xref: /openbmc/linux/io_uring/io_uring.c (revision 5a754dea)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 #include <asm/shmparam.h>
76 
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/io_uring.h>
79 
80 #include <uapi/linux/io_uring.h>
81 
82 #include "io-wq.h"
83 
84 #include "io_uring.h"
85 #include "opdef.h"
86 #include "refs.h"
87 #include "tctx.h"
88 #include "sqpoll.h"
89 #include "fdinfo.h"
90 #include "kbuf.h"
91 #include "rsrc.h"
92 #include "cancel.h"
93 #include "net.h"
94 #include "notif.h"
95 
96 #include "timeout.h"
97 #include "poll.h"
98 #include "rw.h"
99 #include "alloc_cache.h"
100 
101 #define IORING_MAX_ENTRIES	32768
102 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
103 
104 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
105 				 IORING_REGISTER_LAST + IORING_OP_LAST)
106 
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109 
110 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112 
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 				REQ_F_ASYNC_DATA)
116 
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 				 IO_REQ_CLEAN_FLAGS)
119 
120 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
121 
122 #define IO_COMPL_BATCH			32
123 #define IO_REQ_ALLOC_BATCH		8
124 
125 enum {
126 	IO_CHECK_CQ_OVERFLOW_BIT,
127 	IO_CHECK_CQ_DROPPED_BIT,
128 };
129 
130 enum {
131 	IO_EVENTFD_OP_SIGNAL_BIT,
132 	IO_EVENTFD_OP_FREE_BIT,
133 };
134 
135 struct io_defer_entry {
136 	struct list_head	list;
137 	struct io_kiocb		*req;
138 	u32			seq;
139 };
140 
141 /* requests with any of those set should undergo io_disarm_next() */
142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
144 
145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
146 					 struct task_struct *task,
147 					 bool cancel_all);
148 
149 static void io_queue_sqe(struct io_kiocb *req);
150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx);
151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
152 static __cold void io_fallback_tw(struct io_uring_task *tctx);
153 
154 struct kmem_cache *req_cachep;
155 
156 struct sock *io_uring_get_socket(struct file *file)
157 {
158 #if defined(CONFIG_UNIX)
159 	if (io_is_uring_fops(file)) {
160 		struct io_ring_ctx *ctx = file->private_data;
161 
162 		return ctx->ring_sock->sk;
163 	}
164 #endif
165 	return NULL;
166 }
167 EXPORT_SYMBOL(io_uring_get_socket);
168 
169 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
170 {
171 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
172 	    ctx->submit_state.cqes_count)
173 		__io_submit_flush_completions(ctx);
174 }
175 
176 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
177 {
178 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
179 }
180 
181 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
182 {
183 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
184 }
185 
186 static bool io_match_linked(struct io_kiocb *head)
187 {
188 	struct io_kiocb *req;
189 
190 	io_for_each_link(req, head) {
191 		if (req->flags & REQ_F_INFLIGHT)
192 			return true;
193 	}
194 	return false;
195 }
196 
197 /*
198  * As io_match_task() but protected against racing with linked timeouts.
199  * User must not hold timeout_lock.
200  */
201 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
202 			bool cancel_all)
203 {
204 	bool matched;
205 
206 	if (task && head->task != task)
207 		return false;
208 	if (cancel_all)
209 		return true;
210 
211 	if (head->flags & REQ_F_LINK_TIMEOUT) {
212 		struct io_ring_ctx *ctx = head->ctx;
213 
214 		/* protect against races with linked timeouts */
215 		spin_lock_irq(&ctx->timeout_lock);
216 		matched = io_match_linked(head);
217 		spin_unlock_irq(&ctx->timeout_lock);
218 	} else {
219 		matched = io_match_linked(head);
220 	}
221 	return matched;
222 }
223 
224 static inline void req_fail_link_node(struct io_kiocb *req, int res)
225 {
226 	req_set_fail(req);
227 	io_req_set_res(req, res, 0);
228 }
229 
230 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
231 {
232 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
233 	kasan_poison_object_data(req_cachep, req);
234 }
235 
236 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
237 {
238 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
239 
240 	complete(&ctx->ref_comp);
241 }
242 
243 static __cold void io_fallback_req_func(struct work_struct *work)
244 {
245 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
246 						fallback_work.work);
247 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
248 	struct io_kiocb *req, *tmp;
249 	struct io_tw_state ts = { .locked = true, };
250 
251 	mutex_lock(&ctx->uring_lock);
252 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
253 		req->io_task_work.func(req, &ts);
254 	if (WARN_ON_ONCE(!ts.locked))
255 		return;
256 	io_submit_flush_completions(ctx);
257 	mutex_unlock(&ctx->uring_lock);
258 }
259 
260 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
261 {
262 	unsigned hash_buckets = 1U << bits;
263 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
264 
265 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
266 	if (!table->hbs)
267 		return -ENOMEM;
268 
269 	table->hash_bits = bits;
270 	init_hash_table(table, hash_buckets);
271 	return 0;
272 }
273 
274 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
275 {
276 	struct io_ring_ctx *ctx;
277 	int hash_bits;
278 
279 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
280 	if (!ctx)
281 		return NULL;
282 
283 	xa_init(&ctx->io_bl_xa);
284 
285 	/*
286 	 * Use 5 bits less than the max cq entries, that should give us around
287 	 * 32 entries per hash list if totally full and uniformly spread, but
288 	 * don't keep too many buckets to not overconsume memory.
289 	 */
290 	hash_bits = ilog2(p->cq_entries) - 5;
291 	hash_bits = clamp(hash_bits, 1, 8);
292 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
293 		goto err;
294 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
295 		goto err;
296 
297 	ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
298 	if (!ctx->dummy_ubuf)
299 		goto err;
300 	/* set invalid range, so io_import_fixed() fails meeting it */
301 	ctx->dummy_ubuf->ubuf = -1UL;
302 
303 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
304 			    0, GFP_KERNEL))
305 		goto err;
306 
307 	ctx->flags = p->flags;
308 	init_waitqueue_head(&ctx->sqo_sq_wait);
309 	INIT_LIST_HEAD(&ctx->sqd_list);
310 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
311 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
312 	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
313 			    sizeof(struct io_rsrc_node));
314 	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
315 			    sizeof(struct async_poll));
316 	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
317 			    sizeof(struct io_async_msghdr));
318 	init_completion(&ctx->ref_comp);
319 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
320 	mutex_init(&ctx->uring_lock);
321 	init_waitqueue_head(&ctx->cq_wait);
322 	init_waitqueue_head(&ctx->poll_wq);
323 	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
324 	spin_lock_init(&ctx->completion_lock);
325 	spin_lock_init(&ctx->timeout_lock);
326 	INIT_WQ_LIST(&ctx->iopoll_list);
327 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
328 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
329 	INIT_LIST_HEAD(&ctx->defer_list);
330 	INIT_LIST_HEAD(&ctx->timeout_list);
331 	INIT_LIST_HEAD(&ctx->ltimeout_list);
332 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
333 	init_llist_head(&ctx->work_llist);
334 	INIT_LIST_HEAD(&ctx->tctx_list);
335 	ctx->submit_state.free_list.next = NULL;
336 	INIT_WQ_LIST(&ctx->locked_free_list);
337 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
338 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
339 	return ctx;
340 err:
341 	kfree(ctx->dummy_ubuf);
342 	kfree(ctx->cancel_table.hbs);
343 	kfree(ctx->cancel_table_locked.hbs);
344 	kfree(ctx->io_bl);
345 	xa_destroy(&ctx->io_bl_xa);
346 	kfree(ctx);
347 	return NULL;
348 }
349 
350 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
351 {
352 	struct io_rings *r = ctx->rings;
353 
354 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
355 	ctx->cq_extra--;
356 }
357 
358 static bool req_need_defer(struct io_kiocb *req, u32 seq)
359 {
360 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
361 		struct io_ring_ctx *ctx = req->ctx;
362 
363 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
364 	}
365 
366 	return false;
367 }
368 
369 static void io_clean_op(struct io_kiocb *req)
370 {
371 	if (req->flags & REQ_F_BUFFER_SELECTED) {
372 		spin_lock(&req->ctx->completion_lock);
373 		io_put_kbuf_comp(req);
374 		spin_unlock(&req->ctx->completion_lock);
375 	}
376 
377 	if (req->flags & REQ_F_NEED_CLEANUP) {
378 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
379 
380 		if (def->cleanup)
381 			def->cleanup(req);
382 	}
383 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
384 		kfree(req->apoll->double_poll);
385 		kfree(req->apoll);
386 		req->apoll = NULL;
387 	}
388 	if (req->flags & REQ_F_INFLIGHT) {
389 		struct io_uring_task *tctx = req->task->io_uring;
390 
391 		atomic_dec(&tctx->inflight_tracked);
392 	}
393 	if (req->flags & REQ_F_CREDS)
394 		put_cred(req->creds);
395 	if (req->flags & REQ_F_ASYNC_DATA) {
396 		kfree(req->async_data);
397 		req->async_data = NULL;
398 	}
399 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
400 }
401 
402 static inline void io_req_track_inflight(struct io_kiocb *req)
403 {
404 	if (!(req->flags & REQ_F_INFLIGHT)) {
405 		req->flags |= REQ_F_INFLIGHT;
406 		atomic_inc(&req->task->io_uring->inflight_tracked);
407 	}
408 }
409 
410 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
411 {
412 	if (WARN_ON_ONCE(!req->link))
413 		return NULL;
414 
415 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
416 	req->flags |= REQ_F_LINK_TIMEOUT;
417 
418 	/* linked timeouts should have two refs once prep'ed */
419 	io_req_set_refcount(req);
420 	__io_req_set_refcount(req->link, 2);
421 	return req->link;
422 }
423 
424 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
425 {
426 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
427 		return NULL;
428 	return __io_prep_linked_timeout(req);
429 }
430 
431 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
432 {
433 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
434 }
435 
436 static inline void io_arm_ltimeout(struct io_kiocb *req)
437 {
438 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
439 		__io_arm_ltimeout(req);
440 }
441 
442 static void io_prep_async_work(struct io_kiocb *req)
443 {
444 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
445 	struct io_ring_ctx *ctx = req->ctx;
446 
447 	if (!(req->flags & REQ_F_CREDS)) {
448 		req->flags |= REQ_F_CREDS;
449 		req->creds = get_current_cred();
450 	}
451 
452 	req->work.list.next = NULL;
453 	req->work.flags = 0;
454 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
455 	if (req->flags & REQ_F_FORCE_ASYNC)
456 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
457 
458 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
459 		req->flags |= io_file_get_flags(req->file);
460 
461 	if (req->file && (req->flags & REQ_F_ISREG)) {
462 		bool should_hash = def->hash_reg_file;
463 
464 		/* don't serialize this request if the fs doesn't need it */
465 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
466 		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
467 			should_hash = false;
468 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
469 			io_wq_hash_work(&req->work, file_inode(req->file));
470 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
471 		if (def->unbound_nonreg_file)
472 			req->work.flags |= IO_WQ_WORK_UNBOUND;
473 	}
474 }
475 
476 static void io_prep_async_link(struct io_kiocb *req)
477 {
478 	struct io_kiocb *cur;
479 
480 	if (req->flags & REQ_F_LINK_TIMEOUT) {
481 		struct io_ring_ctx *ctx = req->ctx;
482 
483 		spin_lock_irq(&ctx->timeout_lock);
484 		io_for_each_link(cur, req)
485 			io_prep_async_work(cur);
486 		spin_unlock_irq(&ctx->timeout_lock);
487 	} else {
488 		io_for_each_link(cur, req)
489 			io_prep_async_work(cur);
490 	}
491 }
492 
493 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
494 {
495 	struct io_kiocb *link = io_prep_linked_timeout(req);
496 	struct io_uring_task *tctx = req->task->io_uring;
497 
498 	BUG_ON(!tctx);
499 	BUG_ON(!tctx->io_wq);
500 
501 	/* init ->work of the whole link before punting */
502 	io_prep_async_link(req);
503 
504 	/*
505 	 * Not expected to happen, but if we do have a bug where this _can_
506 	 * happen, catch it here and ensure the request is marked as
507 	 * canceled. That will make io-wq go through the usual work cancel
508 	 * procedure rather than attempt to run this request (or create a new
509 	 * worker for it).
510 	 */
511 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
512 		req->work.flags |= IO_WQ_WORK_CANCEL;
513 
514 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
515 	io_wq_enqueue(tctx->io_wq, &req->work);
516 	if (link)
517 		io_queue_linked_timeout(link);
518 }
519 
520 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
521 {
522 	while (!list_empty(&ctx->defer_list)) {
523 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
524 						struct io_defer_entry, list);
525 
526 		if (req_need_defer(de->req, de->seq))
527 			break;
528 		list_del_init(&de->list);
529 		io_req_task_queue(de->req);
530 		kfree(de);
531 	}
532 }
533 
534 
535 static void io_eventfd_ops(struct rcu_head *rcu)
536 {
537 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
538 	int ops = atomic_xchg(&ev_fd->ops, 0);
539 
540 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
541 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
542 
543 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
544 	 * ordering in a race but if references are 0 we know we have to free
545 	 * it regardless.
546 	 */
547 	if (atomic_dec_and_test(&ev_fd->refs)) {
548 		eventfd_ctx_put(ev_fd->cq_ev_fd);
549 		kfree(ev_fd);
550 	}
551 }
552 
553 static void io_eventfd_signal(struct io_ring_ctx *ctx)
554 {
555 	struct io_ev_fd *ev_fd = NULL;
556 
557 	rcu_read_lock();
558 	/*
559 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
560 	 * and eventfd_signal
561 	 */
562 	ev_fd = rcu_dereference(ctx->io_ev_fd);
563 
564 	/*
565 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
566 	 * completed between the NULL check of ctx->io_ev_fd at the start of
567 	 * the function and rcu_read_lock.
568 	 */
569 	if (unlikely(!ev_fd))
570 		goto out;
571 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
572 		goto out;
573 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
574 		goto out;
575 
576 	if (likely(eventfd_signal_allowed())) {
577 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
578 	} else {
579 		atomic_inc(&ev_fd->refs);
580 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
581 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
582 		else
583 			atomic_dec(&ev_fd->refs);
584 	}
585 
586 out:
587 	rcu_read_unlock();
588 }
589 
590 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
591 {
592 	bool skip;
593 
594 	spin_lock(&ctx->completion_lock);
595 
596 	/*
597 	 * Eventfd should only get triggered when at least one event has been
598 	 * posted. Some applications rely on the eventfd notification count
599 	 * only changing IFF a new CQE has been added to the CQ ring. There's
600 	 * no depedency on 1:1 relationship between how many times this
601 	 * function is called (and hence the eventfd count) and number of CQEs
602 	 * posted to the CQ ring.
603 	 */
604 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
605 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
606 	spin_unlock(&ctx->completion_lock);
607 	if (skip)
608 		return;
609 
610 	io_eventfd_signal(ctx);
611 }
612 
613 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
614 {
615 	if (ctx->poll_activated)
616 		io_poll_wq_wake(ctx);
617 	if (ctx->off_timeout_used)
618 		io_flush_timeouts(ctx);
619 	if (ctx->drain_active) {
620 		spin_lock(&ctx->completion_lock);
621 		io_queue_deferred(ctx);
622 		spin_unlock(&ctx->completion_lock);
623 	}
624 	if (ctx->has_evfd)
625 		io_eventfd_flush_signal(ctx);
626 }
627 
628 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
629 	__acquires(ctx->completion_lock)
630 {
631 	if (!ctx->task_complete)
632 		spin_lock(&ctx->completion_lock);
633 }
634 
635 static inline void __io_cq_unlock(struct io_ring_ctx *ctx)
636 {
637 	if (!ctx->task_complete)
638 		spin_unlock(&ctx->completion_lock);
639 }
640 
641 static inline void io_cq_lock(struct io_ring_ctx *ctx)
642 	__acquires(ctx->completion_lock)
643 {
644 	spin_lock(&ctx->completion_lock);
645 }
646 
647 static inline void io_cq_unlock(struct io_ring_ctx *ctx)
648 	__releases(ctx->completion_lock)
649 {
650 	spin_unlock(&ctx->completion_lock);
651 }
652 
653 /* keep it inlined for io_submit_flush_completions() */
654 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
655 	__releases(ctx->completion_lock)
656 {
657 	io_commit_cqring(ctx);
658 	__io_cq_unlock(ctx);
659 	io_commit_cqring_flush(ctx);
660 	io_cqring_wake(ctx);
661 }
662 
663 static void __io_cq_unlock_post_flush(struct io_ring_ctx *ctx)
664 	__releases(ctx->completion_lock)
665 {
666 	io_commit_cqring(ctx);
667 
668 	if (ctx->task_complete) {
669 		/*
670 		 * ->task_complete implies that only current might be waiting
671 		 * for CQEs, and obviously, we currently don't. No one is
672 		 * waiting, wakeups are futile, skip them.
