xref: /openbmc/linux/io_uring/io_uring.c (revision 54a611b6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/io_uring.h>
78 
79 #include <uapi/linux/io_uring.h>
80 
81 #include "io-wq.h"
82 
83 #include "io_uring.h"
84 #include "opdef.h"
85 #include "refs.h"
86 #include "tctx.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 
95 #include "timeout.h"
96 #include "poll.h"
97 #include "alloc_cache.h"
98 
99 #define IORING_MAX_ENTRIES	32768
100 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
101 
102 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
103 				 IORING_REGISTER_LAST + IORING_OP_LAST)
104 
105 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
106 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
107 
108 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
109 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
110 
111 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
112 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
113 				REQ_F_ASYNC_DATA)
114 
115 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
116 				 IO_REQ_CLEAN_FLAGS)
117 
118 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
119 
120 #define IO_COMPL_BATCH			32
121 #define IO_REQ_ALLOC_BATCH		8
122 
123 enum {
124 	IO_CHECK_CQ_OVERFLOW_BIT,
125 	IO_CHECK_CQ_DROPPED_BIT,
126 };
127 
128 struct io_defer_entry {
129 	struct list_head	list;
130 	struct io_kiocb		*req;
131 	u32			seq;
132 };
133 
134 /* requests with any of those set should undergo io_disarm_next() */
135 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
136 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
137 
138 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
139 					 struct task_struct *task,
140 					 bool cancel_all);
141 
142 static void io_dismantle_req(struct io_kiocb *req);
143 static void io_clean_op(struct io_kiocb *req);
144 static void io_queue_sqe(struct io_kiocb *req);
145 
146 static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
147 
148 static struct kmem_cache *req_cachep;
149 
150 struct sock *io_uring_get_socket(struct file *file)
151 {
152 #if defined(CONFIG_UNIX)
153 	if (io_is_uring_fops(file)) {
154 		struct io_ring_ctx *ctx = file->private_data;
155 
156 		return ctx->ring_sock->sk;
157 	}
158 #endif
159 	return NULL;
160 }
161 EXPORT_SYMBOL(io_uring_get_socket);
162 
163 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
164 {
165 	if (!wq_list_empty(&ctx->submit_state.compl_reqs))
166 		__io_submit_flush_completions(ctx);
167 }
168 
169 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
170 {
171 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
172 }
173 
174 static bool io_match_linked(struct io_kiocb *head)
175 {
176 	struct io_kiocb *req;
177 
178 	io_for_each_link(req, head) {
179 		if (req->flags & REQ_F_INFLIGHT)
180 			return true;
181 	}
182 	return false;
183 }
184 
185 /*
186  * As io_match_task() but protected against racing with linked timeouts.
187  * User must not hold timeout_lock.
188  */
189 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
190 			bool cancel_all)
191 {
192 	bool matched;
193 
194 	if (task && head->task != task)
195 		return false;
196 	if (cancel_all)
197 		return true;
198 
199 	if (head->flags & REQ_F_LINK_TIMEOUT) {
200 		struct io_ring_ctx *ctx = head->ctx;
201 
202 		/* protect against races with linked timeouts */
203 		spin_lock_irq(&ctx->timeout_lock);
204 		matched = io_match_linked(head);
205 		spin_unlock_irq(&ctx->timeout_lock);
206 	} else {
207 		matched = io_match_linked(head);
208 	}
209 	return matched;
210 }
211 
212 static inline void req_fail_link_node(struct io_kiocb *req, int res)
213 {
214 	req_set_fail(req);
215 	io_req_set_res(req, res, 0);
216 }
217 
218 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
219 {
220 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
221 }
222 
223 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
224 {
225 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
226 
227 	complete(&ctx->ref_comp);
228 }
229 
230 static __cold void io_fallback_req_func(struct work_struct *work)
231 {
232 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
233 						fallback_work.work);
234 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
235 	struct io_kiocb *req, *tmp;
236 	bool locked = false;
237 
238 	percpu_ref_get(&ctx->refs);
239 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
240 		req->io_task_work.func(req, &locked);
241 
242 	if (locked) {
243 		io_submit_flush_completions(ctx);
244 		mutex_unlock(&ctx->uring_lock);
245 	}
246 	percpu_ref_put(&ctx->refs);
247 }
248 
249 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
250 {
251 	unsigned hash_buckets = 1U << bits;
252 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
253 
254 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
255 	if (!table->hbs)
256 		return -ENOMEM;
257 
258 	table->hash_bits = bits;
259 	init_hash_table(table, hash_buckets);
260 	return 0;
261 }
262 
263 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
264 {
265 	struct io_ring_ctx *ctx;
266 	int hash_bits;
267 
268 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
269 	if (!ctx)
270 		return NULL;
271 
272 	xa_init(&ctx->io_bl_xa);
273 
274 	/*
275 	 * Use 5 bits less than the max cq entries, that should give us around
276 	 * 32 entries per hash list if totally full and uniformly spread, but
277 	 * don't keep too many buckets to not overconsume memory.
278 	 */
279 	hash_bits = ilog2(p->cq_entries) - 5;
280 	hash_bits = clamp(hash_bits, 1, 8);
281 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
282 		goto err;
283 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
284 		goto err;
285 
286 	ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
287 	if (!ctx->dummy_ubuf)
288 		goto err;
289 	/* set invalid range, so io_import_fixed() fails meeting it */
290 	ctx->dummy_ubuf->ubuf = -1UL;
291 
292 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
293 			    0, GFP_KERNEL))
294 		goto err;
295 
296 	ctx->flags = p->flags;
297 	init_waitqueue_head(&ctx->sqo_sq_wait);
298 	INIT_LIST_HEAD(&ctx->sqd_list);
299 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
300 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
301 	io_alloc_cache_init(&ctx->apoll_cache);
302 	io_alloc_cache_init(&ctx->netmsg_cache);
303 	init_completion(&ctx->ref_comp);
304 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
305 	mutex_init(&ctx->uring_lock);
306 	init_waitqueue_head(&ctx->cq_wait);
307 	spin_lock_init(&ctx->completion_lock);
308 	spin_lock_init(&ctx->timeout_lock);
309 	INIT_WQ_LIST(&ctx->iopoll_list);
310 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
311 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
312 	INIT_LIST_HEAD(&ctx->defer_list);
313 	INIT_LIST_HEAD(&ctx->timeout_list);
314 	INIT_LIST_HEAD(&ctx->ltimeout_list);
315 	spin_lock_init(&ctx->rsrc_ref_lock);
316 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
317 	INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
318 	init_llist_head(&ctx->rsrc_put_llist);
319 	INIT_LIST_HEAD(&ctx->tctx_list);
320 	ctx->submit_state.free_list.next = NULL;
321 	INIT_WQ_LIST(&ctx->locked_free_list);
322 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
323 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
324 	return ctx;
325 err:
326 	kfree(ctx->dummy_ubuf);
327 	kfree(ctx->cancel_table.hbs);
328 	kfree(ctx->cancel_table_locked.hbs);
329 	kfree(ctx->io_bl);
330 	xa_destroy(&ctx->io_bl_xa);
331 	kfree(ctx);
332 	return NULL;
333 }
334 
335 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
336 {
337 	struct io_rings *r = ctx->rings;
338 
339 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
340 	ctx->cq_extra--;
341 }
342 
343 static bool req_need_defer(struct io_kiocb *req, u32 seq)
344 {
345 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
346 		struct io_ring_ctx *ctx = req->ctx;
347 
348 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
349 	}
350 
351 	return false;
352 }
353 
354 static inline void io_req_track_inflight(struct io_kiocb *req)
355 {
356 	if (!(req->flags & REQ_F_INFLIGHT)) {
357 		req->flags |= REQ_F_INFLIGHT;
358 		atomic_inc(&req->task->io_uring->inflight_tracked);
359 	}
360 }
361 
362 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
363 {
364 	if (WARN_ON_ONCE(!req->link))
365 		return NULL;
366 
367 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
368 	req->flags |= REQ_F_LINK_TIMEOUT;
369 
370 	/* linked timeouts should have two refs once prep'ed */
371 	io_req_set_refcount(req);
372 	__io_req_set_refcount(req->link, 2);
373 	return req->link;
374 }
375 
376 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
377 {
378 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
379 		return NULL;
380 	return __io_prep_linked_timeout(req);
381 }
382 
383 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
384 {
385 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
386 }
387 
388 static inline void io_arm_ltimeout(struct io_kiocb *req)
389 {
390 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
391 		__io_arm_ltimeout(req);
392 }
393 
394 static void io_prep_async_work(struct io_kiocb *req)
395 {
396 	const struct io_op_def *def = &io_op_defs[req->opcode];
397 	struct io_ring_ctx *ctx = req->ctx;
398 
399 	if (!(req->flags & REQ_F_CREDS)) {
400 		req->flags |= REQ_F_CREDS;
401 		req->creds = get_current_cred();
402 	}
403 
404 	req->work.list.next = NULL;
405 	req->work.flags = 0;
406 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
407 	if (req->flags & REQ_F_FORCE_ASYNC)
408 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
409 
410 	if (req->file && !io_req_ffs_set(req))
411 		req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT;
412 
413 	if (req->flags & REQ_F_ISREG) {
414 		if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
415 			io_wq_hash_work(&req->work, file_inode(req->file));
416 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
417 		if (def->unbound_nonreg_file)
418 			req->work.flags |= IO_WQ_WORK_UNBOUND;
419 	}
420 }
421 
422 static void io_prep_async_link(struct io_kiocb *req)
423 {
424 	struct io_kiocb *cur;
425 
426 	if (req->flags & REQ_F_LINK_TIMEOUT) {
427 		struct io_ring_ctx *ctx = req->ctx;
428 
429 		spin_lock_irq(&ctx->timeout_lock);
430 		io_for_each_link(cur, req)
431 			io_prep_async_work(cur);
432 		spin_unlock_irq(&ctx->timeout_lock);
433 	} else {
434 		io_for_each_link(cur, req)
435 			io_prep_async_work(cur);
436 	}
437 }
438 
439 void io_queue_iowq(struct io_kiocb *req, bool *dont_use)
440 {
441 	struct io_kiocb *link = io_prep_linked_timeout(req);
442 	struct io_uring_task *tctx = req->task->io_uring;
443 
444 	BUG_ON(!tctx);
445 	BUG_ON(!tctx->io_wq);
446 
447 	/* init ->work of the whole link before punting */
448 	io_prep_async_link(req);
449 
450 	/*
451 	 * Not expected to happen, but if we do have a bug where this _can_
452 	 * happen, catch it here and ensure the request is marked as
453 	 * canceled. That will make io-wq go through the usual work cancel
454 	 * procedure rather than attempt to run this request (or create a new
455 	 * worker for it).
456 	 */
457 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
458 		req->work.flags |= IO_WQ_WORK_CANCEL;
459 
460 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
461 	io_wq_enqueue(tctx->io_wq, &req->work);
462 	if (link)
463 		io_queue_linked_timeout(link);
464 }
465 
466 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
467 {
468 	while (!list_empty(&ctx->defer_list)) {
469 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
470 						struct io_defer_entry, list);
471 
472 		if (req_need_defer(de->req, de->seq))
473 			break;
474 		list_del_init(&de->list);
475 		io_req_task_queue(de->req);
476 		kfree(de);
477 	}
478 }
479 
480 static void io_eventfd_signal(struct io_ring_ctx *ctx)
481 {
482 	struct io_ev_fd *ev_fd;
483 	bool skip;
484 
485 	spin_lock(&ctx->completion_lock);
486 	/*
487 	 * Eventfd should only get triggered when at least one event has been
488 	 * posted. Some applications rely on the eventfd notification count only
489 	 * changing IFF a new CQE has been added to the CQ ring. There's no
490 	 * depedency on 1:1 relationship between how many times this function is
491 	 * called (and hence the eventfd count) and number of CQEs posted to the
492 	 * CQ ring.
493 	 */
494 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
495 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
496 	spin_unlock(&ctx->completion_lock);
497 	if (skip)
498 		return;
499 
500 	rcu_read_lock();
501 	/*
502 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
503 	 * and eventfd_signal
504 	 */
505 	ev_fd = rcu_dereference(ctx->io_ev_fd);
506 
507 	/*
508 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
509 	 * completed between the NULL check of ctx->io_ev_fd at the start of
510 	 * the function and rcu_read_lock.
511 	 */
512 	if (unlikely(!ev_fd))
513 		goto out;
514 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
515 		goto out;
516 
517 	if (!ev_fd->eventfd_async || io_wq_current_is_worker())
518 		eventfd_signal(ev_fd->cq_ev_fd, 1);
519 out:
520 	rcu_read_unlock();
521 }
522 
523 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
524 {
525 	if (ctx->off_timeout_used || ctx->drain_active) {
526 		spin_lock(&ctx->completion_lock);
527 		if (ctx->off_timeout_used)
528 			io_flush_timeouts(ctx);
529 		if (ctx->drain_active)
530 			io_queue_deferred(ctx);
531 		spin_unlock(&ctx->completion_lock);
532 	}
533 	if (ctx->has_evfd)
534 		io_eventfd_signal(ctx);
535 }
536 
537 static inline void io_cqring_ev_posted(struct io_ring_ctx *ctx)
538 {
539 	io_commit_cqring_flush(ctx);
540 	io_cqring_wake(ctx);
541 }
542 
543 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
544 	__releases(ctx->completion_lock)
545 {
546 	io_commit_cqring(ctx);
547 	spin_unlock(&ctx->completion_lock);
548 	io_cqring_ev_posted(ctx);
549 }
550 
551 void io_cq_unlock_post(struct io_ring_ctx *ctx)
552 {
553 	__io_cq_unlock_post(ctx);
554 }
555 
556 /* Returns true if there are no backlogged entries after the flush */
557 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
558 {
559 	bool all_flushed;
560 	size_t cqe_size = sizeof(struct io_uring_cqe);
561 
562 	if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
563 		return false;
564 
565 	if (ctx->flags & IORING_SETUP_CQE32)
566 		cqe_size <<= 1;
567 
568 	io_cq_lock(ctx);
569 	while (!list_empty(&ctx->cq_overflow_list)) {
570 		struct io_uring_cqe *cqe = io_get_cqe(ctx);
571 		struct io_overflow_cqe *ocqe;
572 
573 		if (!cqe && !force)
574 			break;
575 		ocqe = list_first_entry(&ctx->cq_overflow_list,
576 					struct io_overflow_cqe, list);
577 		if (cqe)
578 			memcpy(cqe, &ocqe->cqe, cqe_size);
579 		else
580 			io_account_cq_overflow(ctx);
581 
582 		list_del(&ocqe->list);
583 		kfree(ocqe);
584 	}
585 
586 	all_flushed = list_empty(&ctx->cq_overflow_list);
587 	if (all_flushed) {
588 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
589 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
590 	}
591 
592 	io_cq_unlock_post(ctx);
593 	return all_flushed;
594 }
595 
596 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
597 {
598 	bool ret = true;
599 
600 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
601 		/* iopoll syncs against uring_lock, not completion_lock */
602 		if (ctx->flags & IORING_SETUP_IOPOLL)
603 			mutex_lock(&ctx->uring_lock);
604 		ret = __io_cqring_overflow_flush(ctx, false);
605 		if (ctx->flags & IORING_SETUP_IOPOLL)
606 			mutex_unlock(&ctx->uring_lock);
607 	}
608 
609 	return ret;
610 }
611 
612 void __io_put_task(struct task_struct *task, int nr)
613 {
614 	struct io_uring_task *tctx = task->io_uring;
615 
616 	percpu_counter_sub(&tctx->inflight, nr);
617 	if (unlikely(atomic_read(&tctx->in_idle)))
618 		wake_up(&tctx->wait);
619 	put_task_struct_many(task, nr);
620 }
621 
622 void io_task_refs_refill(struct io_uring_task *tctx)
623 {
624 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
625 
626 	percpu_counter_add(&tctx->inflight, refill);
627 	refcount_add(refill, &current->usage);
628 	tctx->cached_refs += refill;
629 }
630 
631 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
632 {
633 	struct io_uring_task *tctx = task->io_uring;
634 	unsigned int refs = tctx->cached_refs;
635 
636 	if (refs) {
637 		tctx->cached_refs = 0;
638 		percpu_counter_sub(&tctx->inflight, refs);
639 		put_task_struct_many(task, refs);
640 	}
641 }
642 
643 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
644 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
645 {
646 	struct io_overflow_cqe *ocqe;
647 	size_t ocq_size = sizeof(struct io_overflow_cqe);
648 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
649 
650 	if (is_cqe32)
651 		ocq_size += sizeof(struct io_uring_cqe);
652 
653 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
654 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
655 	if (!ocqe) {
656 		/*
657 		 * If we're in ring overflow flush mode, or in task cancel mode,
658 		 * or cannot allocate an overflow entry, then we need to drop it
659 		 * on the floor.
