1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 #include <asm/shmparam.h> 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/io_uring.h> 79 80 #include <uapi/linux/io_uring.h> 81 82 #include "io-wq.h" 83 84 #include "io_uring.h" 85 #include "opdef.h" 86 #include "refs.h" 87 #include "tctx.h" 88 #include "sqpoll.h" 89 #include "fdinfo.h" 90 #include "kbuf.h" 91 #include "rsrc.h" 92 #include "cancel.h" 93 #include "net.h" 94 #include "notif.h" 95 96 #include "timeout.h" 97 #include "poll.h" 98 #include "rw.h" 99 #include "alloc_cache.h" 100 101 #define IORING_MAX_ENTRIES 32768 102 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 103 104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 105 IORING_REGISTER_LAST + IORING_OP_LAST) 106 107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 108 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 109 110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 112 113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 115 REQ_F_ASYNC_DATA) 116 117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 118 IO_REQ_CLEAN_FLAGS) 119 120 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 121 122 #define IO_COMPL_BATCH 32 123 #define IO_REQ_ALLOC_BATCH 8 124 125 enum { 126 IO_CHECK_CQ_OVERFLOW_BIT, 127 IO_CHECK_CQ_DROPPED_BIT, 128 }; 129 130 enum { 131 IO_EVENTFD_OP_SIGNAL_BIT, 132 IO_EVENTFD_OP_FREE_BIT, 133 }; 134 135 struct io_defer_entry { 136 struct list_head list; 137 struct io_kiocb *req; 138 u32 seq; 139 }; 140 141 /* requests with any of those set should undergo io_disarm_next() */ 142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 144 145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 146 struct task_struct *task, 147 bool cancel_all); 148 149 static void io_queue_sqe(struct io_kiocb *req); 150 151 struct kmem_cache *req_cachep; 152 153 static int __read_mostly sysctl_io_uring_disabled; 154 static int __read_mostly sysctl_io_uring_group = -1; 155 156 #ifdef CONFIG_SYSCTL 157 static struct ctl_table kernel_io_uring_disabled_table[] = { 158 { 159 .procname = "io_uring_disabled", 160 .data = &sysctl_io_uring_disabled, 161 .maxlen = sizeof(sysctl_io_uring_disabled), 162 .mode = 0644, 163 .proc_handler = proc_dointvec_minmax, 164 .extra1 = SYSCTL_ZERO, 165 .extra2 = SYSCTL_TWO, 166 }, 167 { 168 .procname = "io_uring_group", 169 .data = &sysctl_io_uring_group, 170 .maxlen = sizeof(gid_t), 171 .mode = 0644, 172 .proc_handler = proc_dointvec, 173 }, 174 {}, 175 }; 176 #endif 177 178 struct sock *io_uring_get_socket(struct file *file) 179 { 180 #if defined(CONFIG_UNIX) 181 if (io_is_uring_fops(file)) { 182 struct io_ring_ctx *ctx = file->private_data; 183 184 return ctx->ring_sock->sk; 185 } 186 #endif 187 return NULL; 188 } 189 EXPORT_SYMBOL(io_uring_get_socket); 190 191 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 192 { 193 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 194 ctx->submit_state.cqes_count) 195 __io_submit_flush_completions(ctx); 196 } 197 198 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 199 { 200 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 201 } 202 203 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 204 { 205 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 206 } 207 208 static bool io_match_linked(struct io_kiocb *head) 209 { 210 struct io_kiocb *req; 211 212 io_for_each_link(req, head) { 213 if (req->flags & REQ_F_INFLIGHT) 214 return true; 215 } 216 return false; 217 } 218 219 /* 220 * As io_match_task() but protected against racing with linked timeouts. 221 * User must not hold timeout_lock. 222 */ 223 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 224 bool cancel_all) 225 { 226 bool matched; 227 228 if (task && head->task != task) 229 return false; 230 if (cancel_all) 231 return true; 232 233 if (head->flags & REQ_F_LINK_TIMEOUT) { 234 struct io_ring_ctx *ctx = head->ctx; 235 236 /* protect against races with linked timeouts */ 237 spin_lock_irq(&ctx->timeout_lock); 238 matched = io_match_linked(head); 239 spin_unlock_irq(&ctx->timeout_lock); 240 } else { 241 matched = io_match_linked(head); 242 } 243 return matched; 244 } 245 246 static inline void req_fail_link_node(struct io_kiocb *req, int res) 247 { 248 req_set_fail(req); 249 io_req_set_res(req, res, 0); 250 } 251 252 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 253 { 254 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 255 } 256 257 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 258 { 259 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 260 261 complete(&ctx->ref_comp); 262 } 263 264 static __cold void io_fallback_req_func(struct work_struct *work) 265 { 266 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 267 fallback_work.work); 268 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 269 struct io_kiocb *req, *tmp; 270 struct io_tw_state ts = { .locked = true, }; 271 272 mutex_lock(&ctx->uring_lock); 273 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 274 req->io_task_work.func(req, &ts); 275 if (WARN_ON_ONCE(!ts.locked)) 276 return; 277 io_submit_flush_completions(ctx); 278 mutex_unlock(&ctx->uring_lock); 279 } 280 281 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 282 { 283 unsigned hash_buckets = 1U << bits; 284 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 285 286 table->hbs = kmalloc(hash_size, GFP_KERNEL); 287 if (!table->hbs) 288 return -ENOMEM; 289 290 table->hash_bits = bits; 291 init_hash_table(table, hash_buckets); 292 return 0; 293 } 294 295 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 296 { 297 struct io_ring_ctx *ctx; 298 int hash_bits; 299 300 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 301 if (!ctx) 302 return NULL; 303 304 xa_init(&ctx->io_bl_xa); 305 306 /* 307 * Use 5 bits less than the max cq entries, that should give us around 308 * 32 entries per hash list if totally full and uniformly spread, but 309 * don't keep too many buckets to not overconsume memory. 310 */ 311 hash_bits = ilog2(p->cq_entries) - 5; 312 hash_bits = clamp(hash_bits, 1, 8); 313 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 314 goto err; 315 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 316 goto err; 317 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 318 0, GFP_KERNEL)) 319 goto err; 320 321 ctx->flags = p->flags; 322 init_waitqueue_head(&ctx->sqo_sq_wait); 323 INIT_LIST_HEAD(&ctx->sqd_list); 324 INIT_LIST_HEAD(&ctx->cq_overflow_list); 325 INIT_LIST_HEAD(&ctx->io_buffers_cache); 326 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 327 sizeof(struct io_rsrc_node)); 328 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, 329 sizeof(struct async_poll)); 330 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 331 sizeof(struct io_async_msghdr)); 332 init_completion(&ctx->ref_comp); 333 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 334 mutex_init(&ctx->uring_lock); 335 init_waitqueue_head(&ctx->cq_wait); 336 init_waitqueue_head(&ctx->poll_wq); 337 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 338 spin_lock_init(&ctx->completion_lock); 339 spin_lock_init(&ctx->timeout_lock); 340 INIT_WQ_LIST(&ctx->iopoll_list); 341 INIT_LIST_HEAD(&ctx->io_buffers_pages); 342 INIT_LIST_HEAD(&ctx->io_buffers_comp); 343 INIT_LIST_HEAD(&ctx->defer_list); 344 INIT_LIST_HEAD(&ctx->timeout_list); 345 INIT_LIST_HEAD(&ctx->ltimeout_list); 346 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 347 init_llist_head(&ctx->work_llist); 348 INIT_LIST_HEAD(&ctx->tctx_list); 349 ctx->submit_state.free_list.next = NULL; 350 INIT_WQ_LIST(&ctx->locked_free_list); 351 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 352 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 353 return ctx; 354 err: 355 kfree(ctx->cancel_table.hbs); 356 kfree(ctx->cancel_table_locked.hbs); 357 kfree(ctx->io_bl); 358 xa_destroy(&ctx->io_bl_xa); 359 kfree(ctx); 360 return NULL; 361 } 362 363 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 364 { 365 struct io_rings *r = ctx->rings; 366 367 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 368 ctx->cq_extra--; 369 } 370 371 static bool req_need_defer(struct io_kiocb *req, u32 seq) 372 { 373 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 374 struct io_ring_ctx *ctx = req->ctx; 375 376 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 377 } 378 379 return false; 380 } 381 382 static void io_clean_op(struct io_kiocb *req) 383 { 384 if (req->flags & REQ_F_BUFFER_SELECTED) { 385 spin_lock(&req->ctx->completion_lock); 386 io_put_kbuf_comp(req); 387 spin_unlock(&req->ctx->completion_lock); 388 } 389 390 if (req->flags & REQ_F_NEED_CLEANUP) { 391 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 392 393 if (def->cleanup) 394 def->cleanup(req); 395 } 396 if ((req->flags & REQ_F_POLLED) && req->apoll) { 397 kfree(req->apoll->double_poll); 398 kfree(req->apoll); 399 req->apoll = NULL; 400 } 401 if (req->flags & REQ_F_INFLIGHT) { 402 struct io_uring_task *tctx = req->task->io_uring; 403 404 atomic_dec(&tctx->inflight_tracked); 405 } 406 if (req->flags & REQ_F_CREDS) 407 put_cred(req->creds); 408 if (req->flags & REQ_F_ASYNC_DATA) { 409 kfree(req->async_data); 410 req->async_data = NULL; 411 } 412 req->flags &= ~IO_REQ_CLEAN_FLAGS; 413 } 414 415 static inline void io_req_track_inflight(struct io_kiocb *req) 416 { 417 if (!(req->flags & REQ_F_INFLIGHT)) { 418 req->flags |= REQ_F_INFLIGHT; 419 atomic_inc(&req->task->io_uring->inflight_tracked); 420 } 421 } 422 423 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 424 { 425 if (WARN_ON_ONCE(!req->link)) 426 return NULL; 427 428 req->flags &= ~REQ_F_ARM_LTIMEOUT; 429 req->flags |= REQ_F_LINK_TIMEOUT; 430 431 /* linked timeouts should have two refs once prep'ed */ 432 io_req_set_refcount(req); 433 __io_req_set_refcount(req->link, 2); 434 return req->link; 435 } 436 437 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 438 { 439 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 440 return NULL; 441 return __io_prep_linked_timeout(req); 442 } 443 444 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 445 { 446 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 447 } 448 449 static inline void io_arm_ltimeout(struct io_kiocb *req) 450 { 451 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 452 __io_arm_ltimeout(req); 453 } 454 455 static void io_prep_async_work(struct io_kiocb *req) 456 { 457 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 458 struct io_ring_ctx *ctx = req->ctx; 459 460 if (!(req->flags & REQ_F_CREDS)) { 461 req->flags |= REQ_F_CREDS; 462 req->creds = get_current_cred(); 463 } 464 465 req->work.list.next = NULL; 466 req->work.flags = 0; 467 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 468 if (req->flags & REQ_F_FORCE_ASYNC) 469 req->work.flags |= IO_WQ_WORK_CONCURRENT; 470 471 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 472 req->flags |= io_file_get_flags(req->file); 473 474 if (req->file && (req->flags & REQ_F_ISREG)) { 475 bool should_hash = def->hash_reg_file; 476 477 /* don't serialize this request if the fs doesn't need it */ 478 if (should_hash && (req->file->f_flags & O_DIRECT) && 479 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) 480 should_hash = false; 481 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 482 io_wq_hash_work(&req->work, file_inode(req->file)); 483 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 484 if (def->unbound_nonreg_file) 485 req->work.flags |= IO_WQ_WORK_UNBOUND; 486 } 487 } 488 489 static void io_prep_async_link(struct io_kiocb *req) 490 { 491 struct io_kiocb *cur; 492 493 if (req->flags & REQ_F_LINK_TIMEOUT) { 494 struct io_ring_ctx *ctx = req->ctx; 495 496 spin_lock_irq(&ctx->timeout_lock); 497 io_for_each_link(cur, req) 498 io_prep_async_work(cur); 499 spin_unlock_irq(&ctx->timeout_lock); 500 } else { 501 io_for_each_link(cur, req) 502 io_prep_async_work(cur); 503 } 504 } 505 506 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) 507 { 508 struct io_kiocb *link = io_prep_linked_timeout(req); 509 struct io_uring_task *tctx = req->task->io_uring; 510 511 BUG_ON(!tctx); 512 BUG_ON(!tctx->io_wq); 513 514 /* init ->work of the whole link before punting */ 515 io_prep_async_link(req); 516 517 /* 518 * Not expected to happen, but if we do have a bug where this _can_ 519 * happen, catch it here and ensure the request is marked as 520 * canceled. That will make io-wq go through the usual work cancel 521 * procedure rather than attempt to run this request (or create a new 522 * worker for it). 523 */ 524 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 525 req->work.flags |= IO_WQ_WORK_CANCEL; 526 527 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 528 io_wq_enqueue(tctx->io_wq, &req->work); 529 if (link) 530 io_queue_linked_timeout(link); 531 } 532 533 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 534 { 535 while (!list_empty(&ctx->defer_list)) { 536 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 537 struct io_defer_entry, list); 538 539 if (req_need_defer(de->req, de->seq)) 540 break; 541 list_del_init(&de->list); 542 io_req_task_queue(de->req); 543 kfree(de); 544 } 545 } 546 547 548 static void io_eventfd_ops(struct rcu_head *rcu) 549 { 550 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 551 int ops = atomic_xchg(&ev_fd->ops, 0); 552 553 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 554 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 555 556 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 557 * ordering in a race but if references are 0 we know we have to free 558 * it regardless. 559 */ 560 if (atomic_dec_and_test(&ev_fd->refs)) { 561 eventfd_ctx_put(ev_fd->cq_ev_fd); 562 kfree(ev_fd); 563 } 564 } 565 566 static void io_eventfd_signal(struct io_ring_ctx *ctx) 567 { 568 struct io_ev_fd *ev_fd = NULL; 569 570 rcu_read_lock(); 571 /* 572 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 573 * and eventfd_signal 574 */ 575 ev_fd = rcu_dereference(ctx->io_ev_fd); 576 577 /* 578 * Check again if ev_fd exists incase an io_eventfd_unregister call 579 * completed between the NULL check of ctx->io_ev_fd at the start of 580 * the function and rcu_read_lock. 581 */ 582 if (unlikely(!ev_fd)) 583 goto out; 584 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 585 goto out; 586 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 587 goto out; 588 589 if (likely(eventfd_signal_allowed())) { 590 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 591 } else { 592 atomic_inc(&ev_fd->refs); 593 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 594 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 595 else 596 atomic_dec(&ev_fd->refs); 597 } 598 599 out: 600 rcu_read_unlock(); 601 } 602 603 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 604 { 605 bool skip; 606 607 spin_lock(&ctx->completion_lock); 608 609 /* 610 * Eventfd should only get triggered when at least one event has been 611 * posted. Some applications rely on the eventfd notification count 612 * only changing IFF a new CQE has been added to the CQ ring. There's 613 * no depedency on 1:1 relationship between how many times this 614 * function is called (and hence the eventfd count) and number of CQEs 615 * posted to the CQ ring. 616 */ 617 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 618 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 619 spin_unlock(&ctx->completion_lock); 620 if (skip) 621 return; 622 623 io_eventfd_signal(ctx); 624 } 625 626 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 627 { 628 if (ctx->poll_activated) 629 io_poll_wq_wake(ctx); 630 if (ctx->off_timeout_used) 631 io_flush_timeouts(ctx); 632 if (ctx->drain_active) { 633 spin_lock(&ctx->completion_lock); 634 io_queue_deferred(ctx); 635 spin_unlock(&ctx->completion_lock); 636 } 637 if (ctx->has_evfd) 638 io_eventfd_flush_signal(ctx); 639 } 640 641 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 642 { 643 if (!ctx->lockless_cq) 644 spin_lock(&ctx->completion_lock); 645 } 646 647 static inline void io_cq_lock(struct io_ring_ctx *ctx) 648 __acquires(ctx->completion_lock) 649 { 650 spin_lock(&ctx->completion_lock); 651 } 652 653 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 654 { 655 io_commit_cqring(ctx); 656 if (!ctx->task_complete) { 657 if (!ctx->lockless_cq) 658 spin_unlock(&ctx->completion_lock); 659 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 660 if (!ctx->syscall_iopoll) 661 io_cqring_wake(ctx); 662 } 663 io_commit_cqring_flush(ctx); 664 } 665 666 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 667 __releases(ctx->completion_lock) 668 { 669 io_commit_cqring(ctx); 670 spin_unlock(&ctx->completion_lock); 671 io_cqring_wake(ctx); 672 io_commit_cqring_flush(ctx); 673 } 674 675 /* Returns true if there are no backlogged entries after the flush */ 676 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 