673 		 */
674 		io_commit_cqring_flush(ctx);
675 	} else {
676 		__io_cq_unlock(ctx);
677 		io_commit_cqring_flush(ctx);
678 		io_cqring_wake(ctx);
679 	}
680 }
681 
682 void io_cq_unlock_post(struct io_ring_ctx *ctx)
683 	__releases(ctx->completion_lock)
684 {
685 	io_commit_cqring(ctx);
686 	spin_unlock(&ctx->completion_lock);
687 	io_commit_cqring_flush(ctx);
688 	io_cqring_wake(ctx);
689 }
690 
691 /* Returns true if there are no backlogged entries after the flush */
692 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
693 {
694 	struct io_overflow_cqe *ocqe;
695 	LIST_HEAD(list);
696 
697 	io_cq_lock(ctx);
698 	list_splice_init(&ctx->cq_overflow_list, &list);
699 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
700 	io_cq_unlock(ctx);
701 
702 	while (!list_empty(&list)) {
703 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
704 		list_del(&ocqe->list);
705 		kfree(ocqe);
706 	}
707 }
708 
709 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
710 {
711 	size_t cqe_size = sizeof(struct io_uring_cqe);
712 
713 	if (__io_cqring_events(ctx) == ctx->cq_entries)
714 		return;
715 
716 	if (ctx->flags & IORING_SETUP_CQE32)
717 		cqe_size <<= 1;
718 
719 	io_cq_lock(ctx);
720 	while (!list_empty(&ctx->cq_overflow_list)) {
721 		struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true);
722 		struct io_overflow_cqe *ocqe;
723 
724 		if (!cqe)
725 			break;
726 		ocqe = list_first_entry(&ctx->cq_overflow_list,
727 					struct io_overflow_cqe, list);
728 		memcpy(cqe, &ocqe->cqe, cqe_size);
729 		list_del(&ocqe->list);
730 		kfree(ocqe);
731 	}
732 
733 	if (list_empty(&ctx->cq_overflow_list)) {
734 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
735 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
736 	}
737 	io_cq_unlock_post(ctx);
738 }
739 
740 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
741 {
742 	/* iopoll syncs against uring_lock, not completion_lock */
743 	if (ctx->flags & IORING_SETUP_IOPOLL)
744 		mutex_lock(&ctx->uring_lock);
745 	__io_cqring_overflow_flush(ctx);
746 	if (ctx->flags & IORING_SETUP_IOPOLL)
747 		mutex_unlock(&ctx->uring_lock);
748 }
749 
750 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
751 {
752 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
753 		io_cqring_do_overflow_flush(ctx);
754 }
755 
756 /* can be called by any task */
757 static void io_put_task_remote(struct task_struct *task, int nr)
758 {
759 	struct io_uring_task *tctx = task->io_uring;
760 
761 	percpu_counter_sub(&tctx->inflight, nr);
762 	if (unlikely(atomic_read(&tctx->in_cancel)))
763 		wake_up(&tctx->wait);
764 	put_task_struct_many(task, nr);
765 }
766 
767 /* used by a task to put its own references */
768 static void io_put_task_local(struct task_struct *task, int nr)
769 {
770 	task->io_uring->cached_refs += nr;
771 }
772 
773 /* must to be called somewhat shortly after putting a request */
774 static inline void io_put_task(struct task_struct *task, int nr)
775 {
776 	if (likely(task == current))
777 		io_put_task_local(task, nr);
778 	else
779 		io_put_task_remote(task, nr);
780 }
781 
782 void io_task_refs_refill(struct io_uring_task *tctx)
783 {
784 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
785 
786 	percpu_counter_add(&tctx->inflight, refill);
787 	refcount_add(refill, &current->usage);
788 	tctx->cached_refs += refill;
789 }
790 
791 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
792 {
793 	struct io_uring_task *tctx = task->io_uring;
794 	unsigned int refs = tctx->cached_refs;
795 
796 	if (refs) {
797 		tctx->cached_refs = 0;
798 		percpu_counter_sub(&tctx->inflight, refs);
799 		put_task_struct_many(task, refs);
800 	}
801 }
802 
803 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
804 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
805 {
806 	struct io_overflow_cqe *ocqe;
807 	size_t ocq_size = sizeof(struct io_overflow_cqe);
808 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
809 
810 	lockdep_assert_held(&ctx->completion_lock);
811 
812 	if (is_cqe32)
813 		ocq_size += sizeof(struct io_uring_cqe);
814 
815 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
816 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
817 	if (!ocqe) {
818 		/*
819 		 * If we're in ring overflow flush mode, or in task cancel mode,
820 		 * or cannot allocate an overflow entry, then we need to drop it
821 		 * on the floor.
822 		 */
823 		io_account_cq_overflow(ctx);
824 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
825 		return false;
826 	}
827 	if (list_empty(&ctx->cq_overflow_list)) {
828 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
829 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
830 
831 	}
832 	ocqe->cqe.user_data = user_data;
833 	ocqe->cqe.res = res;
834 	ocqe->cqe.flags = cflags;
835 	if (is_cqe32) {
836 		ocqe->cqe.big_cqe[0] = extra1;
837 		ocqe->cqe.big_cqe[1] = extra2;
838 	}
839 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
840 	return true;
841 }
842 
843 bool io_req_cqe_overflow(struct io_kiocb *req)
844 {
845 	if (!(req->flags & REQ_F_CQE32_INIT)) {
846 		req->extra1 = 0;
847 		req->extra2 = 0;
848 	}
849 	return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
850 					req->cqe.res, req->cqe.flags,
851 					req->extra1, req->extra2);
852 }
853 
854 /*
855  * writes to the cq entry need to come after reading head; the
856  * control dependency is enough as we're using WRITE_ONCE to
857  * fill the cq entry
858  */
859 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow)
860 {
861 	struct io_rings *rings = ctx->rings;
862 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
863 	unsigned int free, queued, len;
864 
865 	/*
866 	 * Posting into the CQ when there are pending overflowed CQEs may break
867 	 * ordering guarantees, which will affect links, F_MORE users and more.
868 	 * Force overflow the completion.
869 	 */
870 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
871 		return NULL;
872 
873 	/* userspace may cheat modifying the tail, be safe and do min */
874 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
875 	free = ctx->cq_entries - queued;
876 	/* we need a contiguous range, limit based on the current array offset */
877 	len = min(free, ctx->cq_entries - off);
878 	if (!len)
879 		return NULL;
880 
881 	if (ctx->flags & IORING_SETUP_CQE32) {
882 		off <<= 1;
883 		len <<= 1;
884 	}
885 
886 	ctx->cqe_cached = &rings->cqes[off];
887 	ctx->cqe_sentinel = ctx->cqe_cached + len;
888 
889 	ctx->cached_cq_tail++;
890 	ctx->cqe_cached++;
891 	if (ctx->flags & IORING_SETUP_CQE32)
892 		ctx->cqe_cached++;
893 	return &rings->cqes[off];
894 }
895 
896 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
897 			      u32 cflags)
898 {
899 	struct io_uring_cqe *cqe;
900 
901 	ctx->cq_extra++;
902 
903 	/*
904 	 * If we can't get a cq entry, userspace overflowed the
905 	 * submission (by quite a lot). Increment the overflow count in
906 	 * the ring.
907 	 */
908 	cqe = io_get_cqe(ctx);
909 	if (likely(cqe)) {
910 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
911 
912 		WRITE_ONCE(cqe->user_data, user_data);
913 		WRITE_ONCE(cqe->res, res);
914 		WRITE_ONCE(cqe->flags, cflags);
915 
916 		if (ctx->flags & IORING_SETUP_CQE32) {
917 			WRITE_ONCE(cqe->big_cqe[0], 0);
918 			WRITE_ONCE(cqe->big_cqe[1], 0);
919 		}
920 		return true;
921 	}
922 	return false;
923 }
924 
925 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
926 	__must_hold(&ctx->uring_lock)
927 {
928 	struct io_submit_state *state = &ctx->submit_state;
929 	unsigned int i;
930 
931 	lockdep_assert_held(&ctx->uring_lock);
932 	for (i = 0; i < state->cqes_count; i++) {
933 		struct io_uring_cqe *cqe = &state->cqes[i];
934 
935 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
936 			if (ctx->task_complete) {
937 				spin_lock(&ctx->completion_lock);
938 				io_cqring_event_overflow(ctx, cqe->user_data,
939 							cqe->res, cqe->flags, 0, 0);
940 				spin_unlock(&ctx->completion_lock);
941 			} else {
942 				io_cqring_event_overflow(ctx, cqe->user_data,
943 							cqe->res, cqe->flags, 0, 0);
944 			}
945 		}
946 	}
947 	state->cqes_count = 0;
948 }
949 
950 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
951 			      bool allow_overflow)
952 {
953 	bool filled;
954 
955 	io_cq_lock(ctx);
956 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
957 	if (!filled && allow_overflow)
958 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
959 
960 	io_cq_unlock_post(ctx);
961 	return filled;
962 }
963 
964 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
965 {
966 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
967 }
968 
969 bool io_aux_cqe(const struct io_kiocb *req, bool defer, s32 res, u32 cflags,
970 		bool allow_overflow)
971 {
972 	struct io_ring_ctx *ctx = req->ctx;
973 	u64 user_data = req->cqe.user_data;
974 	struct io_uring_cqe *cqe;
975 
976 	if (!defer)
977 		return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow);
978 
979 	lockdep_assert_held(&ctx->uring_lock);
980 
981 	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->submit_state.cqes)) {
982 		__io_cq_lock(ctx);
983 		__io_flush_post_cqes(ctx);
984 		/* no need to flush - flush is deferred */
985 		__io_cq_unlock_post(ctx);
986 	}
987 
988 	/* For defered completions this is not as strict as it is otherwise,
989 	 * however it's main job is to prevent unbounded posted completions,
990 	 * and in that it works just as well.
991 	 */
992 	if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
993 		return false;
994 
995 	cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++];
996 	cqe->user_data = user_data;
997 	cqe->res = res;
998 	cqe->flags = cflags;
999 	return true;
1000 }
1001 
1002 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1003 {
1004 	struct io_ring_ctx *ctx = req->ctx;
1005 	struct io_rsrc_node *rsrc_node = NULL;
1006 
1007 	io_cq_lock(ctx);
1008 	if (!(req->flags & REQ_F_CQE_SKIP))
1009 		io_fill_cqe_req(ctx, req);
1010 
1011 	/*
1012 	 * If we're the last reference to this request, add to our locked
1013 	 * free_list cache.
1014 	 */
1015 	if (req_ref_put_and_test(req)) {
1016 		if (req->flags & IO_REQ_LINK_FLAGS) {
1017 			if (req->flags & IO_DISARM_MASK)
1018 				io_disarm_next(req);
1019 			if (req->link) {
1020 				io_req_task_queue(req->link);
1021 				req->link = NULL;
1022 			}
1023 		}
1024 		io_put_kbuf_comp(req);
1025 		if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1026 			io_clean_op(req);
1027 		if (!(req->flags & REQ_F_FIXED_FILE))
1028 			io_put_file(req->file);
1029 
1030 		rsrc_node = req->rsrc_node;
1031 		/*
1032 		 * Selected buffer deallocation in io_clean_op() assumes that
1033 		 * we don't hold ->completion_lock. Clean them here to avoid
1034 		 * deadlocks.
1035 		 */
1036 		io_put_task_remote(req->task, 1);
1037 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1038 		ctx->locked_free_nr++;
1039 	}
1040 	io_cq_unlock_post(ctx);
1041 
1042 	if (rsrc_node) {
1043 		io_ring_submit_lock(ctx, issue_flags);
1044 		io_put_rsrc_node(ctx, rsrc_node);
1045 		io_ring_submit_unlock(ctx, issue_flags);
1046 	}
1047 }
1048 
1049 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1050 {
1051 	if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1052 		req->io_task_work.func = io_req_task_complete;
1053 		io_req_task_work_add(req);
1054 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1055 		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1056 		__io_req_complete_post(req, issue_flags);
1057 	} else {
1058 		struct io_ring_ctx *ctx = req->ctx;
1059 
1060 		mutex_lock(&ctx->uring_lock);
1061 		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1062 		mutex_unlock(&ctx->uring_lock);
1063 	}
1064 }
1065 
1066 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1067 	__must_hold(&ctx->uring_lock)
1068 {
1069 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1070 
1071 	lockdep_assert_held(&req->ctx->uring_lock);
1072 
1073 	req_set_fail(req);
1074 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1075 	if (def->fail)
1076 		def->fail(req);
1077 	io_req_complete_defer(req);
1078 }
1079 
1080 /*
1081  * Don't initialise the fields below on every allocation, but do that in
1082  * advance and keep them valid across allocations.
1083  */
1084 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1085 {
1086 	req->ctx = ctx;
1087 	req->link = NULL;
1088 	req->async_data = NULL;
1089 	/* not necessary, but safer to zero */
1090 	req->cqe.res = 0;
1091 }
1092 
1093 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1094 					struct io_submit_state *state)
1095 {
1096 	spin_lock(&ctx->completion_lock);
1097 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1098 	ctx->locked_free_nr = 0;
1099 	spin_unlock(&ctx->completion_lock);
1100 }
1101 
1102 /*
1103  * A request might get retired back into the request caches even before opcode
1104  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1105  * Because of that, io_alloc_req() should be called only under ->uring_lock
1106  * and with extra caution to not get a request that is still worked on.
1107  */
1108 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1109 	__must_hold(&ctx->uring_lock)
1110 {
1111 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1112 	void *reqs[IO_REQ_ALLOC_BATCH];
1113 	int ret, i;
1114 
1115 	/*
1116 	 * If we have more than a batch's worth of requests in our IRQ side
1117 	 * locked cache, grab the lock and move them over to our submission
1118 	 * side cache.
1119 	 */
1120 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1121 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1122 		if (!io_req_cache_empty(ctx))
1123 			return true;
1124 	}
1125 
1126 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1127 
1128 	/*
1129 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1130 	 * retry single alloc to be on the safe side.
1131 	 */
1132 	if (unlikely(ret <= 0)) {
1133 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1134 		if (!reqs[0])
1135 			return false;
1136 		ret = 1;
1137 	}
1138 
1139 	percpu_ref_get_many(&ctx->refs, ret);
1140 	for (i = 0; i < ret; i++) {
1141 		struct io_kiocb *req = reqs[i];
1142 
1143 		io_preinit_req(req, ctx);
1144 		io_req_add_to_cache(req, ctx);
1145 	}
1146 	return true;
1147 }
1148 
1149 __cold void io_free_req(struct io_kiocb *req)
1150 {
1151 	/* refs were already put, restore them for io_req_task_complete() */
1152 	req->flags &= ~REQ_F_REFCOUNT;
1153 	/* we only want to free it, don't post CQEs */
1154 	req->flags |= REQ_F_CQE_SKIP;
1155 	req->io_task_work.func = io_req_task_complete;
1156 	io_req_task_work_add(req);
1157 }
1158 
1159 static void __io_req_find_next_prep(struct io_kiocb *req)
1160 {
1161 	struct io_ring_ctx *ctx = req->ctx;
1162 
1163 	spin_lock(&ctx->completion_lock);
1164 	io_disarm_next(req);
1165 	spin_unlock(&ctx->completion_lock);
1166 }
1167 
1168 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1169 {
1170 	struct io_kiocb *nxt;
1171 
1172 	/*
1173 	 * If LINK is set, we have dependent requests in this chain. If we
1174 	 * didn't fail this request, queue the first one up, moving any other
1175 	 * dependencies to the next request. In case of failure, fail the rest
1176 	 * of the chain.
1177 	 */
1178 	if (unlikely(req->flags & IO_DISARM_MASK))
1179 		__io_req_find_next_prep(req);
1180 	nxt = req->link;
1181 	req->link = NULL;
1182 	return nxt;
1183 }
1184 
1185 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1186 {
1187 	if (!ctx)
1188 		return;
1189 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1190 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1191 	if (ts->locked) {
1192 		io_submit_flush_completions(ctx);
1193 		mutex_unlock(&ctx->uring_lock);
1194 		ts->locked = false;
1195 	}
1196 	percpu_ref_put(&ctx->refs);
1197 }
1198 
1199 static unsigned int handle_tw_list(struct llist_node *node,
1200 				   struct io_ring_ctx **ctx,
1201 				   struct io_tw_state *ts,
1202 				   struct llist_node *last)
1203 {
1204 	unsigned int count = 0;
1205 
1206 	while (node && node != last) {
1207 		struct llist_node *next = node->next;
1208 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1209 						    io_task_work.node);
1210 
1211 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1212 
1213 		if (req->ctx != *ctx) {
1214 			ctx_flush_and_put(*ctx, ts);
1215 			*ctx = req->ctx;
1216 			/* if not contended, grab and improve batching */
1217 			ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1218 			percpu_ref_get(&(*ctx)->refs);
1219 		}
1220 		INDIRECT_CALL_2(req->io_task_work.func,
1221 				io_poll_task_func, io_req_rw_complete,
1222 				req, ts);
1223 		node = next;
1224 		count++;
1225 		if (unlikely(need_resched())) {
1226 			ctx_flush_and_put(*ctx, ts);
1227 			*ctx = NULL;
1228 			cond_resched();
1229 		}
1230 	}
1231 
1232 	return count;
1233 }
1234 
1235 /**
1236  * io_llist_xchg - swap all entries in a lock-less list
1237  * @head:	the head of lock-less list to delete all entries
1238  * @new:	new entry as the head of the list
1239  *
1240  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1241  * The order of entries returned is from the newest to the oldest added one.
