xref: /openbmc/linux/io_uring/io_uring.c (revision 519b58bb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/io_uring.h>
78 
79 #include <uapi/linux/io_uring.h>
80 
81 #include "io-wq.h"
82 
83 #include "io_uring.h"
84 #include "opdef.h"
85 #include "refs.h"
86 #include "tctx.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 
95 #include "timeout.h"
96 #include "poll.h"
97 #include "alloc_cache.h"
98 
99 #define IORING_MAX_ENTRIES	32768
100 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
101 
102 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
103 				 IORING_REGISTER_LAST + IORING_OP_LAST)
104 
105 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
106 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
107 
108 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
109 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
110 
111 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
112 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
113 				REQ_F_ASYNC_DATA)
114 
115 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
116 				 IO_REQ_CLEAN_FLAGS)
117 
118 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
119 
120 #define IO_COMPL_BATCH			32
121 #define IO_REQ_ALLOC_BATCH		8
122 
123 enum {
124 	IO_CHECK_CQ_OVERFLOW_BIT,
125 	IO_CHECK_CQ_DROPPED_BIT,
126 };
127 
128 enum {
129 	IO_EVENTFD_OP_SIGNAL_BIT,
130 	IO_EVENTFD_OP_FREE_BIT,
131 };
132 
133 struct io_defer_entry {
134 	struct list_head	list;
135 	struct io_kiocb		*req;
136 	u32			seq;
137 };
138 
139 /* requests with any of those set should undergo io_disarm_next() */
140 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
141 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
142 
143 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
144 					 struct task_struct *task,
145 					 bool cancel_all);
146 
147 static void io_dismantle_req(struct io_kiocb *req);
148 static void io_clean_op(struct io_kiocb *req);
149 static void io_queue_sqe(struct io_kiocb *req);
150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx);
151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
152 
153 static struct kmem_cache *req_cachep;
154 
155 struct sock *io_uring_get_socket(struct file *file)
156 {
157 #if defined(CONFIG_UNIX)
158 	if (io_is_uring_fops(file)) {
159 		struct io_ring_ctx *ctx = file->private_data;
160 
161 		return ctx->ring_sock->sk;
162 	}
163 #endif
164 	return NULL;
165 }
166 EXPORT_SYMBOL(io_uring_get_socket);
167 
168 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
169 {
170 	if (!wq_list_empty(&ctx->submit_state.compl_reqs))
171 		__io_submit_flush_completions(ctx);
172 }
173 
174 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
175 {
176 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
177 }
178 
179 static bool io_match_linked(struct io_kiocb *head)
180 {
181 	struct io_kiocb *req;
182 
183 	io_for_each_link(req, head) {
184 		if (req->flags & REQ_F_INFLIGHT)
185 			return true;
186 	}
187 	return false;
188 }
189 
190 /*
191  * As io_match_task() but protected against racing with linked timeouts.
192  * User must not hold timeout_lock.
193  */
194 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
195 			bool cancel_all)
196 {
197 	bool matched;
198 
199 	if (task && head->task != task)
200 		return false;
201 	if (cancel_all)
202 		return true;
203 
204 	if (head->flags & REQ_F_LINK_TIMEOUT) {
205 		struct io_ring_ctx *ctx = head->ctx;
206 
207 		/* protect against races with linked timeouts */
208 		spin_lock_irq(&ctx->timeout_lock);
209 		matched = io_match_linked(head);
210 		spin_unlock_irq(&ctx->timeout_lock);
211 	} else {
212 		matched = io_match_linked(head);
213 	}
214 	return matched;
215 }
216 
217 static inline void req_fail_link_node(struct io_kiocb *req, int res)
218 {
219 	req_set_fail(req);
220 	io_req_set_res(req, res, 0);
221 }
222 
223 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
224 {
225 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
226 }
227 
228 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
229 {
230 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
231 
232 	complete(&ctx->ref_comp);
233 }
234 
235 static __cold void io_fallback_req_func(struct work_struct *work)
236 {
237 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
238 						fallback_work.work);
239 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
240 	struct io_kiocb *req, *tmp;
241 	bool locked = false;
242 
243 	percpu_ref_get(&ctx->refs);
244 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
245 		req->io_task_work.func(req, &locked);
246 
247 	if (locked) {
248 		io_submit_flush_completions(ctx);
249 		mutex_unlock(&ctx->uring_lock);
250 	}
251 	percpu_ref_put(&ctx->refs);
252 }
253 
254 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
255 {
256 	unsigned hash_buckets = 1U << bits;
257 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
258 
259 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
260 	if (!table->hbs)
261 		return -ENOMEM;
262 
263 	table->hash_bits = bits;
264 	init_hash_table(table, hash_buckets);
265 	return 0;
266 }
267 
268 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
269 {
270 	struct io_ring_ctx *ctx;
271 	int hash_bits;
272 
273 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
274 	if (!ctx)
275 		return NULL;
276 
277 	xa_init(&ctx->io_bl_xa);
278 
279 	/*
280 	 * Use 5 bits less than the max cq entries, that should give us around
281 	 * 32 entries per hash list if totally full and uniformly spread, but
282 	 * don't keep too many buckets to not overconsume memory.
283 	 */
284 	hash_bits = ilog2(p->cq_entries) - 5;
285 	hash_bits = clamp(hash_bits, 1, 8);
286 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
287 		goto err;
288 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
289 		goto err;
290 
291 	ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
292 	if (!ctx->dummy_ubuf)
293 		goto err;
294 	/* set invalid range, so io_import_fixed() fails meeting it */
295 	ctx->dummy_ubuf->ubuf = -1UL;
296 
297 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
298 			    0, GFP_KERNEL))
299 		goto err;
300 
301 	ctx->flags = p->flags;
302 	init_waitqueue_head(&ctx->sqo_sq_wait);
303 	INIT_LIST_HEAD(&ctx->sqd_list);
304 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
305 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
306 	io_alloc_cache_init(&ctx->apoll_cache);
307 	io_alloc_cache_init(&ctx->netmsg_cache);
308 	init_completion(&ctx->ref_comp);
309 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
310 	mutex_init(&ctx->uring_lock);
311 	init_waitqueue_head(&ctx->cq_wait);
312 	spin_lock_init(&ctx->completion_lock);
313 	spin_lock_init(&ctx->timeout_lock);
314 	INIT_WQ_LIST(&ctx->iopoll_list);
315 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
316 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
317 	INIT_LIST_HEAD(&ctx->defer_list);
318 	INIT_LIST_HEAD(&ctx->timeout_list);
319 	INIT_LIST_HEAD(&ctx->ltimeout_list);
320 	spin_lock_init(&ctx->rsrc_ref_lock);