677 { 678 struct io_overflow_cqe *ocqe; 679 LIST_HEAD(list); 680 681 spin_lock(&ctx->completion_lock); 682 list_splice_init(&ctx->cq_overflow_list, &list); 683 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 684 spin_unlock(&ctx->completion_lock); 685 686 while (!list_empty(&list)) { 687 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 688 list_del(&ocqe->list); 689 kfree(ocqe); 690 } 691 } 692 693 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 694 { 695 size_t cqe_size = sizeof(struct io_uring_cqe); 696 697 if (__io_cqring_events(ctx) == ctx->cq_entries) 698 return; 699 700 if (ctx->flags & IORING_SETUP_CQE32) 701 cqe_size <<= 1; 702 703 io_cq_lock(ctx); 704 while (!list_empty(&ctx->cq_overflow_list)) { 705 struct io_uring_cqe *cqe; 706 struct io_overflow_cqe *ocqe; 707 708 if (!io_get_cqe_overflow(ctx, &cqe, true)) 709 break; 710 ocqe = list_first_entry(&ctx->cq_overflow_list, 711 struct io_overflow_cqe, list); 712 memcpy(cqe, &ocqe->cqe, cqe_size); 713 list_del(&ocqe->list); 714 kfree(ocqe); 715 } 716 717 if (list_empty(&ctx->cq_overflow_list)) { 718 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 719 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 720 } 721 io_cq_unlock_post(ctx); 722 } 723 724 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 725 { 726 /* iopoll syncs against uring_lock, not completion_lock */ 727 if (ctx->flags & IORING_SETUP_IOPOLL) 728 mutex_lock(&ctx->uring_lock); 729 __io_cqring_overflow_flush(ctx); 730 if (ctx->flags & IORING_SETUP_IOPOLL) 731 mutex_unlock(&ctx->uring_lock); 732 } 733 734 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 735 { 736 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 737 io_cqring_do_overflow_flush(ctx); 738 } 739 740 /* can be called by any task */ 741 static void io_put_task_remote(struct task_struct *task) 742 { 743 struct io_uring_task *tctx = task->io_uring; 744 745 percpu_counter_sub(&tctx->inflight, 1); 746 if (unlikely(atomic_read(&tctx->in_cancel))) 747 wake_up(&tctx->wait); 748 put_task_struct(task); 749 } 750 751 /* used by a task to put its own references */ 752 static void io_put_task_local(struct task_struct *task) 753 { 754 task->io_uring->cached_refs++; 755 } 756 757 /* must to be called somewhat shortly after putting a request */ 758 static inline void io_put_task(struct task_struct *task) 759 { 760 if (likely(task == current)) 761 io_put_task_local(task); 762 else 763 io_put_task_remote(task); 764 } 765 766 void io_task_refs_refill(struct io_uring_task *tctx) 767 { 768 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 769 770 percpu_counter_add(&tctx->inflight, refill); 771 refcount_add(refill, ¤t->usage); 772 tctx->cached_refs += refill; 773 } 774 775 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 776 { 777 struct io_uring_task *tctx = task->io_uring; 778 unsigned int refs = tctx->cached_refs; 779 780 if (refs) { 781 tctx->cached_refs = 0; 782 percpu_counter_sub(&tctx->inflight, refs); 783 put_task_struct_many(task, refs); 784 } 785 } 786 787 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 788 s32 res, u32 cflags, u64 extra1, u64 extra2) 789 { 790 struct io_overflow_cqe *ocqe; 791 size_t ocq_size = sizeof(struct io_overflow_cqe); 792 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 793 794 lockdep_assert_held(&ctx->completion_lock); 795 796 if (is_cqe32) 797 ocq_size += sizeof(struct io_uring_cqe); 798 799 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 800 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 801 if (!ocqe) { 802 /* 803 * If we're in ring overflow flush mode, or in task cancel mode, 804 * or cannot allocate an overflow entry, then we need to drop it 805 * on the floor. 806 */ 807 io_account_cq_overflow(ctx); 808 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 809 return false; 810 } 811 if (list_empty(&ctx->cq_overflow_list)) { 812 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 813 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 814 815 } 816 ocqe->cqe.user_data = user_data; 817 ocqe->cqe.res = res; 818 ocqe->cqe.flags = cflags; 819 if (is_cqe32) { 820 ocqe->cqe.big_cqe[0] = extra1; 821 ocqe->cqe.big_cqe[1] = extra2; 822 } 823 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 824 return true; 825 } 826 827 void io_req_cqe_overflow(struct io_kiocb *req) 828 { 829 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 830 req->cqe.res, req->cqe.flags, 831 req->big_cqe.extra1, req->big_cqe.extra2); 832 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 833 } 834 835 /* 836 * writes to the cq entry need to come after reading head; the 837 * control dependency is enough as we're using WRITE_ONCE to 838 * fill the cq entry 839 */ 840 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 841 { 842 struct io_rings *rings = ctx->rings; 843 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 844 unsigned int free, queued, len; 845 846 /* 847 * Posting into the CQ when there are pending overflowed CQEs may break 848 * ordering guarantees, which will affect links, F_MORE users and more. 849 * Force overflow the completion. 850 */ 851 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 852 return false; 853 854 /* userspace may cheat modifying the tail, be safe and do min */ 855 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 856 free = ctx->cq_entries - queued; 857 /* we need a contiguous range, limit based on the current array offset */ 858 len = min(free, ctx->cq_entries - off); 859 if (!len) 860 return false; 861 862 if (ctx->flags & IORING_SETUP_CQE32) { 863 off <<= 1; 864 len <<= 1; 865 } 866 867 ctx->cqe_cached = &rings->cqes[off]; 868 ctx->cqe_sentinel = ctx->cqe_cached + len; 869 return true; 870 } 871 872 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 873 u32 cflags) 874 { 875 struct io_uring_cqe *cqe; 876 877 ctx->cq_extra++; 878 879 /* 880 * If we can't get a cq entry, userspace overflowed the 881 * submission (by quite a lot). Increment the overflow count in 882 * the ring. 883 */ 884 if (likely(io_get_cqe(ctx, &cqe))) { 885 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 886 887 WRITE_ONCE(cqe->user_data, user_data); 888 WRITE_ONCE(cqe->res, res); 889 WRITE_ONCE(cqe->flags, cflags); 890 891 if (ctx->flags & IORING_SETUP_CQE32) { 892 WRITE_ONCE(cqe->big_cqe[0], 0); 893 WRITE_ONCE(cqe->big_cqe[1], 0); 894 } 895 return true; 896 } 897 return false; 898 } 899 900 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 901 __must_hold(&ctx->uring_lock) 902 { 903 struct io_submit_state *state = &ctx->submit_state; 904 unsigned int i; 905 906 lockdep_assert_held(&ctx->uring_lock); 907 for (i = 0; i < state->cqes_count; i++) { 908 struct io_uring_cqe *cqe = &ctx->completion_cqes[i]; 909 910 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 911 if (ctx->lockless_cq) { 912 spin_lock(&ctx->completion_lock); 913 io_cqring_event_overflow(ctx, cqe->user_data, 914 cqe->res, cqe->flags, 0, 0); 915 spin_unlock(&ctx->completion_lock); 916 } else { 917 io_cqring_event_overflow(ctx, cqe->user_data, 918 cqe->res, cqe->flags, 0, 0); 919 } 920 } 921 } 922 state->cqes_count = 0; 923 } 924 925 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 926 bool allow_overflow) 927 { 928 bool filled; 929 930 io_cq_lock(ctx); 931 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 932 if (!filled && allow_overflow) 933 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 934 935 io_cq_unlock_post(ctx); 936 return filled; 937 } 938 939 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 940 { 941 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 942 } 943 944 /* 945 * A helper for multishot requests posting additional CQEs. 946 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 947 */ 948 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags) 949 { 950 struct io_ring_ctx *ctx = req->ctx; 951 u64 user_data = req->cqe.user_data; 952 struct io_uring_cqe *cqe; 953 954 if (!defer) 955 return __io_post_aux_cqe(ctx, user_data, res, cflags, false); 956 957 lockdep_assert_held(&ctx->uring_lock); 958 959 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) { 960 __io_cq_lock(ctx); 961 __io_flush_post_cqes(ctx); 962 /* no need to flush - flush is deferred */ 963 __io_cq_unlock_post(ctx); 964 } 965 966 /* For defered completions this is not as strict as it is otherwise, 967 * however it's main job is to prevent unbounded posted completions, 968 * and in that it works just as well. 969 */ 970 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 971 return false; 972 973 cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++]; 974 cqe->user_data = user_data; 975 cqe->res = res; 976 cqe->flags = cflags; 977 return true; 978 } 979 980 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 981 { 982 struct io_ring_ctx *ctx = req->ctx; 983 struct io_rsrc_node *rsrc_node = NULL; 984 985 io_cq_lock(ctx); 986 if (!(req->flags & REQ_F_CQE_SKIP)) { 987 if (!io_fill_cqe_req(ctx, req)) 988 io_req_cqe_overflow(req); 989 } 990 991 /* 992 * If we're the last reference to this request, add to our locked 993 * free_list cache. 994 */ 995 if (req_ref_put_and_test(req)) { 996 if (req->flags & IO_REQ_LINK_FLAGS) { 997 if (req->flags & IO_DISARM_MASK) 998 io_disarm_next(req); 999 if (req->link) { 1000 io_req_task_queue(req->link); 1001 req->link = NULL; 1002 } 1003 } 1004 io_put_kbuf_comp(req); 1005 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1006 io_clean_op(req); 1007 io_put_file(req); 1008 1009 rsrc_node = req->rsrc_node; 1010 /* 1011 * Selected buffer deallocation in io_clean_op() assumes that 1012 * we don't hold ->completion_lock. Clean them here to avoid 1013 * deadlocks. 1014 */ 1015 io_put_task_remote(req->task); 1016 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1017 ctx->locked_free_nr++; 1018 } 1019 io_cq_unlock_post(ctx); 1020 1021 if (rsrc_node) { 1022 io_ring_submit_lock(ctx, issue_flags); 1023 io_put_rsrc_node(ctx, rsrc_node); 1024 io_ring_submit_unlock(ctx, issue_flags); 1025 } 1026 } 1027 1028 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1029 { 1030 if (req->ctx->task_complete && req->ctx->submitter_task != current) { 1031 req->io_task_work.func = io_req_task_complete; 1032 io_req_task_work_add(req); 1033 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1034 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 1035 __io_req_complete_post(req, issue_flags); 1036 } else { 1037 struct io_ring_ctx *ctx = req->ctx; 1038 1039 mutex_lock(&ctx->uring_lock); 1040 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); 1041 mutex_unlock(&ctx->uring_lock); 1042 } 1043 } 1044 1045 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1046 __must_hold(&ctx->uring_lock) 1047 { 1048 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1049 1050 lockdep_assert_held(&req->ctx->uring_lock); 1051 1052 req_set_fail(req); 1053 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1054 if (def->fail) 1055 def->fail(req); 1056 io_req_complete_defer(req); 1057 } 1058 1059 /* 1060 * Don't initialise the fields below on every allocation, but do that in 1061 * advance and keep them valid across allocations. 1062 */ 1063 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1064 { 1065 req->ctx = ctx; 1066 req->link = NULL; 1067 req->async_data = NULL; 1068 /* not necessary, but safer to zero */ 1069 memset(&req->cqe, 0, sizeof(req->cqe)); 1070 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 1071 } 1072 1073 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1074 struct io_submit_state *state) 1075 { 1076 spin_lock(&ctx->completion_lock); 1077 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1078 ctx->locked_free_nr = 0; 1079 spin_unlock(&ctx->completion_lock); 1080 } 1081 1082 /* 1083 * A request might get retired back into the request caches even before opcode 1084 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1085 * Because of that, io_alloc_req() should be called only under ->uring_lock 1086 * and with extra caution to not get a request that is still worked on. 1087 */ 1088 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1089 __must_hold(&ctx->uring_lock) 1090 { 1091 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1092 void *reqs[IO_REQ_ALLOC_BATCH]; 1093 int ret, i; 1094 1095 /* 1096 * If we have more than a batch's worth of requests in our IRQ side 1097 * locked cache, grab the lock and move them over to our submission 1098 * side cache. 1099 */ 1100 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1101 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1102 if (!io_req_cache_empty(ctx)) 1103 return true; 1104 } 1105 1106 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1107 1108 /* 1109 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1110 * retry single alloc to be on the safe side. 1111 */ 1112 if (unlikely(ret <= 0)) { 1113 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1114 if (!reqs[0]) 1115 return false; 1116 ret = 1; 1117 } 1118 1119 percpu_ref_get_many(&ctx->refs, ret); 1120 for (i = 0; i < ret; i++) { 1121 struct io_kiocb *req = reqs[i]; 1122 1123 io_preinit_req(req, ctx); 1124 io_req_add_to_cache(req, ctx); 1125 } 1126 return true; 1127 } 1128 1129 __cold void io_free_req(struct io_kiocb *req) 1130 { 1131 /* refs were already put, restore them for io_req_task_complete() */ 1132 req->flags &= ~REQ_F_REFCOUNT; 1133 /* we only want to free it, don't post CQEs */ 1134 req->flags |= REQ_F_CQE_SKIP; 1135 req->io_task_work.func = io_req_task_complete; 1136 io_req_task_work_add(req); 1137 } 1138 1139 static void __io_req_find_next_prep(struct io_kiocb *req) 1140 { 1141 struct io_ring_ctx *ctx = req->ctx; 1142 1143 spin_lock(&ctx->completion_lock); 1144 io_disarm_next(req); 1145 spin_unlock(&ctx->completion_lock); 1146 } 1147 1148 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1149 { 1150 struct io_kiocb *nxt; 1151 1152 /* 1153 * If LINK is set, we have dependent requests in this chain. If we 1154 * didn't fail this request, queue the first one up, moving any other 1155 * dependencies to the next request. In case of failure, fail the rest 1156 * of the chain. 1157 */ 1158 if (unlikely(req->flags & IO_DISARM_MASK)) 1159 __io_req_find_next_prep(req); 1160 nxt = req->link; 1161 req->link = NULL; 1162 return nxt; 1163 } 1164 1165 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1166 { 1167 if (!ctx) 1168 return; 1169 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1170 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1171 if (ts->locked) { 1172 io_submit_flush_completions(ctx); 1173 mutex_unlock(&ctx->uring_lock); 1174 ts->locked = false; 1175 } 1176 percpu_ref_put(&ctx->refs); 1177 } 1178 1179 static unsigned int handle_tw_list(struct llist_node *node, 1180 struct io_ring_ctx **ctx, 1181 struct io_tw_state *ts, 1182 struct llist_node *last) 1183 { 1184 unsigned int count = 0; 1185 1186 while (node && node != last) { 1187 struct llist_node *next = node->next; 1188 struct io_kiocb *req = container_of(node, struct io_kiocb, 1189 io_task_work.node); 1190 1191 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1192 1193 if (req->ctx != *ctx) { 1194 ctx_flush_and_put(*ctx, ts); 1195 *ctx = req->ctx; 1196 /* if not contended, grab and improve batching */ 1197 ts->locked = mutex_trylock(&(*ctx)->uring_lock); 1198 percpu_ref_get(&(*ctx)->refs); 1199 } 1200 INDIRECT_CALL_2(req->io_task_work.func, 1201 io_poll_task_func, io_req_rw_complete, 1202 req, ts); 1203 node = next; 1204 count++; 1205 if (unlikely(need_resched())) { 1206 ctx_flush_and_put(*ctx, ts); 1207 *ctx = NULL; 1208 cond_resched(); 1209 } 1210 } 1211 1212 return count; 1213 } 1214 1215 /** 1216 * io_llist_xchg - swap all entries in a lock-less list 1217 * @head: the head of lock-less list to delete all entries 1218 * @new: new entry as the head of the list 1219 * 1220 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1221 * The order of entries returned is from the newest to the oldest added one. 1222 */ 1223 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1224 struct llist_node *new) 1225 { 1226 return xchg(&head->first, new); 1227 } 1228 1229 /** 1230 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1231 * @head: the head of lock-less list to delete all entries 1232 * @old: expected old value of the first entry of the list 1233 * @new: new entry as the head of the list 1234 * 1235 * perform a cmpxchg on the first entry of the list. 1236 */ 1237 1238 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1239 struct llist_node *old, 1240 struct llist_node *new) 1241 { 1242 return cmpxchg(&head->first, old, new); 1243 } 1244 1245 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1246 { 1247 struct llist_node *node = llist_del_all(&tctx->task_list); 1248 struct io_ring_ctx *last_ctx = NULL; 1249 struct io_kiocb *req; 1250 1251 while (node) { 1252 req = container_of(node, struct