660 		 */
661 		io_account_cq_overflow(ctx);
662 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
663 		return false;
664 	}
665 	if (list_empty(&ctx->cq_overflow_list)) {
666 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
667 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
668 
669 	}
670 	ocqe->cqe.user_data = user_data;
671 	ocqe->cqe.res = res;
672 	ocqe->cqe.flags = cflags;
673 	if (is_cqe32) {
674 		ocqe->cqe.big_cqe[0] = extra1;
675 		ocqe->cqe.big_cqe[1] = extra2;
676 	}
677 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
678 	return true;
679 }
680 
681 bool io_req_cqe_overflow(struct io_kiocb *req)
682 {
683 	if (!(req->flags & REQ_F_CQE32_INIT)) {
684 		req->extra1 = 0;
685 		req->extra2 = 0;
686 	}
687 	return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
688 					req->cqe.res, req->cqe.flags,
689 					req->extra1, req->extra2);
690 }
691 
692 /*
693  * writes to the cq entry need to come after reading head; the
694  * control dependency is enough as we're using WRITE_ONCE to
695  * fill the cq entry
696  */
697 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx)
698 {
699 	struct io_rings *rings = ctx->rings;
700 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
701 	unsigned int free, queued, len;
702 
703 
704 	/* userspace may cheat modifying the tail, be safe and do min */
705 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
706 	free = ctx->cq_entries - queued;
707 	/* we need a contiguous range, limit based on the current array offset */
708 	len = min(free, ctx->cq_entries - off);
709 	if (!len)
710 		return NULL;
711 
712 	if (ctx->flags & IORING_SETUP_CQE32) {
713 		off <<= 1;
714 		len <<= 1;
715 	}
716 
717 	ctx->cqe_cached = &rings->cqes[off];
718 	ctx->cqe_sentinel = ctx->cqe_cached + len;
719 
720 	ctx->cached_cq_tail++;
721 	ctx->cqe_cached++;
722 	if (ctx->flags & IORING_SETUP_CQE32)
723 		ctx->cqe_cached++;
724 	return &rings->cqes[off];
725 }
726 
727 bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
728 		     bool allow_overflow)
729 {
730 	struct io_uring_cqe *cqe;
731 
732 	ctx->cq_extra++;
733 
734 	/*
735 	 * If we can't get a cq entry, userspace overflowed the
736 	 * submission (by quite a lot). Increment the overflow count in
737 	 * the ring.
738 	 */
739 	cqe = io_get_cqe(ctx);
740 	if (likely(cqe)) {
741 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
742 
743 		WRITE_ONCE(cqe->user_data, user_data);
744 		WRITE_ONCE(cqe->res, res);
745 		WRITE_ONCE(cqe->flags, cflags);
746 
747 		if (ctx->flags & IORING_SETUP_CQE32) {
748 			WRITE_ONCE(cqe->big_cqe[0], 0);
749 			WRITE_ONCE(cqe->big_cqe[1], 0);
750 		}
751 		return true;
752 	}
753 
754 	if (allow_overflow)
755 		return io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
756 
757 	return false;
758 }
759 
760 bool io_post_aux_cqe(struct io_ring_ctx *ctx,
761 		     u64 user_data, s32 res, u32 cflags,
762 		     bool allow_overflow)
763 {
764 	bool filled;
765 
766 	io_cq_lock(ctx);
767 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags, allow_overflow);
768 	io_cq_unlock_post(ctx);
769 	return filled;
770 }
771 
772 static void __io_req_complete_put(struct io_kiocb *req)
773 {
774 	/*
775 	 * If we're the last reference to this request, add to our locked
776 	 * free_list cache.
777 	 */
778 	if (req_ref_put_and_test(req)) {
779 		struct io_ring_ctx *ctx = req->ctx;
780 
781 		if (req->flags & IO_REQ_LINK_FLAGS) {
782 			if (req->flags & IO_DISARM_MASK)
783 				io_disarm_next(req);
784 			if (req->link) {
785 				io_req_task_queue(req->link);
786 				req->link = NULL;
787 			}
788 		}
789 		io_req_put_rsrc(req);
790 		/*
791 		 * Selected buffer deallocation in io_clean_op() assumes that
792 		 * we don't hold ->completion_lock. Clean them here to avoid
793 		 * deadlocks.
794 		 */
795 		io_put_kbuf_comp(req);
796 		io_dismantle_req(req);
797 		io_put_task(req->task, 1);
798 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
799 		ctx->locked_free_nr++;
800 	}
801 }
802 
803 void __io_req_complete_post(struct io_kiocb *req)
804 {
805 	if (!(req->flags & REQ_F_CQE_SKIP))
806 		__io_fill_cqe_req(req->ctx, req);
807 	__io_req_complete_put(req);
808 }
809 
810 void io_req_complete_post(struct io_kiocb *req)
811 {
812 	struct io_ring_ctx *ctx = req->ctx;
813 
814 	io_cq_lock(ctx);
815 	__io_req_complete_post(req);
816 	io_cq_unlock_post(ctx);
817 }
818 
819 inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags)
820 {
821 	io_req_complete_post(req);
822 }
823 
824 void io_req_complete_failed(struct io_kiocb *req, s32 res)
825 {
826 	req_set_fail(req);
827 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
828 	io_req_complete_post(req);
829 }
830 
831 /*
832  * Don't initialise the fields below on every allocation, but do that in
833  * advance and keep them valid across allocations.
834  */
835 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
836 {
837 	req->ctx = ctx;
838 	req->link = NULL;
839 	req->async_data = NULL;
840 	/* not necessary, but safer to zero */
841 	req->cqe.res = 0;
842 }
843 
844 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
845 					struct io_submit_state *state)
846 {
847 	spin_lock(&ctx->completion_lock);
848 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
849 	ctx->locked_free_nr = 0;
850 	spin_unlock(&ctx->completion_lock);
851 }
852 
853 /*
854  * A request might get retired back into the request caches even before opcode
855  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
856  * Because of that, io_alloc_req() should be called only under ->uring_lock
857  * and with extra caution to not get a request that is still worked on.
858  */
859 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
860 	__must_hold(&ctx->uring_lock)
861 {
862 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
863 	void *reqs[IO_REQ_ALLOC_BATCH];
864 	int ret, i;
865 
866 	/*
867 	 * If we have more than a batch's worth of requests in our IRQ side
868 	 * locked cache, grab the lock and move them over to our submission
869 	 * side cache.
870 	 */
871 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
872 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
873 		if (!io_req_cache_empty(ctx))
874 			return true;
875 	}
876 
877 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
878 
879 	/*
880 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
881 	 * retry single alloc to be on the safe side.
882 	 */
883 	if (unlikely(ret <= 0)) {
884 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
885 		if (!reqs[0])
886 			return false;
887 		ret = 1;
888 	}
889 
890 	percpu_ref_get_many(&ctx->refs, ret);
891 	for (i = 0; i < ret; i++) {
892 		struct io_kiocb *req = reqs[i];
893 
894 		io_preinit_req(req, ctx);
895 		io_req_add_to_cache(req, ctx);
896 	}
897 	return true;
898 }
899 
900 static inline void io_dismantle_req(struct io_kiocb *req)
901 {
902 	unsigned int flags = req->flags;
903 
904 	if (unlikely(flags & IO_REQ_CLEAN_FLAGS))
905 		io_clean_op(req);
906 	if (!(flags & REQ_F_FIXED_FILE))
907 		io_put_file(req->file);
908 }
909 
910 __cold void io_free_req(struct io_kiocb *req)
911 {
912 	struct io_ring_ctx *ctx = req->ctx;
913 
914 	io_req_put_rsrc(req);
915 	io_dismantle_req(req);
916 	io_put_task(req->task, 1);
917 
918 	spin_lock(&ctx->completion_lock);
919 	wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
920 	ctx->locked_free_nr++;
921 	spin_unlock(&ctx->completion_lock);
922 }
923 
924 static void __io_req_find_next_prep(struct io_kiocb *req)
925 {
926 	struct io_ring_ctx *ctx = req->ctx;
927 
928 	io_cq_lock(ctx);
929 	io_disarm_next(req);
930 	io_cq_unlock_post(ctx);
931 }
932 
933 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
934 {
935 	struct io_kiocb *nxt;
936 
937 	/*
938 	 * If LINK is set, we have dependent requests in this chain. If we
939 	 * didn't fail this request, queue the first one up, moving any other
940 	 * dependencies to the next request. In case of failure, fail the rest
941 	 * of the chain.
942 	 */
943 	if (unlikely(req->flags & IO_DISARM_MASK))
944 		__io_req_find_next_prep(req);
945 	nxt = req->link;
946 	req->link = NULL;
947 	return nxt;
948 }
949 
950 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
951 {
952 	if (!ctx)
953 		return;
954 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
955 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
956 	if (*locked) {
957 		io_submit_flush_completions(ctx);
958 		mutex_unlock(&ctx->uring_lock);
959 		*locked = false;
960 	}
961 	percpu_ref_put(&ctx->refs);
962 }
963 
964 static unsigned int handle_tw_list(struct llist_node *node,
965 				   struct io_ring_ctx **ctx, bool *locked,
966 				   struct llist_node *last)
967 {
968 	unsigned int count = 0;
969 
970 	while (node != last) {
971 		struct llist_node *next = node->next;
972 		struct io_kiocb *req = container_of(node, struct io_kiocb,
973 						    io_task_work.node);
974 
975 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
976 
977 		if (req->ctx != *ctx) {
978 			ctx_flush_and_put(*ctx, locked);
979 			*ctx = req->ctx;
980 			/* if not contended, grab and improve batching */
981 			*locked = mutex_trylock(&(*ctx)->uring_lock);
982 			percpu_ref_get(&(*ctx)->refs);
983 		}
984 		req->io_task_work.func(req, locked);
985 		node = next;
986 		count++;
987 	}
988 
989 	return count;
990 }
991 
992 /**
993  * io_llist_xchg - swap all entries in a lock-less list
994  * @head:	the head of lock-less list to delete all entries
995  * @new:	new entry as the head of the list
996  *
997  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
998  * The order of entries returned is from the newest to the oldest added one.
999  */
1000 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1001 					       struct llist_node *new)
1002 {
1003 	return xchg(&head->first, new);
1004 }
1005 
1006 /**
1007  * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1008  * @head:	the head of lock-less list to delete all entries
1009  * @old:	expected old value of the first entry of the list
1010  * @new:	new entry as the head of the list
1011  *
1012  * perform a cmpxchg on the first entry of the list.
