	if (!ctx)
3909 		return -ENOMEM;
3910 
3911 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3912 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3913 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3914 		ctx->task_complete = true;
3915 
3916 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3917 		ctx->lockless_cq = true;
3918 
3919 	/*
3920 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3921 	 * purposes, see io_activate_pollwq()
3922 	 */
3923 	if (!ctx->task_complete)
3924 		ctx->poll_activated = true;
3925 
3926 	/*
3927 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3928 	 * space applications don't need to do io completion events
3929 	 * polling again, they can rely on io_sq_thread to do polling
3930 	 * work, which can reduce cpu usage and uring_lock contention.
3931 	 */
3932 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3933 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3934 		ctx->syscall_iopoll = 1;
3935 
3936 	ctx->compat = in_compat_syscall();
3937 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3938 		ctx->user = get_uid(current_user());
3939 
3940 	/*
3941 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3942 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3943 	 */
3944 	ret = -EINVAL;
3945 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3946 		/* IPI related flags don't make sense with SQPOLL */
3947 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3948 				  IORING_SETUP_TASKRUN_FLAG |
3949 				  IORING_SETUP_DEFER_TASKRUN))
3950 			goto err;
3951 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3952 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3953 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3954 	} else {
3955 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3956 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3957 			goto err;
3958 		ctx->notify_method = TWA_SIGNAL;
3959 	}
3960 
3961 	/*
3962 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3963 	 * submission task. This implies that there is only one submitter, so enforce
3964 	 * that.
3965 	 */
3966 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3967 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3968 		goto err;
3969 	}
3970 
3971 	/*
3972 	 * This is just grabbed for accounting purposes. When a process exits,
3973 	 * the mm is exited and dropped before the files, hence we need to hang
3974 	 * on to this mm purely for the purposes of being able to unaccount
3975 	 * memory (locked/pinned vm). It's not used for anything else.
3976 	 */
3977 	mmgrab(current->mm);
3978 	ctx->mm_account = current->mm;
3979 
3980 	ret = io_allocate_scq_urings(ctx, p);
3981 	if (ret)
3982 		goto err;
3983 
3984 	ret = io_sq_offload_create(ctx, p);
3985 	if (ret)
3986 		goto err;
3987 
3988 	ret = io_rsrc_init(ctx);
3989 	if (ret)
3990 		goto err;
3991 
3992 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3993 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3994 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3995 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3996 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3997 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3998 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3999 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
4000 	p->sq_off.resv1 = 0;
4001 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4002 		p->sq_off.user_addr = 0;
4003 
4004 	p->cq_off.head = offsetof(struct io_rings, cq.head);
4005 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
4006 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
4007 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
4008 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
4009 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
4010 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
4011 	p->cq_off.resv1 = 0;
4012 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4013 		p->cq_off.user_addr = 0;
4014 
4015 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
4016 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
4017 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
4018 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
4019 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
4020 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
4021 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
4022 
4023 	if (copy_to_user(params, p, sizeof(*p))) {
4024 		ret = -EFAULT;
4025 		goto err;
4026 	}
4027 
4028 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
4029 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
4030 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4031 
4032 	file = io_uring_get_file(ctx);
4033 	if (IS_ERR(file)) {
4034 		ret = PTR_ERR(file);
4035 		goto err;
4036 	}
4037 
4038 	ret = __io_uring_add_tctx_node(ctx);
4039 	if (ret)
4040 		goto err_fput;
4041 	tctx = current->io_uring;
4042 
4043 	/*
4044 	 * Install ring fd as the very last thing, so we don't risk someone
4045 	 * having closed it before we finish setup
4046 	 */
4047 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
4048 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
4049 	else
4050 		ret = io_uring_install_fd(file);
4051 	if (ret < 0)
4052 		goto err_fput;
4053 
4054 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4055 	return ret;
4056 err:
4057 	io_ring_ctx_wait_and_kill(ctx);
4058 	return ret;
4059 err_fput:
4060 	fput(file);
4061 	return ret;
4062 }
4063 
4064 /*
4065  * Sets up an aio uring context, and returns the fd. Applications asks for a
4066  * ring size, we return the actual sq/cq ring sizes (among other things) in the
4067  * params structure passed in.