io_kiocb, io_task_work.node); 1253 node = node->next; 1254 if (sync && last_ctx != req->ctx) { 1255 if (last_ctx) { 1256 flush_delayed_work(&last_ctx->fallback_work); 1257 percpu_ref_put(&last_ctx->refs); 1258 } 1259 last_ctx = req->ctx; 1260 percpu_ref_get(&last_ctx->refs); 1261 } 1262 if (llist_add(&req->io_task_work.node, 1263 &req->ctx->fallback_llist)) 1264 schedule_delayed_work(&req->ctx->fallback_work, 1); 1265 } 1266 1267 if (last_ctx) { 1268 flush_delayed_work(&last_ctx->fallback_work); 1269 percpu_ref_put(&last_ctx->refs); 1270 } 1271 } 1272 1273 void tctx_task_work(struct callback_head *cb) 1274 { 1275 struct io_tw_state ts = {}; 1276 struct io_ring_ctx *ctx = NULL; 1277 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1278 task_work); 1279 struct llist_node fake = {}; 1280 struct llist_node *node; 1281 unsigned int loops = 0; 1282 unsigned int count = 0; 1283 1284 if (unlikely(current->flags & PF_EXITING)) { 1285 io_fallback_tw(tctx, true); 1286 return; 1287 } 1288 1289 do { 1290 loops++; 1291 node = io_llist_xchg(&tctx->task_list, &fake); 1292 count += handle_tw_list(node, &ctx, &ts, &fake); 1293 1294 /* skip expensive cmpxchg if there are items in the list */ 1295 if (READ_ONCE(tctx->task_list.first) != &fake) 1296 continue; 1297 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) { 1298 io_submit_flush_completions(ctx); 1299 if (READ_ONCE(tctx->task_list.first) != &fake) 1300 continue; 1301 } 1302 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1303 } while (node != &fake); 1304 1305 ctx_flush_and_put(ctx, &ts); 1306 1307 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1308 if (unlikely(atomic_read(&tctx->in_cancel))) 1309 io_uring_drop_tctx_refs(current); 1310 1311 trace_io_uring_task_work_run(tctx, count, loops); 1312 } 1313 1314 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1315 { 1316 struct io_ring_ctx *ctx = req->ctx; 1317 unsigned nr_wait, nr_tw, nr_tw_prev; 1318 struct llist_node *first; 1319 1320 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1321 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1322 1323 first = READ_ONCE(ctx->work_llist.first); 1324 do { 1325 nr_tw_prev = 0; 1326 if (first) { 1327 struct io_kiocb *first_req = container_of(first, 1328 struct io_kiocb, 1329 io_task_work.node); 1330 /* 1331 * Might be executed at any moment, rely on 1332 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1333 */ 1334 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1335 } 1336 nr_tw = nr_tw_prev + 1; 1337 /* Large enough to fail the nr_wait comparison below */ 1338 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1339 nr_tw = -1U; 1340 1341 req->nr_tw = nr_tw; 1342 req->io_task_work.node.next = first; 1343 } while (!try_cmpxchg(&ctx->work_llist.first, &first, 1344 &req->io_task_work.node)); 1345 1346 if (!first) { 1347 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1348 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1349 if (ctx->has_evfd) 1350 io_eventfd_signal(ctx); 1351 } 1352 1353 nr_wait = atomic_read(&ctx->cq_wait_nr); 1354 /* no one is waiting */ 1355 if (!nr_wait) 1356 return; 1357 /* either not enough or the previous add has already woken it up */ 1358 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait) 1359 return; 1360 /* pairs with set_current_state() in io_cqring_wait() */ 1361 smp_mb__after_atomic(); 1362 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1363 } 1364 1365 static void io_req_normal_work_add(struct io_kiocb *req) 1366 { 1367 struct io_uring_task *tctx = req->task->io_uring; 1368 struct io_ring_ctx *ctx = req->ctx; 1369 1370 /* task_work already pending, we're done */ 1371 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1372 return; 1373 1374 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1375 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1376 1377 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1378 return; 1379 1380 io_fallback_tw(tctx, false); 1381 } 1382 1383 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1384 { 1385 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1386 rcu_read_lock(); 1387 io_req_local_work_add(req, flags); 1388 rcu_read_unlock(); 1389 } else { 1390 io_req_normal_work_add(req); 1391 } 1392 } 1393 1394 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1395 { 1396 struct llist_node *node; 1397 1398 node = llist_del_all(&ctx->work_llist); 1399 while (node) { 1400 struct io_kiocb *req = container_of(node, struct io_kiocb, 1401 io_task_work.node); 1402 1403 node = node->next; 1404 io_req_normal_work_add(req); 1405 } 1406 } 1407 1408 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1409 { 1410 struct llist_node *node; 1411 unsigned int loops = 0; 1412 int ret = 0; 1413 1414 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1415 return -EEXIST; 1416 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1417 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1418 again: 1419 /* 1420 * llists are in reverse order, flip it back the right way before 1421 * running the pending items. 1422 */ 1423 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1424 while (node) { 1425 struct llist_node *next = node->next; 1426 struct io_kiocb *req = container_of(node, struct io_kiocb, 1427 io_task_work.node); 1428 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1429 INDIRECT_CALL_2(req->io_task_work.func, 1430 io_poll_task_func, io_req_rw_complete, 1431 req, ts); 1432 ret++; 1433 node = next; 1434 } 1435 loops++; 1436 1437 if (!llist_empty(&ctx->work_llist)) 1438 goto again; 1439 if (ts->locked) { 1440 io_submit_flush_completions(ctx); 1441 if (!llist_empty(&ctx->work_llist)) 1442 goto again; 1443 } 1444 trace_io_uring_local_work_run(ctx, ret, loops); 1445 return ret; 1446 } 1447 1448 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx) 1449 { 1450 struct io_tw_state ts = { .locked = true, }; 1451 int ret; 1452 1453 if (llist_empty(&ctx->work_llist)) 1454 return 0; 1455 1456 ret = __io_run_local_work(ctx, &ts); 1457 /* shouldn't happen! */ 1458 if (WARN_ON_ONCE(!ts.locked)) 1459 mutex_lock(&ctx->uring_lock); 1460 return ret; 1461 } 1462 1463 static int io_run_local_work(struct io_ring_ctx *ctx) 1464 { 1465 struct io_tw_state ts = {}; 1466 int ret; 1467 1468 ts.locked = mutex_trylock(&ctx->uring_lock); 1469 ret = __io_run_local_work(ctx, &ts); 1470 if (ts.locked) 1471 mutex_unlock(&ctx->uring_lock); 1472 1473 return ret; 1474 } 1475 1476 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1477 { 1478 io_tw_lock(req->ctx, ts); 1479 io_req_defer_failed(req, req->cqe.res); 1480 } 1481 1482 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1483 { 1484 io_tw_lock(req->ctx, ts); 1485 /* req->task == current here, checking PF_EXITING is safe */ 1486 if (unlikely(req->task->flags & PF_EXITING)) 1487 io_req_defer_failed(req, -EFAULT); 1488 else if (req->flags & REQ_F_FORCE_ASYNC) 1489 io_queue_iowq(req, ts); 1490 else 1491 io_queue_sqe(req); 1492 } 1493 1494 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1495 { 1496 io_req_set_res(req, ret, 0); 1497 req->io_task_work.func = io_req_task_cancel; 1498 io_req_task_work_add(req); 1499 } 1500 1501 void io_req_task_queue(struct io_kiocb *req) 1502 { 1503 req->io_task_work.func = io_req_task_submit; 1504 io_req_task_work_add(req); 1505 } 1506 1507 void io_queue_next(struct io_kiocb *req) 1508 { 1509 struct io_kiocb *nxt = io_req_find_next(req); 1510 1511 if (nxt) 1512 io_req_task_queue(nxt); 1513 } 1514 1515 static void io_free_batch_list(struct io_ring_ctx *ctx, 1516 struct io_wq_work_node *node) 1517 __must_hold(&ctx->uring_lock) 1518 { 1519 do { 1520 struct io_kiocb *req = container_of(node, struct io_kiocb, 1521 comp_list); 1522 1523 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1524 if (req->flags & REQ_F_REFCOUNT) { 1525 node = req->comp_list.next; 1526 if (!req_ref_put_and_test(req)) 1527 continue; 1528 } 1529 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1530 struct async_poll *apoll = req->apoll; 1531 1532 if (apoll->double_poll) 1533 kfree(apoll->double_poll); 1534 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1535 kfree(apoll); 1536 req->flags &= ~REQ_F_POLLED; 1537 } 1538 if (req->flags & IO_REQ_LINK_FLAGS) 1539 io_queue_next(req); 1540 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1541 io_clean_op(req); 1542 } 1543 io_put_file(req); 1544 1545 io_req_put_rsrc_locked(req, ctx); 1546 1547 io_put_task(req->task); 1548 node = req->comp_list.next; 1549 io_req_add_to_cache(req, ctx); 1550 } while (node); 1551 } 1552 1553 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1554 __must_hold(&ctx->uring_lock) 1555 { 1556 struct io_submit_state *state = &ctx->submit_state; 1557 struct io_wq_work_node *node; 1558 1559 __io_cq_lock(ctx); 1560 /* must come first to preserve CQE ordering in failure cases */ 1561 if (state->cqes_count) 1562 __io_flush_post_cqes(ctx); 1563 __wq_list_for_each(node, &state->compl_reqs) { 1564 struct io_kiocb *req = container_of(node, struct io_kiocb, 1565 comp_list); 1566 1567 if (!(req->flags & REQ_F_CQE_SKIP) && 1568 unlikely(!io_fill_cqe_req(ctx, req))) { 1569 if (ctx->lockless_cq) { 1570 spin_lock(&ctx->completion_lock); 1571 io_req_cqe_overflow(req); 1572 spin_unlock(&ctx->completion_lock); 1573 } else { 1574 io_req_cqe_overflow(req); 1575 } 1576 } 1577 } 1578 __io_cq_unlock_post(ctx); 1579 1580 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1581 io_free_batch_list(ctx, state->compl_reqs.first); 1582 INIT_WQ_LIST(&state->compl_reqs); 1583 } 1584 } 1585 1586 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1587 { 1588 /* See comment at the top of this file */ 1589 smp_rmb(); 1590 return __io_cqring_events(ctx); 1591 } 1592 1593 /* 1594 * We can't just wait for polled events to come to us, we have to actively 1595 * find and complete them. 1596 */ 1597 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1598 { 1599 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1600 return; 1601 1602 mutex_lock(&ctx->uring_lock); 1603 while (!wq_list_empty(&ctx->iopoll_list)) { 1604 /* let it sleep and repeat later if can't complete a request */ 1605 if (io_do_iopoll(ctx, true) == 0) 1606 break; 1607 /* 1608 * Ensure we allow local-to-the-cpu processing to take place, 1609 * in this case we need to ensure that we reap all events. 1610 * Also let task_work, etc. to progress by releasing the mutex 1611 */ 1612 if (need_resched()) { 1613 mutex_unlock(&ctx->uring_lock); 1614 cond_resched(); 1615 mutex_lock(&ctx->uring_lock); 1616 } 1617 } 1618 mutex_unlock(&ctx->uring_lock); 1619 } 1620 1621 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1622 { 1623 unsigned int nr_events = 0; 1624 unsigned long check_cq; 1625 1626 if (!io_allowed_run_tw(ctx)) 1627 return -EEXIST; 1628 1629 check_cq = READ_ONCE(ctx->check_cq); 1630 if (unlikely(check_cq)) { 1631 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1632 __io_cqring_overflow_flush(ctx); 1633 /* 1634 * Similarly do not spin if we have not informed the user of any 1635 * dropped CQE. 1636 */ 1637 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1638 return -EBADR; 1639 } 1640 /* 1641 * Don't enter poll loop if we already have events pending. 1642 * If we do, we can potentially be spinning for commands that 1643 * already triggered a CQE (eg in error). 1644 */ 1645 if (io_cqring_events(ctx)) 1646 return 0; 1647 1648 do { 1649 int ret = 0; 1650 1651 /* 1652 * If a submit got punted to a workqueue, we can have the 1653 * application entering polling for a command before it gets 1654 * issued. That app will hold the uring_lock for the duration 1655 * of the poll right here, so we need to take a breather every 1656 * now and then to ensure that the issue has a chance to add 1657 * the poll to the issued list. Otherwise we can spin here 1658 * forever, while the workqueue is stuck trying to acquire the 1659 * very same mutex. 1660 */ 1661 if (wq_list_empty(&ctx->iopoll_list) || 1662 io_task_work_pending(ctx)) { 1663 u32 tail = ctx->cached_cq_tail; 1664 1665 (void) io_run_local_work_locked(ctx); 1666 1667 if (task_work_pending(current) || 1668 wq_list_empty(&ctx->iopoll_list)) { 1669 mutex_unlock(&ctx->uring_lock); 1670 io_run_task_work(); 1671 mutex_lock(&ctx->uring_lock); 1672 } 1673 /* some requests don't go through iopoll_list */ 1674 if (tail != ctx->cached_cq_tail || 1675 wq_list_empty(&ctx->iopoll_list)) 1676 break; 1677 } 1678 ret = io_do_iopoll(ctx, !min); 1679 if (unlikely(ret < 0)) 1680 return ret; 1681 1682 if (task_sigpending(current)) 1683 return -EINTR; 1684 if (need_resched()) 1685 break; 1686 1687 nr_events += ret; 1688 } while (nr_events < min); 1689 1690 return 0; 1691 } 1692 1693 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1694 { 1695 if (ts->locked) 1696 io_req_complete_defer(req); 1697 else 1698 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1699 } 1700 1701 /* 1702 * After the iocb has been issued, it's safe to be found on the poll list. 1703 * Adding the kiocb to the list AFTER submission ensures that we don't 1704 * find it from a io_do_iopoll() thread before the issuer is done 1705 * accessing the kiocb cookie. 1706 */ 1707 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1708 { 1709 struct io_ring_ctx *ctx = req->ctx; 1710 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1711 1712 /* workqueue context doesn't hold uring_lock, grab it now */ 1713 if (unlikely(needs_lock)) 1714 mutex_lock(&ctx->uring_lock); 1715 1716 /* 1717 * Track whether we have multiple files in our lists. This will impact 1718 * how we do polling eventually, not spinning if we're on potentially 1719 * different devices. 1720 */ 1721 if (wq_list_empty(&ctx->iopoll_list)) { 1722 ctx->poll_multi_queue = false; 1723 } else if (!ctx->poll_multi_queue) { 1724 struct io_kiocb *list_req; 1725 1726 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1727 comp_list); 1728 if (list_req->file != req->file) 1729 ctx->poll_multi_queue = true; 1730 } 1731 1732 /* 1733 * For fast devices, IO may have already completed. If it has, add 1734 * it to the front so we find it first. 1735 */ 1736 if (READ_ONCE(req->iopoll_completed)) 1737 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1738 else 1739 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1740 1741 if (unlikely(needs_lock)) { 1742 /* 1743 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1744 * in sq thread task context or in io worker task context. If 1745 * current task context is sq thread, we don't need to check 1746 * whether should wake up sq thread. 