1242  */
1243 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1244 					       struct llist_node *new)
1245 {
1246 	return xchg(&head->first, new);
1247 }
1248 
1249 /**
1250  * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1251  * @head:	the head of lock-less list to delete all entries
1252  * @old:	expected old value of the first entry of the list
1253  * @new:	new entry as the head of the list
1254  *
1255  * perform a cmpxchg on the first entry of the list.
1256  */
1257 
1258 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1259 						  struct llist_node *old,
1260 						  struct llist_node *new)
1261 {
1262 	return cmpxchg(&head->first, old, new);
1263 }
1264 
1265 void tctx_task_work(struct callback_head *cb)
1266 {
1267 	struct io_tw_state ts = {};
1268 	struct io_ring_ctx *ctx = NULL;
1269 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1270 						  task_work);
1271 	struct llist_node fake = {};
1272 	struct llist_node *node;
1273 	unsigned int loops = 0;
1274 	unsigned int count = 0;
1275 
1276 	if (unlikely(current->flags & PF_EXITING)) {
1277 		io_fallback_tw(tctx);
1278 		return;
1279 	}
1280 
1281 	do {
1282 		loops++;
1283 		node = io_llist_xchg(&tctx->task_list, &fake);
1284 		count += handle_tw_list(node, &ctx, &ts, &fake);
1285 
1286 		/* skip expensive cmpxchg if there are items in the list */
1287 		if (READ_ONCE(tctx->task_list.first) != &fake)
1288 			continue;
1289 		if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1290 			io_submit_flush_completions(ctx);
1291 			if (READ_ONCE(tctx->task_list.first) != &fake)
1292 				continue;
1293 		}
1294 		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1295 	} while (node != &fake);
1296 
1297 	ctx_flush_and_put(ctx, &ts);
1298 
1299 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1300 	if (unlikely(atomic_read(&tctx->in_cancel)))
1301 		io_uring_drop_tctx_refs(current);
1302 
1303 	trace_io_uring_task_work_run(tctx, count, loops);
1304 }
1305 
1306 static __cold void io_fallback_tw(struct io_uring_task *tctx)
1307 {
1308 	struct llist_node *node = llist_del_all(&tctx->task_list);
1309 	struct io_kiocb *req;
1310 
1311 	while (node) {
1312 		req = container_of(node, struct io_kiocb, io_task_work.node);
1313 		node = node->next;
1314 		if (llist_add(&req->io_task_work.node,
1315 			      &req->ctx->fallback_llist))
1316 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1317 	}
1318 }
1319 
1320 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1321 {
1322 	struct io_ring_ctx *ctx = req->ctx;
1323 	unsigned nr_wait, nr_tw, nr_tw_prev;
1324 	struct llist_node *first;
1325 
1326 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1327 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1328 
1329 	first = READ_ONCE(ctx->work_llist.first);
1330 	do {
1331 		nr_tw_prev = 0;
1332 		if (first) {
1333 			struct io_kiocb *first_req = container_of(first,
1334 							struct io_kiocb,
1335 							io_task_work.node);
1336 			/*
1337 			 * Might be executed at any moment, rely on
1338 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1339 			 */
1340 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1341 		}
1342 		nr_tw = nr_tw_prev + 1;
1343 		/* Large enough to fail the nr_wait comparison below */
1344 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1345 			nr_tw = -1U;
1346 
1347 		req->nr_tw = nr_tw;
1348 		req->io_task_work.node.next = first;
1349 	} while (!try_cmpxchg(&ctx->work_llist.first, &first,
1350 			      &req->io_task_work.node));
1351 
1352 	if (!first) {
1353 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1354 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1355 		if (ctx->has_evfd)
1356 			io_eventfd_signal(ctx);
1357 	}
1358 
1359 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1360 	/* no one is waiting */
1361 	if (!nr_wait)
1362 		return;
1363 	/* either not enough or the previous add has already woken it up */
1364 	if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1365 		return;
1366 	/* pairs with set_current_state() in io_cqring_wait() */
1367 	smp_mb__after_atomic();
1368 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1369 }
1370 
1371 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1372 {
1373 	struct io_uring_task *tctx = req->task->io_uring;
1374 	struct io_ring_ctx *ctx = req->ctx;
1375 
1376 	if (!(flags & IOU_F_TWQ_FORCE_NORMAL) &&
1377 	    (ctx->flags & IORING_SETUP_DEFER_TASKRUN)) {
1378 		rcu_read_lock();
1379 		io_req_local_work_add(req, flags);
1380 		rcu_read_unlock();
1381 		return;
1382 	}
1383 
1384 	/* task_work already pending, we're done */
1385 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1386 		return;
1387 
1388 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1389 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1390 
1391 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1392 		return;
1393 
1394 	io_fallback_tw(tctx);
1395 }
1396 
1397 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1398 {
1399 	struct llist_node *node;
1400 
1401 	node = llist_del_all(&ctx->work_llist);
1402 	while (node) {
1403 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1404 						    io_task_work.node);
1405 
1406 		node = node->next;
1407 		__io_req_task_work_add(req, IOU_F_TWQ_FORCE_NORMAL);
1408 	}
1409 }
1410 
1411 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1412 {
1413 	struct llist_node *node;
1414 	unsigned int loops = 0;
1415 	int ret = 0;
1416 
1417 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1418 		return -EEXIST;
1419 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1420 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1421 again:
1422 	/*
1423 	 * llists are in reverse order, flip it back the right way before
1424 	 * running the pending items.
1425 	 */
1426 	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1427 	while (node) {
1428 		struct llist_node *next = node->next;
1429 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1430 						    io_task_work.node);
1431 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1432 		INDIRECT_CALL_2(req->io_task_work.func,
1433 				io_poll_task_func, io_req_rw_complete,
1434 				req, ts);
1435 		ret++;
1436 		node = next;
1437 	}
1438 	loops++;
1439 
1440 	if (!llist_empty(&ctx->work_llist))
1441 		goto again;
1442 	if (ts->locked) {
1443 		io_submit_flush_completions(ctx);
1444 		if (!llist_empty(&ctx->work_llist))
1445 			goto again;
1446 	}
1447 	trace_io_uring_local_work_run(ctx, ret, loops);
1448 	return ret;
1449 }
1450 
1451 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1452 {
1453 	struct io_tw_state ts = { .locked = true, };
1454 	int ret;
1455 
1456 	if (llist_empty(&ctx->work_llist))
1457 		return 0;
1458 
1459 	ret = __io_run_local_work(ctx, &ts);
1460 	/* shouldn't happen! */
1461 	if (WARN_ON_ONCE(!ts.locked))
1462 		mutex_lock(&ctx->uring_lock);
1463 	return ret;
1464 }
1465 
1466 static int io_run_local_work(struct io_ring_ctx *ctx)
1467 {
1468 	struct io_tw_state ts = {};
1469 	int ret;
1470 
1471 	ts.locked = mutex_trylock(&ctx->uring_lock);
1472 	ret = __io_run_local_work(ctx, &ts);
1473 	if (ts.locked)
1474 		mutex_unlock(&ctx->uring_lock);
1475 
1476 	return ret;
1477 }
1478 
1479 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1480 {
1481 	io_tw_lock(req->ctx, ts);
1482 	io_req_defer_failed(req, req->cqe.res);
1483 }
1484 
1485 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1486 {
1487 	io_tw_lock(req->ctx, ts);
1488 	/* req->task == current here, checking PF_EXITING is safe */
1489 	if (unlikely(req->task->flags & PF_EXITING))
1490 		io_req_defer_failed(req, -EFAULT);
1491 	else if (req->flags & REQ_F_FORCE_ASYNC)
1492 		io_queue_iowq(req, ts);
1493 	else
1494 		io_queue_sqe(req);
1495 }
1496 
1497 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1498 {
1499 	io_req_set_res(req, ret, 0);
1500 	req->io_task_work.func = io_req_task_cancel;
1501 	io_req_task_work_add(req);
1502 }
1503 
1504 void io_req_task_queue(struct io_kiocb *req)
1505 {
1506 	req->io_task_work.func = io_req_task_submit;
1507 	io_req_task_work_add(req);
1508 }
1509 
1510 void io_queue_next(struct io_kiocb *req)
1511 {
1512 	struct io_kiocb *nxt = io_req_find_next(req);
1513 
1514 	if (nxt)
1515 		io_req_task_queue(nxt);
1516 }
1517 
1518 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1519 	__must_hold(&ctx->uring_lock)
1520 {
1521 	struct task_struct *task = NULL;
1522 	int task_refs = 0;
1523 
1524 	do {
1525 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1526 						    comp_list);
1527 
1528 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1529 			if (req->flags & REQ_F_REFCOUNT) {
1530 				node = req->comp_list.next;
1531 				if (!req_ref_put_and_test(req))
1532 					continue;
1533 			}
1534 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1535 				struct async_poll *apoll = req->apoll;
1536 
1537 				if (apoll->double_poll)
1538 					kfree(apoll->double_poll);
1539 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1540 					kfree(apoll);
1541 				req->flags &= ~REQ_F_POLLED;
1542 			}
1543 			if (req->flags & IO_REQ_LINK_FLAGS)
1544 				io_queue_next(req);
1545 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1546 				io_clean_op(req);
1547 		}
1548 		if (!(req->flags & REQ_F_FIXED_FILE))
1549 			io_put_file(req->file);
1550 
1551 		io_req_put_rsrc_locked(req, ctx);
1552 
1553 		if (req->task != task) {
1554 			if (task)
1555 				io_put_task(task, task_refs);
1556 			task = req->task;
1557 			task_refs = 0;
1558 		}
1559 		task_refs++;
1560 		node = req->comp_list.next;
1561 		io_req_add_to_cache(req, ctx);
1562 	} while (node);
1563 
1564 	if (task)
1565 		io_put_task(task, task_refs);
1566 }
1567 
1568 static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1569 	__must_hold(&ctx->uring_lock)
1570 {
1571 	struct io_submit_state *state = &ctx->submit_state;
1572 	struct io_wq_work_node *node;
1573 
1574 	__io_cq_lock(ctx);
1575 	/* must come first to preserve CQE ordering in failure cases */
1576 	if (state->cqes_count)
1577 		__io_flush_post_cqes(ctx);
1578 	__wq_list_for_each(node, &state->compl_reqs) {
1579 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1580 					    comp_list);
1581 
1582 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1583 		    unlikely(!__io_fill_cqe_req(ctx, req))) {
1584 			if (ctx->task_complete) {
1585 				spin_lock(&ctx->completion_lock);
1586 				io_req_cqe_overflow(req);
1587 				spin_unlock(&ctx->completion_lock);
1588 			} else {
1589 				io_req_cqe_overflow(req);
1590 			}
1591 		}
1592 	}
1593 	__io_cq_unlock_post_flush(ctx);
1594 
1595 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1596 		io_free_batch_list(ctx, state->compl_reqs.first);
1597 		INIT_WQ_LIST(&state->compl_reqs);
1598 	}
1599 }
1600 
1601 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1602 {
1603 	/* See comment at the top of this file */
1604 	smp_rmb();
1605 	return __io_cqring_events(ctx);
1606 }
1607 
1608 /*
1609  * We can't just wait for polled events to come to us, we have to actively
1610  * find and complete them.
1611  */
1612 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1613 {
1614 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1615 		return;
1616 
1617 	mutex_lock(&ctx->uring_lock);
1618 	while (!wq_list_empty(&ctx->iopoll_list)) {
1619 		/* let it sleep and repeat later if can't complete a request */
1620 		if (io_do_iopoll(ctx, true) == 0)
1621 			break;
1622 		/*
1623 		 * Ensure we allow local-to-the-cpu processing to take place,
1624 		 * in this case we need to ensure that we reap all events.
1625 		 * Also let task_work, etc. to progress by releasing the mutex
1626 		 */
1627 		if (need_resched()) {
1628 			mutex_unlock(&ctx->uring_lock);
1629 			cond_resched();
1630 			mutex_lock(&ctx->uring_lock);
1631 		}
1632 	}
1633 	mutex_unlock(&ctx->uring_lock);
1634 }
1635 
1636 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1637 {
1638 	unsigned int nr_events = 0;
1639 	int ret = 0;
1640 	unsigned long check_cq;
1641 
1642 	if (!io_allowed_run_tw(ctx))
1643 		return -EEXIST;
1644 
1645 	check_cq = READ_ONCE(ctx->check_cq);
1646 	if (unlikely(check_cq)) {
1647 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1648 			__io_cqring_overflow_flush(ctx);
1649 		/*
1650 		 * Similarly do not spin if we have not informed the user of any
1651 		 * dropped CQE.
1652 		 */
1653 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1654 			return -EBADR;
1655 	}
1656 	/*
1657 	 * Don't enter poll loop if we already have events pending.
1658 	 * If we do, we can potentially be spinning for commands that
1659 	 * already triggered a CQE (eg in error).
1660 	 */
1661 	if (io_cqring_events(ctx))
1662 		return 0;
1663 
1664 	do {
1665 		/*
1666 		 * If a submit got punted to a workqueue, we can have the
1667 		 * application entering polling for a command before it gets
1668 		 * issued. That app will hold the uring_lock for the duration
1669 		 * of the poll right here, so we need to take a breather every
1670 		 * now and then to ensure that the issue has a chance to add
1671 		 * the poll to the issued list. Otherwise we can spin here
1672 		 * forever, while the workqueue is stuck trying to acquire the
1673 		 * very same mutex.
1674 		 */
1675 		if (wq_list_empty(&ctx->iopoll_list) ||
1676 		    io_task_work_pending(ctx)) {
1677 			u32 tail = ctx->cached_cq_tail;
1678 
1679 			(void) io_run_local_work_locked(ctx);
1680 
1681 			if (task_work_pending(current) ||
1682 			    wq_list_empty(&ctx->iopoll_list)) {
1683 				mutex_unlock(&ctx->uring_lock);
1684 				io_run_task_work();
1685 				mutex_lock(&ctx->uring_lock);
1686 			}
1687 			/* some requests don't go through iopoll_list */
1688 			if (tail != ctx->cached_cq_tail ||
1689 			    wq_list_empty(&ctx->iopoll_list))
1690 				break;
1691 		}
1692 		ret = io_do_iopoll(ctx, !min);
1693 		if (ret < 0)
1694 			break;
1695 		nr_events += ret;
1696 		ret = 0;
1697 	} while (nr_events < min && !need_resched());
1698 
1699 	return ret;
1700 }
1701 
1702 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1703 {
1704 	if (ts->locked)
1705 		io_req_complete_defer(req);
1706 	else
1707 		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1708 }
1709 
1710 /*
1711  * After the iocb has been issued, it's safe to be found on the poll list.
1712  * Adding the kiocb to the list AFTER submission ensures that we don't
1713  * find it from a io_do_iopoll() thread before the issuer is done
1714  * accessing the kiocb cookie.
1715  */
1716 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1717 {
1718 	struct io_ring_ctx *ctx = req->ctx;
1719 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1720 
1721 	/* workqueue context doesn't hold uring_lock, grab it now */
1722 	if (unlikely(needs_lock))
1723 		mutex_lock(&ctx->uring_lock);
1724 
1725 	/*
1726 	 * Track whether we have multiple files in our lists. This will impact
1727 	 * how we do polling eventually, not spinning if we're on potentially
1728 	 * different devices.
1729 	 */
1730 	if (wq_list_empty(&ctx->iopoll_list)) {
1731 		ctx->poll_multi_queue = false;
1732 	} else if (!ctx->poll_multi_queue) {
1733 		struct io_kiocb *list_req;
1734 
1735 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1736 					comp_list);
1737 		if (list_req->file != req->file)
1738 			ctx->poll_multi_queue = true;
1739 	}
1740 
1741 	/*
1742 	 * For fast devices, IO may have already completed. If it has, add
1743 	 * it to the front so we find it first.
1744 	 */
1745 	if (READ_ONCE(req->iopoll_completed))
1746 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1747 	else
1748 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1749 
1750 	if (unlikely(needs_lock)) {
1751 		/*
1752 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1753 		 * in sq thread task context or in io worker task context. If
1754 		 * current task context is sq thread, we don't need to check
1755 		 * whether should wake up sq thread.