321 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
322 	INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
323 	init_llist_head(&ctx->rsrc_put_llist);
324 	init_llist_head(&ctx->work_llist);
325 	INIT_LIST_HEAD(&ctx->tctx_list);
326 	ctx->submit_state.free_list.next = NULL;
327 	INIT_WQ_LIST(&ctx->locked_free_list);
328 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
329 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
330 	return ctx;
331 err:
332 	kfree(ctx->dummy_ubuf);
333 	kfree(ctx->cancel_table.hbs);
334 	kfree(ctx->cancel_table_locked.hbs);
335 	kfree(ctx->io_bl);
336 	xa_destroy(&ctx->io_bl_xa);
337 	kfree(ctx);
338 	return NULL;
339 }
340 
341 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
342 {
343 	struct io_rings *r = ctx->rings;
344 
345 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
346 	ctx->cq_extra--;
347 }
348 
349 static bool req_need_defer(struct io_kiocb *req, u32 seq)
350 {
351 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
352 		struct io_ring_ctx *ctx = req->ctx;
353 
354 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
355 	}
356 
357 	return false;
358 }
359 
360 static inline void io_req_track_inflight(struct io_kiocb *req)
361 {
362 	if (!(req->flags & REQ_F_INFLIGHT)) {
363 		req->flags |= REQ_F_INFLIGHT;
364 		atomic_inc(&req->task->io_uring->inflight_tracked);
365 	}
366 }
367 
368 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
369 {
370 	if (WARN_ON_ONCE(!req->link))
371 		return NULL;
372 
373 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
374 	req->flags |= REQ_F_LINK_TIMEOUT;
375 
376 	/* linked timeouts should have two refs once prep'ed */
377 	io_req_set_refcount(req);
378 	__io_req_set_refcount(req->link, 2);
379 	return req->link;
380 }
381 
382 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
383 {
384 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
385 		return NULL;
386 	return __io_prep_linked_timeout(req);
387 }
388 
389 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
390 {
391 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
392 }
393 
394 static inline void io_arm_ltimeout(struct io_kiocb *req)
395 {
396 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
397 		__io_arm_ltimeout(req);
398 }
399 
400 static void io_prep_async_work(struct io_kiocb *req)
401 {
402 	const struct io_op_def *def = &io_op_defs[req->opcode];
403 	struct io_ring_ctx *ctx = req->ctx;
404 
405 	if (!(req->flags & REQ_F_CREDS)) {
406 		req->flags |= REQ_F_CREDS;
407 		req->creds = get_current_cred();
408 	}
409 
410 	req->work.list.next = NULL;
411 	req->work.flags = 0;
412 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
413 	if (req->flags & REQ_F_FORCE_ASYNC)
414 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
415 
416 	if (req->file && !io_req_ffs_set(req))
417 		req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT;
418 
419 	if (req->flags & REQ_F_ISREG) {
420 		if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
421 			io_wq_hash_work(&req->work, file_inode(req->file));
422 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
423 		if (def->unbound_nonreg_file)
424 			req->work.flags |= IO_WQ_WORK_UNBOUND;
425 	}
426 }
427 
428 static void io_prep_async_link(struct io_kiocb *req)
429 {
430 	struct io_kiocb *cur;
431 
432 	if (req->flags & REQ_F_LINK_TIMEOUT) {
433 		struct io_ring_ctx *ctx = req->ctx;
434 
435 		spin_lock_irq(&ctx->timeout_lock);
436 		io_for_each_link(cur, req)
437 			io_prep_async_work(cur);
438 		spin_unlock_irq(&ctx->timeout_lock);
439 	} else {
440 		io_for_each_link(cur, req)
441 			io_prep_async_work(cur);
442 	}
443 }
444 
445 void io_queue_iowq(struct io_kiocb *req, bool *dont_use)
446 {
447 	struct io_kiocb *link = io_prep_linked_timeout(req);
448 	struct io_uring_task *tctx = req->task->io_uring;
449 
450 	BUG_ON(!tctx);
451 	BUG_ON(!tctx->io_wq);
452 
453 	/* init ->work of the whole link before punting */
454 	io_prep_async_link(req);
455 
456 	/*
457 	 * Not expected to happen, but if we do have a bug where this _can_
458 	 * happen, catch it here and ensure the request is marked as
459 	 * canceled. That will make io-wq go through the usual work cancel
460 	 * procedure rather than attempt to run this request (or create a new
461 	 * worker for it).
462 	 */
463 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
464 		req->work.flags |= IO_WQ_WORK_CANCEL;
465 
466 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
467 	io_wq_enqueue(tctx->io_wq, &req->work);
468 	if (link)
469 		io_queue_linked_timeout(link);
470 }
471 
472 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
473 {
474 	while (!list_empty(&ctx->defer_list)) {
475 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
476 						struct io_defer_entry, list);
477 
478 		if (req_need_defer(de->req, de->seq))
479 			break;
480 		list_del_init(&de->list);
481 		io_req_task_queue(de->req);
482 		kfree(de);
483 	}
484 }
485 
486 
487 static void io_eventfd_ops(struct rcu_head *rcu)
488 {
489 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
490 	int ops = atomic_xchg(&ev_fd->ops, 0);
491 
492 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
493 		eventfd_signal(ev_fd->cq_ev_fd, 1);
494 
495 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
496 	 * ordering in a race but if references are 0 we know we have to free
497 	 * it regardless.
498 	 */
499 	if (atomic_dec_and_test(&ev_fd->refs)) {
500 		eventfd_ctx_put(ev_fd->cq_ev_fd);
501 		kfree(ev_fd);
502 	}
503 }
504 
505 static void io_eventfd_signal(struct io_ring_ctx *ctx)
506 {
507 	struct io_ev_fd *ev_fd = NULL;
508 
509 	rcu_read_lock();
510 	/*
511 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
512 	 * and eventfd_signal
513 	 */
514 	ev_fd = rcu_dereference(ctx->io_ev_fd);
515 
516 	/*
517 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
518 	 * completed between the NULL check of ctx->io_ev_fd at the start of
519 	 * the function and rcu_read_lock.
520 	 */
521 	if (unlikely(!ev_fd))
522 		goto out;
523 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
524 		goto out;
525 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
526 		goto out;
527 
528 	if (likely(eventfd_signal_allowed())) {
529 		eventfd_signal(ev_fd->cq_ev_fd, 1);
530 	} else {
531 		atomic_inc(&ev_fd->refs);
532 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
533 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
534 		else
535 			atomic_dec(&ev_fd->refs);
536 	}
537 
538 out:
539 	rcu_read_unlock();
540 }
541 
542 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
543 {
544 	bool skip;
545 
546 	spin_lock(&ctx->completion_lock);
547 
548 	/*
549 	 * Eventfd should only get triggered when at least one event has been
550 	 * posted. Some applications rely on the eventfd notification count
551 	 * only changing IFF a new CQE has been added to the CQ ring. There's
552 	 * no depedency on 1:1 relationship between how many times this
553 	 * function is called (and hence the eventfd count) and number of CQEs
554 	 * posted to the CQ ring.
