xref: /openbmc/linux/io_uring/io_uring.c (revision 53cfd5ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 #include <asm/shmparam.h>
76 
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/io_uring.h>
79 
80 #include <uapi/linux/io_uring.h>
81 
82 #include "io-wq.h"
83 
84 #include "io_uring.h"
85 #include "opdef.h"
86 #include "refs.h"
87 #include "tctx.h"
88 #include "sqpoll.h"
89 #include "fdinfo.h"
90 #include "kbuf.h"
91 #include "rsrc.h"
92 #include "cancel.h"
93 #include "net.h"
94 #include "notif.h"
95 
96 #include "timeout.h"
97 #include "poll.h"
98 #include "rw.h"
99 #include "alloc_cache.h"
100 
101 #define IORING_MAX_ENTRIES	32768
102 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
103 
104 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
105 				 IORING_REGISTER_LAST + IORING_OP_LAST)
106 
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109 
110 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112 
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 				REQ_F_ASYNC_DATA)
116 
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 				 IO_REQ_CLEAN_FLAGS)
119 
120 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
121 
122 #define IO_COMPL_BATCH			32
123 #define IO_REQ_ALLOC_BATCH		8
124 
125 enum {
126 	IO_CHECK_CQ_OVERFLOW_BIT,
127 	IO_CHECK_CQ_DROPPED_BIT,
128 };
129 
130 enum {
131 	IO_EVENTFD_OP_SIGNAL_BIT,
132 	IO_EVENTFD_OP_FREE_BIT,
133 };
134 
135 struct io_defer_entry {
136 	struct list_head	list;
137 	struct io_kiocb		*req;
138 	u32			seq;
139 };
140 
141 /* requests with any of those set should undergo io_disarm_next() */
142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
144 
145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
146 					 struct task_struct *task,
147 					 bool cancel_all);
148 
149 static void io_dismantle_req(struct io_kiocb *req);
150 static void io_clean_op(struct io_kiocb *req);
151 static void io_queue_sqe(struct io_kiocb *req);
152 static void io_move_task_work_from_local(struct io_ring_ctx *ctx);
153 static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
154 static __cold void io_fallback_tw(struct io_uring_task *tctx);
155 
156 struct kmem_cache *req_cachep;
157 
158 struct sock *io_uring_get_socket(struct file *file)
159 {
160 #if defined(CONFIG_UNIX)
161 	if (io_is_uring_fops(file)) {
162 		struct io_ring_ctx *ctx = file->private_data;
163 
164 		return ctx->ring_sock->sk;
165 	}
166 #endif
167 	return NULL;
168 }
169 EXPORT_SYMBOL(io_uring_get_socket);
170 
171 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
172 {
173 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
174 	    ctx->submit_state.cqes_count)
175 		__io_submit_flush_completions(ctx);
176 }
177 
178 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
179 {
180 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
181 }
182 
183 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
184 {
185 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
186 }
187 
188 static bool io_match_linked(struct io_kiocb *head)
189 {
190 	struct io_kiocb *req;
191 
192 	io_for_each_link(req, head) {
193 		if (req->flags & REQ_F_INFLIGHT)
194 			return true;
195 	}
196 	return false;
197 }
198 
199 /*
200  * As io_match_task() but protected against racing with linked timeouts.
201  * User must not hold timeout_lock.
202  */
203 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
204 			bool cancel_all)
205 {
206 	bool matched;
207 
208 	if (task && head->task != task)
209 		return false;
210 	if (cancel_all)
211 		return true;
212 
213 	if (head->flags & REQ_F_LINK_TIMEOUT) {
214 		struct io_ring_ctx *ctx = head->ctx;
215 
216 		/* protect against races with linked timeouts */
217 		spin_lock_irq(&ctx->timeout_lock);
218 		matched = io_match_linked(head);
219 		spin_unlock_irq(&ctx->timeout_lock);
220 	} else {
221 		matched = io_match_linked(head);
222 	}
223 	return matched;
224 }
225 
226 static inline void req_fail_link_node(struct io_kiocb *req, int res)
227 {
228 	req_set_fail(req);
229 	io_req_set_res(req, res, 0);
230 }
231 
232 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
233 {
234 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
235 	kasan_poison_object_data(req_cachep, req);
236 }
237 
238 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
239 {
240 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
241 
242 	complete(&ctx->ref_comp);
243 }
244 
245 static __cold void io_fallback_req_func(struct work_struct *work)
246 {
247 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
248 						fallback_work.work);
249 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
250 	struct io_kiocb *req, *tmp;
251 	struct io_tw_state ts = { .locked = true, };
252 
253 	mutex_lock(&ctx->uring_lock);
254 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
255 		req->io_task_work.func(req, &ts);
256 	if (WARN_ON_ONCE(!ts.locked))
257 		return;
258 	io_submit_flush_completions(ctx);
259 	mutex_unlock(&ctx->uring_lock);
260 }
261 
262 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
263 {
264 	unsigned hash_buckets = 1U << bits;
265 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
266 
267 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
268 	if (!table->hbs)
269 		return -ENOMEM;
270 
271 	table->hash_bits = bits;
272 	init_hash_table(table, hash_buckets);
273 	return 0;
274 }
275 
276 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
277 {
278 	struct io_ring_ctx *ctx;
279 	int hash_bits;
280 
281 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
282 	if (!ctx)
283 		return NULL;
284 
285 	xa_init(&ctx->io_bl_xa);
286 
287 	/*
288 	 * Use 5 bits less than the max cq entries, that should give us around
289 	 * 32 entries per hash list if totally full and uniformly spread, but
290 	 * don't keep too many buckets to not overconsume memory.
291 	 */
292 	hash_bits = ilog2(p->cq_entries) - 5;
293 	hash_bits = clamp(hash_bits, 1, 8);
294 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
295 		goto err;
296 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
297 		goto err;
298 
299 	ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
300 	if (!ctx->dummy_ubuf)
301 		goto err;
302 	/* set invalid range, so io_import_fixed() fails meeting it */
303 	ctx->dummy_ubuf->ubuf = -1UL;
304 
305 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
306 			    0, GFP_KERNEL))
307 		goto err;
308 
309 	ctx->flags = p->flags;
310 	init_waitqueue_head(&ctx->sqo_sq_wait);
311 	INIT_LIST_HEAD(&ctx->sqd_list);
312 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
313 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
314 	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
315 			    sizeof(struct io_rsrc_node));
316 	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
317 			    sizeof(struct async_poll));
318 	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
319 			    sizeof(struct io_async_msghdr));
320 	init_completion(&ctx->ref_comp);
321 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
322 	mutex_init(&ctx->uring_lock);
323 	init_waitqueue_head(&ctx->cq_wait);
324 	init_waitqueue_head(&ctx->poll_wq);
325 	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
326 	spin_lock_init(&ctx->completion_lock);
327 	spin_lock_init(&ctx->timeout_lock);
328 	INIT_WQ_LIST(&ctx->iopoll_list);
329 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
330 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
331 	INIT_LIST_HEAD(&ctx->defer_list);
332 	INIT_LIST_HEAD(&ctx->timeout_list);
333 	INIT_LIST_HEAD(&ctx->ltimeout_list);
334 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
335 	init_llist_head(&ctx->work_llist);
336 	INIT_LIST_HEAD(&ctx->tctx_list);
337 	ctx->submit_state.free_list.next = NULL;
338 	INIT_WQ_LIST(&ctx->locked_free_list);
339 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
340 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
341 	return ctx;
342 err:
343 	kfree(ctx->dummy_ubuf);
344 	kfree(ctx->cancel_table.hbs);
345 	kfree(ctx->cancel_table_locked.hbs);
346 	kfree(ctx->io_bl);
347 	xa_destroy(&ctx->io_bl_xa);
348 	kfree(ctx);
349 	return NULL;
350 }
351 
352 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
353 {
354 	struct io_rings *r = ctx->rings;
355 
356 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
357 	ctx->cq_extra--;
358 }
359 
360 static bool req_need_defer(struct io_kiocb *req, u32 seq)
361 {
362 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
363 		struct io_ring_ctx *ctx = req->ctx;
364 
365 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
366 	}
367 
368 	return false;
369 }
370 
371 static inline void io_req_track_inflight(struct io_kiocb *req)
372 {
373 	if (!(req->flags & REQ_F_INFLIGHT)) {
374 		req->flags |= REQ_F_INFLIGHT;
375 		atomic_inc(&req->task->io_uring->inflight_tracked);
376 	}
377 }
378 
379 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
380 {
381 	if (WARN_ON_ONCE(!req->link))
382 		return NULL;
383 
384 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
385 	req->flags |= REQ_F_LINK_TIMEOUT;
386 
387 	/* linked timeouts should have two refs once prep'ed */
388 	io_req_set_refcount(req);
389 	__io_req_set_refcount(req->link, 2);
390 	return req->link;
391 }
392 
393 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
394 {
395 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
396 		return NULL;
397 	return __io_prep_linked_timeout(req);
398 }
399 
400 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
401 {
402 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
403 }
404 
405 static inline void io_arm_ltimeout(struct io_kiocb *req)
406 {
407 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
408 		__io_arm_ltimeout(req);
409 }
410 
411 static void io_prep_async_work(struct io_kiocb *req)
412 {
413 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
414 	struct io_ring_ctx *ctx = req->ctx;
415 
416 	if (!(req->flags & REQ_F_CREDS)) {
417 		req->flags |= REQ_F_CREDS;
418 		req->creds = get_current_cred();
419 	}
420 
421 	req->work.list.next = NULL;
422 	req->work.flags = 0;
423 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
424 	if (req->flags & REQ_F_FORCE_ASYNC)
425 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
426 
427 	if (req->file && !io_req_ffs_set(req))
428 		req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT;
429 
430 	if (req->file && (req->flags & REQ_F_ISREG)) {
431 		bool should_hash = def->hash_reg_file;
432 
433 		/* don't serialize this request if the fs doesn't need it */
434 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
435 		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
436 			should_hash = false;
437 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
438 			io_wq_hash_work(&req->work, file_inode(req->file));
439 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
440 		if (def->unbound_nonreg_file)
441 			req->work.flags |= IO_WQ_WORK_UNBOUND;
442 	}
443 }
444 
445 static void io_prep_async_link(struct io_kiocb *req)
446 {
447 	struct io_kiocb *cur;
448 
449 	if (req->flags & REQ_F_LINK_TIMEOUT) {
450 		struct io_ring_ctx *ctx = req->ctx;
451 
452 		spin_lock_irq(&ctx->timeout_lock);
453 		io_for_each_link(cur, req)
454 			io_prep_async_work(cur);
455 		spin_unlock_irq(&ctx->timeout_lock);
456 	} else {
457 		io_for_each_link(cur, req)
458 			io_prep_async_work(cur);
459 	}
460 }
461 
462 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
463 {
464 	struct io_kiocb *link = io_prep_linked_timeout(req);
465 	struct io_uring_task *tctx = req->task->io_uring;
466 
467 	BUG_ON(!tctx);
468 	BUG_ON(!tctx->io_wq);
469 
470 	/* init ->work of the whole link before punting */
471 	io_prep_async_link(req);
472 
473 	/*
474 	 * Not expected to happen, but if we do have a bug where this _can_
475 	 * happen, catch it here and ensure the request is marked as
476 	 * canceled. That will make io-wq go through the usual work cancel
477 	 * procedure rather than attempt to run this request (or create a new
478 	 * worker for it).
479 	 */
480 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
481 		req->work.flags |= IO_WQ_WORK_CANCEL;
482 
483 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
484 	io_wq_enqueue(tctx->io_wq, &req->work);
485 	if (link)
486 		io_queue_linked_timeout(link);
487 }
488 
489 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
490 {
491 	while (!list_empty(&ctx->defer_list)) {
492 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
493 						struct io_defer_entry, list);
494 
495 		if (req_need_defer(de->req, de->seq))
496 			break;
497 		list_del_init(&de->list);
498 		io_req_task_queue(de->req);
499 		kfree(de);
500 	}
501 }
502 
503 
504 static void io_eventfd_ops(struct rcu_head *rcu)
505 {
506 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
507 	int ops = atomic_xchg(&ev_fd->ops, 0);
508 
509 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
510 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
511 
512 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
513 	 * ordering in a race but if references are 0 we know we have to free
514 	 * it regardless.
515 	 */
516 	if (atomic_dec_and_test(&ev_fd->refs)) {
517 		eventfd_ctx_put(ev_fd->cq_ev_fd);
518 		kfree(ev_fd);
519 	}
520 }
521 
522 static void io_eventfd_signal(struct io_ring_ctx *ctx)
523 {
524 	struct io_ev_fd *ev_fd = NULL;
525 
526 	rcu_read_lock();
527 	/*
528 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
529 	 * and eventfd_signal
530 	 */
531 	ev_fd = rcu_dereference(ctx->io_ev_fd);
532 
533 	/*
534 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
535 	 * completed between the NULL check of ctx->io_ev_fd at the start of
536 	 * the function and rcu_read_lock.
537 	 */
538 	if (unlikely(!ev_fd))
539 		goto out;
540 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
541 		goto out;
542 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
543 		goto out;
544 
545 	if (likely(eventfd_signal_allowed())) {
546 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
547 	} else {
548 		atomic_inc(&ev_fd->refs);
549 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
550 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
551 		else
552 			atomic_dec(&ev_fd->refs);
553 	}
554 
555 out:
556 	rcu_read_unlock();
557 }
558 
559 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
560 {
561 	bool skip;
562 
563 	spin_lock(&ctx->completion_lock);
564 
565 	/*
566 	 * Eventfd should only get triggered when at least one event has been
567 	 * posted. Some applications rely on the eventfd notification count
568 	 * only changing IFF a new CQE has been added to the CQ ring. There's
569 	 * no depedency on 1:1 relationship between how many times this
570 	 * function is called (and hence the eventfd count) and number of CQEs
571 	 * posted to the CQ ring.
572 	 */
573 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
574 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
575 	spin_unlock(&ctx->completion_lock);
576 	if (skip)
577 		return;
578 
579 	io_eventfd_signal(ctx);
580 }
581 
582 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
583 {
584 	if (ctx->poll_activated)
585 		io_poll_wq_wake(ctx);
586 	if (ctx->off_timeout_used)
587 		io_flush_timeouts(ctx);
588 	if (ctx->drain_active) {
589 		spin_lock(&ctx->completion_lock);
590 		io_queue_deferred(ctx);
591 		spin_unlock(&ctx->completion_lock);
592 	}
593 	if (ctx->has_evfd)
594 		io_eventfd_flush_signal(ctx);
595 }
596 
597 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
598 	__acquires(ctx->completion_lock)
599 {
600 	if (!ctx->task_complete)
601 		spin_lock(&ctx->completion_lock);
602 }
603 
604 static inline void __io_cq_unlock(struct io_ring_ctx *ctx)
605 {
606 	if (!ctx->task_complete)
607 		spin_unlock(&ctx->completion_lock);
608 }
609 
610 static inline void io_cq_lock(struct io_ring_ctx *ctx)
611 	__acquires(ctx->completion_lock)
612 {
613 	spin_lock(&ctx->completion_lock);
614 }
615 
616 static inline void io_cq_unlock(struct io_ring_ctx *ctx)
617 	__releases(ctx->completion_lock)
618 {
619 	spin_unlock(&ctx->completion_lock);
620 }
621 
622 /* keep it inlined for io_submit_flush_completions() */
623 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
624 	__releases(ctx->completion_lock)
625 {
626 	io_commit_cqring(ctx);
627 	__io_cq_unlock(ctx);
628 	io_commit_cqring_flush(ctx);
629 	io_cqring_wake(ctx);
630 }
631 
632 static void __io_cq_unlock_post_flush(struct io_ring_ctx *ctx)
633 	__releases(ctx->completion_lock)
634 {
635 	io_commit_cqring(ctx);
636 
637 	if (ctx->task_complete) {
638 		/*
639 		 * ->task_complete implies that only current might be waiting
640 		 * for CQEs, and obviously, we currently don't. No one is
641 		 * waiting, wakeups are futile, skip them.
