1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 76 #define CREATE_TRACE_POINTS 77 #include <trace/events/io_uring.h> 78 79 #include <uapi/linux/io_uring.h> 80 81 #include "io-wq.h" 82 83 #include "io_uring.h" 84 #include "opdef.h" 85 #include "refs.h" 86 #include "tctx.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 95 #include "timeout.h" 96 #include "poll.h" 97 #include "alloc_cache.h" 98 99 #define IORING_MAX_ENTRIES 32768 100 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 101 102 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 103 IORING_REGISTER_LAST + IORING_OP_LAST) 104 105 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 106 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 107 108 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 109 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 110 111 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 112 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 113 REQ_F_ASYNC_DATA) 114 115 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 116 IO_REQ_CLEAN_FLAGS) 117 118 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 119 120 #define IO_COMPL_BATCH 32 121 #define IO_REQ_ALLOC_BATCH 8 122 123 enum { 124 IO_CHECK_CQ_OVERFLOW_BIT, 125 IO_CHECK_CQ_DROPPED_BIT, 126 }; 127 128 struct io_defer_entry { 129 struct list_head list; 130 struct io_kiocb *req; 131 u32 seq; 132 }; 133 134 /* requests with any of those set should undergo io_disarm_next() */ 135 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 136 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 137 138 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 139 struct task_struct *task, 140 bool cancel_all); 141 142 static void io_dismantle_req(struct io_kiocb *req); 143 static void io_clean_op(struct io_kiocb *req); 144 static void io_queue_sqe(struct io_kiocb *req); 145 146 static void __io_submit_flush_completions(struct io_ring_ctx *ctx); 147 148 static struct kmem_cache *req_cachep; 149 150 struct sock *io_uring_get_socket(struct file *file) 151 { 152 #if defined(CONFIG_UNIX) 153 if (io_is_uring_fops(file)) { 154 struct io_ring_ctx *ctx = file->private_data; 155 156 return ctx->ring_sock->sk; 157 } 158 #endif 159 return NULL; 160 } 161 EXPORT_SYMBOL(io_uring_get_socket); 162 163 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 164 { 165 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) 166 __io_submit_flush_completions(ctx); 167 } 168 169 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 170 { 171 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 172 } 173 174 static bool io_match_linked(struct io_kiocb *head) 175 { 176 struct io_kiocb *req; 177 178 io_for_each_link(req, head) { 179 if (req->flags & REQ_F_INFLIGHT) 180 return true; 181 } 182 return false; 183 } 184 185 /* 186 * As io_match_task() but protected against racing with linked timeouts. 187 * User must not hold timeout_lock. 188 */ 189 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 190 bool cancel_all) 191 { 192 bool matched; 193 194 if (task && head->task != task) 195 return false; 196 if (cancel_all) 197 return true; 198 199 if (head->flags & REQ_F_LINK_TIMEOUT) { 200 struct io_ring_ctx *ctx = head->ctx; 201 202 /* protect against races with linked timeouts */ 203 spin_lock_irq(&ctx->timeout_lock); 204 matched = io_match_linked(head); 205 spin_unlock_irq(&ctx->timeout_lock); 206 } else { 207 matched = io_match_linked(head); 208 } 209 return matched; 210 } 211 212 static inline void req_fail_link_node(struct io_kiocb *req, int res) 213 { 214 req_set_fail(req); 215 io_req_set_res(req, res, 0); 216 } 217 218 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 219 { 220 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 221 } 222 223 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 224 { 225 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 226 227 complete(&ctx->ref_comp); 228 } 229 230 static __cold void io_fallback_req_func(struct work_struct *work) 231 { 232 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 233 fallback_work.work); 234 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 235 struct io_kiocb *req, *tmp; 236 bool locked = false; 237 238 percpu_ref_get(&ctx->refs); 239 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 240 req->io_task_work.func(req, &locked); 241 242 if (locked) { 243 io_submit_flush_completions(ctx); 244 mutex_unlock(&ctx->uring_lock); 245 } 246 percpu_ref_put(&ctx->refs); 247 } 248 249 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 250 { 251 unsigned hash_buckets = 1U << bits; 252 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 253 254 table->hbs = kmalloc(hash_size, GFP_KERNEL); 255 if (!table->hbs) 256 return -ENOMEM; 257 258 table->hash_bits = bits; 259 init_hash_table(table, hash_buckets); 260 return 0; 261 } 262 263 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 264 { 265 struct io_ring_ctx *ctx; 266 int hash_bits; 267 268 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 269 if (!ctx) 270 return NULL; 271 272 xa_init(&ctx->io_bl_xa); 273 274 /* 275 * Use 5 bits less than the max cq entries, that should give us around 276 * 32 entries per hash list if totally full and uniformly spread, but 277 * don't keep too many buckets to not overconsume memory. 278 */ 279 hash_bits = ilog2(p->cq_entries) - 5; 280 hash_bits = clamp(hash_bits, 1, 8); 281 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 282 goto err; 283 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 284 goto err; 285 286 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL); 287 if (!ctx->dummy_ubuf) 288 goto err; 289 /* set invalid range, so io_import_fixed() fails meeting it */ 290 ctx->dummy_ubuf->ubuf = -1UL; 291 292 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 293 0, GFP_KERNEL)) 294 goto err; 295 296 ctx->flags = p->flags; 297 init_waitqueue_head(&ctx->sqo_sq_wait); 298 INIT_LIST_HEAD(&ctx->sqd_list); 299 INIT_LIST_HEAD(&ctx->cq_overflow_list); 300 INIT_LIST_HEAD(&ctx->io_buffers_cache); 301 io_alloc_cache_init(&ctx->apoll_cache); 302 io_alloc_cache_init(&ctx->netmsg_cache); 303 init_completion(&ctx->ref_comp); 304 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 305 mutex_init(&ctx->uring_lock); 306 init_waitqueue_head(&ctx->cq_wait); 307 spin_lock_init(&ctx->completion_lock); 308 spin_lock_init(&ctx->timeout_lock); 309 INIT_WQ_LIST(&ctx->iopoll_list); 310 INIT_LIST_HEAD(&ctx->io_buffers_pages); 311 INIT_LIST_HEAD(&ctx->io_buffers_comp); 312 INIT_LIST_HEAD(&ctx->defer_list); 313 INIT_LIST_HEAD(&ctx->timeout_list); 314 INIT_LIST_HEAD(&ctx->ltimeout_list); 315 spin_lock_init(&ctx->rsrc_ref_lock); 316 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 317 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work); 318 init_llist_head(&ctx->rsrc_put_llist); 319 INIT_LIST_HEAD(&ctx->tctx_list); 320 ctx->submit_state.free_list.next = NULL; 321 INIT_WQ_LIST(&ctx->locked_free_list); 322 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 323 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 324 return ctx; 325 err: 326 kfree(ctx->dummy_ubuf); 327 kfree(ctx->cancel_table.hbs); 328 kfree(ctx->cancel_table_locked.hbs); 329 kfree(ctx->io_bl); 330 xa_destroy(&ctx->io_bl_xa); 331 kfree(ctx); 332 return NULL; 333 } 334 335 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 336 { 337 struct io_rings *r = ctx->rings; 338 339 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 340 ctx->cq_extra--; 341 } 342 343 static bool req_need_defer(struct io_kiocb *req, u32 seq) 344 { 345 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 346 struct io_ring_ctx *ctx = req->ctx; 347 348 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 349 } 350 351 return false; 352 } 353 354 static inline void io_req_track_inflight(struct io_kiocb *req) 355 { 356 if (!(req->flags & REQ_F_INFLIGHT)) { 357 req->flags |= REQ_F_INFLIGHT; 358 atomic_inc(&req->task->io_uring->inflight_tracked); 359 } 360 } 361 362 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 363 { 364 if (WARN_ON_ONCE(!req->link)) 365 return NULL; 366 367 req->flags &= ~REQ_F_ARM_LTIMEOUT; 368 req->flags |= REQ_F_LINK_TIMEOUT; 369 370 /* linked timeouts should have two refs once prep'ed */ 371 io_req_set_refcount(req); 372 __io_req_set_refcount(req->link, 2); 373 return req->link; 374 } 375 376 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 377 { 378 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 379 return NULL; 380 return __io_prep_linked_timeout(req); 381 } 382 383 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 384 { 385 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 386 } 387 388 static inline void io_arm_ltimeout(struct io_kiocb *req) 389 { 390 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 391 __io_arm_ltimeout(req); 392 } 393 394 static void io_prep_async_work(struct io_kiocb *req) 395 { 396 const struct io_op_def *def = &io_op_defs[req->opcode]; 397 struct io_ring_ctx *ctx = req->ctx; 398 399 if (!(req->flags & REQ_F_CREDS)) { 400 req->flags |= REQ_F_CREDS; 401 req->creds = get_current_cred(); 402 } 403 404 req->work.list.next = NULL; 405 req->work.flags = 0; 406 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 407 if (req->flags & REQ_F_FORCE_ASYNC) 408 req->work.flags |= IO_WQ_WORK_CONCURRENT; 409 410 if (req->file && !io_req_ffs_set(req)) 411 req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT; 412 413 if (req->flags & REQ_F_ISREG) { 414 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL)) 415 io_wq_hash_work(&req->work, file_inode(req->file)); 416 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 417 if (def->unbound_nonreg_file) 418 req->work.flags |= IO_WQ_WORK_UNBOUND; 419 } 420 } 421 422 static void io_prep_async_link(struct io_kiocb *req) 423 { 424 struct io_kiocb *cur; 425 426 if (req->flags & REQ_F_LINK_TIMEOUT) { 427 struct io_ring_ctx *ctx = req->ctx; 428 429 spin_lock_irq(&ctx->timeout_lock); 430 io_for_each_link(cur, req) 431 io_prep_async_work(cur); 432 spin_unlock_irq(&ctx->timeout_lock); 433 } else { 434 io_for_each_link(cur, req) 435 io_prep_async_work(cur); 436 } 437 } 438 439 void io_queue_iowq(struct io_kiocb *req, bool *dont_use) 440 { 441 struct io_kiocb *link = io_prep_linked_timeout(req); 442 struct io_uring_task *tctx = req->task->io_uring; 443 444 BUG_ON(!tctx); 445 BUG_ON(!tctx->io_wq); 446 447 /* init ->work of the whole link before punting */ 448 io_prep_async_link(req); 449 450 /* 451 * Not expected to happen, but if we do have a bug where this _can_ 452 * happen, catch it here and ensure the request is marked as 453 * canceled. That will make io-wq go through the usual work cancel 454 * procedure rather than attempt to run this request (or create a new 455 * worker for it). 456 */ 457 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 458 req->work.flags |= IO_WQ_WORK_CANCEL; 459 460 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 461 io_wq_enqueue(tctx->io_wq, &req->work); 462 if (link) 463 io_queue_linked_timeout(link); 464 } 465 466 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 467 { 468 while (!list_empty(&ctx->defer_list)) { 469 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 470 struct io_defer_entry, list); 471 472 if (req_need_defer(de->req, de->seq)) 473 break; 474 list_del_init(&de->list); 475 io_req_task_queue(de->req); 476 kfree(de); 477 } 478 } 479 480 static void io_eventfd_signal(struct io_ring_ctx *ctx) 481 { 482 struct io_ev_fd *ev_fd; 483 bool skip; 484 485 spin_lock(&ctx->completion_lock); 486 /* 487 * Eventfd should only get triggered when at least one event has been 488 * posted. Some applications rely on the eventfd notification count only 489 * changing IFF a new CQE has been added to the CQ ring. There's no 490 * depedency on 1:1 relationship between how many times this function is 491 * called (and hence the eventfd count) and number of CQEs posted to the 492 * CQ ring. 493 */ 494 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 495 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 496 spin_unlock(&ctx->completion_lock); 497 if (skip) 498 return; 499 500 rcu_read_lock(); 501 /* 502 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 503 * and eventfd_signal 504 */ 505 ev_fd = rcu_dereference(ctx->io_ev_fd); 506 507 /* 508 * Check again if ev_fd exists incase an io_eventfd_unregister call 509 * completed between the NULL check of ctx->io_ev_fd at the start of 510 * the function and rcu_read_lock. 511 */ 512 if (unlikely(!ev_fd)) 513 goto out; 514 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 515 goto out; 516 517 if (!ev_fd->eventfd_async || io_wq_current_is_worker()) 518 eventfd_signal(ev_fd->cq_ev_fd, 1); 519 out: 520 rcu_read_unlock(); 521 } 522 523 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 524 { 525 if (ctx->off_timeout_used || ctx->drain_active) { 526 spin_lock(&ctx->completion_lock); 527 if (ctx->off_timeout_used) 528 io_flush_timeouts(ctx); 529 if (ctx->drain_active) 530 io_queue_deferred(ctx); 531 spin_unlock(&ctx->completion_lock); 532 } 533 if (ctx->has_evfd) 534 io_eventfd_signal(ctx); 535 } 536 537 static inline void io_cqring_ev_posted(struct io_ring_ctx *ctx) 538 { 539 io_commit_cqring_flush(ctx); 540 io_cqring_wake(ctx); 541 } 542 543 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 544 __releases(ctx->completion_lock) 545 { 546 io_commit_cqring(ctx); 547 spin_unlock(&ctx->completion_lock); 548 io_cqring_ev_posted(ctx); 549 } 550 551 void io_cq_unlock_post(struct io_ring_ctx *ctx) 552 { 553 __io_cq_unlock_post(ctx); 554 } 555 556 /* Returns true if there are no backlogged entries after the flush */ 557 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force) 558 { 559 bool all_flushed; 560 size_t cqe_size = sizeof(struct io_uring_cqe); 561 562 if (!force && __io_cqring_events(ctx) == ctx->cq_entries) 563 return false; 564 565 if (ctx->flags & IORING_SETUP_CQE32) 566 cqe_size <<= 1; 567 568 io_cq_lock(ctx); 569 while (!list_empty(&ctx->cq_overflow_list)) { 570 struct io_uring_cqe *cqe = io_get_cqe(ctx); 571 struct io_overflow_cqe *ocqe; 572 573 if (!cqe && !force) 574 break; 575 ocqe = list_first_entry(&ctx->cq_overflow_list, 576 struct io_overflow_cqe, list); 577 if (cqe) 578 memcpy(cqe, &ocqe->cqe, cqe_size); 579 else 580 io_account_cq_overflow(ctx); 581 582 list_del(&ocqe->list); 583 kfree(ocqe); 584 } 585 586 all_flushed = list_empty(&ctx->cq_overflow_list); 587 if (all_flushed) { 588 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 589 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 590 } 591 592 io_cq_unlock_post(ctx); 593 return all_flushed; 594 } 595 596 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx) 597 { 598 bool ret = true; 599 600 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 601 /* iopoll syncs against uring_lock, not completion_lock */ 602 if (ctx->flags & IORING_SETUP_IOPOLL) 603 mutex_lock(&ctx->uring_lock); 604 ret = __io_cqring_overflow_flush(ctx, false); 605 if (ctx->flags & IORING_SETUP_IOPOLL) 606 mutex_unlock(&ctx->uring_lock); 607 } 608 609 return ret; 610 } 611 612 void __io_put_task(struct task_struct *task, int nr) 613 { 614 struct io_uring_task *tctx = task->io_uring; 615 616 percpu_counter_sub(&tctx->inflight, nr); 617 if (unlikely(atomic_read(&tctx->in_idle))) 618 wake_up(&tctx->wait); 619 put_task_struct_many(task, nr); 620 } 621 622 void io_task_refs_refill(struct io_uring_task *tctx) 623 { 624 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 625 626 percpu_counter_add(&tctx->inflight, refill); 627 refcount_add(refill, ¤t->usage); 628 tctx->cached_refs += refill; 629 } 630 631 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 632 { 633 struct io_uring_task *tctx = task->io_uring; 634 unsigned int refs = tctx->cached_refs; 635 636 if (refs) { 637 tctx->cached_refs = 0; 638 percpu_counter_sub(&tctx->inflight, refs); 639 put_task_struct_many(task, refs); 640 } 641 } 642 643 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 644 s32 res, u32 cflags, u64 extra1, u64 extra2) 645 { 646 struct io_overflow_cqe *ocqe; 647 size_t ocq_size = sizeof(struct io_overflow_cqe); 648 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 649 650 if (is_cqe32) 651 ocq_size += sizeof(struct io_uring_cqe); 652 653 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 654 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 655 if (!ocqe) { 656 /* 657 * If we're in ring overflow flush mode, or in task cancel mode, 658 * or cannot allocate an overflow entry, then we need to drop it 659 * on the floor. 660 */ 661 io_account_cq_overflow(ctx); 662 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 663 return false; 664 } 665 if (list_empty(&ctx->cq_overflow_list)) { 666 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 667 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 668 669 } 670 ocqe->cqe.user_data = user_data; 671 ocqe->cqe.res = res; 672 ocqe->cqe.flags = cflags; 673 if (is_cqe32) { 674 ocqe->cqe.big_cqe[0] = extra1; 675 ocqe->cqe.big_cqe[1] = extra2; 676 } 677 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 678 return true; 679 } 680 681 bool io_req_cqe_overflow(struct io_kiocb *req) 682 { 683 if (!(req->flags & REQ_F_CQE32_INIT)) { 684 req->extra1 = 0; 685 req->extra2 = 0; 686 } 687 return io_cqring_event_overflow(req->ctx, req->cqe.user_data, 688 req->cqe.res, req->cqe.flags, 689 req->extra1, req->extra2); 690 } 691 692 /* 693 * writes to the cq entry need to come after reading head; the 694 * control dependency is enough as we're using WRITE_ONCE to 695 * fill the cq entry 696 */ 697 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx) 698 { 699 struct io_rings *rings = ctx->rings; 700 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 701 unsigned int free, queued, len; 702 703 704 /* userspace may cheat modifying the tail, be safe and do min */ 705 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 706 free = ctx->cq_entries - queued; 707 /* we need a contiguous range, limit based on the current array offset */ 708 len = min(free, ctx->cq_entries - off); 709 if (!len) 710 return NULL; 711 712 if (ctx->flags & IORING_SETUP_CQE32) { 713 off <<= 1; 714 len <<= 1; 715 } 716 717 ctx->cqe_cached = &rings->cqes[off]; 718 ctx->cqe_sentinel = ctx->cqe_cached + len; 719 720 ctx->cached_cq_tail++; 721 ctx->cqe_cached++; 722 if (ctx->flags & IORING_SETUP_CQE32) 723 ctx->cqe_cached++; 724 return &rings->cqes[off]; 725 } 726 727 bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 728 bool allow_overflow) 729 { 730 struct io_uring_cqe *cqe; 731 732 ctx->cq_extra++; 733 734 /* 735 * If we can't get a cq entry, userspace overflowed the 736 * submission (by quite a lot). Increment the overflow count in 737 * the ring. 738 */ 739 cqe = io_get_cqe(ctx); 740 if (likely(cqe)) { 741 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 742 743 WRITE_ONCE(cqe->user_data, user_data); 744 WRITE_ONCE(cqe->res, res); 745 WRITE_ONCE(cqe->flags, cflags); 746 747 if (ctx->flags & IORING_SETUP_CQE32) { 748 WRITE_ONCE(cqe->big_cqe[0], 0); 749 WRITE_ONCE(cqe->big_cqe[1], 0); 750 } 751 return true; 752 } 753 754 if (allow_overflow) 755 return io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 756 757 return false; 758 } 759 760 bool io_post_aux_cqe(struct io_ring_ctx *ctx, 761 u64 user_data, s32 res, u32 cflags, 762 bool allow_overflow) 763 { 764 bool filled; 765 766 io_cq_lock(ctx); 767 filled = io_fill_cqe_aux(ctx, user_data, res, cflags, allow_overflow); 768 io_cq_unlock_post(ctx); 769 return filled; 770 } 771 772 static void __io_req_complete_put(struct io_kiocb *req) 773 { 774 /* 775 * If we're the last reference to this request, add to our locked 776 * free_list cache. 777 */ 778 if (req_ref_put_and_test(req)) { 779 struct io_ring_ctx *ctx = req->ctx; 780 781 if (req->flags & IO_REQ_LINK_FLAGS) { 782 if (req->flags & IO_DISARM_MASK) 783 io_disarm_next(req); 784 if (req->link) { 785 io_req_task_queue(req->link); 786 req->link = NULL; 787 } 788 } 789 io_req_put_rsrc(req); 790 /* 791 * Selected buffer deallocation in io_clean_op() assumes that 792 * we don't hold ->completion_lock. Clean them here to avoid 793 * deadlocks. 794 */ 795 io_put_kbuf_comp(req); 796 io_dismantle_req(req); 797 io_put_task(req->task, 1); 798 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 799 ctx->locked_free_nr++; 800 } 801 } 802 803 void __io_req_complete_post(struct io_kiocb *req) 804 { 805 if (!(req->flags & REQ_F_CQE_SKIP)) 806 __io_fill_cqe_req(req->ctx, req); 807 __io_req_complete_put(req); 808 } 809 810 void io_req_complete_post(struct io_kiocb *req) 811 { 812 struct io_ring_ctx *ctx = req->ctx; 813 814 io_cq_lock(ctx); 815 __io_req_complete_post(req); 816 io_cq_unlock_post(ctx); 817 } 818 819 inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags) 820 { 821 io_req_complete_post(req); 822 } 823 824 void io_req_complete_failed(struct io_kiocb *req, s32 res) 825 { 826 req_set_fail(req); 827 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 828 io_req_complete_post(req); 829 } 830 831 /* 832 * Don't initialise the fields below on every allocation, but do that in 833 * advance and keep them valid across allocations. 834 */ 835 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 836 { 837 req->ctx = ctx; 838 req->link = NULL; 839 req->async_data = NULL; 840 /* not necessary, but safer to zero */ 841 req->cqe.res = 0; 842 } 843 844 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 845 struct io_submit_state *state) 846 { 847 spin_lock(&ctx->completion_lock); 848 wq_list_splice(&ctx->locked_free_list, &state->free_list); 849 ctx->locked_free_nr = 0; 850 spin_unlock(&ctx->completion_lock); 851 } 852 853 /* 854 * A request might get retired back into the request caches even before opcode 855 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 856 * Because of that, io_alloc_req() should be called only under ->uring_lock 857 * and with extra caution to not get a request that is still worked on. 858 */ 859 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 860 __must_hold(&ctx->uring_lock) 861 { 862 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 863 void *reqs[IO_REQ_ALLOC_BATCH]; 864 int ret, i; 865 866 /* 867 * If we have more than a batch's worth of requests in our IRQ side 868 * locked cache, grab the lock and move them over to our submission 869 * side cache. 870 */ 871 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 872 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 873 if (!io_req_cache_empty(ctx)) 874 return true; 875 } 876 877 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 878 879 /* 880 * Bulk alloc is all-or-nothing. If we fail to get a batch, 881 * retry single alloc to be on the safe side. 882 */ 883 if (unlikely(ret <= 0)) { 884 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 885 if (!reqs[0]) 886 return false; 887 ret = 1; 888 } 889 890 percpu_ref_get_many(&ctx->refs, ret); 891 for (i = 0; i < ret; i++) { 892 struct io_kiocb *req = reqs[i]; 893 894 io_preinit_req(req, ctx); 895 io_req_add_to_cache(req, ctx); 896 } 897 return true; 898 } 899 900 static inline void io_dismantle_req(struct io_kiocb *req) 901 { 902 unsigned int flags = req->flags; 903 904 if (unlikely(flags & IO_REQ_CLEAN_FLAGS)) 905 io_clean_op(req); 906 if (!(flags & REQ_F_FIXED_FILE)) 907 io_put_file(req->file); 908 } 909 910 __cold void io_free_req(struct io_kiocb *req) 911 { 912 struct io_ring_ctx *ctx = req->ctx; 913 914 io_req_put_rsrc(req); 915 io_dismantle_req(req); 916 io_put_task(req->task, 1); 917 918 spin_lock(&ctx->completion_lock); 919 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 920 ctx->locked_free_nr++; 921 spin_unlock(&ctx->completion_lock); 922 } 923 924 static void __io_req_find_next_prep(struct io_kiocb *req) 925 { 926 struct io_ring_ctx *ctx = req->ctx; 927 928 io_cq_lock(ctx); 929 io_disarm_next(req); 930 io_cq_unlock_post(ctx); 931 } 932 933 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 934 { 935 struct io_kiocb *nxt; 936 937 /* 938 * If LINK is set, we have dependent requests in this chain. If we 939 * didn't fail this request, queue the first one up, moving any other 940 * dependencies to the next request. In case of failure, fail the rest 941 * of the chain. 942 */ 943 if (unlikely(req->flags & IO_DISARM_MASK)) 944 __io_req_find_next_prep(req); 945 nxt = req->link; 946 req->link = NULL; 947 return nxt; 948 } 949 950 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked) 951 { 952 if (!ctx) 953 return; 954 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 955 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 956 if (*locked) { 957 io_submit_flush_completions(ctx); 958 mutex_unlock(&ctx->uring_lock); 959 *locked = false; 960 } 961 percpu_ref_put(&ctx->refs); 962 } 963 964 static unsigned int handle_tw_list(struct llist_node *node, 965 struct io_ring_ctx **ctx, bool *locked, 966 struct llist_node *last) 967 { 968 unsigned int count = 0; 969 970 while (node != last) { 971 struct llist_node *next = node->next; 972 struct io_kiocb *req = container_of(node, struct io_kiocb, 973 io_task_work.node); 974 975 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 976 977 if (req->ctx != *ctx) { 978 ctx_flush_and_put(*ctx, locked); 979 *ctx = req->ctx; 980 /* if not contended, grab and improve batching */ 981 *locked = mutex_trylock(&(*ctx)->uring_lock); 982 percpu_ref_get(&(*ctx)->refs); 983 } 984 req->io_task_work.func(req, locked); 985 node = next; 986 count++; 987 } 988 989 return count; 990 } 991 992 /** 993 * io_llist_xchg - swap all entries in a lock-less list 994 * @head: the head of lock-less list to delete all entries 995 * @new: new entry as the head of the list 996 * 997 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 998 * The order of entries returned is from the newest to the oldest added one. 999 */ 1000 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1001 struct llist_node *new) 1002 { 1003 return xchg(&head->first, new); 1004 } 1005 1006 /** 1007 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1008 * @head: the head of lock-less list to delete all entries 1009 * @old: expected old value of the first entry of the list 1010 * @new: new entry as the head of the list 1011 * 1012 * perform a cmpxchg on the first entry of the list. 1013 */ 1014 1015 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1016 struct llist_node *old, 1017 struct llist_node *new) 1018 { 1019 return cmpxchg(&head->first, old, new); 1020 } 1021 1022 void tctx_task_work(struct callback_head *cb) 1023 { 1024 bool uring_locked = false; 1025 struct io_ring_ctx *ctx = NULL; 1026 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1027 task_work); 1028 struct llist_node fake = {}; 1029 struct llist_node *node = io_llist_xchg(&tctx->task_list, &fake); 1030 unsigned int loops = 1; 1031 unsigned int count = handle_tw_list(node, &ctx, &uring_locked, NULL); 1032 1033 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1034 while (node != &fake) { 1035 loops++; 1036 node = io_llist_xchg(&tctx->task_list, &fake); 1037 count += handle_tw_list(node, &ctx, &uring_locked, &fake); 1038 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1039 } 1040 1041 ctx_flush_and_put(ctx, &uring_locked); 1042 1043 /* relaxed read is enough as only the task itself sets ->in_idle */ 1044 if (unlikely(atomic_read(&tctx->in_idle))) 1045 io_uring_drop_tctx_refs(current); 1046 1047 trace_io_uring_task_work_run(tctx, count, loops); 1048 } 1049 1050 void io_req_task_work_add(struct io_kiocb *req) 1051 { 1052 struct io_uring_task *tctx = req->task->io_uring; 1053 struct io_ring_ctx *ctx = req->ctx; 1054 struct llist_node *node; 1055 bool running; 1056 1057 running = !llist_add(&req->io_task_work.node, &tctx->task_list); 1058 1059 /* task_work already pending, we're done */ 1060 if (running) 1061 return; 1062 1063 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1064 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1065 1066 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1067 return; 1068 1069 node = llist_del_all(&tctx->task_list); 1070 1071 while (node) { 1072 req = container_of(node, struct io_kiocb, io_task_work.node); 1073 node = node->next; 1074 if (llist_add(&req->io_task_work.node, 1075 &req->ctx->fallback_llist)) 1076 schedule_delayed_work(&req->ctx->fallback_work, 1); 1077 } 1078 } 1079 1080 static void io_req_tw_post(struct io_kiocb *req, bool *locked) 1081 { 1082 io_req_complete_post(req); 1083 } 1084 1085 void io_req_tw_post_queue(struct io_kiocb *req, s32 res, u32 cflags) 1086 { 1087 io_req_set_res(req, res, cflags); 1088 req->io_task_work.func = io_req_tw_post; 1089 io_req_task_work_add(req); 1090 } 1091 1092 static void io_req_task_cancel(struct io_kiocb *req, bool *locked) 1093 { 1094 /* not needed for normal modes, but SQPOLL depends on it */ 1095 io_tw_lock(req->ctx, locked); 1096 io_req_complete_failed(req, req->cqe.res); 1097 } 1098 1099 void io_req_task_submit(struct io_kiocb *req, bool *locked) 1100 { 1101 io_tw_lock(req->ctx, locked); 1102 /* req->task == current here, checking PF_EXITING is safe */ 1103 if (likely(!