555 	 */
556 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
557 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
558 	spin_unlock(&ctx->completion_lock);
559 	if (skip)
560 		return;
561 
562 	io_eventfd_signal(ctx);
563 }
564 
565 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
566 {
567 	if (ctx->off_timeout_used || ctx->drain_active) {
568 		spin_lock(&ctx->completion_lock);
569 		if (ctx->off_timeout_used)
570 			io_flush_timeouts(ctx);
571 		if (ctx->drain_active)
572 			io_queue_deferred(ctx);
573 		spin_unlock(&ctx->completion_lock);
574 	}
575 	if (ctx->has_evfd)
576 		io_eventfd_flush_signal(ctx);
577 }
578 
579 static inline void io_cqring_ev_posted(struct io_ring_ctx *ctx)
580 {
581 	io_commit_cqring_flush(ctx);
582 	io_cqring_wake(ctx);
583 }
584 
585 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
586 	__releases(ctx->completion_lock)
587 {
588 	io_commit_cqring(ctx);
589 	spin_unlock(&ctx->completion_lock);
590 	io_cqring_ev_posted(ctx);
591 }
592 
593 void io_cq_unlock_post(struct io_ring_ctx *ctx)
594 {
595 	__io_cq_unlock_post(ctx);
596 }
597 
598 /* Returns true if there are no backlogged entries after the flush */
599 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
600 {
601 	bool all_flushed;
602 	size_t cqe_size = sizeof(struct io_uring_cqe);
603 
604 	if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
605 		return false;
606 
607 	if (ctx->flags & IORING_SETUP_CQE32)
608 		cqe_size <<= 1;
609 
610 	io_cq_lock(ctx);
611 	while (!list_empty(&ctx->cq_overflow_list)) {
612 		struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true);
613 		struct io_overflow_cqe *ocqe;
614 
615 		if (!cqe && !force)
616 			break;
617 		ocqe = list_first_entry(&ctx->cq_overflow_list,
618 					struct io_overflow_cqe, list);
619 		if (cqe)
620 			memcpy(cqe, &ocqe->cqe, cqe_size);
621 		else
622 			io_account_cq_overflow(ctx);
623 
624 		list_del(&ocqe->list);
625 		kfree(ocqe);
626 	}
627 
628 	all_flushed = list_empty(&ctx->cq_overflow_list);
629 	if (all_flushed) {
630 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
631 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
632 	}
633 
634 	io_cq_unlock_post(ctx);
635 	return all_flushed;
636 }
637 
638 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
639 {
640 	bool ret = true;
641 
642 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
643 		/* iopoll syncs against uring_lock, not completion_lock */
644 		if (ctx->flags & IORING_SETUP_IOPOLL)
645 			mutex_lock(&ctx->uring_lock);
646 		ret = __io_cqring_overflow_flush(ctx, false);
647 		if (ctx->flags & IORING_SETUP_IOPOLL)
648 			mutex_unlock(&ctx->uring_lock);
649 	}
650 
651 	return ret;
652 }
653 
654 void __io_put_task(struct task_struct *task, int nr)
655 {
656 	struct io_uring_task *tctx = task->io_uring;
657 
658 	percpu_counter_sub(&tctx->inflight, nr);
659 	if (unlikely(atomic_read(&tctx->in_idle)))
660 		wake_up(&tctx->wait);
661 	put_task_struct_many(task, nr);
662 }
663 
664 void io_task_refs_refill(struct io_uring_task *tctx)
665 {
666 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
667 
668 	percpu_counter_add(&tctx->inflight, refill);
669 	refcount_add(refill, &current->usage);
670 	tctx->cached_refs += refill;
671 }
672 
673 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
674 {
675 	struct io_uring_task *tctx = task->io_uring;
676 	unsigned int refs = tctx->cached_refs;
677 
678 	if (refs) {
679 		tctx->cached_refs = 0;
680 		percpu_counter_sub(&tctx->inflight, refs);
681 		put_task_struct_many(task, refs);
682 	}
683 }
684 
685 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
686 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
687 {
688 	struct io_overflow_cqe *ocqe;
689 	size_t ocq_size = sizeof(struct io_overflow_cqe);
690 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
691 
692 	if (is_cqe32)
693 		ocq_size += sizeof(struct io_uring_cqe);
694 
695 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
696 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
697 	if (!ocqe) {
698 		/*
699 		 * If we're in ring overflow flush mode, or in task cancel mode,
700 		 * or cannot allocate an overflow entry, then we need to drop it
701 		 * on the floor.
702 		 */
703 		io_account_cq_overflow(ctx);
704 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
705 		return false;
706 	}
707 	if (list_empty(&ctx->cq_overflow_list)) {
708 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
709 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
710 
711 	}
712 	ocqe->cqe.user_data = user_data;
713 	ocqe->cqe.res = res;
714 	ocqe->cqe.flags = cflags;
715 	if (is_cqe32) {
716 		ocqe->cqe.big_cqe[0] = extra1;
717 		ocqe->cqe.big_cqe[1] = extra2;
718 	}
719 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
720 	return true;
721 }
722 
723 bool io_req_cqe_overflow(struct io_kiocb *req)
724 {
725 	if (!(req->flags & REQ_F_CQE32_INIT)) {
726 		req->extra1 = 0;
727 		req->extra2 = 0;
728 	}
729 	return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
730 					req->cqe.res, req->cqe.flags,
731 					req->extra1, req->extra2);
732 }
733 
734 /*
735  * writes to the cq entry need to come after reading head; the
736  * control dependency is enough as we're using WRITE_ONCE to
737  * fill the cq entry
738  */
739 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow)
740 {
741 	struct io_rings *rings = ctx->rings;
742 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
743 	unsigned int free, queued, len;
744 
745 	/*
746 	 * Posting into the CQ when there are pending overflowed CQEs may break
747 	 * ordering guarantees, which will affect links, F_MORE users and more.
748 	 * Force overflow the completion.
749 	 */
750 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
751 		return NULL;
752 
753 	/* userspace may cheat modifying the tail, be safe and do min */
754 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
755 	free = ctx->cq_entries - queued;
756 	/* we need a contiguous range, limit based on the current array offset */
757 	len = min(free, ctx->cq_entries - off);
758 	if (!len)
759 		return NULL;
760 
761 	if (ctx->flags & IORING_SETUP_CQE32) {
762 		off <<= 1;
763 		len <<= 1;
764 	}
765 
766 	ctx->cqe_cached = &rings->cqes[off];
767 	ctx->cqe_sentinel = ctx->cqe_cached + len;
768 
769 	ctx->cached_cq_tail++;
770 	ctx->cqe_cached++;
771 	if (ctx->flags & IORING_SETUP_CQE32)
772 		ctx->cqe_cached++;
773 	return &rings->cqes[off];
774 }
775 
776 bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
777 		     bool allow_overflow)
778 {
779 	struct io_uring_cqe *cqe;
780 
781 	ctx->cq_extra++;
782 
783 	/*
784 	 * If we can't get a cq entry, userspace overflowed the
785 	 * submission (by quite a lot). Increment the overflow count in
786 	 * the ring.
787 	 */
788 	cqe = io_get_cqe(ctx);
789 	if (likely(cqe)) {
790 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
791 
792 		WRITE_ONCE(cqe->user_data, user_data);
793 		WRITE_ONCE(cqe->res, res);
794 		WRITE_ONCE(cqe->flags, cflags);
795 
796 		if (ctx->flags & IORING_SETUP_CQE32) {
797 			WRITE_ONCE(cqe->big_cqe[0], 0);
798 			WRITE_ONCE(cqe->big_cqe[1], 0);
799 		}
800 		return true;
801 	}
802 
803 	if (allow_overflow)
804 		return io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
805 
806 	return false;
807 }
808 
809 bool io_post_aux_cqe(struct io_ring_ctx *ctx,
810 		     u64 user_data, s32 res, u32 cflags,
811 		     bool allow_overflow)
812 {
813 	bool filled;
814 
815 	io_cq_lock(ctx);
816 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags, allow_overflow);
817 	io_cq_unlock_post(ctx);
818 	return filled;
819 }
820 
821 static void __io_req_complete_put(struct io_kiocb *req)
822 {
823 	/*
824 	 * If we're the last reference to this request, add to our locked
825 	 * free_list cache.
826 	 */
827 	if (req_ref_put_and_test(req)) {
828 		struct io_ring_ctx *ctx = req->ctx;
829 
830 		if (req->flags & IO_REQ_LINK_FLAGS) {
831 			if (req->flags & IO_DISARM_MASK)
832 				io_disarm_next(req);
833 			if (req->link) {
834 				io_req_task_queue(req->link);
835 				req->link = NULL;
836 			}
837 		}
838 		io_req_put_rsrc(req);
839 		/*
840 		 * Selected buffer deallocation in io_clean_op() assumes that
841 		 * we don't hold ->completion_lock. Clean them here to avoid
842 		 * deadlocks.