4068  */
4069 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4070 {
4071 	struct io_uring_params p;
4072 	int i;
4073 
4074 	if (copy_from_user(&p, params, sizeof(p)))
4075 		return -EFAULT;
4076 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4077 		if (p.resv[i])
4078 			return -EINVAL;
4079 	}
4080 
4081 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4082 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4083 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4084 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4085 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4086 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4087 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4088 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4089 			IORING_SETUP_NO_SQARRAY))
4090 		return -EINVAL;
4091 
4092 	return io_uring_create(entries, &p, params);
4093 }
4094 
4095 static inline bool io_uring_allowed(void)
4096 {
4097 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
4098 	kgid_t io_uring_group;
4099 
4100 	if (disabled == 2)
4101 		return false;
4102 
4103 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
4104 		return true;
4105 
4106 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
4107 	if (!gid_valid(io_uring_group))
4108 		return false;
4109 
4110 	return in_group_p(io_uring_group);
4111 }
4112 
4113 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4114 		struct io_uring_params __user *, params)
4115 {
4116 	if (!io_uring_allowed())
4117 		return -EPERM;
4118 
4119 	return io_uring_setup(entries, params);
4120 }
4121 
4122 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4123 			   unsigned nr_args)
4124 {
4125 	struct io_uring_probe *p;
4126 	size_t size;
4127 	int i, ret;
4128 
4129 	size = struct_size(p, ops, nr_args);
4130 	if (size == SIZE_MAX)
4131 		return -EOVERFLOW;
4132 	p = kzalloc(size, GFP_KERNEL);
4133 	if (!p)
4134 		return -ENOMEM;
4135 
4136 	ret = -EFAULT;
4137 	if (copy_from_user(p, arg, size))
4138 		goto out;
4139 	ret = -EINVAL;
4140 	if (memchr_inv(p, 0, size))
4141 		goto out;
4142 
4143 	p->last_op = IORING_OP_LAST - 1;
4144 	if (nr_args > IORING_OP_LAST)
4145 		nr_args = IORING_OP_LAST;
4146 
4147 	for (i = 0; i < nr_args; i++) {
4148 		p->ops[i].op = i;
4149 		if (!io_issue_defs[i].not_supported)
4150 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
4151 	}
4152 	p->ops_len = i;
4153 
4154 	ret = 0;
4155 	if (copy_to_user(arg, p, size))
4156 		ret = -EFAULT;
4157 out:
4158 	kfree(p);
4159 	return ret;
4160 }
4161 
4162 static int io_register_personality(struct io_ring_ctx *ctx)
4163 {
4164 	const struct cred *creds;
4165 	u32 id;
4166 	int ret;
4167 
4168 	creds = get_current_cred();
4169 
4170 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4171 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4172 	if (ret < 0) {
4173 		put_cred(creds);
4174 		return ret;
4175 	}
4176 	return id;
4177 }
4178 
4179 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4180 					   void __user *arg, unsigned int nr_args)
4181 {
4182 	struct io_uring_restriction *res;
4183 	size_t size;
4184 	int i, ret;
4185 
4186 	/* Restrictions allowed only if rings started disabled */
4187 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4188 		return -EBADFD;
4189 
4190 	/* We allow only a single restrictions registration */
4191 	if (ctx->restrictions.registered)
4192 		return -EBUSY;
4193 
4194 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4195 		return -EINVAL;
4196 
4197 	size = array_size(nr_args, sizeof(*res));
4198 	if (size == SIZE_MAX)
4199 		return -EOVERFLOW;
4200 
4201 	res = memdup_user(arg, size);
4202 	if (IS_ERR(res))
4203 		return PTR_ERR(res);
4204 
4205 	ret = 0;
4206 
4207 	for (i = 0; i < nr_args; i++) {
4208 		switch (res[i].opcode) {
4209 		case IORING_RESTRICTION_REGISTER_OP:
4210 			if (res[i].register_op >= IORING_REGISTER_LAST) {
4211 				ret = -EINVAL;
4212 				goto out;
4213 			}
4214 
4215 			__set_bit(res[i].register_op,
4216 				  ctx->restrictions.register_op);
4217 			break;
4218 		case IORING_RESTRICTION_SQE_OP:
4219 			if (res[i].sqe_op >= IORING_OP_LAST) {
4220 				ret = -EINVAL;
4221 				goto out;
4222 			}
4223 
4224 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4225 			break;
4226 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4227 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4228 			break;
4229 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4230 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4231 			break;
4232 		default:
4233 			ret = -EINVAL;
4234 			goto out;
4235 		}
4236 	}
4237 
4238 out:
4239 	/* Reset all restrictions if an error happened */
4240 	if (ret != 0)
4241 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4242 	else
4243 		ctx->restrictions.registered = true;
4244 
4245 	kfree(res);
4246 	return ret;
4247 }
4248 
4249 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4250 {
4251 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4252 		return -EBADFD;
4253 
4254 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4255 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4256 		/*
4257 		 * Lazy activation attempts would fail if it was polled before
4258 		 * submitter_task is set.
4259 		 */
4260 		if (wq_has_sleeper(&ctx->poll_wq))
4261 			io_activate_pollwq(ctx);
4262 	}
4263 
4264 	if (ctx->restrictions.registered)
4265 		ctx->restricted = 1;
4266 
4267 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
4268 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4269 		wake_up(&ctx->sq_data->wait);
4270 	return 0;
4271 }
4272 
4273 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx,
4274 					 cpumask_var_t new_mask)
4275 {
4276 	int ret;
4277 
4278 	if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
4279 		ret = io_wq_cpu_affinity(current->io_uring, new_mask);
4280 	} else {
4281 		mutex_unlock(&ctx->uring_lock);
4282 		ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask);
4283 		mutex_lock(&ctx->uring_lock);
4284 	}
4285 
4286 	return ret;
4287 }
4288 
4289 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4290 				       void __user *arg, unsigned len)
4291 {
4292 	cpumask_var_t new_mask;
4293 	int ret;
4294 
4295 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4296 		return -ENOMEM;
4297 
4298 	cpumask_clear(new_mask);
4299 	if (len > cpumask_size())
4300 		len = cpumask_size();
4301 
4302 	if (in_compat_syscall()) {
4303 		ret = compat_get_bitmap(cpumask_bits(new_mask),
4304 					(const compat_ulong_t __user *)arg,
4305 					len * 8 /* CHAR_BIT */);
4306 	} else {
4307 		ret = copy_from_user(new_mask, arg, len);
4308 	}
4309 
4310 	if (ret) {
4311 		free_cpumask_var(new_mask);
4312 		return -EFAULT;
4313 	}
4314 
4315 	ret = __io_register_iowq_aff(ctx, new_mask);
4316 	free_cpumask_var(new_mask);
4317 	return ret;
4318 }
4319 
4320 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4321 {
4322 	return __io_register_iowq_aff(ctx, NULL);
4323 }
4324 
4325 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4326 					       void __user *arg)
4327 	__must_hold(&ctx->uring_lock)
4328 {
4329 	struct io_tctx_node *node;
4330 	struct io_uring_task *tctx = NULL;
4331 	struct io_sq_data *sqd = NULL;
4332 	__u32 new_count[2];
4333 	int i, ret;
4334 
4335 	if (copy_from_user(new_count, arg, sizeof(new_count)))
4336 		return -EFAULT;
4337 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4338 		if (new_count[i] > INT_MAX)
4339 			return -EINVAL;
4340 
4341 	if (ctx->flags & IORING_SETUP_SQPOLL) {
4342 		sqd = ctx->sq_data;
4343 		if (sqd) {
4344 			/*
4345 			 * Observe the correct sqd->lock -> ctx->uring_lock
4346 			 * ordering. Fine to drop uring_lock here, we hold
4347 			 * a ref to the ctx.