(req->task->flags & PF_EXITING))) 1104 io_queue_sqe(req); 1105 else 1106 io_req_complete_failed(req, -EFAULT); 1107 } 1108 1109 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1110 { 1111 io_req_set_res(req, ret, 0); 1112 req->io_task_work.func = io_req_task_cancel; 1113 io_req_task_work_add(req); 1114 } 1115 1116 void io_req_task_queue(struct io_kiocb *req) 1117 { 1118 req->io_task_work.func = io_req_task_submit; 1119 io_req_task_work_add(req); 1120 } 1121 1122 void io_queue_next(struct io_kiocb *req) 1123 { 1124 struct io_kiocb *nxt = io_req_find_next(req); 1125 1126 if (nxt) 1127 io_req_task_queue(nxt); 1128 } 1129 1130 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node) 1131 __must_hold(&ctx->uring_lock) 1132 { 1133 struct task_struct *task = NULL; 1134 int task_refs = 0; 1135 1136 do { 1137 struct io_kiocb *req = container_of(node, struct io_kiocb, 1138 comp_list); 1139 1140 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1141 if (req->flags & REQ_F_REFCOUNT) { 1142 node = req->comp_list.next; 1143 if (!req_ref_put_and_test(req)) 1144 continue; 1145 } 1146 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1147 struct async_poll *apoll = req->apoll; 1148 1149 if (apoll->double_poll) 1150 kfree(apoll->double_poll); 1151 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1152 kfree(apoll); 1153 req->flags &= ~REQ_F_POLLED; 1154 } 1155 if (req->flags & IO_REQ_LINK_FLAGS) 1156 io_queue_next(req); 1157 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1158 io_clean_op(req); 1159 } 1160 if (!(req->flags & REQ_F_FIXED_FILE)) 1161 io_put_file(req->file); 1162 1163 io_req_put_rsrc_locked(req, ctx); 1164 1165 if (req->task != task) { 1166 if (task) 1167 io_put_task(task, task_refs); 1168 task = req->task; 1169 task_refs = 0; 1170 } 1171 task_refs++; 1172 node = req->comp_list.next; 1173 io_req_add_to_cache(req, ctx); 1174 } while (node); 1175 1176 if (task) 1177 io_put_task(task, task_refs); 1178 } 1179 1180 static void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1181 __must_hold(&ctx->uring_lock) 1182 { 1183 struct io_wq_work_node *node, *prev; 1184 struct io_submit_state *state = &ctx->submit_state; 1185 1186 spin_lock(&ctx->completion_lock); 1187 wq_list_for_each(node, prev, &state->compl_reqs) { 1188 struct io_kiocb *req = container_of(node, struct io_kiocb, 1189 comp_list); 1190 1191 if (!(req->flags & REQ_F_CQE_SKIP)) 1192 __io_fill_cqe_req(ctx, req); 1193 } 1194 __io_cq_unlock_post(ctx); 1195 1196 io_free_batch_list(ctx, state->compl_reqs.first); 1197 INIT_WQ_LIST(&state->compl_reqs); 1198 } 1199 1200 /* 1201 * Drop reference to request, return next in chain (if there is one) if this 1202 * was the last reference to this request. 1203 */ 1204 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req) 1205 { 1206 struct io_kiocb *nxt = NULL; 1207 1208 if (req_ref_put_and_test(req)) { 1209 if (unlikely(req->flags & IO_REQ_LINK_FLAGS)) 1210 nxt = io_req_find_next(req); 1211 io_free_req(req); 1212 } 1213 return nxt; 1214 } 1215 1216 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1217 { 1218 /* See comment at the top of this file */ 1219 smp_rmb(); 1220 return __io_cqring_events(ctx); 1221 } 1222 1223 /* 1224 * We can't just wait for polled events to come to us, we have to actively 1225 * find and complete them. 1226 */ 1227 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1228 { 1229 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1230 return; 1231 1232 mutex_lock(&ctx->uring_lock); 1233 while (!wq_list_empty(&ctx->iopoll_list)) { 1234 /* let it sleep and repeat later if can't complete a request */ 1235 if (io_do_iopoll(ctx, true) == 0) 1236 break; 1237 /* 1238 * Ensure we allow local-to-the-cpu processing to take place, 1239 * in this case we need to ensure that we reap all events. 1240 * Also let task_work, etc. to progress by releasing the mutex 1241 */ 1242 if (need_resched()) { 1243 mutex_unlock(&ctx->uring_lock); 1244 cond_resched(); 1245 mutex_lock(&ctx->uring_lock); 1246 } 1247 } 1248 mutex_unlock(&ctx->uring_lock); 1249 } 1250 1251 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1252 { 1253 unsigned int nr_events = 0; 1254 int ret = 0; 1255 unsigned long check_cq; 1256 1257 check_cq = READ_ONCE(ctx->check_cq); 1258 if (unlikely(check_cq)) { 1259 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1260 __io_cqring_overflow_flush(ctx, false); 1261 /* 1262 * Similarly do not spin if we have not informed the user of any 1263 * dropped CQE. 1264 */ 1265 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1266 return -EBADR; 1267 } 1268 /* 1269 * Don't enter poll loop if we already have events pending. 1270 * If we do, we can potentially be spinning for commands that 1271 * already triggered a CQE (eg in error). 1272 */ 1273 if (io_cqring_events(ctx)) 1274 return 0; 1275 1276 do { 1277 /* 1278 * If a submit got punted to a workqueue, we can have the 1279 * application entering polling for a command before it gets 1280 * issued. That app will hold the uring_lock for the duration 1281 * of the poll right here, so we need to take a breather every 1282 * now and then to ensure that the issue has a chance to add 1283 * the poll to the issued list. Otherwise we can spin here 1284 * forever, while the workqueue is stuck trying to acquire the 1285 * very same mutex. 1286 */ 1287 if (wq_list_empty(&ctx->iopoll_list)) { 1288 u32 tail = ctx->cached_cq_tail; 1289 1290 mutex_unlock(&ctx->uring_lock); 1291 io_run_task_work(); 1292 mutex_lock(&ctx->uring_lock); 1293 1294 /* some requests don't go through iopoll_list */ 1295 if (tail != ctx->cached_cq_tail || 1296 wq_list_empty(&ctx->iopoll_list)) 1297 break; 1298 } 1299 ret = io_do_iopoll(ctx, !min); 1300 if (ret < 0) 1301 break; 1302 nr_events += ret; 1303 ret = 0; 1304 } while (nr_events < min && !need_resched()); 1305 1306 return ret; 1307 } 1308 1309 void io_req_task_complete(struct io_kiocb *req, bool *locked) 1310 { 1311 if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)) { 1312 unsigned issue_flags = *locked ? 0 : IO_URING_F_UNLOCKED; 1313 1314 req->cqe.flags |= io_put_kbuf(req, issue_flags); 1315 } 1316 1317 if (*locked) 1318 io_req_complete_defer(req); 1319 else 1320 io_req_complete_post(req); 1321 } 1322 1323 /* 1324 * After the iocb has been issued, it's safe to be found on the poll list. 1325 * Adding the kiocb to the list AFTER submission ensures that we don't 1326 * find it from a io_do_iopoll() thread before the issuer is done 1327 * accessing the kiocb cookie. 1328 */ 1329 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1330 { 1331 struct io_ring_ctx *ctx = req->ctx; 1332 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1333 1334 /* workqueue context doesn't hold uring_lock, grab it now */ 1335 if (unlikely(needs_lock)) 1336 mutex_lock(&ctx->uring_lock); 1337 1338 /* 1339 * Track whether we have multiple files in our lists. This will impact 1340 * how we do polling eventually, not spinning if we're on potentially 1341 * different devices. 1342 */ 1343 if (wq_list_empty(&ctx->iopoll_list)) { 1344 ctx->poll_multi_queue = false; 1345 } else if (!ctx->poll_multi_queue) { 1346 struct io_kiocb *list_req; 1347 1348 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1349 comp_list); 1350 if (list_req->file != req->file) 1351 ctx->poll_multi_queue = true; 1352 } 1353 1354 /* 1355 * For fast devices, IO may have already completed. If it has, add 1356 * it to the front so we find it first. 1357 */ 1358 if (READ_ONCE(req->iopoll_completed)) 1359 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1360 else 1361 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1362 1363 if (unlikely(needs_lock)) { 1364 /* 1365 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1366 * in sq thread task context or in io worker task context. If 1367 * current task context is sq thread, we don't need to check 1368 * whether should wake up sq thread. 1369 */ 1370 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1371 wq_has_sleeper(&ctx->sq_data->wait)) 1372 wake_up(&ctx->sq_data->wait); 1373 1374 mutex_unlock(&ctx->uring_lock); 1375 } 1376 } 1377 1378 static bool io_bdev_nowait(struct block_device *bdev) 1379 { 1380 return !bdev || blk_queue_nowait(bdev_get_queue(bdev)); 1381 } 1382 1383 /* 1384 * If we tracked the file through the SCM inflight mechanism, we could support 1385 * any file. For now, just ensure that anything potentially problematic is done 1386 * inline. 1387 */ 1388 static bool __io_file_supports_nowait(struct file *file, umode_t mode) 1389 { 1390 if (S_ISBLK(mode)) { 1391 if (IS_ENABLED(CONFIG_BLOCK) && 1392 io_bdev_nowait(I_BDEV(file->f_mapping->host))) 1393 return true; 1394 return false; 1395 } 1396 if (S_ISSOCK(mode)) 1397 return true; 1398 if (S_ISREG(mode)) { 1399 if (IS_ENABLED(CONFIG_BLOCK) && 1400 io_bdev_nowait(file->f_inode->i_sb->s_bdev) && 1401 !io_is_uring_fops(file)) 1402 return true; 1403 return false; 1404 } 1405 1406 /* any ->read/write should understand O_NONBLOCK */ 1407 if (file->f_flags & O_NONBLOCK) 1408 return true; 1409 return file->f_mode & FMODE_NOWAIT; 1410 } 1411 1412 /* 1413 * If we tracked the file through the SCM inflight mechanism, we could support 1414 * any file. For now, just ensure that anything potentially problematic is done 1415 * inline. 1416 */ 1417 unsigned int io_file_get_flags(struct file *file) 1418 { 1419 umode_t mode = file_inode(file)->i_mode; 1420 unsigned int res = 0; 1421 1422 if (S_ISREG(mode)) 1423 res |= FFS_ISREG; 1424 if (__io_file_supports_nowait(file, mode)) 1425 res |= FFS_NOWAIT; 1426 if (io_file_need_scm(file)) 1427 res |= FFS_SCM; 1428 return res; 1429 } 1430 1431 bool io_alloc_async_data(struct io_kiocb *req) 1432 { 1433 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size); 1434 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL); 1435 if (req->async_data) { 1436 req->flags |= REQ_F_ASYNC_DATA; 1437 return false; 1438 } 1439 return true; 1440 } 1441 1442 int io_req_prep_async(struct io_kiocb *req) 1443 { 1444 const struct io_op_def *def = &io_op_defs[req->opcode]; 1445 1446 /* assign early for deferred execution for non-fixed file */ 1447 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE)) 1448 req->file = io_file_get_normal(req, req->cqe.fd); 1449 if (!def->prep_async) 1450 return 0; 1451 if (WARN_ON_ONCE(req_has_async_data(req))) 1452 return -EFAULT; 1453 if (!io_op_defs[req->opcode].manual_alloc) { 1454 if (io_alloc_async_data(req)) 1455 return -EAGAIN; 1456 } 1457 return def->prep_async(req); 1458 } 1459 1460 static u32 io_get_sequence(struct io_kiocb *req) 1461 { 1462 u32 seq = req->ctx->cached_sq_head; 1463 struct io_kiocb *cur; 1464 1465 /* need original cached_sq_head, but it was increased for each req */ 1466 io_for_each_link(cur, req) 1467 seq--; 1468 return seq; 1469 } 1470 1471 static __cold void io_drain_req(struct io_kiocb *req) 1472 { 1473 struct io_ring_ctx *ctx = req->ctx; 1474 struct io_defer_entry *de; 1475 int ret; 1476 u32 seq = io_get_sequence(req); 1477 1478 /* Still need defer if there is pending req in defer list. */ 1479 spin_lock(&ctx->completion_lock); 1480 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1481 spin_unlock(&ctx->completion_lock); 1482 queue: 1483 ctx->drain_active = false; 1484 io_req_task_queue(req); 1485 return; 1486 } 1487 spin_unlock(&ctx->completion_lock); 1488 1489 ret = io_req_prep_async(req); 1490 if (ret) { 1491 fail: 1492 io_req_complete_failed(req, ret); 1493 return; 1494 } 1495 io_prep_async_link(req); 1496 de = kmalloc(sizeof(*de), GFP_KERNEL); 1497 if (!de) { 1498 ret = -ENOMEM; 1499 goto fail; 1500 } 1501 1502 spin_lock(&ctx->completion_lock); 1503 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1504 spin_unlock(&ctx->completion_lock); 1505 kfree(de); 1506 goto queue; 1507 } 1508 1509 trace_io_uring_defer(req); 1510 de->req = req; 1511 de->seq = seq; 1512 list_add_tail(&de->list, &ctx->defer_list); 1513 spin_unlock(&ctx->completion_lock); 1514 } 1515 1516 static void io_clean_op(struct io_kiocb *req) 1517 { 1518 if (req->flags & REQ_F_BUFFER_SELECTED) { 1519 spin_lock(&req->ctx->completion_lock); 1520 io_put_kbuf_comp(req); 1521 spin_unlock(&req->ctx->completion_lock); 1522 } 1523 1524 if (req->flags & REQ_F_NEED_CLEANUP) { 1525 const struct io_op_def *def = &io_op_defs[req->opcode]; 1526 1527 if (def->cleanup) 1528 def->cleanup(req); 1529 } 1530 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1531 kfree(req->apoll->double_poll); 1532 kfree(req->apoll); 1533 req->apoll = NULL; 1534 } 1535 if (req->flags & REQ_F_INFLIGHT) { 1536 struct io_uring_task *tctx = req->task->io_uring; 1537 1538 atomic_dec(&tctx->inflight_tracked); 1539 } 1540 if (req->flags & REQ_F_CREDS) 1541 put_cred(req->creds); 1542 if (req->flags & REQ_F_ASYNC_DATA) { 1543 kfree(req->async_data); 1544 req->async_data = NULL; 1545 } 1546 req->flags &= ~IO_REQ_CLEAN_FLAGS; 1547 } 1548 1549 static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags) 1550 { 1551 if (req->file || !io_op_defs[req->opcode].needs_file) 1552 return true; 1553 1554 if (req->flags & REQ_F_FIXED_FILE) 1555 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1556 else 1557 req->file = io_file_get_normal(req, req->cqe.fd); 1558 1559 return !!req->file; 1560 } 1561 1562 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1563 { 1564 const struct io_op_def *def = &io_op_defs[req->opcode]; 1565 const struct cred *creds = NULL; 1566 int ret; 1567 1568 if (unlikely(!io_assign_file(req, issue_flags))) 1569 return -EBADF; 1570 1571 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1572 creds = override_creds(req->creds); 1573 1574 if (!def->audit_skip) 1575 audit_uring_entry(req->opcode); 1576 1577 ret = def->issue(req, issue_flags); 1578 1579 if (!def->audit_skip) 1580 audit_uring_exit(!ret, ret); 1581 1582 if (creds) 1583 revert_creds(creds); 1584 1585 if (ret == IOU_OK) { 1586 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1587 io_req_complete_defer(req); 1588 else 1589 io_req_complete_post(req); 1590 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1591 return ret; 1592 1593 /* If the op doesn't have a file, we're not polling for it */ 1594 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && req->file) 1595 io_iopoll_req_issued(req, issue_flags); 1596 1597 return 0; 1598 } 1599 1600 int io_poll_issue(struct io_kiocb *req, bool *locked) 1601 { 1602 io_tw_lock(req->ctx, locked); 1603 if (unlikely(req->task->flags & PF_EXITING)) 1604 return -EFAULT; 1605 return io_issue_sqe(req, IO_URING_F_NONBLOCK); 1606 } 1607 1608 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1609 { 1610 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1611 1612 req = io_put_req_find_next(req); 1613 return req ? &req->work : NULL; 1614 } 1615 1616 void io_wq_submit_work(struct io_wq_work *work) 1617 { 1618 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1619 const struct io_op_def *def = &io_op_defs[req->opcode]; 1620 unsigned int issue_flags = IO_URING_F_UNLOCKED; 1621 bool needs_poll = false; 1622 int ret = 0, err = -ECANCELED; 1623 1624 /* one will be dropped by ->io_free_work() after returning to io-wq */ 1625 if (!(req->flags & REQ_F_REFCOUNT)) 1626 __io_req_set_refcount(req, 2); 1627 else 1628 req_ref_get(req); 1629 1630 io_arm_ltimeout(req); 1631 1632 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1633 if (work->flags & IO_WQ_WORK_CANCEL) { 1634 fail: 1635 io_req_task_queue_fail(req, err); 1636 return; 1637 } 1638 if (!io_assign_file(req, issue_flags)) { 1639 err = -EBADF; 1640 work->flags |= IO_WQ_WORK_CANCEL; 1641 goto fail; 1642 } 1643 1644 if (req->flags & REQ_F_FORCE_ASYNC) { 1645 bool opcode_poll = def->pollin || def->pollout; 1646 1647 if (opcode_poll && file_can_poll(req->file)) { 1648 needs_poll = true; 1649 issue_flags |= IO_URING_F_NONBLOCK; 1650 } 1651 } 1652 1653 do { 1654 ret = io_issue_sqe(req, issue_flags); 1655 if (ret != -EAGAIN) 1656 break; 1657 /* 1658 * We can get EAGAIN for iopolled IO even though we're 1659 * forcing a sync submission from here, since we can't 1660 * wait for request slots on the block side. 1661 */ 1662 if (!needs_poll) { 1663 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1664 break; 1665 cond_resched(); 1666 continue; 1667 } 1668 1669 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1670 return; 1671 /* aborted or ready, in either case retry blocking */ 1672 needs_poll = false; 1673 issue_flags &= ~IO_URING_F_NONBLOCK; 1674 } while (1); 1675 1676 /* avoid locking problems by failing it from a clean context */ 1677 if (ret < 0) 1678 io_req_task_queue_fail(req, ret); 1679 } 1680 1681 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1682 unsigned int issue_flags) 1683 { 1684 struct io_ring_ctx *ctx = req->ctx; 1685 struct file *file = NULL; 1686 unsigned long file_ptr; 1687 1688 io_ring_submit_lock(ctx, issue_flags); 1689 1690 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 1691 goto out; 1692 fd = array_index_nospec(fd, ctx->nr_user_files); 1693 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr; 1694 file = (struct file *) (file_ptr & FFS_MASK); 1695 file_ptr &= ~FFS_MASK; 1696 /* mask in overlapping REQ_F and FFS bits */ 1697 req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT); 1698 io_req_set_rsrc_node(req, ctx, 0); 1699 WARN_ON_ONCE(file && !test_bit(fd, ctx->file_table.bitmap)); 1700 out: 1701 io_ring_submit_unlock(ctx, issue_flags); 1702 return file; 1703 } 1704 1705 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1706 { 1707 struct file *file = fget(fd); 1708 1709 trace_io_uring_file_get(req, fd); 1710 1711 /* we don't allow fixed io_uring files */ 1712 if (file && io_is_uring_fops(file)) 1713 io_req_track_inflight(req); 1714 return file; 1715 } 1716 1717 static void io_queue_async(struct io_kiocb *req, int ret) 1718 __must_hold(&req->ctx->uring_lock) 1719 { 1720 struct io_kiocb *linked_timeout; 1721 1722 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1723 io_req_complete_failed(req, ret); 1724 return; 1725 } 1726 1727 linked_timeout = io_prep_linked_timeout(req); 1728 1729 switch (io_arm_poll_handler(req, 0)) { 1730 case IO_APOLL_READY: 1731 io_kbuf_recycle(req, 0); 1732 io_req_task_queue(req); 1733 break; 1734 case IO_APOLL_ABORTED: 1735 /* 1736 * Queued up for async execution, worker will release 1737 * submit reference when the iocb is actually submitted. 1738 */ 1739 io_kbuf_recycle(req, 0); 1740 io_queue_iowq(req, NULL); 1741 break; 1742 case IO_APOLL_OK: 1743 break; 1744 } 1745 1746 if (linked_timeout) 1747 io_queue_linked_timeout(linked_timeout); 1748 } 1749 1750 static inline void io_queue_sqe(struct io_kiocb *req) 1751 __must_hold(&req->ctx->uring_lock) 1752 { 1753 int ret; 1754 1755 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 1756 1757 /* 1758 * We async punt it if the file wasn't marked NOWAIT, or if the file 1759 * doesn't support non-blocking read/write attempts 1760 */ 1761 if (likely(!ret)) 1762 io_arm_ltimeout(req); 1763 else 1764 io_queue_async(req, ret); 1765 } 1766 1767 static void io_queue_sqe_fallback(struct io_kiocb *req) 1768 __must_hold(&req->ctx->uring_lock) 1769 { 1770 if (unlikely(req->flags & REQ_F_FAIL)) { 1771 /* 1772 * We don't submit, fail them all, for that replace hardlinks 1773 * with normal links. Extra REQ_F_LINK is tolerated. 1774 */ 1775 req->flags &= ~REQ_F_HARDLINK; 1776 req->flags |= REQ_F_LINK; 1777 io_req_complete_failed(req, req->cqe.res); 1778 } else if (unlikely(req->ctx->drain_active)) { 1779 io_drain_req(req); 1780 } else { 1781 int ret = io_req_prep_async(req); 1782 1783 if (unlikely(ret)) 1784 io_req_complete_failed(req, ret); 1785 else 1786 io_queue_iowq(req, NULL); 1787 } 1788 } 1789 1790 /* 1791 * Check SQE restrictions (opcode and flags). 1792 * 1793 * Returns 'true' if SQE is allowed, 'false' otherwise. 1794 */ 1795 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 1796 struct io_kiocb *req, 1797 unsigned int sqe_flags) 1798 { 1799 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 1800 return false; 1801 1802 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 1803 ctx->restrictions.sqe_flags_required) 1804 return false; 1805 1806 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 1807 ctx->restrictions.sqe_flags_required)) 1808 return false; 1809 1810 return true; 1811 } 1812 1813 static void io_init_req_drain(struct io_kiocb *req) 1814 { 1815 struct io_ring_ctx *ctx = req->ctx; 1816 struct io_kiocb *head = ctx->submit_state.link.head; 1817 1818 ctx->drain_active = true; 1819 if (head) { 1820 /* 1821 * If we need to drain a request in the middle of a link, drain 1822 * the head request and the next request/link after the current 1823 * link. Considering sequential execution of links, 1824 * REQ_F_IO_DRAIN will be maintained for every request of our 1825 * link. 1826 */ 1827 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 1828 ctx->drain_next = true; 1829 } 1830 } 1831 1832 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 1833 const struct io_uring_sqe *sqe) 1834 __must_hold(&ctx->uring_lock) 1835 { 1836 const struct io_op_def *def; 1837 unsigned int sqe_flags; 1838 int personality; 1839 u8 opcode; 1840 1841 /* req is partially pre-initialised, see io_preinit_req() */ 1842 req->opcode = opcode = READ_ONCE(sqe->opcode); 1843 /* same numerical values with corresponding REQ_F_*, safe to copy */ 1844 req->flags = sqe_flags = READ_ONCE(sqe->flags); 1845 req->cqe.user_data = READ_ONCE(sqe->user_data); 1846 req->file = NULL; 1847 req->rsrc_node = NULL; 1848 req->task = current; 1849 1850 if (unlikely(opcode >= IORING_OP_LAST)) { 1851 req->opcode = 0; 1852 return -EINVAL; 1853 } 1854 def = &io_op_defs[opcode]; 1855 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 1856 /* enforce forwards compatibility on users */ 1857 if (sqe_flags & ~SQE_VALID_FLAGS) 1858 return -EINVAL; 1859 if (sqe_flags & IOSQE_BUFFER_SELECT) { 1860 if (!def->buffer_select) 1861 return -EOPNOTSUPP; 1862 req->buf_index = READ_ONCE(sqe->buf_group); 1863 } 1864 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 1865 ctx->drain_disabled = true; 1866 if (sqe_flags & IOSQE_IO_DRAIN) { 1867 if (ctx->drain_disabled) 1868 return -EOPNOTSUPP; 1869 io_init_req_drain(req); 1870 } 1871 } 1872 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 1873 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 1874 return -EACCES; 1875 /* knock it to the slow queue path, will be drained there */ 1876 if (ctx->drain_active) 1877 req->flags |= REQ_F_FORCE_ASYNC; 1878 /* if there is no link, we're at "next" request and need to drain */ 1879 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 1880 ctx->drain_next = false; 1881 ctx->drain_active = true; 1882 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 1883 } 1884 } 1885 1886 if (!def->ioprio && sqe->ioprio) 1887 return -EINVAL; 1888 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 1889 return -EINVAL; 1890 1891 if (def->needs_file) { 1892 struct io_submit_state *state = &ctx->submit_state; 1893 1894 req->cqe.fd = READ_ONCE(sqe->fd); 1895 1896 /* 1897 * Plug now if we have more than 2 IO left after this, and the 1898 * target is potentially a read/write to block based storage. 1899 */ 1900 if (state->need_plug && def->plug) { 1901 state->plug_started = true; 1902 state->need_plug = false; 1903 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 1904 } 1905 } 1906 1907 personality = READ_ONCE(sqe->personality); 1908 if (personality) { 1909 int ret; 1910 1911 req->creds = xa_load(&ctx->personalities, personality); 1912 if (!req->creds) 1913 return -EINVAL; 1914 get_cred(req->creds); 1915 ret = security_uring_override_creds(req->creds); 1916 if (ret) { 1917 put_cred(req->creds); 1918 return ret; 1919 } 1920 req->flags |= REQ_F_CREDS; 1921 } 1922 1923 return def->prep(req, sqe); 1924 } 1925 1926 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 1927 struct io_kiocb *req, int ret) 1928 { 1929 struct io_ring_ctx *ctx = req->ctx; 1930 struct io_submit_link *link = &ctx->submit_state.link; 1931 struct io_kiocb *head = link->head; 1932 1933 trace_io_uring_req_failed(sqe, req, ret); 1934 1935 /* 1936 * Avoid breaking links in the middle as it renders links with SQPOLL 1937 * unusable. Instead of failing eagerly, continue assembling the link if 1938 * applicable and mark the head with REQ_F_FAIL. The link flushing code 1939 * should find the flag and handle the rest. 1940 */ 1941 req_fail_link_node(req, ret); 1942 if (head && !(head->flags & REQ_F_FAIL)) 1943 req_fail_link_node(head, -ECANCELED); 1944 1945 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 1946 if (head) { 1947 link->last->link = req; 1948 link->head = NULL; 1949 req = head; 1950 } 1951 io_queue_sqe_fallback(req); 1952 return ret; 1953 } 1954 1955 if (head) 1956 link->last->link = req; 1957 else 1958 link->head = req; 1959 link->last = req; 1960 return 0; 1961 } 1962 1963 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 1964 const struct io_uring_sqe *sqe) 1965 __must_hold(&ctx->uring_lock) 1966 { 1967 struct io_submit_link *link = &ctx->submit_state.link; 1968 int ret; 1969 1970 ret = io_init_req(ctx, req, sqe); 1971 if (unlikely(ret)) 1972 return io_submit_fail_init(sqe, req, ret); 1973 1974 /* don't need @sqe from now on */ 1975 trace_io_uring_submit_sqe(req, true); 1976 1977 /* 1978 * If we already have a head request, queue this one for async 1979 * submittal once the head completes. If we don't have a head but 1980 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 1981 * submitted sync once the chain is complete. If none of those 1982 * conditions are true (normal request), then just queue it. 1983 */ 1984 if (unlikely(link->head)) { 1985 ret = io_req_prep_async(req); 1986 if (unlikely(ret)) 1987 return io_submit_fail_init(sqe, req, ret); 1988 1989 trace_io_uring_link(req, link->head); 1990 link->last->link = req; 1991 link->last = req; 1992 1993 if (req->flags & IO_REQ_LINK_FLAGS) 1994 return 0; 1995 /* last request of the link, flush it */ 1996 req = link->head; 1997 link->head = NULL; 1998 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 1999 goto fallback; 2000 2001 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2002 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2003 if (req->flags & IO_REQ_LINK_FLAGS) { 2004 link->head = req; 2005 link->last = req; 2006 } else { 2007 fallback: 2008 io_queue_sqe_fallback(req); 2009 } 2010 return 0; 2011 } 2012 2013 io_queue_sqe(req); 2014 return 0; 2015 } 2016 2017 /* 2018 * Batched submission is done, ensure local IO is flushed out. 2019 */ 2020 static void io_submit_state_end(struct io_ring_ctx *ctx) 2021 { 2022 struct io_submit_state *state = &ctx->submit_state; 2023 2024 if (unlikely(state->link.head)) 2025 io_queue_sqe_fallback(state->link.head); 2026 /* flush only after queuing links as they can generate completions */ 2027 io_submit_flush_completions(ctx); 2028 if (state->plug_started) 2029 blk_finish_plug(&state->plug); 2030 } 2031 2032 /* 2033 * Start submission side cache. 