843 		 */
844 		io_put_kbuf_comp(req);
845 		io_dismantle_req(req);
846 		io_put_task(req->task, 1);
847 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
848 		ctx->locked_free_nr++;
849 	}
850 }
851 
852 void __io_req_complete_post(struct io_kiocb *req)
853 {
854 	if (!(req->flags & REQ_F_CQE_SKIP))
855 		__io_fill_cqe_req(req->ctx, req);
856 	__io_req_complete_put(req);
857 }
858 
859 void io_req_complete_post(struct io_kiocb *req)
860 {
861 	struct io_ring_ctx *ctx = req->ctx;
862 
863 	io_cq_lock(ctx);
864 	__io_req_complete_post(req);
865 	io_cq_unlock_post(ctx);
866 }
867 
868 inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags)
869 {
870 	io_req_complete_post(req);
871 }
872 
873 void io_req_complete_failed(struct io_kiocb *req, s32 res)
874 {
875 	const struct io_op_def *def = &io_op_defs[req->opcode];
876 
877 	req_set_fail(req);
878 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
879 	if (def->fail)
880 		def->fail(req);
881 	io_req_complete_post(req);
882 }
883 
884 /*
885  * Don't initialise the fields below on every allocation, but do that in
886  * advance and keep them valid across allocations.
887  */
888 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
889 {
890 	req->ctx = ctx;
891 	req->link = NULL;
892 	req->async_data = NULL;
893 	/* not necessary, but safer to zero */
894 	req->cqe.res = 0;
895 }
896 
897 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
898 					struct io_submit_state *state)
899 {
900 	spin_lock(&ctx->completion_lock);
901 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
902 	ctx->locked_free_nr = 0;
903 	spin_unlock(&ctx->completion_lock);
904 }
905 
906 /*
907  * A request might get retired back into the request caches even before opcode
908  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
909  * Because of that, io_alloc_req() should be called only under ->uring_lock
910  * and with extra caution to not get a request that is still worked on.
911  */
912 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
913 	__must_hold(&ctx->uring_lock)
914 {
915 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
916 	void *reqs[IO_REQ_ALLOC_BATCH];
917 	int ret, i;
918 
919 	/*
920 	 * If we have more than a batch's worth of requests in our IRQ side
921 	 * locked cache, grab the lock and move them over to our submission
922 	 * side cache.
923 	 */
924 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
925 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
926 		if (!io_req_cache_empty(ctx))
927 			return true;
928 	}
929 
930 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
931 
932 	/*
933 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
934 	 * retry single alloc to be on the safe side.
935 	 */
936 	if (unlikely(ret <= 0)) {
937 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
938 		if (!reqs[0])
939 			return false;
940 		ret = 1;
941 	}
942 
943 	percpu_ref_get_many(&ctx->refs, ret);
944 	for (i = 0; i < ret; i++) {
945 		struct io_kiocb *req = reqs[i];
946 
947 		io_preinit_req(req, ctx);
948 		io_req_add_to_cache(req, ctx);
949 	}
950 	return true;
951 }
952 
953 static inline void io_dismantle_req(struct io_kiocb *req)
954 {
955 	unsigned int flags = req->flags;
956 
957 	if (unlikely(flags & IO_REQ_CLEAN_FLAGS))
958 		io_clean_op(req);
959 	if (!(flags & REQ_F_FIXED_FILE))
960 		io_put_file(req->file);
961 }
962 
963 __cold void io_free_req(struct io_kiocb *req)
964 {
965 	struct io_ring_ctx *ctx = req->ctx;
966 
967 	io_req_put_rsrc(req);
968 	io_dismantle_req(req);
969 	io_put_task(req->task, 1);
970 
971 	spin_lock(&ctx->completion_lock);
972 	wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
973 	ctx->locked_free_nr++;
974 	spin_unlock(&ctx->completion_lock);
975 }
976 
977 static void __io_req_find_next_prep(struct io_kiocb *req)
978 {
979 	struct io_ring_ctx *ctx = req->ctx;
980 
981 	io_cq_lock(ctx);
982 	io_disarm_next(req);
983 	io_cq_unlock_post(ctx);
984 }
985 
986 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
987 {
988 	struct io_kiocb *nxt;
989 
990 	/*
991 	 * If LINK is set, we have dependent requests in this chain. If we
992 	 * didn't fail this request, queue the first one up, moving any other
993 	 * dependencies to the next request. In case of failure, fail the rest
994 	 * of the chain.
995 	 */
996 	if (unlikely(req->flags & IO_DISARM_MASK))
997 		__io_req_find_next_prep(req);
998 	nxt = req->link;
999 	req->link = NULL;
1000 	return nxt;
1001 }
1002 
1003 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
1004 {
1005 	if (!ctx)
1006 		return;
1007 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1008 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1009 	if (*locked) {
1010 		io_submit_flush_completions(ctx);
1011 		mutex_unlock(&ctx->uring_lock);
1012 		*locked = false;
1013 	}
1014 	percpu_ref_put(&ctx->refs);
1015 }
1016 
1017 static unsigned int handle_tw_list(struct llist_node *node,
1018 				   struct io_ring_ctx **ctx, bool *locked,
1019 				   struct llist_node *last)
1020 {
1021 	unsigned int count = 0;
1022 
1023 	while (node != last) {
1024 		struct llist_node *next = node->next;
1025 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1026 						    io_task_work.node);
1027 
1028 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1029 
1030 		if (req->ctx != *ctx) {
1031 			ctx_flush_and_put(*ctx, locked);
1032 			*ctx = req->ctx;
1033 			/* if not contended, grab and improve batching */
1034 			*locked = mutex_trylock(&(*ctx)->uring_lock);
1035 			percpu_ref_get(&(*ctx)->refs);
1036 		}
1037 		req->io_task_work.func(req, locked);
1038 		node = next;
1039 		count++;
1040 	}
1041 
1042 	return count;
1043 }
1044 
1045 /**
1046  * io_llist_xchg - swap all entries in a lock-less list
1047  * @head:	the head of lock-less list to delete all entries
1048  * @new:	new entry as the head of the list
1049  *
1050  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1051  * The order of entries returned is from the newest to the oldest added one.
1052  */
1053 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1054 					       struct llist_node *new)
1055 {
1056 	return xchg(&head->first, new);
1057 }
1058 
1059 /**
1060  * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1061  * @head:	the head of lock-less list to delete all entries
1062  * @old:	expected old value of the first entry of the list
1063  * @new:	new entry as the head of the list
1064  *
1065  * perform a cmpxchg on the first entry of the list.