1756 		 */
1757 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1758 		    wq_has_sleeper(&ctx->sq_data->wait))
1759 			wake_up(&ctx->sq_data->wait);
1760 
1761 		mutex_unlock(&ctx->uring_lock);
1762 	}
1763 }
1764 
1765 unsigned int io_file_get_flags(struct file *file)
1766 {
1767 	unsigned int res = 0;
1768 
1769 	if (S_ISREG(file_inode(file)->i_mode))
1770 		res |= REQ_F_ISREG;
1771 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1772 		res |= REQ_F_SUPPORT_NOWAIT;
1773 	return res;
1774 }
1775 
1776 bool io_alloc_async_data(struct io_kiocb *req)
1777 {
1778 	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1779 	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1780 	if (req->async_data) {
1781 		req->flags |= REQ_F_ASYNC_DATA;
1782 		return false;
1783 	}
1784 	return true;
1785 }
1786 
1787 int io_req_prep_async(struct io_kiocb *req)
1788 {
1789 	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1790 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1791 
1792 	/* assign early for deferred execution for non-fixed file */
1793 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1794 		req->file = io_file_get_normal(req, req->cqe.fd);
1795 	if (!cdef->prep_async)
1796 		return 0;
1797 	if (WARN_ON_ONCE(req_has_async_data(req)))
1798 		return -EFAULT;
1799 	if (!def->manual_alloc) {
1800 		if (io_alloc_async_data(req))
1801 			return -EAGAIN;
1802 	}
1803 	return cdef->prep_async(req);
1804 }
1805 
1806 static u32 io_get_sequence(struct io_kiocb *req)
1807 {
1808 	u32 seq = req->ctx->cached_sq_head;
1809 	struct io_kiocb *cur;
1810 
1811 	/* need original cached_sq_head, but it was increased for each req */
1812 	io_for_each_link(cur, req)
1813 		seq--;
1814 	return seq;
1815 }
1816 
1817 static __cold void io_drain_req(struct io_kiocb *req)
1818 	__must_hold(&ctx->uring_lock)
1819 {
1820 	struct io_ring_ctx *ctx = req->ctx;
1821 	struct io_defer_entry *de;
1822 	int ret;
1823 	u32 seq = io_get_sequence(req);
1824 
1825 	/* Still need defer if there is pending req in defer list. */
1826 	spin_lock(&ctx->completion_lock);
1827 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1828 		spin_unlock(&ctx->completion_lock);
1829 queue:
1830 		ctx->drain_active = false;
1831 		io_req_task_queue(req);
1832 		return;
1833 	}
1834 	spin_unlock(&ctx->completion_lock);
1835 
1836 	io_prep_async_link(req);
1837 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1838 	if (!de) {
1839 		ret = -ENOMEM;
1840 		io_req_defer_failed(req, ret);
1841 		return;
1842 	}
1843 
1844 	spin_lock(&ctx->completion_lock);
1845 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1846 		spin_unlock(&ctx->completion_lock);
1847 		kfree(de);
1848 		goto queue;
1849 	}
1850 
1851 	trace_io_uring_defer(req);
1852 	de->req = req;
1853 	de->seq = seq;
1854 	list_add_tail(&de->list, &ctx->defer_list);
1855 	spin_unlock(&ctx->completion_lock);
1856 }
1857 
1858 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1859 			   unsigned int issue_flags)
1860 {
1861 	if (req->file || !def->needs_file)
1862 		return true;
1863 
1864 	if (req->flags & REQ_F_FIXED_FILE)
1865 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1866 	else
1867 		req->file = io_file_get_normal(req, req->cqe.fd);
1868 
1869 	return !!req->file;
1870 }
1871 
1872 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1873 {
1874 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1875 	const struct cred *creds = NULL;
1876 	int ret;
1877 
1878 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1879 		return -EBADF;
1880 
1881 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1882 		creds = override_creds(req->creds);
1883 
1884 	if (!def->audit_skip)
1885 		audit_uring_entry(req->opcode);
1886 
1887 	ret = def->issue(req, issue_flags);
1888 
1889 	if (!def->audit_skip)
1890 		audit_uring_exit(!ret, ret);
1891 
1892 	if (creds)
1893 		revert_creds(creds);
1894 
1895 	if (ret == IOU_OK) {
1896 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1897 			io_req_complete_defer(req);
1898 		else
1899 			io_req_complete_post(req, issue_flags);
1900 	} else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1901 		return ret;
1902 
1903 	/* If the op doesn't have a file, we're not polling for it */
1904 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1905 		io_iopoll_req_issued(req, issue_flags);
1906 
1907 	return 0;
1908 }
1909 
1910 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1911 {
1912 	io_tw_lock(req->ctx, ts);
1913 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1914 				 IO_URING_F_COMPLETE_DEFER);
1915 }
1916 
1917 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1918 {
1919 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1920 	struct io_kiocb *nxt = NULL;
1921 
1922 	if (req_ref_put_and_test(req)) {
1923 		if (req->flags & IO_REQ_LINK_FLAGS)
1924 			nxt = io_req_find_next(req);
1925 		io_free_req(req);
1926 	}
1927 	return nxt ? &nxt->work : NULL;
1928 }
1929 
1930 void io_wq_submit_work(struct io_wq_work *work)
1931 {
1932 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1933 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1934 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1935 	bool needs_poll = false;
1936 	int ret = 0, err = -ECANCELED;
1937 
1938 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1939 	if (!(req->flags & REQ_F_REFCOUNT))
1940 		__io_req_set_refcount(req, 2);
1941 	else
1942 		req_ref_get(req);
1943 
1944 	io_arm_ltimeout(req);
1945 
1946 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1947 	if (work->flags & IO_WQ_WORK_CANCEL) {
1948 fail:
1949 		io_req_task_queue_fail(req, err);
1950 		return;
1951 	}
1952 	if (!io_assign_file(req, def, issue_flags)) {
1953 		err = -EBADF;
1954 		work->flags |= IO_WQ_WORK_CANCEL;
1955 		goto fail;
1956 	}
1957 
1958 	if (req->flags & REQ_F_FORCE_ASYNC) {
1959 		bool opcode_poll = def->pollin || def->pollout;
1960 
1961 		if (opcode_poll && file_can_poll(req->file)) {
1962 			needs_poll = true;
1963 			issue_flags |= IO_URING_F_NONBLOCK;
1964 		}
1965 	}
1966 
1967 	do {
1968 		ret = io_issue_sqe(req, issue_flags);
1969 		if (ret != -EAGAIN)
1970 			break;
1971 		/*
1972 		 * We can get EAGAIN for iopolled IO even though we're
1973 		 * forcing a sync submission from here, since we can't
1974 		 * wait for request slots on the block side.
1975 		 */
1976 		if (!needs_poll) {
1977 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1978 				break;
1979 			cond_resched();
1980 			continue;
1981 		}
1982 
1983 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1984 			return;
1985 		/* aborted or ready, in either case retry blocking */
1986 		needs_poll = false;
1987 		issue_flags &= ~IO_URING_F_NONBLOCK;
1988 	} while (1);
1989 
1990 	/* avoid locking problems by failing it from a clean context */
1991 	if (ret < 0)
1992 		io_req_task_queue_fail(req, ret);
1993 }
1994 
1995 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1996 				      unsigned int issue_flags)
1997 {
1998 	struct io_ring_ctx *ctx = req->ctx;
1999 	struct io_fixed_file *slot;
2000 	struct file *file = NULL;
2001 
2002 	io_ring_submit_lock(ctx, issue_flags);
2003 
2004 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2005 		goto out;
2006 	fd = array_index_nospec(fd, ctx->nr_user_files);
2007 	slot = io_fixed_file_slot(&ctx->file_table, fd);
2008 	file = io_slot_file(slot);
2009 	req->flags |= io_slot_flags(slot);
2010 	io_req_set_rsrc_node(req, ctx, 0);
2011 out:
2012 	io_ring_submit_unlock(ctx, issue_flags);
2013 	return file;
2014 }
2015 
2016 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2017 {
2018 	struct file *file = fget(fd);
2019 
2020 	trace_io_uring_file_get(req, fd);
2021 
2022 	/* we don't allow fixed io_uring files */
2023 	if (file && io_is_uring_fops(file))
2024 		io_req_track_inflight(req);
2025 	return file;
2026 }
2027 
2028 static void io_queue_async(struct io_kiocb *req, int ret)
2029 	__must_hold(&req->ctx->uring_lock)
2030 {
2031 	struct io_kiocb *linked_timeout;
2032 
2033 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2034 		io_req_defer_failed(req, ret);
2035 		return;
2036 	}
2037 
2038 	linked_timeout = io_prep_linked_timeout(req);
2039 
2040 	switch (io_arm_poll_handler(req, 0)) {
2041 	case IO_APOLL_READY:
2042 		io_kbuf_recycle(req, 0);
2043 		io_req_task_queue(req);
2044 		break;
2045 	case IO_APOLL_ABORTED:
2046 		io_kbuf_recycle(req, 0);
2047 		io_queue_iowq(req, NULL);
2048 		break;
2049 	case IO_APOLL_OK:
2050 		break;
2051 	}
2052 
2053 	if (linked_timeout)
2054 		io_queue_linked_timeout(linked_timeout);
2055 }
2056 
2057 static inline void io_queue_sqe(struct io_kiocb *req)
2058 	__must_hold(&req->ctx->uring_lock)
2059 {
2060 	int ret;
2061 
2062 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2063 
2064 	/*
2065 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2066 	 * doesn't support non-blocking read/write attempts
2067 	 */
2068 	if (likely(!ret))
2069 		io_arm_ltimeout(req);
2070 	else
2071 		io_queue_async(req, ret);
2072 }
2073 
2074 static void io_queue_sqe_fallback(struct io_kiocb *req)
2075 	__must_hold(&req->ctx->uring_lock)
2076 {
2077 	if (unlikely(req->flags & REQ_F_FAIL)) {
2078 		/*
2079 		 * We don't submit, fail them all, for that replace hardlinks
2080 		 * with normal links. Extra REQ_F_LINK is tolerated.
2081 		 */
2082 		req->flags &= ~REQ_F_HARDLINK;
2083 		req->flags |= REQ_F_LINK;
2084 		io_req_defer_failed(req, req->cqe.res);
2085 	} else {
2086 		int ret = io_req_prep_async(req);
2087 
2088 		if (unlikely(ret)) {
2089 			io_req_defer_failed(req, ret);
2090 			return;
2091 		}
2092 
2093 		if (unlikely(req->ctx->drain_active))
2094 			io_drain_req(req);
2095 		else
2096 			io_queue_iowq(req, NULL);
2097 	}
2098 }
2099 
2100 /*
2101  * Check SQE restrictions (opcode and flags).
2102  *
2103  * Returns 'true' if SQE is allowed, 'false' otherwise.
2104  */
2105 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2106 					struct io_kiocb *req,
2107 					unsigned int sqe_flags)
2108 {
2109 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2110 		return false;
2111 
2112 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2113 	    ctx->restrictions.sqe_flags_required)
2114 		return false;
2115 
2116 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2117 			  ctx->restrictions.sqe_flags_required))
2118 		return false;
2119 
2120 	return true;
2121 }
2122 
2123 static void io_init_req_drain(struct io_kiocb *req)
2124 {
2125 	struct io_ring_ctx *ctx = req->ctx;
2126 	struct io_kiocb *head = ctx->submit_state.link.head;
2127 
2128 	ctx->drain_active = true;
2129 	if (head) {
2130 		/*
2131 		 * If we need to drain a request in the middle of a link, drain
2132 		 * the head request and the next request/link after the current
2133 		 * link. Considering sequential execution of links,
2134 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2135 		 * link.
2136 		 */
2137 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2138 		ctx->drain_next = true;
2139 	}
2140 }
2141 
2142 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2143 		       const struct io_uring_sqe *sqe)
2144 	__must_hold(&ctx->uring_lock)
2145 {
2146 	const struct io_issue_def *def;
2147 	unsigned int sqe_flags;
2148 	int personality;
2149 	u8 opcode;
2150 
2151 	/* req is partially pre-initialised, see io_preinit_req() */
2152 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2153 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2154 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2155 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2156 	req->file = NULL;
2157 	req->rsrc_node = NULL;
2158 	req->task = current;
2159 
2160 	if (unlikely(opcode >= IORING_OP_LAST)) {
2161 		req->opcode = 0;
2162 		return -EINVAL;
2163 	}
2164 	def = &io_issue_defs[opcode];
2165 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2166 		/* enforce forwards compatibility on users */
2167 		if (sqe_flags & ~SQE_VALID_FLAGS)
2168 			return -EINVAL;
2169 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2170 			if (!def->buffer_select)
2171 				return -EOPNOTSUPP;
2172 			req->buf_index = READ_ONCE(sqe->buf_group);
2173 		}
2174 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2175 			ctx->drain_disabled = true;
2176 		if (sqe_flags & IOSQE_IO_DRAIN) {
2177 			if (ctx->drain_disabled)
2178 				return -EOPNOTSUPP;
2179 			io_init_req_drain(req);
2180 		}
2181 	}
2182 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2183 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2184 			return -EACCES;
2185 		/* knock it to the slow queue path, will be drained there */
2186 		if (ctx->drain_active)
2187 			req->flags |= REQ_F_FORCE_ASYNC;
2188 		/* if there is no link, we're at "next" request and need to drain */
2189 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2190 			ctx->drain_next = false;
2191 			ctx->drain_active = true;
2192 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2193 		}
2194 	}
2195 
2196 	if (!def->ioprio && sqe->ioprio)
2197 		return -EINVAL;
2198 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2199 		return -EINVAL;
2200 
2201 	if (def->needs_file) {
2202 		struct io_submit_state *state = &ctx->submit_state;
2203 
2204 		req->cqe.fd = READ_ONCE(sqe->fd);
2205 
2206 		/*
2207 		 * Plug now if we have more than 2 IO left after this, and the
2208 		 * target is potentially a read/write to block based storage.
2209 		 */
2210 		if (state->need_plug && def->plug) {
2211 			state->plug_started = true;
2212 			state->need_plug = false;
2213 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2214 		}
2215 	}
2216 
2217 	personality = READ_ONCE(sqe->personality);
2218 	if (personality) {
2219 		int ret;
2220 
2221 		req->creds = xa_load(&ctx->personalities, personality);
2222 		if (!req->creds)
2223 			return -EINVAL;
2224 		get_cred(req->creds);
2225 		ret = security_uring_override_creds(req->creds);
2226 		if (ret) {
2227 			put_cred(req->creds);
2228 			return ret;
2229 		}
2230 		req->flags |= REQ_F_CREDS;
2231 	}
2232 
2233 	return def->prep(req, sqe);
2234 }
2235 
2236 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2237 				      struct io_kiocb *req, int ret)
2238 {
2239 	struct io_ring_ctx *ctx = req->ctx;
2240 	struct io_submit_link *link = &ctx->submit_state.link;
2241 	struct io_kiocb *head = link->head;
2242 
2243 	trace_io_uring_req_failed(sqe, req, ret);
2244 
2245 	/*
2246 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2247 	 * unusable. Instead of failing eagerly, continue assembling the link if
2248 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2249 	 * should find the flag and handle the rest.
2250 	 */
2251 	req_fail_link_node(req, ret);
2252 	if (head && !(head->flags & REQ_F_FAIL))
2253 		req_fail_link_node(head, -ECANCELED);
2254 
2255 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2256 		if (head) {
2257 			link->last->link = req;
2258 			link->head = NULL;
2259 			req = head;
2260 		}
2261 		io_queue_sqe_fallback(req);
2262 		return ret;
2263 	}
2264 
2265 	if (head)
2266 		link->last->link = req;
2267 	else
2268 		link->head = req;
2269 	link->last = req;
2270 	return 0;
2271 }
2272 
2273 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2274 			 const struct io_uring_sqe *sqe)
2275 	__must_hold(&ctx->uring_lock)
2276 {
2277 	struct io_submit_link *link = &ctx->submit_state.link;
2278 	int ret;
2279 
2280 	ret = io_init_req(ctx, req, sqe);
2281 	if (unlikely(ret))
2282 		return io_submit_fail_init(sqe, req, ret);
2283 
2284 	trace_io_uring_submit_req(req);
2285 
2286 	/*
2287 	 * If we already have a head request, queue this one for async
2288 	 * submittal once the head completes. If we don't have a head but
2289 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2290 	 * submitted sync once the chain is complete. If none of those
2291 	 * conditions are true (normal request), then just queue it.
2292 	 */
2293 	if (unlikely(link->head)) {
2294 		ret = io_req_prep_async(req);
2295 		if (unlikely(ret))
2296 			return io_submit_fail_init(sqe, req, ret);
2297 
2298 		trace_io_uring_link(req, link->head);
2299 		link->last->link = req;
2300 		link->last = req;
2301 
2302 		if (req->flags & IO_REQ_LINK_FLAGS)
2303 			return 0;
2304 		/* last request of the link, flush it */
2305 		req = link->head;
2306 		link->head = NULL;
2307 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2308 			goto fallback;
2309 
2310 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2311 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2312 		if (req->flags & IO_REQ_LINK_FLAGS) {
2313 			link->head = req;
2314 			link->last = req;
2315 		} else {
2316 fallback:
2317 			io_queue_sqe_fallback(req);
2318 		}
2319 		return 0;
2320 	}
2321 
2322 	io_queue_sqe(req);
2323 	return 0;
2324 }
2325 
2326 /*
2327  * Batched submission is done, ensure local IO is flushed out.
2328  */
2329 static void io_submit_state_end(struct io_ring_ctx *ctx)
2330 {
2331 	struct io_submit_state *state = &ctx->submit_state;
2332 
2333 	if (unlikely(state->link.head))
2334 		io_queue_sqe_fallback(state->link.head);
2335 	/* flush only after queuing links as they can generate completions */
2336 	io_submit_flush_completions(ctx);
2337 	if (state->plug_started)
2338 		blk_finish_plug(&state->plug);
2339 }
2340 
2341 /*
2342  * Start submission side cache.