1747 */ 1748 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1749 wq_has_sleeper(&ctx->sq_data->wait)) 1750 wake_up(&ctx->sq_data->wait); 1751 1752 mutex_unlock(&ctx->uring_lock); 1753 } 1754 } 1755 1756 unsigned int io_file_get_flags(struct file *file) 1757 { 1758 unsigned int res = 0; 1759 1760 if (S_ISREG(file_inode(file)->i_mode)) 1761 res |= REQ_F_ISREG; 1762 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1763 res |= REQ_F_SUPPORT_NOWAIT; 1764 return res; 1765 } 1766 1767 bool io_alloc_async_data(struct io_kiocb *req) 1768 { 1769 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1770 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1771 if (req->async_data) { 1772 req->flags |= REQ_F_ASYNC_DATA; 1773 return false; 1774 } 1775 return true; 1776 } 1777 1778 int io_req_prep_async(struct io_kiocb *req) 1779 { 1780 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1781 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1782 1783 /* assign early for deferred execution for non-fixed file */ 1784 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1785 req->file = io_file_get_normal(req, req->cqe.fd); 1786 if (!cdef->prep_async) 1787 return 0; 1788 if (WARN_ON_ONCE(req_has_async_data(req))) 1789 return -EFAULT; 1790 if (!def->manual_alloc) { 1791 if (io_alloc_async_data(req)) 1792 return -EAGAIN; 1793 } 1794 return cdef->prep_async(req); 1795 } 1796 1797 static u32 io_get_sequence(struct io_kiocb *req) 1798 { 1799 u32 seq = req->ctx->cached_sq_head; 1800 struct io_kiocb *cur; 1801 1802 /* need original cached_sq_head, but it was increased for each req */ 1803 io_for_each_link(cur, req) 1804 seq--; 1805 return seq; 1806 } 1807 1808 static __cold void io_drain_req(struct io_kiocb *req) 1809 __must_hold(&ctx->uring_lock) 1810 { 1811 struct io_ring_ctx *ctx = req->ctx; 1812 struct io_defer_entry *de; 1813 int ret; 1814 u32 seq = io_get_sequence(req); 1815 1816 /* Still need defer if there is pending req in defer list. */ 1817 spin_lock(&ctx->completion_lock); 1818 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1819 spin_unlock(&ctx->completion_lock); 1820 queue: 1821 ctx->drain_active = false; 1822 io_req_task_queue(req); 1823 return; 1824 } 1825 spin_unlock(&ctx->completion_lock); 1826 1827 io_prep_async_link(req); 1828 de = kmalloc(sizeof(*de), GFP_KERNEL); 1829 if (!de) { 1830 ret = -ENOMEM; 1831 io_req_defer_failed(req, ret); 1832 return; 1833 } 1834 1835 spin_lock(&ctx->completion_lock); 1836 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1837 spin_unlock(&ctx->completion_lock); 1838 kfree(de); 1839 goto queue; 1840 } 1841 1842 trace_io_uring_defer(req); 1843 de->req = req; 1844 de->seq = seq; 1845 list_add_tail(&de->list, &ctx->defer_list); 1846 spin_unlock(&ctx->completion_lock); 1847 } 1848 1849 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1850 unsigned int issue_flags) 1851 { 1852 if (req->file || !def->needs_file) 1853 return true; 1854 1855 if (req->flags & REQ_F_FIXED_FILE) 1856 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1857 else 1858 req->file = io_file_get_normal(req, req->cqe.fd); 1859 1860 return !!req->file; 1861 } 1862 1863 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1864 { 1865 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1866 const struct cred *creds = NULL; 1867 int ret; 1868 1869 if (unlikely(!io_assign_file(req, def, issue_flags))) 1870 return -EBADF; 1871 1872 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1873 creds = override_creds(req->creds); 1874 1875 if (!def->audit_skip) 1876 audit_uring_entry(req->opcode); 1877 1878 ret = def->issue(req, issue_flags); 1879 1880 if (!def->audit_skip) 1881 audit_uring_exit(!ret, ret); 1882 1883 if (creds) 1884 revert_creds(creds); 1885 1886 if (ret == IOU_OK) { 1887 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1888 io_req_complete_defer(req); 1889 else 1890 io_req_complete_post(req, issue_flags); 1891 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1892 return ret; 1893 1894 /* If the op doesn't have a file, we're not polling for it */ 1895 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1896 io_iopoll_req_issued(req, issue_flags); 1897 1898 return 0; 1899 } 1900 1901 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1902 { 1903 io_tw_lock(req->ctx, ts); 1904 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1905 IO_URING_F_COMPLETE_DEFER); 1906 } 1907 1908 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1909 { 1910 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1911 struct io_kiocb *nxt = NULL; 1912 1913 if (req_ref_put_and_test(req)) { 1914 if (req->flags & IO_REQ_LINK_FLAGS) 1915 nxt = io_req_find_next(req); 1916 io_free_req(req); 1917 } 1918 return nxt ? &nxt->work : NULL; 1919 } 1920 1921 void io_wq_submit_work(struct io_wq_work *work) 1922 { 1923 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1924 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1925 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1926 bool needs_poll = false; 1927 int ret = 0, err = -ECANCELED; 1928 1929 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1930 if (!(req->flags & REQ_F_REFCOUNT)) 1931 __io_req_set_refcount(req, 2); 1932 else 1933 req_ref_get(req); 1934 1935 io_arm_ltimeout(req); 1936 1937 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1938 if (work->flags & IO_WQ_WORK_CANCEL) { 1939 fail: 1940 io_req_task_queue_fail(req, err); 1941 return; 1942 } 1943 if (!io_assign_file(req, def, issue_flags)) { 1944 err = -EBADF; 1945 work->flags |= IO_WQ_WORK_CANCEL; 1946 goto fail; 1947 } 1948 1949 if (req->flags & REQ_F_FORCE_ASYNC) { 1950 bool opcode_poll = def->pollin || def->pollout; 1951 1952 if (opcode_poll && file_can_poll(req->file)) { 1953 needs_poll = true; 1954 issue_flags |= IO_URING_F_NONBLOCK; 1955 } 1956 } 1957 1958 do { 1959 ret = io_issue_sqe(req, issue_flags); 1960 if (ret != -EAGAIN) 1961 break; 1962 1963 /* 1964 * If REQ_F_NOWAIT is set, then don't wait or retry with 1965 * poll. -EAGAIN is final for that case. 1966 */ 1967 if (req->flags & REQ_F_NOWAIT) 1968 break; 1969 1970 /* 1971 * We can get EAGAIN for iopolled IO even though we're 1972 * forcing a sync submission from here, since we can't 1973 * wait for request slots on the block side. 1974 */ 1975 if (!needs_poll) { 1976 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1977 break; 1978 if (io_wq_worker_stopped()) 1979 break; 1980 cond_resched(); 1981 continue; 1982 } 1983 1984 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1985 return; 1986 /* aborted or ready, in either case retry blocking */ 1987 needs_poll = false; 1988 issue_flags &= ~IO_URING_F_NONBLOCK; 1989 } while (1); 1990 1991 /* avoid locking problems by failing it from a clean context */ 1992 if (ret < 0) 1993 io_req_task_queue_fail(req, ret); 1994 } 1995 1996 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1997 unsigned int issue_flags) 1998 { 1999 struct io_ring_ctx *ctx = req->ctx; 2000 struct io_fixed_file *slot; 2001 struct file *file = NULL; 2002 2003 io_ring_submit_lock(ctx, issue_flags); 2004 2005 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 2006 goto out; 2007 fd = array_index_nospec(fd, ctx->nr_user_files); 2008 slot = io_fixed_file_slot(&ctx->file_table, fd); 2009 file = io_slot_file(slot); 2010 req->flags |= io_slot_flags(slot); 2011 io_req_set_rsrc_node(req, ctx, 0); 2012 out: 2013 io_ring_submit_unlock(ctx, issue_flags); 2014 return file; 2015 } 2016 2017 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 2018 { 2019 struct file *file = fget(fd); 2020 2021 trace_io_uring_file_get(req, fd); 2022 2023 /* we don't allow fixed io_uring files */ 2024 if (file && io_is_uring_fops(file)) 2025 io_req_track_inflight(req); 2026 return file; 2027 } 2028 2029 static void io_queue_async(struct io_kiocb *req, int ret) 2030 __must_hold(&req->ctx->uring_lock) 2031 { 2032 struct io_kiocb *linked_timeout; 2033 2034 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2035 io_req_defer_failed(req, ret); 2036 return; 2037 } 2038 2039 linked_timeout = io_prep_linked_timeout(req); 2040 2041 switch (io_arm_poll_handler(req, 0)) { 2042 case IO_APOLL_READY: 2043 io_kbuf_recycle(req, 0); 2044 io_req_task_queue(req); 2045 break; 2046 case IO_APOLL_ABORTED: 2047 io_kbuf_recycle(req, 0); 2048 io_queue_iowq(req, NULL); 2049 break; 2050 case IO_APOLL_OK: 2051 break; 2052 } 2053 2054 if (linked_timeout) 2055 io_queue_linked_timeout(linked_timeout); 2056 } 2057 2058 static inline void io_queue_sqe(struct io_kiocb *req) 2059 __must_hold(&req->ctx->uring_lock) 2060 { 2061 int ret; 2062 2063 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2064 2065 /* 2066 * We async punt it if the file wasn't marked NOWAIT, or if the file 2067 * doesn't support non-blocking read/write attempts 2068 */ 2069 if (likely(!ret)) 2070 io_arm_ltimeout(req); 2071 else 2072 io_queue_async(req, ret); 2073 } 2074 2075 static void io_queue_sqe_fallback(struct io_kiocb *req) 2076 __must_hold(&req->ctx->uring_lock) 2077 { 2078 if (unlikely(req->flags & REQ_F_FAIL)) { 2079 /* 2080 * We don't submit, fail them all, for that replace hardlinks 2081 * with normal links. Extra REQ_F_LINK is tolerated. 2082 */ 2083 req->flags &= ~REQ_F_HARDLINK; 2084 req->flags |= REQ_F_LINK; 2085 io_req_defer_failed(req, req->cqe.res); 2086 } else { 2087 int ret = io_req_prep_async(req); 2088 2089 if (unlikely(ret)) { 2090 io_req_defer_failed(req, ret); 2091 return; 2092 } 2093 2094 if (unlikely(req->ctx->drain_active)) 2095 io_drain_req(req); 2096 else 2097 io_queue_iowq(req, NULL); 2098 } 2099 } 2100 2101 /* 2102 * Check SQE restrictions (opcode and flags). 2103 * 2104 * Returns 'true' if SQE is allowed, 'false' otherwise. 2105 */ 2106 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2107 struct io_kiocb *req, 2108 unsigned int sqe_flags) 2109 { 2110 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2111 return false; 2112 2113 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2114 ctx->restrictions.sqe_flags_required) 2115 return false; 2116 2117 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2118 ctx->restrictions.sqe_flags_required)) 2119 return false; 2120 2121 return true; 2122 } 2123 2124 static void io_init_req_drain(struct io_kiocb *req) 2125 { 2126 struct io_ring_ctx *ctx = req->ctx; 2127 struct io_kiocb *head = ctx->submit_state.link.head; 2128 2129 ctx->drain_active = true; 2130 if (head) { 2131 /* 2132 * If we need to drain a request in the middle of a link, drain 2133 * the head request and the next request/link after the current 2134 * link. Considering sequential execution of links, 2135 * REQ_F_IO_DRAIN will be maintained for every request of our 2136 * link. 2137 */ 2138 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2139 ctx->drain_next = true; 2140 } 2141 } 2142 2143 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2144 const struct io_uring_sqe *sqe) 2145 __must_hold(&ctx->uring_lock) 2146 { 2147 const struct io_issue_def *def; 2148 unsigned int sqe_flags; 2149 int personality; 2150 u8 opcode; 2151 2152 /* req is partially pre-initialised, see io_preinit_req() */ 2153 req->opcode = opcode = READ_ONCE(sqe->opcode); 2154 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2155 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2156 req->cqe.user_data = READ_ONCE(sqe->user_data); 2157 req->file = NULL; 2158 req->rsrc_node = NULL; 2159 req->task = current; 2160 2161 if (unlikely(opcode >= IORING_OP_LAST)) { 2162 req->opcode = 0; 2163 return -EINVAL; 2164 } 2165 def = &io_issue_defs[opcode]; 2166 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2167 /* enforce forwards compatibility on users */ 2168 if (sqe_flags & ~SQE_VALID_FLAGS) 2169 return -EINVAL; 2170 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2171 if (!def->buffer_select) 2172 return -EOPNOTSUPP; 2173 req->buf_index = READ_ONCE(sqe->buf_group); 2174 } 2175 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2176 ctx->drain_disabled = true; 2177 if (sqe_flags & IOSQE_IO_DRAIN) { 2178 if (ctx->drain_disabled) 2179 return -EOPNOTSUPP; 2180 io_init_req_drain(req); 2181 } 2182 } 2183 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2184 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2185 return -EACCES; 2186 /* knock it to the slow queue path, will be drained there */ 2187 if (ctx->drain_active) 2188 req->flags |= REQ_F_FORCE_ASYNC; 2189 /* if there is no link, we're at "next" request and need to drain */ 2190 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2191 ctx->drain_next = false; 2192 ctx->drain_active = true; 2193 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2194 } 2195 } 2196 2197 if (!def->ioprio && sqe->ioprio) 2198 return -EINVAL; 2199 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2200 return -EINVAL; 2201 2202 if (def->needs_file) { 2203 struct io_submit_state *state = &ctx->submit_state; 2204 2205 req->cqe.fd = READ_ONCE(sqe->fd); 2206 2207 /* 2208 * Plug now if we have more than 2 IO left after this, and the 2209 * target is potentially a read/write to block based storage. 2210 */ 2211 if (state->need_plug && def->plug) { 2212 state->plug_started = true; 2213 state->need_plug = false; 2214 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2215 } 2216 } 2217 2218 personality = READ_ONCE(sqe->personality); 2219 if (personality) { 2220 int ret; 2221 2222 req->creds = xa_load(&ctx->personalities, personality); 2223 if (!req->creds) 2224 return -EINVAL; 2225 get_cred(req->creds); 2226 ret = security_uring_override_creds(req->creds); 2227 if (ret) { 2228 put_cred(req->creds); 2229 return ret; 2230 } 2231 req->flags |= REQ_F_CREDS; 2232 } 2233 2234 return def->prep(req, sqe); 2235 } 2236 2237 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2238 struct io_kiocb *req, int ret) 2239 { 2240 struct io_ring_ctx *ctx = req->ctx; 2241 struct io_submit_link *link = &ctx->submit_state.link; 2242 struct io_kiocb *head = link->head; 2243 2244 trace_io_uring_req_failed(sqe, req, ret); 2245 2246 /* 2247 * Avoid breaking links in the middle as it renders links with SQPOLL 2248 * unusable. Instead of failing eagerly, continue assembling the link if 2249 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2250 * should find the flag and handle the rest. 2251 */ 2252 req_fail_link_node(req, ret); 2253 if (head && !(head->flags & REQ_F_FAIL)) 2254 req_fail_link_node(head, -ECANCELED); 2255 2256 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2257 if (head) { 2258 link->last->link = req; 2259 link->head = NULL; 2260 req = head; 2261 } 2262 io_queue_sqe_fallback(req); 2263 return ret; 2264 } 2265 2266 if (head) 2267 link->last->link = req; 2268 else 2269 link->head = req; 2270 link->last = req; 2271 return 0; 2272 } 2273 2274 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2275 const struct io_uring_sqe *sqe) 2276 __must_hold(&ctx->uring_lock) 2277 { 2278 struct io_submit_link *link = &ctx->submit_state.link; 2279 int ret; 2280 2281 ret = io_init_req(ctx, req, sqe); 2282 if (unlikely(ret)) 2283 return io_submit_fail_init(sqe, req, ret); 2284 2285 trace_io_uring_submit_req(req); 2286 2287 /* 2288 * If we already have a head request, queue this one for async 2289 * submittal once the head completes. If we don't have a head but 2290 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2291 * submitted sync once the chain is complete. If none of those 2292 * conditions are true (normal request), then just queue it. 2293 */ 2294 if (unlikely(link->head)) { 2295 ret = io_req_prep_async(req); 2296 if (unlikely(ret)) 2297 return io_submit_fail_init(sqe, req, ret); 2298 2299 trace_io_uring_link(req, link->head); 2300 link->last->link = req; 2301 link->last = req; 2302 2303 if (req->flags & IO_REQ_LINK_FLAGS) 2304 return 0; 2305 /* last request of the link, flush it */ 2306 req = link->head; 2307 link->head = NULL; 2308 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2309 goto fallback; 2310 2311 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2312 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2313 if (req->flags & IO_REQ_LINK_FLAGS) { 2314 link->head = req; 2315 link->last = req; 2316 } else { 2317 fallback: 2318 io_queue_sqe_fallback(req); 2319 } 2320 return 0; 2321 } 2322 2323 io_queue_sqe(req); 2324 return 0; 2325 } 2326 2327 /* 2328 * Batched submission is done, ensure local IO is flushed out. 2329 */ 2330 static void io_submit_state_end(struct io_ring_ctx *ctx) 2331 { 2332 struct io_submit_state *state = &ctx->submit_state; 2333 2334 if (unlikely(state->link.head)) 2335 io_queue_sqe_fallback(state->link.head); 2336 /* flush only after queuing links as they can generate completions */ 2337 io_submit_flush_completions(ctx); 2338 if (state->plug_started) 2339 blk_finish_plug(&state->plug); 2340 } 2341 2342 /* 2343 * Start submission side cache. 2344 */ 2345 static void io_submit_state_start(struct io_submit_state *state, 2346 unsigned int max_ios) 2347 { 2348 state->plug_started = false; 2349 state->need_plug = max_ios > 2; 2350 state->submit_nr = max_ios; 2351 /* set only head, no need to init link_last in advance */ 2352 state->link.head = NULL; 2353 } 2354 2355 static void io_commit_sqring(struct io_ring_ctx *ctx) 2356 { 2357 struct io_rings *rings = ctx->rings; 2358 2359 /* 2360 * Ensure any loads from the SQEs are done at this point, 2361 * since once we write the new head, the application could 2362 * write new data to them. 2363 */ 2364 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2365 } 2366 2367 /* 2368 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2369 * that is mapped by userspace. This means that care needs to be taken to 2370 * ensure that reads are stable, as we cannot rely on userspace always 2371 * being a good citizen. If members of the sqe are validated and then later 2372 * used, it's important that those reads are done through READ_ONCE() to 2373 * prevent a re-load down the line. 2374 */ 2375 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2376 { 2377 unsigned mask = ctx->sq_entries - 1; 2378 unsigned head = ctx->cached_sq_head++ & mask; 2379 2380 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) { 2381 head = READ_ONCE(ctx->sq_array[head]); 2382 if (unlikely(head >= ctx->sq_entries)) { 2383 /* drop invalid entries */ 2384 spin_lock(&ctx->completion_lock); 2385 ctx->cq_extra--; 2386 spin_unlock(&ctx->completion_lock); 2387 WRITE_ONCE(ctx->rings->sq_dropped, 2388 READ_ONCE(ctx->rings->sq_dropped) + 1); 2389 return false; 2390 } 2391 } 2392 2393 /* 2394 * The cached sq head (or cq tail) serves two purposes: 2395 * 2396 * 1) allows us to batch the cost of updating the user visible 2397 * head updates. 