1013  */
1014 
1015 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1016 						  struct llist_node *old,
1017 						  struct llist_node *new)
1018 {
1019 	return cmpxchg(&head->first, old, new);
1020 }
1021 
1022 void tctx_task_work(struct callback_head *cb)
1023 {
1024 	bool uring_locked = false;
1025 	struct io_ring_ctx *ctx = NULL;
1026 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1027 						  task_work);
1028 	struct llist_node fake = {};
1029 	struct llist_node *node = io_llist_xchg(&tctx->task_list, &fake);
1030 	unsigned int loops = 1;
1031 	unsigned int count = handle_tw_list(node, &ctx, &uring_locked, NULL);
1032 
1033 	node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1034 	while (node != &fake) {
1035 		loops++;
1036 		node = io_llist_xchg(&tctx->task_list, &fake);
1037 		count += handle_tw_list(node, &ctx, &uring_locked, &fake);
1038 		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1039 	}
1040 
1041 	ctx_flush_and_put(ctx, &uring_locked);
1042 
1043 	/* relaxed read is enough as only the task itself sets ->in_idle */
1044 	if (unlikely(atomic_read(&tctx->in_idle)))
1045 		io_uring_drop_tctx_refs(current);
1046 
1047 	trace_io_uring_task_work_run(tctx, count, loops);
1048 }
1049 
1050 void io_req_task_work_add(struct io_kiocb *req)
1051 {
1052 	struct io_uring_task *tctx = req->task->io_uring;
1053 	struct io_ring_ctx *ctx = req->ctx;
1054 	struct llist_node *node;
1055 	bool running;
1056 
1057 	running = !llist_add(&req->io_task_work.node, &tctx->task_list);
1058 
1059 	/* task_work already pending, we're done */
1060 	if (running)
1061 		return;
1062 
1063 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1064 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1065 
1066 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1067 		return;
1068 
1069 	node = llist_del_all(&tctx->task_list);
1070 
1071 	while (node) {
1072 		req = container_of(node, struct io_kiocb, io_task_work.node);
1073 		node = node->next;
1074 		if (llist_add(&req->io_task_work.node,
1075 			      &req->ctx->fallback_llist))
1076 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1077 	}
1078 }
1079 
1080 static void io_req_tw_post(struct io_kiocb *req, bool *locked)
1081 {
1082 	io_req_complete_post(req);
1083 }
1084 
1085 void io_req_tw_post_queue(struct io_kiocb *req, s32 res, u32 cflags)
1086 {
1087 	io_req_set_res(req, res, cflags);
1088 	req->io_task_work.func = io_req_tw_post;
1089 	io_req_task_work_add(req);
1090 }
1091 
1092 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
1093 {
1094 	/* not needed for normal modes, but SQPOLL depends on it */
1095 	io_tw_lock(req->ctx, locked);
1096 	io_req_complete_failed(req, req->cqe.res);
1097 }
1098 
1099 void io_req_task_submit(struct io_kiocb *req, bool *locked)
1100 {
1101 	io_tw_lock(req->ctx, locked);
1102 	/* req->task == current here, checking PF_EXITING is safe */
1103 	if (likely(!(req->task->flags & PF_EXITING)))
1104 		io_queue_sqe(req);
1105 	else
1106 		io_req_complete_failed(req, -EFAULT);
1107 }
1108 
1109 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1110 {
1111 	io_req_set_res(req, ret, 0);
1112 	req->io_task_work.func = io_req_task_cancel;
1113 	io_req_task_work_add(req);
1114 }
1115 
1116 void io_req_task_queue(struct io_kiocb *req)
1117 {
1118 	req->io_task_work.func = io_req_task_submit;
1119 	io_req_task_work_add(req);
1120 }
1121 
1122 void io_queue_next(struct io_kiocb *req)
1123 {
1124 	struct io_kiocb *nxt = io_req_find_next(req);
1125 
1126 	if (nxt)
1127 		io_req_task_queue(nxt);
1128 }
1129 
1130 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1131 	__must_hold(&ctx->uring_lock)
1132 {
1133 	struct task_struct *task = NULL;
1134 	int task_refs = 0;
1135 
1136 	do {
1137 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1138 						    comp_list);
1139 
1140 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1141 			if (req->flags & REQ_F_REFCOUNT) {
1142 				node = req->comp_list.next;
1143 				if (!req_ref_put_and_test(req))
1144 					continue;
1145 			}
1146 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1147 				struct async_poll *apoll = req->apoll;
1148 
1149 				if (apoll->double_poll)
1150 					kfree(apoll->double_poll);
1151 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1152 					kfree(apoll);
1153 				req->flags &= ~REQ_F_POLLED;
1154 			}
1155 			if (req->flags & IO_REQ_LINK_FLAGS)
1156 				io_queue_next(req);
1157 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1158 				io_clean_op(req);
1159 		}
1160 		if (!(req->flags & REQ_F_FIXED_FILE))
1161 			io_put_file(req->file);
1162 
1163 		io_req_put_rsrc_locked(req, ctx);
1164 
1165 		if (req->task != task) {
1166 			if (task)
1167 				io_put_task(task, task_refs);
1168 			task = req->task;
1169 			task_refs = 0;
1170 		}
1171 		task_refs++;
1172 		node = req->comp_list.next;
1173 		io_req_add_to_cache(req, ctx);
1174 	} while (node);
1175 
1176 	if (task)
1177 		io_put_task(task, task_refs);
1178 }
1179 
1180 static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1181 	__must_hold(&ctx->uring_lock)
1182 {
1183 	struct io_wq_work_node *node, *prev;
1184 	struct io_submit_state *state = &ctx->submit_state;
1185 
1186 	spin_lock(&ctx->completion_lock);
1187 	wq_list_for_each(node, prev, &state->compl_reqs) {
1188 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1189 					    comp_list);
1190 
1191 		if (!(req->flags & REQ_F_CQE_SKIP))
1192 			__io_fill_cqe_req(ctx, req);
1193 	}
1194 	__io_cq_unlock_post(ctx);
1195 
1196 	io_free_batch_list(ctx, state->compl_reqs.first);
1197 	INIT_WQ_LIST(&state->compl_reqs);
1198 }
1199 
1200 /*
1201  * Drop reference to request, return next in chain (if there is one) if this
1202  * was the last reference to this request.
1203  */
1204 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
1205 {
1206 	struct io_kiocb *nxt = NULL;
1207 
1208 	if (req_ref_put_and_test(req)) {
1209 		if (unlikely(req->flags & IO_REQ_LINK_FLAGS))
1210 			nxt = io_req_find_next(req);
1211 		io_free_req(req);
1212 	}
1213 	return nxt;
1214 }
1215 
1216 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1217 {
1218 	/* See comment at the top of this file */
1219 	smp_rmb();
1220 	return __io_cqring_events(ctx);
1221 }
1222 
1223 /*
1224  * We can't just wait for polled events to come to us, we have to actively
1225  * find and complete them.
1226  */
1227 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1228 {
1229 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1230 		return;
1231 
1232 	mutex_lock(&ctx->uring_lock);
1233 	while (!wq_list_empty(&ctx->iopoll_list)) {
1234 		/* let it sleep and repeat later if can't complete a request */
1235 		if (io_do_iopoll(ctx, true) == 0)
1236 			break;
1237 		/*
1238 		 * Ensure we allow local-to-the-cpu processing to take place,
1239 		 * in this case we need to ensure that we reap all events.
1240 		 * Also let task_work, etc. to progress by releasing the mutex
1241 		 */
1242 		if (need_resched()) {
1243 			mutex_unlock(&ctx->uring_lock);
1244 			cond_resched();
1245 			mutex_lock(&ctx->uring_lock);
1246 		}
1247 	}
1248 	mutex_unlock(&ctx->uring_lock);
1249 }
1250 
1251 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1252 {
1253 	unsigned int nr_events = 0;
1254 	int ret = 0;
1255 	unsigned long check_cq;
1256 
1257 	check_cq = READ_ONCE(ctx->check_cq);
1258 	if (unlikely(check_cq)) {
1259 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1260 			__io_cqring_overflow_flush(ctx, false);
1261 		/*
1262 		 * Similarly do not spin if we have not informed the user of any
1263 		 * dropped CQE.
1264 		 */
1265 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1266 			return -EBADR;
1267 	}
1268 	/*
1269 	 * Don't enter poll loop if we already have events pending.
1270 	 * If we do, we can potentially be spinning for commands that
1271 	 * already triggered a CQE (eg in error).
1272 	 */
1273 	if (io_cqring_events(ctx))
1274 		return 0;
1275 
1276 	do {
1277 		/*
1278 		 * If a submit got punted to a workqueue, we can have the
1279 		 * application entering polling for a command before it gets
1280 		 * issued. That app will hold the uring_lock for the duration
1281 		 * of the poll right here, so we need to take a breather every
1282 		 * now and then to ensure that the issue has a chance to add
1283 		 * the poll to the issued list. Otherwise we can spin here
1284 		 * forever, while the workqueue is stuck trying to acquire the
1285 		 * very same mutex.
1286 		 */
1287 		if (wq_list_empty(&ctx->iopoll_list)) {
1288 			u32 tail = ctx->cached_cq_tail;
1289 
1290 			mutex_unlock(&ctx->uring_lock);
1291 			io_run_task_work();
1292 			mutex_lock(&ctx->uring_lock);
1293 
1294 			/* some requests don't go through iopoll_list */
1295 			if (tail != ctx->cached_cq_tail ||
1296 			    wq_list_empty(&ctx->iopoll_list))
1297 				break;
1298 		}
1299 		ret = io_do_iopoll(ctx, !min);
1300 		if (ret < 0)
1301 			break;
1302 		nr_events += ret;
1303 		ret = 0;
1304 	} while (nr_events < min && !need_resched());
1305 
1306 	return ret;
1307 }
1308 
1309 void io_req_task_complete(struct io_kiocb *req, bool *locked)
1310 {
1311 	if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)) {
1312 		unsigned issue_flags = *locked ? 0 : IO_URING_F_UNLOCKED;
1313 
1314 		req->cqe.flags |= io_put_kbuf(req, issue_flags);
1315 	}
1316 
1317 	if (*locked)
1318 		io_req_complete_defer(req);
1319 	else
1320 		io_req_complete_post(req);
1321 }
1322 
1323 /*
1324  * After the iocb has been issued, it's safe to be found on the poll list.
1325  * Adding the kiocb to the list AFTER submission ensures that we don't
1326  * find it from a io_do_iopoll() thread before the issuer is done
1327  * accessing the kiocb cookie.
1328  */
1329 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1330 {
1331 	struct io_ring_ctx *ctx = req->ctx;
1332 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1333 
1334 	/* workqueue context doesn't hold uring_lock, grab it now */
1335 	if (unlikely(needs_lock))
1336 		mutex_lock(&ctx->uring_lock);
1337 
1338 	/*
1339 	 * Track whether we have multiple files in our lists. This will impact
1340 	 * how we do polling eventually, not spinning if we're on potentially
1341 	 * different devices.
1342 	 */
1343 	if (wq_list_empty(&ctx->iopoll_list)) {
1344 		ctx->poll_multi_queue = false;
1345 	} else if (!ctx->poll_multi_queue) {
1346 		struct io_kiocb *list_req;
1347 
1348 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1349 					comp_list);
1350 		if (list_req->file != req->file)
1351 			ctx->poll_multi_queue = true;
1352 	}
1353 
1354 	/*
1355 	 * For fast devices, IO may have already completed. If it has, add
1356 	 * it to the front so we find it first.
1357 	 */
1358 	if (READ_ONCE(req->iopoll_completed))
1359 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1360 	else
1361 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1362 
1363 	if (unlikely(needs_lock)) {
1364 		/*
1365 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1366 		 * in sq thread task context or in io worker task context. If
1367 		 * current task context is sq thread, we don't need to check
1368 		 * whether should wake up sq thread.
1369 		 */
1370 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1371 		    wq_has_sleeper(&ctx->sq_data->wait))
1372 			wake_up(&ctx->sq_data->wait);
1373 
1374 		mutex_unlock(&ctx->uring_lock);
1375 	}
1376 }
1377 
1378 static bool io_bdev_nowait(struct block_device *bdev)
1379 {
1380 	return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
1381 }
1382 
1383 /*
1384  * If we tracked the file through the SCM inflight mechanism, we could support
1385  * any file. For now, just ensure that anything potentially problematic is done
1386  * inline.
1387  */
1388 static bool __io_file_supports_nowait(struct file *file, umode_t mode)
1389 {
1390 	if (S_ISBLK(mode)) {
1391 		if (IS_ENABLED(CONFIG_BLOCK) &&
1392 		    io_bdev_nowait(I_BDEV(file->f_mapping->host)))
1393 			return true;
1394 		return false;
1395 	}
1396 	if (S_ISSOCK(mode))
1397 		return true;
1398 	if (S_ISREG(mode)) {
1399 		if (IS_ENABLED(CONFIG_BLOCK) &&
1400 		    io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
1401 		    !io_is_uring_fops(file))
1402 			return true;
1403 		return false;
1404 	}
1405 
1406 	/* any ->read/write should understand O_NONBLOCK */
1407 	if (file->f_flags & O_NONBLOCK)
1408 		return true;
1409 	return file->f_mode & FMODE_NOWAIT;
1410 }
1411 
1412 /*
1413  * If we tracked the file through the SCM inflight mechanism, we could support
1414  * any file. For now, just ensure that anything potentially problematic is done
1415  * inline.
1416  */
1417 unsigned int io_file_get_flags(struct file *file)
1418 {
1419 	umode_t mode = file_inode(file)->i_mode;
1420 	unsigned int res = 0;
1421 
1422 	if (S_ISREG(mode))
1423 		res |= FFS_ISREG;
1424 	if (__io_file_supports_nowait(file, mode))
1425 		res |= FFS_NOWAIT;
1426 	if (io_file_need_scm(file))
1427 		res |= FFS_SCM;
1428 	return res;
1429 }
1430 
1431 bool io_alloc_async_data(struct io_kiocb *req)
1432 {
1433 	WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
1434 	req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
1435 	if (req->async_data) {
1436 		req->flags |= REQ_F_ASYNC_DATA;
1437 		return false;
1438 	}
1439 	return true;
1440 }
1441 
1442 int io_req_prep_async(struct io_kiocb *req)
1443 {
1444 	const struct io_op_def *def = &io_op_defs[req->opcode];
1445 
1446 	/* assign early for deferred execution for non-fixed file */
1447 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE))
1448 		req->file = io_file_get_normal(req, req->cqe.fd);
1449 	if (!def->prep_async)
1450 		return 0;
1451 	if (WARN_ON_ONCE(req_has_async_data(req)))
1452 		return -EFAULT;
1453 	if (!io_op_defs[req->opcode].manual_alloc) {
1454 		if (io_alloc_async_data(req))
1455 			return -EAGAIN;
1456 	}
1457 	return def->prep_async(req);
1458 }
1459 
1460 static u32 io_get_sequence(struct io_kiocb *req)
1461 {
1462 	u32 seq = req->ctx->cached_sq_head;
1463 	struct io_kiocb *cur;
1464 
1465 	/* need original cached_sq_head, but it was increased for each req */
1466 	io_for_each_link(cur, req)
1467 		seq--;
1468 	return seq;
1469 }
1470 
1471 static __cold void io_drain_req(struct io_kiocb *req)
1472 {
1473 	struct io_ring_ctx *ctx = req->ctx;
1474 	struct io_defer_entry *de;
1475 	int ret;
1476 	u32 seq = io_get_sequence(req);
1477 
1478 	/* Still need defer if there is pending req in defer list. */
1479 	spin_lock(&ctx->completion_lock);
1480 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1481 		spin_unlock(&ctx->completion_lock);
1482 queue:
1483 		ctx->drain_active = false;
1484 		io_req_task_queue(req);
1485 		return;
1486 	}
1487 	spin_unlock(&ctx->completion_lock);
1488 
1489 	ret = io_req_prep_async(req);
1490 	if (ret) {
1491 fail:
1492 		io_req_complete_failed(req, ret);
1493 		return;
1494 	}
1495 	io_prep_async_link(req);
1496 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1497 	if (!de) {
1498 		ret = -ENOMEM;
1499 		goto fail;
1500 	}
1501 
1502 	spin_lock(&ctx->completion_lock);
1503 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1504 		spin_unlock(&ctx->completion_lock);
1505 		kfree(de);
1506 		goto queue;
1507 	}
1508 
1509 	trace_io_uring_defer(req);
1510 	de->req = req;
1511 	de->seq = seq;
1512 	list_add_tail(&de->list, &ctx->defer_list);
1513 	spin_unlock(&ctx->completion_lock);
1514 }
1515 
1516 static void io_clean_op(struct io_kiocb *req)
1517 {
1518 	if (req->flags & REQ_F_BUFFER_SELECTED) {
1519 		spin_lock(&req->ctx->completion_lock);
1520 		io_put_kbuf_comp(req);
1521 		spin_unlock(&req->ctx->completion_lock);
1522 	}
1523 
1524 	if (req->flags & REQ_F_NEED_CLEANUP) {
1525 		const struct io_op_def *def = &io_op_defs[req->opcode];
1526 
1527 		if (def->cleanup)
1528 			def->cleanup(req);
1529 	}
1530 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
1531 		kfree(req->apoll->double_poll);
1532 		kfree(req->apoll);
1533 		req->apoll = NULL;
1534 	}
1535 	if (req->flags & REQ_F_INFLIGHT) {
1536 		struct io_uring_task *tctx = req->task->io_uring;
1537 
1538 		atomic_dec(&tctx->inflight_tracked);
1539 	}
1540 	if (req->flags & REQ_F_CREDS)
1541 		put_cred(req->creds);
1542 	if (req->flags & REQ_F_ASYNC_DATA) {
1543 		kfree(req->async_data);
1544 		req->async_data = NULL;
1545 	}
1546 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
1547 }
1548 
1549 static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags)
1550 {
1551 	if (req->file || !io_op_defs[req->opcode].needs_file)
1552 		return true;
1553 
1554 	if (req->flags & REQ_F_FIXED_FILE)
1555 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1556 	else
1557 		req->file = io_file_get_normal(req, req->cqe.fd);
1558 
1559 	return !!req->file;
1560 }
1561 
1562 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1563 {
1564 	const struct io_op_def *def = &io_op_defs[req->opcode];
1565 	const struct cred *creds = NULL;
1566 	int ret;
1567 
1568 	if (unlikely(!io_assign_file(req, issue_flags)))
1569 		return -EBADF;
1570 
1571 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1572 		creds = override_creds(req->creds);
1573 
1574 	if (!def->audit_skip)
1575 		audit_uring_entry(req->opcode);
1576 
1577 	ret = def->issue(req, issue_flags);
1578 
1579 	if (!def->audit_skip)
1580 		audit_uring_exit(!ret, ret);
1581 
1582 	if (creds)
1583 		revert_creds(creds);
1584 
1585 	if (ret == IOU_OK) {
1586 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1587 			io_req_complete_defer(req);
1588 		else
1589 			io_req_complete_post(req);
1590 	} else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1591 		return ret;
1592 
1593 	/* If the op doesn't have a file, we're not polling for it */
1594 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && req->file)
1595 		io_iopoll_req_issued(req, issue_flags);
1596 
1597 	return 0;
1598 }
1599 
1600 int io_poll_issue(struct io_kiocb *req, bool *locked)
1601 {
1602 	io_tw_lock(req->ctx, locked);
1603 	if (unlikely(req->task->flags & PF_EXITING))
1604 		return -EFAULT;
1605 	return io_issue_sqe(req, IO_URING_F_NONBLOCK);
1606 }
1607 
1608 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1609 {
1610 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1611 
1612 	req = io_put_req_find_next(req);
1613 	return req ? &req->work : NULL;
1614 }
1615 
1616 void io_wq_submit_work(struct io_wq_work *work)
1617 {
1618 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1619 	const struct io_op_def *def = &io_op_defs[req->opcode];
1620 	unsigned int issue_flags = IO_URING_F_UNLOCKED;
1621 	bool needs_poll = false;
1622 	int ret = 0, err = -ECANCELED;
1623 
1624 	/* one will be dropped by ->io_free_work() after returning to io-wq */
1625 	if (!(req->flags & REQ_F_REFCOUNT))
1626 		__io_req_set_refcount(req, 2);
1627 	else
1628 		req_ref_get(req);
1629 
1630 	io_arm_ltimeout(req);
1631 
1632 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1633 	if (work->flags & IO_WQ_WORK_CANCEL) {
1634 fail:
1635 		io_req_task_queue_fail(req, err);
1636 		return;
1637 	}
1638 	if (!io_assign_file(req, issue_flags)) {
1639 		err = -EBADF;
1640 		work->flags |= IO_WQ_WORK_CANCEL;
1641 		goto fail;
1642 	}
1643 
1644 	if (req->flags & REQ_F_FORCE_ASYNC) {
1645 		bool opcode_poll = def->pollin || def->pollout;
1646 
1647 		if (opcode_poll && file_can_poll(req->file)) {
1648 			needs_poll = true;
1649 			issue_flags |= IO_URING_F_NONBLOCK;
1650 		}
1651 	}
1652 
1653 	do {
1654 		ret = io_issue_sqe(req, issue_flags);
1655 		if (ret != -EAGAIN)
1656 			break;
1657 		/*
1658 		 * We can get EAGAIN for iopolled IO even though we're
1659 		 * forcing a sync submission from here, since we can't
1660 		 * wait for request slots on the block side.