1066  */
1067 
1068 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1069 						  struct llist_node *old,
1070 						  struct llist_node *new)
1071 {
1072 	return cmpxchg(&head->first, old, new);
1073 }
1074 
1075 void tctx_task_work(struct callback_head *cb)
1076 {
1077 	bool uring_locked = false;
1078 	struct io_ring_ctx *ctx = NULL;
1079 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1080 						  task_work);
1081 	struct llist_node fake = {};
1082 	struct llist_node *node = io_llist_xchg(&tctx->task_list, &fake);
1083 	unsigned int loops = 1;
1084 	unsigned int count = handle_tw_list(node, &ctx, &uring_locked, NULL);
1085 
1086 	node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1087 	while (node != &fake) {
1088 		loops++;
1089 		node = io_llist_xchg(&tctx->task_list, &fake);
1090 		count += handle_tw_list(node, &ctx, &uring_locked, &fake);
1091 		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1092 	}
1093 
1094 	ctx_flush_and_put(ctx, &uring_locked);
1095 
1096 	/* relaxed read is enough as only the task itself sets ->in_idle */
1097 	if (unlikely(atomic_read(&tctx->in_idle)))
1098 		io_uring_drop_tctx_refs(current);
1099 
1100 	trace_io_uring_task_work_run(tctx, count, loops);
1101 }
1102 
1103 static void io_req_local_work_add(struct io_kiocb *req)
1104 {
1105 	struct io_ring_ctx *ctx = req->ctx;
1106 
1107 	if (!llist_add(&req->io_task_work.node, &ctx->work_llist))
1108 		return;
1109 	/* need it for the following io_cqring_wake() */
1110 	smp_mb__after_atomic();
1111 
1112 	if (unlikely(atomic_read(&req->task->io_uring->in_idle))) {
1113 		io_move_task_work_from_local(ctx);
1114 		return;
1115 	}
1116 
1117 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1118 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1119 
1120 	if (ctx->has_evfd)
1121 		io_eventfd_signal(ctx);
1122 	__io_cqring_wake(ctx);
1123 }
1124 
1125 static inline void __io_req_task_work_add(struct io_kiocb *req, bool allow_local)
1126 {
1127 	struct io_uring_task *tctx = req->task->io_uring;
1128 	struct io_ring_ctx *ctx = req->ctx;
1129 	struct llist_node *node;
1130 
1131 	if (allow_local && ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1132 		io_req_local_work_add(req);
1133 		return;
1134 	}
1135 
1136 	/* task_work already pending, we're done */
1137 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1138 		return;
1139 
1140 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1141 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1142 
1143 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1144 		return;
1145 
1146 	node = llist_del_all(&tctx->task_list);
1147 
1148 	while (node) {
1149 		req = container_of(node, struct io_kiocb, io_task_work.node);
1150 		node = node->next;
1151 		if (llist_add(&req->io_task_work.node,
1152 			      &req->ctx->fallback_llist))
1153 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1154 	}
1155 }
1156 
1157 void io_req_task_work_add(struct io_kiocb *req)
1158 {
1159 	__io_req_task_work_add(req, true);
1160 }
1161 
1162 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1163 {
1164 	struct llist_node *node;
1165 
1166 	node = llist_del_all(&ctx->work_llist);
1167 	while (node) {
1168 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1169 						    io_task_work.node);
1170 
1171 		node = node->next;
1172 		__io_req_task_work_add(req, false);
1173 	}
1174 }
1175 
1176 int __io_run_local_work(struct io_ring_ctx *ctx, bool *locked)
1177 {
1178 	struct llist_node *node;
1179 	struct llist_node fake;
1180 	struct llist_node *current_final = NULL;
1181 	int ret;
1182 	unsigned int loops = 1;
1183 
1184 	if (unlikely(ctx->submitter_task != current))
1185 		return -EEXIST;
1186 
1187 	node = io_llist_xchg(&ctx->work_llist, &fake);
1188 	ret = 0;
1189 again:
1190 	while (node != current_final) {
1191 		struct llist_node *next = node->next;
1192 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1193 						    io_task_work.node);
1194 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1195 		req->io_task_work.func(req, locked);
1196 		ret++;
1197 		node = next;
1198 	}
1199 
1200 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1201 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1202 
1203 	node = io_llist_cmpxchg(&ctx->work_llist, &fake, NULL);
1204 	if (node != &fake) {
1205 		loops++;
1206 		current_final = &fake;
1207 		node = io_llist_xchg(&ctx->work_llist, &fake);
1208 		goto again;
1209 	}
1210 
1211 	if (*locked)
1212 		io_submit_flush_completions(ctx);
1213 	trace_io_uring_local_work_run(ctx, ret, loops);
1214 	return ret;
1215 
1216 }
1217 
1218 int io_run_local_work(struct io_ring_ctx *ctx)
1219 {
1220 	bool locked;
1221 	int ret;
1222 
1223 	if (llist_empty(&ctx->work_llist))
1224 		return 0;
1225 
1226 	__set_current_state(TASK_RUNNING);
1227 	locked = mutex_trylock(&ctx->uring_lock);
1228 	ret = __io_run_local_work(ctx, &locked);
1229 	if (locked)
1230 		mutex_unlock(&ctx->uring_lock);
1231 
1232 	return ret;
1233 }
1234 
1235 static void io_req_tw_post(struct io_kiocb *req, bool *locked)
1236 {
1237 	io_req_complete_post(req);
1238 }
1239 
1240 void io_req_tw_post_queue(struct io_kiocb *req, s32 res, u32 cflags)
1241 {
1242 	io_req_set_res(req, res, cflags);
1243 	req->io_task_work.func = io_req_tw_post;
1244 	io_req_task_work_add(req);
1245 }
1246 
1247 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
1248 {
1249 	/* not needed for normal modes, but SQPOLL depends on it */
1250 	io_tw_lock(req->ctx, locked);
1251 	io_req_complete_failed(req, req->cqe.res);
1252 }
1253 
1254 void io_req_task_submit(struct io_kiocb *req, bool *locked)
1255 {
1256 	io_tw_lock(req->ctx, locked);
1257 	/* req->task == current here, checking PF_EXITING is safe */
1258 	if (likely(!(req->task->flags & PF_EXITING)))
1259 		io_queue_sqe(req);
1260 	else
1261 		io_req_complete_failed(req, -EFAULT);
1262 }
1263 
1264 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1265 {
1266 	io_req_set_res(req, ret, 0);
1267 	req->io_task_work.func = io_req_task_cancel;
1268 	io_req_task_work_add(req);
1269 }
1270 
1271 void io_req_task_queue(struct io_kiocb *req)
1272 {
1273 	req->io_task_work.func = io_req_task_submit;
1274 	io_req_task_work_add(req);
1275 }
1276 
1277 void io_queue_next(struct io_kiocb *req)
1278 {
1279 	struct io_kiocb *nxt = io_req_find_next(req);
1280 
1281 	if (nxt)
1282 		io_req_task_queue(nxt);
1283 }
1284 
1285 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1286 	__must_hold(&ctx->uring_lock)
1287 {
1288 	struct task_struct *task = NULL;
1289 	int task_refs = 0;
1290 
1291 	do {
1292 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1293 						    comp_list);
1294 
1295 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1296 			if (req->flags & REQ_F_REFCOUNT) {
1297 				node = req->comp_list.next;
1298 				if (!req_ref_put_and_test(req))
1299 					continue;
1300 			}
1301 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1302 				struct async_poll *apoll = req->apoll;
1303 
1304 				if (apoll->double_poll)
1305 					kfree(apoll->double_poll);
1306 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1307 					kfree(apoll);
1308 				req->flags &= ~REQ_F_POLLED;
1309 			}
1310 			if (req->flags & IO_REQ_LINK_FLAGS)
1311 				io_queue_next(req);
1312 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1313 				io_clean_op(req);
1314 		}
1315 		if (!(req->flags & REQ_F_FIXED_FILE))
1316 			io_put_file(req->file);
1317 
1318 		io_req_put_rsrc_locked(req, ctx);
1319 
1320 		if (req->task != task) {
1321 			if (task)
1322 				io_put_task(task, task_refs);
1323 			task = req->task;
1324 			task_refs = 0;
1325 		}
1326 		task_refs++;
1327 		node = req->comp_list.next;
1328 		io_req_add_to_cache(req, ctx);
1329 	} while (node);
1330 
1331 	if (task)
1332 		io_put_task(task, task_refs);
1333 }
1334 
1335 static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1336 	__must_hold(&ctx->uring_lock)
1337 {
1338 	struct io_wq_work_node *node, *prev;
1339 	struct io_submit_state *state = &ctx->submit_state;
1340 
1341 	io_cq_lock(ctx);
1342 	wq_list_for_each(node, prev, &state->compl_reqs) {
1343 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1344 					    comp_list);
1345 
1346 		if (!(req->flags & REQ_F_CQE_SKIP))
1347 			__io_fill_cqe_req(ctx, req);
1348 	}
1349 	__io_cq_unlock_post(ctx);
1350 
1351 	io_free_batch_list(ctx, state->compl_reqs.first);
1352 	INIT_WQ_LIST(&state->compl_reqs);
1353 }
1354 
1355 /*
1356  * Drop reference to request, return next in chain (if there is one) if this
1357  * was the last reference to this request.