2398 * 2) allows the kernel side to track the head on its own, even 2399 * though the application is the one updating it. 2400 */ 2401 2402 /* double index for 128-byte SQEs, twice as long */ 2403 if (ctx->flags & IORING_SETUP_SQE128) 2404 head <<= 1; 2405 *sqe = &ctx->sq_sqes[head]; 2406 return true; 2407 } 2408 2409 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2410 __must_hold(&ctx->uring_lock) 2411 { 2412 unsigned int entries = io_sqring_entries(ctx); 2413 unsigned int left; 2414 int ret; 2415 2416 if (unlikely(!entries)) 2417 return 0; 2418 /* make sure SQ entry isn't read before tail */ 2419 ret = left = min(nr, entries); 2420 io_get_task_refs(left); 2421 io_submit_state_start(&ctx->submit_state, left); 2422 2423 do { 2424 const struct io_uring_sqe *sqe; 2425 struct io_kiocb *req; 2426 2427 if (unlikely(!io_alloc_req(ctx, &req))) 2428 break; 2429 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2430 io_req_add_to_cache(req, ctx); 2431 break; 2432 } 2433 2434 /* 2435 * Continue submitting even for sqe failure if the 2436 * ring was setup with IORING_SETUP_SUBMIT_ALL 2437 */ 2438 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2439 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2440 left--; 2441 break; 2442 } 2443 } while (--left); 2444 2445 if (unlikely(left)) { 2446 ret -= left; 2447 /* try again if it submitted nothing and can't allocate a req */ 2448 if (!ret && io_req_cache_empty(ctx)) 2449 ret = -EAGAIN; 2450 current->io_uring->cached_refs += left; 2451 } 2452 2453 io_submit_state_end(ctx); 2454 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2455 io_commit_sqring(ctx); 2456 return ret; 2457 } 2458 2459 struct io_wait_queue { 2460 struct wait_queue_entry wq; 2461 struct io_ring_ctx *ctx; 2462 unsigned cq_tail; 2463 unsigned nr_timeouts; 2464 ktime_t timeout; 2465 }; 2466 2467 static inline bool io_has_work(struct io_ring_ctx *ctx) 2468 { 2469 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2470 !llist_empty(&ctx->work_llist); 2471 } 2472 2473 static inline bool io_should_wake(struct io_wait_queue *iowq) 2474 { 2475 struct io_ring_ctx *ctx = iowq->ctx; 2476 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2477 2478 /* 2479 * Wake up if we have enough events, or if a timeout occurred since we 2480 * started waiting. For timeouts, we always want to return to userspace, 2481 * regardless of event count. 2482 */ 2483 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2484 } 2485 2486 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2487 int wake_flags, void *key) 2488 { 2489 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2490 2491 /* 2492 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2493 * the task, and the next invocation will do it. 2494 */ 2495 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2496 return autoremove_wake_function(curr, mode, wake_flags, key); 2497 return -1; 2498 } 2499 2500 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2501 { 2502 if (!llist_empty(&ctx->work_llist)) { 2503 __set_current_state(TASK_RUNNING); 2504 if (io_run_local_work(ctx) > 0) 2505 return 0; 2506 } 2507 if (io_run_task_work() > 0) 2508 return 0; 2509 if (task_sigpending(current)) 2510 return -EINTR; 2511 return 0; 2512 } 2513 2514 static bool current_pending_io(void) 2515 { 2516 struct io_uring_task *tctx = current->io_uring; 2517 2518 if (!tctx) 2519 return false; 2520 return percpu_counter_read_positive(&tctx->inflight); 2521 } 2522 2523 /* when returns >0, the caller should retry */ 2524 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2525 struct io_wait_queue *iowq) 2526 { 2527 int io_wait, ret; 2528 2529 if (unlikely(READ_ONCE(ctx->check_cq))) 2530 return 1; 2531 if (unlikely(!llist_empty(&ctx->work_llist))) 2532 return 1; 2533 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) 2534 return 1; 2535 if (unlikely(task_sigpending(current))) 2536 return -EINTR; 2537 if (unlikely(io_should_wake(iowq))) 2538 return 0; 2539 2540 /* 2541 * Mark us as being in io_wait if we have pending requests, so cpufreq 2542 * can take into account that the task is waiting for IO - turns out 2543 * to be important for low QD IO. 2544 */ 2545 io_wait = current->in_iowait; 2546 if (current_pending_io()) 2547 current->in_iowait = 1; 2548 ret = 0; 2549 if (iowq->timeout == KTIME_MAX) 2550 schedule(); 2551 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2552 ret = -ETIME; 2553 current->in_iowait = io_wait; 2554 return ret; 2555 } 2556 2557 /* 2558 * Wait until events become available, if we don't already have some. The 2559 * application must reap them itself, as they reside on the shared cq ring. 2560 */ 2561 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2562 const sigset_t __user *sig, size_t sigsz, 2563 struct __kernel_timespec __user *uts) 2564 { 2565 struct io_wait_queue iowq; 2566 struct io_rings *rings = ctx->rings; 2567 int ret; 2568 2569 if (!io_allowed_run_tw(ctx)) 2570 return -EEXIST; 2571 if (!llist_empty(&ctx->work_llist)) 2572 io_run_local_work(ctx); 2573 io_run_task_work(); 2574 io_cqring_overflow_flush(ctx); 2575 /* if user messes with these they will just get an early return */ 2576 if (__io_cqring_events_user(ctx) >= min_events) 2577 return 0; 2578 2579 if (sig) { 2580 #ifdef CONFIG_COMPAT 2581 if (in_compat_syscall()) 2582 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2583 sigsz); 2584 else 2585 #endif 2586 ret = set_user_sigmask(sig, sigsz); 2587 2588 if (ret) 2589 return ret; 2590 } 2591 2592 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2593 iowq.wq.private = current; 2594 INIT_LIST_HEAD(&iowq.wq.entry); 2595 iowq.ctx = ctx; 2596 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2597 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2598 iowq.timeout = KTIME_MAX; 2599 2600 if (uts) { 2601 struct timespec64 ts; 2602 2603 if (get_timespec64(&ts, uts)) 2604 return -EFAULT; 2605 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2606 } 2607 2608 trace_io_uring_cqring_wait(ctx, min_events); 2609 do { 2610 unsigned long check_cq; 2611 2612 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2613 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2614 2615 atomic_set(&ctx->cq_wait_nr, nr_wait); 2616 set_current_state(TASK_INTERRUPTIBLE); 2617 } else { 2618 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2619 TASK_INTERRUPTIBLE); 2620 } 2621 2622 ret = io_cqring_wait_schedule(ctx, &iowq); 2623 __set_current_state(TASK_RUNNING); 2624 atomic_set(&ctx->cq_wait_nr, 0); 2625 2626 if (ret < 0) 2627 break; 2628 /* 2629 * Run task_work after scheduling and before io_should_wake(). 2630 * If we got woken because of task_work being processed, run it 2631 * now rather than let the caller do another wait loop. 2632 */ 2633 io_run_task_work(); 2634 if (!llist_empty(&ctx->work_llist)) 2635 io_run_local_work(ctx); 2636 2637 check_cq = READ_ONCE(ctx->check_cq); 2638 if (unlikely(check_cq)) { 2639 /* let the caller flush overflows, retry */ 2640 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2641 io_cqring_do_overflow_flush(ctx); 2642 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2643 ret = -EBADR; 2644 break; 2645 } 2646 } 2647 2648 if (io_should_wake(&iowq)) { 2649 ret = 0; 2650 break; 2651 } 2652 cond_resched(); 2653 } while (1); 2654 2655 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2656 finish_wait(&ctx->cq_wait, &iowq.wq); 2657 restore_saved_sigmask_unless(ret == -EINTR); 2658 2659 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2660 } 2661 2662 static void io_mem_free(void *ptr) 2663 { 2664 if (!ptr) 2665 return; 2666 2667 folio_put(virt_to_folio(ptr)); 2668 } 2669 2670 static void io_pages_free(struct page ***pages, int npages) 2671 { 2672 struct page **page_array; 2673 int i; 2674 2675 if (!pages) 2676 return; 2677 page_array = *pages; 2678 for (i = 0; i < npages; i++) 2679 unpin_user_page(page_array[i]); 2680 kvfree(page_array); 2681 *pages = NULL; 2682 } 2683 2684 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, 2685 unsigned long uaddr, size_t size) 2686 { 2687 struct page **page_array; 2688 unsigned int nr_pages; 2689 int ret, i; 2690 2691 *npages = 0; 2692 2693 if (uaddr & (PAGE_SIZE - 1) || !size) 2694 return ERR_PTR(-EINVAL); 2695 2696 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2697 if (nr_pages > USHRT_MAX) 2698 return ERR_PTR(-EINVAL); 2699 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); 2700 if (!page_array) 2701 return ERR_PTR(-ENOMEM); 2702 2703 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, 2704 page_array); 2705 if (ret != nr_pages) { 2706 err: 2707 io_pages_free(&page_array, ret > 0 ? ret : 0); 2708 return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT); 2709 } 2710 /* 2711 * Should be a single page. If the ring is small enough that we can 2712 * use a normal page, that is fine. If we need multiple pages, then 2713 * userspace should use a huge page. That's the only way to guarantee 2714 * that we get contigious memory, outside of just being lucky or 2715 * (currently) having low memory fragmentation. 2716 */ 2717 if (page_array[0] != page_array[ret - 1]) 2718 goto err; 2719 2720 /* 2721 * Can't support mapping user allocated ring memory on 32-bit archs 2722 * where it could potentially reside in highmem. Just fail those with 2723 * -EINVAL, just like we did on kernels that didn't support this 2724 * feature. 2725 */ 2726 for (i = 0; i < nr_pages; i++) { 2727 if (PageHighMem(page_array[i])) { 2728 ret = -EINVAL; 2729 goto err; 2730 } 2731 } 2732 2733 *pages = page_array; 2734 *npages = nr_pages; 2735 return page_to_virt(page_array[0]); 2736 } 2737 2738 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2739 size_t size) 2740 { 2741 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2742 size); 2743 } 2744 2745 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2746 size_t size) 2747 { 2748 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2749 size); 2750 } 2751 2752 static void io_rings_free(struct io_ring_ctx *ctx) 2753 { 2754 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2755 io_mem_free(ctx->rings); 2756 io_mem_free(ctx->sq_sqes); 2757 ctx->rings = NULL; 2758 ctx->sq_sqes = NULL; 2759 } else { 2760 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2761 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2762 } 2763 } 2764 2765 static void *io_mem_alloc(size_t size) 2766 { 2767 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2768 void *ret; 2769 2770 ret = (void *) __get_free_pages(gfp, get_order(size)); 2771 if (ret) 2772 return ret; 2773 return ERR_PTR(-ENOMEM); 2774 } 2775 2776 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2777 unsigned int cq_entries, size_t *sq_offset) 2778 { 2779 struct io_rings *rings; 2780 size_t off, sq_array_size; 2781 2782 off = struct_size(rings, cqes, cq_entries); 2783 if (off == SIZE_MAX) 2784 return SIZE_MAX; 2785 if (ctx->flags & IORING_SETUP_CQE32) { 2786 if (check_shl_overflow(off, 1, &off)) 2787 return SIZE_MAX; 2788 } 2789 2790 #ifdef CONFIG_SMP 2791 off = ALIGN(off, SMP_CACHE_BYTES); 2792 if (off == 0) 2793 return SIZE_MAX; 2794 #endif 2795 2796 if (ctx->flags & IORING_SETUP_NO_SQARRAY) { 2797 if (sq_offset) 2798 *sq_offset = SIZE_MAX; 2799 return off; 2800 } 2801 2802 if (sq_offset) 2803 *sq_offset = off; 2804 2805 sq_array_size = array_size(sizeof(u32), sq_entries); 2806 if (sq_array_size == SIZE_MAX) 2807 return SIZE_MAX; 2808 2809 if (check_add_overflow(off, sq_array_size, &off)) 2810 return SIZE_MAX; 2811 2812 return off; 2813 } 2814 2815 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2816 unsigned int eventfd_async) 2817 { 2818 struct io_ev_fd *ev_fd; 2819 __s32 __user *fds = arg; 2820 int fd; 2821 2822 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2823 lockdep_is_held(&ctx->uring_lock)); 2824 if (ev_fd) 2825 return -EBUSY; 2826 2827 if (copy_from_user(&fd, fds, sizeof(*fds))) 2828 return -EFAULT; 2829 2830 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2831 if (!ev_fd) 2832 return -ENOMEM; 2833 2834 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2835 if (IS_ERR(ev_fd->cq_ev_fd)) { 2836 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2837 kfree(ev_fd); 2838 return ret; 2839 } 2840 2841 spin_lock(&ctx->completion_lock); 2842 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2843 spin_unlock(&ctx->completion_lock); 2844 2845 ev_fd->eventfd_async = eventfd_async; 2846 ctx->has_evfd = true; 2847 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2848 atomic_set(&ev_fd->refs, 1); 2849 atomic_set(&ev_fd->ops, 0); 2850 return 0; 2851 } 2852 2853 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2854 { 2855 struct io_ev_fd *ev_fd; 2856 2857 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2858 lockdep_is_held(&ctx->uring_lock)); 2859 if (ev_fd) { 2860 ctx->has_evfd = false; 2861 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2862 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2863 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2864 return 0; 2865 } 2866 2867 return -ENXIO; 2868 } 2869 2870 static void io_req_caches_free(struct io_ring_ctx *ctx) 2871 { 2872 struct io_kiocb *req; 2873 int nr = 0; 2874 2875 mutex_lock(&ctx->uring_lock); 2876 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2877 2878 while (!io_req_cache_empty(ctx)) { 2879 req = io_extract_req(ctx); 2880 kmem_cache_free(req_cachep, req); 2881 nr++; 2882 } 2883 if (nr) 2884 percpu_ref_put_many(&ctx->refs, nr); 2885 mutex_unlock(&ctx->uring_lock); 2886 } 2887 2888 static void io_rsrc_node_cache_free(struct io_cache_entry *entry) 2889 { 2890 kfree(container_of(entry, struct io_rsrc_node, cache)); 2891 } 2892 2893 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2894 { 2895 io_sq_thread_finish(ctx); 2896 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2897 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2898 return; 2899 2900 mutex_lock(&ctx->uring_lock); 2901 if (ctx->buf_data) 2902 __io_sqe_buffers_unregister(ctx); 2903 if (ctx->file_data) 2904 __io_sqe_files_unregister(ctx); 2905 io_cqring_overflow_kill(ctx); 2906 io_eventfd_unregister(ctx); 2907 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2908 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2909 io_destroy_buffers(ctx); 2910 mutex_unlock(&ctx->uring_lock); 2911 if (ctx->sq_creds) 2912 put_cred(ctx->sq_creds); 2913 if (ctx->submitter_task) 2914 put_task_struct(ctx->submitter_task); 2915 2916 /* there are no registered resources left, nobody uses it */ 2917 if (ctx->rsrc_node) 2918 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2919 2920 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2921 2922 #if defined(CONFIG_UNIX) 2923 if (ctx->ring_sock) { 2924 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2925 sock_release(ctx->ring_sock); 2926 } 2927 #endif 2928 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2929 2930 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); 2931 if (ctx->mm_account) { 2932 mmdrop(ctx->mm_account); 2933 ctx->mm_account = NULL; 2934 } 2935 io_rings_free(ctx); 2936 2937 percpu_ref_exit(&ctx->refs); 2938 free_uid(ctx->user); 2939 io_req_caches_free(ctx); 2940 if (ctx->hash_map) 2941 io_wq_put_hash(ctx->hash_map); 2942 kfree(ctx->cancel_table.hbs); 2943 kfree(ctx->cancel_table_locked.hbs); 2944 kfree(ctx->io_bl); 2945 xa_destroy(&ctx->io_bl_xa); 2946 kfree(ctx); 2947 } 2948 2949 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2950 { 2951 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2952 poll_wq_task_work); 2953 2954 mutex_lock(&ctx->uring_lock); 2955 ctx->poll_activated = true; 2956 mutex_unlock(&ctx->uring_lock); 2957 2958 /* 2959 * Wake ups for some events between start of polling and activation 2960 * might've been lost due to loose synchronisation. 2961 */ 2962 wake_up_all(&ctx->poll_wq); 2963 percpu_ref_put(&ctx->refs); 2964 } 2965 2966 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2967 { 2968 spin_lock(&ctx->completion_lock); 2969 /* already activated or in progress */ 2970 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2971 goto out; 2972 if (WARN_ON_ONCE(!ctx->task_complete)) 2973 goto out; 2974 if (!ctx->submitter_task) 2975 goto out; 2976 /* 2977 * with ->submitter_task only the submitter task completes requests, we 2978 * only need to sync with it, which is done by injecting a tw 2979 */ 2980 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2981 percpu_ref_get(&ctx->refs); 2982 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2983 percpu_ref_put(&ctx->refs); 2984 out: 2985 spin_unlock(&ctx->completion_lock); 2986 } 2987 2988 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2989 { 2990 struct io_ring_ctx *ctx = file->private_data; 2991 __poll_t mask = 0; 2992 2993 if (unlikely(!ctx->poll_activated)) 2994 io_activate_pollwq(ctx); 2995 2996 poll_wait(file, &ctx->poll_wq, wait); 2997 /* 2998 * synchronizes with barrier from wq_has_sleeper call in 2999 * io_commit_cqring 3000 */ 3001 smp_rmb(); 3002 if (!io_sqring_full(ctx)) 3003 mask |= EPOLLOUT | EPOLLWRNORM; 3004 3005 /* 3006 * Don't flush cqring overflow list here, just do a simple check. 3007 * Otherwise there could possible be ABBA deadlock: 3008 * CPU0 CPU1 3009 * ---- ---- 3010 * lock(&ctx->uring_lock); 3011 * lock(&ep->mtx); 3012 * lock(&ctx->uring_lock); 3013 * lock(&ep->mtx); 3014 * 3015 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 3016 * pushes them to do the flush. 