1661 		 */
1662 		if (!needs_poll) {
1663 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1664 				break;
1665 			cond_resched();
1666 			continue;
1667 		}
1668 
1669 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1670 			return;
1671 		/* aborted or ready, in either case retry blocking */
1672 		needs_poll = false;
1673 		issue_flags &= ~IO_URING_F_NONBLOCK;
1674 	} while (1);
1675 
1676 	/* avoid locking problems by failing it from a clean context */
1677 	if (ret < 0)
1678 		io_req_task_queue_fail(req, ret);
1679 }
1680 
1681 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1682 				      unsigned int issue_flags)
1683 {
1684 	struct io_ring_ctx *ctx = req->ctx;
1685 	struct file *file = NULL;
1686 	unsigned long file_ptr;
1687 
1688 	io_ring_submit_lock(ctx, issue_flags);
1689 
1690 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1691 		goto out;
1692 	fd = array_index_nospec(fd, ctx->nr_user_files);
1693 	file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
1694 	file = (struct file *) (file_ptr & FFS_MASK);
1695 	file_ptr &= ~FFS_MASK;
1696 	/* mask in overlapping REQ_F and FFS bits */
1697 	req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT);
1698 	io_req_set_rsrc_node(req, ctx, 0);
1699 	WARN_ON_ONCE(file && !test_bit(fd, ctx->file_table.bitmap));
1700 out:
1701 	io_ring_submit_unlock(ctx, issue_flags);
1702 	return file;
1703 }
1704 
1705 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1706 {
1707 	struct file *file = fget(fd);
1708 
1709 	trace_io_uring_file_get(req, fd);
1710 
1711 	/* we don't allow fixed io_uring files */
1712 	if (file && io_is_uring_fops(file))
1713 		io_req_track_inflight(req);
1714 	return file;
1715 }
1716 
1717 static void io_queue_async(struct io_kiocb *req, int ret)
1718 	__must_hold(&req->ctx->uring_lock)
1719 {
1720 	struct io_kiocb *linked_timeout;
1721 
1722 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1723 		io_req_complete_failed(req, ret);
1724 		return;
1725 	}
1726 
1727 	linked_timeout = io_prep_linked_timeout(req);
1728 
1729 	switch (io_arm_poll_handler(req, 0)) {
1730 	case IO_APOLL_READY:
1731 		io_req_task_queue(req);
1732 		break;
1733 	case IO_APOLL_ABORTED:
1734 		/*
1735 		 * Queued up for async execution, worker will release
1736 		 * submit reference when the iocb is actually submitted.
1737 		 */
1738 		io_kbuf_recycle(req, 0);
1739 		io_queue_iowq(req, NULL);
1740 		break;
1741 	case IO_APOLL_OK:
1742 		break;
1743 	}
1744 
1745 	if (linked_timeout)
1746 		io_queue_linked_timeout(linked_timeout);
1747 }
1748 
1749 static inline void io_queue_sqe(struct io_kiocb *req)
1750 	__must_hold(&req->ctx->uring_lock)
1751 {
1752 	int ret;
1753 
1754 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1755 
1756 	/*
1757 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
1758 	 * doesn't support non-blocking read/write attempts
1759 	 */
1760 	if (likely(!ret))
1761 		io_arm_ltimeout(req);
1762 	else
1763 		io_queue_async(req, ret);
1764 }
1765 
1766 static void io_queue_sqe_fallback(struct io_kiocb *req)
1767 	__must_hold(&req->ctx->uring_lock)
1768 {
1769 	if (unlikely(req->flags & REQ_F_FAIL)) {
1770 		/*
1771 		 * We don't submit, fail them all, for that replace hardlinks
1772 		 * with normal links. Extra REQ_F_LINK is tolerated.
1773 		 */
1774 		req->flags &= ~REQ_F_HARDLINK;
1775 		req->flags |= REQ_F_LINK;
1776 		io_req_complete_failed(req, req->cqe.res);
1777 	} else if (unlikely(req->ctx->drain_active)) {
1778 		io_drain_req(req);
1779 	} else {
1780 		int ret = io_req_prep_async(req);
1781 
1782 		if (unlikely(ret))
1783 			io_req_complete_failed(req, ret);
1784 		else
1785 			io_queue_iowq(req, NULL);
1786 	}
1787 }
1788 
1789 /*
1790  * Check SQE restrictions (opcode and flags).
1791  *
1792  * Returns 'true' if SQE is allowed, 'false' otherwise.
1793  */
1794 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1795 					struct io_kiocb *req,
1796 					unsigned int sqe_flags)
1797 {
1798 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1799 		return false;
1800 
1801 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1802 	    ctx->restrictions.sqe_flags_required)
1803 		return false;
1804 
1805 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1806 			  ctx->restrictions.sqe_flags_required))
1807 		return false;
1808 
1809 	return true;
1810 }
1811 
1812 static void io_init_req_drain(struct io_kiocb *req)
1813 {
1814 	struct io_ring_ctx *ctx = req->ctx;
1815 	struct io_kiocb *head = ctx->submit_state.link.head;
1816 
1817 	ctx->drain_active = true;
1818 	if (head) {
1819 		/*
1820 		 * If we need to drain a request in the middle of a link, drain
1821 		 * the head request and the next request/link after the current
1822 		 * link. Considering sequential execution of links,
1823 		 * REQ_F_IO_DRAIN will be maintained for every request of our
1824 		 * link.
1825 		 */
1826 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
1827 		ctx->drain_next = true;
1828 	}
1829 }
1830 
1831 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
1832 		       const struct io_uring_sqe *sqe)
1833 	__must_hold(&ctx->uring_lock)
1834 {
1835 	const struct io_op_def *def;
1836 	unsigned int sqe_flags;
1837 	int personality;
1838 	u8 opcode;
1839 
1840 	/* req is partially pre-initialised, see io_preinit_req() */
1841 	req->opcode = opcode = READ_ONCE(sqe->opcode);
1842 	/* same numerical values with corresponding REQ_F_*, safe to copy */
1843 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
1844 	req->cqe.user_data = READ_ONCE(sqe->user_data);
1845 	req->file = NULL;
1846 	req->rsrc_node = NULL;
1847 	req->task = current;
1848 
1849 	if (unlikely(opcode >= IORING_OP_LAST)) {
1850 		req->opcode = 0;
1851 		return -EINVAL;
1852 	}
1853 	def = &io_op_defs[opcode];
1854 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
1855 		/* enforce forwards compatibility on users */
1856 		if (sqe_flags & ~SQE_VALID_FLAGS)
1857 			return -EINVAL;
1858 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
1859 			if (!def->buffer_select)
1860 				return -EOPNOTSUPP;
1861 			req->buf_index = READ_ONCE(sqe->buf_group);
1862 		}
1863 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
1864 			ctx->drain_disabled = true;
1865 		if (sqe_flags & IOSQE_IO_DRAIN) {
1866 			if (ctx->drain_disabled)
1867 				return -EOPNOTSUPP;
1868 			io_init_req_drain(req);
1869 		}
1870 	}
1871 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
1872 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
1873 			return -EACCES;
1874 		/* knock it to the slow queue path, will be drained there */
1875 		if (ctx->drain_active)
1876 			req->flags |= REQ_F_FORCE_ASYNC;
1877 		/* if there is no link, we're at "next" request and need to drain */
1878 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
1879 			ctx->drain_next = false;
1880 			ctx->drain_active = true;
1881 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
1882 		}
1883 	}
1884 
1885 	if (!def->ioprio && sqe->ioprio)
1886 		return -EINVAL;
1887 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
1888 		return -EINVAL;
1889 
1890 	if (def->needs_file) {
1891 		struct io_submit_state *state = &ctx->submit_state;
1892 
1893 		req->cqe.fd = READ_ONCE(sqe->fd);
1894 
1895 		/*
1896 		 * Plug now if we have more than 2 IO left after this, and the
1897 		 * target is potentially a read/write to block based storage.
1898 		 */
1899 		if (state->need_plug && def->plug) {
1900 			state->plug_started = true;
1901 			state->need_plug = false;
1902 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
1903 		}
1904 	}
1905 
1906 	personality = READ_ONCE(sqe->personality);
1907 	if (personality) {
1908 		int ret;
1909 
1910 		req->creds = xa_load(&ctx->personalities, personality);
1911 		if (!req->creds)
1912 			return -EINVAL;
1913 		get_cred(req->creds);
1914 		ret = security_uring_override_creds(req->creds);
1915 		if (ret) {
1916 			put_cred(req->creds);
1917 			return ret;
1918 		}
1919 		req->flags |= REQ_F_CREDS;
1920 	}
1921 
1922 	return def->prep(req, sqe);
1923 }
1924 
1925 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
1926 				      struct io_kiocb *req, int ret)
1927 {
1928 	struct io_ring_ctx *ctx = req->ctx;
1929 	struct io_submit_link *link = &ctx->submit_state.link;
1930 	struct io_kiocb *head = link->head;
1931 
1932 	trace_io_uring_req_failed(sqe, req, ret);
1933 
1934 	/*
1935 	 * Avoid breaking links in the middle as it renders links with SQPOLL
1936 	 * unusable. Instead of failing eagerly, continue assembling the link if
1937 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
1938 	 * should find the flag and handle the rest.
1939 	 */
1940 	req_fail_link_node(req, ret);
1941 	if (head && !(head->flags & REQ_F_FAIL))
1942 		req_fail_link_node(head, -ECANCELED);
1943 
1944 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
1945 		if (head) {
1946 			link->last->link = req;
1947 			link->head = NULL;
1948 			req = head;
1949 		}
1950 		io_queue_sqe_fallback(req);
1951 		return ret;
1952 	}
1953 
1954 	if (head)
1955 		link->last->link = req;
1956 	else
1957 		link->head = req;
1958 	link->last = req;
1959 	return 0;
1960 }
1961 
1962 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
1963 			 const struct io_uring_sqe *sqe)
1964 	__must_hold(&ctx->uring_lock)
1965 {
1966 	struct io_submit_link *link = &ctx->submit_state.link;
1967 	int ret;
1968 
1969 	ret = io_init_req(ctx, req, sqe);
1970 	if (unlikely(ret))
1971 		return io_submit_fail_init(sqe, req, ret);
1972 
1973 	/* don't need @sqe from now on */
1974 	trace_io_uring_submit_sqe(req, true);
1975 
1976 	/*
1977 	 * If we already have a head request, queue this one for async
1978 	 * submittal once the head completes. If we don't have a head but
1979 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
1980 	 * submitted sync once the chain is complete. If none of those
1981 	 * conditions are true (normal request), then just queue it.
1982 	 */
1983 	if (unlikely(link->head)) {
1984 		ret = io_req_prep_async(req);
1985 		if (unlikely(ret))
1986 			return io_submit_fail_init(sqe, req, ret);
1987 
1988 		trace_io_uring_link(req, link->head);
1989 		link->last->link = req;
1990 		link->last = req;
1991 
1992 		if (req->flags & IO_REQ_LINK_FLAGS)
1993 			return 0;
1994 		/* last request of the link, flush it */
1995 		req = link->head;
1996 		link->head = NULL;
1997 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
1998 			goto fallback;
1999 
2000 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2001 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2002 		if (req->flags & IO_REQ_LINK_FLAGS) {
2003 			link->head = req;
2004 			link->last = req;
2005 		} else {
2006 fallback:
2007 			io_queue_sqe_fallback(req);
2008 		}
2009 		return 0;
2010 	}
2011 
2012 	io_queue_sqe(req);
2013 	return 0;
2014 }
2015 
2016 /*
2017  * Batched submission is done, ensure local IO is flushed out.