642 		 */
643 		io_commit_cqring_flush(ctx);
644 	} else {
645 		__io_cq_unlock(ctx);
646 		io_commit_cqring_flush(ctx);
647 		io_cqring_wake(ctx);
648 	}
649 }
650 
651 void io_cq_unlock_post(struct io_ring_ctx *ctx)
652 	__releases(ctx->completion_lock)
653 {
654 	io_commit_cqring(ctx);
655 	spin_unlock(&ctx->completion_lock);
656 	io_commit_cqring_flush(ctx);
657 	io_cqring_wake(ctx);
658 }
659 
660 /* Returns true if there are no backlogged entries after the flush */
661 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
662 {
663 	struct io_overflow_cqe *ocqe;
664 	LIST_HEAD(list);
665 
666 	io_cq_lock(ctx);
667 	list_splice_init(&ctx->cq_overflow_list, &list);
668 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
669 	io_cq_unlock(ctx);
670 
671 	while (!list_empty(&list)) {
672 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
673 		list_del(&ocqe->list);
674 		kfree(ocqe);
675 	}
676 }
677 
678 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
679 {
680 	size_t cqe_size = sizeof(struct io_uring_cqe);
681 
682 	if (__io_cqring_events(ctx) == ctx->cq_entries)
683 		return;
684 
685 	if (ctx->flags & IORING_SETUP_CQE32)
686 		cqe_size <<= 1;
687 
688 	io_cq_lock(ctx);
689 	while (!list_empty(&ctx->cq_overflow_list)) {
690 		struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true);
691 		struct io_overflow_cqe *ocqe;
692 
693 		if (!cqe)
694 			break;
695 		ocqe = list_first_entry(&ctx->cq_overflow_list,
696 					struct io_overflow_cqe, list);
697 		memcpy(cqe, &ocqe->cqe, cqe_size);
698 		list_del(&ocqe->list);
699 		kfree(ocqe);
700 	}
701 
702 	if (list_empty(&ctx->cq_overflow_list)) {
703 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
704 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
705 	}
706 	io_cq_unlock_post(ctx);
707 }
708 
709 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
710 {
711 	/* iopoll syncs against uring_lock, not completion_lock */
712 	if (ctx->flags & IORING_SETUP_IOPOLL)
713 		mutex_lock(&ctx->uring_lock);
714 	__io_cqring_overflow_flush(ctx);
715 	if (ctx->flags & IORING_SETUP_IOPOLL)
716 		mutex_unlock(&ctx->uring_lock);
717 }
718 
719 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
720 {
721 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
722 		io_cqring_do_overflow_flush(ctx);
723 }
724 
725 /* can be called by any task */
726 static void io_put_task_remote(struct task_struct *task, int nr)
727 {
728 	struct io_uring_task *tctx = task->io_uring;
729 
730 	percpu_counter_sub(&tctx->inflight, nr);
731 	if (unlikely(atomic_read(&tctx->in_cancel)))
732 		wake_up(&tctx->wait);
733 	put_task_struct_many(task, nr);
734 }
735 
736 /* used by a task to put its own references */
737 static void io_put_task_local(struct task_struct *task, int nr)
738 {
739 	task->io_uring->cached_refs += nr;
740 }
741 
742 /* must to be called somewhat shortly after putting a request */
743 static inline void io_put_task(struct task_struct *task, int nr)
744 {
745 	if (likely(task == current))
746 		io_put_task_local(task, nr);
747 	else
748 		io_put_task_remote(task, nr);
749 }
750 
751 void io_task_refs_refill(struct io_uring_task *tctx)
752 {
753 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
754 
755 	percpu_counter_add(&tctx->inflight, refill);
756 	refcount_add(refill, &current->usage);
757 	tctx->cached_refs += refill;
758 }
759 
760 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
761 {
762 	struct io_uring_task *tctx = task->io_uring;
763 	unsigned int refs = tctx->cached_refs;
764 
765 	if (refs) {
766 		tctx->cached_refs = 0;
767 		percpu_counter_sub(&tctx->inflight, refs);
768 		put_task_struct_many(task, refs);
769 	}
770 }
771 
772 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
773 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
774 {
775 	struct io_overflow_cqe *ocqe;
776 	size_t ocq_size = sizeof(struct io_overflow_cqe);
777 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
778 
779 	lockdep_assert_held(&ctx->completion_lock);
780 
781 	if (is_cqe32)
782 		ocq_size += sizeof(struct io_uring_cqe);
783 
784 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
785 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
786 	if (!ocqe) {
787 		/*
788 		 * If we're in ring overflow flush mode, or in task cancel mode,
789 		 * or cannot allocate an overflow entry, then we need to drop it
790 		 * on the floor.
791 		 */
792 		io_account_cq_overflow(ctx);
793 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
794 		return false;
795 	}
796 	if (list_empty(&ctx->cq_overflow_list)) {
797 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
798 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
799 
800 	}
801 	ocqe->cqe.user_data = user_data;
802 	ocqe->cqe.res = res;
803 	ocqe->cqe.flags = cflags;
804 	if (is_cqe32) {
805 		ocqe->cqe.big_cqe[0] = extra1;
806 		ocqe->cqe.big_cqe[1] = extra2;
807 	}
808 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
809 	return true;
810 }
811 
812 bool io_req_cqe_overflow(struct io_kiocb *req)
813 {
814 	if (!(req->flags & REQ_F_CQE32_INIT)) {
815 		req->extra1 = 0;
816 		req->extra2 = 0;
817 	}
818 	return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
819 					req->cqe.res, req->cqe.flags,
820 					req->extra1, req->extra2);
821 }
822 
823 /*
824  * writes to the cq entry need to come after reading head; the
825  * control dependency is enough as we're using WRITE_ONCE to
826  * fill the cq entry
827  */
828 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow)
829 {
830 	struct io_rings *rings = ctx->rings;
831 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
832 	unsigned int free, queued, len;
833 
834 	/*
835 	 * Posting into the CQ when there are pending overflowed CQEs may break
836 	 * ordering guarantees, which will affect links, F_MORE users and more.
837 	 * Force overflow the completion.
838 	 */
839 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
840 		return NULL;
841 
842 	/* userspace may cheat modifying the tail, be safe and do min */
843 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
844 	free = ctx->cq_entries - queued;
845 	/* we need a contiguous range, limit based on the current array offset */
846 	len = min(free, ctx->cq_entries - off);
847 	if (!len)
848 		return NULL;
849 
850 	if (ctx->flags & IORING_SETUP_CQE32) {
851 		off <<= 1;
852 		len <<= 1;
853 	}
854 
855 	ctx->cqe_cached = &rings->cqes[off];
856 	ctx->cqe_sentinel = ctx->cqe_cached + len;
857 
858 	ctx->cached_cq_tail++;
859 	ctx->cqe_cached++;
860 	if (ctx->flags & IORING_SETUP_CQE32)
861 		ctx->cqe_cached++;
862 	return &rings->cqes[off];
863 }
864 
865 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
866 			      u32 cflags)
867 {
868 	struct io_uring_cqe *cqe;
869 
870 	ctx->cq_extra++;
871 
872 	/*
873 	 * If we can't get a cq entry, userspace overflowed the
874 	 * submission (by quite a lot). Increment the overflow count in
875 	 * the ring.
876 	 */
877 	cqe = io_get_cqe(ctx);
878 	if (likely(cqe)) {
879 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
880 
881 		WRITE_ONCE(cqe->user_data, user_data);
882 		WRITE_ONCE(cqe->res, res);
883 		WRITE_ONCE(cqe->flags, cflags);
884 
885 		if (ctx->flags & IORING_SETUP_CQE32) {
886 			WRITE_ONCE(cqe->big_cqe[0], 0);
887 			WRITE_ONCE(cqe->big_cqe[1], 0);
888 		}
889 		return true;
890 	}
891 	return false;
892 }
893 
894 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
895 	__must_hold(&ctx->uring_lock)
896 {
897 	struct io_submit_state *state = &ctx->submit_state;
898 	unsigned int i;
899 
900 	lockdep_assert_held(&ctx->uring_lock);
901 	for (i = 0; i < state->cqes_count; i++) {
902 		struct io_uring_cqe *cqe = &state->cqes[i];
903 
904 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
905 			if (ctx->task_complete) {
906 				spin_lock(&ctx->completion_lock);
907 				io_cqring_event_overflow(ctx, cqe->user_data,
908 							cqe->res, cqe->flags, 0, 0);
909 				spin_unlock(&ctx->completion_lock);
910 			} else {
911 				io_cqring_event_overflow(ctx, cqe->user_data,
912 							cqe->res, cqe->flags, 0, 0);
913 			}
914 		}
915 	}
916 	state->cqes_count = 0;
917 }
918 
919 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
920 			      bool allow_overflow)
921 {
922 	bool filled;
923 
924 	io_cq_lock(ctx);
925 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
926 	if (!filled && allow_overflow)
927 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
928 
929 	io_cq_unlock_post(ctx);
930 	return filled;
931 }
932 
933 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
934 {
935 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
936 }
937 
938 bool io_aux_cqe(const struct io_kiocb *req, bool defer, s32 res, u32 cflags,
939 		bool allow_overflow)
940 {
941 	struct io_ring_ctx *ctx = req->ctx;
942 	u64 user_data = req->cqe.user_data;
943 	struct io_uring_cqe *cqe;
944 
945 	if (!defer)
946 		return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow);
947 
948 	lockdep_assert_held(&ctx->uring_lock);
949 
950 	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->submit_state.cqes)) {
951 		__io_cq_lock(ctx);
952 		__io_flush_post_cqes(ctx);
953 		/* no need to flush - flush is deferred */
954 		__io_cq_unlock_post(ctx);
955 	}
956 
957 	/* For defered completions this is not as strict as it is otherwise,
958 	 * however it's main job is to prevent unbounded posted completions,
959 	 * and in that it works just as well.
960 	 */
961 	if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
962 		return false;
963 
964 	cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++];
965 	cqe->user_data = user_data;
966 	cqe->res = res;
967 	cqe->flags = cflags;
968 	return true;
969 }
970 
971 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
972 {
973 	struct io_ring_ctx *ctx = req->ctx;
974 	struct io_rsrc_node *rsrc_node = NULL;
975 
976 	io_cq_lock(ctx);
977 	if (!(req->flags & REQ_F_CQE_SKIP))
978 		io_fill_cqe_req(ctx, req);
979 
980 	/*
981 	 * If we're the last reference to this request, add to our locked
982 	 * free_list cache.
983 	 */
984 	if (req_ref_put_and_test(req)) {
985 		if (req->flags & IO_REQ_LINK_FLAGS) {
986 			if (req->flags & IO_DISARM_MASK)
987 				io_disarm_next(req);
988 			if (req->link) {
989 				io_req_task_queue(req->link);
990 				req->link = NULL;
991 			}
992 		}
993 		io_put_kbuf_comp(req);
994 		io_dismantle_req(req);
995 		rsrc_node = req->rsrc_node;
996 		/*
997 		 * Selected buffer deallocation in io_clean_op() assumes that
998 		 * we don't hold ->completion_lock. Clean them here to avoid
999 		 * deadlocks.
1000 		 */
1001 		io_put_task_remote(req->task, 1);
1002 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1003 		ctx->locked_free_nr++;
1004 	}
1005 	io_cq_unlock_post(ctx);
1006 
1007 	if (rsrc_node) {
1008 		io_ring_submit_lock(ctx, issue_flags);
1009 		io_put_rsrc_node(ctx, rsrc_node);
1010 		io_ring_submit_unlock(ctx, issue_flags);
1011 	}
1012 }
1013 
1014 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1015 {
1016 	if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1017 		req->io_task_work.func = io_req_task_complete;
1018 		io_req_task_work_add(req);
1019 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1020 		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1021 		__io_req_complete_post(req, issue_flags);
1022 	} else {
1023 		struct io_ring_ctx *ctx = req->ctx;
1024 
1025 		mutex_lock(&ctx->uring_lock);
1026 		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1027 		mutex_unlock(&ctx->uring_lock);
1028 	}
1029 }
1030 
1031 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1032 	__must_hold(&ctx->uring_lock)
1033 {
1034 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1035 
1036 	lockdep_assert_held(&req->ctx->uring_lock);
1037 
1038 	req_set_fail(req);
1039 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1040 	if (def->fail)
1041 		def->fail(req);
1042 	io_req_complete_defer(req);
1043 }
1044 
1045 /*
1046  * Don't initialise the fields below on every allocation, but do that in
1047  * advance and keep them valid across allocations.
1048  */
1049 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1050 {
1051 	req->ctx = ctx;
1052 	req->link = NULL;
1053 	req->async_data = NULL;
1054 	/* not necessary, but safer to zero */
1055 	req->cqe.res = 0;
1056 }
1057 
1058 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1059 					struct io_submit_state *state)
1060 {
1061 	spin_lock(&ctx->completion_lock);
1062 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1063 	ctx->locked_free_nr = 0;
1064 	spin_unlock(&ctx->completion_lock);
1065 }
1066 
1067 /*
1068  * A request might get retired back into the request caches even before opcode
1069  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1070  * Because of that, io_alloc_req() should be called only under ->uring_lock
1071  * and with extra caution to not get a request that is still worked on.
1072  */
1073 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1074 	__must_hold(&ctx->uring_lock)
1075 {
1076 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1077 	void *reqs[IO_REQ_ALLOC_BATCH];
1078 	int ret, i;
1079 
1080 	/*
1081 	 * If we have more than a batch's worth of requests in our IRQ side
1082 	 * locked cache, grab the lock and move them over to our submission
1083 	 * side cache.
1084 	 */
1085 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1086 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1087 		if (!io_req_cache_empty(ctx))
1088 			return true;
1089 	}
1090 
1091 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1092 
1093 	/*
1094 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1095 	 * retry single alloc to be on the safe side.
1096 	 */
1097 	if (unlikely(ret <= 0)) {
1098 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1099 		if (!reqs[0])
1100 			return false;
1101 		ret = 1;
1102 	}
1103 
1104 	percpu_ref_get_many(&ctx->refs, ret);
1105 	for (i = 0; i < ret; i++) {
1106 		struct io_kiocb *req = reqs[i];
1107 
1108 		io_preinit_req(req, ctx);
1109 		io_req_add_to_cache(req, ctx);
1110 	}
1111 	return true;
1112 }
1113 
1114 static inline void io_dismantle_req(struct io_kiocb *req)
1115 {
1116 	unsigned int flags = req->flags;
1117 
1118 	if (unlikely(flags & IO_REQ_CLEAN_FLAGS))
1119 		io_clean_op(req);
1120 	if (!(flags & REQ_F_FIXED_FILE))
1121 		io_put_file(req->file);
1122 }
1123 
1124 static __cold void io_free_req_tw(struct io_kiocb *req, struct io_tw_state *ts)
1125 {
1126 	struct io_ring_ctx *ctx = req->ctx;
1127 
1128 	if (req->rsrc_node) {
1129 		io_tw_lock(ctx, ts);
1130 		io_put_rsrc_node(ctx, req->rsrc_node);
1131 	}
1132 	io_dismantle_req(req);
1133 	io_put_task_remote(req->task, 1);
1134 
1135 	spin_lock(&ctx->completion_lock);
1136 	wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1137 	ctx->locked_free_nr++;
1138 	spin_unlock(&ctx->completion_lock);
1139 }
1140 
1141 __cold void io_free_req(struct io_kiocb *req)
1142 {
1143 	req->io_task_work.func = io_free_req_tw;
1144 	io_req_task_work_add(req);
1145 }
1146 
1147 static void __io_req_find_next_prep(struct io_kiocb *req)
1148 {
1149 	struct io_ring_ctx *ctx = req->ctx;
1150 
1151 	spin_lock(&ctx->completion_lock);
1152 	io_disarm_next(req);
1153 	spin_unlock(&ctx->completion_lock);
1154 }
1155 
1156 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1157 {
1158 	struct io_kiocb *nxt;
1159 
1160 	/*
1161 	 * If LINK is set, we have dependent requests in this chain. If we
1162 	 * didn't fail this request, queue the first one up, moving any other
1163 	 * dependencies to the next request. In case of failure, fail the rest
1164 	 * of the chain.
1165 	 */
1166 	if (unlikely(req->flags & IO_DISARM_MASK))
1167 		__io_req_find_next_prep(req);
1168 	nxt = req->link;
1169 	req->link = NULL;
1170 	return nxt;
1171 }
1172 
1173 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1174 {
1175 	if (!ctx)
1176 		return;
1177 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1178 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1179 	if (ts->locked) {
1180 		io_submit_flush_completions(ctx);
1181 		mutex_unlock(&ctx->uring_lock);
1182 		ts->locked = false;
1183 	}
1184 	percpu_ref_put(&ctx->refs);
1185 }
1186 
1187 static unsigned int handle_tw_list(struct llist_node *node,
1188 				   struct io_ring_ctx **ctx,
1189 				   struct io_tw_state *ts,
1190 				   struct llist_node *last)
1191 {
1192 	unsigned int count = 0;
1193 
1194 	while (node && node != last) {
1195 		struct llist_node *next = node->next;
1196 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1197 						    io_task_work.node);
1198 
1199 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1200 
1201 		if (req->ctx != *ctx) {
1202 			ctx_flush_and_put(*ctx, ts);
1203 			*ctx = req->ctx;
1204 			/* if not contended, grab and improve batching */
1205 			ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1206 			percpu_ref_get(&(*ctx)->refs);
1207 		}
1208 		INDIRECT_CALL_2(req->io_task_work.func,
1209 				io_poll_task_func, io_req_rw_complete,
1210 				req, ts);
1211 		node = next;
1212 		count++;
1213 		if (unlikely(need_resched())) {
1214 			ctx_flush_and_put(*ctx, ts);
1215 			*ctx = NULL;
1216 			cond_resched();
1217 		}
1218 	}
1219 
1220 	return count;
1221 }
1222 
1223 /**
1224  * io_llist_xchg - swap all entries in a lock-less list
1225  * @head:	the head of lock-less list to delete all entries
1226  * @new:	new entry as the head of the list
1227  *
1228  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1229  * The order of entries returned is from the newest to the oldest added one.
1230  */
1231 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1232 					       struct llist_node *new)
1233 {
1234 	return xchg(&head->first, new);
1235 }
1236 
1237 /**
1238  * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1239  * @head:	the head of lock-less list to delete all entries
1240  * @old:	expected old value of the first entry of the list
1241  * @new:	new entry as the head of the list
1242  *
1243  * perform a cmpxchg on the first entry of the list.