3017 */ 3018 3019 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 3020 mask |= EPOLLIN | EPOLLRDNORM; 3021 3022 return mask; 3023 } 3024 3025 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 3026 { 3027 const struct cred *creds; 3028 3029 creds = xa_erase(&ctx->personalities, id); 3030 if (creds) { 3031 put_cred(creds); 3032 return 0; 3033 } 3034 3035 return -EINVAL; 3036 } 3037 3038 struct io_tctx_exit { 3039 struct callback_head task_work; 3040 struct completion completion; 3041 struct io_ring_ctx *ctx; 3042 }; 3043 3044 static __cold void io_tctx_exit_cb(struct callback_head *cb) 3045 { 3046 struct io_uring_task *tctx = current->io_uring; 3047 struct io_tctx_exit *work; 3048 3049 work = container_of(cb, struct io_tctx_exit, task_work); 3050 /* 3051 * When @in_cancel, we're in cancellation and it's racy to remove the 3052 * node. It'll be removed by the end of cancellation, just ignore it. 3053 * tctx can be NULL if the queueing of this task_work raced with 3054 * work cancelation off the exec path. 3055 */ 3056 if (tctx && !atomic_read(&tctx->in_cancel)) 3057 io_uring_del_tctx_node((unsigned long)work->ctx); 3058 complete(&work->completion); 3059 } 3060 3061 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 3062 { 3063 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3064 3065 return req->ctx == data; 3066 } 3067 3068 static __cold void io_ring_exit_work(struct work_struct *work) 3069 { 3070 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 3071 unsigned long timeout = jiffies + HZ * 60 * 5; 3072 unsigned long interval = HZ / 20; 3073 struct io_tctx_exit exit; 3074 struct io_tctx_node *node; 3075 int ret; 3076 3077 /* 3078 * If we're doing polled IO and end up having requests being 3079 * submitted async (out-of-line), then completions can come in while 3080 * we're waiting for refs to drop. We need to reap these manually, 3081 * as nobody else will be looking for them. 3082 */ 3083 do { 3084 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 3085 mutex_lock(&ctx->uring_lock); 3086 io_cqring_overflow_kill(ctx); 3087 mutex_unlock(&ctx->uring_lock); 3088 } 3089 3090 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3091 io_move_task_work_from_local(ctx); 3092 3093 while (io_uring_try_cancel_requests(ctx, NULL, true)) 3094 cond_resched(); 3095 3096 if (ctx->sq_data) { 3097 struct io_sq_data *sqd = ctx->sq_data; 3098 struct task_struct *tsk; 3099 3100 io_sq_thread_park(sqd); 3101 tsk = sqd->thread; 3102 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 3103 io_wq_cancel_cb(tsk->io_uring->io_wq, 3104 io_cancel_ctx_cb, ctx, true); 3105 io_sq_thread_unpark(sqd); 3106 } 3107 3108 io_req_caches_free(ctx); 3109 3110 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3111 /* there is little hope left, don't run it too often */ 3112 interval = HZ * 60; 3113 } 3114 /* 3115 * This is really an uninterruptible wait, as it has to be 3116 * complete. But it's also run from a kworker, which doesn't 3117 * take signals, so it's fine to make it interruptible. This 3118 * avoids scenarios where we knowingly can wait much longer 3119 * on completions, for example if someone does a SIGSTOP on 3120 * a task that needs to finish task_work to make this loop 3121 * complete. That's a synthetic situation that should not 3122 * cause a stuck task backtrace, and hence a potential panic 3123 * on stuck tasks if that is enabled. 3124 */ 3125 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 3126 3127 init_completion(&exit.completion); 3128 init_task_work(&exit.task_work, io_tctx_exit_cb); 3129 exit.ctx = ctx; 3130 /* 3131 * Some may use context even when all refs and requests have been put, 3132 * and they are free to do so while still holding uring_lock or 3133 * completion_lock, see io_req_task_submit(). Apart from other work, 3134 * this lock/unlock section also waits them to finish. 3135 */ 3136 mutex_lock(&ctx->uring_lock); 3137 while (!list_empty(&ctx->tctx_list)) { 3138 WARN_ON_ONCE(time_after(jiffies, timeout)); 3139 3140 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3141 ctx_node); 3142 /* don't spin on a single task if cancellation failed */ 3143 list_rotate_left(&ctx->tctx_list); 3144 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3145 if (WARN_ON_ONCE(ret)) 3146 continue; 3147 3148 mutex_unlock(&ctx->uring_lock); 3149 /* 3150 * See comment above for 3151 * wait_for_completion_interruptible_timeout() on why this 3152 * wait is marked as interruptible. 3153 */ 3154 wait_for_completion_interruptible(&exit.completion); 3155 mutex_lock(&ctx->uring_lock); 3156 } 3157 mutex_unlock(&ctx->uring_lock); 3158 spin_lock(&ctx->completion_lock); 3159 spin_unlock(&ctx->completion_lock); 3160 3161 /* pairs with RCU read section in io_req_local_work_add() */ 3162 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3163 synchronize_rcu(); 3164 3165 io_ring_ctx_free(ctx); 3166 } 3167 3168 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3169 { 3170 unsigned long index; 3171 struct creds *creds; 3172 3173 mutex_lock(&ctx->uring_lock); 3174 percpu_ref_kill(&ctx->refs); 3175 xa_for_each(&ctx->personalities, index, creds) 3176 io_unregister_personality(ctx, index); 3177 if (ctx->rings) 3178 io_poll_remove_all(ctx, NULL, true); 3179 mutex_unlock(&ctx->uring_lock); 3180 3181 /* 3182 * If we failed setting up the ctx, we might not have any rings 3183 * and therefore did not submit any requests 3184 */ 3185 if (ctx->rings) 3186 io_kill_timeouts(ctx, NULL, true); 3187 3188 flush_delayed_work(&ctx->fallback_work); 3189 3190 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3191 /* 3192 * Use system_unbound_wq to avoid spawning tons of event kworkers 3193 * if we're exiting a ton of rings at the same time. It just adds 3194 * noise and overhead, there's no discernable change in runtime 3195 * over using system_wq. 3196 */ 3197 queue_work(system_unbound_wq, &ctx->exit_work); 3198 } 3199 3200 static int io_uring_release(struct inode *inode, struct file *file) 3201 { 3202 struct io_ring_ctx *ctx = file->private_data; 3203 3204 file->private_data = NULL; 3205 io_ring_ctx_wait_and_kill(ctx); 3206 return 0; 3207 } 3208 3209 struct io_task_cancel { 3210 struct task_struct *task; 3211 bool all; 3212 }; 3213 3214 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3215 { 3216 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3217 struct io_task_cancel *cancel = data; 3218 3219 return io_match_task_safe(req, cancel->task, cancel->all); 3220 } 3221 3222 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3223 struct task_struct *task, 3224 bool cancel_all) 3225 { 3226 struct io_defer_entry *de; 3227 LIST_HEAD(list); 3228 3229 spin_lock(&ctx->completion_lock); 3230 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3231 if (io_match_task_safe(de->req, task, cancel_all)) { 3232 list_cut_position(&list, &ctx->defer_list, &de->list); 3233 break; 3234 } 3235 } 3236 spin_unlock(&ctx->completion_lock); 3237 if (list_empty(&list)) 3238 return false; 3239 3240 while (!list_empty(&list)) { 3241 de = list_first_entry(&list, struct io_defer_entry, list); 3242 list_del_init(&de->list); 3243 io_req_task_queue_fail(de->req, -ECANCELED); 3244 kfree(de); 3245 } 3246 return true; 3247 } 3248 3249 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3250 { 3251 struct io_tctx_node *node; 3252 enum io_wq_cancel cret; 3253 bool ret = false; 3254 3255 mutex_lock(&ctx->uring_lock); 3256 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3257 struct io_uring_task *tctx = node->task->io_uring; 3258 3259 /* 3260 * io_wq will stay alive while we hold uring_lock, because it's 3261 * killed after ctx nodes, which requires to take the lock. 3262 */ 3263 if (!tctx || !tctx->io_wq) 3264 continue; 3265 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3266 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3267 } 3268 mutex_unlock(&ctx->uring_lock); 3269 3270 return ret; 3271 } 3272 3273 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3274 struct task_struct *task, 3275 bool cancel_all) 3276 { 3277 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3278 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3279 enum io_wq_cancel cret; 3280 bool ret = false; 3281 3282 /* set it so io_req_local_work_add() would wake us up */ 3283 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3284 atomic_set(&ctx->cq_wait_nr, 1); 3285 smp_mb(); 3286 } 3287 3288 /* failed during ring init, it couldn't have issued any requests */ 3289 if (!ctx->rings) 3290 return false; 3291 3292 if (!task) { 3293 ret |= io_uring_try_cancel_iowq(ctx); 3294 } else if (tctx && tctx->io_wq) { 3295 /* 3296 * Cancels requests of all rings, not only @ctx, but 3297 * it's fine as the task is in exit/exec. 3298 */ 3299 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3300 &cancel, true); 3301 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3302 } 3303 3304 /* SQPOLL thread does its own polling */ 3305 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3306 (ctx->sq_data && ctx->sq_data->thread == current)) { 3307 while (!wq_list_empty(&ctx->iopoll_list)) { 3308 io_iopoll_try_reap_events(ctx); 3309 ret = true; 3310 cond_resched(); 3311 } 3312 } 3313 3314 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3315 io_allowed_defer_tw_run(ctx)) 3316 ret |= io_run_local_work(ctx) > 0; 3317 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3318 mutex_lock(&ctx->uring_lock); 3319 ret |= io_poll_remove_all(ctx, task, cancel_all); 3320 mutex_unlock(&ctx->uring_lock); 3321 ret |= io_kill_timeouts(ctx, task, cancel_all); 3322 if (task) 3323 ret |= io_run_task_work() > 0; 3324 return ret; 3325 } 3326 3327 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3328 { 3329 if (tracked) 3330 return atomic_read(&tctx->inflight_tracked); 3331 return percpu_counter_sum(&tctx->inflight); 3332 } 3333 3334 /* 3335 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3336 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3337 */ 3338 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3339 { 3340 struct io_uring_task *tctx = current->io_uring; 3341 struct io_ring_ctx *ctx; 3342 struct io_tctx_node *node; 3343 unsigned long index; 3344 s64 inflight; 3345 DEFINE_WAIT(wait); 3346 3347 WARN_ON_ONCE(sqd && sqd->thread != current); 3348 3349 if (!current->io_uring) 3350 return; 3351 if (tctx->io_wq) 3352 io_wq_exit_start(tctx->io_wq); 3353 3354 atomic_inc(&tctx->in_cancel); 3355 do { 3356 bool loop = false; 3357 3358 io_uring_drop_tctx_refs(current); 3359 /* read completions before cancelations */ 3360 inflight = tctx_inflight(tctx, !cancel_all); 3361 if (!inflight) 3362 break; 3363 3364 if (!sqd) { 3365 xa_for_each(&tctx->xa, index, node) { 3366 /* sqpoll task will cancel all its requests */ 3367 if (node->ctx->sq_data) 3368 continue; 3369 loop |= io_uring_try_cancel_requests(node->ctx, 3370 current, cancel_all); 3371 } 3372 } else { 3373 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3374 loop |= io_uring_try_cancel_requests(ctx, 3375 current, 3376 cancel_all); 3377 } 3378 3379 if (loop) { 3380 cond_resched(); 3381 continue; 3382 } 3383 3384 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3385 io_run_task_work(); 3386 io_uring_drop_tctx_refs(current); 3387 xa_for_each(&tctx->xa, index, node) { 3388 if (!llist_empty(&node->ctx->work_llist)) { 3389 WARN_ON_ONCE(node->ctx->submitter_task && 3390 node->ctx->submitter_task != current); 3391 goto end_wait; 3392 } 3393 } 3394 /* 3395 * If we've seen completions, retry without waiting. This 3396 * avoids a race where a completion comes in before we did 3397 * prepare_to_wait(). 3398 */ 3399 if (inflight == tctx_inflight(tctx, !cancel_all)) 3400 schedule(); 3401 end_wait: 3402 finish_wait(&tctx->wait, &wait); 3403 } while (1); 3404 3405 io_uring_clean_tctx(tctx); 3406 if (cancel_all) { 3407 /* 3408 * We shouldn't run task_works after cancel, so just leave 3409 * ->in_cancel set for normal exit. 3410 */ 3411 atomic_dec(&tctx->in_cancel); 3412 /* for exec all current's requests should be gone, kill tctx */ 3413 __io_uring_free(current); 3414 } 3415 } 3416 3417 void __io_uring_cancel(bool cancel_all) 3418 { 3419 io_uring_cancel_generic(cancel_all, NULL); 3420 } 3421 3422 static void *io_uring_validate_mmap_request(struct file *file, 3423 loff_t pgoff, size_t sz) 3424 { 3425 struct io_ring_ctx *ctx = file->private_data; 3426 loff_t offset = pgoff << PAGE_SHIFT; 3427 struct page *page; 3428 void *ptr; 3429 3430 /* Don't allow mmap if the ring was setup without it */ 3431 if (ctx->flags & IORING_SETUP_NO_MMAP) 3432 return ERR_PTR(-EINVAL); 3433 3434 switch (offset & IORING_OFF_MMAP_MASK) { 3435 case IORING_OFF_SQ_RING: 3436 case IORING_OFF_CQ_RING: 3437 ptr = ctx->rings; 3438 break; 3439 case IORING_OFF_SQES: 3440 ptr = ctx->sq_sqes; 3441 break; 3442 case IORING_OFF_PBUF_RING: { 3443 unsigned int bgid; 3444 3445 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; 3446 mutex_lock(&ctx->uring_lock); 3447 ptr = io_pbuf_get_address(ctx, bgid); 3448 mutex_unlock(&ctx->uring_lock); 3449 if (!ptr) 3450 return ERR_PTR(-EINVAL); 3451 break; 3452 } 3453 default: 3454 return ERR_PTR(-EINVAL); 3455 } 3456 3457 page = virt_to_head_page(ptr); 3458 if (sz > page_size(page)) 3459 return ERR_PTR(-EINVAL); 3460 3461 return ptr; 3462 } 3463 3464 #ifdef CONFIG_MMU 3465 3466 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3467 { 3468 size_t sz = vma->vm_end - vma->vm_start; 3469 unsigned long pfn; 3470 void *ptr; 3471 3472 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3473 if (IS_ERR(ptr)) 3474 return PTR_ERR(ptr); 3475 3476 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3477 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3478 } 3479 3480 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, 3481 unsigned long addr, unsigned long len, 3482 unsigned long pgoff, unsigned long flags) 3483 { 3484 void *ptr; 3485 3486 /* 3487 * Do not allow to map to user-provided address to avoid breaking the 3488 * aliasing rules. Userspace is not able to guess the offset address of 3489 * kernel kmalloc()ed memory area. 3490 */ 3491 if (addr) 3492 return -EINVAL; 3493 3494 ptr = io_uring_validate_mmap_request(filp, pgoff, len); 3495 if (IS_ERR(ptr)) 3496 return -ENOMEM; 3497 3498 /* 3499 * Some architectures have strong cache aliasing requirements. 3500 * For such architectures we need a coherent mapping which aliases 3501 * kernel memory *and* userspace memory. To achieve that: 3502 * - use a NULL file pointer to reference physical memory, and 3503 * - use the kernel virtual address of the shared io_uring context 3504 * (instead of the userspace-provided address, which has to be 0UL 3505 * anyway). 3506 * - use the same pgoff which the get_unmapped_area() uses to 3507 * calculate the page colouring. 3508 * For architectures without such aliasing requirements, the 3509 * architecture will return any suitable mapping because addr is 0. 3510 */ 3511 filp = NULL; 3512 flags |= MAP_SHARED; 3513 pgoff = 0; /* has been translated to ptr above */ 3514 #ifdef SHM_COLOUR 3515 addr = (uintptr_t) ptr; 3516 pgoff = addr >> PAGE_SHIFT; 3517 #else 3518 addr = 0UL; 3519 #endif 3520 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 3521 } 3522 3523 #else /* !CONFIG_MMU */ 3524 3525 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3526 { 3527 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3528 } 3529 3530 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3531 { 3532 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3533 } 3534 3535 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3536 unsigned long addr, unsigned long len, 3537 unsigned long pgoff, unsigned long flags) 3538 { 3539 void *ptr; 3540 3541 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3542 if (IS_ERR(ptr)) 3543 return PTR_ERR(ptr); 3544 3545 return (unsigned long) ptr; 3546 } 3547 3548 #endif /* !CONFIG_MMU */ 3549 3550 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3551 { 3552 if (flags & IORING_ENTER_EXT_ARG) { 3553 struct io_uring_getevents_arg arg; 3554 3555 if (argsz != sizeof(arg)) 3556 return -EINVAL; 3557 if (copy_from_user(&arg, argp, sizeof(arg))) 3558 return -EFAULT; 3559 } 3560 return 0; 3561 } 3562 3563 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3564 struct __kernel_timespec __user **ts, 3565 const sigset_t __user **sig) 3566 { 3567 struct io_uring_getevents_arg arg; 3568 3569 /* 3570 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3571 * is just a pointer to the sigset_t. 3572 */ 3573 if (!