4348 			 */
4349 			refcount_inc(&sqd->refs);
4350 			mutex_unlock(&ctx->uring_lock);
4351 			mutex_lock(&sqd->lock);
4352 			mutex_lock(&ctx->uring_lock);
4353 			if (sqd->thread)
4354 				tctx = sqd->thread->io_uring;
4355 		}
4356 	} else {
4357 		tctx = current->io_uring;
4358 	}
4359 
4360 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4361 
4362 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4363 		if (new_count[i])
4364 			ctx->iowq_limits[i] = new_count[i];
4365 	ctx->iowq_limits_set = true;
4366 
4367 	if (tctx && tctx->io_wq) {
4368 		ret = io_wq_max_workers(tctx->io_wq, new_count);
4369 		if (ret)
4370 			goto err;
4371 	} else {
4372 		memset(new_count, 0, sizeof(new_count));
4373 	}
4374 
4375 	if (sqd) {
4376 		mutex_unlock(&sqd->lock);
4377 		io_put_sq_data(sqd);
4378 	}
4379 
4380 	if (copy_to_user(arg, new_count, sizeof(new_count)))
4381 		return -EFAULT;
4382 
4383 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
4384 	if (sqd)
4385 		return 0;
4386 
4387 	/* now propagate the restriction to all registered users */
4388 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4389 		struct io_uring_task *tctx = node->task->io_uring;
4390 
4391 		if (WARN_ON_ONCE(!tctx->io_wq))
4392 			continue;
4393 
4394 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
4395 			new_count[i] = ctx->iowq_limits[i];
4396 		/* ignore errors, it always returns zero anyway */
4397 		(void)io_wq_max_workers(tctx->io_wq, new_count);
4398 	}
4399 	return 0;
4400 err:
4401 	if (sqd) {
4402 		mutex_unlock(&sqd->lock);
4403 		io_put_sq_data(sqd);
4404 	}
4405 	return ret;
4406 }
4407 
4408 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4409 			       void __user *arg, unsigned nr_args)
4410 	__releases(ctx->uring_lock)
4411 	__acquires(ctx->uring_lock)
4412 {
4413 	int ret;
4414 
4415 	/*
4416 	 * We don't quiesce the refs for register anymore and so it can't be
4417 	 * dying as we're holding a file ref here.
4418 	 */
4419 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4420 		return -ENXIO;
4421 
4422 	if (ctx->submitter_task && ctx->submitter_task != current)
4423 		return -EEXIST;
4424 
4425 	if (ctx->restricted) {
4426 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4427 		if (!test_bit(opcode, ctx->restrictions.register_op))
4428 			return -EACCES;
4429 	}
4430 
4431 	switch (opcode) {
4432 	case IORING_REGISTER_BUFFERS:
4433 		ret = -EFAULT;
4434 		if (!arg)
4435 			break;
4436 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4437 		break;
4438 	case IORING_UNREGISTER_BUFFERS:
4439 		ret = -EINVAL;
4440 		if (arg || nr_args)
4441 			break;
4442 		ret = io_sqe_buffers_unregister(ctx);
4443 		break;
4444 	case IORING_REGISTER_FILES:
4445 		ret = -EFAULT;
4446 		if (!arg)
4447 			break;
4448 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4449 		break;
4450 	case IORING_UNREGISTER_FILES:
4451 		ret = -EINVAL;
4452 		if (arg || nr_args)
4453 			break;
4454 		ret = io_sqe_files_unregister(ctx);
4455 		break;
4456 	case IORING_REGISTER_FILES_UPDATE:
4457 		ret = io_register_files_update(ctx, arg, nr_args);
4458 		break;
4459 	case IORING_REGISTER_EVENTFD:
4460 		ret = -EINVAL;
4461 		if (nr_args != 1)
4462 			break;
4463 		ret = io_eventfd_register(ctx, arg, 0);
4464 		break;
4465 	case IORING_REGISTER_EVENTFD_ASYNC:
4466 		ret = -EINVAL;
4467 		if (nr_args != 1)
4468 			break;
4469 		ret = io_eventfd_register(ctx, arg, 1);
4470 		break;
4471 	case IORING_UNREGISTER_EVENTFD:
4472 		ret = -EINVAL;