2034 */ 2035 static void io_submit_state_start(struct io_submit_state *state, 2036 unsigned int max_ios) 2037 { 2038 state->plug_started = false; 2039 state->need_plug = max_ios > 2; 2040 state->submit_nr = max_ios; 2041 /* set only head, no need to init link_last in advance */ 2042 state->link.head = NULL; 2043 } 2044 2045 static void io_commit_sqring(struct io_ring_ctx *ctx) 2046 { 2047 struct io_rings *rings = ctx->rings; 2048 2049 /* 2050 * Ensure any loads from the SQEs are done at this point, 2051 * since once we write the new head, the application could 2052 * write new data to them. 2053 */ 2054 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2055 } 2056 2057 /* 2058 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2059 * that is mapped by userspace. This means that care needs to be taken to 2060 * ensure that reads are stable, as we cannot rely on userspace always 2061 * being a good citizen. If members of the sqe are validated and then later 2062 * used, it's important that those reads are done through READ_ONCE() to 2063 * prevent a re-load down the line. 2064 */ 2065 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx) 2066 { 2067 unsigned head, mask = ctx->sq_entries - 1; 2068 unsigned sq_idx = ctx->cached_sq_head++ & mask; 2069 2070 /* 2071 * The cached sq head (or cq tail) serves two purposes: 2072 * 2073 * 1) allows us to batch the cost of updating the user visible 2074 * head updates. 2075 * 2) allows the kernel side to track the head on its own, even 2076 * though the application is the one updating it. 2077 */ 2078 head = READ_ONCE(ctx->sq_array[sq_idx]); 2079 if (likely(head < ctx->sq_entries)) { 2080 /* double index for 128-byte SQEs, twice as long */ 2081 if (ctx->flags & IORING_SETUP_SQE128) 2082 head <<= 1; 2083 return &ctx->sq_sqes[head]; 2084 } 2085 2086 /* drop invalid entries */ 2087 ctx->cq_extra--; 2088 WRITE_ONCE(ctx->rings->sq_dropped, 2089 READ_ONCE(ctx->rings->sq_dropped) + 1); 2090 return NULL; 2091 } 2092 2093 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2094 __must_hold(&ctx->uring_lock) 2095 { 2096 unsigned int entries = io_sqring_entries(ctx); 2097 unsigned int left; 2098 int ret; 2099 2100 if (unlikely(!entries)) 2101 return 0; 2102 /* make sure SQ entry isn't read before tail */ 2103 ret = left = min3(nr, ctx->sq_entries, entries); 2104 io_get_task_refs(left); 2105 io_submit_state_start(&ctx->submit_state, left); 2106 2107 do { 2108 const struct io_uring_sqe *sqe; 2109 struct io_kiocb *req; 2110 2111 if (unlikely(!io_alloc_req_refill(ctx))) 2112 break; 2113 req = io_alloc_req(ctx); 2114 sqe = io_get_sqe(ctx); 2115 if (unlikely(!sqe)) { 2116 io_req_add_to_cache(req, ctx); 2117 break; 2118 } 2119 2120 /* 2121 * Continue submitting even for sqe failure if the 2122 * ring was setup with IORING_SETUP_SUBMIT_ALL 2123 */ 2124 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2125 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2126 left--; 2127 break; 2128 } 2129 } while (--left); 2130 2131 if (unlikely(left)) { 2132 ret -= left; 2133 /* try again if it submitted nothing and can't allocate a req */ 2134 if (!ret && io_req_cache_empty(ctx)) 2135 ret = -EAGAIN; 2136 current->io_uring->cached_refs += left; 2137 } 2138 2139 io_submit_state_end(ctx); 2140 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2141 io_commit_sqring(ctx); 2142 return ret; 2143 } 2144 2145 struct io_wait_queue { 2146 struct wait_queue_entry wq; 2147 struct io_ring_ctx *ctx; 2148 unsigned cq_tail; 2149 unsigned nr_timeouts; 2150 }; 2151 2152 static inline bool io_should_wake(struct io_wait_queue *iowq) 2153 { 2154 struct io_ring_ctx *ctx = iowq->ctx; 2155 int dist = ctx->cached_cq_tail - (int) iowq->cq_tail; 2156 2157 /* 2158 * Wake up if we have enough events, or if a timeout occurred since we 2159 * started waiting. For timeouts, we always want to return to userspace, 2160 * regardless of event count. 2161 */ 2162 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2163 } 2164 2165 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2166 int wake_flags, void *key) 2167 { 2168 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, 2169 wq); 2170 2171 /* 2172 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2173 * the task, and the next invocation will do it. 2174 */ 2175 if (io_should_wake(iowq) || 2176 test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &iowq->ctx->check_cq)) 2177 return autoremove_wake_function(curr, mode, wake_flags, key); 2178 return -1; 2179 } 2180 2181 int io_run_task_work_sig(void) 2182 { 2183 if (io_run_task_work()) 2184 return 1; 2185 if (task_sigpending(current)) 2186 return -EINTR; 2187 return 0; 2188 } 2189 2190 /* when returns >0, the caller should retry */ 2191 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2192 struct io_wait_queue *iowq, 2193 ktime_t timeout) 2194 { 2195 int ret; 2196 unsigned long check_cq; 2197 2198 /* make sure we run task_work before checking for signals */ 2199 ret = io_run_task_work_sig(); 2200 if (ret || io_should_wake(iowq)) 2201 return ret; 2202 2203 check_cq = READ_ONCE(ctx->check_cq); 2204 if (unlikely(check_cq)) { 2205 /* let the caller flush overflows, retry */ 2206 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2207 return 1; 2208 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 2209 return -EBADR; 2210 } 2211 if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS)) 2212 return -ETIME; 2213 return 1; 2214 } 2215 2216 /* 2217 * Wait until events become available, if we don't already have some. The 2218 * application must reap them itself, as they reside on the shared cq ring. 2219 */ 2220 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2221 const sigset_t __user *sig, size_t sigsz, 2222 struct __kernel_timespec __user *uts) 2223 { 2224 struct io_wait_queue iowq; 2225 struct io_rings *rings = ctx->rings; 2226 ktime_t timeout = KTIME_MAX; 2227 int ret; 2228 2229 do { 2230 io_cqring_overflow_flush(ctx); 2231 if (io_cqring_events(ctx) >= min_events) 2232 return 0; 2233 if (!io_run_task_work()) 2234 break; 2235 } while (1); 2236 2237 if (sig) { 2238 #ifdef CONFIG_COMPAT 2239 if (in_compat_syscall()) 2240 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2241 sigsz); 2242 else 2243 #endif 2244 ret = set_user_sigmask(sig, sigsz); 2245 2246 if (ret) 2247 return ret; 2248 } 2249 2250 if (uts) { 2251 struct timespec64 ts; 2252 2253 if (get_timespec64(&ts, uts)) 2254 return -EFAULT; 2255 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2256 } 2257 2258 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2259 iowq.wq.private = current; 2260 INIT_LIST_HEAD(&iowq.wq.entry); 2261 iowq.ctx = ctx; 2262 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2263 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2264 2265 trace_io_uring_cqring_wait(ctx, min_events); 2266 do { 2267 /* if we can't even flush overflow, don't wait for more */ 2268 if (!io_cqring_overflow_flush(ctx)) { 2269 ret = -EBUSY; 2270 break; 2271 } 2272 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2273 TASK_INTERRUPTIBLE); 2274 ret = io_cqring_wait_schedule(ctx, &iowq, timeout); 2275 cond_resched(); 2276 } while (ret > 0); 2277 2278 finish_wait(&ctx->cq_wait, &iowq.wq); 2279 restore_saved_sigmask_unless(ret == -EINTR); 2280 2281 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2282 } 2283 2284 static void io_mem_free(void *ptr) 2285 { 2286 struct page *page; 2287 2288 if (!ptr) 2289 return; 2290 2291 page = virt_to_head_page(ptr); 2292 if (put_page_testzero(page)) 2293 free_compound_page(page); 2294 } 2295 2296 static void *io_mem_alloc(size_t size) 2297 { 2298 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2299 2300 return (void *) __get_free_pages(gfp, get_order(size)); 2301 } 2302 2303 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2304 unsigned int cq_entries, size_t *sq_offset) 2305 { 2306 struct io_rings *rings; 2307 size_t off, sq_array_size; 2308 2309 off = struct_size(rings, cqes, cq_entries); 2310 if (off == SIZE_MAX) 2311 return SIZE_MAX; 2312 if (ctx->flags & IORING_SETUP_CQE32) { 2313 if (check_shl_overflow(off, 1, &off)) 2314 return SIZE_MAX; 2315 } 2316 2317 #ifdef CONFIG_SMP 2318 off = ALIGN(off, SMP_CACHE_BYTES); 2319 if (off == 0) 2320 return SIZE_MAX; 2321 #endif 2322 2323 if (sq_offset) 2324 *sq_offset = off; 2325 2326 sq_array_size = array_size(sizeof(u32), sq_entries); 2327 if (sq_array_size == SIZE_MAX) 2328 return SIZE_MAX; 2329 2330 if (check_add_overflow(off, sq_array_size, &off)) 2331 return SIZE_MAX; 2332 2333 return off; 2334 } 2335 2336 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2337 unsigned int eventfd_async) 2338 { 2339 struct io_ev_fd *ev_fd; 2340 __s32 __user *fds = arg; 2341 int fd; 2342 2343 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2344 lockdep_is_held(&ctx->uring_lock)); 2345 if (ev_fd) 2346 return -EBUSY; 2347 2348 if (copy_from_user(&fd, fds, sizeof(*fds))) 2349 return -EFAULT; 2350 2351 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2352 if (!ev_fd) 2353 return -ENOMEM; 2354 2355 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2356 if (IS_ERR(ev_fd->cq_ev_fd)) { 2357 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2358 kfree(ev_fd); 2359 return ret; 2360 } 2361 2362 spin_lock(&ctx->completion_lock); 2363 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2364 spin_unlock(&ctx->completion_lock); 2365 2366 ev_fd->eventfd_async = eventfd_async; 2367 ctx->has_evfd = true; 2368 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2369 return 0; 2370 } 2371 2372 static void io_eventfd_put(struct rcu_head *rcu) 2373 { 2374 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 2375 2376 eventfd_ctx_put(ev_fd->cq_ev_fd); 2377 kfree(ev_fd); 2378 } 2379 2380 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2381 { 2382 struct io_ev_fd *ev_fd; 2383 2384 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2385 lockdep_is_held(&ctx->uring_lock)); 2386 if (ev_fd) { 2387 ctx->has_evfd = false; 2388 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2389 call_rcu(&ev_fd->rcu, io_eventfd_put); 2390 return 0; 2391 } 2392 2393 return -ENXIO; 2394 } 2395 2396 static void io_req_caches_free(struct io_ring_ctx *ctx) 2397 { 2398 struct io_submit_state *state = &ctx->submit_state; 2399 int nr = 0; 2400 2401 mutex_lock(&ctx->uring_lock); 2402 io_flush_cached_locked_reqs(ctx, state); 2403 2404 while (!io_req_cache_empty(ctx)) { 2405 struct io_wq_work_node *node; 2406 struct io_kiocb *req; 2407 2408 node = wq_stack_extract(&state->free_list); 2409 req = container_of(node, struct io_kiocb, comp_list); 2410 kmem_cache_free(req_cachep, req); 2411 nr++; 2412 } 2413 if (nr) 2414 percpu_ref_put_many(&ctx->refs, nr); 2415 mutex_unlock(&ctx->uring_lock); 2416 } 2417 2418 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2419 { 2420 io_sq_thread_finish(ctx); 2421 2422 if (ctx->mm_account) { 2423 mmdrop(ctx->mm_account); 2424 ctx->mm_account = NULL; 2425 } 2426 2427 io_rsrc_refs_drop(ctx); 2428 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2429 io_wait_rsrc_data(ctx->buf_data); 2430 io_wait_rsrc_data(ctx->file_data); 2431 2432 mutex_lock(&ctx->uring_lock); 2433 if (ctx->buf_data) 2434 __io_sqe_buffers_unregister(ctx); 2435 if (ctx->file_data) 2436 __io_sqe_files_unregister(ctx); 2437 if (ctx->rings) 2438 __io_cqring_overflow_flush(ctx, true); 2439 io_eventfd_unregister(ctx); 2440 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2441 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2442 mutex_unlock(&ctx->uring_lock); 2443 io_destroy_buffers(ctx); 2444 if (ctx->sq_creds) 2445 put_cred(ctx->sq_creds); 2446 if (ctx->submitter_task) 2447 put_task_struct(ctx->submitter_task); 2448 2449 /* there are no registered resources left, nobody uses it */ 2450 if (ctx->rsrc_node) 2451 io_rsrc_node_destroy(ctx->rsrc_node); 2452 if (ctx->rsrc_backup_node) 2453 io_rsrc_node_destroy(ctx->rsrc_backup_node); 2454 flush_delayed_work(&ctx->rsrc_put_work); 2455 flush_delayed_work(&ctx->fallback_work); 2456 2457 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2458 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist)); 2459 2460 #if defined(CONFIG_UNIX) 2461 if (ctx->ring_sock) { 2462 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2463 sock_release(ctx->ring_sock); 2464 } 2465 #endif 2466 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2467 WARN_ON_ONCE(ctx->notif_slots || ctx->nr_notif_slots); 2468 2469 io_mem_free(ctx->rings); 2470 io_mem_free(ctx->sq_sqes); 2471 2472 percpu_ref_exit(&ctx->refs); 2473 free_uid(ctx->user); 2474 io_req_caches_free(ctx); 2475 if (ctx->hash_map) 2476 io_wq_put_hash(ctx->hash_map); 2477 kfree(ctx->cancel_table.hbs); 2478 kfree(ctx->cancel_table_locked.hbs); 2479 kfree(ctx->dummy_ubuf); 2480 kfree(ctx->io_bl); 2481 xa_destroy(&ctx->io_bl_xa); 2482 kfree(ctx); 2483 } 2484 2485 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2486 { 2487 struct io_ring_ctx *ctx = file->private_data; 2488 __poll_t mask = 0; 2489 2490 poll_wait(file, &ctx->cq_wait, wait); 2491 /* 2492 * synchronizes with barrier from wq_has_sleeper call in 2493 * io_commit_cqring 2494 */ 2495 smp_rmb(); 2496 if (!io_sqring_full(ctx)) 2497 mask |= EPOLLOUT | EPOLLWRNORM; 2498 2499 /* 2500 * Don't flush cqring overflow list here, just do a simple check. 2501 * Otherwise there could possible be ABBA deadlock: 2502 * CPU0 CPU1 2503 * ---- ---- 2504 * lock(&ctx->uring_lock); 2505 * lock(&ep->mtx); 2506 * lock(&ctx->uring_lock); 2507 * lock(&ep->mtx); 2508 * 2509 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2510 * pushs them to do the flush. 