(flags & IORING_ENTER_EXT_ARG)) { 3574 *sig = (const sigset_t __user *) argp; 3575 *ts = NULL; 3576 return 0; 3577 } 3578 3579 /* 3580 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3581 * timespec and sigset_t pointers if good. 3582 */ 3583 if (*argsz != sizeof(arg)) 3584 return -EINVAL; 3585 if (copy_from_user(&arg, argp, sizeof(arg))) 3586 return -EFAULT; 3587 if (arg.pad) 3588 return -EINVAL; 3589 *sig = u64_to_user_ptr(arg.sigmask); 3590 *argsz = arg.sigmask_sz; 3591 *ts = u64_to_user_ptr(arg.ts); 3592 return 0; 3593 } 3594 3595 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3596 u32, min_complete, u32, flags, const void __user *, argp, 3597 size_t, argsz) 3598 { 3599 struct io_ring_ctx *ctx; 3600 struct fd f; 3601 long ret; 3602 3603 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3604 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3605 IORING_ENTER_REGISTERED_RING))) 3606 return -EINVAL; 3607 3608 /* 3609 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3610 * need only dereference our task private array to find it. 3611 */ 3612 if (flags & IORING_ENTER_REGISTERED_RING) { 3613 struct io_uring_task *tctx = current->io_uring; 3614 3615 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3616 return -EINVAL; 3617 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3618 f.file = tctx->registered_rings[fd]; 3619 f.flags = 0; 3620 if (unlikely(!f.file)) 3621 return -EBADF; 3622 } else { 3623 f = fdget(fd); 3624 if (unlikely(!f.file)) 3625 return -EBADF; 3626 ret = -EOPNOTSUPP; 3627 if (unlikely(!io_is_uring_fops(f.file))) 3628 goto out; 3629 } 3630 3631 ctx = f.file->private_data; 3632 ret = -EBADFD; 3633 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3634 goto out; 3635 3636 /* 3637 * For SQ polling, the thread will do all submissions and completions. 3638 * Just return the requested submit count, and wake the thread if 3639 * we were asked to. 3640 */ 3641 ret = 0; 3642 if (ctx->flags & IORING_SETUP_SQPOLL) { 3643 io_cqring_overflow_flush(ctx); 3644 3645 if (unlikely(ctx->sq_data->thread == NULL)) { 3646 ret = -EOWNERDEAD; 3647 goto out; 3648 } 3649 if (flags & IORING_ENTER_SQ_WAKEUP) 3650 wake_up(&ctx->sq_data->wait); 3651 if (flags & IORING_ENTER_SQ_WAIT) 3652 io_sqpoll_wait_sq(ctx); 3653 3654 ret = to_submit; 3655 } else if (to_submit) { 3656 ret = io_uring_add_tctx_node(ctx); 3657 if (unlikely(ret)) 3658 goto out; 3659 3660 mutex_lock(&ctx->uring_lock); 3661 ret = io_submit_sqes(ctx, to_submit); 3662 if (ret != to_submit) { 3663 mutex_unlock(&ctx->uring_lock); 3664 goto out; 3665 } 3666 if (flags & IORING_ENTER_GETEVENTS) { 3667 if (ctx->syscall_iopoll) 3668 goto iopoll_locked; 3669 /* 3670 * Ignore errors, we'll soon call io_cqring_wait() and 3671 * it should handle ownership problems if any. 3672 */ 3673 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3674 (void)io_run_local_work_locked(ctx); 3675 } 3676 mutex_unlock(&ctx->uring_lock); 3677 } 3678 3679 if (flags & IORING_ENTER_GETEVENTS) { 3680 int ret2; 3681 3682 if (ctx->syscall_iopoll) { 3683 /* 3684 * We disallow the app entering submit/complete with 3685 * polling, but we still need to lock the ring to 3686 * prevent racing with polled issue that got punted to 3687 * a workqueue. 3688 */ 3689 mutex_lock(&ctx->uring_lock); 3690 iopoll_locked: 3691 ret2 = io_validate_ext_arg(flags, argp, argsz); 3692 if (likely(!ret2)) { 3693 min_complete = min(min_complete, 3694 ctx->cq_entries); 3695 ret2 = io_iopoll_check(ctx, min_complete); 3696 } 3697 mutex_unlock(&ctx->uring_lock); 3698 } else { 3699 const sigset_t __user *sig; 3700 struct __kernel_timespec __user *ts; 3701 3702 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3703 if (likely(!ret2)) { 3704 min_complete = min(min_complete, 3705 ctx->cq_entries); 3706 ret2 = io_cqring_wait(ctx, min_complete, sig, 3707 argsz, ts); 3708 } 3709 } 3710 3711 if (!ret) { 3712 ret = ret2; 3713 3714 /* 3715 * EBADR indicates that one or more CQE were dropped. 3716 * Once the user has been informed we can clear the bit 3717 * as they are obviously ok with those drops. 3718 */ 3719 if (unlikely(ret2 == -EBADR)) 3720 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3721 &ctx->check_cq); 3722 } 3723 } 3724 out: 3725 fdput(f); 3726 return ret; 3727 } 3728 3729 static const struct file_operations io_uring_fops = { 3730 .release = io_uring_release, 3731 .mmap = io_uring_mmap, 3732 #ifndef CONFIG_MMU 3733 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3734 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3735 #else 3736 .get_unmapped_area = io_uring_mmu_get_unmapped_area, 3737 #endif 3738 .poll = io_uring_poll, 3739 #ifdef CONFIG_PROC_FS 3740 .show_fdinfo = io_uring_show_fdinfo, 3741 #endif 3742 }; 3743 3744 bool io_is_uring_fops(struct file *file) 3745 { 3746 return file->f_op == &io_uring_fops; 3747 } 3748 3749 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3750 struct io_uring_params *p) 3751 { 3752 struct io_rings *rings; 3753 size_t size, sq_array_offset; 3754 void *ptr; 3755 3756 /* make sure these are sane, as we already accounted them */ 3757 ctx->sq_entries = p->sq_entries; 3758 ctx->cq_entries = p->cq_entries; 3759 3760 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3761 if (size == SIZE_MAX) 3762 return -EOVERFLOW; 3763 3764 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3765 rings = io_mem_alloc(size); 3766 else 3767 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3768 3769 if (IS_ERR(rings)) 3770 return PTR_ERR(rings); 3771 3772 ctx->rings = rings; 3773 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3774 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3775 rings->sq_ring_mask = p->sq_entries - 1; 3776 rings->cq_ring_mask = p->cq_entries - 1; 3777 rings->sq_ring_entries = p->sq_entries; 3778 rings->cq_ring_entries = p->cq_entries; 3779 3780 if (p->flags & IORING_SETUP_SQE128) 3781 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3782 else 3783 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3784 if (size == SIZE_MAX) { 3785 io_rings_free(ctx); 3786 return -EOVERFLOW; 3787 } 3788 3789 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3790 ptr = io_mem_alloc(size); 3791 else 3792 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3793 3794 if (IS_ERR(ptr)) { 3795 io_rings_free(ctx); 3796 return PTR_ERR(ptr); 3797 } 3798 3799 ctx->sq_sqes = ptr; 3800 return 0; 3801 } 3802 3803 static int io_uring_install_fd(struct file *file) 3804 { 3805 int fd; 3806 3807 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3808 if (fd < 0) 3809 return fd; 3810 fd_install(fd, file); 3811 return fd; 3812 } 3813 3814 /* 3815 * Allocate an anonymous fd, this is what constitutes the application 3816 * visible backing of an io_uring instance. The application mmaps this 3817 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3818 * we have to tie this fd to a socket for file garbage collection purposes. 3819 */ 3820 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3821 { 3822 struct file *file; 3823 #if defined(CONFIG_UNIX) 3824 int ret; 3825 3826 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3827 &ctx->ring_sock); 3828 if (ret) 3829 return ERR_PTR(ret); 3830 #endif 3831 3832 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3833 O_RDWR | O_CLOEXEC, NULL); 3834 #if defined(CONFIG_UNIX) 3835 if (IS_ERR(file)) { 3836 sock_release(ctx->ring_sock); 3837 ctx->ring_sock = NULL; 3838 } else { 3839 ctx->ring_sock->file = file; 3840 } 3841 #endif 3842 return file; 3843 } 3844 3845 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3846 struct io_uring_params __user *params) 3847 { 3848 struct io_ring_ctx *ctx; 3849 struct io_uring_task *tctx; 3850 struct file *file; 3851 int ret; 3852 3853 if (!entries) 3854 return -EINVAL; 3855 if (entries > IORING_MAX_ENTRIES) { 3856 if (!(p->flags & IORING_SETUP_CLAMP)) 3857 return -EINVAL; 3858 entries = IORING_MAX_ENTRIES; 3859 } 3860 3861 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3862 && !(p->flags & IORING_SETUP_NO_MMAP)) 3863 return -EINVAL; 3864 3865 /* 3866 * Use twice as many entries for the CQ ring. It's possible for the 3867 * application to drive a higher depth than the size of the SQ ring, 3868 * since the sqes are only used at submission time. This allows for 3869 * some flexibility in overcommitting a bit. If the application has 3870 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3871 * of CQ ring entries manually. 3872 */ 3873 p->sq_entries = roundup_pow_of_two(entries); 3874 if (p->flags & IORING_SETUP_CQSIZE) { 3875 /* 3876 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3877 * to a power-of-two, if it isn't already. We do NOT impose 3878 * any cq vs sq ring sizing. 3879 */ 3880 if (!p->cq_entries) 3881 return -EINVAL; 3882 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3883 if (!(p->flags & IORING_SETUP_CLAMP)) 3884 return -EINVAL; 3885 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3886 } 3887 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3888 if (p->cq_entries < p->sq_entries) 3889 return -EINVAL; 3890 } else { 3891 p->cq_entries = 2 * p->sq_entries; 3892 } 3893 3894 ctx = io_ring_ctx_alloc(p); 3895 if (!ctx) 3896 return -ENOMEM; 3897 3898 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3899 !(ctx->flags & IORING_SETUP_IOPOLL) && 3900 !(ctx->flags & IORING_SETUP_SQPOLL)) 3901 ctx->task_complete = true; 3902 3903 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3904 ctx->lockless_cq = true; 3905 3906 /* 3907 * lazy poll_wq activation relies on ->task_complete for synchronisation 3908 * purposes, see io_activate_pollwq() 3909 */ 3910 if (!ctx->task_complete) 3911 ctx->poll_activated = true; 3912 3913 /* 3914 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3915 * space applications don't need to do io completion events 3916 * polling again, they can rely on io_sq_thread to do polling 3917 * work, which can reduce cpu usage and uring_lock contention. 3918 */ 3919 if (ctx->flags & IORING_SETUP_IOPOLL && 3920 !(ctx->flags & IORING_SETUP_SQPOLL)) 3921 ctx->syscall_iopoll = 1; 3922 3923 ctx->compat = in_compat_syscall(); 3924 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3925 ctx->user = get_uid(current_user()); 3926 3927 /* 3928 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3929 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3930 */ 3931 ret = -EINVAL; 3932 if (ctx->flags & IORING_SETUP_SQPOLL) { 3933 /* IPI related flags don't make sense with SQPOLL */ 3934 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3935 IORING_SETUP_TASKRUN_FLAG | 3936 IORING_SETUP_DEFER_TASKRUN)) 3937 goto err; 3938 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3939 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3940 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3941 } else { 3942 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3943 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3944 goto err; 3945 ctx->notify_method = TWA_SIGNAL; 3946 } 3947 3948 /* 3949 * For DEFER_TASKRUN we require the completion task to be the same as the 3950 * submission task. This implies that there is only one submitter, so enforce 3951 * that. 3952 */ 3953 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3954 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3955 goto err; 3956 } 3957 3958 /* 3959 * This is just grabbed for accounting purposes. When a process exits, 3960 * the mm is exited and dropped before the files, hence we need to hang 3961 * on to this mm purely for the purposes of being able to unaccount 3962 * memory (locked/pinned vm). It's not used for anything else. 3963 */ 3964 mmgrab(current->mm); 3965 ctx->mm_account = current->mm; 3966 3967 ret = io_allocate_scq_urings(ctx, p); 3968 if (ret) 3969 goto err; 3970 3971 ret = io_sq_offload_create(ctx, p); 3972 if (ret) 3973 goto err; 3974 3975 ret = io_rsrc_init(ctx); 3976 if (ret) 3977 goto err; 3978 3979 p->sq_off.head = offsetof(struct io_rings, sq.head); 3980 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3981 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3982 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3983 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3984 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3985 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3986 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3987 p->sq_off.resv1 = 0; 3988 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3989 p->sq_off.user_addr = 0; 3990 3991 p->cq_off.head = offsetof(struct io_rings, cq.head); 3992 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3993 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3994 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3995 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3996 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3997 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3998 p->cq_off.resv1 = 0; 3999 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 4000 p->cq_off.user_addr = 0; 4001 4002 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 4003 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 4004 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 4005 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 4006 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 4007 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 4008 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 4009 4010 if (copy_to_user(params, p, sizeof(*p))) { 4011 ret = -EFAULT; 4012 goto err; 4013 } 4014 4015 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 4016 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 4017 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4018 4019 file = io_uring_get_file(ctx); 4020 if (IS_ERR(file)) { 4021 ret = PTR_ERR(file); 4022 goto err; 4023 } 4024 4025 ret = __io_uring_add_tctx_node(ctx); 4026 if (ret) 4027 goto err_fput; 4028 tctx = current->io_uring; 4029 4030 /* 4031 * Install ring fd as the very last thing, so we don't risk someone 4032 * having closed it before we finish setup 4033 */ 4034 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 4035 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 4036 else 4037 ret = io_uring_install_fd(file); 4038 if (ret < 0) 4039 goto err_fput; 4040 4041 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 4042 return ret; 4043 err: 4044 io_ring_ctx_wait_and_kill(ctx); 4045 return ret; 4046 err_fput: 4047 fput(file); 4048 return ret; 4049 } 4050 4051 /* 4052 * Sets up an aio uring context, and returns the fd. Applications asks for a 4053 * ring size, we return the actual sq/cq ring sizes (among other things) in the 4054 * params structure passed in. 4055 */ 4056 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 4057 { 4058 struct io_uring_params p; 4059 int i; 4060 4061 if (copy_from_user(&p, params, sizeof(p))) 4062 return -EFAULT; 4063 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 4064 if (p.resv[i]) 4065 return -EINVAL; 4066 } 4067 4068 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 4069 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 4070 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 4071 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 4072 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 4073 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 4074 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 4075 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 4076 IORING_SETUP_NO_SQARRAY)) 4077 return -EINVAL; 4078 4079 return io_uring_create(entries, &p, params); 4080 } 4081 4082 static inline bool io_uring_allowed(void) 4083 { 4084 int disabled = READ_ONCE(sysctl_io_uring_disabled); 4085 kgid_t io_uring_group; 4086 4087 if (disabled == 2) 4088 return false; 4089 4090 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 4091 return true; 4092 4093 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 4094 if (!gid_valid(io_uring_group)) 4095 return false; 4096 4097 return in_group_p(io_uring_group); 4098 } 4099 4100 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 4101 struct io_uring_params __user *, params) 4102 { 4103 if (!io_uring_allowed()) 4104 return -EPERM; 4105 4106 return io_uring_setup(entries, params); 4107 } 4108 4109 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 4110 unsigned nr_args) 4111 { 4112 struct io_uring_probe *p; 4113 size_t size; 4114 int i, ret; 4115 4116 size = struct_size(p, ops, nr_args); 4117 if (size == SIZE_MAX) 4118 return -EOVERFLOW; 4119 p = kzalloc(size, GFP_KERNEL); 4120 if (!p) 4121 return -ENOMEM; 4122 4123 ret = -EFAULT; 4124 if (copy_from_user(p, arg, size)) 4125 goto out; 4126 ret = -EINVAL; 4127 if (memchr_inv(p, 0, size)) 4128 goto out; 4129 4130 p->last_op = IORING_OP_LAST - 1; 4131 if (nr_args > IORING_OP_LAST) 4132 nr_args = IORING_OP_LAST; 4133 4134 for (i = 0; i < nr_args; i++) { 4135 p->ops[i].op = i; 4136 if (!io_issue_defs[i].not_supported) 4137 p->ops[i].flags = IO_URING_OP_SUPPORTED; 4138 } 4139 p->ops_len = i; 4140 4141 ret = 0; 4142 if (copy_to_user(arg, p, size)) 4143 ret = -EFAULT; 