2018  */
2019 static void io_submit_state_end(struct io_ring_ctx *ctx)
2020 {
2021 	struct io_submit_state *state = &ctx->submit_state;
2022 
2023 	if (unlikely(state->link.head))
2024 		io_queue_sqe_fallback(state->link.head);
2025 	/* flush only after queuing links as they can generate completions */
2026 	io_submit_flush_completions(ctx);
2027 	if (state->plug_started)
2028 		blk_finish_plug(&state->plug);
2029 }
2030 
2031 /*
2032  * Start submission side cache.
2033  */
2034 static void io_submit_state_start(struct io_submit_state *state,
2035 				  unsigned int max_ios)
2036 {
2037 	state->plug_started = false;
2038 	state->need_plug = max_ios > 2;
2039 	state->submit_nr = max_ios;
2040 	/* set only head, no need to init link_last in advance */
2041 	state->link.head = NULL;
2042 }
2043 
2044 static void io_commit_sqring(struct io_ring_ctx *ctx)
2045 {
2046 	struct io_rings *rings = ctx->rings;
2047 
2048 	/*
2049 	 * Ensure any loads from the SQEs are done at this point,
2050 	 * since once we write the new head, the application could
2051 	 * write new data to them.
2052 	 */
2053 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2054 }
2055 
2056 /*
2057  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2058  * that is mapped by userspace. This means that care needs to be taken to
2059  * ensure that reads are stable, as we cannot rely on userspace always
2060  * being a good citizen. If members of the sqe are validated and then later
2061  * used, it's important that those reads are done through READ_ONCE() to
2062  * prevent a re-load down the line.
2063  */
2064 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
2065 {
2066 	unsigned head, mask = ctx->sq_entries - 1;
2067 	unsigned sq_idx = ctx->cached_sq_head++ & mask;
2068 
2069 	/*
2070 	 * The cached sq head (or cq tail) serves two purposes:
2071 	 *
2072 	 * 1) allows us to batch the cost of updating the user visible
2073 	 *    head updates.
2074 	 * 2) allows the kernel side to track the head on its own, even
2075 	 *    though the application is the one updating it.
2076 	 */
2077 	head = READ_ONCE(ctx->sq_array[sq_idx]);
2078 	if (likely(head < ctx->sq_entries)) {
2079 		/* double index for 128-byte SQEs, twice as long */
2080 		if (ctx->flags & IORING_SETUP_SQE128)
2081 			head <<= 1;
2082 		return &ctx->sq_sqes[head];
2083 	}
2084 
2085 	/* drop invalid entries */
2086 	ctx->cq_extra--;
2087 	WRITE_ONCE(ctx->rings->sq_dropped,
2088 		   READ_ONCE(ctx->rings->sq_dropped) + 1);
2089 	return NULL;
2090 }
2091 
2092 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2093 	__must_hold(&ctx->uring_lock)
2094 {
2095 	unsigned int entries = io_sqring_entries(ctx);
2096 	unsigned int left;
2097 	int ret;
2098 
2099 	if (unlikely(!entries))
2100 		return 0;
2101 	/* make sure SQ entry isn't read before tail */
2102 	ret = left = min3(nr, ctx->sq_entries, entries);
2103 	io_get_task_refs(left);
2104 	io_submit_state_start(&ctx->submit_state, left);
2105 
2106 	do {
2107 		const struct io_uring_sqe *sqe;
2108 		struct io_kiocb *req;
2109 
2110 		if (unlikely(!io_alloc_req_refill(ctx)))
2111 			break;
2112 		req = io_alloc_req(ctx);
2113 		sqe = io_get_sqe(ctx);
2114 		if (unlikely(!sqe)) {
2115 			io_req_add_to_cache(req, ctx);
2116 			break;
2117 		}
2118 
2119 		/*
2120 		 * Continue submitting even for sqe failure if the
2121 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2122 		 */
2123 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2124 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2125 			left--;
2126 			break;
2127 		}
2128 	} while (--left);
2129 
2130 	if (unlikely(left)) {
2131 		ret -= left;
2132 		/* try again if it submitted nothing and can't allocate a req */
2133 		if (!ret && io_req_cache_empty(ctx))
2134 			ret = -EAGAIN;
2135 		current->io_uring->cached_refs += left;
2136 	}
2137 
2138 	io_submit_state_end(ctx);
2139 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2140 	io_commit_sqring(ctx);
2141 	return ret;
2142 }
2143 
2144 struct io_wait_queue {
2145 	struct wait_queue_entry wq;
2146 	struct io_ring_ctx *ctx;
2147 	unsigned cq_tail;
2148 	unsigned nr_timeouts;
2149 };
2150 
2151 static inline bool io_should_wake(struct io_wait_queue *iowq)
2152 {
2153 	struct io_ring_ctx *ctx = iowq->ctx;
2154 	int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
2155 
2156 	/*
2157 	 * Wake up if we have enough events, or if a timeout occurred since we
2158 	 * started waiting. For timeouts, we always want to return to userspace,
2159 	 * regardless of event count.
2160 	 */
2161 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2162 }
2163 
2164 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2165 			    int wake_flags, void *key)
2166 {
2167 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
2168 							wq);
2169 
2170 	/*
2171 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2172 	 * the task, and the next invocation will do it.
2173 	 */
2174 	if (io_should_wake(iowq) ||
2175 	    test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &iowq->ctx->check_cq))
2176 		return autoremove_wake_function(curr, mode, wake_flags, key);
2177 	return -1;
2178 }
2179 
2180 int io_run_task_work_sig(void)
2181 {
2182 	if (io_run_task_work())
2183 		return 1;
2184 	if (task_sigpending(current))
2185 		return -EINTR;
2186 	return 0;
2187 }
2188 
2189 /* when returns >0, the caller should retry */
2190 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2191 					  struct io_wait_queue *iowq,
2192 					  ktime_t timeout)
2193 {
2194 	int ret;
2195 	unsigned long check_cq;
2196 
2197 	/* make sure we run task_work before checking for signals */
2198 	ret = io_run_task_work_sig();
2199 	if (ret || io_should_wake(iowq))
2200 		return ret;
2201 
2202 	check_cq = READ_ONCE(ctx->check_cq);
2203 	if (unlikely(check_cq)) {
2204 		/* let the caller flush overflows, retry */
2205 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2206 			return 1;
2207 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
2208 			return -EBADR;
2209 	}
2210 	if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS))
2211 		return -ETIME;
2212 	return 1;
2213 }
2214 
2215 /*
2216  * Wait until events become available, if we don't already have some. The
2217  * application must reap them itself, as they reside on the shared cq ring.
2218  */
2219 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2220 			  const sigset_t __user *sig, size_t sigsz,
2221 			  struct __kernel_timespec __user *uts)
2222 {
2223 	struct io_wait_queue iowq;
2224 	struct io_rings *rings = ctx->rings;
2225 	ktime_t timeout = KTIME_MAX;
2226 	int ret;
2227 
2228 	do {
2229 		io_cqring_overflow_flush(ctx);
2230 		if (io_cqring_events(ctx) >= min_events)
2231 			return 0;
2232 		if (!io_run_task_work())
2233 			break;
2234 	} while (1);
2235 
2236 	if (sig) {
2237 #ifdef CONFIG_COMPAT
2238 		if (in_compat_syscall())
2239 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2240 						      sigsz);
2241 		else
2242 #endif
2243 			ret = set_user_sigmask(sig, sigsz);
2244 
2245 		if (ret)
2246 			return ret;
2247 	}
2248 
2249 	if (uts) {
2250 		struct timespec64 ts;
2251 
2252 		if (get_timespec64(&ts, uts))
2253 			return -EFAULT;
2254 		timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2255 	}
2256 
2257 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2258 	iowq.wq.private = current;
2259 	INIT_LIST_HEAD(&iowq.wq.entry);
2260 	iowq.ctx = ctx;
2261 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2262 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2263 
2264 	trace_io_uring_cqring_wait(ctx, min_events);
2265 	do {
2266 		/* if we can't even flush overflow, don't wait for more */
2267 		if (!io_cqring_overflow_flush(ctx)) {
2268 			ret = -EBUSY;
2269 			break;
2270 		}
2271 		prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2272 						TASK_INTERRUPTIBLE);
2273 		ret = io_cqring_wait_schedule(ctx, &iowq, timeout);
2274 		cond_resched();
2275 	} while (ret > 0);
2276 
2277 	finish_wait(&ctx->cq_wait, &iowq.wq);
2278 	restore_saved_sigmask_unless(ret == -EINTR);
2279 
2280 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2281 }
2282 
2283 static void io_mem_free(void *ptr)
2284 {
2285 	struct page *page;
2286 
2287 	if (!ptr)
2288 		return;
2289 
2290 	page = virt_to_head_page(ptr);
2291 	if (put_page_testzero(page))
2292 		free_compound_page(page);
2293 }
2294 
2295 static void *io_mem_alloc(size_t size)
2296 {
2297 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2298 
2299 	return (void *) __get_free_pages(gfp, get_order(size));
2300 }
2301 
2302 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2303 				unsigned int cq_entries, size_t *sq_offset)
2304 {
2305 	struct io_rings *rings;
2306 	size_t off, sq_array_size;
2307 
2308 	off = struct_size(rings, cqes, cq_entries);
2309 	if (off == SIZE_MAX)
2310 		return SIZE_MAX;
2311 	if (ctx->flags & IORING_SETUP_CQE32) {
2312 		if (check_shl_overflow(off, 1, &off))
2313 			return SIZE_MAX;
2314 	}
2315 
2316 #ifdef CONFIG_SMP
2317 	off = ALIGN(off, SMP_CACHE_BYTES);
2318 	if (off == 0)
2319 		return SIZE_MAX;
2320 #endif
2321 
2322 	if (sq_offset)
2323 		*sq_offset = off;
2324 
2325 	sq_array_size = array_size(sizeof(u32), sq_entries);
2326 	if (sq_array_size == SIZE_MAX)
2327 		return SIZE_MAX;
2328 
2329 	if (check_add_overflow(off, sq_array_size, &off))
2330 		return SIZE_MAX;
2331 
2332 	return off;
2333 }
2334 
2335 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2336 			       unsigned int eventfd_async)
2337 {
2338 	struct io_ev_fd *ev_fd;
2339 	__s32 __user *fds = arg;
2340 	int fd;
2341 
2342 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2343 					lockdep_is_held(&ctx->uring_lock));
2344 	if (ev_fd)
2345 		return -EBUSY;
2346 
2347 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2348 		return -EFAULT;
2349 
2350 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2351 	if (!ev_fd)
2352 		return -ENOMEM;
2353 
2354 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2355 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2356 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2357 		kfree(ev_fd);
2358 		return ret;
2359 	}
2360 
2361 	spin_lock(&ctx->completion_lock);
2362 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2363 	spin_unlock(&ctx->completion_lock);
2364 
2365 	ev_fd->eventfd_async = eventfd_async;
2366 	ctx->has_evfd = true;
2367 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2368 	return 0;
2369 }
2370 
2371 static void io_eventfd_put(struct rcu_head *rcu)
2372 {
2373 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
2374 
2375 	eventfd_ctx_put(ev_fd->cq_ev_fd);
2376 	kfree(ev_fd);
2377 }
2378 
2379 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2380 {
2381 	struct io_ev_fd *ev_fd;
2382 
2383 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2384 					lockdep_is_held(&ctx->uring_lock));
2385 	if (ev_fd) {
2386 		ctx->has_evfd = false;
2387 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2388 		call_rcu(&ev_fd->rcu, io_eventfd_put);
2389 		return 0;
2390 	}
2391 
2392 	return -ENXIO;
2393 }
2394 
2395 static void io_req_caches_free(struct io_ring_ctx *ctx)
2396 {
2397 	struct io_submit_state *state = &ctx->submit_state;
2398 	int nr = 0;
2399 
2400 	mutex_lock(&ctx->uring_lock);
2401 	io_flush_cached_locked_reqs(ctx, state);
2402 
2403 	while (!io_req_cache_empty(ctx)) {
2404 		struct io_wq_work_node *node;
2405 		struct io_kiocb *req;
2406 
2407 		node = wq_stack_extract(&state->free_list);
2408 		req = container_of(node, struct io_kiocb, comp_list);
2409 		kmem_cache_free(req_cachep, req);
2410 		nr++;
2411 	}
2412 	if (nr)
2413 		percpu_ref_put_many(&ctx->refs, nr);
2414 	mutex_unlock(&ctx->uring_lock);
2415 }
2416 
2417 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2418 {
2419 	io_sq_thread_finish(ctx);
2420 
2421 	if (ctx->mm_account) {
2422 		mmdrop(ctx->mm_account);
2423 		ctx->mm_account = NULL;
2424 	}
2425 
2426 	io_rsrc_refs_drop(ctx);
2427 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2428 	io_wait_rsrc_data(ctx->buf_data);
2429 	io_wait_rsrc_data(ctx->file_data);
2430 
2431 	mutex_lock(&ctx->uring_lock);
2432 	if (ctx->buf_data)
2433 		__io_sqe_buffers_unregister(ctx);
2434 	if (ctx->file_data)
2435 		__io_sqe_files_unregister(ctx);
2436 	if (ctx->rings)
2437 		__io_cqring_overflow_flush(ctx, true);
2438 	io_eventfd_unregister(ctx);
2439 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2440 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2441 	mutex_unlock(&ctx->uring_lock);
2442 	io_destroy_buffers(ctx);
2443 	if (ctx->sq_creds)
2444 		put_cred(ctx->sq_creds);
2445 	if (ctx->submitter_task)
2446 		put_task_struct(ctx->submitter_task);
2447 
2448 	/* there are no registered resources left, nobody uses it */
2449 	if (ctx->rsrc_node)
2450 		io_rsrc_node_destroy(ctx->rsrc_node);
2451 	if (ctx->rsrc_backup_node)
2452 		io_rsrc_node_destroy(ctx->rsrc_backup_node);
2453 	flush_delayed_work(&ctx->rsrc_put_work);
2454 	flush_delayed_work(&ctx->fallback_work);
2455 
2456 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2457 	WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
2458 
2459 #if defined(CONFIG_UNIX)
2460 	if (ctx->ring_sock) {
2461 		ctx->ring_sock->file = NULL; /* so that iput() is called */
2462 		sock_release(ctx->ring_sock);
2463 	}
2464 #endif
2465 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2466 	WARN_ON_ONCE(ctx->notif_slots || ctx->nr_notif_slots);
2467 
2468 	io_mem_free(ctx->rings);
2469 	io_mem_free(ctx->sq_sqes);
2470 
2471 	percpu_ref_exit(&ctx->refs);
2472 	free_uid(ctx->user);
2473 	io_req_caches_free(ctx);
2474 	if (ctx->hash_map)
2475 		io_wq_put_hash(ctx->hash_map);
2476 	kfree(ctx->cancel_table.hbs);
2477 	kfree(ctx->cancel_table_locked.hbs);
2478 	kfree(ctx->dummy_ubuf);
2479 	kfree(ctx->io_bl);
2480 	xa_destroy(&ctx->io_bl_xa);
2481 	kfree(ctx);
2482 }
2483 
2484 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2485 {
2486 	struct io_ring_ctx *ctx = file->private_data;
2487 	__poll_t mask = 0;
2488 
2489 	poll_wait(file, &ctx->cq_wait, wait);
2490 	/*
2491 	 * synchronizes with barrier from wq_has_sleeper call in
2492 	 * io_commit_cqring
2493 	 */
2494 	smp_rmb();
2495 	if (!io_sqring_full(ctx))
2496 		mask |= EPOLLOUT | EPOLLWRNORM;
2497 
2498 	/*
2499 	 * Don't flush cqring overflow list here, just do a simple check.