2343  */
2344 static void io_submit_state_start(struct io_submit_state *state,
2345 				  unsigned int max_ios)
2346 {
2347 	state->plug_started = false;
2348 	state->need_plug = max_ios > 2;
2349 	state->submit_nr = max_ios;
2350 	/* set only head, no need to init link_last in advance */
2351 	state->link.head = NULL;
2352 }
2353 
2354 static void io_commit_sqring(struct io_ring_ctx *ctx)
2355 {
2356 	struct io_rings *rings = ctx->rings;
2357 
2358 	/*
2359 	 * Ensure any loads from the SQEs are done at this point,
2360 	 * since once we write the new head, the application could
2361 	 * write new data to them.
2362 	 */
2363 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2364 }
2365 
2366 /*
2367  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2368  * that is mapped by userspace. This means that care needs to be taken to
2369  * ensure that reads are stable, as we cannot rely on userspace always
2370  * being a good citizen. If members of the sqe are validated and then later
2371  * used, it's important that those reads are done through READ_ONCE() to
2372  * prevent a re-load down the line.
2373  */
2374 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2375 {
2376 	unsigned head, mask = ctx->sq_entries - 1;
2377 	unsigned sq_idx = ctx->cached_sq_head++ & mask;
2378 
2379 	/*
2380 	 * The cached sq head (or cq tail) serves two purposes:
2381 	 *
2382 	 * 1) allows us to batch the cost of updating the user visible
2383 	 *    head updates.
2384 	 * 2) allows the kernel side to track the head on its own, even
2385 	 *    though the application is the one updating it.
2386 	 */
2387 	head = READ_ONCE(ctx->sq_array[sq_idx]);
2388 	if (likely(head < ctx->sq_entries)) {
2389 		/* double index for 128-byte SQEs, twice as long */
2390 		if (ctx->flags & IORING_SETUP_SQE128)
2391 			head <<= 1;
2392 		*sqe = &ctx->sq_sqes[head];
2393 		return true;
2394 	}
2395 
2396 	/* drop invalid entries */
2397 	ctx->cq_extra--;
2398 	WRITE_ONCE(ctx->rings->sq_dropped,
2399 		   READ_ONCE(ctx->rings->sq_dropped) + 1);
2400 	return false;
2401 }
2402 
2403 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2404 	__must_hold(&ctx->uring_lock)
2405 {
2406 	unsigned int entries = io_sqring_entries(ctx);
2407 	unsigned int left;
2408 	int ret;
2409 
2410 	if (unlikely(!entries))
2411 		return 0;
2412 	/* make sure SQ entry isn't read before tail */
2413 	ret = left = min(nr, entries);
2414 	io_get_task_refs(left);
2415 	io_submit_state_start(&ctx->submit_state, left);
2416 
2417 	do {
2418 		const struct io_uring_sqe *sqe;
2419 		struct io_kiocb *req;
2420 
2421 		if (unlikely(!io_alloc_req(ctx, &req)))
2422 			break;
2423 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2424 			io_req_add_to_cache(req, ctx);
2425 			break;
2426 		}
2427 
2428 		/*
2429 		 * Continue submitting even for sqe failure if the
2430 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2431 		 */
2432 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2433 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2434 			left--;
2435 			break;
2436 		}
2437 	} while (--left);
2438 
2439 	if (unlikely(left)) {
2440 		ret -= left;
2441 		/* try again if it submitted nothing and can't allocate a req */
2442 		if (!ret && io_req_cache_empty(ctx))
2443 			ret = -EAGAIN;
2444 		current->io_uring->cached_refs += left;
2445 	}
2446 
2447 	io_submit_state_end(ctx);
2448 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2449 	io_commit_sqring(ctx);
2450 	return ret;
2451 }
2452 
2453 struct io_wait_queue {
2454 	struct wait_queue_entry wq;
2455 	struct io_ring_ctx *ctx;
2456 	unsigned cq_tail;
2457 	unsigned nr_timeouts;
2458 	ktime_t timeout;
2459 };
2460 
2461 static inline bool io_has_work(struct io_ring_ctx *ctx)
2462 {
2463 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2464 	       !llist_empty(&ctx->work_llist);
2465 }
2466 
2467 static inline bool io_should_wake(struct io_wait_queue *iowq)
2468 {
2469 	struct io_ring_ctx *ctx = iowq->ctx;
2470 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2471 
2472 	/*
2473 	 * Wake up if we have enough events, or if a timeout occurred since we
2474 	 * started waiting. For timeouts, we always want to return to userspace,
2475 	 * regardless of event count.
2476 	 */
2477 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2478 }
2479 
2480 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2481 			    int wake_flags, void *key)
2482 {
2483 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2484 
2485 	/*
2486 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2487 	 * the task, and the next invocation will do it.
2488 	 */
2489 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2490 		return autoremove_wake_function(curr, mode, wake_flags, key);
2491 	return -1;
2492 }
2493 
2494 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2495 {
2496 	if (!llist_empty(&ctx->work_llist)) {
2497 		__set_current_state(TASK_RUNNING);
2498 		if (io_run_local_work(ctx) > 0)
2499 			return 1;
2500 	}
2501 	if (io_run_task_work() > 0)
2502 		return 1;
2503 	if (task_sigpending(current))
2504 		return -EINTR;
2505 	return 0;
2506 }
2507 
2508 /* when returns >0, the caller should retry */
2509 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2510 					  struct io_wait_queue *iowq)
2511 {
2512 	if (unlikely(READ_ONCE(ctx->check_cq)))
2513 		return 1;
2514 	if (unlikely(!llist_empty(&ctx->work_llist)))
2515 		return 1;
2516 	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2517 		return 1;
2518 	if (unlikely(task_sigpending(current)))
2519 		return -EINTR;
2520 	if (unlikely(io_should_wake(iowq)))
2521 		return 0;
2522 	if (iowq->timeout == KTIME_MAX)
2523 		schedule();
2524 	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2525 		return -ETIME;
2526 	return 0;
2527 }
2528 
2529 /*
2530  * Wait until events become available, if we don't already have some. The
2531  * application must reap them itself, as they reside on the shared cq ring.
2532  */
2533 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2534 			  const sigset_t __user *sig, size_t sigsz,
2535 			  struct __kernel_timespec __user *uts)
2536 {
2537 	struct io_wait_queue iowq;
2538 	struct io_rings *rings = ctx->rings;
2539 	int ret;
2540 
2541 	if (!io_allowed_run_tw(ctx))
2542 		return -EEXIST;
2543 	if (!llist_empty(&ctx->work_llist))
2544 		io_run_local_work(ctx);
2545 	io_run_task_work();
2546 	io_cqring_overflow_flush(ctx);
2547 	/* if user messes with these they will just get an early return */
2548 	if (__io_cqring_events_user(ctx) >= min_events)
2549 		return 0;
2550 
2551 	if (sig) {
2552 #ifdef CONFIG_COMPAT
2553 		if (in_compat_syscall())
2554 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2555 						      sigsz);
2556 		else
2557 #endif
2558 			ret = set_user_sigmask(sig, sigsz);
2559 
2560 		if (ret)
2561 			return ret;
2562 	}
2563 
2564 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2565 	iowq.wq.private = current;
2566 	INIT_LIST_HEAD(&iowq.wq.entry);
2567 	iowq.ctx = ctx;
2568 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2569 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2570 	iowq.timeout = KTIME_MAX;
2571 
2572 	if (uts) {
2573 		struct timespec64 ts;
2574 
2575 		if (get_timespec64(&ts, uts))
2576 			return -EFAULT;
2577 		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2578 	}
2579 
2580 	trace_io_uring_cqring_wait(ctx, min_events);
2581 	do {
2582 		unsigned long check_cq;
2583 
2584 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2585 			int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2586 
2587 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2588 			set_current_state(TASK_INTERRUPTIBLE);
2589 		} else {
2590 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2591 							TASK_INTERRUPTIBLE);
2592 		}
2593 
2594 		ret = io_cqring_wait_schedule(ctx, &iowq);
2595 		__set_current_state(TASK_RUNNING);
2596 		atomic_set(&ctx->cq_wait_nr, 0);
2597 
2598 		if (ret < 0)
2599 			break;
2600 		/*
2601 		 * Run task_work after scheduling and before io_should_wake().
2602 		 * If we got woken because of task_work being processed, run it
2603 		 * now rather than let the caller do another wait loop.
2604 		 */
2605 		io_run_task_work();
2606 		if (!llist_empty(&ctx->work_llist))
2607 			io_run_local_work(ctx);
2608 
2609 		check_cq = READ_ONCE(ctx->check_cq);
2610 		if (unlikely(check_cq)) {
2611 			/* let the caller flush overflows, retry */
2612 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2613 				io_cqring_do_overflow_flush(ctx);
2614 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2615 				ret = -EBADR;
2616 				break;
2617 			}
2618 		}
2619 
2620 		if (io_should_wake(&iowq)) {
2621 			ret = 0;
2622 			break;
2623 		}
2624 		cond_resched();
2625 	} while (1);
2626 
2627 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2628 		finish_wait(&ctx->cq_wait, &iowq.wq);
2629 	restore_saved_sigmask_unless(ret == -EINTR);
2630 
2631 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2632 }
2633 
2634 static void io_mem_free(void *ptr)
2635 {
2636 	struct page *page;
2637 
2638 	if (!ptr)
2639 		return;
2640 
2641 	page = virt_to_head_page(ptr);
2642 	if (put_page_testzero(page))
2643 		free_compound_page(page);
2644 }
2645 
2646 static void io_pages_free(struct page ***pages, int npages)
2647 {
2648 	struct page **page_array;
2649 	int i;
2650 
2651 	if (!pages)
2652 		return;
2653 	page_array = *pages;
2654 	for (i = 0; i < npages; i++)
2655 		unpin_user_page(page_array[i]);
2656 	kvfree(page_array);
2657 	*pages = NULL;
2658 }
2659 
2660 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2661 			    unsigned long uaddr, size_t size)
2662 {
2663 	struct page **page_array;
2664 	unsigned int nr_pages;
2665 	int ret;
2666 
2667 	*npages = 0;
2668 
2669 	if (uaddr & (PAGE_SIZE - 1) || !size)
2670 		return ERR_PTR(-EINVAL);
2671 
2672 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2673 	if (nr_pages > USHRT_MAX)
2674 		return ERR_PTR(-EINVAL);
2675 	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2676 	if (!page_array)
2677 		return ERR_PTR(-ENOMEM);
2678 
2679 	ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2680 					page_array);
2681 	if (ret != nr_pages) {
2682 err:
2683 		io_pages_free(&page_array, ret > 0 ? ret : 0);
2684 		return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT);
2685 	}
2686 	/*
2687 	 * Should be a single page. If the ring is small enough that we can
2688 	 * use a normal page, that is fine. If we need multiple pages, then
2689 	 * userspace should use a huge page. That's the only way to guarantee
2690 	 * that we get contigious memory, outside of just being lucky or
2691 	 * (currently) having low memory fragmentation.
2692 	 */
2693 	if (page_array[0] != page_array[ret - 1])
2694 		goto err;
2695 	*pages = page_array;
2696 	*npages = nr_pages;
2697 	return page_to_virt(page_array[0]);
2698 }
2699 
2700 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2701 			  size_t size)
2702 {
2703 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2704 				size);
2705 }
2706 
2707 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2708 			 size_t size)
2709 {
2710 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2711 				size);
2712 }
2713 
2714 static void io_rings_free(struct io_ring_ctx *ctx)
2715 {
2716 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2717 		io_mem_free(ctx->rings);
2718 		io_mem_free(ctx->sq_sqes);
2719 		ctx->rings = NULL;
2720 		ctx->sq_sqes = NULL;
2721 	} else {
2722 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2723 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2724 	}
2725 }
2726 
2727 static void *io_mem_alloc(size_t size)
2728 {
2729 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2730 	void *ret;
2731 
2732 	ret = (void *) __get_free_pages(gfp, get_order(size));
2733 	if (ret)
2734 		return ret;
2735 	return ERR_PTR(-ENOMEM);
2736 }
2737 
2738 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2739 				unsigned int cq_entries, size_t *sq_offset)
2740 {
2741 	struct io_rings *rings;
2742 	size_t off, sq_array_size;
2743 
2744 	off = struct_size(rings, cqes, cq_entries);
2745 	if (off == SIZE_MAX)
2746 		return SIZE_MAX;
2747 	if (ctx->flags & IORING_SETUP_CQE32) {
2748 		if (check_shl_overflow(off, 1, &off))
2749 			return SIZE_MAX;
2750 	}
2751 
2752 #ifdef CONFIG_SMP
2753 	off = ALIGN(off, SMP_CACHE_BYTES);
2754 	if (off == 0)
2755 		return SIZE_MAX;
2756 #endif
2757 
2758 	if (sq_offset)
2759 		*sq_offset = off;
2760 
2761 	sq_array_size = array_size(sizeof(u32), sq_entries);
2762 	if (sq_array_size == SIZE_MAX)
2763 		return SIZE_MAX;
2764 
2765 	if (check_add_overflow(off, sq_array_size, &off))
2766 		return SIZE_MAX;
2767 
2768 	return off;
2769 }
2770 
2771 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2772 			       unsigned int eventfd_async)
2773 {
2774 	struct io_ev_fd *ev_fd;
2775 	__s32 __user *fds = arg;
2776 	int fd;
2777 
2778 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2779 					lockdep_is_held(&ctx->uring_lock));
2780 	if (ev_fd)
2781 		return -EBUSY;
2782 
2783 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2784 		return -EFAULT;
2785 
2786 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2787 	if (!ev_fd)
2788 		return -ENOMEM;
2789 
2790 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2791 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2792 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2793 		kfree(ev_fd);
2794 		return ret;
2795 	}
2796 
2797 	spin_lock(&ctx->completion_lock);
2798 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2799 	spin_unlock(&ctx->completion_lock);
2800 
2801 	ev_fd->eventfd_async = eventfd_async;
2802 	ctx->has_evfd = true;
2803 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2804 	atomic_set(&ev_fd->refs, 1);
2805 	atomic_set(&ev_fd->ops, 0);
2806 	return 0;
2807 }
2808 
2809 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2810 {
2811 	struct io_ev_fd *ev_fd;
2812 
2813 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2814 					lockdep_is_held(&ctx->uring_lock));
2815 	if (ev_fd) {
2816 		ctx->has_evfd = false;
2817 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2818 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2819 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2820 		return 0;
2821 	}
2822 
2823 	return -ENXIO;
2824 }
2825 
2826 static void io_req_caches_free(struct io_ring_ctx *ctx)
2827 {
2828 	struct io_kiocb *req;
2829 	int nr = 0;
2830 
2831 	mutex_lock(&ctx->uring_lock);
2832 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2833 
2834 	while (!io_req_cache_empty(ctx)) {
2835 		req = io_extract_req(ctx);
2836 		kmem_cache_free(req_cachep, req);
2837 		nr++;
2838 	}
2839 	if (nr)
2840 		percpu_ref_put_many(&ctx->refs, nr);
2841 	mutex_unlock(&ctx->uring_lock);
2842 }
2843 
2844 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2845 {
2846 	kfree(container_of(entry, struct io_rsrc_node, cache));
2847 }
2848 
2849 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2850 {
2851 	io_sq_thread_finish(ctx);
2852 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2853 	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2854 		return;
2855 
2856 	mutex_lock(&ctx->uring_lock);
2857 	if (ctx->buf_data)
2858 		__io_sqe_buffers_unregister(ctx);
2859 	if (ctx->file_data)
2860 		__io_sqe_files_unregister(ctx);
2861 	io_cqring_overflow_kill(ctx);
2862 	io_eventfd_unregister(ctx);
2863 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2864 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2865 	io_destroy_buffers(ctx);
2866 	mutex_unlock(&ctx->uring_lock);
2867 	if (ctx->sq_creds)
2868 		put_cred(ctx->sq_creds);
2869 	if (ctx->submitter_task)
2870 		put_task_struct(ctx->submitter_task);
2871 
2872 	/* there are no registered resources left, nobody uses it */
2873 	if (ctx->rsrc_node)
2874 		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2875 
2876 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2877 
2878 #if defined(CONFIG_UNIX)
2879 	if (ctx->ring_sock) {
2880 		ctx->ring_sock->file = NULL; /* so that iput() is called */
2881 		sock_release(ctx->ring_sock);
2882 	}
2883 #endif
2884 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2885 
2886 	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2887 	if (ctx->mm_account) {
2888 		mmdrop(ctx->mm_account);
2889 		ctx->mm_account = NULL;
2890 	}
2891 	io_rings_free(ctx);
2892 
2893 	percpu_ref_exit(&ctx->refs);
2894 	free_uid(ctx->user);
2895 	io_req_caches_free(ctx);
2896 	if (ctx->hash_map)
2897 		io_wq_put_hash(ctx->hash_map);
2898 	kfree(ctx->cancel_table.hbs);
2899 	kfree(ctx->cancel_table_locked.hbs);
2900 	kfree(ctx->dummy_ubuf);
2901 	kfree(ctx->io_bl);
2902 	xa_destroy(&ctx->io_bl_xa);
2903 	kfree(ctx);
2904 }
2905 
2906 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2907 {
2908 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2909 					       poll_wq_task_work);
2910 
2911 	mutex_lock(&ctx->uring_lock);
2912 	ctx->poll_activated = true;
2913 	mutex_unlock(&ctx->uring_lock);
2914 
2915 	/*
2916 	 * Wake ups for some events between start of polling and activation
2917 	 * might've been lost due to loose synchronisation.