1358  */
1359 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
1360 {
1361 	struct io_kiocb *nxt = NULL;
1362 
1363 	if (req_ref_put_and_test(req)) {
1364 		if (unlikely(req->flags & IO_REQ_LINK_FLAGS))
1365 			nxt = io_req_find_next(req);
1366 		io_free_req(req);
1367 	}
1368 	return nxt;
1369 }
1370 
1371 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1372 {
1373 	/* See comment at the top of this file */
1374 	smp_rmb();
1375 	return __io_cqring_events(ctx);
1376 }
1377 
1378 /*
1379  * We can't just wait for polled events to come to us, we have to actively
1380  * find and complete them.
1381  */
1382 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1383 {
1384 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1385 		return;
1386 
1387 	mutex_lock(&ctx->uring_lock);
1388 	while (!wq_list_empty(&ctx->iopoll_list)) {
1389 		/* let it sleep and repeat later if can't complete a request */
1390 		if (io_do_iopoll(ctx, true) == 0)
1391 			break;
1392 		/*
1393 		 * Ensure we allow local-to-the-cpu processing to take place,
1394 		 * in this case we need to ensure that we reap all events.
1395 		 * Also let task_work, etc. to progress by releasing the mutex
1396 		 */
1397 		if (need_resched()) {
1398 			mutex_unlock(&ctx->uring_lock);
1399 			cond_resched();
1400 			mutex_lock(&ctx->uring_lock);
1401 		}
1402 	}
1403 	mutex_unlock(&ctx->uring_lock);
1404 }
1405 
1406 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1407 {
1408 	unsigned int nr_events = 0;
1409 	int ret = 0;
1410 	unsigned long check_cq;
1411 
1412 	if (!io_allowed_run_tw(ctx))
1413 		return -EEXIST;
1414 
1415 	check_cq = READ_ONCE(ctx->check_cq);
1416 	if (unlikely(check_cq)) {
1417 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1418 			__io_cqring_overflow_flush(ctx, false);
1419 		/*
1420 		 * Similarly do not spin if we have not informed the user of any
1421 		 * dropped CQE.
1422 		 */
1423 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1424 			return -EBADR;
1425 	}
1426 	/*
1427 	 * Don't enter poll loop if we already have events pending.
1428 	 * If we do, we can potentially be spinning for commands that
1429 	 * already triggered a CQE (eg in error).
1430 	 */
1431 	if (io_cqring_events(ctx))
1432 		return 0;
1433 
1434 	do {
1435 		/*
1436 		 * If a submit got punted to a workqueue, we can have the
1437 		 * application entering polling for a command before it gets
1438 		 * issued. That app will hold the uring_lock for the duration
1439 		 * of the poll right here, so we need to take a breather every
1440 		 * now and then to ensure that the issue has a chance to add
1441 		 * the poll to the issued list. Otherwise we can spin here
1442 		 * forever, while the workqueue is stuck trying to acquire the
1443 		 * very same mutex.
1444 		 */
1445 		if (wq_list_empty(&ctx->iopoll_list) ||
1446 		    io_task_work_pending(ctx)) {
1447 			u32 tail = ctx->cached_cq_tail;
1448 
1449 			(void) io_run_local_work_locked(ctx);
1450 
1451 			if (task_work_pending(current) ||
1452 			    wq_list_empty(&ctx->iopoll_list)) {
1453 				mutex_unlock(&ctx->uring_lock);
1454 				io_run_task_work();
1455 				mutex_lock(&ctx->uring_lock);
1456 			}
1457 			/* some requests don't go through iopoll_list */
1458 			if (tail != ctx->cached_cq_tail ||
1459 			    wq_list_empty(&ctx->iopoll_list))
1460 				break;
1461 		}
1462 		ret = io_do_iopoll(ctx, !min);
1463 		if (ret < 0)
1464 			break;
1465 		nr_events += ret;
1466 		ret = 0;
1467 	} while (nr_events < min && !need_resched());
1468 
1469 	return ret;
1470 }
1471 
1472 void io_req_task_complete(struct io_kiocb *req, bool *locked)
1473 {
1474 	if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)) {
1475 		unsigned issue_flags = *locked ? 0 : IO_URING_F_UNLOCKED;
1476 
1477 		req->cqe.flags |= io_put_kbuf(req, issue_flags);
1478 	}
1479 
1480 	if (*locked)
1481 		io_req_complete_defer(req);
1482 	else
1483 		io_req_complete_post(req);
1484 }
1485 
1486 /*
1487  * After the iocb has been issued, it's safe to be found on the poll list.
1488  * Adding the kiocb to the list AFTER submission ensures that we don't
1489  * find it from a io_do_iopoll() thread before the issuer is done
1490  * accessing the kiocb cookie.
1491  */
1492 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1493 {
1494 	struct io_ring_ctx *ctx = req->ctx;
1495 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1496 
1497 	/* workqueue context doesn't hold uring_lock, grab it now */
1498 	if (unlikely(needs_lock))
1499 		mutex_lock(&ctx->uring_lock);
1500 
1501 	/*
1502 	 * Track whether we have multiple files in our lists. This will impact
1503 	 * how we do polling eventually, not spinning if we're on potentially
1504 	 * different devices.
1505 	 */
1506 	if (wq_list_empty(&ctx->iopoll_list)) {
1507 		ctx->poll_multi_queue = false;
1508 	} else if (!ctx->poll_multi_queue) {
1509 		struct io_kiocb *list_req;
1510 
1511 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1512 					comp_list);
1513 		if (list_req->file != req->file)
1514 			ctx->poll_multi_queue = true;
1515 	}
1516 
1517 	/*
1518 	 * For fast devices, IO may have already completed. If it has, add
1519 	 * it to the front so we find it first.
1520 	 */
1521 	if (READ_ONCE(req->iopoll_completed))
1522 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1523 	else
1524 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1525 
1526 	if (unlikely(needs_lock)) {
1527 		/*
1528 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1529 		 * in sq thread task context or in io worker task context. If
1530 		 * current task context is sq thread, we don't need to check
1531 		 * whether should wake up sq thread.
1532 		 */
1533 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1534 		    wq_has_sleeper(&ctx->sq_data->wait))
1535 			wake_up(&ctx->sq_data->wait);
1536 
1537 		mutex_unlock(&ctx->uring_lock);
1538 	}
1539 }
1540 
1541 static bool io_bdev_nowait(struct block_device *bdev)
1542 {
1543 	return !bdev || bdev_nowait(bdev);
1544 }
1545 
1546 /*
1547  * If we tracked the file through the SCM inflight mechanism, we could support
1548  * any file. For now, just ensure that anything potentially problematic is done
1549  * inline.
1550  */
1551 static bool __io_file_supports_nowait(struct file *file, umode_t mode)
1552 {
1553 	if (S_ISBLK(mode)) {
1554 		if (IS_ENABLED(CONFIG_BLOCK) &&
1555 		    io_bdev_nowait(I_BDEV(file->f_mapping->host)))
1556 			return true;
1557 		return false;
1558 	}
1559 	if (S_ISSOCK(mode))
1560 		return true;
1561 	if (S_ISREG(mode)) {
1562 		if (IS_ENABLED(CONFIG_BLOCK) &&
1563 		    io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
1564 		    !io_is_uring_fops(file))
1565 			return true;
1566 		return false;
1567 	}
1568 
1569 	/* any ->read/write should understand O_NONBLOCK */
1570 	if (file->f_flags & O_NONBLOCK)
1571 		return true;
1572 	return file->f_mode & FMODE_NOWAIT;
1573 }
1574 
1575 /*
1576  * If we tracked the file through the SCM inflight mechanism, we could support
1577  * any file. For now, just ensure that anything potentially problematic is done
1578  * inline.