2500 	 * Otherwise there could possible be ABBA deadlock:
2501 	 *      CPU0                    CPU1
2502 	 *      ----                    ----
2503 	 * lock(&ctx->uring_lock);
2504 	 *                              lock(&ep->mtx);
2505 	 *                              lock(&ctx->uring_lock);
2506 	 * lock(&ep->mtx);
2507 	 *
2508 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2509 	 * pushs them to do the flush.
2510 	 */
2511 	if (io_cqring_events(ctx) ||
2512 	    test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
2513 		mask |= EPOLLIN | EPOLLRDNORM;
2514 
2515 	return mask;
2516 }
2517 
2518 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2519 {
2520 	const struct cred *creds;
2521 
2522 	creds = xa_erase(&ctx->personalities, id);
2523 	if (creds) {
2524 		put_cred(creds);
2525 		return 0;
2526 	}
2527 
2528 	return -EINVAL;
2529 }
2530 
2531 struct io_tctx_exit {
2532 	struct callback_head		task_work;
2533 	struct completion		completion;
2534 	struct io_ring_ctx		*ctx;
2535 };
2536 
2537 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2538 {
2539 	struct io_uring_task *tctx = current->io_uring;
2540 	struct io_tctx_exit *work;
2541 
2542 	work = container_of(cb, struct io_tctx_exit, task_work);
2543 	/*
2544 	 * When @in_idle, we're in cancellation and it's racy to remove the
2545 	 * node. It'll be removed by the end of cancellation, just ignore it.
2546 	 */
2547 	if (!atomic_read(&tctx->in_idle))
2548 		io_uring_del_tctx_node((unsigned long)work->ctx);
2549 	complete(&work->completion);
2550 }
2551 
2552 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2553 {
2554 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2555 
2556 	return req->ctx == data;
2557 }
2558 
2559 static __cold void io_ring_exit_work(struct work_struct *work)
2560 {
2561 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2562 	unsigned long timeout = jiffies + HZ * 60 * 5;
2563 	unsigned long interval = HZ / 20;
2564 	struct io_tctx_exit exit;
2565 	struct io_tctx_node *node;
2566 	int ret;
2567 
2568 	/*
2569 	 * If we're doing polled IO and end up having requests being
2570 	 * submitted async (out-of-line), then completions can come in while
2571 	 * we're waiting for refs to drop. We need to reap these manually,
2572 	 * as nobody else will be looking for them.
2573 	 */
2574 	do {
2575 		while (io_uring_try_cancel_requests(ctx, NULL, true))
2576 			cond_resched();
2577 
2578 		if (ctx->sq_data) {
2579 			struct io_sq_data *sqd = ctx->sq_data;
2580 			struct task_struct *tsk;
2581 
2582 			io_sq_thread_park(sqd);
2583 			tsk = sqd->thread;
2584 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2585 				io_wq_cancel_cb(tsk->io_uring->io_wq,
2586 						io_cancel_ctx_cb, ctx, true);
2587 			io_sq_thread_unpark(sqd);
2588 		}
2589 
2590 		io_req_caches_free(ctx);
2591 
2592 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2593 			/* there is little hope left, don't run it too often */
2594 			interval = HZ * 60;
2595 		}
2596 	} while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
2597 
2598 	init_completion(&exit.completion);
2599 	init_task_work(&exit.task_work, io_tctx_exit_cb);
2600 	exit.ctx = ctx;
2601 	/*
2602 	 * Some may use context even when all refs and requests have been put,
2603 	 * and they are free to do so while still holding uring_lock or
2604 	 * completion_lock, see io_req_task_submit(). Apart from other work,
2605 	 * this lock/unlock section also waits them to finish.
2606 	 */
2607 	mutex_lock(&ctx->uring_lock);
2608 	while (!list_empty(&ctx->tctx_list)) {
2609 		WARN_ON_ONCE(time_after(jiffies, timeout));
2610 
2611 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2612 					ctx_node);
2613 		/* don't spin on a single task if cancellation failed */
2614 		list_rotate_left(&ctx->tctx_list);
2615 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2616 		if (WARN_ON_ONCE(ret))
2617 			continue;
2618 
2619 		mutex_unlock(&ctx->uring_lock);
2620 		wait_for_completion(&exit.completion);
2621 		mutex_lock(&ctx->uring_lock);
2622 	}
2623 	mutex_unlock(&ctx->uring_lock);
2624 	spin_lock(&ctx->completion_lock);
2625 	spin_unlock(&ctx->completion_lock);
2626 
2627 	io_ring_ctx_free(ctx);
2628 }
2629 
2630 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2631 {
2632 	unsigned long index;
2633 	struct creds *creds;
2634 
2635 	mutex_lock(&ctx->uring_lock);
2636 	percpu_ref_kill(&ctx->refs);
2637 	if (ctx->rings)
2638 		__io_cqring_overflow_flush(ctx, true);
2639 	xa_for_each(&ctx->personalities, index, creds)
2640 		io_unregister_personality(ctx, index);
2641 	if (ctx->rings)
2642 		io_poll_remove_all(ctx, NULL, true);
2643 	io_notif_unregister(ctx);
2644 	mutex_unlock(&ctx->uring_lock);
2645 
2646 	/* failed during ring init, it couldn't have issued any requests */
2647 	if (ctx->rings) {
2648 		io_kill_timeouts(ctx, NULL, true);
2649 		/* if we failed setting up the ctx, we might not have any rings */
2650 		io_iopoll_try_reap_events(ctx);
2651 	}
2652 
2653 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2654 	/*
2655 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
2656 	 * if we're exiting a ton of rings at the same time. It just adds
2657 	 * noise and overhead, there's no discernable change in runtime
2658 	 * over using system_wq.
2659 	 */
2660 	queue_work(system_unbound_wq, &ctx->exit_work);
2661 }
2662 
2663 static int io_uring_release(struct inode *inode, struct file *file)
2664 {
2665 	struct io_ring_ctx *ctx = file->private_data;
2666 
2667 	file->private_data = NULL;
2668 	io_ring_ctx_wait_and_kill(ctx);
2669 	return 0;
2670 }
2671 
2672 struct io_task_cancel {
2673 	struct task_struct *task;
2674 	bool all;
2675 };
2676 
2677 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
2678 {
2679 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2680 	struct io_task_cancel *cancel = data;
2681 
2682 	return io_match_task_safe(req, cancel->task, cancel->all);
2683 }
2684 
2685 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
2686 					 struct task_struct *task,
2687 					 bool cancel_all)
2688 {
2689 	struct io_defer_entry *de;
2690 	LIST_HEAD(list);
2691 
2692 	spin_lock(&ctx->completion_lock);
2693 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
2694 		if (io_match_task_safe(de->req, task, cancel_all)) {
2695 			list_cut_position(&list, &ctx->defer_list, &de->list);
2696 			break;
2697 		}
2698 	}
2699 	spin_unlock(&ctx->completion_lock);
2700 	if (list_empty(&list))
2701 		return false;
2702 
2703 	while (!list_empty(&list)) {
2704 		de = list_first_entry(&list, struct io_defer_entry, list);
2705 		list_del_init(&de->list);
2706 		io_req_complete_failed(de->req, -ECANCELED);
2707 		kfree(de);
2708 	}
2709 	return true;
2710 }
2711 
2712 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
2713 {
2714 	struct io_tctx_node *node;
2715 	enum io_wq_cancel cret;
2716 	bool ret = false;
2717 
2718 	mutex_lock(&ctx->uring_lock);
2719 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
2720 		struct io_uring_task *tctx = node->task->io_uring;
2721 
2722 		/*
2723 		 * io_wq will stay alive while we hold uring_lock, because it's
2724 		 * killed after ctx nodes, which requires to take the lock.
2725 		 */
2726 		if (!tctx || !tctx->io_wq)
2727 			continue;
2728 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
2729 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
2730 	}
2731 	mutex_unlock(&ctx->uring_lock);
2732 
2733 	return ret;
2734 }
2735 
2736 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
2737 						struct task_struct *task,
2738 						bool cancel_all)
2739 {
2740 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
2741 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
2742 	enum io_wq_cancel cret;
2743 	bool ret = false;
2744 
2745 	/* failed during ring init, it couldn't have issued any requests */
2746 	if (!ctx->rings)
2747 		return false;
2748 
2749 	if (!task) {
2750 		ret |= io_uring_try_cancel_iowq(ctx);
2751 	} else if (tctx && tctx->io_wq) {
2752 		/*
2753 		 * Cancels requests of all rings, not only @ctx, but
2754 		 * it's fine as the task is in exit/exec.
2755 		 */
2756 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
2757 				       &cancel, true);
2758 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
2759 	}
2760 
2761 	/* SQPOLL thread does its own polling */
2762 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
2763 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
2764 		while (!wq_list_empty(&ctx->iopoll_list)) {
2765 			io_iopoll_try_reap_events(ctx);
2766 			ret = true;
2767 		}
2768 	}
2769 
2770 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
2771 	mutex_lock(&ctx->uring_lock);
2772 	ret |= io_poll_remove_all(ctx, task, cancel_all);
2773 	mutex_unlock(&ctx->uring_lock);
2774 	ret |= io_kill_timeouts(ctx, task, cancel_all);
2775 	if (task)
2776 		ret |= io_run_task_work();
2777 	return ret;
2778 }
2779 
2780 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
2781 {
2782 	if (tracked)
2783 		return atomic_read(&tctx->inflight_tracked);
2784 	return percpu_counter_sum(&tctx->inflight);
2785 }
2786 
2787 /*
2788  * Find any io_uring ctx that this task has registered or done IO on, and cancel
2789  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
2790  */
2791 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
2792 {
2793 	struct io_uring_task *tctx = current->io_uring;
2794 	struct io_ring_ctx *ctx;
2795 	s64 inflight;
2796 	DEFINE_WAIT(wait);
2797 
2798 	WARN_ON_ONCE(sqd && sqd->thread != current);
2799 
2800 	if (!current->io_uring)
2801 		return;
2802 	if (tctx->io_wq)
2803 		io_wq_exit_start(tctx->io_wq);
2804 
2805 	atomic_inc(&tctx->in_idle);
2806 	do {
2807 		bool loop = false;
2808 
2809 		io_uring_drop_tctx_refs(current);
2810 		/* read completions before cancelations */
2811 		inflight = tctx_inflight(tctx, !cancel_all);
2812 		if (!inflight)
2813 			break;
2814 
2815 		if (!sqd) {
2816 			struct io_tctx_node *node;
2817 			unsigned long index;
2818 
2819 			xa_for_each(&tctx->xa, index, node) {
2820 				/* sqpoll task will cancel all its requests */
2821 				if (node->ctx->sq_data)
2822 					continue;
2823 				loop |= io_uring_try_cancel_requests(node->ctx,
2824 							current, cancel_all);
2825 			}
2826 		} else {
2827 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
2828 				loop |= io_uring_try_cancel_requests(ctx,
2829 								     current,
2830 								     cancel_all);
2831 		}
2832 
2833 		if (loop) {
2834 			cond_resched();
2835 			continue;
2836 		}
2837 
2838 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
2839 		io_run_task_work();
2840 		io_uring_drop_tctx_refs(current);
2841 
2842 		/*
2843 		 * If we've seen completions, retry without waiting. This
2844 		 * avoids a race where a completion comes in before we did
2845 		 * prepare_to_wait().
2846 		 */
2847 		if (inflight == tctx_inflight(tctx, !cancel_all))
2848 			schedule();
2849 		finish_wait(&tctx->wait, &wait);
2850 	} while (1);
2851 
2852 	io_uring_clean_tctx(tctx);
2853 	if (cancel_all) {
2854 		/*
2855 		 * We shouldn't run task_works after cancel, so just leave
2856 		 * ->in_idle set for normal exit.
2857 		 */
2858 		atomic_dec(&tctx->in_idle);
2859 		/* for exec all current's requests should be gone, kill tctx */
2860 		__io_uring_free(current);
2861 	}
2862 }
2863 
2864 void __io_uring_cancel(bool cancel_all)
2865 {
2866 	io_uring_cancel_generic(cancel_all, NULL);
2867 }
2868 
2869 static void *io_uring_validate_mmap_request(struct file *file,
2870 					    loff_t pgoff, size_t sz)
2871 {
2872 	struct io_ring_ctx *ctx = file->private_data;
2873 	loff_t offset = pgoff << PAGE_SHIFT;
2874 	struct page *page;
2875 	void *ptr;
2876 
2877 	switch (offset) {
2878 	case IORING_OFF_SQ_RING:
2879 	case IORING_OFF_CQ_RING:
2880 		ptr = ctx->rings;
2881 		break;
2882 	case IORING_OFF_SQES:
2883 		ptr = ctx->sq_sqes;
2884 		break;
2885 	default:
2886 		return ERR_PTR(-EINVAL);
2887 	}
2888 
2889 	page = virt_to_head_page(ptr);
2890 	if (sz > page_size(page))
2891 		return ERR_PTR(-EINVAL);
2892 
2893 	return ptr;
2894 }
2895 
2896 #ifdef CONFIG_MMU
2897 
2898 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
2899 {
2900 	size_t sz = vma->vm_end - vma->vm_start;
2901 	unsigned long pfn;
2902 	void *ptr;
2903 
2904 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
2905 	if (IS_ERR(ptr))
2906 		return PTR_ERR(ptr);
2907 
2908 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
2909 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
2910 }
2911 
2912 #else /* !CONFIG_MMU */
2913 
2914 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
2915 {
2916 	return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
2917 }
2918 
2919 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
2920 {
2921 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
2922 }
2923 
2924 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
2925 	unsigned long addr, unsigned long len,
2926 	unsigned long pgoff, unsigned long flags)
2927 {
2928 	void *ptr;
2929 
2930 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
2931 	if (IS_ERR(ptr))
2932 		return PTR_ERR(ptr);
2933 
2934 	return (unsigned long) ptr;
2935 }
2936 
2937 #endif /* !CONFIG_MMU */
2938 
2939 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
2940 {
2941 	if (flags & IORING_ENTER_EXT_ARG) {
2942 		struct io_uring_getevents_arg arg;
2943 
2944 		if (argsz != sizeof(arg))
2945 			return -EINVAL;
2946 		if (copy_from_user(&arg, argp, sizeof(arg)))
2947 			return -EFAULT;
2948 	}
2949 	return 0;
2950 }
2951 
2952 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
2953 			  struct __kernel_timespec __user **ts,
2954 			  const sigset_t __user **sig)
2955 {
2956 	struct io_uring_getevents_arg arg;
2957 
2958 	/*
2959 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
2960 	 * is just a pointer to the sigset_t.
2961 	 */
2962 	if (!(flags & IORING_ENTER_EXT_ARG)) {
2963 		*sig = (const sigset_t __user *) argp;
2964 		*ts = NULL;
2965 		return 0;
2966 	}
2967 
2968 	/*
2969 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
2970 	 * timespec and sigset_t pointers if good.