4144 out: 4145 kfree(p); 4146 return ret; 4147 } 4148 4149 static int io_register_personality(struct io_ring_ctx *ctx) 4150 { 4151 const struct cred *creds; 4152 u32 id; 4153 int ret; 4154 4155 creds = get_current_cred(); 4156 4157 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 4158 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 4159 if (ret < 0) { 4160 put_cred(creds); 4161 return ret; 4162 } 4163 return id; 4164 } 4165 4166 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 4167 void __user *arg, unsigned int nr_args) 4168 { 4169 struct io_uring_restriction *res; 4170 size_t size; 4171 int i, ret; 4172 4173 /* Restrictions allowed only if rings started disabled */ 4174 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4175 return -EBADFD; 4176 4177 /* We allow only a single restrictions registration */ 4178 if (ctx->restrictions.registered) 4179 return -EBUSY; 4180 4181 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 4182 return -EINVAL; 4183 4184 size = array_size(nr_args, sizeof(*res)); 4185 if (size == SIZE_MAX) 4186 return -EOVERFLOW; 4187 4188 res = memdup_user(arg, size); 4189 if (IS_ERR(res)) 4190 return PTR_ERR(res); 4191 4192 ret = 0; 4193 4194 for (i = 0; i < nr_args; i++) { 4195 switch (res[i].opcode) { 4196 case IORING_RESTRICTION_REGISTER_OP: 4197 if (res[i].register_op >= IORING_REGISTER_LAST) { 4198 ret = -EINVAL; 4199 goto out; 4200 } 4201 4202 __set_bit(res[i].register_op, 4203 ctx->restrictions.register_op); 4204 break; 4205 case IORING_RESTRICTION_SQE_OP: 4206 if (res[i].sqe_op >= IORING_OP_LAST) { 4207 ret = -EINVAL; 4208 goto out; 4209 } 4210 4211 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 4212 break; 4213 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 4214 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 4215 break; 4216 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 4217 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 4218 break; 4219 default: 4220 ret = -EINVAL; 4221 goto out; 4222 } 4223 } 4224 4225 out: 4226 /* Reset all restrictions if an error happened */ 4227 if (ret != 0) 4228 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 4229 else 4230 ctx->restrictions.registered = true; 4231 4232 kfree(res); 4233 return ret; 4234 } 4235 4236 static int io_register_enable_rings(struct io_ring_ctx *ctx) 4237 { 4238 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4239 return -EBADFD; 4240 4241 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) { 4242 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4243 /* 4244 * Lazy activation attempts would fail if it was polled before 4245 * submitter_task is set. 4246 */ 4247 if (wq_has_sleeper(&ctx->poll_wq)) 4248 io_activate_pollwq(ctx); 4249 } 4250 4251 if (ctx->restrictions.registered) 4252 ctx->restricted = 1; 4253 4254 ctx->flags &= ~IORING_SETUP_R_DISABLED; 4255 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 4256 wake_up(&ctx->sq_data->wait); 4257 return 0; 4258 } 4259 4260 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx, 4261 cpumask_var_t new_mask) 4262 { 4263 int ret; 4264 4265 if (!(ctx->flags & IORING_SETUP_SQPOLL)) { 4266 ret = io_wq_cpu_affinity(current->io_uring, new_mask); 4267 } else { 4268 mutex_unlock(&ctx->uring_lock); 4269 ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask); 4270 mutex_lock(&ctx->uring_lock); 4271 } 4272 4273 return ret; 4274 } 4275 4276 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 4277 void __user *arg, unsigned len) 4278 { 4279 cpumask_var_t new_mask; 4280 int ret; 4281 4282 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4283 return -ENOMEM; 4284 4285 cpumask_clear(new_mask); 4286 if (len > cpumask_size()) 4287 len = cpumask_size(); 4288 4289 if (in_compat_syscall()) { 4290 ret = compat_get_bitmap(cpumask_bits(new_mask), 4291 (const compat_ulong_t __user *)arg, 4292 len * 8 /* CHAR_BIT */); 4293 } else { 4294 ret = copy_from_user(new_mask, arg, len); 4295 } 4296 4297 if (ret) { 4298 free_cpumask_var(new_mask); 4299 return -EFAULT; 4300 } 4301 4302 ret = __io_register_iowq_aff(ctx, new_mask); 4303 free_cpumask_var(new_mask); 4304 return ret; 4305 } 4306 4307 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 4308 { 4309 return __io_register_iowq_aff(ctx, NULL); 4310 } 4311 4312 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 4313 void __user *arg) 4314 __must_hold(&ctx->uring_lock) 4315 { 4316 struct io_tctx_node *node; 4317 struct io_uring_task *tctx = NULL; 4318 struct io_sq_data *sqd = NULL; 4319 __u32 new_count[2]; 4320 int i, ret; 4321 4322 if (copy_from_user(new_count, arg, sizeof(new_count))) 4323 return -EFAULT; 4324 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4325 if (new_count[i] > INT_MAX) 4326 return -EINVAL; 4327 4328 if (ctx->flags & IORING_SETUP_SQPOLL) { 4329 sqd = ctx->sq_data; 4330 if (sqd) { 4331 /* 4332 * Observe the correct sqd->lock -> ctx->uring_lock 4333 * ordering. Fine to drop uring_lock here, we hold 4334 * a ref to the ctx. 4335 */ 4336 refcount_inc(&sqd->refs); 4337 mutex_unlock(&ctx->uring_lock); 4338 mutex_lock(&sqd->lock); 4339 mutex_lock(&ctx->uring_lock); 4340 if (sqd->thread) 4341 tctx = sqd->thread->io_uring; 4342 } 4343 } else { 4344 tctx = current->io_uring; 4345 } 4346 4347 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 4348 4349 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4350 if (new_count[i]) 4351 ctx->iowq_limits[i] = new_count[i]; 4352 ctx->iowq_limits_set = true; 4353 4354 if (tctx && tctx->io_wq) { 4355 ret = io_wq_max_workers(tctx->io_wq, new_count); 4356 if (ret) 4357 goto err; 4358 } else { 4359 memset(new_count, 0, sizeof(new_count)); 4360 } 4361 4362 if (sqd) { 4363 mutex_unlock(&sqd->lock); 4364 io_put_sq_data(sqd); 4365 } 4366 4367 if (copy_to_user(arg, new_count, sizeof(new_count))) 4368 return -EFAULT; 4369 4370 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 4371 if (sqd) 4372 return 0; 4373 4374 /* now propagate the restriction to all registered users */ 4375 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 4376 struct io_uring_task *tctx = node->task->io_uring; 4377 4378 if (WARN_ON_ONCE(!tctx->io_wq)) 4379 continue; 4380 4381 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4382 new_count[i] = ctx->iowq_limits[i]; 4383 /* ignore errors, it always returns zero anyway */ 4384 (void)io_wq_max_workers(tctx->io_wq, new_count); 4385 } 4386 return 0; 4387 err: 4388 if (sqd) { 4389 mutex_unlock(&sqd->lock); 4390 io_put_sq_data(sqd); 4391 } 4392 return ret; 4393 } 4394 4395 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4396 void __user *arg, unsigned nr_args) 4397 __releases(ctx->uring_lock) 4398 __acquires(ctx->uring_lock) 4399 { 4400 int ret; 4401 4402 /* 4403 * We don't quiesce the refs for register anymore and so it can't be 4404 * dying as we're holding a file ref here. 4405 */ 4406 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4407 return -ENXIO; 4408 4409 if (ctx->submitter_task && ctx->submitter_task != current) 4410 return -EEXIST; 4411 4412 if (ctx->restricted) { 4413 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4414 if (!test_bit(opcode, ctx->restrictions.register_op)) 4415 return -EACCES; 4416 } 4417 4418 switch (opcode) { 4419 case IORING_REGISTER_BUFFERS: 4420 ret = -EFAULT; 4421 if (!arg) 4422 break; 4423 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4424 break; 4425 case IORING_UNREGISTER_BUFFERS: 4426 ret = -EINVAL; 4427 if (arg || nr_args) 4428 break; 4429 ret = io_sqe_buffers_unregister(ctx); 4430 break; 4431 case IORING_REGISTER_FILES: 4432 ret = -EFAULT; 4433 if (!arg) 4434 break; 4435 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4436 break; 4437 case IORING_UNREGISTER_FILES: 4438 ret = -EINVAL; 4439 if (arg || nr_args) 4440 break; 4441 ret = io_sqe_files_unregister(ctx); 4442 break; 4443 case IORING_REGISTER_FILES_UPDATE: 4444 ret = io_register_files_update(ctx, arg, nr_args); 4445 break; 4446 case IORING_REGISTER_EVENTFD: 4447 ret = -EINVAL; 4448 if (nr_args != 1) 4449 break; 4450 ret = io_eventfd_register(ctx, arg, 0); 4451 break; 4452 case IORING_REGISTER_EVENTFD_ASYNC: 4453 ret = -EINVAL; 4454 if (nr_args != 1) 4455 break; 4456 ret = io_eventfd_register(ctx, arg, 1); 4457 break; 4458 case IORING_UNREGISTER_EVENTFD: 4459 ret = -EINVAL; 4460 if (arg || nr_args) 4461 break; 4462 ret = io_eventfd_unregister(ctx); 4463 break; 4464 case IORING_REGISTER_PROBE: 4465 ret = -EINVAL; 4466 if (!arg || nr_args > 256) 4467 break; 4468 ret = io_probe(ctx, arg, nr_args); 4469 break; 4470 case IORING_REGISTER_PERSONALITY: 4471 ret = -EINVAL; 4472 if (arg || nr_args) 4473 break; 4474 ret = io_register_personality(ctx); 4475 break; 4476 case IORING_UNREGISTER_PERSONALITY: 4477 ret = -EINVAL; 4478 if (arg) 4479 break; 4480 ret = io_unregister_personality(ctx, nr_args); 4481 break; 4482 case IORING_REGISTER_ENABLE_RINGS: 4483 ret = -EINVAL; 4484 if (arg || nr_args) 4485 break; 4486 ret = io_register_enable_rings(ctx); 4487 break; 4488 case IORING_REGISTER_RESTRICTIONS: 4489 ret = io_register_restrictions(ctx, arg, nr_args); 4490 break; 4491 case IORING_REGISTER_FILES2: 4492 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4493 break; 4494 case IORING_REGISTER_FILES_UPDATE2: 4495 ret = io_register_rsrc_update(ctx, arg, nr_args, 4496 IORING_RSRC_FILE); 4497 break; 4498 case IORING_REGISTER_BUFFERS2: 4499 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4500 break; 4501 case IORING_REGISTER_BUFFERS_UPDATE: 4502 ret = io_register_rsrc_update(ctx, arg, nr_args, 4503 IORING_RSRC_BUFFER); 4504 break; 4505 case IORING_REGISTER_IOWQ_AFF: 4506 ret = -EINVAL; 4507 if (!arg || !nr_args) 4508 break; 4509 ret = io_register_iowq_aff(ctx, arg, nr_args); 4510 break; 4511 case IORING_UNREGISTER_IOWQ_AFF: 4512 ret = -EINVAL; 4513 if (arg || nr_args) 4514 break; 4515 ret = io_unregister_iowq_aff(ctx); 4516 break; 4517 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4518 ret = -EINVAL; 4519 if (!arg || nr_args != 2) 4520 break; 4521 ret = io_register_iowq_max_workers(ctx, arg); 4522 break; 4523 case IORING_REGISTER_RING_FDS: 4524 ret = io_ringfd_register(ctx, arg, nr_args); 4525 break; 4526 case IORING_UNREGISTER_RING_FDS: 4527 ret = io_ringfd_unregister(ctx, arg, nr_args); 4528 break; 4529 case IORING_REGISTER_PBUF_RING: 4530 ret = -EINVAL; 4531 if (!arg || nr_args != 1) 4532 break; 4533 ret = io_register_pbuf_ring(ctx, arg); 4534 break; 4535 case IORING_UNREGISTER_PBUF_RING: 4536 ret = -EINVAL; 4537 if (!arg || nr_args != 1) 4538 break; 4539 ret = io_unregister_pbuf_ring(ctx, arg); 4540 break; 4541 case IORING_REGISTER_SYNC_CANCEL: 4542 ret = -EINVAL; 4543 if (!arg || nr_args != 1) 4544 break; 4545 ret = io_sync_cancel(ctx, arg); 4546 break; 4547 case IORING_REGISTER_FILE_ALLOC_RANGE: 4548 ret = -EINVAL; 4549 if (!arg || nr_args) 4550 break; 4551 ret = io_register_file_alloc_range(ctx, arg); 4552 break; 4553 default: 4554 ret = -EINVAL; 4555 break; 4556 } 4557 4558 return ret; 4559 } 4560 4561 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4562 void __user *, arg, unsigned int, nr_args) 4563 { 4564 struct io_ring_ctx *ctx; 4565 long ret = -EBADF; 4566 struct fd f; 4567 bool use_registered_ring; 4568 4569 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING); 4570 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING; 4571 4572 if (opcode >= IORING_REGISTER_LAST) 4573 return -EINVAL; 4574 4575 if (use_registered_ring) { 4576 /* 4577 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 4578 * need only dereference our task private array to find it. 4579 */ 4580 struct io_uring_task *tctx = current->io_uring; 4581 4582 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 4583 return -EINVAL; 4584 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 4585 f.file = tctx->registered_rings[fd]; 4586 f.flags = 0; 4587 if (unlikely(!f.file)) 4588 return -EBADF; 4589 } else { 4590 f = fdget(fd); 4591 if (unlikely(!f.file)) 4592 return -EBADF; 4593 ret = -EOPNOTSUPP; 4594 if (!io_is_uring_fops(f.file)) 4595 goto out_fput; 4596 } 4597 4598 ctx = f.file->private_data; 4599 4600 mutex_lock(&ctx->uring_lock); 4601 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4602 mutex_unlock(&ctx->uring_lock); 4603 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4604 out_fput: 4605 fdput(f); 4606 return ret; 4607 } 4608 4609 static int __init io_uring_init(void) 4610 { 4611 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4612 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4613 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4614 } while (0) 4615 4616 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4617 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4618 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4619 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4620 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4621 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4622 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4623 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4624 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4625 BUILD_BUG_SQE_ELEM(8, __u64, off); 4626 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4627 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4628 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4629 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4630 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4631 BUILD_BUG_SQE_ELEM(24, __u32, len); 4632 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4633 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4634 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4635 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4636 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4637 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4638 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4639 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4640 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4641 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4642 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4643 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4644 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4645 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4646 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4647 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4648 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4649 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4650 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4651 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4652 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4653 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4654 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4655 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4656 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4657 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4658 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4659 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4660 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4661 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4662 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4663 4664 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4665 sizeof(struct io_uring_rsrc_update)); 4666 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4667 sizeof(struct io_uring_rsrc_update2)); 4668 4669 /* ->buf_index is u16 */ 4670 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4671 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4672 offsetof(struct io_uring_buf_ring, tail)); 4673 4674 /* should fit into one byte */ 4675 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4676 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4677 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4678 4679 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4680 4681 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4682 4683 io_uring_optable_init(); 4684 4685 /* 4686 * Allow user copy in the per-command field, which starts after the 4687 * file in io_kiocb and until the opcode field. The openat2 handling 4688 * requires copying in user memory into the io_kiocb object in that 4689 * range, and HARDENED_USERCOPY will complain if we haven't 4690 * correctly annotated this range. 4691 */ 4692 req_cachep = kmem_cache_create_usercopy("io_kiocb", 4693 sizeof(struct io_kiocb), 0, 4694 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4695 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU, 4696 offsetof(struct io_kiocb, cmd.data), 4697 sizeof_field(struct io_kiocb, cmd.data), NULL); 4698 4699 #ifdef CONFIG_SYSCTL 4700 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 4701 #endif 4702 4703 return 0; 4704 }; 4705 __initcall(io_uring_init); 4706