1579  */
1580 unsigned int io_file_get_flags(struct file *file)
1581 {
1582 	umode_t mode = file_inode(file)->i_mode;
1583 	unsigned int res = 0;
1584 
1585 	if (S_ISREG(mode))
1586 		res |= FFS_ISREG;
1587 	if (__io_file_supports_nowait(file, mode))
1588 		res |= FFS_NOWAIT;
1589 	return res;
1590 }
1591 
1592 bool io_alloc_async_data(struct io_kiocb *req)
1593 {
1594 	WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
1595 	req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
1596 	if (req->async_data) {
1597 		req->flags |= REQ_F_ASYNC_DATA;
1598 		return false;
1599 	}
1600 	return true;
1601 }
1602 
1603 int io_req_prep_async(struct io_kiocb *req)
1604 {
1605 	const struct io_op_def *def = &io_op_defs[req->opcode];
1606 
1607 	/* assign early for deferred execution for non-fixed file */
1608 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE))
1609 		req->file = io_file_get_normal(req, req->cqe.fd);
1610 	if (!def->prep_async)
1611 		return 0;
1612 	if (WARN_ON_ONCE(req_has_async_data(req)))
1613 		return -EFAULT;
1614 	if (!io_op_defs[req->opcode].manual_alloc) {
1615 		if (io_alloc_async_data(req))
1616 			return -EAGAIN;
1617 	}
1618 	return def->prep_async(req);
1619 }
1620 
1621 static u32 io_get_sequence(struct io_kiocb *req)
1622 {
1623 	u32 seq = req->ctx->cached_sq_head;
1624 	struct io_kiocb *cur;
1625 
1626 	/* need original cached_sq_head, but it was increased for each req */
1627 	io_for_each_link(cur, req)
1628 		seq--;
1629 	return seq;
1630 }
1631 
1632 static __cold void io_drain_req(struct io_kiocb *req)
1633 {
1634 	struct io_ring_ctx *ctx = req->ctx;
1635 	struct io_defer_entry *de;
1636 	int ret;
1637 	u32 seq = io_get_sequence(req);
1638 
1639 	/* Still need defer if there is pending req in defer list. */
1640 	spin_lock(&ctx->completion_lock);
1641 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1642 		spin_unlock(&ctx->completion_lock);
1643 queue:
1644 		ctx->drain_active = false;
1645 		io_req_task_queue(req);
1646 		return;
1647 	}
1648 	spin_unlock(&ctx->completion_lock);
1649 
1650 	ret = io_req_prep_async(req);
1651 	if (ret) {
1652 fail:
1653 		io_req_complete_failed(req, ret);
1654 		return;
1655 	}
1656 	io_prep_async_link(req);
1657 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1658 	if (!de) {
1659 		ret = -ENOMEM;
1660 		goto fail;
1661 	}
1662 
1663 	spin_lock(&ctx->completion_lock);
1664 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1665 		spin_unlock(&ctx->completion_lock);
1666 		kfree(de);
1667 		goto queue;
1668 	}
1669 
1670 	trace_io_uring_defer(req);
1671 	de->req = req;
1672 	de->seq = seq;
1673 	list_add_tail(&de->list, &ctx->defer_list);
1674 	spin_unlock(&ctx->completion_lock);
1675 }
1676 
1677 static void io_clean_op(struct io_kiocb *req)
1678 {
1679 	if (req->flags & REQ_F_BUFFER_SELECTED) {
1680 		spin_lock(&req->ctx->completion_lock);
1681 		io_put_kbuf_comp(req);
1682 		spin_unlock(&req->ctx->completion_lock);
1683 	}
1684 
1685 	if (req->flags & REQ_F_NEED_CLEANUP) {
1686 		const struct io_op_def *def = &io_op_defs[req->opcode];
1687 
1688 		if (def->cleanup)
1689 			def->cleanup(req);
1690 	}
1691 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
1692 		kfree(req->apoll->double_poll);
1693 		kfree(req->apoll);
1694 		req->apoll = NULL;
1695 	}
1696 	if (req->flags & REQ_F_INFLIGHT) {
1697 		struct io_uring_task *tctx = req->task->io_uring;
1698 
1699 		atomic_dec(&tctx->inflight_tracked);
1700 	}
1701 	if (req->flags & REQ_F_CREDS)
1702 		put_cred(req->creds);
1703 	if (req->flags & REQ_F_ASYNC_DATA) {
1704 		kfree(req->async_data);
1705 		req->async_data = NULL;
1706 	}
1707 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
1708 }
1709 
1710 static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags)
1711 {
1712 	if (req->file || !io_op_defs[req->opcode].needs_file)
1713 		return true;
1714 
1715 	if (req->flags & REQ_F_FIXED_FILE)
1716 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1717 	else
1718 		req->file = io_file_get_normal(req, req->cqe.fd);
1719 
1720 	return !!req->file;
1721 }
1722 
1723 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1724 {
1725 	const struct io_op_def *def = &io_op_defs[req->opcode];
1726 	const struct cred *creds = NULL;
1727 	int ret;
1728 
1729 	if (unlikely(!io_assign_file(req, issue_flags)))
1730 		return -EBADF;
1731 
1732 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1733 		creds = override_creds(req->creds);
1734 
1735 	if (!def->audit_skip)
1736 		audit_uring_entry(req->opcode);
1737 
1738 	ret = def->issue(req, issue_flags);
1739 
1740 	if (!def->audit_skip)
1741 		audit_uring_exit(!ret, ret);
1742 
1743 	if (creds)
1744 		revert_creds(creds);
1745 
1746 	if (ret == IOU_OK) {
1747 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1748 			io_req_complete_defer(req);
1749 		else
1750 			io_req_complete_post(req);
1751 	} else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1752 		return ret;
1753 
1754 	/* If the op doesn't have a file, we're not polling for it */
1755 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && req->file)
1756 		io_iopoll_req_issued(req, issue_flags);
1757 
1758 	return 0;
1759 }
1760 
1761 int io_poll_issue(struct io_kiocb *req, bool *locked)
1762 {
1763 	io_tw_lock(req->ctx, locked);
1764 	if (unlikely(req->task->flags & PF_EXITING))
1765 		return -EFAULT;
1766 	return io_issue_sqe(req, IO_URING_F_NONBLOCK);
1767 }
1768 
1769 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1770 {
1771 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1772 
1773 	req = io_put_req_find_next(req);
1774 	return req ? &req->work : NULL;
1775 }
1776 
1777 void io_wq_submit_work(struct io_wq_work *work)
1778 {
1779 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1780 	const struct io_op_def *def = &io_op_defs[req->opcode];
1781 	unsigned int issue_flags = IO_URING_F_UNLOCKED;
1782 	bool needs_poll = false;
1783 	int ret = 0, err = -ECANCELED;
1784 
1785 	/* one will be dropped by ->io_free_work() after returning to io-wq */
1786 	if (!(req->flags & REQ_F_REFCOUNT))
1787 		__io_req_set_refcount(req, 2);
1788 	else
1789 		req_ref_get(req);
1790 
1791 	io_arm_ltimeout(req);
1792 
1793 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1794 	if (work->flags & IO_WQ_WORK_CANCEL) {
1795 fail:
1796 		io_req_task_queue_fail(req, err);
1797 		return;
1798 	}
1799 	if (!io_assign_file(req, issue_flags)) {
1800 		err = -EBADF;
1801 		work->flags |= IO_WQ_WORK_CANCEL;
1802 		goto fail;
1803 	}
1804 
1805 	if (req->flags & REQ_F_FORCE_ASYNC) {
1806 		bool opcode_poll = def->pollin || def->pollout;
1807 
1808 		if (opcode_poll && file_can_poll(req->file)) {
1809 			needs_poll = true;
1810 			issue_flags |= IO_URING_F_NONBLOCK;
1811 		}
1812 	}
1813 
1814 	do {
1815 		ret = io_issue_sqe(req, issue_flags);
1816 		if (ret != -EAGAIN)
1817 			break;
1818 		/*
1819 		 * We can get EAGAIN for iopolled IO even though we're
1820 		 * forcing a sync submission from here, since we can't
1821 		 * wait for request slots on the block side.