1244  */
1245 
1246 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1247 						  struct llist_node *old,
1248 						  struct llist_node *new)
1249 {
1250 	return cmpxchg(&head->first, old, new);
1251 }
1252 
1253 void tctx_task_work(struct callback_head *cb)
1254 {
1255 	struct io_tw_state ts = {};
1256 	struct io_ring_ctx *ctx = NULL;
1257 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1258 						  task_work);
1259 	struct llist_node fake = {};
1260 	struct llist_node *node;
1261 	unsigned int loops = 0;
1262 	unsigned int count = 0;
1263 
1264 	if (unlikely(current->flags & PF_EXITING)) {
1265 		io_fallback_tw(tctx);
1266 		return;
1267 	}
1268 
1269 	do {
1270 		loops++;
1271 		node = io_llist_xchg(&tctx->task_list, &fake);
1272 		count += handle_tw_list(node, &ctx, &ts, &fake);
1273 
1274 		/* skip expensive cmpxchg if there are items in the list */
1275 		if (READ_ONCE(tctx->task_list.first) != &fake)
1276 			continue;
1277 		if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1278 			io_submit_flush_completions(ctx);
1279 			if (READ_ONCE(tctx->task_list.first) != &fake)
1280 				continue;
1281 		}
1282 		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1283 	} while (node != &fake);
1284 
1285 	ctx_flush_and_put(ctx, &ts);
1286 
1287 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1288 	if (unlikely(atomic_read(&tctx->in_cancel)))
1289 		io_uring_drop_tctx_refs(current);
1290 
1291 	trace_io_uring_task_work_run(tctx, count, loops);
1292 }
1293 
1294 static __cold void io_fallback_tw(struct io_uring_task *tctx)
1295 {
1296 	struct llist_node *node = llist_del_all(&tctx->task_list);
1297 	struct io_kiocb *req;
1298 
1299 	while (node) {
1300 		req = container_of(node, struct io_kiocb, io_task_work.node);
1301 		node = node->next;
1302 		if (llist_add(&req->io_task_work.node,
1303 			      &req->ctx->fallback_llist))
1304 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1305 	}
1306 }
1307 
1308 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1309 {
1310 	struct io_ring_ctx *ctx = req->ctx;
1311 	unsigned nr_wait, nr_tw, nr_tw_prev;
1312 	struct llist_node *first;
1313 
1314 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1315 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1316 
1317 	first = READ_ONCE(ctx->work_llist.first);
1318 	do {
1319 		nr_tw_prev = 0;
1320 		if (first) {
1321 			struct io_kiocb *first_req = container_of(first,
1322 							struct io_kiocb,
1323 							io_task_work.node);
1324 			/*
1325 			 * Might be executed at any moment, rely on
1326 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1327 			 */
1328 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1329 		}
1330 		nr_tw = nr_tw_prev + 1;
1331 		/* Large enough to fail the nr_wait comparison below */
1332 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1333 			nr_tw = -1U;
1334 
1335 		req->nr_tw = nr_tw;
1336 		req->io_task_work.node.next = first;
1337 	} while (!try_cmpxchg(&ctx->work_llist.first, &first,
1338 			      &req->io_task_work.node));
1339 
1340 	if (!first) {
1341 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1342 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1343 		if (ctx->has_evfd)
1344 			io_eventfd_signal(ctx);
1345 	}
1346 
1347 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1348 	/* no one is waiting */
1349 	if (!nr_wait)
1350 		return;
1351 	/* either not enough or the previous add has already woken it up */
1352 	if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1353 		return;
1354 	/* pairs with set_current_state() in io_cqring_wait() */
1355 	smp_mb__after_atomic();
1356 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1357 }
1358 
1359 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1360 {
1361 	struct io_uring_task *tctx = req->task->io_uring;
1362 	struct io_ring_ctx *ctx = req->ctx;
1363 
1364 	if (!(flags & IOU_F_TWQ_FORCE_NORMAL) &&
1365 	    (ctx->flags & IORING_SETUP_DEFER_TASKRUN)) {
1366 		rcu_read_lock();
1367 		io_req_local_work_add(req, flags);
1368 		rcu_read_unlock();
1369 		return;
1370 	}
1371 
1372 	/* task_work already pending, we're done */
1373 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1374 		return;
1375 
1376 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1377 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1378 
1379 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1380 		return;
1381 
1382 	io_fallback_tw(tctx);
1383 }
1384 
1385 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1386 {
1387 	struct llist_node *node;
1388 
1389 	node = llist_del_all(&ctx->work_llist);
1390 	while (node) {
1391 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1392 						    io_task_work.node);
1393 
1394 		node = node->next;
1395 		__io_req_task_work_add(req, IOU_F_TWQ_FORCE_NORMAL);
1396 	}
1397 }
1398 
1399 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1400 {
1401 	struct llist_node *node;
1402 	unsigned int loops = 0;
1403 	int ret = 0;
1404 
1405 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1406 		return -EEXIST;
1407 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1408 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1409 again:
1410 	/*
1411 	 * llists are in reverse order, flip it back the right way before
1412 	 * running the pending items.
1413 	 */
1414 	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1415 	while (node) {
1416 		struct llist_node *next = node->next;
1417 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1418 						    io_task_work.node);
1419 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1420 		INDIRECT_CALL_2(req->io_task_work.func,
1421 				io_poll_task_func, io_req_rw_complete,
1422 				req, ts);
1423 		ret++;
1424 		node = next;
1425 	}
1426 	loops++;
1427 
1428 	if (!llist_empty(&ctx->work_llist))
1429 		goto again;
1430 	if (ts->locked) {
1431 		io_submit_flush_completions(ctx);
1432 		if (!llist_empty(&ctx->work_llist))
1433 			goto again;
1434 	}
1435 	trace_io_uring_local_work_run(ctx, ret, loops);
1436 	return ret;
1437 }
1438 
1439 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1440 {
1441 	struct io_tw_state ts = { .locked = true, };
1442 	int ret;
1443 
1444 	if (llist_empty(&ctx->work_llist))
1445 		return 0;
1446 
1447 	ret = __io_run_local_work(ctx, &ts);
1448 	/* shouldn't happen! */
1449 	if (WARN_ON_ONCE(!ts.locked))
1450 		mutex_lock(&ctx->uring_lock);
1451 	return ret;
1452 }
1453 
1454 static int io_run_local_work(struct io_ring_ctx *ctx)
1455 {
1456 	struct io_tw_state ts = {};
1457 	int ret;
1458 
1459 	ts.locked = mutex_trylock(&ctx->uring_lock);
1460 	ret = __io_run_local_work(ctx, &ts);
1461 	if (ts.locked)
1462 		mutex_unlock(&ctx->uring_lock);
1463 
1464 	return ret;
1465 }
1466 
1467 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1468 {
1469 	io_tw_lock(req->ctx, ts);
1470 	io_req_defer_failed(req, req->cqe.res);
1471 }
1472 
1473 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1474 {
1475 	io_tw_lock(req->ctx, ts);
1476 	/* req->task == current here, checking PF_EXITING is safe */
1477 	if (unlikely(req->task->flags & PF_EXITING))
1478 		io_req_defer_failed(req, -EFAULT);
1479 	else if (req->flags & REQ_F_FORCE_ASYNC)
1480 		io_queue_iowq(req, ts);
1481 	else
1482 		io_queue_sqe(req);
1483 }
1484 
1485 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1486 {
1487 	io_req_set_res(req, ret, 0);
1488 	req->io_task_work.func = io_req_task_cancel;
1489 	io_req_task_work_add(req);
1490 }
1491 
1492 void io_req_task_queue(struct io_kiocb *req)
1493 {
1494 	req->io_task_work.func = io_req_task_submit;
1495 	io_req_task_work_add(req);
1496 }
1497 
1498 void io_queue_next(struct io_kiocb *req)
1499 {
1500 	struct io_kiocb *nxt = io_req_find_next(req);
1501 
1502 	if (nxt)
1503 		io_req_task_queue(nxt);
1504 }
1505 
1506 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1507 	__must_hold(&ctx->uring_lock)
1508 {
1509 	struct task_struct *task = NULL;
1510 	int task_refs = 0;
1511 
1512 	do {
1513 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1514 						    comp_list);
1515 
1516 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1517 			if (req->flags & REQ_F_REFCOUNT) {
1518 				node = req->comp_list.next;
1519 				if (!req_ref_put_and_test(req))
1520 					continue;
1521 			}
1522 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1523 				struct async_poll *apoll = req->apoll;
1524 
1525 				if (apoll->double_poll)
1526 					kfree(apoll->double_poll);
1527 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1528 					kfree(apoll);
1529 				req->flags &= ~REQ_F_POLLED;
1530 			}
1531 			if (req->flags & IO_REQ_LINK_FLAGS)
1532 				io_queue_next(req);
1533 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1534 				io_clean_op(req);
1535 		}
1536 		if (!(req->flags & REQ_F_FIXED_FILE))
1537 			io_put_file(req->file);
1538 
1539 		io_req_put_rsrc_locked(req, ctx);
1540 
1541 		if (req->task != task) {
1542 			if (task)
1543 				io_put_task(task, task_refs);
1544 			task = req->task;
1545 			task_refs = 0;
1546 		}
1547 		task_refs++;
1548 		node = req->comp_list.next;
1549 		io_req_add_to_cache(req, ctx);
1550 	} while (node);
1551 
1552 	if (task)
1553 		io_put_task(task, task_refs);
1554 }
1555 
1556 static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1557 	__must_hold(&ctx->uring_lock)
1558 {
1559 	struct io_submit_state *state = &ctx->submit_state;
1560 	struct io_wq_work_node *node;
1561 
1562 	__io_cq_lock(ctx);
1563 	/* must come first to preserve CQE ordering in failure cases */
1564 	if (state->cqes_count)
1565 		__io_flush_post_cqes(ctx);
1566 	__wq_list_for_each(node, &state->compl_reqs) {
1567 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1568 					    comp_list);
1569 
1570 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1571 		    unlikely(!__io_fill_cqe_req(ctx, req))) {
1572 			if (ctx->task_complete) {
1573 				spin_lock(&ctx->completion_lock);
1574 				io_req_cqe_overflow(req);
1575 				spin_unlock(&ctx->completion_lock);
1576 			} else {
1577 				io_req_cqe_overflow(req);
1578 			}
1579 		}
1580 	}
1581 	__io_cq_unlock_post_flush(ctx);
1582 
1583 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1584 		io_free_batch_list(ctx, state->compl_reqs.first);
1585 		INIT_WQ_LIST(&state->compl_reqs);
1586 	}
1587 }
1588 
1589 /*
1590  * Drop reference to request, return next in chain (if there is one) if this
1591  * was the last reference to this request.
1592  */
1593 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
1594 {
1595 	struct io_kiocb *nxt = NULL;
1596 
1597 	if (req_ref_put_and_test(req)) {
1598 		if (unlikely(req->flags & IO_REQ_LINK_FLAGS))
1599 			nxt = io_req_find_next(req);
1600 		io_free_req(req);
1601 	}
1602 	return nxt;
1603 }
1604 
1605 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1606 {
1607 	/* See comment at the top of this file */
1608 	smp_rmb();
1609 	return __io_cqring_events(ctx);
1610 }
1611 
1612 /*
1613  * We can't just wait for polled events to come to us, we have to actively
1614  * find and complete them.
1615  */
1616 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1617 {
1618 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1619 		return;
1620 
1621 	mutex_lock(&ctx->uring_lock);
1622 	while (!wq_list_empty(&ctx->iopoll_list)) {
1623 		/* let it sleep and repeat later if can't complete a request */
1624 		if (io_do_iopoll(ctx, true) == 0)
1625 			break;
1626 		/*
1627 		 * Ensure we allow local-to-the-cpu processing to take place,
1628 		 * in this case we need to ensure that we reap all events.
1629 		 * Also let task_work, etc. to progress by releasing the mutex
1630 		 */
1631 		if (need_resched()) {
1632 			mutex_unlock(&ctx->uring_lock);
1633 			cond_resched();
1634 			mutex_lock(&ctx->uring_lock);
1635 		}
1636 	}
1637 	mutex_unlock(&ctx->uring_lock);
1638 }
1639 
1640 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1641 {
1642 	unsigned int nr_events = 0;
1643 	int ret = 0;
1644 	unsigned long check_cq;
1645 
1646 	if (!io_allowed_run_tw(ctx))
1647 		return -EEXIST;
1648 
1649 	check_cq = READ_ONCE(ctx->check_cq);
1650 	if (unlikely(check_cq)) {
1651 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1652 			__io_cqring_overflow_flush(ctx);
1653 		/*
1654 		 * Similarly do not spin if we have not informed the user of any
1655 		 * dropped CQE.
1656 		 */
1657 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1658 			return -EBADR;
1659 	}
1660 	/*
1661 	 * Don't enter poll loop if we already have events pending.
1662 	 * If we do, we can potentially be spinning for commands that
1663 	 * already triggered a CQE (eg in error).
1664 	 */
1665 	if (io_cqring_events(ctx))
1666 		return 0;
1667 
1668 	do {
1669 		/*
1670 		 * If a submit got punted to a workqueue, we can have the
1671 		 * application entering polling for a command before it gets
1672 		 * issued. That app will hold the uring_lock for the duration
1673 		 * of the poll right here, so we need to take a breather every
1674 		 * now and then to ensure that the issue has a chance to add
1675 		 * the poll to the issued list. Otherwise we can spin here
1676 		 * forever, while the workqueue is stuck trying to acquire the
1677 		 * very same mutex.
1678 		 */
1679 		if (wq_list_empty(&ctx->iopoll_list) ||
1680 		    io_task_work_pending(ctx)) {
1681 			u32 tail = ctx->cached_cq_tail;
1682 
1683 			(void) io_run_local_work_locked(ctx);
1684 
1685 			if (task_work_pending(current) ||
1686 			    wq_list_empty(&ctx->iopoll_list)) {
1687 				mutex_unlock(&ctx->uring_lock);
1688 				io_run_task_work();
1689 				mutex_lock(&ctx->uring_lock);
1690 			}
1691 			/* some requests don't go through iopoll_list */
1692 			if (tail != ctx->cached_cq_tail ||
1693 			    wq_list_empty(&ctx->iopoll_list))
1694 				break;
1695 		}
1696 		ret = io_do_iopoll(ctx, !min);
1697 		if (ret < 0)
1698 			break;
1699 		nr_events += ret;
1700 		ret = 0;
1701 	} while (nr_events < min && !need_resched());
1702 
1703 	return ret;
1704 }
1705 
1706 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1707 {
1708 	if (ts->locked)
1709 		io_req_complete_defer(req);
1710 	else
1711 		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1712 }
1713 
1714 /*
1715  * After the iocb has been issued, it's safe to be found on the poll list.
1716  * Adding the kiocb to the list AFTER submission ensures that we don't
1717  * find it from a io_do_iopoll() thread before the issuer is done
1718  * accessing the kiocb cookie.
1719  */
1720 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1721 {
1722 	struct io_ring_ctx *ctx = req->ctx;
1723 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1724 
1725 	/* workqueue context doesn't hold uring_lock, grab it now */
1726 	if (unlikely(needs_lock))
1727 		mutex_lock(&ctx->uring_lock);
1728 
1729 	/*
1730 	 * Track whether we have multiple files in our lists. This will impact
1731 	 * how we do polling eventually, not spinning if we're on potentially
1732 	 * different devices.
1733 	 */
1734 	if (wq_list_empty(&ctx->iopoll_list)) {
1735 		ctx->poll_multi_queue = false;
1736 	} else if (!ctx->poll_multi_queue) {
1737 		struct io_kiocb *list_req;
1738 
1739 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1740 					comp_list);
1741 		if (list_req->file != req->file)
1742 			ctx->poll_multi_queue = true;
1743 	}
1744 
1745 	/*
1746 	 * For fast devices, IO may have already completed. If it has, add
1747 	 * it to the front so we find it first.
1748 	 */
1749 	if (READ_ONCE(req->iopoll_completed))
1750 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1751 	else
1752 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1753 
1754 	if (unlikely(needs_lock)) {
1755 		/*
1756 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1757 		 * in sq thread task context or in io worker task context. If
1758 		 * current task context is sq thread, we don't need to check
1759 		 * whether should wake up sq thread.
1760 		 */
1761 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1762 		    wq_has_sleeper(&ctx->sq_data->wait))
1763 			wake_up(&ctx->sq_data->wait);
1764 
1765 		mutex_unlock(&ctx->uring_lock);
1766 	}
1767 }
1768 
1769 /*
1770  * If we tracked the file through the SCM inflight mechanism, we could support
1771  * any file. For now, just ensure that anything potentially problematic is done
1772  * inline.