2971 	 */
2972 	if (*argsz != sizeof(arg))
2973 		return -EINVAL;
2974 	if (copy_from_user(&arg, argp, sizeof(arg)))
2975 		return -EFAULT;
2976 	if (arg.pad)
2977 		return -EINVAL;
2978 	*sig = u64_to_user_ptr(arg.sigmask);
2979 	*argsz = arg.sigmask_sz;
2980 	*ts = u64_to_user_ptr(arg.ts);
2981 	return 0;
2982 }
2983 
2984 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
2985 		u32, min_complete, u32, flags, const void __user *, argp,
2986 		size_t, argsz)
2987 {
2988 	struct io_ring_ctx *ctx;
2989 	struct fd f;
2990 	long ret;
2991 
2992 	io_run_task_work();
2993 
2994 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
2995 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
2996 			       IORING_ENTER_REGISTERED_RING)))
2997 		return -EINVAL;
2998 
2999 	/*
3000 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3001 	 * need only dereference our task private array to find it.
3002 	 */
3003 	if (flags & IORING_ENTER_REGISTERED_RING) {
3004 		struct io_uring_task *tctx = current->io_uring;
3005 
3006 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3007 			return -EINVAL;
3008 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3009 		f.file = tctx->registered_rings[fd];
3010 		f.flags = 0;
3011 		if (unlikely(!f.file))
3012 			return -EBADF;
3013 	} else {
3014 		f = fdget(fd);
3015 		if (unlikely(!f.file))
3016 			return -EBADF;
3017 		ret = -EOPNOTSUPP;
3018 		if (unlikely(!io_is_uring_fops(f.file)))
3019 			goto out;
3020 	}
3021 
3022 	ctx = f.file->private_data;
3023 	ret = -EBADFD;
3024 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3025 		goto out;
3026 
3027 	/*
3028 	 * For SQ polling, the thread will do all submissions and completions.
3029 	 * Just return the requested submit count, and wake the thread if
3030 	 * we were asked to.
3031 	 */
3032 	ret = 0;
3033 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3034 		io_cqring_overflow_flush(ctx);
3035 
3036 		if (unlikely(ctx->sq_data->thread == NULL)) {
3037 			ret = -EOWNERDEAD;
3038 			goto out;
3039 		}
3040 		if (flags & IORING_ENTER_SQ_WAKEUP)
3041 			wake_up(&ctx->sq_data->wait);
3042 		if (flags & IORING_ENTER_SQ_WAIT) {
3043 			ret = io_sqpoll_wait_sq(ctx);
3044 			if (ret)
3045 				goto out;
3046 		}
3047 		ret = to_submit;
3048 	} else if (to_submit) {
3049 		ret = io_uring_add_tctx_node(ctx);
3050 		if (unlikely(ret))
3051 			goto out;
3052 
3053 		mutex_lock(&ctx->uring_lock);
3054 		ret = io_submit_sqes(ctx, to_submit);
3055 		if (ret != to_submit) {
3056 			mutex_unlock(&ctx->uring_lock);
3057 			goto out;
3058 		}
3059 		if ((flags & IORING_ENTER_GETEVENTS) && ctx->syscall_iopoll)
3060 			goto iopoll_locked;
3061 		mutex_unlock(&ctx->uring_lock);
3062 	}
3063 	if (flags & IORING_ENTER_GETEVENTS) {
3064 		int ret2;
3065 		if (ctx->syscall_iopoll) {
3066 			/*
3067 			 * We disallow the app entering submit/complete with
3068 			 * polling, but we still need to lock the ring to
3069 			 * prevent racing with polled issue that got punted to
3070 			 * a workqueue.
3071 			 */
3072 			mutex_lock(&ctx->uring_lock);
3073 iopoll_locked:
3074 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3075 			if (likely(!ret2)) {
3076 				min_complete = min(min_complete,
3077 						   ctx->cq_entries);
3078 				ret2 = io_iopoll_check(ctx, min_complete);
3079 			}
3080 			mutex_unlock(&ctx->uring_lock);
3081 		} else {
3082 			const sigset_t __user *sig;
3083 			struct __kernel_timespec __user *ts;
3084 
3085 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3086 			if (likely(!ret2)) {
3087 				min_complete = min(min_complete,
3088 						   ctx->cq_entries);
3089 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3090 						      argsz, ts);
3091 			}
3092 		}
3093 
3094 		if (!ret) {
3095 			ret = ret2;
3096 
3097 			/*
3098 			 * EBADR indicates that one or more CQE were dropped.
3099 			 * Once the user has been informed we can clear the bit
3100 			 * as they are obviously ok with those drops.
3101 			 */
3102 			if (unlikely(ret2 == -EBADR))
3103 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3104 					  &ctx->check_cq);
3105 		}
3106 	}
3107 out:
3108 	fdput(f);
3109 	return ret;
3110 }
3111 
3112 static const struct file_operations io_uring_fops = {
3113 	.release	= io_uring_release,
3114 	.mmap		= io_uring_mmap,
3115 #ifndef CONFIG_MMU
3116 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3117 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3118 #endif
3119 	.poll		= io_uring_poll,
3120 #ifdef CONFIG_PROC_FS
3121 	.show_fdinfo	= io_uring_show_fdinfo,
3122 #endif
3123 };
3124 
3125 bool io_is_uring_fops(struct file *file)
3126 {
3127 	return file->f_op == &io_uring_fops;
3128 }
3129 
3130 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3131 					 struct io_uring_params *p)
3132 {
3133 	struct io_rings *rings;
3134 	size_t size, sq_array_offset;
3135 
3136 	/* make sure these are sane, as we already accounted them */
3137 	ctx->sq_entries = p->sq_entries;
3138 	ctx->cq_entries = p->cq_entries;
3139 
3140 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3141 	if (size == SIZE_MAX)
3142 		return -EOVERFLOW;
3143 
3144 	rings = io_mem_alloc(size);
3145 	if (!rings)
3146 		return -ENOMEM;
3147 
3148 	ctx->rings = rings;
3149 	ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3150 	rings->sq_ring_mask = p->sq_entries - 1;
3151 	rings->cq_ring_mask = p->cq_entries - 1;
3152 	rings->sq_ring_entries = p->sq_entries;
3153 	rings->cq_ring_entries = p->cq_entries;
3154 
3155 	if (p->flags & IORING_SETUP_SQE128)
3156 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3157 	else
3158 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3159 	if (size == SIZE_MAX) {
3160 		io_mem_free(ctx->rings);
3161 		ctx->rings = NULL;
3162 		return -EOVERFLOW;
3163 	}
3164 
3165 	ctx->sq_sqes = io_mem_alloc(size);
3166 	if (!ctx->sq_sqes) {
3167 		io_mem_free(ctx->rings);
3168 		ctx->rings = NULL;
3169 		return -ENOMEM;
3170 	}
3171 
3172 	return 0;
3173 }
3174 
3175 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
3176 {
3177 	int ret, fd;
3178 
3179 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3180 	if (fd < 0)
3181 		return fd;
3182 
3183 	ret = __io_uring_add_tctx_node(ctx, false);
3184 	if (ret) {
3185 		put_unused_fd(fd);
3186 		return ret;
3187 	}
3188 	fd_install(fd, file);
3189 	return fd;
3190 }
3191 
3192 /*
3193  * Allocate an anonymous fd, this is what constitutes the application
3194  * visible backing of an io_uring instance. The application mmaps this
3195  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3196  * we have to tie this fd to a socket for file garbage collection purposes.
3197  */
3198 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3199 {
3200 	struct file *file;
3201 #if defined(CONFIG_UNIX)
3202 	int ret;
3203 
3204 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3205 				&ctx->ring_sock);
3206 	if (ret)
3207 		return ERR_PTR(ret);
3208 #endif
3209 
3210 	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3211 					 O_RDWR | O_CLOEXEC, NULL);
3212 #if defined(CONFIG_UNIX)
3213 	if (IS_ERR(file)) {
3214 		sock_release(ctx->ring_sock);
3215 		ctx->ring_sock = NULL;
3216 	} else {
3217 		ctx->ring_sock->file = file;
3218 	}
3219 #endif
3220 	return file;
3221 }
3222 
3223 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3224 				  struct io_uring_params __user *params)
3225 {
3226 	struct io_ring_ctx *ctx;
3227 	struct file *file;
3228 	int ret;
3229 
3230 	if (!entries)
3231 		return -EINVAL;
3232 	if (entries > IORING_MAX_ENTRIES) {
3233 		if (!(p->flags & IORING_SETUP_CLAMP))
3234 			return -EINVAL;
3235 		entries = IORING_MAX_ENTRIES;
3236 	}
3237 
3238 	/*
3239 	 * Use twice as many entries for the CQ ring. It's possible for the
3240 	 * application to drive a higher depth than the size of the SQ ring,
3241 	 * since the sqes are only used at submission time. This allows for
3242 	 * some flexibility in overcommitting a bit. If the application has
3243 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3244 	 * of CQ ring entries manually.
3245 	 */
3246 	p->sq_entries = roundup_pow_of_two(entries);
3247 	if (p->flags & IORING_SETUP_CQSIZE) {
3248 		/*
3249 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3250 		 * to a power-of-two, if it isn't already. We do NOT impose
3251 		 * any cq vs sq ring sizing.
3252 		 */
3253 		if (!p->cq_entries)
3254 			return -EINVAL;
3255 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3256 			if (!(p->flags & IORING_SETUP_CLAMP))
3257 				return -EINVAL;
3258 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3259 		}
3260 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3261 		if (p->cq_entries < p->sq_entries)
3262 			return -EINVAL;
3263 	} else {
3264 		p->cq_entries = 2 * p->sq_entries;
3265 	}
3266 
3267 	ctx = io_ring_ctx_alloc(p);
3268 	if (!ctx)
3269 		return -ENOMEM;
3270 
3271 	/*
3272 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3273 	 * space applications don't need to do io completion events
3274 	 * polling again, they can rely on io_sq_thread to do polling
3275 	 * work, which can reduce cpu usage and uring_lock contention.
3276 	 */
3277 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3278 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3279 		ctx->syscall_iopoll = 1;
3280 
3281 	ctx->compat = in_compat_syscall();
3282 	if (!capable(CAP_IPC_LOCK))
3283 		ctx->user = get_uid(current_user());
3284 
3285 	/*
3286 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3287 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3288 	 */
3289 	ret = -EINVAL;
3290 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3291 		/* IPI related flags don't make sense with SQPOLL */
3292 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3293 				  IORING_SETUP_TASKRUN_FLAG))
3294 			goto err;
3295 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3296 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3297 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3298 	} else {
3299 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
3300 			goto err;
3301 		ctx->notify_method = TWA_SIGNAL;
3302 	}
3303 
3304 	/*
3305 	 * This is just grabbed for accounting purposes. When a process exits,
3306 	 * the mm is exited and dropped before the files, hence we need to hang
3307 	 * on to this mm purely for the purposes of being able to unaccount
3308 	 * memory (locked/pinned vm). It's not used for anything else.
3309 	 */
3310 	mmgrab(current->mm);
3311 	ctx->mm_account = current->mm;
3312 
3313 	ret = io_allocate_scq_urings(ctx, p);
3314 	if (ret)
3315 		goto err;
3316 
3317 	ret = io_sq_offload_create(ctx, p);
3318 	if (ret)
3319 		goto err;
3320 	/* always set a rsrc node */
3321 	ret = io_rsrc_node_switch_start(ctx);
3322 	if (ret)
3323 		goto err;
3324 	io_rsrc_node_switch(ctx, NULL);
3325 
3326 	memset(&p->sq_off, 0, sizeof(p->sq_off));
3327 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3328 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3329 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3330 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3331 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3332 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3333 	p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3334 
3335 	memset(&p->cq_off, 0, sizeof(p->cq_off));
3336 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3337 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3338 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3339 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3340 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3341 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3342 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3343 
3344 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3345 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3346 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3347 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3348 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3349 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3350 			IORING_FEAT_LINKED_FILE;
3351 
3352 	if (copy_to_user(params, p, sizeof(*p))) {
3353 		ret = -EFAULT;
3354 		goto err;
3355 	}
3356 
3357 	file = io_uring_get_file(ctx);
3358 	if (IS_ERR(file)) {
3359 		ret = PTR_ERR(file);
3360 		goto err;
3361 	}
3362 
3363 	/*
3364 	 * Install ring fd as the very last thing, so we don't risk someone
3365 	 * having closed it before we finish setup
3366 	 */
3367 	ret = io_uring_install_fd(ctx, file);
3368 	if (ret < 0) {
3369 		/* fput will clean it up */
3370 		fput(file);
3371 		return ret;
3372 	}
3373 
3374 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3375 	return ret;
3376 err:
3377 	io_ring_ctx_wait_and_kill(ctx);
3378 	return ret;
3379 }
3380 
3381 /*
3382  * Sets up an aio uring context, and returns the fd. Applications asks for a
3383  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3384  * params structure passed in.