2918 	 */
2919 	wake_up_all(&ctx->poll_wq);
2920 	percpu_ref_put(&ctx->refs);
2921 }
2922 
2923 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2924 {
2925 	spin_lock(&ctx->completion_lock);
2926 	/* already activated or in progress */
2927 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2928 		goto out;
2929 	if (WARN_ON_ONCE(!ctx->task_complete))
2930 		goto out;
2931 	if (!ctx->submitter_task)
2932 		goto out;
2933 	/*
2934 	 * with ->submitter_task only the submitter task completes requests, we
2935 	 * only need to sync with it, which is done by injecting a tw
2936 	 */
2937 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2938 	percpu_ref_get(&ctx->refs);
2939 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2940 		percpu_ref_put(&ctx->refs);
2941 out:
2942 	spin_unlock(&ctx->completion_lock);
2943 }
2944 
2945 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2946 {
2947 	struct io_ring_ctx *ctx = file->private_data;
2948 	__poll_t mask = 0;
2949 
2950 	if (unlikely(!ctx->poll_activated))
2951 		io_activate_pollwq(ctx);
2952 
2953 	poll_wait(file, &ctx->poll_wq, wait);
2954 	/*
2955 	 * synchronizes with barrier from wq_has_sleeper call in
2956 	 * io_commit_cqring
2957 	 */
2958 	smp_rmb();
2959 	if (!io_sqring_full(ctx))
2960 		mask |= EPOLLOUT | EPOLLWRNORM;
2961 
2962 	/*
2963 	 * Don't flush cqring overflow list here, just do a simple check.
2964 	 * Otherwise there could possible be ABBA deadlock:
2965 	 *      CPU0                    CPU1
2966 	 *      ----                    ----
2967 	 * lock(&ctx->uring_lock);
2968 	 *                              lock(&ep->mtx);
2969 	 *                              lock(&ctx->uring_lock);
2970 	 * lock(&ep->mtx);
2971 	 *
2972 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2973 	 * pushes them to do the flush.
2974 	 */
2975 
2976 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2977 		mask |= EPOLLIN | EPOLLRDNORM;
2978 
2979 	return mask;
2980 }
2981 
2982 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2983 {
2984 	const struct cred *creds;
2985 
2986 	creds = xa_erase(&ctx->personalities, id);
2987 	if (creds) {
2988 		put_cred(creds);
2989 		return 0;
2990 	}
2991 
2992 	return -EINVAL;
2993 }
2994 
2995 struct io_tctx_exit {
2996 	struct callback_head		task_work;
2997 	struct completion		completion;
2998 	struct io_ring_ctx		*ctx;
2999 };
3000 
3001 static __cold void io_tctx_exit_cb(struct callback_head *cb)
3002 {
3003 	struct io_uring_task *tctx = current->io_uring;
3004 	struct io_tctx_exit *work;
3005 
3006 	work = container_of(cb, struct io_tctx_exit, task_work);
3007 	/*
3008 	 * When @in_cancel, we're in cancellation and it's racy to remove the
3009 	 * node. It'll be removed by the end of cancellation, just ignore it.
3010 	 * tctx can be NULL if the queueing of this task_work raced with
3011 	 * work cancelation off the exec path.
3012 	 */
3013 	if (tctx && !atomic_read(&tctx->in_cancel))
3014 		io_uring_del_tctx_node((unsigned long)work->ctx);
3015 	complete(&work->completion);
3016 }
3017 
3018 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3019 {
3020 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3021 
3022 	return req->ctx == data;
3023 }
3024 
3025 static __cold void io_ring_exit_work(struct work_struct *work)
3026 {
3027 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3028 	unsigned long timeout = jiffies + HZ * 60 * 5;
3029 	unsigned long interval = HZ / 20;
3030 	struct io_tctx_exit exit;
3031 	struct io_tctx_node *node;
3032 	int ret;
3033 
3034 	/*
3035 	 * If we're doing polled IO and end up having requests being
3036 	 * submitted async (out-of-line), then completions can come in while
3037 	 * we're waiting for refs to drop. We need to reap these manually,
3038 	 * as nobody else will be looking for them.
3039 	 */
3040 	do {
3041 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3042 			mutex_lock(&ctx->uring_lock);
3043 			io_cqring_overflow_kill(ctx);
3044 			mutex_unlock(&ctx->uring_lock);
3045 		}
3046 
3047 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3048 			io_move_task_work_from_local(ctx);
3049 
3050 		while (io_uring_try_cancel_requests(ctx, NULL, true))
3051 			cond_resched();
3052 
3053 		if (ctx->sq_data) {
3054 			struct io_sq_data *sqd = ctx->sq_data;
3055 			struct task_struct *tsk;
3056 
3057 			io_sq_thread_park(sqd);
3058 			tsk = sqd->thread;
3059 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3060 				io_wq_cancel_cb(tsk->io_uring->io_wq,
3061 						io_cancel_ctx_cb, ctx, true);
3062 			io_sq_thread_unpark(sqd);
3063 		}
3064 
3065 		io_req_caches_free(ctx);
3066 
3067 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3068 			/* there is little hope left, don't run it too often */
3069 			interval = HZ * 60;
3070 		}
3071 		/*
3072 		 * This is really an uninterruptible wait, as it has to be
3073 		 * complete. But it's also run from a kworker, which doesn't
3074 		 * take signals, so it's fine to make it interruptible. This
3075 		 * avoids scenarios where we knowingly can wait much longer
3076 		 * on completions, for example if someone does a SIGSTOP on
3077 		 * a task that needs to finish task_work to make this loop
3078 		 * complete. That's a synthetic situation that should not
3079 		 * cause a stuck task backtrace, and hence a potential panic
3080 		 * on stuck tasks if that is enabled.
3081 		 */
3082 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3083 
3084 	init_completion(&exit.completion);
3085 	init_task_work(&exit.task_work, io_tctx_exit_cb);
3086 	exit.ctx = ctx;
3087 	/*
3088 	 * Some may use context even when all refs and requests have been put,
3089 	 * and they are free to do so while still holding uring_lock or
3090 	 * completion_lock, see io_req_task_submit(). Apart from other work,
3091 	 * this lock/unlock section also waits them to finish.
3092 	 */
3093 	mutex_lock(&ctx->uring_lock);
3094 	while (!list_empty(&ctx->tctx_list)) {
3095 		WARN_ON_ONCE(time_after(jiffies, timeout));
3096 
3097 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3098 					ctx_node);
3099 		/* don't spin on a single task if cancellation failed */
3100 		list_rotate_left(&ctx->tctx_list);
3101 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3102 		if (WARN_ON_ONCE(ret))
3103 			continue;
3104 
3105 		mutex_unlock(&ctx->uring_lock);
3106 		/*
3107 		 * See comment above for
3108 		 * wait_for_completion_interruptible_timeout() on why this
3109 		 * wait is marked as interruptible.
3110 		 */
3111 		wait_for_completion_interruptible(&exit.completion);
3112 		mutex_lock(&ctx->uring_lock);
3113 	}
3114 	mutex_unlock(&ctx->uring_lock);
3115 	spin_lock(&ctx->completion_lock);
3116 	spin_unlock(&ctx->completion_lock);
3117 
3118 	/* pairs with RCU read section in io_req_local_work_add() */
3119 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3120 		synchronize_rcu();
3121 
3122 	io_ring_ctx_free(ctx);
3123 }
3124 
3125 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3126 {
3127 	unsigned long index;
3128 	struct creds *creds;
3129 
3130 	mutex_lock(&ctx->uring_lock);
3131 	percpu_ref_kill(&ctx->refs);
3132 	xa_for_each(&ctx->personalities, index, creds)
3133 		io_unregister_personality(ctx, index);
3134 	if (ctx->rings)
3135 		io_poll_remove_all(ctx, NULL, true);
3136 	mutex_unlock(&ctx->uring_lock);
3137 
3138 	/*
3139 	 * If we failed setting up the ctx, we might not have any rings
3140 	 * and therefore did not submit any requests
3141 	 */
3142 	if (ctx->rings)
3143 		io_kill_timeouts(ctx, NULL, true);
3144 
3145 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3146 	/*
3147 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3148 	 * if we're exiting a ton of rings at the same time. It just adds
3149 	 * noise and overhead, there's no discernable change in runtime
3150 	 * over using system_wq.
3151 	 */
3152 	queue_work(system_unbound_wq, &ctx->exit_work);
3153 }
3154 
3155 static int io_uring_release(struct inode *inode, struct file *file)
3156 {
3157 	struct io_ring_ctx *ctx = file->private_data;
3158 
3159 	file->private_data = NULL;
3160 	io_ring_ctx_wait_and_kill(ctx);
3161 	return 0;
3162 }
3163 
3164 struct io_task_cancel {
3165 	struct task_struct *task;
3166 	bool all;
3167 };
3168 
3169 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3170 {
3171 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3172 	struct io_task_cancel *cancel = data;
3173 
3174 	return io_match_task_safe(req, cancel->task, cancel->all);
3175 }
3176 
3177 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3178 					 struct task_struct *task,
3179 					 bool cancel_all)
3180 {
3181 	struct io_defer_entry *de;
3182 	LIST_HEAD(list);
3183 
3184 	spin_lock(&ctx->completion_lock);
3185 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3186 		if (io_match_task_safe(de->req, task, cancel_all)) {
3187 			list_cut_position(&list, &ctx->defer_list, &de->list);
3188 			break;
3189 		}
3190 	}
3191 	spin_unlock(&ctx->completion_lock);
3192 	if (list_empty(&list))
3193 		return false;
3194 
3195 	while (!list_empty(&list)) {
3196 		de = list_first_entry(&list, struct io_defer_entry, list);
3197 		list_del_init(&de->list);
3198 		io_req_task_queue_fail(de->req, -ECANCELED);
3199 		kfree(de);
3200 	}
3201 	return true;
3202 }
3203 
3204 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3205 {
3206 	struct io_tctx_node *node;
3207 	enum io_wq_cancel cret;
3208 	bool ret = false;
3209 
3210 	mutex_lock(&ctx->uring_lock);
3211 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3212 		struct io_uring_task *tctx = node->task->io_uring;
3213 
3214 		/*
3215 		 * io_wq will stay alive while we hold uring_lock, because it's
3216 		 * killed after ctx nodes, which requires to take the lock.
3217 		 */
3218 		if (!tctx || !tctx->io_wq)
3219 			continue;
3220 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3221 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3222 	}
3223 	mutex_unlock(&ctx->uring_lock);
3224 
3225 	return ret;
3226 }
3227 
3228 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3229 						struct task_struct *task,
3230 						bool cancel_all)
3231 {
3232 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3233 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3234 	enum io_wq_cancel cret;
3235 	bool ret = false;
3236 
3237 	/* set it so io_req_local_work_add() would wake us up */
3238 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3239 		atomic_set(&ctx->cq_wait_nr, 1);
3240 		smp_mb();
3241 	}
3242 
3243 	/* failed during ring init, it couldn't have issued any requests */
3244 	if (!ctx->rings)
3245 		return false;
3246 
3247 	if (!task) {
3248 		ret |= io_uring_try_cancel_iowq(ctx);
3249 	} else if (tctx && tctx->io_wq) {
3250 		/*
3251 		 * Cancels requests of all rings, not only @ctx, but
3252 		 * it's fine as the task is in exit/exec.
3253 		 */
3254 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3255 				       &cancel, true);
3256 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3257 	}
3258 
3259 	/* SQPOLL thread does its own polling */
3260 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3261 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3262 		while (!wq_list_empty(&ctx->iopoll_list)) {
3263 			io_iopoll_try_reap_events(ctx);
3264 			ret = true;
3265 			cond_resched();
3266 		}
3267 	}
3268 
3269 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3270 	    io_allowed_defer_tw_run(ctx))
3271 		ret |= io_run_local_work(ctx) > 0;
3272 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3273 	mutex_lock(&ctx->uring_lock);
3274 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3275 	mutex_unlock(&ctx->uring_lock);
3276 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3277 	if (task)
3278 		ret |= io_run_task_work() > 0;
3279 	return ret;
3280 }
3281 
3282 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3283 {
3284 	if (tracked)
3285 		return atomic_read(&tctx->inflight_tracked);
3286 	return percpu_counter_sum(&tctx->inflight);
3287 }
3288 
3289 /*
3290  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3291  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3292  */
3293 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3294 {
3295 	struct io_uring_task *tctx = current->io_uring;
3296 	struct io_ring_ctx *ctx;
3297 	struct io_tctx_node *node;
3298 	unsigned long index;
3299 	s64 inflight;
3300 	DEFINE_WAIT(wait);
3301 
3302 	WARN_ON_ONCE(sqd && sqd->thread != current);
3303 
3304 	if (!current->io_uring)
3305 		return;
3306 	if (tctx->io_wq)
3307 		io_wq_exit_start(tctx->io_wq);
3308 
3309 	atomic_inc(&tctx->in_cancel);
3310 	do {
3311 		bool loop = false;
3312 
3313 		io_uring_drop_tctx_refs(current);
3314 		/* read completions before cancelations */
3315 		inflight = tctx_inflight(tctx, !cancel_all);
3316 		if (!inflight)
3317 			break;
3318 
3319 		if (!sqd) {
3320 			xa_for_each(&tctx->xa, index, node) {
3321 				/* sqpoll task will cancel all its requests */
3322 				if (node->ctx->sq_data)
3323 					continue;
3324 				loop |= io_uring_try_cancel_requests(node->ctx,
3325 							current, cancel_all);
3326 			}
3327 		} else {
3328 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3329 				loop |= io_uring_try_cancel_requests(ctx,
3330 								     current,
3331 								     cancel_all);
3332 		}
3333 
3334 		if (loop) {
3335 			cond_resched();
3336 			continue;
3337 		}
3338 
3339 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3340 		io_run_task_work();
3341 		io_uring_drop_tctx_refs(current);
3342 		xa_for_each(&tctx->xa, index, node) {
3343 			if (!llist_empty(&node->ctx->work_llist)) {
3344 				WARN_ON_ONCE(node->ctx->submitter_task &&
3345 					     node->ctx->submitter_task != current);
3346 				goto end_wait;
3347 			}
3348 		}
3349 		/*
3350 		 * If we've seen completions, retry without waiting. This
3351 		 * avoids a race where a completion comes in before we did
3352 		 * prepare_to_wait().
3353 		 */
3354 		if (inflight == tctx_inflight(tctx, !cancel_all))
3355 			schedule();
3356 end_wait:
3357 		finish_wait(&tctx->wait, &wait);
3358 	} while (1);
3359 
3360 	io_uring_clean_tctx(tctx);
3361 	if (cancel_all) {
3362 		/*
3363 		 * We shouldn't run task_works after cancel, so just leave
3364 		 * ->in_cancel set for normal exit.
3365 		 */
3366 		atomic_dec(&tctx->in_cancel);
3367 		/* for exec all current's requests should be gone, kill tctx */
3368 		__io_uring_free(current);
3369 	}
3370 }
3371 
3372 void __io_uring_cancel(bool cancel_all)
3373 {
3374 	io_uring_cancel_generic(cancel_all, NULL);
3375 }
3376 
3377 static void *io_uring_validate_mmap_request(struct file *file,
3378 					    loff_t pgoff, size_t sz)
3379 {
3380 	struct io_ring_ctx *ctx = file->private_data;
3381 	loff_t offset = pgoff << PAGE_SHIFT;
3382 	struct page *page;
3383 	void *ptr;
3384 
3385 	/* Don't allow mmap if the ring was setup without it */
3386 	if (ctx->flags & IORING_SETUP_NO_MMAP)
3387 		return ERR_PTR(-EINVAL);
3388 
3389 	switch (offset & IORING_OFF_MMAP_MASK) {
3390 	case IORING_OFF_SQ_RING:
3391 	case IORING_OFF_CQ_RING:
3392 		ptr = ctx->rings;
3393 		break;
3394 	case IORING_OFF_SQES:
3395 		ptr = ctx->sq_sqes;
3396 		break;
3397 	case IORING_OFF_PBUF_RING: {
3398 		unsigned int bgid;
3399 
3400 		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3401 		mutex_lock(&ctx->uring_lock);
3402 		ptr = io_pbuf_get_address(ctx, bgid);
3403 		mutex_unlock(&ctx->uring_lock);
3404 		if (!ptr)
3405 			return ERR_PTR(-EINVAL);
3406 		break;
3407 		}
3408 	default:
3409 		return ERR_PTR(-EINVAL);
3410 	}
3411 
3412 	page = virt_to_head_page(ptr);
3413 	if (sz > page_size(page))
3414 		return ERR_PTR(-EINVAL);
3415 
3416 	return ptr;
3417 }
3418 
3419 #ifdef CONFIG_MMU
3420 
3421 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3422 {
3423 	size_t sz = vma->vm_end - vma->vm_start;
3424 	unsigned long pfn;
3425 	void *ptr;
3426 
3427 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3428 	if (IS_ERR(ptr))
3429 		return PTR_ERR(ptr);
3430 
3431 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3432 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3433 }
3434 
3435 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3436 			unsigned long addr, unsigned long len,
3437 			unsigned long pgoff, unsigned long flags)
3438 {
3439 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
3440 	struct vm_unmapped_area_info info;
3441 	void *ptr;
3442 
3443 	/*
3444 	 * Do not allow to map to user-provided address to avoid breaking the
3445 	 * aliasing rules. Userspace is not able to guess the offset address of
3446 	 * kernel kmalloc()ed memory area.