1773  */
1774 unsigned int io_file_get_flags(struct file *file)
1775 {
1776 	unsigned int res = 0;
1777 
1778 	if (S_ISREG(file_inode(file)->i_mode))
1779 		res |= FFS_ISREG;
1780 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1781 		res |= FFS_NOWAIT;
1782 	return res;
1783 }
1784 
1785 bool io_alloc_async_data(struct io_kiocb *req)
1786 {
1787 	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1788 	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1789 	if (req->async_data) {
1790 		req->flags |= REQ_F_ASYNC_DATA;
1791 		return false;
1792 	}
1793 	return true;
1794 }
1795 
1796 int io_req_prep_async(struct io_kiocb *req)
1797 {
1798 	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1799 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1800 
1801 	/* assign early for deferred execution for non-fixed file */
1802 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1803 		req->file = io_file_get_normal(req, req->cqe.fd);
1804 	if (!cdef->prep_async)
1805 		return 0;
1806 	if (WARN_ON_ONCE(req_has_async_data(req)))
1807 		return -EFAULT;
1808 	if (!def->manual_alloc) {
1809 		if (io_alloc_async_data(req))
1810 			return -EAGAIN;
1811 	}
1812 	return cdef->prep_async(req);
1813 }
1814 
1815 static u32 io_get_sequence(struct io_kiocb *req)
1816 {
1817 	u32 seq = req->ctx->cached_sq_head;
1818 	struct io_kiocb *cur;
1819 
1820 	/* need original cached_sq_head, but it was increased for each req */
1821 	io_for_each_link(cur, req)
1822 		seq--;
1823 	return seq;
1824 }
1825 
1826 static __cold void io_drain_req(struct io_kiocb *req)
1827 	__must_hold(&ctx->uring_lock)
1828 {
1829 	struct io_ring_ctx *ctx = req->ctx;
1830 	struct io_defer_entry *de;
1831 	int ret;
1832 	u32 seq = io_get_sequence(req);
1833 
1834 	/* Still need defer if there is pending req in defer list. */
1835 	spin_lock(&ctx->completion_lock);
1836 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1837 		spin_unlock(&ctx->completion_lock);
1838 queue:
1839 		ctx->drain_active = false;
1840 		io_req_task_queue(req);
1841 		return;
1842 	}
1843 	spin_unlock(&ctx->completion_lock);
1844 
1845 	io_prep_async_link(req);
1846 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1847 	if (!de) {
1848 		ret = -ENOMEM;
1849 		io_req_defer_failed(req, ret);
1850 		return;
1851 	}
1852 
1853 	spin_lock(&ctx->completion_lock);
1854 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1855 		spin_unlock(&ctx->completion_lock);
1856 		kfree(de);
1857 		goto queue;
1858 	}
1859 
1860 	trace_io_uring_defer(req);
1861 	de->req = req;
1862 	de->seq = seq;
1863 	list_add_tail(&de->list, &ctx->defer_list);
1864 	spin_unlock(&ctx->completion_lock);
1865 }
1866 
1867 static void io_clean_op(struct io_kiocb *req)
1868 {
1869 	if (req->flags & REQ_F_BUFFER_SELECTED) {
1870 		spin_lock(&req->ctx->completion_lock);
1871 		io_put_kbuf_comp(req);
1872 		spin_unlock(&req->ctx->completion_lock);
1873 	}
1874 
1875 	if (req->flags & REQ_F_NEED_CLEANUP) {
1876 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
1877 
1878 		if (def->cleanup)
1879 			def->cleanup(req);
1880 	}
1881 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
1882 		kfree(req->apoll->double_poll);
1883 		kfree(req->apoll);
1884 		req->apoll = NULL;
1885 	}
1886 	if (req->flags & REQ_F_INFLIGHT) {
1887 		struct io_uring_task *tctx = req->task->io_uring;
1888 
1889 		atomic_dec(&tctx->inflight_tracked);
1890 	}
1891 	if (req->flags & REQ_F_CREDS)
1892 		put_cred(req->creds);
1893 	if (req->flags & REQ_F_ASYNC_DATA) {
1894 		kfree(req->async_data);
1895 		req->async_data = NULL;
1896 	}
1897 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
1898 }
1899 
1900 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1901 			   unsigned int issue_flags)
1902 {
1903 	if (req->file || !def->needs_file)
1904 		return true;
1905 
1906 	if (req->flags & REQ_F_FIXED_FILE)
1907 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1908 	else
1909 		req->file = io_file_get_normal(req, req->cqe.fd);
1910 
1911 	return !!req->file;
1912 }
1913 
1914 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1915 {
1916 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1917 	const struct cred *creds = NULL;
1918 	int ret;
1919 
1920 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1921 		return -EBADF;
1922 
1923 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1924 		creds = override_creds(req->creds);
1925 
1926 	if (!def->audit_skip)
1927 		audit_uring_entry(req->opcode);
1928 
1929 	ret = def->issue(req, issue_flags);
1930 
1931 	if (!def->audit_skip)
1932 		audit_uring_exit(!ret, ret);
1933 
1934 	if (creds)
1935 		revert_creds(creds);
1936 
1937 	if (ret == IOU_OK) {
1938 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1939 			io_req_complete_defer(req);
1940 		else
1941 			io_req_complete_post(req, issue_flags);
1942 	} else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1943 		return ret;
1944 
1945 	/* If the op doesn't have a file, we're not polling for it */
1946 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1947 		io_iopoll_req_issued(req, issue_flags);
1948 
1949 	return 0;
1950 }
1951 
1952 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1953 {
1954 	io_tw_lock(req->ctx, ts);
1955 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1956 				 IO_URING_F_COMPLETE_DEFER);
1957 }
1958 
1959 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1960 {
1961 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1962 
1963 	req = io_put_req_find_next(req);
1964 	return req ? &req->work : NULL;
1965 }
1966 
1967 void io_wq_submit_work(struct io_wq_work *work)
1968 {
1969 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1970 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1971 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1972 	bool needs_poll = false;
1973 	int ret = 0, err = -ECANCELED;
1974 
1975 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1976 	if (!(req->flags & REQ_F_REFCOUNT))
1977 		__io_req_set_refcount(req, 2);
1978 	else
1979 		req_ref_get(req);
1980 
1981 	io_arm_ltimeout(req);
1982 
1983 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1984 	if (work->flags & IO_WQ_WORK_CANCEL) {
1985 fail:
1986 		io_req_task_queue_fail(req, err);
1987 		return;
1988 	}
1989 	if (!io_assign_file(req, def, issue_flags)) {
1990 		err = -EBADF;
1991 		work->flags |= IO_WQ_WORK_CANCEL;
1992 		goto fail;
1993 	}
1994 
1995 	if (req->flags & REQ_F_FORCE_ASYNC) {
1996 		bool opcode_poll = def->pollin || def->pollout;
1997 
1998 		if (opcode_poll && file_can_poll(req->file)) {
1999 			needs_poll = true;
2000 			issue_flags |= IO_URING_F_NONBLOCK;
2001 		}
2002 	}
2003 
2004 	do {
2005 		ret = io_issue_sqe(req, issue_flags);
2006 		if (ret != -EAGAIN)
2007 			break;
2008 		/*
2009 		 * We can get EAGAIN for iopolled IO even though we're
2010 		 * forcing a sync submission from here, since we can't
2011 		 * wait for request slots on the block side.
2012 		 */
2013 		if (!needs_poll) {
2014 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
2015 				break;
2016 			cond_resched();
2017 			continue;
2018 		}
2019 
2020 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
2021 			return;
2022 		/* aborted or ready, in either case retry blocking */
2023 		needs_poll = false;
2024 		issue_flags &= ~IO_URING_F_NONBLOCK;
2025 	} while (1);
2026 
2027 	/* avoid locking problems by failing it from a clean context */
2028 	if (ret < 0)
2029 		io_req_task_queue_fail(req, ret);
2030 }
2031 
2032 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
2033 				      unsigned int issue_flags)
2034 {
2035 	struct io_ring_ctx *ctx = req->ctx;
2036 	struct file *file = NULL;
2037 	unsigned long file_ptr;
2038 
2039 	io_ring_submit_lock(ctx, issue_flags);
2040 
2041 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2042 		goto out;
2043 	fd = array_index_nospec(fd, ctx->nr_user_files);
2044 	file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
2045 	file = (struct file *) (file_ptr & FFS_MASK);
2046 	file_ptr &= ~FFS_MASK;
2047 	/* mask in overlapping REQ_F and FFS bits */
2048 	req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT);
2049 	io_req_set_rsrc_node(req, ctx, 0);
2050 out:
2051 	io_ring_submit_unlock(ctx, issue_flags);
2052 	return file;
2053 }
2054 
2055 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2056 {
2057 	struct file *file = fget(fd);
2058 
2059 	trace_io_uring_file_get(req, fd);
2060 
2061 	/* we don't allow fixed io_uring files */
2062 	if (file && io_is_uring_fops(file))
2063 		io_req_track_inflight(req);
2064 	return file;
2065 }
2066 
2067 static void io_queue_async(struct io_kiocb *req, int ret)
2068 	__must_hold(&req->ctx->uring_lock)
2069 {
2070 	struct io_kiocb *linked_timeout;
2071 
2072 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2073 		io_req_defer_failed(req, ret);
2074 		return;
2075 	}
2076 
2077 	linked_timeout = io_prep_linked_timeout(req);
2078 
2079 	switch (io_arm_poll_handler(req, 0)) {
2080 	case IO_APOLL_READY:
2081 		io_kbuf_recycle(req, 0);
2082 		io_req_task_queue(req);
2083 		break;
2084 	case IO_APOLL_ABORTED:
2085 		io_kbuf_recycle(req, 0);
2086 		io_queue_iowq(req, NULL);
2087 		break;
2088 	case IO_APOLL_OK:
2089 		break;
2090 	}
2091 
2092 	if (linked_timeout)
2093 		io_queue_linked_timeout(linked_timeout);
2094 }
2095 
2096 static inline void io_queue_sqe(struct io_kiocb *req)
2097 	__must_hold(&req->ctx->uring_lock)
2098 {
2099 	int ret;
2100 
2101 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2102 
2103 	/*
2104 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2105 	 * doesn't support non-blocking read/write attempts
2106 	 */
2107 	if (likely(!ret))
2108 		io_arm_ltimeout(req);
2109 	else
2110 		io_queue_async(req, ret);
2111 }
2112 
2113 static void io_queue_sqe_fallback(struct io_kiocb *req)
2114 	__must_hold(&req->ctx->uring_lock)
2115 {
2116 	if (unlikely(req->flags & REQ_F_FAIL)) {
2117 		/*
2118 		 * We don't submit, fail them all, for that replace hardlinks
2119 		 * with normal links. Extra REQ_F_LINK is tolerated.
2120 		 */
2121 		req->flags &= ~REQ_F_HARDLINK;
2122 		req->flags |= REQ_F_LINK;
2123 		io_req_defer_failed(req, req->cqe.res);
2124 	} else {
2125 		int ret = io_req_prep_async(req);
2126 
2127 		if (unlikely(ret)) {
2128 			io_req_defer_failed(req, ret);
2129 			return;
2130 		}
2131 
2132 		if (unlikely(req->ctx->drain_active))
2133 			io_drain_req(req);
2134 		else
2135 			io_queue_iowq(req, NULL);
2136 	}
2137 }
2138 
2139 /*
2140  * Check SQE restrictions (opcode and flags).
2141  *
2142  * Returns 'true' if SQE is allowed, 'false' otherwise.
2143  */
2144 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2145 					struct io_kiocb *req,
2146 					unsigned int sqe_flags)
2147 {
2148 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2149 		return false;
2150 
2151 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2152 	    ctx->restrictions.sqe_flags_required)
2153 		return false;
2154 
2155 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2156 			  ctx->restrictions.sqe_flags_required))
2157 		return false;
2158 
2159 	return true;
2160 }
2161 
2162 static void io_init_req_drain(struct io_kiocb *req)
2163 {
2164 	struct io_ring_ctx *ctx = req->ctx;
2165 	struct io_kiocb *head = ctx->submit_state.link.head;
2166 
2167 	ctx->drain_active = true;
2168 	if (head) {
2169 		/*
2170 		 * If we need to drain a request in the middle of a link, drain
2171 		 * the head request and the next request/link after the current
2172 		 * link. Considering sequential execution of links,
2173 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2174 		 * link.
2175 		 */
2176 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2177 		ctx->drain_next = true;
2178 	}
2179 }
2180 
2181 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2182 		       const struct io_uring_sqe *sqe)
2183 	__must_hold(&ctx->uring_lock)
2184 {
2185 	const struct io_issue_def *def;
2186 	unsigned int sqe_flags;
2187 	int personality;
2188 	u8 opcode;
2189 
2190 	/* req is partially pre-initialised, see io_preinit_req() */
2191 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2192 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2193 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2194 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2195 	req->file = NULL;
2196 	req->rsrc_node = NULL;
2197 	req->task = current;
2198 
2199 	if (unlikely(opcode >= IORING_OP_LAST)) {
2200 		req->opcode = 0;
2201 		return -EINVAL;
2202 	}
2203 	def = &io_issue_defs[opcode];
2204 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2205 		/* enforce forwards compatibility on users */
2206 		if (sqe_flags & ~SQE_VALID_FLAGS)
2207 			return -EINVAL;
2208 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2209 			if (!def->buffer_select)
2210 				return -EOPNOTSUPP;
2211 			req->buf_index = READ_ONCE(sqe->buf_group);
2212 		}
2213 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2214 			ctx->drain_disabled = true;
2215 		if (sqe_flags & IOSQE_IO_DRAIN) {
2216 			if (ctx->drain_disabled)
2217 				return -EOPNOTSUPP;
2218 			io_init_req_drain(req);
2219 		}
2220 	}
2221 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2222 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2223 			return -EACCES;
2224 		/* knock it to the slow queue path, will be drained there */
2225 		if (ctx->drain_active)
2226 			req->flags |= REQ_F_FORCE_ASYNC;
2227 		/* if there is no link, we're at "next" request and need to drain */
2228 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2229 			ctx->drain_next = false;
2230 			ctx->drain_active = true;
2231 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2232 		}
2233 	}
2234 
2235 	if (!def->ioprio && sqe->ioprio)
2236 		return -EINVAL;
2237 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2238 		return -EINVAL;
2239 
2240 	if (def->needs_file) {
2241 		struct io_submit_state *state = &ctx->submit_state;
2242 
2243 		req->cqe.fd = READ_ONCE(sqe->fd);
2244 
2245 		/*
2246 		 * Plug now if we have more than 2 IO left after this, and the
2247 		 * target is potentially a read/write to block based storage.
2248 		 */
2249 		if (state->need_plug && def->plug) {
2250 			state->plug_started = true;
2251 			state->need_plug = false;
2252 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2253 		}
2254 	}
2255 
2256 	personality = READ_ONCE(sqe->personality);
2257 	if (personality) {
2258 		int ret;
2259 
2260 		req->creds = xa_load(&ctx->personalities, personality);
2261 		if (!req->creds)
2262 			return -EINVAL;
2263 		get_cred(req->creds);
2264 		ret = security_uring_override_creds(req->creds);
2265 		if (ret) {
2266 			put_cred(req->creds);
2267 			return ret;
2268 		}
2269 		req->flags |= REQ_F_CREDS;
2270 	}
2271 
2272 	return def->prep(req, sqe);
2273 }
2274 
2275 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2276 				      struct io_kiocb *req, int ret)
2277 {
2278 	struct io_ring_ctx *ctx = req->ctx;
2279 	struct io_submit_link *link = &ctx->submit_state.link;
2280 	struct io_kiocb *head = link->head;
2281 
2282 	trace_io_uring_req_failed(sqe, req, ret);
2283 
2284 	/*
2285 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2286 	 * unusable. Instead of failing eagerly, continue assembling the link if
2287 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2288 	 * should find the flag and handle the rest.
2289 	 */
2290 	req_fail_link_node(req, ret);
2291 	if (head && !(head->flags & REQ_F_FAIL))
2292 		req_fail_link_node(head, -ECANCELED);
2293 
2294 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2295 		if (head) {
2296 			link->last->link = req;
2297 			link->head = NULL;
2298 			req = head;
2299 		}
2300 		io_queue_sqe_fallback(req);
2301 		return ret;
2302 	}
2303 
2304 	if (head)
2305 		link->last->link = req;
2306 	else
2307 		link->head = req;
2308 	link->last = req;
2309 	return 0;
2310 }
2311 
2312 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2313 			 const struct io_uring_sqe *sqe)
2314 	__must_hold(&ctx->uring_lock)
2315 {
2316 	struct io_submit_link *link = &ctx->submit_state.link;
2317 	int ret;
2318 
2319 	ret = io_init_req(ctx, req, sqe);
2320 	if (unlikely(ret))
2321 		return io_submit_fail_init(sqe, req, ret);
2322 
2323 	trace_io_uring_submit_req(req);
2324 
2325 	/*
2326 	 * If we already have a head request, queue this one for async
2327 	 * submittal once the head completes. If we don't have a head but
2328 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2329 	 * submitted sync once the chain is complete. If none of those
2330 	 * conditions are true (normal request), then just queue it.
2331 	 */
2332 	if (unlikely(link->head)) {
2333 		ret = io_req_prep_async(req);
2334 		if (unlikely(ret))
2335 			return io_submit_fail_init(sqe, req, ret);
2336 
2337 		trace_io_uring_link(req, link->head);
2338 		link->last->link = req;
2339 		link->last = req;
2340 
2341 		if (req->flags & IO_REQ_LINK_FLAGS)
2342 			return 0;
2343 		/* last request of the link, flush it */
2344 		req = link->head;
2345 		link->head = NULL;
2346 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2347 			goto fallback;
2348 
2349 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2350 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2351 		if (req->flags & IO_REQ_LINK_FLAGS) {
2352 			link->head = req;
2353 			link->last = req;
2354 		} else {
2355 fallback:
2356 			io_queue_sqe_fallback(req);
2357 		}
2358 		return 0;
2359 	}
2360 
2361 	io_queue_sqe(req);
2362 	return 0;
2363 }
2364 
2365 /*
2366  * Batched submission is done, ensure local IO is flushed out.