2511 */ 2512 if (io_cqring_events(ctx) || 2513 test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 2514 mask |= EPOLLIN | EPOLLRDNORM; 2515 2516 return mask; 2517 } 2518 2519 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 2520 { 2521 const struct cred *creds; 2522 2523 creds = xa_erase(&ctx->personalities, id); 2524 if (creds) { 2525 put_cred(creds); 2526 return 0; 2527 } 2528 2529 return -EINVAL; 2530 } 2531 2532 struct io_tctx_exit { 2533 struct callback_head task_work; 2534 struct completion completion; 2535 struct io_ring_ctx *ctx; 2536 }; 2537 2538 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2539 { 2540 struct io_uring_task *tctx = current->io_uring; 2541 struct io_tctx_exit *work; 2542 2543 work = container_of(cb, struct io_tctx_exit, task_work); 2544 /* 2545 * When @in_idle, we're in cancellation and it's racy to remove the 2546 * node. It'll be removed by the end of cancellation, just ignore it. 2547 */ 2548 if (!atomic_read(&tctx->in_idle)) 2549 io_uring_del_tctx_node((unsigned long)work->ctx); 2550 complete(&work->completion); 2551 } 2552 2553 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2554 { 2555 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2556 2557 return req->ctx == data; 2558 } 2559 2560 static __cold void io_ring_exit_work(struct work_struct *work) 2561 { 2562 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2563 unsigned long timeout = jiffies + HZ * 60 * 5; 2564 unsigned long interval = HZ / 20; 2565 struct io_tctx_exit exit; 2566 struct io_tctx_node *node; 2567 int ret; 2568 2569 /* 2570 * If we're doing polled IO and end up having requests being 2571 * submitted async (out-of-line), then completions can come in while 2572 * we're waiting for refs to drop. We need to reap these manually, 2573 * as nobody else will be looking for them. 2574 */ 2575 do { 2576 while (io_uring_try_cancel_requests(ctx, NULL, true)) 2577 cond_resched(); 2578 2579 if (ctx->sq_data) { 2580 struct io_sq_data *sqd = ctx->sq_data; 2581 struct task_struct *tsk; 2582 2583 io_sq_thread_park(sqd); 2584 tsk = sqd->thread; 2585 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2586 io_wq_cancel_cb(tsk->io_uring->io_wq, 2587 io_cancel_ctx_cb, ctx, true); 2588 io_sq_thread_unpark(sqd); 2589 } 2590 2591 io_req_caches_free(ctx); 2592 2593 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2594 /* there is little hope left, don't run it too often */ 2595 interval = HZ * 60; 2596 } 2597 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval)); 2598 2599 init_completion(&exit.completion); 2600 init_task_work(&exit.task_work, io_tctx_exit_cb); 2601 exit.ctx = ctx; 2602 /* 2603 * Some may use context even when all refs and requests have been put, 2604 * and they are free to do so while still holding uring_lock or 2605 * completion_lock, see io_req_task_submit(). Apart from other work, 2606 * this lock/unlock section also waits them to finish. 2607 */ 2608 mutex_lock(&ctx->uring_lock); 2609 while (!list_empty(&ctx->tctx_list)) { 2610 WARN_ON_ONCE(time_after(jiffies, timeout)); 2611 2612 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 2613 ctx_node); 2614 /* don't spin on a single task if cancellation failed */ 2615 list_rotate_left(&ctx->tctx_list); 2616 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 2617 if (WARN_ON_ONCE(ret)) 2618 continue; 2619 2620 mutex_unlock(&ctx->uring_lock); 2621 wait_for_completion(&exit.completion); 2622 mutex_lock(&ctx->uring_lock); 2623 } 2624 mutex_unlock(&ctx->uring_lock); 2625 spin_lock(&ctx->completion_lock); 2626 spin_unlock(&ctx->completion_lock); 2627 2628 io_ring_ctx_free(ctx); 2629 } 2630 2631 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 2632 { 2633 unsigned long index; 2634 struct creds *creds; 2635 2636 mutex_lock(&ctx->uring_lock); 2637 percpu_ref_kill(&ctx->refs); 2638 if (ctx->rings) 2639 __io_cqring_overflow_flush(ctx, true); 2640 xa_for_each(&ctx->personalities, index, creds) 2641 io_unregister_personality(ctx, index); 2642 if (ctx->rings) 2643 io_poll_remove_all(ctx, NULL, true); 2644 mutex_unlock(&ctx->uring_lock); 2645 2646 /* failed during ring init, it couldn't have issued any requests */ 2647 if (ctx->rings) { 2648 io_kill_timeouts(ctx, NULL, true); 2649 /* if we failed setting up the ctx, we might not have any rings */ 2650 io_iopoll_try_reap_events(ctx); 2651 } 2652 2653 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 2654 /* 2655 * Use system_unbound_wq to avoid spawning tons of event kworkers 2656 * if we're exiting a ton of rings at the same time. It just adds 2657 * noise and overhead, there's no discernable change in runtime 2658 * over using system_wq. 2659 */ 2660 queue_work(system_unbound_wq, &ctx->exit_work); 2661 } 2662 2663 static int io_uring_release(struct inode *inode, struct file *file) 2664 { 2665 struct io_ring_ctx *ctx = file->private_data; 2666 2667 file->private_data = NULL; 2668 io_ring_ctx_wait_and_kill(ctx); 2669 return 0; 2670 } 2671 2672 struct io_task_cancel { 2673 struct task_struct *task; 2674 bool all; 2675 }; 2676 2677 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 2678 { 2679 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2680 struct io_task_cancel *cancel = data; 2681 2682 return io_match_task_safe(req, cancel->task, cancel->all); 2683 } 2684 2685 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 2686 struct task_struct *task, 2687 bool cancel_all) 2688 { 2689 struct io_defer_entry *de; 2690 LIST_HEAD(list); 2691 2692 spin_lock(&ctx->completion_lock); 2693 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 2694 if (io_match_task_safe(de->req, task, cancel_all)) { 2695 list_cut_position(&list, &ctx->defer_list, &de->list); 2696 break; 2697 } 2698 } 2699 spin_unlock(&ctx->completion_lock); 2700 if (list_empty(&list)) 2701 return false; 2702 2703 while (!list_empty(&list)) { 2704 de = list_first_entry(&list, struct io_defer_entry, list); 2705 list_del_init(&de->list); 2706 io_req_complete_failed(de->req, -ECANCELED); 2707 kfree(de); 2708 } 2709 return true; 2710 } 2711 2712 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 2713 { 2714 struct io_tctx_node *node; 2715 enum io_wq_cancel cret; 2716 bool ret = false; 2717 2718 mutex_lock(&ctx->uring_lock); 2719 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 2720 struct io_uring_task *tctx = node->task->io_uring; 2721 2722 /* 2723 * io_wq will stay alive while we hold uring_lock, because it's 2724 * killed after ctx nodes, which requires to take the lock. 2725 */ 2726 if (!tctx || !tctx->io_wq) 2727 continue; 2728 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 2729 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 2730 } 2731 mutex_unlock(&ctx->uring_lock); 2732 2733 return ret; 2734 } 2735 2736 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 2737 struct task_struct *task, 2738 bool cancel_all) 2739 { 2740 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 2741 struct io_uring_task *tctx = task ? task->io_uring : NULL; 2742 enum io_wq_cancel cret; 2743 bool ret = false; 2744 2745 /* failed during ring init, it couldn't have issued any requests */ 2746 if (!ctx->rings) 2747 return false; 2748 2749 if (!task) { 2750 ret |= io_uring_try_cancel_iowq(ctx); 2751 } else if (tctx && tctx->io_wq) { 2752 /* 2753 * Cancels requests of all rings, not only @ctx, but 2754 * it's fine as the task is in exit/exec. 2755 */ 2756 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 2757 &cancel, true); 2758 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 2759 } 2760 2761 /* SQPOLL thread does its own polling */ 2762 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 2763 (ctx->sq_data && ctx->sq_data->thread == current)) { 2764 while (!wq_list_empty(&ctx->iopoll_list)) { 2765 io_iopoll_try_reap_events(ctx); 2766 ret = true; 2767 } 2768 } 2769 2770 ret |= io_cancel_defer_files(ctx, task, cancel_all); 2771 mutex_lock(&ctx->uring_lock); 2772 ret |= io_poll_remove_all(ctx, task, cancel_all); 2773 mutex_unlock(&ctx->uring_lock); 2774 ret |= io_kill_timeouts(ctx, task, cancel_all); 2775 if (task) 2776 ret |= io_run_task_work(); 2777 return ret; 2778 } 2779 2780 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 2781 { 2782 if (tracked) 2783 return atomic_read(&tctx->inflight_tracked); 2784 return percpu_counter_sum(&tctx->inflight); 2785 } 2786 2787 /* 2788 * Find any io_uring ctx that this task has registered or done IO on, and cancel 2789 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 2790 */ 2791 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 2792 { 2793 struct io_uring_task *tctx = current->io_uring; 2794 struct io_ring_ctx *ctx; 2795 s64 inflight; 2796 DEFINE_WAIT(wait); 2797 2798 WARN_ON_ONCE(sqd && sqd->thread != current); 2799 2800 if (!current->io_uring) 2801 return; 2802 if (tctx->io_wq) 2803 io_wq_exit_start(tctx->io_wq); 2804 2805 atomic_inc(&tctx->in_idle); 2806 do { 2807 bool loop = false; 2808 2809 io_uring_drop_tctx_refs(current); 2810 /* read completions before cancelations */ 2811 inflight = tctx_inflight(tctx, !cancel_all); 2812 if (!inflight) 2813 break; 2814 2815 if (!sqd) { 2816 struct io_tctx_node *node; 2817 unsigned long index; 2818 2819 xa_for_each(&tctx->xa, index, node) { 2820 /* sqpoll task will cancel all its requests */ 2821 if (node->ctx->sq_data) 2822 continue; 2823 loop |= io_uring_try_cancel_requests(node->ctx, 2824 current, cancel_all); 2825 } 2826 } else { 2827 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 2828 loop |= io_uring_try_cancel_requests(ctx, 2829 current, 2830 cancel_all); 2831 } 2832 2833 if (loop) { 2834 cond_resched(); 2835 continue; 2836 } 2837 2838 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 2839 io_run_task_work(); 2840 io_uring_drop_tctx_refs(current); 2841 2842 /* 2843 * If we've seen completions, retry without waiting. This 2844 * avoids a race where a completion comes in before we did 2845 * prepare_to_wait(). 2846 */ 2847 if (inflight == tctx_inflight(tctx, !cancel_all)) 2848 schedule(); 2849 finish_wait(&tctx->wait, &wait); 2850 } while (1); 2851 2852 io_uring_clean_tctx(tctx); 2853 if (cancel_all) { 2854 /* 2855 * We shouldn't run task_works after cancel, so just leave 2856 * ->in_idle set for normal exit. 2857 */ 2858 atomic_dec(&tctx->in_idle); 2859 /* for exec all current's requests should be gone, kill tctx */ 2860 __io_uring_free(current); 2861 } 2862 } 2863 2864 void __io_uring_cancel(bool cancel_all) 2865 { 2866 io_uring_cancel_generic(cancel_all, NULL); 2867 } 2868 2869 static void *io_uring_validate_mmap_request(struct file *file, 2870 loff_t pgoff, size_t sz) 2871 { 2872 struct io_ring_ctx *ctx = file->private_data; 2873 loff_t offset = pgoff << PAGE_SHIFT; 2874 struct page *page; 2875 void *ptr; 2876 2877 switch (offset) { 2878 case IORING_OFF_SQ_RING: 2879 case IORING_OFF_CQ_RING: 2880 ptr = ctx->rings; 2881 break; 2882 case IORING_OFF_SQES: 2883 ptr = ctx->sq_sqes; 2884 break; 2885 default: 2886 return ERR_PTR(-EINVAL); 2887 } 2888 2889 page = virt_to_head_page(ptr); 2890 if (sz > page_size(page)) 2891 return ERR_PTR(-EINVAL); 2892 2893 return ptr; 2894 } 2895 2896 #ifdef CONFIG_MMU 2897 2898 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 2899 { 2900 size_t sz = vma->vm_end - vma->vm_start; 2901 unsigned long pfn; 2902 void *ptr; 2903 2904 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 2905 if (IS_ERR(ptr)) 2906 return PTR_ERR(ptr); 2907 2908 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 2909 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 2910 } 2911 2912 #else /* !CONFIG_MMU */ 2913 2914 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 2915 { 2916 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL; 2917 } 2918 2919 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 2920 { 2921 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 2922 } 2923 2924 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 2925 unsigned long addr, unsigned long len, 2926 unsigned long pgoff, unsigned long flags) 2927 { 2928 void *ptr; 2929 2930 ptr = io_uring_validate_mmap_request(file, pgoff, len); 2931 if (IS_ERR(ptr)) 2932 return PTR_ERR(ptr); 2933 2934 return (unsigned long) ptr; 2935 } 2936 2937 #endif /* !CONFIG_MMU */ 2938 2939 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 2940 { 2941 if (flags & IORING_ENTER_EXT_ARG) { 2942 struct io_uring_getevents_arg arg; 2943 2944 if (argsz != sizeof(arg)) 2945 return -EINVAL; 2946 if (copy_from_user(&arg, argp, sizeof(arg))) 2947 return -EFAULT; 2948 } 2949 return 0; 2950 } 2951 2952 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 2953 struct __kernel_timespec __user **ts, 2954 const sigset_t __user **sig) 2955 { 2956 struct io_uring_getevents_arg arg; 2957 2958 /* 2959 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 2960 * is just a pointer to the sigset_t. 2961 */ 2962 if (!(flags & IORING_ENTER_EXT_ARG)) { 2963 *sig = (const sigset_t __user *) argp; 2964 *ts = NULL; 2965 return 0; 2966 } 2967 2968 /* 2969 * EXT_ARG is set - ensure we agree on the size of it and copy in our 2970 * timespec and sigset_t pointers if good. 2971 */ 2972 if (*argsz != sizeof(arg)) 2973 return -EINVAL; 2974 if (copy_from_user(&arg, argp, sizeof(arg))) 2975 return -EFAULT; 2976 if (arg.pad) 2977 return -EINVAL; 2978 *sig = u64_to_user_ptr(arg.sigmask); 2979 *argsz = arg.sigmask_sz; 2980 *ts = u64_to_user_ptr(arg.ts); 2981 return 0; 2982 } 2983 2984 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 2985 u32, min_complete, u32, flags, const void __user *, argp, 2986 size_t, argsz) 2987 { 2988 struct io_ring_ctx *ctx; 2989 struct fd f; 2990 long ret; 2991 2992 io_run_task_work(); 2993 2994 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 2995 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 2996 IORING_ENTER_REGISTERED_RING))) 2997 return -EINVAL; 2998 2999 /* 3000 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3001 * need only dereference our task private array to find it. 3002 */ 3003 if (flags & IORING_ENTER_REGISTERED_RING) { 3004 struct io_uring_task *tctx = current->io_uring; 3005 3006 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3007 return -EINVAL; 3008 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3009 f.file = tctx->registered_rings[fd]; 3010 f.flags = 0; 3011 if (unlikely(!f.file)) 3012 return -EBADF; 3013 } else { 3014 f = fdget(fd); 3015 if (unlikely(!f.file)) 3016 return -EBADF; 3017 ret = -EOPNOTSUPP; 3018 if (unlikely(!io_is_uring_fops(f.file))) 3019 goto out; 3020 } 3021 3022 ctx = f.file->private_data; 3023 ret = -EBADFD; 3024 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3025 goto out; 3026 3027 /* 3028 * For SQ polling, the thread will do all submissions and completions. 