3447 	 */
3448 	if (addr)
3449 		return -EINVAL;
3450 
3451 	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3452 	if (IS_ERR(ptr))
3453 		return -ENOMEM;
3454 
3455 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
3456 	info.length = len;
3457 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
3458 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
3459 #ifdef SHM_COLOUR
3460 	info.align_mask = PAGE_MASK & (SHM_COLOUR - 1UL);
3461 #else
3462 	info.align_mask = PAGE_MASK & (SHMLBA - 1UL);
3463 #endif
3464 	info.align_offset = (unsigned long) ptr;
3465 
3466 	/*
3467 	 * A failed mmap() very likely causes application failure,
3468 	 * so fall back to the bottom-up function here. This scenario
3469 	 * can happen with large stack limits and large mmap()
3470 	 * allocations.
3471 	 */
3472 	addr = vm_unmapped_area(&info);
3473 	if (offset_in_page(addr)) {
3474 		info.flags = 0;
3475 		info.low_limit = TASK_UNMAPPED_BASE;
3476 		info.high_limit = mmap_end;
3477 		addr = vm_unmapped_area(&info);
3478 	}
3479 
3480 	return addr;
3481 }
3482 
3483 #else /* !CONFIG_MMU */
3484 
3485 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3486 {
3487 	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3488 }
3489 
3490 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3491 {
3492 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3493 }
3494 
3495 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3496 	unsigned long addr, unsigned long len,
3497 	unsigned long pgoff, unsigned long flags)
3498 {
3499 	void *ptr;
3500 
3501 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3502 	if (IS_ERR(ptr))
3503 		return PTR_ERR(ptr);
3504 
3505 	return (unsigned long) ptr;
3506 }
3507 
3508 #endif /* !CONFIG_MMU */
3509 
3510 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3511 {
3512 	if (flags & IORING_ENTER_EXT_ARG) {
3513 		struct io_uring_getevents_arg arg;
3514 
3515 		if (argsz != sizeof(arg))
3516 			return -EINVAL;
3517 		if (copy_from_user(&arg, argp, sizeof(arg)))
3518 			return -EFAULT;
3519 	}
3520 	return 0;
3521 }
3522 
3523 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3524 			  struct __kernel_timespec __user **ts,
3525 			  const sigset_t __user **sig)
3526 {
3527 	struct io_uring_getevents_arg arg;
3528 
3529 	/*
3530 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3531 	 * is just a pointer to the sigset_t.
3532 	 */
3533 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3534 		*sig = (const sigset_t __user *) argp;
3535 		*ts = NULL;
3536 		return 0;
3537 	}
3538 
3539 	/*
3540 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3541 	 * timespec and sigset_t pointers if good.
3542 	 */
3543 	if (*argsz != sizeof(arg))
3544 		return -EINVAL;
3545 	if (copy_from_user(&arg, argp, sizeof(arg)))
3546 		return -EFAULT;
3547 	if (arg.pad)
3548 		return -EINVAL;
3549 	*sig = u64_to_user_ptr(arg.sigmask);
3550 	*argsz = arg.sigmask_sz;
3551 	*ts = u64_to_user_ptr(arg.ts);
3552 	return 0;
3553 }
3554 
3555 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3556 		u32, min_complete, u32, flags, const void __user *, argp,
3557 		size_t, argsz)
3558 {
3559 	struct io_ring_ctx *ctx;
3560 	struct fd f;
3561 	long ret;
3562 
3563 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3564 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3565 			       IORING_ENTER_REGISTERED_RING)))
3566 		return -EINVAL;
3567 
3568 	/*
3569 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3570 	 * need only dereference our task private array to find it.
3571 	 */
3572 	if (flags & IORING_ENTER_REGISTERED_RING) {
3573 		struct io_uring_task *tctx = current->io_uring;
3574 
3575 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3576 			return -EINVAL;
3577 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3578 		f.file = tctx->registered_rings[fd];
3579 		f.flags = 0;
3580 		if (unlikely(!f.file))
3581 			return -EBADF;
3582 	} else {
3583 		f = fdget(fd);
3584 		if (unlikely(!f.file))
3585 			return -EBADF;
3586 		ret = -EOPNOTSUPP;
3587 		if (unlikely(!io_is_uring_fops(f.file)))
3588 			goto out;
3589 	}
3590 
3591 	ctx = f.file->private_data;
3592 	ret = -EBADFD;
3593 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3594 		goto out;
3595 
3596 	/*
3597 	 * For SQ polling, the thread will do all submissions and completions.
3598 	 * Just return the requested submit count, and wake the thread if
3599 	 * we were asked to.
3600 	 */
3601 	ret = 0;
3602 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3603 		io_cqring_overflow_flush(ctx);
3604 
3605 		if (unlikely(ctx->sq_data->thread == NULL)) {
3606 			ret = -EOWNERDEAD;
3607 			goto out;
3608 		}
3609 		if (flags & IORING_ENTER_SQ_WAKEUP)
3610 			wake_up(&ctx->sq_data->wait);
3611 		if (flags & IORING_ENTER_SQ_WAIT)
3612 			io_sqpoll_wait_sq(ctx);
3613 
3614 		ret = to_submit;
3615 	} else if (to_submit) {
3616 		ret = io_uring_add_tctx_node(ctx);
3617 		if (unlikely(ret))
3618 			goto out;
3619 
3620 		mutex_lock(&ctx->uring_lock);
3621 		ret = io_submit_sqes(ctx, to_submit);
3622 		if (ret != to_submit) {
3623 			mutex_unlock(&ctx->uring_lock);
3624 			goto out;
3625 		}
3626 		if (flags & IORING_ENTER_GETEVENTS) {
3627 			if (ctx->syscall_iopoll)
3628 				goto iopoll_locked;
3629 			/*
3630 			 * Ignore errors, we'll soon call io_cqring_wait() and
3631 			 * it should handle ownership problems if any.
3632 			 */
3633 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3634 				(void)io_run_local_work_locked(ctx);
3635 		}
3636 		mutex_unlock(&ctx->uring_lock);
3637 	}
3638 
3639 	if (flags & IORING_ENTER_GETEVENTS) {
3640 		int ret2;
3641 
3642 		if (ctx->syscall_iopoll) {
3643 			/*
3644 			 * We disallow the app entering submit/complete with
3645 			 * polling, but we still need to lock the ring to
3646 			 * prevent racing with polled issue that got punted to
3647 			 * a workqueue.
3648 			 */
3649 			mutex_lock(&ctx->uring_lock);
3650 iopoll_locked:
3651 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3652 			if (likely(!ret2)) {
3653 				min_complete = min(min_complete,
3654 						   ctx->cq_entries);
3655 				ret2 = io_iopoll_check(ctx, min_complete);
3656 			}
3657 			mutex_unlock(&ctx->uring_lock);
3658 		} else {
3659 			const sigset_t __user *sig;
3660 			struct __kernel_timespec __user *ts;
3661 
3662 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3663 			if (likely(!ret2)) {
3664 				min_complete = min(min_complete,
3665 						   ctx->cq_entries);
3666 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3667 						      argsz, ts);
3668 			}
3669 		}
3670 
3671 		if (!ret) {
3672 			ret = ret2;
3673 
3674 			/*
3675 			 * EBADR indicates that one or more CQE were dropped.
3676 			 * Once the user has been informed we can clear the bit
3677 			 * as they are obviously ok with those drops.
3678 			 */
3679 			if (unlikely(ret2 == -EBADR))
3680 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3681 					  &ctx->check_cq);
3682 		}
3683 	}
3684 out:
3685 	fdput(f);
3686 	return ret;
3687 }
3688 
3689 static const struct file_operations io_uring_fops = {
3690 	.release	= io_uring_release,
3691 	.mmap		= io_uring_mmap,
3692 #ifndef CONFIG_MMU
3693 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3694 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3695 #else
3696 	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3697 #endif
3698 	.poll		= io_uring_poll,
3699 #ifdef CONFIG_PROC_FS
3700 	.show_fdinfo	= io_uring_show_fdinfo,
3701 #endif
3702 };
3703 
3704 bool io_is_uring_fops(struct file *file)
3705 {
3706 	return file->f_op == &io_uring_fops;
3707 }
3708 
3709 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3710 					 struct io_uring_params *p)
3711 {
3712 	struct io_rings *rings;
3713 	size_t size, sq_array_offset;
3714 	void *ptr;
3715 
3716 	/* make sure these are sane, as we already accounted them */
3717 	ctx->sq_entries = p->sq_entries;
3718 	ctx->cq_entries = p->cq_entries;
3719 
3720 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3721 	if (size == SIZE_MAX)
3722 		return -EOVERFLOW;
3723 
3724 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3725 		rings = io_mem_alloc(size);
3726 	else
3727 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3728 
3729 	if (IS_ERR(rings))
3730 		return PTR_ERR(rings);
3731 
3732 	ctx->rings = rings;
3733 	ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3734 	rings->sq_ring_mask = p->sq_entries - 1;
3735 	rings->cq_ring_mask = p->cq_entries - 1;
3736 	rings->sq_ring_entries = p->sq_entries;
3737 	rings->cq_ring_entries = p->cq_entries;
3738 
3739 	if (p->flags & IORING_SETUP_SQE128)
3740 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3741 	else
3742 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3743 	if (size == SIZE_MAX) {
3744 		io_rings_free(ctx);
3745 		return -EOVERFLOW;
3746 	}
3747 
3748 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3749 		ptr = io_mem_alloc(size);
3750 	else
3751 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3752 
3753 	if (IS_ERR(ptr)) {
3754 		io_rings_free(ctx);
3755 		return PTR_ERR(ptr);
3756 	}
3757 
3758 	ctx->sq_sqes = ptr;
3759 	return 0;
3760 }
3761 
3762 static int io_uring_install_fd(struct file *file)
3763 {
3764 	int fd;
3765 
3766 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3767 	if (fd < 0)
3768 		return fd;
3769 	fd_install(fd, file);
3770 	return fd;
3771 }
3772 
3773 /*
3774  * Allocate an anonymous fd, this is what constitutes the application
3775  * visible backing of an io_uring instance. The application mmaps this
3776  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3777  * we have to tie this fd to a socket for file garbage collection purposes.
3778  */
3779 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3780 {
3781 	struct file *file;
3782 #if defined(CONFIG_UNIX)
3783 	int ret;
3784 
3785 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3786 				&ctx->ring_sock);
3787 	if (ret)
3788 		return ERR_PTR(ret);
3789 #endif
3790 
3791 	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3792 					 O_RDWR | O_CLOEXEC, NULL);
3793 #if defined(CONFIG_UNIX)
3794 	if (IS_ERR(file)) {
3795 		sock_release(ctx->ring_sock);
3796 		ctx->ring_sock = NULL;
3797 	} else {
3798 		ctx->ring_sock->file = file;
3799 	}
3800 #endif
3801 	return file;
3802 }
3803 
3804 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3805 				  struct io_uring_params __user *params)
3806 {
3807 	struct io_ring_ctx *ctx;
3808 	struct io_uring_task *tctx;
3809 	struct file *file;
3810 	int ret;
3811 
3812 	if (!entries)
3813 		return -EINVAL;
3814 	if (entries > IORING_MAX_ENTRIES) {
3815 		if (!(p->flags & IORING_SETUP_CLAMP))
3816 			return -EINVAL;
3817 		entries = IORING_MAX_ENTRIES;
3818 	}
3819 
3820 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3821 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3822 		return -EINVAL;
3823 
3824 	/*
3825 	 * Use twice as many entries for the CQ ring. It's possible for the
3826 	 * application to drive a higher depth than the size of the SQ ring,
3827 	 * since the sqes are only used at submission time. This allows for
3828 	 * some flexibility in overcommitting a bit. If the application has
3829 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3830 	 * of CQ ring entries manually.
3831 	 */
3832 	p->sq_entries = roundup_pow_of_two(entries);
3833 	if (p->flags & IORING_SETUP_CQSIZE) {
3834 		/*
3835 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3836 		 * to a power-of-two, if it isn't already. We do NOT impose
3837 		 * any cq vs sq ring sizing.
3838 		 */
3839 		if (!p->cq_entries)
3840 			return -EINVAL;
3841 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3842 			if (!(p->flags & IORING_SETUP_CLAMP))
3843 				return -EINVAL;
3844 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3845 		}
3846 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3847 		if (p->cq_entries < p->sq_entries)
3848 			return -EINVAL;
3849 	} else {
3850 		p->cq_entries = 2 * p->sq_entries;
3851 	}
3852 
3853 	ctx = io_ring_ctx_alloc(p);
3854 	if (!ctx)
3855 		return -ENOMEM;
3856 
3857 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3858 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3859 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3860 		ctx->task_complete = true;
3861 
3862 	/*
3863 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3864 	 * purposes, see io_activate_pollwq()
3865 	 */
3866 	if (!ctx->task_complete)
3867 		ctx->poll_activated = true;
3868 
3869 	/*
3870 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3871 	 * space applications don't need to do io completion events
3872 	 * polling again, they can rely on io_sq_thread to do polling
3873 	 * work, which can reduce cpu usage and uring_lock contention.
3874 	 */
3875 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3876 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3877 		ctx->syscall_iopoll = 1;
3878 
3879 	ctx->compat = in_compat_syscall();
3880 	if (!capable(CAP_IPC_LOCK))
3881 		ctx->user = get_uid(current_user());
3882 
3883 	/*
3884 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3885 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3886 	 */
3887 	ret = -EINVAL;
3888 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3889 		/* IPI related flags don't make sense with SQPOLL */
3890 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3891 				  IORING_SETUP_TASKRUN_FLAG |
3892 				  IORING_SETUP_DEFER_TASKRUN))
3893 			goto err;
3894 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3895 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3896 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3897 	} else {
3898 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3899 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3900 			goto err;
3901 		ctx->notify_method = TWA_SIGNAL;
3902 	}
3903 
3904 	/*
3905 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3906 	 * submission task. This implies that there is only one submitter, so enforce
3907 	 * that.
3908 	 */
3909 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3910 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3911 		goto err;
3912 	}
3913 
3914 	/*
3915 	 * This is just grabbed for accounting purposes. When a process exits,
3916 	 * the mm is exited and dropped before the files, hence we need to hang
3917 	 * on to this mm purely for the purposes of being able to unaccount
3918 	 * memory (locked/pinned vm). It's not used for anything else.
3919 	 */
3920 	mmgrab(current->mm);
3921 	ctx->mm_account = current->mm;
3922 
3923 	ret = io_allocate_scq_urings(ctx, p);
3924 	if (ret)
3925 		goto err;
3926 
3927 	ret = io_sq_offload_create(ctx, p);
3928 	if (ret)
3929 		goto err;
3930 
3931 	ret = io_rsrc_init(ctx);
3932 	if (ret)
3933 		goto err;
3934 
3935 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3936 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3937 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3938 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3939 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3940 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3941 	p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3942 	p->sq_off.resv1 = 0;
3943 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3944 		p->sq_off.user_addr = 0;
3945 
3946 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3947 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3948 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3949 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3950 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3951 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3952 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3953 	p->cq_off.resv1 = 0;
3954 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3955 		p->cq_off.user_addr = 0;
3956 
3957 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3958 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3959 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3960 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3961 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3962 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3963 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
3964 
3965 	if (copy_to_user(params, p, sizeof(*p))) {
3966 		ret = -EFAULT;
3967 		goto err;
3968 	}
3969 
3970 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3971 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3972 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3973 
3974 	file = io_uring_get_file(ctx);
3975 	if (IS_ERR(file)) {
3976 		ret = PTR_ERR(file);
3977 		goto err;
3978 	}
3979 
3980 	ret = __io_uring_add_tctx_node(ctx);
3981 	if (ret)
3982 		goto err_fput;
3983 	tctx = current->io_uring;
3984 
3985 	/*
3986 	 * Install ring fd as the very last thing, so we don't risk someone
3987 	 * having closed it before we finish setup
3988 	 */
3989 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3990 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3991 	else
3992 		ret = io_uring_install_fd(file);
3993 	if (ret < 0)
3994 		goto err_fput;
3995 
3996 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3997 	return ret;
3998 err:
3999 	io_ring_ctx_wait_and_kill(ctx);
4000 	return ret;
4001 err_fput:
4002 	fput(file);
4003 	return ret;
4004 }
4005 
4006 /*
4007  * Sets up an aio uring context, and returns the fd. Applications asks for a
4008  * ring size, we return the actual sq/cq ring sizes (among other things) in the
4009  * params structure passed in.