2367  */
2368 static void io_submit_state_end(struct io_ring_ctx *ctx)
2369 {
2370 	struct io_submit_state *state = &ctx->submit_state;
2371 
2372 	if (unlikely(state->link.head))
2373 		io_queue_sqe_fallback(state->link.head);
2374 	/* flush only after queuing links as they can generate completions */
2375 	io_submit_flush_completions(ctx);
2376 	if (state->plug_started)
2377 		blk_finish_plug(&state->plug);
2378 }
2379 
2380 /*
2381  * Start submission side cache.
2382  */
2383 static void io_submit_state_start(struct io_submit_state *state,
2384 				  unsigned int max_ios)
2385 {
2386 	state->plug_started = false;
2387 	state->need_plug = max_ios > 2;
2388 	state->submit_nr = max_ios;
2389 	/* set only head, no need to init link_last in advance */
2390 	state->link.head = NULL;
2391 }
2392 
2393 static void io_commit_sqring(struct io_ring_ctx *ctx)
2394 {
2395 	struct io_rings *rings = ctx->rings;
2396 
2397 	/*
2398 	 * Ensure any loads from the SQEs are done at this point,
2399 	 * since once we write the new head, the application could
2400 	 * write new data to them.
2401 	 */
2402 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2403 }
2404 
2405 /*
2406  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2407  * that is mapped by userspace. This means that care needs to be taken to
2408  * ensure that reads are stable, as we cannot rely on userspace always
2409  * being a good citizen. If members of the sqe are validated and then later
2410  * used, it's important that those reads are done through READ_ONCE() to
2411  * prevent a re-load down the line.
2412  */
2413 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2414 {
2415 	unsigned head, mask = ctx->sq_entries - 1;
2416 	unsigned sq_idx = ctx->cached_sq_head++ & mask;
2417 
2418 	/*
2419 	 * The cached sq head (or cq tail) serves two purposes:
2420 	 *
2421 	 * 1) allows us to batch the cost of updating the user visible
2422 	 *    head updates.
2423 	 * 2) allows the kernel side to track the head on its own, even
2424 	 *    though the application is the one updating it.
2425 	 */
2426 	head = READ_ONCE(ctx->sq_array[sq_idx]);
2427 	if (likely(head < ctx->sq_entries)) {
2428 		/* double index for 128-byte SQEs, twice as long */
2429 		if (ctx->flags & IORING_SETUP_SQE128)
2430 			head <<= 1;
2431 		*sqe = &ctx->sq_sqes[head];
2432 		return true;
2433 	}
2434 
2435 	/* drop invalid entries */
2436 	ctx->cq_extra--;
2437 	WRITE_ONCE(ctx->rings->sq_dropped,
2438 		   READ_ONCE(ctx->rings->sq_dropped) + 1);
2439 	return false;
2440 }
2441 
2442 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2443 	__must_hold(&ctx->uring_lock)
2444 {
2445 	unsigned int entries = io_sqring_entries(ctx);
2446 	unsigned int left;
2447 	int ret;
2448 
2449 	if (unlikely(!entries))
2450 		return 0;
2451 	/* make sure SQ entry isn't read before tail */
2452 	ret = left = min(nr, entries);
2453 	io_get_task_refs(left);
2454 	io_submit_state_start(&ctx->submit_state, left);
2455 
2456 	do {
2457 		const struct io_uring_sqe *sqe;
2458 		struct io_kiocb *req;
2459 
2460 		if (unlikely(!io_alloc_req(ctx, &req)))
2461 			break;
2462 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2463 			io_req_add_to_cache(req, ctx);
2464 			break;
2465 		}
2466 
2467 		/*
2468 		 * Continue submitting even for sqe failure if the
2469 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2470 		 */
2471 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2472 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2473 			left--;
2474 			break;
2475 		}
2476 	} while (--left);
2477 
2478 	if (unlikely(left)) {
2479 		ret -= left;
2480 		/* try again if it submitted nothing and can't allocate a req */
2481 		if (!ret && io_req_cache_empty(ctx))
2482 			ret = -EAGAIN;
2483 		current->io_uring->cached_refs += left;
2484 	}
2485 
2486 	io_submit_state_end(ctx);
2487 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2488 	io_commit_sqring(ctx);
2489 	return ret;
2490 }
2491 
2492 struct io_wait_queue {
2493 	struct wait_queue_entry wq;
2494 	struct io_ring_ctx *ctx;
2495 	unsigned cq_tail;
2496 	unsigned nr_timeouts;
2497 	ktime_t timeout;
2498 };
2499 
2500 static inline bool io_has_work(struct io_ring_ctx *ctx)
2501 {
2502 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2503 	       !llist_empty(&ctx->work_llist);
2504 }
2505 
2506 static inline bool io_should_wake(struct io_wait_queue *iowq)
2507 {
2508 	struct io_ring_ctx *ctx = iowq->ctx;
2509 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2510 
2511 	/*
2512 	 * Wake up if we have enough events, or if a timeout occurred since we
2513 	 * started waiting. For timeouts, we always want to return to userspace,
2514 	 * regardless of event count.
2515 	 */
2516 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2517 }
2518 
2519 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2520 			    int wake_flags, void *key)
2521 {
2522 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2523 
2524 	/*
2525 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2526 	 * the task, and the next invocation will do it.
2527 	 */
2528 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2529 		return autoremove_wake_function(curr, mode, wake_flags, key);
2530 	return -1;
2531 }
2532 
2533 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2534 {
2535 	if (!llist_empty(&ctx->work_llist)) {
2536 		__set_current_state(TASK_RUNNING);
2537 		if (io_run_local_work(ctx) > 0)
2538 			return 1;
2539 	}
2540 	if (io_run_task_work() > 0)
2541 		return 1;
2542 	if (task_sigpending(current))
2543 		return -EINTR;
2544 	return 0;
2545 }
2546 
2547 /* when returns >0, the caller should retry */
2548 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2549 					  struct io_wait_queue *iowq)
2550 {
2551 	if (unlikely(READ_ONCE(ctx->check_cq)))
2552 		return 1;
2553 	if (unlikely(!llist_empty(&ctx->work_llist)))
2554 		return 1;
2555 	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2556 		return 1;
2557 	if (unlikely(task_sigpending(current)))
2558 		return -EINTR;
2559 	if (unlikely(io_should_wake(iowq)))
2560 		return 0;
2561 	if (iowq->timeout == KTIME_MAX)
2562 		schedule();
2563 	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2564 		return -ETIME;
2565 	return 0;
2566 }
2567 
2568 /*
2569  * Wait until events become available, if we don't already have some. The
2570  * application must reap them itself, as they reside on the shared cq ring.
2571  */
2572 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2573 			  const sigset_t __user *sig, size_t sigsz,
2574 			  struct __kernel_timespec __user *uts)
2575 {
2576 	struct io_wait_queue iowq;
2577 	struct io_rings *rings = ctx->rings;
2578 	int ret;
2579 
2580 	if (!io_allowed_run_tw(ctx))
2581 		return -EEXIST;
2582 	if (!llist_empty(&ctx->work_llist))
2583 		io_run_local_work(ctx);
2584 	io_run_task_work();
2585 	io_cqring_overflow_flush(ctx);
2586 	/* if user messes with these they will just get an early return */
2587 	if (__io_cqring_events_user(ctx) >= min_events)
2588 		return 0;
2589 
2590 	if (sig) {
2591 #ifdef CONFIG_COMPAT
2592 		if (in_compat_syscall())
2593 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2594 						      sigsz);
2595 		else
2596 #endif
2597 			ret = set_user_sigmask(sig, sigsz);
2598 
2599 		if (ret)
2600 			return ret;
2601 	}
2602 
2603 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2604 	iowq.wq.private = current;
2605 	INIT_LIST_HEAD(&iowq.wq.entry);
2606 	iowq.ctx = ctx;
2607 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2608 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2609 	iowq.timeout = KTIME_MAX;
2610 
2611 	if (uts) {
2612 		struct timespec64 ts;
2613 
2614 		if (get_timespec64(&ts, uts))
2615 			return -EFAULT;
2616 		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2617 	}
2618 
2619 	trace_io_uring_cqring_wait(ctx, min_events);
2620 	do {
2621 		unsigned long check_cq;
2622 
2623 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2624 			int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2625 
2626 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2627 			set_current_state(TASK_INTERRUPTIBLE);
2628 		} else {
2629 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2630 							TASK_INTERRUPTIBLE);
2631 		}
2632 
2633 		ret = io_cqring_wait_schedule(ctx, &iowq);
2634 		__set_current_state(TASK_RUNNING);
2635 		atomic_set(&ctx->cq_wait_nr, 0);
2636 
2637 		if (ret < 0)
2638 			break;
2639 		/*
2640 		 * Run task_work after scheduling and before io_should_wake().
2641 		 * If we got woken because of task_work being processed, run it
2642 		 * now rather than let the caller do another wait loop.
2643 		 */
2644 		io_run_task_work();
2645 		if (!llist_empty(&ctx->work_llist))
2646 			io_run_local_work(ctx);
2647 
2648 		check_cq = READ_ONCE(ctx->check_cq);
2649 		if (unlikely(check_cq)) {
2650 			/* let the caller flush overflows, retry */
2651 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2652 				io_cqring_do_overflow_flush(ctx);
2653 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2654 				ret = -EBADR;
2655 				break;
2656 			}
2657 		}
2658 
2659 		if (io_should_wake(&iowq)) {
2660 			ret = 0;
2661 			break;
2662 		}
2663 		cond_resched();
2664 	} while (1);
2665 
2666 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2667 		finish_wait(&ctx->cq_wait, &iowq.wq);
2668 	restore_saved_sigmask_unless(ret == -EINTR);
2669 
2670 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2671 }
2672 
2673 static void io_mem_free(void *ptr)
2674 {
2675 	struct page *page;
2676 
2677 	if (!ptr)
2678 		return;
2679 
2680 	page = virt_to_head_page(ptr);
2681 	if (put_page_testzero(page))
2682 		free_compound_page(page);
2683 }
2684 
2685 static void io_pages_free(struct page ***pages, int npages)
2686 {
2687 	struct page **page_array;
2688 	int i;
2689 
2690 	if (!pages)
2691 		return;
2692 	page_array = *pages;
2693 	for (i = 0; i < npages; i++)
2694 		unpin_user_page(page_array[i]);
2695 	kvfree(page_array);
2696 	*pages = NULL;
2697 }
2698 
2699 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2700 			    unsigned long uaddr, size_t size)
2701 {
2702 	struct page **page_array;
2703 	unsigned int nr_pages;
2704 	int ret;
2705 
2706 	*npages = 0;
2707 
2708 	if (uaddr & (PAGE_SIZE - 1) || !size)
2709 		return ERR_PTR(-EINVAL);
2710 
2711 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2712 	if (nr_pages > USHRT_MAX)
2713 		return ERR_PTR(-EINVAL);
2714 	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2715 	if (!page_array)
2716 		return ERR_PTR(-ENOMEM);
2717 
2718 	ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2719 					page_array);
2720 	if (ret != nr_pages) {
2721 err:
2722 		io_pages_free(&page_array, ret > 0 ? ret : 0);
2723 		return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT);
2724 	}
2725 	/*
2726 	 * Should be a single page. If the ring is small enough that we can
2727 	 * use a normal page, that is fine. If we need multiple pages, then
2728 	 * userspace should use a huge page. That's the only way to guarantee
2729 	 * that we get contigious memory, outside of just being lucky or
2730 	 * (currently) having low memory fragmentation.
2731 	 */
2732 	if (page_array[0] != page_array[ret - 1])
2733 		goto err;
2734 	*pages = page_array;
2735 	*npages = nr_pages;
2736 	return page_to_virt(page_array[0]);
2737 }
2738 
2739 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2740 			  size_t size)
2741 {
2742 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2743 				size);
2744 }
2745 
2746 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2747 			 size_t size)
2748 {
2749 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2750 				size);
2751 }
2752 
2753 static void io_rings_free(struct io_ring_ctx *ctx)
2754 {
2755 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2756 		io_mem_free(ctx->rings);
2757 		io_mem_free(ctx->sq_sqes);
2758 		ctx->rings = NULL;
2759 		ctx->sq_sqes = NULL;
2760 	} else {
2761 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2762 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2763 	}
2764 }
2765 
2766 static void *io_mem_alloc(size_t size)
2767 {
2768 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2769 	void *ret;
2770 
2771 	ret = (void *) __get_free_pages(gfp, get_order(size));
2772 	if (ret)
2773 		return ret;
2774 	return ERR_PTR(-ENOMEM);
2775 }
2776 
2777 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2778 				unsigned int cq_entries, size_t *sq_offset)
2779 {
2780 	struct io_rings *rings;
2781 	size_t off, sq_array_size;
2782 
2783 	off = struct_size(rings, cqes, cq_entries);
2784 	if (off == SIZE_MAX)
2785 		return SIZE_MAX;
2786 	if (ctx->flags & IORING_SETUP_CQE32) {
2787 		if (check_shl_overflow(off, 1, &off))
2788 			return SIZE_MAX;
2789 	}
2790 
2791 #ifdef CONFIG_SMP
2792 	off = ALIGN(off, SMP_CACHE_BYTES);
2793 	if (off == 0)
2794 		return SIZE_MAX;
2795 #endif
2796 
2797 	if (sq_offset)
2798 		*sq_offset = off;
2799 
2800 	sq_array_size = array_size(sizeof(u32), sq_entries);
2801 	if (sq_array_size == SIZE_MAX)
2802 		return SIZE_MAX;
2803 
2804 	if (check_add_overflow(off, sq_array_size, &off))
2805 		return SIZE_MAX;
2806 
2807 	return off;
2808 }
2809 
2810 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2811 			       unsigned int eventfd_async)
2812 {
2813 	struct io_ev_fd *ev_fd;
2814 	__s32 __user *fds = arg;
2815 	int fd;
2816 
2817 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2818 					lockdep_is_held(&ctx->uring_lock));
2819 	if (ev_fd)
2820 		return -EBUSY;
2821 
2822 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2823 		return -EFAULT;
2824 
2825 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2826 	if (!ev_fd)
2827 		return -ENOMEM;
2828 
2829 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2830 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2831 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2832 		kfree(ev_fd);
2833 		return ret;
2834 	}
2835 
2836 	spin_lock(&ctx->completion_lock);
2837 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2838 	spin_unlock(&ctx->completion_lock);
2839 
2840 	ev_fd->eventfd_async = eventfd_async;
2841 	ctx->has_evfd = true;
2842 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2843 	atomic_set(&ev_fd->refs, 1);
2844 	atomic_set(&ev_fd->ops, 0);
2845 	return 0;
2846 }
2847 
2848 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2849 {
2850 	struct io_ev_fd *ev_fd;
2851 
2852 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2853 					lockdep_is_held(&ctx->uring_lock));
2854 	if (ev_fd) {
2855 		ctx->has_evfd = false;
2856 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2857 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2858 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2859 		return 0;
2860 	}
2861 
2862 	return -ENXIO;
2863 }
2864 
2865 static void io_req_caches_free(struct io_ring_ctx *ctx)
2866 {
2867 	struct io_kiocb *req;
2868 	int nr = 0;
2869 
2870 	mutex_lock(&ctx->uring_lock);
2871 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2872 
2873 	while (!io_req_cache_empty(ctx)) {
2874 		req = io_extract_req(ctx);
2875 		kmem_cache_free(req_cachep, req);
2876 		nr++;
2877 	}
2878 	if (nr)
2879 		percpu_ref_put_many(&ctx->refs, nr);
2880 	mutex_unlock(&ctx->uring_lock);
2881 }
2882 
2883 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2884 {
2885 	kfree(container_of(entry, struct io_rsrc_node, cache));
2886 }
2887 
2888 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2889 {
2890 	io_sq_thread_finish(ctx);
2891 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2892 	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2893 		return;
2894 
2895 	mutex_lock(&ctx->uring_lock);
2896 	if (ctx->buf_data)
2897 		__io_sqe_buffers_unregister(ctx);
2898 	if (ctx->file_data)
2899 		__io_sqe_files_unregister(ctx);
2900 	io_cqring_overflow_kill(ctx);
2901 	io_eventfd_unregister(ctx);
2902 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2903 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2904 	io_destroy_buffers(ctx);
2905 	mutex_unlock(&ctx->uring_lock);
2906 	if (ctx->sq_creds)
2907 		put_cred(ctx->sq_creds);
2908 	if (ctx->submitter_task)
2909 		put_task_struct(ctx->submitter_task);
2910 
2911 	/* there are no registered resources left, nobody uses it */
2912 	if (ctx->rsrc_node)
2913 		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2914 
2915 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2916 
2917 #if defined(CONFIG_UNIX)
2918 	if (ctx->ring_sock) {
2919 		ctx->ring_sock->file = NULL; /* so that iput() is called */
2920 		sock_release(ctx->ring_sock);
2921 	}
2922 #endif
2923 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2924 
2925 	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2926 	if (ctx->mm_account) {
2927 		mmdrop(ctx->mm_account);
2928 		ctx->mm_account = NULL;
2929 	}
2930 	io_rings_free(ctx);
2931 
2932 	percpu_ref_exit(&ctx->refs);
2933 	free_uid(ctx->user);
2934 	io_req_caches_free(ctx);
2935 	if (ctx->hash_map)
2936 		io_wq_put_hash(ctx->hash_map);
2937 	kfree(ctx->cancel_table.hbs);
2938 	kfree(ctx->cancel_table_locked.hbs);
2939 	kfree(ctx->dummy_ubuf);
2940 	kfree(ctx->io_bl);
2941 	xa_destroy(&ctx->io_bl_xa);
2942 	kfree(ctx);
2943 }
2944 
2945 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2946 {
2947 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2948 					       poll_wq_task_work);
2949 
2950 	mutex_lock(&ctx->uring_lock);
2951 	ctx->poll_activated = true;
2952 	mutex_unlock(&ctx->uring_lock);
2953 
2954 	/*
2955 	 * Wake ups for some events between start of polling and activation
2956 	 * might've been lost due to loose synchronisation.