4473 		if (arg || nr_args)
4474 			break;
4475 		ret = io_eventfd_unregister(ctx);
4476 		break;
4477 	case IORING_REGISTER_PROBE:
4478 		ret = -EINVAL;
4479 		if (!arg || nr_args > 256)
4480 			break;
4481 		ret = io_probe(ctx, arg, nr_args);
4482 		break;
4483 	case IORING_REGISTER_PERSONALITY:
4484 		ret = -EINVAL;
4485 		if (arg || nr_args)
4486 			break;
4487 		ret = io_register_personality(ctx);
4488 		break;
4489 	case IORING_UNREGISTER_PERSONALITY:
4490 		ret = -EINVAL;
4491 		if (arg)
4492 			break;
4493 		ret = io_unregister_personality(ctx, nr_args);
4494 		break;
4495 	case IORING_REGISTER_ENABLE_RINGS:
4496 		ret = -EINVAL;
4497 		if (arg || nr_args)
4498 			break;
4499 		ret = io_register_enable_rings(ctx);
4500 		break;
4501 	case IORING_REGISTER_RESTRICTIONS:
4502 		ret = io_register_restrictions(ctx, arg, nr_args);
4503 		break;
4504 	case IORING_REGISTER_FILES2:
4505 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4506 		break;
4507 	case IORING_REGISTER_FILES_UPDATE2:
4508 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4509 					      IORING_RSRC_FILE);
4510 		break;
4511 	case IORING_REGISTER_BUFFERS2:
4512 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4513 		break;
4514 	case IORING_REGISTER_BUFFERS_UPDATE:
4515 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4516 					      IORING_RSRC_BUFFER);
4517 		break;
4518 	case IORING_REGISTER_IOWQ_AFF:
4519 		ret = -EINVAL;
4520 		if (!arg || !nr_args)
4521 			break;
4522 		ret = io_register_iowq_aff(ctx, arg, nr_args);
4523 		break;
4524 	case IORING_UNREGISTER_IOWQ_AFF:
4525 		ret = -EINVAL;
4526 		if (arg || nr_args)
4527 			break;
4528 		ret = io_unregister_iowq_aff(ctx);
4529 		break;
4530 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4531 		ret = -EINVAL;
4532 		if (!arg || nr_args != 2)
4533 			break;
4534 		ret = io_register_iowq_max_workers(ctx, arg);
4535 		break;
4536 	case IORING_REGISTER_RING_FDS:
4537 		ret = io_ringfd_register(ctx, arg, nr_args);
4538 		break;
4539 	case IORING_UNREGISTER_RING_FDS:
4540 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4541 		break;
4542 	case IORING_REGISTER_PBUF_RING:
4543 		ret = -EINVAL;
4544 		if (!arg || nr_args != 1)
4545 			break;
4546 		ret = io_register_pbuf_ring(ctx, arg);
4547 		break;
4548 	case IORING_UNREGISTER_PBUF_RING:
4549 		ret = -EINVAL;
4550 		if (!arg || nr_args != 1)
4551 			break;
4552 		ret = io_unregister_pbuf_ring(ctx, arg);
4553 		break;
4554 	case IORING_REGISTER_SYNC_CANCEL:
4555 		ret = -EINVAL;
4556 		if (!arg || nr_args != 1)
4557 			break;
4558 		ret = io_sync_cancel(ctx, arg);
4559 		break;
4560 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4561 		ret = -EINVAL;
4562 		if (!arg || nr_args)
4563 			break;
4564 		ret = io_register_file_alloc_range(ctx, arg);
4565 		break;
4566 	default:
4567 		ret = -EINVAL;
4568 		break;
4569 	}
4570 
4571 	return ret;
4572 }
4573 
4574 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4575 		void __user *, arg, unsigned int, nr_args)
4576 {
4577 	struct io_ring_ctx *ctx;
4578 	long ret = -EBADF;
4579 	struct fd f;
4580 	bool use_registered_ring;
4581 
4582 	use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4583 	opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4584 
4585 	if (opcode >= IORING_REGISTER_LAST)
4586 		return -EINVAL;
4587 
4588 	if (use_registered_ring) {
4589 		/*
4590 		 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4591 		 * need only dereference our task private array to find it.