3029 * Just return the requested submit count, and wake the thread if 3030 * we were asked to. 3031 */ 3032 ret = 0; 3033 if (ctx->flags & IORING_SETUP_SQPOLL) { 3034 io_cqring_overflow_flush(ctx); 3035 3036 if (unlikely(ctx->sq_data->thread == NULL)) { 3037 ret = -EOWNERDEAD; 3038 goto out; 3039 } 3040 if (flags & IORING_ENTER_SQ_WAKEUP) 3041 wake_up(&ctx->sq_data->wait); 3042 if (flags & IORING_ENTER_SQ_WAIT) { 3043 ret = io_sqpoll_wait_sq(ctx); 3044 if (ret) 3045 goto out; 3046 } 3047 ret = to_submit; 3048 } else if (to_submit) { 3049 ret = io_uring_add_tctx_node(ctx); 3050 if (unlikely(ret)) 3051 goto out; 3052 3053 mutex_lock(&ctx->uring_lock); 3054 ret = io_submit_sqes(ctx, to_submit); 3055 if (ret != to_submit) { 3056 mutex_unlock(&ctx->uring_lock); 3057 goto out; 3058 } 3059 if ((flags & IORING_ENTER_GETEVENTS) && ctx->syscall_iopoll) 3060 goto iopoll_locked; 3061 mutex_unlock(&ctx->uring_lock); 3062 } 3063 if (flags & IORING_ENTER_GETEVENTS) { 3064 int ret2; 3065 if (ctx->syscall_iopoll) { 3066 /* 3067 * We disallow the app entering submit/complete with 3068 * polling, but we still need to lock the ring to 3069 * prevent racing with polled issue that got punted to 3070 * a workqueue. 3071 */ 3072 mutex_lock(&ctx->uring_lock); 3073 iopoll_locked: 3074 ret2 = io_validate_ext_arg(flags, argp, argsz); 3075 if (likely(!ret2)) { 3076 min_complete = min(min_complete, 3077 ctx->cq_entries); 3078 ret2 = io_iopoll_check(ctx, min_complete); 3079 } 3080 mutex_unlock(&ctx->uring_lock); 3081 } else { 3082 const sigset_t __user *sig; 3083 struct __kernel_timespec __user *ts; 3084 3085 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3086 if (likely(!ret2)) { 3087 min_complete = min(min_complete, 3088 ctx->cq_entries); 3089 ret2 = io_cqring_wait(ctx, min_complete, sig, 3090 argsz, ts); 3091 } 3092 } 3093 3094 if (!ret) { 3095 ret = ret2; 3096 3097 /* 3098 * EBADR indicates that one or more CQE were dropped. 3099 * Once the user has been informed we can clear the bit 3100 * as they are obviously ok with those drops. 3101 */ 3102 if (unlikely(ret2 == -EBADR)) 3103 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3104 &ctx->check_cq); 3105 } 3106 } 3107 out: 3108 fdput(f); 3109 return ret; 3110 } 3111 3112 static const struct file_operations io_uring_fops = { 3113 .release = io_uring_release, 3114 .mmap = io_uring_mmap, 3115 #ifndef CONFIG_MMU 3116 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3117 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3118 #endif 3119 .poll = io_uring_poll, 3120 #ifdef CONFIG_PROC_FS 3121 .show_fdinfo = io_uring_show_fdinfo, 3122 #endif 3123 }; 3124 3125 bool io_is_uring_fops(struct file *file) 3126 { 3127 return file->f_op == &io_uring_fops; 3128 } 3129 3130 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3131 struct io_uring_params *p) 3132 { 3133 struct io_rings *rings; 3134 size_t size, sq_array_offset; 3135 3136 /* make sure these are sane, as we already accounted them */ 3137 ctx->sq_entries = p->sq_entries; 3138 ctx->cq_entries = p->cq_entries; 3139 3140 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3141 if (size == SIZE_MAX) 3142 return -EOVERFLOW; 3143 3144 rings = io_mem_alloc(size); 3145 if (!rings) 3146 return -ENOMEM; 3147 3148 ctx->rings = rings; 3149 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3150 rings->sq_ring_mask = p->sq_entries - 1; 3151 rings->cq_ring_mask = p->cq_entries - 1; 3152 rings->sq_ring_entries = p->sq_entries; 3153 rings->cq_ring_entries = p->cq_entries; 3154 3155 if (p->flags & IORING_SETUP_SQE128) 3156 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3157 else 3158 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3159 if (size == SIZE_MAX) { 3160 io_mem_free(ctx->rings); 3161 ctx->rings = NULL; 3162 return -EOVERFLOW; 3163 } 3164 3165 ctx->sq_sqes = io_mem_alloc(size); 3166 if (!ctx->sq_sqes) { 3167 io_mem_free(ctx->rings); 3168 ctx->rings = NULL; 3169 return -ENOMEM; 3170 } 3171 3172 return 0; 3173 } 3174 3175 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file) 3176 { 3177 int ret, fd; 3178 3179 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3180 if (fd < 0) 3181 return fd; 3182 3183 ret = __io_uring_add_tctx_node(ctx, false); 3184 if (ret) { 3185 put_unused_fd(fd); 3186 return ret; 3187 } 3188 fd_install(fd, file); 3189 return fd; 3190 } 3191 3192 /* 3193 * Allocate an anonymous fd, this is what constitutes the application 3194 * visible backing of an io_uring instance. The application mmaps this 3195 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3196 * we have to tie this fd to a socket for file garbage collection purposes. 3197 */ 3198 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3199 { 3200 struct file *file; 3201 #if defined(CONFIG_UNIX) 3202 int ret; 3203 3204 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3205 &ctx->ring_sock); 3206 if (ret) 3207 return ERR_PTR(ret); 3208 #endif 3209 3210 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3211 O_RDWR | O_CLOEXEC, NULL); 3212 #if defined(CONFIG_UNIX) 3213 if (IS_ERR(file)) { 3214 sock_release(ctx->ring_sock); 3215 ctx->ring_sock = NULL; 3216 } else { 3217 ctx->ring_sock->file = file; 3218 } 3219 #endif 3220 return file; 3221 } 3222 3223 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3224 struct io_uring_params __user *params) 3225 { 3226 struct io_ring_ctx *ctx; 3227 struct file *file; 3228 int ret; 3229 3230 if (!entries) 3231 return -EINVAL; 3232 if (entries > IORING_MAX_ENTRIES) { 3233 if (!(p->flags & IORING_SETUP_CLAMP)) 3234 return -EINVAL; 3235 entries = IORING_MAX_ENTRIES; 3236 } 3237 3238 /* 3239 * Use twice as many entries for the CQ ring. It's possible for the 3240 * application to drive a higher depth than the size of the SQ ring, 3241 * since the sqes are only used at submission time. This allows for 3242 * some flexibility in overcommitting a bit. If the application has 3243 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3244 * of CQ ring entries manually. 3245 */ 3246 p->sq_entries = roundup_pow_of_two(entries); 3247 if (p->flags & IORING_SETUP_CQSIZE) { 3248 /* 3249 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3250 * to a power-of-two, if it isn't already. We do NOT impose 3251 * any cq vs sq ring sizing. 3252 */ 3253 if (!p->cq_entries) 3254 return -EINVAL; 3255 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3256 if (!(p->flags & IORING_SETUP_CLAMP)) 3257 return -EINVAL; 3258 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3259 } 3260 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3261 if (p->cq_entries < p->sq_entries) 3262 return -EINVAL; 3263 } else { 3264 p->cq_entries = 2 * p->sq_entries; 3265 } 3266 3267 ctx = io_ring_ctx_alloc(p); 3268 if (!ctx) 3269 return -ENOMEM; 3270 3271 /* 3272 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3273 * space applications don't need to do io completion events 3274 * polling again, they can rely on io_sq_thread to do polling 3275 * work, which can reduce cpu usage and uring_lock contention. 3276 */ 3277 if (ctx->flags & IORING_SETUP_IOPOLL && 3278 !(ctx->flags & IORING_SETUP_SQPOLL)) 3279 ctx->syscall_iopoll = 1; 3280 3281 ctx->compat = in_compat_syscall(); 3282 if (!capable(CAP_IPC_LOCK)) 3283 ctx->user = get_uid(current_user()); 3284 3285 /* 3286 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3287 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3288 */ 3289 ret = -EINVAL; 3290 if (ctx->flags & IORING_SETUP_SQPOLL) { 3291 /* IPI related flags don't make sense with SQPOLL */ 3292 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3293 IORING_SETUP_TASKRUN_FLAG)) 3294 goto err; 3295 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3296 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3297 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3298 } else { 3299 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 3300 goto err; 3301 ctx->notify_method = TWA_SIGNAL; 3302 } 3303 3304 /* 3305 * This is just grabbed for accounting purposes. When a process exits, 3306 * the mm is exited and dropped before the files, hence we need to hang 3307 * on to this mm purely for the purposes of being able to unaccount 3308 * memory (locked/pinned vm). It's not used for anything else. 3309 */ 3310 mmgrab(current->mm); 3311 ctx->mm_account = current->mm; 3312 3313 ret = io_allocate_scq_urings(ctx, p); 3314 if (ret) 3315 goto err; 3316 3317 ret = io_sq_offload_create(ctx, p); 3318 if (ret) 3319 goto err; 3320 /* always set a rsrc node */ 3321 ret = io_rsrc_node_switch_start(ctx); 3322 if (ret) 3323 goto err; 3324 io_rsrc_node_switch(ctx, NULL); 3325 3326 memset(&p->sq_off, 0, sizeof(p->sq_off)); 3327 p->sq_off.head = offsetof(struct io_rings, sq.head); 3328 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3329 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3330 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3331 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3332 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3333 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3334 3335 memset(&p->cq_off, 0, sizeof(p->cq_off)); 3336 p->cq_off.head = offsetof(struct io_rings, cq.head); 3337 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3338 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3339 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3340 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3341 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3342 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3343 3344 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3345 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3346 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3347 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3348 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3349 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3350 IORING_FEAT_LINKED_FILE; 3351 3352 if (copy_to_user(params, p, sizeof(*p))) { 3353 ret = -EFAULT; 3354 goto err; 3355 } 3356 3357 file = io_uring_get_file(ctx); 3358 if (IS_ERR(file)) { 3359 ret = PTR_ERR(file); 3360 goto err; 3361 } 3362 3363 /* 3364 * Install ring fd as the very last thing, so we don't risk someone 3365 * having closed it before we finish setup 3366 */ 3367 ret = io_uring_install_fd(ctx, file); 3368 if (ret < 0) { 3369 /* fput will clean it up */ 3370 fput(file); 3371 return ret; 3372 } 3373 3374 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3375 return ret; 3376 err: 3377 io_ring_ctx_wait_and_kill(ctx); 3378 return ret; 3379 } 3380 3381 /* 3382 * Sets up an aio uring context, and returns the fd. Applications asks for a 3383 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3384 * params structure passed in. 3385 */ 3386 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3387 { 3388 struct io_uring_params p; 3389 int i; 3390 3391 if (copy_from_user(&p, params, sizeof(p))) 3392 return -EFAULT; 3393 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3394 if (p.resv[i]) 3395 return -EINVAL; 3396 } 3397 3398 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3399 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3400 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3401 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3402 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3403 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3404 IORING_SETUP_SINGLE_ISSUER)) 3405 return -EINVAL; 3406 3407 return io_uring_create(entries, &p, params); 3408 } 3409 3410 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3411 struct io_uring_params __user *, params) 3412 { 3413 return io_uring_setup(entries, params); 3414 } 3415 3416 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 3417 unsigned nr_args) 3418 { 3419 struct io_uring_probe *p; 3420 size_t size; 3421 int i, ret; 3422 3423 size = struct_size(p, ops, nr_args); 3424 if (size == SIZE_MAX) 3425 return -EOVERFLOW; 3426 p = kzalloc(size, GFP_KERNEL); 3427 if (!p) 3428 return -ENOMEM; 3429 3430 ret = -EFAULT; 3431 if (copy_from_user(p, arg, size)) 3432 goto out; 3433 ret = -EINVAL; 3434 if (memchr_inv(p, 0, size)) 3435 goto out; 3436 3437 p->last_op = IORING_OP_LAST - 1; 3438 if (nr_args > IORING_OP_LAST) 3439 nr_args = IORING_OP_LAST; 3440 3441 for (i = 0; i < nr_args; i++) { 3442 p->ops[i].op = i; 3443 if (!io_op_defs[i].not_supported) 3444 p->ops[i].flags = IO_URING_OP_SUPPORTED; 3445 } 3446 p->ops_len = i; 3447 3448 ret = 0; 3449 if (copy_to_user(arg, p, size)) 3450 ret = -EFAULT; 3451 out: 3452 kfree(p); 3453 return ret; 3454 } 3455 3456 static int io_register_personality(struct io_ring_ctx *ctx) 3457 { 3458 const struct cred *creds; 3459 u32 id; 3460 int ret; 3461 3462 creds = get_current_cred(); 3463 3464 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 3465 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 3466 if (ret < 0) { 3467 put_cred(creds); 3468 return ret; 3469 } 3470 return id; 3471 } 3472 3473 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 3474 void __user *arg, unsigned int nr_args) 3475 { 3476 struct io_uring_restriction *res; 3477 size_t size; 3478 int i, ret; 3479 3480 /* Restrictions allowed only if rings started disabled */ 3481 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 3482 return -EBADFD; 3483 3484 /* We allow only a single restrictions registration */ 3485 if (ctx->restrictions.registered) 3486 return -EBUSY; 3487 3488 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 3489 return -EINVAL; 3490 3491 size = array_size(nr_args, sizeof(*res)); 3492 if (size == SIZE_MAX) 3493 return -EOVERFLOW; 3494 3495 res = memdup_user(arg, size); 3496 if (IS_ERR(res)) 3497 return PTR_ERR(res); 3498 3499 ret = 0; 3500 3501 for (i = 0; i < nr_args; i++) { 3502 switch (res[i].opcode) { 3503 case IORING_RESTRICTION_REGISTER_OP: 3504 if (res[i].register_op >= IORING_REGISTER_LAST) { 3505 ret = -EINVAL; 3506 goto out; 3507 } 3508 3509 __set_bit(res[i].register_op, 3510 ctx->restrictions.register_op); 3511 break; 3512 case IORING_RESTRICTION_SQE_OP: 3513 if (res[i].sqe_op >= IORING_OP_LAST) { 3514 ret = -EINVAL; 3515 goto out; 3516 } 3517 3518 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 3519 break; 3520 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 3521 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 3522 break; 3523 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 3524 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 3525 break; 3526 default: 3527 ret = -EINVAL; 3528 goto out; 3529 } 3530 } 3531 3532 out: 3533 /* Reset all restrictions if an error happened */ 3534 if (ret != 0) 3535 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 3536 else 3537 ctx->restrictions.registered = true; 3538 3539 kfree(res); 3540 return ret; 3541 } 3542 3543 static int io_register_enable_rings(struct io_ring_ctx *ctx) 3544 { 3545 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 3546 return -EBADFD; 3547 3548 if (ctx->restrictions.registered) 3549 ctx->restricted = 1; 3550 3551 ctx->flags &= ~IORING_SETUP_R_DISABLED; 3552 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 3553 wake_up(&ctx->sq_data->wait); 3554 return 0; 3555 } 3556 3557 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 3558 void __user *arg, unsigned len) 3559 { 3560 struct io_uring_task *tctx = current->io_uring; 3561 cpumask_var_t new_mask; 3562 int ret; 3563 3564 if (!tctx || !tctx->io_wq) 3565 return -EINVAL; 3566 3567 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 3568 return -ENOMEM; 3569 3570 cpumask_clear(new_mask); 3571 if (len > cpumask_size()) 3572 len = cpumask_size(); 3573 3574 if (in_compat_syscall()) { 3575 ret = compat_get_bitmap(cpumask_bits(new_mask), 3576 (const compat_ulong_t __user *)arg, 3577 len * 8 /* CHAR_BIT */); 3578 } else { 3579 ret = copy_from_user(new_mask, arg, len); 3580 } 3581 3582 if (ret) { 3583 free_cpumask_var(new_mask); 3584 return -EFAULT; 3585 } 3586 3587 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask); 3588 free_cpumask_var(new_mask); 3589 return ret; 3590 } 3591 3592 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 3593 { 3594 struct io_uring_task *tctx = current->io_uring; 3595 3596 if (!tctx || !tctx->io_wq) 3597 return -EINVAL; 3598 3599 return io_wq_cpu_affinity(tctx->io_wq, NULL); 3600 } 3601 3602 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 3603 void __user *arg) 3604 __must_hold(&ctx->uring_lock) 3605 { 3606 struct io_tctx_node *node; 3607 struct io_uring_task *tctx = NULL; 3608 struct io_sq_data *sqd = NULL; 3609 __u32 new_count[2]; 3610 int i, ret; 3611 3612 if (copy_from_user(new_count, arg, sizeof(new_count))) 3613 return -EFAULT; 3614 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3615 if (new_count[i] > INT_MAX) 3616 return -EINVAL; 3617 3618 if (ctx->flags & IORING_SETUP_SQPOLL) { 3619 sqd = ctx->sq_data; 3620 if (sqd) { 3621 /* 3622 * Observe the correct sqd->lock -> ctx->uring_lock 3623 * ordering. Fine to drop uring_lock here, we hold 3624 * a ref to the ctx. 3625 */ 3626 refcount_inc(&sqd->refs); 3627 mutex_unlock(&ctx->uring_lock); 3628 mutex_lock(&sqd->lock); 3629 mutex_lock(&ctx->uring_lock); 3630 if (sqd->thread) 3631 tctx = sqd->thread->io_uring; 3632 } 3633 } else { 3634 tctx = current->io_uring; 3635 } 3636 3637 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 3638 3639 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3640 if (new_count[i]) 3641 ctx->iowq_limits[i] = new_count[i]; 3642 ctx->iowq_limits_set = true; 3643 3644 if (tctx && tctx->io_wq) { 3645 ret = io_wq_max_workers(tctx->io_wq, new_count); 3646 if (ret) 3647 goto err; 3648 } else { 3649 memset(new_count, 0, sizeof(new_count)); 3650 } 3651 3652 if (sqd) { 3653 mutex_unlock(&sqd->lock); 3654 io_put_sq_data(sqd); 3655 } 3656 3657 if (copy_to_user(arg, new_count, sizeof(new_count))) 3658 return -EFAULT; 3659 3660 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 3661 if (sqd) 3662 return 0; 3663 3664 /* now propagate the restriction to all registered users */ 3665 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3666 struct io_uring_task *tctx = node->task->io_uring; 3667 3668 if (WARN_ON_ONCE(!tctx->io_wq)) 3669 continue; 3670 3671 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3672 new_count[i] = ctx->iowq_limits[i]; 3673 /* ignore errors, it always returns zero anyway */ 3674 (void)io_wq_max_workers(tctx->io_wq, new_count); 3675 } 3676 return 0; 3677 err: 3678 if (sqd) { 3679 mutex_unlock(&sqd->lock); 3680 io_put_sq_data(sqd); 3681 } 3682 return ret; 3683 } 3684 3685 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 3686 void __user *arg, unsigned nr_args) 3687 __releases(ctx->uring_lock) 3688 __acquires(ctx->uring_lock) 3689 { 3690 int ret; 3691 3692 /* 3693 * We don't quiesce the refs for register anymore and so it can't be 3694 * dying as we're holding a file ref here. 3695 */ 3696 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 3697 return -ENXIO; 3698 3699 if (ctx->restricted) { 3700 if (opcode >= IORING_REGISTER_LAST) 3701 return -EINVAL; 3702 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 3703 if (!test_bit(opcode, ctx->restrictions.register_op)) 3704 return -EACCES; 3705 } 3706 3707 switch (opcode) { 3708 case IORING_REGISTER_BUFFERS: 3709 ret = -EFAULT; 3710 if (!arg) 3711 break; 3712 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 3713 break; 3714 case IORING_UNREGISTER_BUFFERS: 3715 ret = -EINVAL; 3716 if (arg || nr_args) 3717 break; 3718 ret = io_sqe_buffers_unregister(ctx); 3719 break; 3720 case IORING_REGISTER_FILES: 3721 ret = -EFAULT; 3722 if (!arg) 3723 break; 3724 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 3725 break; 3726 case IORING_UNREGISTER_FILES: 3727 ret = -EINVAL; 3728 if (arg || nr_args) 3729 break; 3730 ret = io_sqe_files_unregister(ctx); 3731 break; 3732 case IORING_REGISTER_FILES_UPDATE: 3733 ret = io_register_files_update(ctx, arg, nr_args); 3734 break; 3735 case IORING_REGISTER_EVENTFD: 3736 ret = -EINVAL; 3737 if (nr_args != 1) 3738 break; 3739 ret = io_eventfd_register(ctx, arg, 0); 3740 break; 3741 case IORING_REGISTER_EVENTFD_ASYNC: 3742 ret = -EINVAL; 3743 if (nr_args != 1) 3744 break; 3745 ret = io_eventfd_register(ctx, arg, 1); 3746 break; 3747 case IORING_UNREGISTER_EVENTFD: 3748 ret = -EINVAL; 3749 if (arg || nr_args) 3750 break; 3751 ret = io_eventfd_unregister(ctx); 3752 break; 3753 case IORING_REGISTER_PROBE: 3754 ret = -EINVAL; 3755 if (!arg || nr_args > 256) 3756 break; 3757 ret = io_probe(ctx, arg, nr_args); 3758 break; 3759 case IORING_REGISTER_PERSONALITY: 3760 ret = -EINVAL; 3761 if (arg || nr_args) 3762 break; 3763 ret = io_register_personality(ctx); 3764 break; 3765 case IORING_UNREGISTER_PERSONALITY: 3766 ret = -EINVAL; 3767 if (arg) 3768 break; 3769 ret = io_unregister_personality(ctx, nr_args); 3770 break; 3771 case IORING_REGISTER_ENABLE_RINGS: 3772 ret = -EINVAL; 3773 if (arg || nr_args) 3774 break; 3775 ret = io_register_enable_rings(ctx); 3776 break; 3777 case IORING_REGISTER_RESTRICTIONS: 3778 ret = io_register_restrictions(ctx, arg, nr_args); 3779 break; 3780 case IORING_REGISTER_FILES2: 3781 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 3782 break; 3783 case IORING_REGISTER_FILES_UPDATE2: 3784 ret = io_register_rsrc_update(ctx, arg, nr_args, 3785 IORING_RSRC_FILE); 3786 break; 3787 case IORING_REGISTER_BUFFERS2: 3788 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 3789 break; 3790 case IORING_REGISTER_BUFFERS_UPDATE: 3791 ret = io_register_rsrc_update(ctx, arg, nr_args, 3792 IORING_RSRC_BUFFER); 3793 break; 3794 case IORING_REGISTER_IOWQ_AFF: 3795 ret = -EINVAL; 3796 if (!arg || !nr_args) 3797 break; 3798 ret = io_register_iowq_aff(ctx, arg, nr_args); 3799 break; 3800 case IORING_UNREGISTER_IOWQ_AFF: 3801 ret = -EINVAL; 3802 if (arg || nr_args) 3803 break; 3804 ret = io_unregister_iowq_aff(ctx); 3805 break; 3806 case IORING_REGISTER_IOWQ_MAX_WORKERS: 3807 ret = -EINVAL; 3808 if (!arg || nr_args != 2) 3809 break; 3810 ret = io_register_iowq_max_workers(ctx, arg); 3811 break; 3812 case IORING_REGISTER_RING_FDS: 3813 ret = io_ringfd_register(ctx, arg, nr_args); 3814 break; 3815 case IORING_UNREGISTER_RING_FDS: 3816 ret = io_ringfd_unregister(ctx, arg, nr_args); 3817 break; 3818 case IORING_REGISTER_PBUF_RING: 3819 ret = -EINVAL; 3820 if (!arg || nr_args != 1) 3821 break; 3822 ret = io_register_pbuf_ring(ctx, arg); 3823 break; 3824 case IORING_UNREGISTER_PBUF_RING: 3825 ret = -EINVAL; 3826 if (!arg || nr_args != 1) 3827 break; 3828 ret = io_unregister_pbuf_ring(ctx, arg); 3829 break; 3830 case IORING_REGISTER_SYNC_CANCEL: 3831 ret = -EINVAL; 3832 if (!arg || nr_args != 1) 3833 break; 3834 ret = io_sync_cancel(ctx, arg); 3835 break; 3836 case IORING_REGISTER_FILE_ALLOC_RANGE: 3837 ret = -EINVAL; 3838 if (!arg || nr_args) 3839 break; 3840 ret = io_register_file_alloc_range(ctx, arg); 3841 break; 3842 default: 3843 ret = -EINVAL; 3844 break; 3845 } 3846 3847 return ret; 3848 } 3849 3850 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 3851 void __user *, arg, unsigned int, nr_args) 3852 { 3853 struct io_ring_ctx *ctx; 3854 long ret = -EBADF; 3855 struct fd f; 3856 3857 f = fdget(fd); 3858 if (!f.file) 3859 return -EBADF; 3860 3861 ret = -EOPNOTSUPP; 3862 if (!io_is_uring_fops(f.file)) 3863 goto out_fput; 3864 3865 ctx = f.file->private_data; 3866 3867 io_run_task_work(); 3868 3869 mutex_lock(&ctx->uring_lock); 3870 ret = __io_uring_register(ctx, opcode, arg, nr_args); 3871 mutex_unlock(&ctx->uring_lock); 3872 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 3873 out_fput: 3874 fdput(f); 3875 return ret; 3876 } 3877 3878 static int __init io_uring_init(void) 3879 { 3880 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 3881 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 3882 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 3883 } while (0) 3884 3885 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 3886 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 3887 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 3888 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 3889 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 3890 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 3891 BUILD_BUG_SQE_ELEM(1, __u8, flags); 3892 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 3893 BUILD_BUG_SQE_ELEM(4, __s32, fd); 3894 BUILD_BUG_SQE_ELEM(8, __u64, off); 3895 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 3896 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 3897 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 3898 BUILD_BUG_SQE_ELEM(16, __u64, addr); 3899 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 3900 BUILD_BUG_SQE_ELEM(24, __u32, len); 3901 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 3902 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 3903 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 3904 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 3905 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 3906 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 3907 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 3908 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 3909 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 3910 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 3911 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 3912 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 3913 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 3914 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 3915 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 3916 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 3917 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 3918 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 3919 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 3920 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 3921 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 3922 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 3923 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 3924 BUILD_BUG_SQE_ELEM(42, __u16, personality); 3925 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 3926 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 3927 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 3928 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 3929 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 3930 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 3931 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 3932 3933 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 3934 sizeof(struct io_uring_rsrc_update)); 3935 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 3936 sizeof(struct io_uring_rsrc_update2)); 3937 3938 /* ->buf_index is u16 */ 3939 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 3940 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 3941 offsetof(struct io_uring_buf_ring, tail)); 3942 3943 /* should fit into one byte */ 3944 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 3945 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 3946 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 3947 3948 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 3949 3950 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 3951 3952 io_uring_optable_init(); 3953 3954 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC | 3955 SLAB_ACCOUNT); 3956 return 0; 3957 }; 3958 __initcall(io_uring_init); 3959