2957 	 */
2958 	wake_up_all(&ctx->poll_wq);
2959 	percpu_ref_put(&ctx->refs);
2960 }
2961 
2962 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2963 {
2964 	spin_lock(&ctx->completion_lock);
2965 	/* already activated or in progress */
2966 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2967 		goto out;
2968 	if (WARN_ON_ONCE(!ctx->task_complete))
2969 		goto out;
2970 	if (!ctx->submitter_task)
2971 		goto out;
2972 	/*
2973 	 * with ->submitter_task only the submitter task completes requests, we
2974 	 * only need to sync with it, which is done by injecting a tw
2975 	 */
2976 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2977 	percpu_ref_get(&ctx->refs);
2978 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2979 		percpu_ref_put(&ctx->refs);
2980 out:
2981 	spin_unlock(&ctx->completion_lock);
2982 }
2983 
2984 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2985 {
2986 	struct io_ring_ctx *ctx = file->private_data;
2987 	__poll_t mask = 0;
2988 
2989 	if (unlikely(!ctx->poll_activated))
2990 		io_activate_pollwq(ctx);
2991 
2992 	poll_wait(file, &ctx->poll_wq, wait);
2993 	/*
2994 	 * synchronizes with barrier from wq_has_sleeper call in
2995 	 * io_commit_cqring
2996 	 */
2997 	smp_rmb();
2998 	if (!io_sqring_full(ctx))
2999 		mask |= EPOLLOUT | EPOLLWRNORM;
3000 
3001 	/*
3002 	 * Don't flush cqring overflow list here, just do a simple check.
3003 	 * Otherwise there could possible be ABBA deadlock:
3004 	 *      CPU0                    CPU1
3005 	 *      ----                    ----
3006 	 * lock(&ctx->uring_lock);
3007 	 *                              lock(&ep->mtx);
3008 	 *                              lock(&ctx->uring_lock);
3009 	 * lock(&ep->mtx);
3010 	 *
3011 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
3012 	 * pushes them to do the flush.
3013 	 */
3014 
3015 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
3016 		mask |= EPOLLIN | EPOLLRDNORM;
3017 
3018 	return mask;
3019 }
3020 
3021 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
3022 {
3023 	const struct cred *creds;
3024 
3025 	creds = xa_erase(&ctx->personalities, id);
3026 	if (creds) {
3027 		put_cred(creds);
3028 		return 0;
3029 	}
3030 
3031 	return -EINVAL;
3032 }
3033 
3034 struct io_tctx_exit {
3035 	struct callback_head		task_work;
3036 	struct completion		completion;
3037 	struct io_ring_ctx		*ctx;
3038 };
3039 
3040 static __cold void io_tctx_exit_cb(struct callback_head *cb)
3041 {
3042 	struct io_uring_task *tctx = current->io_uring;
3043 	struct io_tctx_exit *work;
3044 
3045 	work = container_of(cb, struct io_tctx_exit, task_work);
3046 	/*
3047 	 * When @in_cancel, we're in cancellation and it's racy to remove the
3048 	 * node. It'll be removed by the end of cancellation, just ignore it.
3049 	 * tctx can be NULL if the queueing of this task_work raced with
3050 	 * work cancelation off the exec path.
3051 	 */
3052 	if (tctx && !atomic_read(&tctx->in_cancel))
3053 		io_uring_del_tctx_node((unsigned long)work->ctx);
3054 	complete(&work->completion);
3055 }
3056 
3057 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3058 {
3059 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3060 
3061 	return req->ctx == data;
3062 }
3063 
3064 static __cold void io_ring_exit_work(struct work_struct *work)
3065 {
3066 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3067 	unsigned long timeout = jiffies + HZ * 60 * 5;
3068 	unsigned long interval = HZ / 20;
3069 	struct io_tctx_exit exit;
3070 	struct io_tctx_node *node;
3071 	int ret;
3072 
3073 	/*
3074 	 * If we're doing polled IO and end up having requests being
3075 	 * submitted async (out-of-line), then completions can come in while
3076 	 * we're waiting for refs to drop. We need to reap these manually,
3077 	 * as nobody else will be looking for them.
3078 	 */
3079 	do {
3080 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3081 			mutex_lock(&ctx->uring_lock);
3082 			io_cqring_overflow_kill(ctx);
3083 			mutex_unlock(&ctx->uring_lock);
3084 		}
3085 
3086 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3087 			io_move_task_work_from_local(ctx);
3088 
3089 		while (io_uring_try_cancel_requests(ctx, NULL, true))
3090 			cond_resched();
3091 
3092 		if (ctx->sq_data) {
3093 			struct io_sq_data *sqd = ctx->sq_data;
3094 			struct task_struct *tsk;
3095 
3096 			io_sq_thread_park(sqd);
3097 			tsk = sqd->thread;
3098 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3099 				io_wq_cancel_cb(tsk->io_uring->io_wq,
3100 						io_cancel_ctx_cb, ctx, true);
3101 			io_sq_thread_unpark(sqd);
3102 		}
3103 
3104 		io_req_caches_free(ctx);
3105 
3106 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3107 			/* there is little hope left, don't run it too often */
3108 			interval = HZ * 60;
3109 		}
3110 		/*
3111 		 * This is really an uninterruptible wait, as it has to be
3112 		 * complete. But it's also run from a kworker, which doesn't
3113 		 * take signals, so it's fine to make it interruptible. This
3114 		 * avoids scenarios where we knowingly can wait much longer
3115 		 * on completions, for example if someone does a SIGSTOP on
3116 		 * a task that needs to finish task_work to make this loop
3117 		 * complete. That's a synthetic situation that should not
3118 		 * cause a stuck task backtrace, and hence a potential panic
3119 		 * on stuck tasks if that is enabled.
3120 		 */
3121 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3122 
3123 	init_completion(&exit.completion);
3124 	init_task_work(&exit.task_work, io_tctx_exit_cb);
3125 	exit.ctx = ctx;
3126 	/*
3127 	 * Some may use context even when all refs and requests have been put,
3128 	 * and they are free to do so while still holding uring_lock or
3129 	 * completion_lock, see io_req_task_submit(). Apart from other work,
3130 	 * this lock/unlock section also waits them to finish.
3131 	 */
3132 	mutex_lock(&ctx->uring_lock);
3133 	while (!list_empty(&ctx->tctx_list)) {
3134 		WARN_ON_ONCE(time_after(jiffies, timeout));
3135 
3136 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3137 					ctx_node);
3138 		/* don't spin on a single task if cancellation failed */
3139 		list_rotate_left(&ctx->tctx_list);
3140 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3141 		if (WARN_ON_ONCE(ret))
3142 			continue;
3143 
3144 		mutex_unlock(&ctx->uring_lock);
3145 		/*
3146 		 * See comment above for
3147 		 * wait_for_completion_interruptible_timeout() on why this
3148 		 * wait is marked as interruptible.
3149 		 */
3150 		wait_for_completion_interruptible(&exit.completion);
3151 		mutex_lock(&ctx->uring_lock);
3152 	}
3153 	mutex_unlock(&ctx->uring_lock);
3154 	spin_lock(&ctx->completion_lock);
3155 	spin_unlock(&ctx->completion_lock);
3156 
3157 	/* pairs with RCU read section in io_req_local_work_add() */
3158 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3159 		synchronize_rcu();
3160 
3161 	io_ring_ctx_free(ctx);
3162 }
3163 
3164 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3165 {
3166 	unsigned long index;
3167 	struct creds *creds;
3168 
3169 	mutex_lock(&ctx->uring_lock);
3170 	percpu_ref_kill(&ctx->refs);
3171 	xa_for_each(&ctx->personalities, index, creds)
3172 		io_unregister_personality(ctx, index);
3173 	if (ctx->rings)
3174 		io_poll_remove_all(ctx, NULL, true);
3175 	mutex_unlock(&ctx->uring_lock);
3176 
3177 	/*
3178 	 * If we failed setting up the ctx, we might not have any rings
3179 	 * and therefore did not submit any requests
3180 	 */
3181 	if (ctx->rings)
3182 		io_kill_timeouts(ctx, NULL, true);
3183 
3184 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3185 	/*
3186 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3187 	 * if we're exiting a ton of rings at the same time. It just adds
3188 	 * noise and overhead, there's no discernable change in runtime
3189 	 * over using system_wq.
3190 	 */
3191 	queue_work(system_unbound_wq, &ctx->exit_work);
3192 }
3193 
3194 static int io_uring_release(struct inode *inode, struct file *file)
3195 {
3196 	struct io_ring_ctx *ctx = file->private_data;
3197 
3198 	file->private_data = NULL;
3199 	io_ring_ctx_wait_and_kill(ctx);
3200 	return 0;
3201 }
3202 
3203 struct io_task_cancel {
3204 	struct task_struct *task;
3205 	bool all;
3206 };
3207 
3208 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3209 {
3210 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3211 	struct io_task_cancel *cancel = data;
3212 
3213 	return io_match_task_safe(req, cancel->task, cancel->all);
3214 }
3215 
3216 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3217 					 struct task_struct *task,
3218 					 bool cancel_all)
3219 {
3220 	struct io_defer_entry *de;
3221 	LIST_HEAD(list);
3222 
3223 	spin_lock(&ctx->completion_lock);
3224 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3225 		if (io_match_task_safe(de->req, task, cancel_all)) {
3226 			list_cut_position(&list, &ctx->defer_list, &de->list);
3227 			break;
3228 		}
3229 	}
3230 	spin_unlock(&ctx->completion_lock);
3231 	if (list_empty(&list))
3232 		return false;
3233 
3234 	while (!list_empty(&list)) {
3235 		de = list_first_entry(&list, struct io_defer_entry, list);
3236 		list_del_init(&de->list);
3237 		io_req_task_queue_fail(de->req, -ECANCELED);
3238 		kfree(de);
3239 	}
3240 	return true;
3241 }
3242 
3243 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3244 {
3245 	struct io_tctx_node *node;
3246 	enum io_wq_cancel cret;
3247 	bool ret = false;
3248 
3249 	mutex_lock(&ctx->uring_lock);
3250 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3251 		struct io_uring_task *tctx = node->task->io_uring;
3252 
3253 		/*
3254 		 * io_wq will stay alive while we hold uring_lock, because it's
3255 		 * killed after ctx nodes, which requires to take the lock.
3256 		 */
3257 		if (!tctx || !tctx->io_wq)
3258 			continue;
3259 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3260 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3261 	}
3262 	mutex_unlock(&ctx->uring_lock);
3263 
3264 	return ret;
3265 }
3266 
3267 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3268 						struct task_struct *task,
3269 						bool cancel_all)
3270 {
3271 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3272 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3273 	enum io_wq_cancel cret;
3274 	bool ret = false;
3275 
3276 	/* set it so io_req_local_work_add() would wake us up */
3277 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3278 		atomic_set(&ctx->cq_wait_nr, 1);
3279 		smp_mb();
3280 	}
3281 
3282 	/* failed during ring init, it couldn't have issued any requests */
3283 	if (!ctx->rings)
3284 		return false;
3285 
3286 	if (!task) {
3287 		ret |= io_uring_try_cancel_iowq(ctx);
3288 	} else if (tctx && tctx->io_wq) {
3289 		/*
3290 		 * Cancels requests of all rings, not only @ctx, but
3291 		 * it's fine as the task is in exit/exec.
3292 		 */
3293 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3294 				       &cancel, true);
3295 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3296 	}
3297 
3298 	/* SQPOLL thread does its own polling */
3299 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3300 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3301 		while (!wq_list_empty(&ctx->iopoll_list)) {
3302 			io_iopoll_try_reap_events(ctx);
3303 			ret = true;
3304 			cond_resched();
3305 		}
3306 	}
3307 
3308 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3309 	    io_allowed_defer_tw_run(ctx))
3310 		ret |= io_run_local_work(ctx) > 0;
3311 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3312 	mutex_lock(&ctx->uring_lock);
3313 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3314 	mutex_unlock(&ctx->uring_lock);
3315 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3316 	if (task)
3317 		ret |= io_run_task_work() > 0;
3318 	return ret;
3319 }
3320 
3321 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3322 {
3323 	if (tracked)
3324 		return atomic_read(&tctx->inflight_tracked);
3325 	return percpu_counter_sum(&tctx->inflight);
3326 }
3327 
3328 /*
3329  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3330  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3331  */
3332 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3333 {
3334 	struct io_uring_task *tctx = current->io_uring;
3335 	struct io_ring_ctx *ctx;
3336 	struct io_tctx_node *node;
3337 	unsigned long index;
3338 	s64 inflight;
3339 	DEFINE_WAIT(wait);
3340 
3341 	WARN_ON_ONCE(sqd && sqd->thread != current);
3342 
3343 	if (!current->io_uring)
3344 		return;
3345 	if (tctx->io_wq)
3346 		io_wq_exit_start(tctx->io_wq);
3347 
3348 	atomic_inc(&tctx->in_cancel);
3349 	do {
3350 		bool loop = false;
3351 
3352 		io_uring_drop_tctx_refs(current);
3353 		/* read completions before cancelations */
3354 		inflight = tctx_inflight(tctx, !cancel_all);
3355 		if (!inflight)
3356 			break;
3357 
3358 		if (!sqd) {
3359 			xa_for_each(&tctx->xa, index, node) {
3360 				/* sqpoll task will cancel all its requests */
3361 				if (node->ctx->sq_data)
3362 					continue;
3363 				loop |= io_uring_try_cancel_requests(node->ctx,
3364 							current, cancel_all);
3365 			}
3366 		} else {
3367 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3368 				loop |= io_uring_try_cancel_requests(ctx,
3369 								     current,
3370 								     cancel_all);
3371 		}
3372 
3373 		if (loop) {
3374 			cond_resched();
3375 			continue;
3376 		}
3377 
3378 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3379 		io_run_task_work();
3380 		io_uring_drop_tctx_refs(current);
3381 		xa_for_each(&tctx->xa, index, node) {
3382 			if (!llist_empty(&node->ctx->work_llist)) {
3383 				WARN_ON_ONCE(node->ctx->submitter_task &&
3384 					     node->ctx->submitter_task != current);
3385 				goto end_wait;
3386 			}
3387 		}
3388 		/*
3389 		 * If we've seen completions, retry without waiting. This
3390 		 * avoids a race where a completion comes in before we did
3391 		 * prepare_to_wait().
3392 		 */
3393 		if (inflight == tctx_inflight(tctx, !cancel_all))
3394 			schedule();
3395 end_wait:
3396 		finish_wait(&tctx->wait, &wait);
3397 	} while (1);
3398 
3399 	io_uring_clean_tctx(tctx);
3400 	if (cancel_all) {
3401 		/*
3402 		 * We shouldn't run task_works after cancel, so just leave
3403 		 * ->in_cancel set for normal exit.
3404 		 */
3405 		atomic_dec(&tctx->in_cancel);
3406 		/* for exec all current's requests should be gone, kill tctx */
3407 		__io_uring_free(current);
3408 	}
3409 }
3410 
3411 void __io_uring_cancel(bool cancel_all)
3412 {
3413 	io_uring_cancel_generic(cancel_all, NULL);
3414 }
3415 
3416 static void *io_uring_validate_mmap_request(struct file *file,
3417 					    loff_t pgoff, size_t sz)
3418 {
3419 	struct io_ring_ctx *ctx = file->private_data;
3420 	loff_t offset = pgoff << PAGE_SHIFT;
3421 	struct page *page;
3422 	void *ptr;
3423 
3424 	/* Don't allow mmap if the ring was setup without it */
3425 	if (ctx->flags & IORING_SETUP_NO_MMAP)
3426 		return ERR_PTR(-EINVAL);
3427 
3428 	switch (offset & IORING_OFF_MMAP_MASK) {
3429 	case IORING_OFF_SQ_RING:
3430 	case IORING_OFF_CQ_RING:
3431 		ptr = ctx->rings;
3432 		break;
3433 	case IORING_OFF_SQES:
3434 		ptr = ctx->sq_sqes;
3435 		break;
3436 	case IORING_OFF_PBUF_RING: {
3437 		unsigned int bgid;
3438 
3439 		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3440 		mutex_lock(&ctx->uring_lock);
3441 		ptr = io_pbuf_get_address(ctx, bgid);
3442 		mutex_unlock(&ctx->uring_lock);
3443 		if (!ptr)
3444 			return ERR_PTR(-EINVAL);
3445 		break;
3446 		}
3447 	default:
3448 		return ERR_PTR(-EINVAL);
3449 	}
3450 
3451 	page = virt_to_head_page(ptr);
3452 	if (sz > page_size(page))
3453 		return ERR_PTR(-EINVAL);
3454 
3455 	return ptr;
3456 }
3457 
3458 #ifdef CONFIG_MMU
3459 
3460 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3461 {
3462 	size_t sz = vma->vm_end - vma->vm_start;
3463 	unsigned long pfn;
3464 	void *ptr;
3465 
3466 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3467 	if (IS_ERR(ptr))
3468 		return PTR_ERR(ptr);
3469 
3470 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3471 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3472 }
3473 
3474 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3475 			unsigned long addr, unsigned long len,
3476 			unsigned long pgoff, unsigned long flags)
3477 {
3478 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
3479 	struct vm_unmapped_area_info info;
3480 	void *ptr;
3481 
3482 	/*
3483 	 * Do not allow to map to user-provided address to avoid breaking the
3484 	 * aliasing rules. Userspace is not able to guess the offset address of
3485 	 * kernel kmalloc()ed memory area.