4592 		 */
4593 		struct io_uring_task *tctx = current->io_uring;
4594 
4595 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4596 			return -EINVAL;
4597 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4598 		f.file = tctx->registered_rings[fd];
4599 		f.flags = 0;
4600 		if (unlikely(!f.file))
4601 			return -EBADF;
4602 	} else {
4603 		f = fdget(fd);
4604 		if (unlikely(!f.file))
4605 			return -EBADF;
4606 		ret = -EOPNOTSUPP;
4607 		if (!io_is_uring_fops(f.file))
4608 			goto out_fput;
4609 	}
4610 
4611 	ctx = f.file->private_data;
4612 
4613 	mutex_lock(&ctx->uring_lock);
4614 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4615 	mutex_unlock(&ctx->uring_lock);
4616 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4617 out_fput:
4618 	fdput(f);
4619 	return ret;
4620 }
4621 
4622 static int __init io_uring_init(void)
4623 {
4624 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4625 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4626 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4627 } while (0)
4628 
4629 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4630 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4631 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4632 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4633 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4634 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4635 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4636 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4637 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4638 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4639 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4640 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4641 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4642 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4643 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4644 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4645 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4646 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4647 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4648 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4649 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4650 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4651 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4652 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4653 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4654 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4655 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4656 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4657 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4658 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4659 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4660 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4661 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4662 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4663 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4664 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4665 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4666 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4667 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4668 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4669 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4670 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4671 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4672 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4673 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4674 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4675 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4676 
4677 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4678 		     sizeof(struct io_uring_rsrc_update));
4679 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4680 		     sizeof(struct io_uring_rsrc_update2));
4681 
4682 	/* ->buf_index is u16 */
4683 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4684 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4685 		     offsetof(struct io_uring_buf_ring, tail));
4686 
4687 	/* should fit into one byte */
4688 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4689 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4690 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4691 
4692 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4693 
4694 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4695 
4696 	io_uring_optable_init();
4697 
4698 	/*
4699 	 * Allow user copy in the per-command field, which starts after the
4700 	 * file in io_kiocb and until the opcode field. The openat2 handling
4701 	 * requires copying in user memory into the io_kiocb object in that
4702 	 * range, and HARDENED_USERCOPY will complain if we haven't
4703 	 * correctly annotated this range.
4704 	 */
4705 	req_cachep = kmem_cache_create_usercopy("io_kiocb",
4706 				sizeof(struct io_kiocb), 0,
4707 				SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4708 				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4709 				offsetof(struct io_kiocb, cmd.data),
4710 				sizeof_field(struct io_kiocb, cmd.data), NULL);
4711 
4712 #ifdef CONFIG_SYSCTL
4713 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4714 #endif
4715 
4716 	return 0;
4717 };
4718 __initcall(io_uring_init);
4719