4010  */
4011 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4012 {
4013 	struct io_uring_params p;
4014 	int i;
4015 
4016 	if (copy_from_user(&p, params, sizeof(p)))
4017 		return -EFAULT;
4018 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4019 		if (p.resv[i])
4020 			return -EINVAL;
4021 	}
4022 
4023 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4024 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4025 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4026 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4027 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4028 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4029 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4030 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY))
4031 		return -EINVAL;
4032 
4033 	return io_uring_create(entries, &p, params);
4034 }
4035 
4036 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4037 		struct io_uring_params __user *, params)
4038 {
4039 	return io_uring_setup(entries, params);
4040 }
4041 
4042 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4043 			   unsigned nr_args)
4044 {
4045 	struct io_uring_probe *p;
4046 	size_t size;
4047 	int i, ret;
4048 
4049 	size = struct_size(p, ops, nr_args);
4050 	if (size == SIZE_MAX)
4051 		return -EOVERFLOW;
4052 	p = kzalloc(size, GFP_KERNEL);
4053 	if (!p)
4054 		return -ENOMEM;
4055 
4056 	ret = -EFAULT;
4057 	if (copy_from_user(p, arg, size))
4058 		goto out;
4059 	ret = -EINVAL;
4060 	if (memchr_inv(p, 0, size))
4061 		goto out;
4062 
4063 	p->last_op = IORING_OP_LAST - 1;
4064 	if (nr_args > IORING_OP_LAST)
4065 		nr_args = IORING_OP_LAST;
4066 
4067 	for (i = 0; i < nr_args; i++) {
4068 		p->ops[i].op = i;
4069 		if (!io_issue_defs[i].not_supported)
4070 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
4071 	}
4072 	p->ops_len = i;
4073 
4074 	ret = 0;
4075 	if (copy_to_user(arg, p, size))
4076 		ret = -EFAULT;
4077 out:
4078 	kfree(p);
4079 	return ret;
4080 }
4081 
4082 static int io_register_personality(struct io_ring_ctx *ctx)
4083 {
4084 	const struct cred *creds;
4085 	u32 id;
4086 	int ret;
4087 
4088 	creds = get_current_cred();
4089 
4090 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4091 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4092 	if (ret < 0) {
4093 		put_cred(creds);
4094 		return ret;
4095 	}
4096 	return id;
4097 }
4098 
4099 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4100 					   void __user *arg, unsigned int nr_args)
4101 {
4102 	struct io_uring_restriction *res;
4103 	size_t size;
4104 	int i, ret;
4105 
4106 	/* Restrictions allowed only if rings started disabled */
4107 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4108 		return -EBADFD;
4109 
4110 	/* We allow only a single restrictions registration */
4111 	if (ctx->restrictions.registered)
4112 		return -EBUSY;
4113 
4114 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4115 		return -EINVAL;
4116 
4117 	size = array_size(nr_args, sizeof(*res));
4118 	if (size == SIZE_MAX)
4119 		return -EOVERFLOW;
4120 
4121 	res = memdup_user(arg, size);
4122 	if (IS_ERR(res))
4123 		return PTR_ERR(res);
4124 
4125 	ret = 0;
4126 
4127 	for (i = 0; i < nr_args; i++) {
4128 		switch (res[i].opcode) {
4129 		case IORING_RESTRICTION_REGISTER_OP:
4130 			if (res[i].register_op >= IORING_REGISTER_LAST) {
4131 				ret = -EINVAL;
4132 				goto out;
4133 			}
4134 
4135 			__set_bit(res[i].register_op,
4136 				  ctx->restrictions.register_op);
4137 			break;
4138 		case IORING_RESTRICTION_SQE_OP:
4139 			if (res[i].sqe_op >= IORING_OP_LAST) {
4140 				ret = -EINVAL;
4141 				goto out;
4142 			}
4143 
4144 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4145 			break;
4146 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4147 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4148 			break;
4149 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4150 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4151 			break;
4152 		default:
4153 			ret = -EINVAL;
4154 			goto out;
4155 		}
4156 	}
4157 
4158 out:
4159 	/* Reset all restrictions if an error happened */
4160 	if (ret != 0)
4161 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4162 	else
4163 		ctx->restrictions.registered = true;
4164 
4165 	kfree(res);
4166 	return ret;
4167 }
4168 
4169 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4170 {
4171 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4172 		return -EBADFD;
4173 
4174 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4175 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4176 		/*
4177 		 * Lazy activation attempts would fail if it was polled before
4178 		 * submitter_task is set.
4179 		 */
4180 		if (wq_has_sleeper(&ctx->poll_wq))
4181 			io_activate_pollwq(ctx);
4182 	}
4183 
4184 	if (ctx->restrictions.registered)
4185 		ctx->restricted = 1;
4186 
4187 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
4188 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4189 		wake_up(&ctx->sq_data->wait);
4190 	return 0;
4191 }
4192 
4193 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4194 				       void __user *arg, unsigned len)
4195 {
4196 	struct io_uring_task *tctx = current->io_uring;
4197 	cpumask_var_t new_mask;
4198 	int ret;
4199 
4200 	if (!tctx || !tctx->io_wq)
4201 		return -EINVAL;
4202 
4203 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4204 		return -ENOMEM;
4205 
4206 	cpumask_clear(new_mask);
4207 	if (len > cpumask_size())
4208 		len = cpumask_size();
4209 
4210 	if (in_compat_syscall()) {
4211 		ret = compat_get_bitmap(cpumask_bits(new_mask),
4212 					(const compat_ulong_t __user *)arg,
4213 					len * 8 /* CHAR_BIT */);
4214 	} else {
4215 		ret = copy_from_user(new_mask, arg, len);
4216 	}
4217 
4218 	if (ret) {
4219 		free_cpumask_var(new_mask);
4220 		return -EFAULT;
4221 	}
4222 
4223 	ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
4224 	free_cpumask_var(new_mask);
4225 	return ret;
4226 }
4227 
4228 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4229 {
4230 	struct io_uring_task *tctx = current->io_uring;
4231 
4232 	if (!tctx || !tctx->io_wq)
4233 		return -EINVAL;
4234 
4235 	return io_wq_cpu_affinity(tctx->io_wq, NULL);
4236 }
4237 
4238 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4239 					       void __user *arg)
4240 	__must_hold(&ctx->uring_lock)
4241 {
4242 	struct io_tctx_node *node;
4243 	struct io_uring_task *tctx = NULL;
4244 	struct io_sq_data *sqd = NULL;
4245 	__u32 new_count[2];
4246 	int i, ret;
4247 
4248 	if (copy_from_user(new_count, arg, sizeof(new_count)))
4249 		return -EFAULT;
4250 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4251 		if (new_count[i] > INT_MAX)
4252 			return -EINVAL;
4253 
4254 	if (ctx->flags & IORING_SETUP_SQPOLL) {
4255 		sqd = ctx->sq_data;
4256 		if (sqd) {
4257 			/*
4258 			 * Observe the correct sqd->lock -> ctx->uring_lock
4259 			 * ordering. Fine to drop uring_lock here, we hold
4260 			 * a ref to the ctx.
4261 			 */
4262 			refcount_inc(&sqd->refs);
4263 			mutex_unlock(&ctx->uring_lock);
4264 			mutex_lock(&sqd->lock);
4265 			mutex_lock(&ctx->uring_lock);
4266 			if (sqd->thread)
4267 				tctx = sqd->thread->io_uring;
4268 		}
4269 	} else {
4270 		tctx = current->io_uring;
4271 	}
4272 
4273 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4274 
4275 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4276 		if (new_count[i])
4277 			ctx->iowq_limits[i] = new_count[i];
4278 	ctx->iowq_limits_set = true;
4279 
4280 	if (tctx && tctx->io_wq) {
4281 		ret = io_wq_max_workers(tctx->io_wq, new_count);
4282 		if (ret)
4283 			goto err;
4284 	} else {
4285 		memset(new_count, 0, sizeof(new_count));
4286 	}
4287 
4288 	if (sqd) {
4289 		mutex_unlock(&sqd->lock);
4290 		io_put_sq_data(sqd);
4291 	}
4292 
4293 	if (copy_to_user(arg, new_count, sizeof(new_count)))
4294 		return -EFAULT;
4295 
4296 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
4297 	if (sqd)
4298 		return 0;
4299 
4300 	/* now propagate the restriction to all registered users */
4301 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4302 		struct io_uring_task *tctx = node->task->io_uring;
4303 
4304 		if (WARN_ON_ONCE(!tctx->io_wq))
4305 			continue;
4306 
4307 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
4308 			new_count[i] = ctx->iowq_limits[i];
4309 		/* ignore errors, it always returns zero anyway */
4310 		(void)io_wq_max_workers(tctx->io_wq, new_count);
4311 	}
4312 	return 0;
4313 err:
4314 	if (sqd) {
4315 		mutex_unlock(&sqd->lock);
4316 		io_put_sq_data(sqd);
4317 	}
4318 	return ret;
4319 }
4320 
4321 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4322 			       void __user *arg, unsigned nr_args)
4323 	__releases(ctx->uring_lock)
4324 	__acquires(ctx->uring_lock)
4325 {
4326 	int ret;
4327 
4328 	/*
4329 	 * We don't quiesce the refs for register anymore and so it can't be
4330 	 * dying as we're holding a file ref here.
4331 	 */
4332 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4333 		return -ENXIO;
4334 
4335 	if (ctx->submitter_task && ctx->submitter_task != current)
4336 		return -EEXIST;
4337 
4338 	if (ctx->restricted) {
4339 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4340 		if (!test_bit(opcode, ctx->restrictions.register_op))
4341 			return -EACCES;
4342 	}
4343 
4344 	switch (opcode) {
4345 	case IORING_REGISTER_BUFFERS:
4346 		ret = -EFAULT;
4347 		if (!arg)
4348 			break;
4349 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4350 		break;
4351 	case IORING_UNREGISTER_BUFFERS:
4352 		ret = -EINVAL;
4353 		if (arg || nr_args)
4354 			break;
4355 		ret = io_sqe_buffers_unregister(ctx);
4356 		break;
4357 	case IORING_REGISTER_FILES:
4358 		ret = -EFAULT;
4359 		if (!arg)
4360 			break;
4361 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4362 		break;
4363 	case IORING_UNREGISTER_FILES:
4364 		ret = -EINVAL;
4365 		if (arg || nr_args)
4366 			break;
4367 		ret = io_sqe_files_unregister(ctx);
4368 		break;
4369 	case IORING_REGISTER_FILES_UPDATE:
4370 		ret = io_register_files_update(ctx, arg, nr_args);
4371 		break;
4372 	case IORING_REGISTER_EVENTFD:
4373 		ret = -EINVAL;
4374 		if (nr_args != 1)
4375 			break;
4376 		ret = io_eventfd_register(ctx, arg, 0);
4377 		break;
4378 	case IORING_REGISTER_EVENTFD_ASYNC:
4379 		ret = -EINVAL;
4380 		if (nr_args != 1)
4381 			break;
4382 		ret = io_eventfd_register(ctx, arg, 1);
4383 		break;
4384 	case IORING_UNREGISTER_EVENTFD:
4385 		ret = -EINVAL;
4386 		if (arg || nr_args)
4387 			break;
4388 		ret = io_eventfd_unregister(ctx);
4389 		break;
4390 	case IORING_REGISTER_PROBE:
4391 		ret = -EINVAL;
4392 		if (!arg || nr_args > 256)
4393 			break;
4394 		ret = io_probe(ctx, arg, nr_args);
4395 		break;
4396 	case IORING_REGISTER_PERSONALITY:
4397 		ret = -EINVAL;
4398 		if (arg || nr_args)
4399 			break;
4400 		ret = io_register_personality(ctx);
4401 		break;
4402 	case IORING_UNREGISTER_PERSONALITY:
4403 		ret = -EINVAL;
4404 		if (arg)
4405 			break;
4406 		ret = io_unregister_personality(ctx, nr_args);
4407 		break;
4408 	case IORING_REGISTER_ENABLE_RINGS:
4409 		ret = -EINVAL;
4410 		if (arg || nr_args)
4411 			break;
4412 		ret = io_register_enable_rings(ctx);
4413 		break;
4414 	case IORING_REGISTER_RESTRICTIONS:
4415 		ret = io_register_restrictions(ctx, arg, nr_args);
4416 		break;
4417 	case IORING_REGISTER_FILES2:
4418 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4419 		break;
4420 	case IORING_REGISTER_FILES_UPDATE2:
4421 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4422 					      IORING_RSRC_FILE);
4423 		break;
4424 	case IORING_REGISTER_BUFFERS2:
4425 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4426 		break;
4427 	case IORING_REGISTER_BUFFERS_UPDATE:
4428 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4429 					      IORING_RSRC_BUFFER);
4430 		break;
4431 	case IORING_REGISTER_IOWQ_AFF:
4432 		ret = -EINVAL;
4433 		if (!arg || !nr_args)
4434 			break;
4435 		ret = io_register_iowq_aff(ctx, arg, nr_args);
4436 		break;
4437 	case IORING_UNREGISTER_IOWQ_AFF:
4438 		ret = -EINVAL;
4439 		if (arg || nr_args)
4440 			break;
4441 		ret = io_unregister_iowq_aff(ctx);
4442 		break;
4443 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4444 		ret = -EINVAL;
4445 		if (!arg || nr_args != 2)
4446 			break;
4447 		ret = io_register_iowq_max_workers(ctx, arg);
4448 		break;
4449 	case IORING_REGISTER_RING_FDS:
4450 		ret = io_ringfd_register(ctx, arg, nr_args);
4451 		break;
4452 	case IORING_UNREGISTER_RING_FDS:
4453 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4454 		break;
4455 	case IORING_REGISTER_PBUF_RING:
4456 		ret = -EINVAL;
4457 		if (!arg || nr_args != 1)
4458 			break;
4459 		ret = io_register_pbuf_ring(ctx, arg);
4460 		break;
4461 	case IORING_UNREGISTER_PBUF_RING:
4462 		ret = -EINVAL;
4463 		if (!arg || nr_args != 1)
4464 			break;
4465 		ret = io_unregister_pbuf_ring(ctx, arg);
4466 		break;
4467 	case IORING_REGISTER_SYNC_CANCEL:
4468 		ret = -EINVAL;
4469 		if (!arg || nr_args != 1)
4470 			break;
4471 		ret = io_sync_cancel(ctx, arg);
4472 		break;
4473 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4474 		ret = -EINVAL;
4475 		if (!arg || nr_args)
4476 			break;
4477 		ret = io_register_file_alloc_range(ctx, arg);
4478 		break;
4479 	default:
4480 		ret = -EINVAL;
4481 		break;
4482 	}
4483 
4484 	return ret;
4485 }
4486 
4487 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4488 		void __user *, arg, unsigned int, nr_args)
4489 {
4490 	struct io_ring_ctx *ctx;
4491 	long ret = -EBADF;
4492 	struct fd f;
4493 	bool use_registered_ring;
4494 
4495 	use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4496 	opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4497 
4498 	if (opcode >= IORING_REGISTER_LAST)
4499 		return -EINVAL;
4500 
4501 	if (use_registered_ring) {
4502 		/*
4503 		 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4504 		 * need only dereference our task private array to find it.
4505 		 */
4506 		struct io_uring_task *tctx = current->io_uring;
4507 
4508 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4509 			return -EINVAL;
4510 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4511 		f.file = tctx->registered_rings[fd];
4512 		f.flags = 0;
4513 		if (unlikely(!f.file))
4514 			return -EBADF;
4515 	} else {
4516 		f = fdget(fd);
4517 		if (unlikely(!f.file))
4518 			return -EBADF;
4519 		ret = -EOPNOTSUPP;
4520 		if (!io_is_uring_fops(f.file))
4521 			goto out_fput;
4522 	}
4523 
4524 	ctx = f.file->private_data;
4525 
4526 	mutex_lock(&ctx->uring_lock);
4527 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4528 	mutex_unlock(&ctx->uring_lock);
4529 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4530 out_fput:
4531 	fdput(f);
4532 	return ret;
4533 }
4534 
4535 static int __init io_uring_init(void)
4536 {
4537 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4538 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4539 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4540 } while (0)
4541 
4542 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4543 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4544 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4545 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4546 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4547 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4548 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4549 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4550 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4551 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4552 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4553 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4554 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4555 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4556 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4557 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4558 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4559 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4560 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4561 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4562 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4563 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4564 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4565 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4566 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4567 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4568 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4569 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4570 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4571 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4572 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4573 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4574 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4575 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4576 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4577 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4578 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4579 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4580 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4581 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4582 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4583 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4584 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4585 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4586 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4587 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4588 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4589 
4590 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4591 		     sizeof(struct io_uring_rsrc_update));
4592 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4593 		     sizeof(struct io_uring_rsrc_update2));
4594 
4595 	/* ->buf_index is u16 */
4596 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4597 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4598 		     offsetof(struct io_uring_buf_ring, tail));
4599 
4600 	/* should fit into one byte */
4601 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4602 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4603 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4604 
4605 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4606 
4607 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4608 
4609 	io_uring_optable_init();
4610 
4611 	req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4612 				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU);
4613 	return 0;
4614 };
4615 __initcall(io_uring_init);
4616