3486 	 */
3487 	if (addr)
3488 		return -EINVAL;
3489 
3490 	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3491 	if (IS_ERR(ptr))
3492 		return -ENOMEM;
3493 
3494 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
3495 	info.length = len;
3496 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
3497 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
3498 #ifdef SHM_COLOUR
3499 	info.align_mask = PAGE_MASK & (SHM_COLOUR - 1UL);
3500 #else
3501 	info.align_mask = PAGE_MASK & (SHMLBA - 1UL);
3502 #endif
3503 	info.align_offset = (unsigned long) ptr;
3504 
3505 	/*
3506 	 * A failed mmap() very likely causes application failure,
3507 	 * so fall back to the bottom-up function here. This scenario
3508 	 * can happen with large stack limits and large mmap()
3509 	 * allocations.
3510 	 */
3511 	addr = vm_unmapped_area(&info);
3512 	if (offset_in_page(addr)) {
3513 		info.flags = 0;
3514 		info.low_limit = TASK_UNMAPPED_BASE;
3515 		info.high_limit = mmap_end;
3516 		addr = vm_unmapped_area(&info);
3517 	}
3518 
3519 	return addr;
3520 }
3521 
3522 #else /* !CONFIG_MMU */
3523 
3524 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3525 {
3526 	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3527 }
3528 
3529 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3530 {
3531 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3532 }
3533 
3534 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3535 	unsigned long addr, unsigned long len,
3536 	unsigned long pgoff, unsigned long flags)
3537 {
3538 	void *ptr;
3539 
3540 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3541 	if (IS_ERR(ptr))
3542 		return PTR_ERR(ptr);
3543 
3544 	return (unsigned long) ptr;
3545 }
3546 
3547 #endif /* !CONFIG_MMU */
3548 
3549 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3550 {
3551 	if (flags & IORING_ENTER_EXT_ARG) {
3552 		struct io_uring_getevents_arg arg;
3553 
3554 		if (argsz != sizeof(arg))
3555 			return -EINVAL;
3556 		if (copy_from_user(&arg, argp, sizeof(arg)))
3557 			return -EFAULT;
3558 	}
3559 	return 0;
3560 }
3561 
3562 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3563 			  struct __kernel_timespec __user **ts,
3564 			  const sigset_t __user **sig)
3565 {
3566 	struct io_uring_getevents_arg arg;
3567 
3568 	/*
3569 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3570 	 * is just a pointer to the sigset_t.
3571 	 */
3572 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3573 		*sig = (const sigset_t __user *) argp;
3574 		*ts = NULL;
3575 		return 0;
3576 	}
3577 
3578 	/*
3579 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3580 	 * timespec and sigset_t pointers if good.
3581 	 */
3582 	if (*argsz != sizeof(arg))
3583 		return -EINVAL;
3584 	if (copy_from_user(&arg, argp, sizeof(arg)))
3585 		return -EFAULT;
3586 	if (arg.pad)
3587 		return -EINVAL;
3588 	*sig = u64_to_user_ptr(arg.sigmask);
3589 	*argsz = arg.sigmask_sz;
3590 	*ts = u64_to_user_ptr(arg.ts);
3591 	return 0;
3592 }
3593 
3594 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3595 		u32, min_complete, u32, flags, const void __user *, argp,
3596 		size_t, argsz)
3597 {
3598 	struct io_ring_ctx *ctx;
3599 	struct fd f;
3600 	long ret;
3601 
3602 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3603 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3604 			       IORING_ENTER_REGISTERED_RING)))
3605 		return -EINVAL;
3606 
3607 	/*
3608 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3609 	 * need only dereference our task private array to find it.
3610 	 */
3611 	if (flags & IORING_ENTER_REGISTERED_RING) {
3612 		struct io_uring_task *tctx = current->io_uring;
3613 
3614 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3615 			return -EINVAL;
3616 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3617 		f.file = tctx->registered_rings[fd];
3618 		f.flags = 0;
3619 		if (unlikely(!f.file))
3620 			return -EBADF;
3621 	} else {
3622 		f = fdget(fd);
3623 		if (unlikely(!f.file))
3624 			return -EBADF;
3625 		ret = -EOPNOTSUPP;
3626 		if (unlikely(!io_is_uring_fops(f.file)))
3627 			goto out;
3628 	}
3629 
3630 	ctx = f.file->private_data;
3631 	ret = -EBADFD;
3632 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3633 		goto out;
3634 
3635 	/*
3636 	 * For SQ polling, the thread will do all submissions and completions.
3637 	 * Just return the requested submit count, and wake the thread if
3638 	 * we were asked to.
3639 	 */
3640 	ret = 0;
3641 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3642 		io_cqring_overflow_flush(ctx);
3643 
3644 		if (unlikely(ctx->sq_data->thread == NULL)) {
3645 			ret = -EOWNERDEAD;
3646 			goto out;
3647 		}
3648 		if (flags & IORING_ENTER_SQ_WAKEUP)
3649 			wake_up(&ctx->sq_data->wait);
3650 		if (flags & IORING_ENTER_SQ_WAIT)
3651 			io_sqpoll_wait_sq(ctx);
3652 
3653 		ret = to_submit;
3654 	} else if (to_submit) {
3655 		ret = io_uring_add_tctx_node(ctx);
3656 		if (unlikely(ret))
3657 			goto out;
3658 
3659 		mutex_lock(&ctx->uring_lock);
3660 		ret = io_submit_sqes(ctx, to_submit);
3661 		if (ret != to_submit) {
3662 			mutex_unlock(&ctx->uring_lock);
3663 			goto out;
3664 		}
3665 		if (flags & IORING_ENTER_GETEVENTS) {
3666 			if (ctx->syscall_iopoll)
3667 				goto iopoll_locked;
3668 			/*
3669 			 * Ignore errors, we'll soon call io_cqring_wait() and
3670 			 * it should handle ownership problems if any.
3671 			 */
3672 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3673 				(void)io_run_local_work_locked(ctx);
3674 		}
3675 		mutex_unlock(&ctx->uring_lock);
3676 	}
3677 
3678 	if (flags & IORING_ENTER_GETEVENTS) {
3679 		int ret2;
3680 
3681 		if (ctx->syscall_iopoll) {
3682 			/*
3683 			 * We disallow the app entering submit/complete with
3684 			 * polling, but we still need to lock the ring to
3685 			 * prevent racing with polled issue that got punted to
3686 			 * a workqueue.
3687 			 */
3688 			mutex_lock(&ctx->uring_lock);
3689 iopoll_locked:
3690 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3691 			if (likely(!ret2)) {
3692 				min_complete = min(min_complete,
3693 						   ctx->cq_entries);
3694 				ret2 = io_iopoll_check(ctx, min_complete);
3695 			}
3696 			mutex_unlock(&ctx->uring_lock);
3697 		} else {
3698 			const sigset_t __user *sig;
3699 			struct __kernel_timespec __user *ts;
3700 
3701 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3702 			if (likely(!ret2)) {
3703 				min_complete = min(min_complete,
3704 						   ctx->cq_entries);
3705 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3706 						      argsz, ts);
3707 			}
3708 		}
3709 
3710 		if (!ret) {
3711 			ret = ret2;
3712 
3713 			/*
3714 			 * EBADR indicates that one or more CQE were dropped.
3715 			 * Once the user has been informed we can clear the bit
3716 			 * as they are obviously ok with those drops.
3717 			 */
3718 			if (unlikely(ret2 == -EBADR))
3719 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3720 					  &ctx->check_cq);
3721 		}
3722 	}
3723 out:
3724 	fdput(f);
3725 	return ret;
3726 }
3727 
3728 static const struct file_operations io_uring_fops = {
3729 	.release	= io_uring_release,
3730 	.mmap		= io_uring_mmap,
3731 #ifndef CONFIG_MMU
3732 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3733 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3734 #else
3735 	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3736 #endif
3737 	.poll		= io_uring_poll,
3738 #ifdef CONFIG_PROC_FS
3739 	.show_fdinfo	= io_uring_show_fdinfo,
3740 #endif
3741 };
3742 
3743 bool io_is_uring_fops(struct file *file)
3744 {
3745 	return file->f_op == &io_uring_fops;
3746 }
3747 
3748 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3749 					 struct io_uring_params *p)
3750 {
3751 	struct io_rings *rings;
3752 	size_t size, sq_array_offset;
3753 	void *ptr;
3754 
3755 	/* make sure these are sane, as we already accounted them */
3756 	ctx->sq_entries = p->sq_entries;
3757 	ctx->cq_entries = p->cq_entries;
3758 
3759 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3760 	if (size == SIZE_MAX)
3761 		return -EOVERFLOW;
3762 
3763 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3764 		rings = io_mem_alloc(size);
3765 	else
3766 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3767 
3768 	if (IS_ERR(rings))
3769 		return PTR_ERR(rings);
3770 
3771 	ctx->rings = rings;
3772 	ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3773 	rings->sq_ring_mask = p->sq_entries - 1;
3774 	rings->cq_ring_mask = p->cq_entries - 1;
3775 	rings->sq_ring_entries = p->sq_entries;
3776 	rings->cq_ring_entries = p->cq_entries;
3777 
3778 	if (p->flags & IORING_SETUP_SQE128)
3779 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3780 	else
3781 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3782 	if (size == SIZE_MAX) {
3783 		io_rings_free(ctx);
3784 		return -EOVERFLOW;
3785 	}
3786 
3787 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3788 		ptr = io_mem_alloc(size);
3789 	else
3790 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3791 
3792 	if (IS_ERR(ptr)) {
3793 		io_rings_free(ctx);
3794 		return PTR_ERR(ptr);
3795 	}
3796 
3797 	ctx->sq_sqes = ptr;
3798 	return 0;
3799 }
3800 
3801 static int io_uring_install_fd(struct file *file)
3802 {
3803 	int fd;
3804 
3805 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3806 	if (fd < 0)
3807 		return fd;
3808 	fd_install(fd, file);
3809 	return fd;
3810 }
3811 
3812 /*
3813  * Allocate an anonymous fd, this is what constitutes the application
3814  * visible backing of an io_uring instance. The application mmaps this
3815  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3816  * we have to tie this fd to a socket for file garbage collection purposes.
3817  */
3818 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3819 {
3820 	struct file *file;
3821 #if defined(CONFIG_UNIX)
3822 	int ret;
3823 
3824 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3825 				&ctx->ring_sock);
3826 	if (ret)
3827 		return ERR_PTR(ret);
3828 #endif
3829 
3830 	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3831 					 O_RDWR | O_CLOEXEC, NULL);
3832 #if defined(CONFIG_UNIX)
3833 	if (IS_ERR(file)) {
3834 		sock_release(ctx->ring_sock);
3835 		ctx->ring_sock = NULL;
3836 	} else {
3837 		ctx->ring_sock->file = file;
3838 	}
3839 #endif
3840 	return file;
3841 }
3842 
3843 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3844 				  struct io_uring_params __user *params)
3845 {
3846 	struct io_ring_ctx *ctx;
3847 	struct io_uring_task *tctx;
3848 	struct file *file;
3849 	int ret;
3850 
3851 	if (!entries)
3852 		return -EINVAL;
3853 	if (entries > IORING_MAX_ENTRIES) {
3854 		if (!(p->flags & IORING_SETUP_CLAMP))
3855 			return -EINVAL;
3856 		entries = IORING_MAX_ENTRIES;
3857 	}
3858 
3859 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3860 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3861 		return -EINVAL;
3862 
3863 	/*
3864 	 * Use twice as many entries for the CQ ring. It's possible for the
3865 	 * application to drive a higher depth than the size of the SQ ring,
3866 	 * since the sqes are only used at submission time. This allows for
3867 	 * some flexibility in overcommitting a bit. If the application has
3868 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3869 	 * of CQ ring entries manually.
3870 	 */
3871 	p->sq_entries = roundup_pow_of_two(entries);
3872 	if (p->flags & IORING_SETUP_CQSIZE) {
3873 		/*
3874 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3875 		 * to a power-of-two, if it isn't already. We do NOT impose
3876 		 * any cq vs sq ring sizing.
3877 		 */
3878 		if (!p->cq_entries)
3879 			return -EINVAL;
3880 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3881 			if (!(p->flags & IORING_SETUP_CLAMP))
3882 				return -EINVAL;
3883 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3884 		}
3885 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3886 		if (p->cq_entries < p->sq_entries)
3887 			return -EINVAL;
3888 	} else {
3889 		p->cq_entries = 2 * p->sq_entries;
3890 	}
3891 
3892 	ctx = io_ring_ctx_alloc(p);
3893 	if (!ctx)
3894 		return -ENOMEM;
3895 
3896 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3897 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3898 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3899 		ctx->task_complete = true;
3900 
3901 	/*
3902 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3903 	 * purposes, see io_activate_pollwq()
3904 	 */
3905 	if (!ctx->task_complete)
3906 		ctx->poll_activated = true;
3907 
3908 	/*
3909 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3910 	 * space applications don't need to do io completion events
3911 	 * polling again, they can rely on io_sq_thread to do polling
3912 	 * work, which can reduce cpu usage and uring_lock contention.
3913 	 */
3914 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3915 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3916 		ctx->syscall_iopoll = 1;
3917 
3918 	ctx->compat = in_compat_syscall();
3919 	if (!capable(CAP_IPC_LOCK))
3920 		ctx->user = get_uid(current_user());
3921 
3922 	/*
3923 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3924 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3925 	 */
3926 	ret = -EINVAL;
3927 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3928 		/* IPI related flags don't make sense with SQPOLL */
3929 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3930 				  IORING_SETUP_TASKRUN_FLAG |
3931 				  IORING_SETUP_DEFER_TASKRUN))
3932 			goto err;
3933 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3934 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3935 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3936 	} else {
3937 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3938 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3939 			goto err;
3940 		ctx->notify_method = TWA_SIGNAL;
3941 	}
3942 
3943 	/*
3944 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3945 	 * submission task. This implies that there is only one submitter, so enforce
3946 	 * that.
3947 	 */
3948 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3949 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3950 		goto err;
3951 	}
3952 
3953 	/*
3954 	 * This is just grabbed for accounting purposes. When a process exits,
3955 	 * the mm is exited and dropped before the files, hence we need to hang
3956 	 * on to this mm purely for the purposes of being able to unaccount
3957 	 * memory (locked/pinned vm). It's not used for anything else.
3958 	 */
3959 	mmgrab(current->mm);
3960 	ctx->mm_account = current->mm;
3961 
3962 	ret = io_allocate_scq_urings(ctx, p);
3963 	if (ret)
3964 		goto err;
3965 
3966 	ret = io_sq_offload_create(ctx, p);
3967 	if (ret)
3968 		goto err;
3969 
3970 	ret = io_rsrc_init(ctx);
3971 	if (ret)
3972 		goto err;
3973 
3974 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3975 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3976 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3977 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3978 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3979 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3980 	p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3981 	p->sq_off.resv1 = 0;
3982 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3983 		p->sq_off.user_addr = 0;
3984 
3985 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3986 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3987 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3988 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3989 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3990 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3991 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3992 	p->cq_off.resv1 = 0;
3993 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3994 		p->cq_off.user_addr = 0;
3995 
3996 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3997 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3998 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3999 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
4000 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
4001 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
4002 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
4003 
4004 	if (copy_to_user(params, p, sizeof(*p))) {
4005 		ret = -EFAULT;
4006 		goto err;
4007 	}
4008 
4009 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
4010 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
4011 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4012 
4013 	file = io_uring_get_file(ctx);
4014 	if (IS_ERR(file)) {
4015 		ret = PTR_ERR(file);
4016 		goto err;
4017 	}
4018 
4019 	ret = __io_uring_add_tctx_node(ctx);
4020 	if (ret)
4021 		goto err_fput;
4022 	tctx = current->io_uring;
4023 
4024 	/*
4025 	 * Install ring fd as the very last thing, so we don't risk someone
4026 	 * having closed it before we finish setup
4027 	 */
4028 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
4029 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
4030 	else
4031 		ret = io_uring_install_fd(file);
4032 	if (ret < 0)
4033 		goto err_fput;
4034 
4035 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4036 	return ret;
4037 err:
4038 	io_ring_ctx_wait_and_kill(ctx);
4039 	return ret;
4040 err_fput:
4041 	fput(file);
4042 	return ret;
4043 }
4044 
4045 /*
4046  * Sets up an aio uring context, and returns the fd. Applications asks for a
4047  * ring size, we return the actual sq/cq ring sizes (among other things) in the
4048  * params structure passed in.