3385  */
3386 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3387 {
3388 	struct io_uring_params p;
3389 	int i;
3390 
3391 	if (copy_from_user(&p, params, sizeof(p)))
3392 		return -EFAULT;
3393 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3394 		if (p.resv[i])
3395 			return -EINVAL;
3396 	}
3397 
3398 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3399 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3400 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3401 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3402 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3403 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3404 			IORING_SETUP_SINGLE_ISSUER))
3405 		return -EINVAL;
3406 
3407 	return io_uring_create(entries, &p, params);
3408 }
3409 
3410 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3411 		struct io_uring_params __user *, params)
3412 {
3413 	return io_uring_setup(entries, params);
3414 }
3415 
3416 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
3417 			   unsigned nr_args)
3418 {
3419 	struct io_uring_probe *p;
3420 	size_t size;
3421 	int i, ret;
3422 
3423 	size = struct_size(p, ops, nr_args);
3424 	if (size == SIZE_MAX)
3425 		return -EOVERFLOW;
3426 	p = kzalloc(size, GFP_KERNEL);
3427 	if (!p)
3428 		return -ENOMEM;
3429 
3430 	ret = -EFAULT;
3431 	if (copy_from_user(p, arg, size))
3432 		goto out;
3433 	ret = -EINVAL;
3434 	if (memchr_inv(p, 0, size))
3435 		goto out;
3436 
3437 	p->last_op = IORING_OP_LAST - 1;
3438 	if (nr_args > IORING_OP_LAST)
3439 		nr_args = IORING_OP_LAST;
3440 
3441 	for (i = 0; i < nr_args; i++) {
3442 		p->ops[i].op = i;
3443 		if (!io_op_defs[i].not_supported)
3444 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
3445 	}
3446 	p->ops_len = i;
3447 
3448 	ret = 0;
3449 	if (copy_to_user(arg, p, size))
3450 		ret = -EFAULT;
3451 out:
3452 	kfree(p);
3453 	return ret;
3454 }
3455 
3456 static int io_register_personality(struct io_ring_ctx *ctx)
3457 {
3458 	const struct cred *creds;
3459 	u32 id;
3460 	int ret;
3461 
3462 	creds = get_current_cred();
3463 
3464 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
3465 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
3466 	if (ret < 0) {
3467 		put_cred(creds);
3468 		return ret;
3469 	}
3470 	return id;
3471 }
3472 
3473 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
3474 					   void __user *arg, unsigned int nr_args)
3475 {
3476 	struct io_uring_restriction *res;
3477 	size_t size;
3478 	int i, ret;
3479 
3480 	/* Restrictions allowed only if rings started disabled */
3481 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3482 		return -EBADFD;
3483 
3484 	/* We allow only a single restrictions registration */
3485 	if (ctx->restrictions.registered)
3486 		return -EBUSY;
3487 
3488 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
3489 		return -EINVAL;
3490 
3491 	size = array_size(nr_args, sizeof(*res));
3492 	if (size == SIZE_MAX)
3493 		return -EOVERFLOW;
3494 
3495 	res = memdup_user(arg, size);
3496 	if (IS_ERR(res))
3497 		return PTR_ERR(res);
3498 
3499 	ret = 0;
3500 
3501 	for (i = 0; i < nr_args; i++) {
3502 		switch (res[i].opcode) {
3503 		case IORING_RESTRICTION_REGISTER_OP:
3504 			if (res[i].register_op >= IORING_REGISTER_LAST) {
3505 				ret = -EINVAL;
3506 				goto out;
3507 			}
3508 
3509 			__set_bit(res[i].register_op,
3510 				  ctx->restrictions.register_op);
3511 			break;
3512 		case IORING_RESTRICTION_SQE_OP:
3513 			if (res[i].sqe_op >= IORING_OP_LAST) {
3514 				ret = -EINVAL;
3515 				goto out;
3516 			}
3517 
3518 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
3519 			break;
3520 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
3521 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
3522 			break;
3523 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
3524 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
3525 			break;
3526 		default:
3527 			ret = -EINVAL;
3528 			goto out;
3529 		}
3530 	}
3531 
3532 out:
3533 	/* Reset all restrictions if an error happened */
3534 	if (ret != 0)
3535 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
3536 	else
3537 		ctx->restrictions.registered = true;
3538 
3539 	kfree(res);
3540 	return ret;
3541 }
3542 
3543 static int io_register_enable_rings(struct io_ring_ctx *ctx)
3544 {
3545 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3546 		return -EBADFD;
3547 
3548 	if (ctx->restrictions.registered)
3549 		ctx->restricted = 1;
3550 
3551 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
3552 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
3553 		wake_up(&ctx->sq_data->wait);
3554 	return 0;
3555 }
3556 
3557 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
3558 				       void __user *arg, unsigned len)
3559 {
3560 	struct io_uring_task *tctx = current->io_uring;
3561 	cpumask_var_t new_mask;
3562 	int ret;
3563 
3564 	if (!tctx || !tctx->io_wq)
3565 		return -EINVAL;
3566 
3567 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3568 		return -ENOMEM;
3569 
3570 	cpumask_clear(new_mask);
3571 	if (len > cpumask_size())
3572 		len = cpumask_size();
3573 
3574 	if (in_compat_syscall()) {
3575 		ret = compat_get_bitmap(cpumask_bits(new_mask),
3576 					(const compat_ulong_t __user *)arg,
3577 					len * 8 /* CHAR_BIT */);
3578 	} else {
3579 		ret = copy_from_user(new_mask, arg, len);
3580 	}
3581 
3582 	if (ret) {
3583 		free_cpumask_var(new_mask);
3584 		return -EFAULT;
3585 	}
3586 
3587 	ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
3588 	free_cpumask_var(new_mask);
3589 	return ret;
3590 }
3591 
3592 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
3593 {
3594 	struct io_uring_task *tctx = current->io_uring;
3595 
3596 	if (!tctx || !tctx->io_wq)
3597 		return -EINVAL;
3598 
3599 	return io_wq_cpu_affinity(tctx->io_wq, NULL);
3600 }
3601 
3602 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
3603 					       void __user *arg)
3604 	__must_hold(&ctx->uring_lock)
3605 {
3606 	struct io_tctx_node *node;
3607 	struct io_uring_task *tctx = NULL;
3608 	struct io_sq_data *sqd = NULL;
3609 	__u32 new_count[2];
3610 	int i, ret;
3611 
3612 	if (copy_from_user(new_count, arg, sizeof(new_count)))
3613 		return -EFAULT;
3614 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
3615 		if (new_count[i] > INT_MAX)
3616 			return -EINVAL;
3617 
3618 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3619 		sqd = ctx->sq_data;
3620 		if (sqd) {
3621 			/*
3622 			 * Observe the correct sqd->lock -> ctx->uring_lock
3623 			 * ordering. Fine to drop uring_lock here, we hold
3624 			 * a ref to the ctx.
3625 			 */
3626 			refcount_inc(&sqd->refs);
3627 			mutex_unlock(&ctx->uring_lock);
3628 			mutex_lock(&sqd->lock);
3629 			mutex_lock(&ctx->uring_lock);
3630 			if (sqd->thread)
3631 				tctx = sqd->thread->io_uring;
3632 		}
3633 	} else {
3634 		tctx = current->io_uring;
3635 	}
3636 
3637 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
3638 
3639 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
3640 		if (new_count[i])
3641 			ctx->iowq_limits[i] = new_count[i];
3642 	ctx->iowq_limits_set = true;
3643 
3644 	if (tctx && tctx->io_wq) {
3645 		ret = io_wq_max_workers(tctx->io_wq, new_count);
3646 		if (ret)
3647 			goto err;
3648 	} else {
3649 		memset(new_count, 0, sizeof(new_count));
3650 	}
3651 
3652 	if (sqd) {
3653 		mutex_unlock(&sqd->lock);
3654 		io_put_sq_data(sqd);
3655 	}
3656 
3657 	if (copy_to_user(arg, new_count, sizeof(new_count)))
3658 		return -EFAULT;
3659 
3660 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
3661 	if (sqd)
3662 		return 0;
3663 
3664 	/* now propagate the restriction to all registered users */
3665 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3666 		struct io_uring_task *tctx = node->task->io_uring;
3667 
3668 		if (WARN_ON_ONCE(!tctx->io_wq))
3669 			continue;
3670 
3671 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
3672 			new_count[i] = ctx->iowq_limits[i];
3673 		/* ignore errors, it always returns zero anyway */
3674 		(void)io_wq_max_workers(tctx->io_wq, new_count);
3675 	}
3676 	return 0;
3677 err:
3678 	if (sqd) {
3679 		mutex_unlock(&sqd->lock);
3680 		io_put_sq_data(sqd);
3681 	}
3682 	return ret;
3683 }
3684 
3685 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
3686 			       void __user *arg, unsigned nr_args)
3687 	__releases(ctx->uring_lock)
3688 	__acquires(ctx->uring_lock)
3689 {
3690 	int ret;
3691 
3692 	/*
3693 	 * We don't quiesce the refs for register anymore and so it can't be
3694 	 * dying as we're holding a file ref here.
3695 	 */
3696 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
3697 		return -ENXIO;
3698 
3699 	if (ctx->restricted) {
3700 		if (opcode >= IORING_REGISTER_LAST)
3701 			return -EINVAL;
3702 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
3703 		if (!test_bit(opcode, ctx->restrictions.register_op))
3704 			return -EACCES;
3705 	}
3706 
3707 	switch (opcode) {
3708 	case IORING_REGISTER_BUFFERS:
3709 		ret = -EFAULT;
3710 		if (!arg)
3711 			break;
3712 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
3713 		break;
3714 	case IORING_UNREGISTER_BUFFERS:
3715 		ret = -EINVAL;
3716 		if (arg || nr_args)
3717 			break;
3718 		ret = io_sqe_buffers_unregister(ctx);
3719 		break;
3720 	case IORING_REGISTER_FILES:
3721 		ret = -EFAULT;
3722 		if (!arg)
3723 			break;
3724 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
3725 		break;
3726 	case IORING_UNREGISTER_FILES:
3727 		ret = -EINVAL;
3728 		if (arg || nr_args)
3729 			break;
3730 		ret = io_sqe_files_unregister(ctx);
3731 		break;
3732 	case IORING_REGISTER_FILES_UPDATE:
3733 		ret = io_register_files_update(ctx, arg, nr_args);
3734 		break;
3735 	case IORING_REGISTER_EVENTFD:
3736 		ret = -EINVAL;
3737 		if (nr_args != 1)
3738 			break;
3739 		ret = io_eventfd_register(ctx, arg, 0);
3740 		break;
3741 	case IORING_REGISTER_EVENTFD_ASYNC:
3742 		ret = -EINVAL;
3743 		if (nr_args != 1)
3744 			break;
3745 		ret = io_eventfd_register(ctx, arg, 1);
3746 		break;
3747 	case IORING_UNREGISTER_EVENTFD:
3748 		ret = -EINVAL;
3749 		if (arg || nr_args)
3750 			break;
3751 		ret = io_eventfd_unregister(ctx);
3752 		break;
3753 	case IORING_REGISTER_PROBE:
3754 		ret = -EINVAL;
3755 		if (!arg || nr_args > 256)
3756 			break;
3757 		ret = io_probe(ctx, arg, nr_args);
3758 		break;
3759 	case IORING_REGISTER_PERSONALITY:
3760 		ret = -EINVAL;
3761 		if (arg || nr_args)
3762 			break;
3763 		ret = io_register_personality(ctx);
3764 		break;
3765 	case IORING_UNREGISTER_PERSONALITY:
3766 		ret = -EINVAL;
3767 		if (arg)
3768 			break;
3769 		ret = io_unregister_personality(ctx, nr_args);
3770 		break;
3771 	case IORING_REGISTER_ENABLE_RINGS:
3772 		ret = -EINVAL;
3773 		if (arg || nr_args)
3774 			break;
3775 		ret = io_register_enable_rings(ctx);
3776 		break;
3777 	case IORING_REGISTER_RESTRICTIONS:
3778 		ret = io_register_restrictions(ctx, arg, nr_args);
3779 		break;
3780 	case IORING_REGISTER_FILES2:
3781 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
3782 		break;
3783 	case IORING_REGISTER_FILES_UPDATE2:
3784 		ret = io_register_rsrc_update(ctx, arg, nr_args,
3785 					      IORING_RSRC_FILE);
3786 		break;
3787 	case IORING_REGISTER_BUFFERS2:
3788 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
3789 		break;
3790 	case IORING_REGISTER_BUFFERS_UPDATE:
3791 		ret = io_register_rsrc_update(ctx, arg, nr_args,
3792 					      IORING_RSRC_BUFFER);
3793 		break;
3794 	case IORING_REGISTER_IOWQ_AFF:
3795 		ret = -EINVAL;
3796 		if (!arg || !nr_args)
3797 			break;
3798 		ret = io_register_iowq_aff(ctx, arg, nr_args);
3799 		break;
3800 	case IORING_UNREGISTER_IOWQ_AFF:
3801 		ret = -EINVAL;
3802 		if (arg || nr_args)
3803 			break;
3804 		ret = io_unregister_iowq_aff(ctx);
3805 		break;
3806 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
3807 		ret = -EINVAL;
3808 		if (!arg || nr_args != 2)
3809 			break;
3810 		ret = io_register_iowq_max_workers(ctx, arg);
3811 		break;
3812 	case IORING_REGISTER_RING_FDS:
3813 		ret = io_ringfd_register(ctx, arg, nr_args);
3814 		break;
3815 	case IORING_UNREGISTER_RING_FDS:
3816 		ret = io_ringfd_unregister(ctx, arg, nr_args);
3817 		break;
3818 	case IORING_REGISTER_PBUF_RING:
3819 		ret = -EINVAL;
3820 		if (!arg || nr_args != 1)
3821 			break;
3822 		ret = io_register_pbuf_ring(ctx, arg);
3823 		break;
3824 	case IORING_UNREGISTER_PBUF_RING:
3825 		ret = -EINVAL;
3826 		if (!arg || nr_args != 1)
3827 			break;
3828 		ret = io_unregister_pbuf_ring(ctx, arg);
3829 		break;
3830 	case IORING_REGISTER_SYNC_CANCEL:
3831 		ret = -EINVAL;
3832 		if (!arg || nr_args != 1)
3833 			break;
3834 		ret = io_sync_cancel(ctx, arg);
3835 		break;
3836 	case IORING_REGISTER_FILE_ALLOC_RANGE:
3837 		ret = -EINVAL;
3838 		if (!arg || nr_args)
3839 			break;
3840 		ret = io_register_file_alloc_range(ctx, arg);
3841 		break;
3842 	case IORING_REGISTER_NOTIFIERS:
3843 		ret = io_notif_register(ctx, arg, nr_args);
3844 		break;
3845 	case IORING_UNREGISTER_NOTIFIERS:
3846 		ret = -EINVAL;
3847 		if (arg || nr_args)
3848 			break;
3849 		ret = io_notif_unregister(ctx);
3850 		break;
3851 	default:
3852 		ret = -EINVAL;
3853 		break;
3854 	}
3855 
3856 	return ret;
3857 }
3858 
3859 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
3860 		void __user *, arg, unsigned int, nr_args)
3861 {
3862 	struct io_ring_ctx *ctx;
3863 	long ret = -EBADF;
3864 	struct fd f;
3865 
3866 	f = fdget(fd);
3867 	if (!f.file)
3868 		return -EBADF;
3869 
3870 	ret = -EOPNOTSUPP;
3871 	if (!io_is_uring_fops(f.file))
3872 		goto out_fput;
3873 
3874 	ctx = f.file->private_data;
3875 
3876 	io_run_task_work();
3877 
3878 	mutex_lock(&ctx->uring_lock);
3879 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
3880 	mutex_unlock(&ctx->uring_lock);
3881 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
3882 out_fput:
3883 	fdput(f);
3884 	return ret;
3885 }
3886 
3887 static int __init io_uring_init(void)
3888 {
3889 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3890 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3891 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3892 } while (0)
3893 
3894 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3895 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3896 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3897 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3898 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3899 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
3900 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
3901 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
3902 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
3903 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
3904 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
3905 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
3906 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3907 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
3908 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
3909 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
3910 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
3911 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
3912 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3913 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
3914 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
3915 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
3916 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
3917 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
3918 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
3919 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
3920 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
3921 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
3922 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
3923 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
3924 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
3925 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
3926 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
3927 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
3928 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
3929 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
3930 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
3931 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
3932 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
3933 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
3934 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
3935 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
3936 	BUILD_BUG_SQE_ELEM(44, __u16,  notification_idx);
3937 	BUILD_BUG_SQE_ELEM(46, __u16,  addr_len);
3938 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
3939 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3940 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
3941 
3942 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3943 		     sizeof(struct io_uring_rsrc_update));
3944 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3945 		     sizeof(struct io_uring_rsrc_update2));
3946 
3947 	/* ->buf_index is u16 */
3948 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3949 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3950 		     offsetof(struct io_uring_buf_ring, tail));
3951 
3952 	/* should fit into one byte */
3953 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3954 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3955 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3956 
3957 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
3958 
3959 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3960 
3961 	io_uring_optable_init();
3962 
3963 	req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
3964 				SLAB_ACCOUNT);
3965 	return 0;
3966 };
3967 __initcall(io_uring_init);
3968