4049  */
4050 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4051 {
4052 	struct io_uring_params p;
4053 	int i;
4054 
4055 	if (copy_from_user(&p, params, sizeof(p)))
4056 		return -EFAULT;
4057 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4058 		if (p.resv[i])
4059 			return -EINVAL;
4060 	}
4061 
4062 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4063 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4064 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4065 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4066 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4067 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4068 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4069 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY))
4070 		return -EINVAL;
4071 
4072 	return io_uring_create(entries, &p, params);
4073 }
4074 
4075 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4076 		struct io_uring_params __user *, params)
4077 {
4078 	return io_uring_setup(entries, params);
4079 }
4080 
4081 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4082 			   unsigned nr_args)
4083 {
4084 	struct io_uring_probe *p;
4085 	size_t size;
4086 	int i, ret;
4087 
4088 	size = struct_size(p, ops, nr_args);
4089 	if (size == SIZE_MAX)
4090 		return -EOVERFLOW;
4091 	p = kzalloc(size, GFP_KERNEL);
4092 	if (!p)
4093 		return -ENOMEM;
4094 
4095 	ret = -EFAULT;
4096 	if (copy_from_user(p, arg, size))
4097 		goto out;
4098 	ret = -EINVAL;
4099 	if (memchr_inv(p, 0, size))
4100 		goto out;
4101 
4102 	p->last_op = IORING_OP_LAST - 1;
4103 	if (nr_args > IORING_OP_LAST)
4104 		nr_args = IORING_OP_LAST;
4105 
4106 	for (i = 0; i < nr_args; i++) {
4107 		p->ops[i].op = i;
4108 		if (!io_issue_defs[i].not_supported)
4109 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
4110 	}
4111 	p->ops_len = i;
4112 
4113 	ret = 0;
4114 	if (copy_to_user(arg, p, size))
4115 		ret = -EFAULT;
4116 out:
4117 	kfree(p);
4118 	return ret;
4119 }
4120 
4121 static int io_register_personality(struct io_ring_ctx *ctx)
4122 {
4123 	const struct cred *creds;
4124 	u32 id;
4125 	int ret;
4126 
4127 	creds = get_current_cred();
4128 
4129 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4130 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4131 	if (ret < 0) {
4132 		put_cred(creds);
4133 		return ret;
4134 	}
4135 	return id;
4136 }
4137 
4138 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4139 					   void __user *arg, unsigned int nr_args)
4140 {
4141 	struct io_uring_restriction *res;
4142 	size_t size;
4143 	int i, ret;
4144 
4145 	/* Restrictions allowed only if rings started disabled */
4146 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4147 		return -EBADFD;
4148 
4149 	/* We allow only a single restrictions registration */
4150 	if (ctx->restrictions.registered)
4151 		return -EBUSY;
4152 
4153 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4154 		return -EINVAL;
4155 
4156 	size = array_size(nr_args, sizeof(*res));
4157 	if (size == SIZE_MAX)
4158 		return -EOVERFLOW;
4159 
4160 	res = memdup_user(arg, size);
4161 	if (IS_ERR(res))
4162 		return PTR_ERR(res);
4163 
4164 	ret = 0;
4165 
4166 	for (i = 0; i < nr_args; i++) {
4167 		switch (res[i].opcode) {
4168 		case IORING_RESTRICTION_REGISTER_OP:
4169 			if (res[i].register_op >= IORING_REGISTER_LAST) {
4170 				ret = -EINVAL;
4171 				goto out;
4172 			}
4173 
4174 			__set_bit(res[i].register_op,
4175 				  ctx->restrictions.register_op);
4176 			break;
4177 		case IORING_RESTRICTION_SQE_OP:
4178 			if (res[i].sqe_op >= IORING_OP_LAST) {
4179 				ret = -EINVAL;
4180 				goto out;
4181 			}
4182 
4183 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4184 			break;
4185 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4186 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4187 			break;
4188 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4189 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4190 			break;
4191 		default:
4192 			ret = -EINVAL;
4193 			goto out;
4194 		}
4195 	}
4196 
4197 out:
4198 	/* Reset all restrictions if an error happened */
4199 	if (ret != 0)
4200 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4201 	else
4202 		ctx->restrictions.registered = true;
4203 
4204 	kfree(res);
4205 	return ret;
4206 }
4207 
4208 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4209 {
4210 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4211 		return -EBADFD;
4212 
4213 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4214 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4215 		/*
4216 		 * Lazy activation attempts would fail if it was polled before
4217 		 * submitter_task is set.
4218 		 */
4219 		if (wq_has_sleeper(&ctx->poll_wq))
4220 			io_activate_pollwq(ctx);
4221 	}
4222 
4223 	if (ctx->restrictions.registered)
4224 		ctx->restricted = 1;
4225 
4226 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
4227 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4228 		wake_up(&ctx->sq_data->wait);
4229 	return 0;
4230 }
4231 
4232 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4233 				       void __user *arg, unsigned len)
4234 {
4235 	struct io_uring_task *tctx = current->io_uring;
4236 	cpumask_var_t new_mask;
4237 	int ret;
4238 
4239 	if (!tctx || !tctx->io_wq)
4240 		return -EINVAL;
4241 
4242 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4243 		return -ENOMEM;
4244 
4245 	cpumask_clear(new_mask);
4246 	if (len > cpumask_size())
4247 		len = cpumask_size();
4248 
4249 	if (in_compat_syscall()) {
4250 		ret = compat_get_bitmap(cpumask_bits(new_mask),
4251 					(const compat_ulong_t __user *)arg,
4252 					len * 8 /* CHAR_BIT */);
4253 	} else {
4254 		ret = copy_from_user(new_mask, arg, len);
4255 	}
4256 
4257 	if (ret) {
4258 		free_cpumask_var(new_mask);
4259 		return -EFAULT;
4260 	}
4261 
4262 	ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
4263 	free_cpumask_var(new_mask);
4264 	return ret;
4265 }
4266 
4267 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4268 {
4269 	struct io_uring_task *tctx = current->io_uring;
4270 
4271 	if (!tctx || !tctx->io_wq)
4272 		return -EINVAL;
4273 
4274 	return io_wq_cpu_affinity(tctx->io_wq, NULL);
4275 }
4276 
4277 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4278 					       void __user *arg)
4279 	__must_hold(&ctx->uring_lock)
4280 {
4281 	struct io_tctx_node *node;
4282 	struct io_uring_task *tctx = NULL;
4283 	struct io_sq_data *sqd = NULL;
4284 	__u32 new_count[2];
4285 	int i, ret;
4286 
4287 	if (copy_from_user(new_count, arg, sizeof(new_count)))
4288 		return -EFAULT;
4289 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4290 		if (new_count[i] > INT_MAX)
4291 			return -EINVAL;
4292 
4293 	if (ctx->flags & IORING_SETUP_SQPOLL) {
4294 		sqd = ctx->sq_data;
4295 		if (sqd) {
4296 			/*
4297 			 * Observe the correct sqd->lock -> ctx->uring_lock
4298 			 * ordering. Fine to drop uring_lock here, we hold
4299 			 * a ref to the ctx.
4300 			 */
4301 			refcount_inc(&sqd->refs);
4302 			mutex_unlock(&ctx->uring_lock);
4303 			mutex_lock(&sqd->lock);
4304 			mutex_lock(&ctx->uring_lock);
4305 			if (sqd->thread)
4306 				tctx = sqd->thread->io_uring;
4307 		}
4308 	} else {
4309 		tctx = current->io_uring;
4310 	}
4311 
4312 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4313 
4314 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4315 		if (new_count[i])
4316 			ctx->iowq_limits[i] = new_count[i];
4317 	ctx->iowq_limits_set = true;
4318 
4319 	if (tctx && tctx->io_wq) {
4320 		ret = io_wq_max_workers(tctx->io_wq, new_count);
4321 		if (ret)
4322 			goto err;
4323 	} else {
4324 		memset(new_count, 0, sizeof(new_count));
4325 	}
4326 
4327 	if (sqd) {
4328 		mutex_unlock(&sqd->lock);
4329 		io_put_sq_data(sqd);
4330 	}
4331 
4332 	if (copy_to_user(arg, new_count, sizeof(new_count)))
4333 		return -EFAULT;
4334 
4335 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
4336 	if (sqd)
4337 		return 0;
4338 
4339 	/* now propagate the restriction to all registered users */
4340 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4341 		struct io_uring_task *tctx = node->task->io_uring;
4342 
4343 		if (WARN_ON_ONCE(!tctx->io_wq))
4344 			continue;
4345 
4346 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
4347 			new_count[i] = ctx->iowq_limits[i];
4348 		/* ignore errors, it always returns zero anyway */
4349 		(void)io_wq_max_workers(tctx->io_wq, new_count);
4350 	}
4351 	return 0;
4352 err:
4353 	if (sqd) {
4354 		mutex_unlock(&sqd->lock);
4355 		io_put_sq_data(sqd);
4356 	}
4357 	return ret;
4358 }
4359 
4360 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4361 			       void __user *arg, unsigned nr_args)
4362 	__releases(ctx->uring_lock)
4363 	__acquires(ctx->uring_lock)
4364 {
4365 	int ret;
4366 
4367 	/*
4368 	 * We don't quiesce the refs for register anymore and so it can't be
4369 	 * dying as we're holding a file ref here.
4370 	 */
4371 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4372 		return -ENXIO;
4373 
4374 	if (ctx->submitter_task && ctx->submitter_task != current)
4375 		return -EEXIST;
4376 
4377 	if (ctx->restricted) {
4378 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4379 		if (!test_bit(opcode, ctx->restrictions.register_op))
4380 			return -EACCES;
4381 	}
4382 
4383 	switch (opcode) {
4384 	case IORING_REGISTER_BUFFERS:
4385 		ret = -EFAULT;
4386 		if (!arg)
4387 			break;
4388 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4389 		break;
4390 	case IORING_UNREGISTER_BUFFERS:
4391 		ret = -EINVAL;
4392 		if (arg || nr_args)
4393 			break;
4394 		ret = io_sqe_buffers_unregister(ctx);
4395 		break;
4396 	case IORING_REGISTER_FILES:
4397 		ret = -EFAULT;
4398 		if (!arg)
4399 			break;
4400 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4401 		break;
4402 	case IORING_UNREGISTER_FILES:
4403 		ret = -EINVAL;
4404 		if (arg || nr_args)
4405 			break;
4406 		ret = io_sqe_files_unregister(ctx);
4407 		break;
4408 	case IORING_REGISTER_FILES_UPDATE:
4409 		ret = io_register_files_update(ctx, arg, nr_args);
4410 		break;
4411 	case IORING_REGISTER_EVENTFD:
4412 		ret = -EINVAL;
4413 		if (nr_args != 1)
4414 			break;
4415 		ret = io_eventfd_register(ctx, arg, 0);
4416 		break;
4417 	case IORING_REGISTER_EVENTFD_ASYNC:
4418 		ret = -EINVAL;
4419 		if (nr_args != 1)
4420 			break;
4421 		ret = io_eventfd_register(ctx, arg, 1);
4422 		break;
4423 	case IORING_UNREGISTER_EVENTFD:
4424 		ret = -EINVAL;
4425 		if (arg || nr_args)
4426 			break;
4427 		ret = io_eventfd_unregister(ctx);
4428 		break;
4429 	case IORING_REGISTER_PROBE:
4430 		ret = -EINVAL;
4431 		if (!arg || nr_args > 256)
4432 			break;
4433 		ret = io_probe(ctx, arg, nr_args);
4434 		break;
4435 	case IORING_REGISTER_PERSONALITY:
4436 		ret = -EINVAL;
4437 		if (arg || nr_args)
4438 			break;
4439 		ret = io_register_personality(ctx);
4440 		break;
4441 	case IORING_UNREGISTER_PERSONALITY:
4442 		ret = -EINVAL;
4443 		if (arg)
4444 			break;
4445 		ret = io_unregister_personality(ctx, nr_args);
4446 		break;
4447 	case IORING_REGISTER_ENABLE_RINGS:
4448 		ret = -EINVAL;
4449 		if (arg || nr_args)
4450 			break;
4451 		ret = io_register_enable_rings(ctx);
4452 		break;
4453 	case IORING_REGISTER_RESTRICTIONS:
4454 		ret = io_register_restrictions(ctx, arg, nr_args);
4455 		break;
4456 	case IORING_REGISTER_FILES2:
4457 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4458 		break;
4459 	case IORING_REGISTER_FILES_UPDATE2:
4460 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4461 					      IORING_RSRC_FILE);
4462 		break;
4463 	case IORING_REGISTER_BUFFERS2:
4464 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4465 		break;
4466 	case IORING_REGISTER_BUFFERS_UPDATE:
4467 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4468 					      IORING_RSRC_BUFFER);
4469 		break;
4470 	case IORING_REGISTER_IOWQ_AFF:
4471 		ret = -EINVAL;
4472 		if (!arg || !nr_args)
4473 			break;
4474 		ret = io_register_iowq_aff(ctx, arg, nr_args);
4475 		break;
4476 	case IORING_UNREGISTER_IOWQ_AFF:
4477 		ret = -EINVAL;
4478 		if (arg || nr_args)
4479 			break;
4480 		ret = io_unregister_iowq_aff(ctx);
4481 		break;
4482 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4483 		ret = -EINVAL;
4484 		if (!arg || nr_args != 2)
4485 			break;
4486 		ret = io_register_iowq_max_workers(ctx, arg);
4487 		break;
4488 	case IORING_REGISTER_RING_FDS:
4489 		ret = io_ringfd_register(ctx, arg, nr_args);
4490 		break;
4491 	case IORING_UNREGISTER_RING_FDS:
4492 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4493 		break;
4494 	case IORING_REGISTER_PBUF_RING:
4495 		ret = -EINVAL;
4496 		if (!arg || nr_args != 1)
4497 			break;
4498 		ret = io_register_pbuf_ring(ctx, arg);
4499 		break;
4500 	case IORING_UNREGISTER_PBUF_RING:
4501 		ret = -EINVAL;
4502 		if (!arg || nr_args != 1)
4503 			break;
4504 		ret = io_unregister_pbuf_ring(ctx, arg);
4505 		break;
4506 	case IORING_REGISTER_SYNC_CANCEL:
4507 		ret = -EINVAL;
4508 		if (!arg || nr_args != 1)
4509 			break;
4510 		ret = io_sync_cancel(ctx, arg);
4511 		break;
4512 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4513 		ret = -EINVAL;
4514 		if (!arg || nr_args)
4515 			break;
4516 		ret = io_register_file_alloc_range(ctx, arg);
4517 		break;
4518 	default:
4519 		ret = -EINVAL;
4520 		break;
4521 	}
4522 
4523 	return ret;
4524 }
4525 
4526 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4527 		void __user *, arg, unsigned int, nr_args)
4528 {
4529 	struct io_ring_ctx *ctx;
4530 	long ret = -EBADF;
4531 	struct fd f;
4532 	bool use_registered_ring;
4533 
4534 	use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4535 	opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4536 
4537 	if (opcode >= IORING_REGISTER_LAST)
4538 		return -EINVAL;
4539 
4540 	if (use_registered_ring) {
4541 		/*
4542 		 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4543 		 * need only dereference our task private array to find it.
4544 		 */
4545 		struct io_uring_task *tctx = current->io_uring;
4546 
4547 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4548 			return -EINVAL;
4549 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4550 		f.file = tctx->registered_rings[fd];
4551 		f.flags = 0;
4552 		if (unlikely(!f.file))
4553 			return -EBADF;
4554 	} else {
4555 		f = fdget(fd);
4556 		if (unlikely(!f.file))
4557 			return -EBADF;
4558 		ret = -EOPNOTSUPP;
4559 		if (!io_is_uring_fops(f.file))
4560 			goto out_fput;
4561 	}
4562 
4563 	ctx = f.file->private_data;
4564 
4565 	mutex_lock(&ctx->uring_lock);
4566 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4567 	mutex_unlock(&ctx->uring_lock);
4568 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4569 out_fput:
4570 	fdput(f);
4571 	return ret;
4572 }
4573 
4574 static int __init io_uring_init(void)
4575 {
4576 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4577 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4578 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4579 } while (0)
4580 
4581 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4582 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4583 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4584 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4585 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4586 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4587 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4588 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4589 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4590 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4591 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4592 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4593 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4594 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4595 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4596 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4597 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4598 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4599 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4600 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4601 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4602 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4603 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4604 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4605 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4606 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4607 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4608 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4609 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4610 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4611 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4612 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4613 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4614 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4615 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4616 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4617 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4618 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4619 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4620 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4621 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4622 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4623 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4624 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4625 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4626 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4627 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4628 
4629 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4630 		     sizeof(struct io_uring_rsrc_update));
4631 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4632 		     sizeof(struct io_uring_rsrc_update2));
4633 
4634 	/* ->buf_index is u16 */
4635 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4636 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4637 		     offsetof(struct io_uring_buf_ring, tail));
4638 
4639 	/* should fit into one byte */
4640 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4641 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4642 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4643 
4644 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4645 
4646 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4647 
4648 	io_uring_optable_init();
4649 
4650 	req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4651 				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU);
4652 	return 0;
4653 };
4654 __initcall(io_uring_init);
4655