1822 		 */
1823 		if (!needs_poll) {
1824 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1825 				break;
1826 			cond_resched();
1827 			continue;
1828 		}
1829 
1830 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1831 			return;
1832 		/* aborted or ready, in either case retry blocking */
1833 		needs_poll = false;
1834 		issue_flags &= ~IO_URING_F_NONBLOCK;
1835 	} while (1);
1836 
1837 	/* avoid locking problems by failing it from a clean context */
1838 	if (ret < 0)
1839 		io_req_task_queue_fail(req, ret);
1840 }
1841 
1842 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1843 				      unsigned int issue_flags)
1844 {
1845 	struct io_ring_ctx *ctx = req->ctx;
1846 	struct file *file = NULL;
1847 	unsigned long file_ptr;
1848 
1849 	io_ring_submit_lock(ctx, issue_flags);
1850 
1851 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1852 		goto out;
1853 	fd = array_index_nospec(fd, ctx->nr_user_files);
1854 	file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
1855 	file = (struct file *) (file_ptr & FFS_MASK);
1856 	file_ptr &= ~FFS_MASK;
1857 	/* mask in overlapping REQ_F and FFS bits */
1858 	req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT);
1859 	io_req_set_rsrc_node(req, ctx, 0);
1860 out:
1861 	io_ring_submit_unlock(ctx, issue_flags);
1862 	return file;
1863 }
1864 
1865 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1866 {
1867 	struct file *file = fget(fd);
1868 
1869 	trace_io_uring_file_get(req, fd);
1870 
1871 	/* we don't allow fixed io_uring files */
1872 	if (file && io_is_uring_fops(file))
1873 		io_req_track_inflight(req);
1874 	return file;
1875 }
1876 
1877 static void io_queue_async(struct io_kiocb *req, int ret)
1878 	__must_hold(&req->ctx->uring_lock)
1879 {
1880 	struct io_kiocb *linked_timeout;
1881 
1882 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1883 		io_req_complete_failed(req, ret);
1884 		return;
1885 	}
1886 
1887 	linked_timeout = io_prep_linked_timeout(req);
1888 
1889 	switch (io_arm_poll_handler(req, 0)) {
1890 	case IO_APOLL_READY:
1891 		io_kbuf_recycle(req, 0);
1892 		io_req_task_queue(req);
1893 		break;
1894 	case IO_APOLL_ABORTED:
1895 		io_kbuf_recycle(req, 0);
1896 		io_queue_iowq(req, NULL);
1897 		break;
1898 	case IO_APOLL_OK:
1899 		break;
1900 	}
1901 
1902 	if (linked_timeout)
1903 		io_queue_linked_timeout(linked_timeout);
1904 }
1905 
1906 static inline void io_queue_sqe(struct io_kiocb *req)
1907 	__must_hold(&req->ctx->uring_lock)
1908 {
1909 	int ret;
1910 
1911 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1912 
1913 	/*
1914 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
1915 	 * doesn't support non-blocking read/write attempts
1916 	 */
1917 	if (likely(!ret))
1918 		io_arm_ltimeout(req);
1919 	else
1920 		io_queue_async(req, ret);
1921 }
1922 
1923 static void io_queue_sqe_fallback(struct io_kiocb *req)
1924 	__must_hold(&req->ctx->uring_lock)
1925 {
1926 	if (unlikely(req->flags & REQ_F_FAIL)) {
1927 		/*
1928 		 * We don't submit, fail them all, for that replace hardlinks
1929 		 * with normal links. Extra REQ_F_LINK is tolerated.
1930 		 */
1931 		req->flags &= ~REQ_F_HARDLINK;
1932 		req->flags |= REQ_F_LINK;
1933 		io_req_complete_failed(req, req->cqe.res);
1934 	} else if (unlikely(req->ctx->drain_active)) {
1935 		io_drain_req(req);
1936 	} else {
1937 		int ret = io_req_prep_async(req);
1938 
1939 		if (unlikely(ret))
1940 			io_req_complete_failed(req, ret);
1941 		else
1942 			io_queue_iowq(req, NULL);
1943 	}
1944 }
1945 
1946 /*
1947  * Check SQE restrictions (opcode and flags).
1948  *
1949  * Returns 'true' if SQE is allowed, 'false' otherwise.
1950  */
1951 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1952 					struct io_kiocb *req,
1953 					unsigned int sqe_flags)
1954 {
1955 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1956 		return false;
1957 
1958 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1959 	    ctx->restrictions.sqe_flags_required)
1960 		return false;
1961 
1962 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1963 			  ctx->restrictions.sqe_flags_required))
1964 		return false;
1965 
1966 	return true;
1967 }
1968 
1969 static void io_init_req_drain(struct io_kiocb *req)
1970 {
1971 	struct io_ring_ctx *ctx = req->ctx;
1972 	struct io_kiocb *head = ctx->submit_state.link.head;
1973 
1974 	ctx->drain_active = true;
1975 	if (head) {
1976 		/*
1977 		 * If we need to drain a request in the middle of a link, drain
1978 		 * the head request and the next request/link after the current
1979 		 * link. Considering sequential execution of links,
1980 		 * REQ_F_IO_DRAIN will be maintained for every request of our
1981 		 * link.
1982 		 */
1983 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
1984 		ctx->drain_next = true;
1985 	}
1986 }
1987 
1988 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
1989 		       const struct io_uring_sqe *sqe)
1990 	__must_hold(&ctx->uring_lock)
1991 {
1992 	const struct io_op_def *def;
1993 	unsigned int sqe_flags;
1994 	int personality;
1995 	u8 opcode;
1996 
1997 	/* req is partially pre-initialised, see io_preinit_req() */
1998 	req->opcode = opcode = READ_ONCE(sqe->opcode);
1999 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2000 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2001 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2002 	req->file = NULL;
2003 	req->rsrc_node = NULL;
2004 	req->task = current;
2005 
2006 	if (unlikely(opcode >= IORING_OP_LAST)) {
2007 		req->opcode = 0;
2008 		return -EINVAL;
2009 	}
2010 	def = &io_op_defs[opcode];
2011 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2012 		/* enforce forwards compatibility on users */
2013 		if (sqe_flags & ~SQE_VALID_FLAGS)
2014 			return -EINVAL;
2015 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2016 			if (!def->buffer_select)
2017 				return -EOPNOTSUPP;
2018 			req->buf_index = READ_ONCE(sqe->buf_group);
2019 		}
2020 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2021 			ctx->drain_disabled = true;
2022 		if (sqe_flags & IOSQE_IO_DRAIN) {
2023 			if (ctx->drain_disabled)
2024 				return -EOPNOTSUPP;
2025 			io_init_req_drain(req);
2026 		}
2027 	}
2028 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2029 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2030 			return -EACCES;
2031 		/* knock it to the slow queue path, will be drained there */
2032 		if (ctx->drain_active)
2033 			req->flags |= REQ_F_FORCE_ASYNC;
2034 		/* if there is no link, we're at "next" request and need to drain */
2035 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2036 			ctx->drain_next = false;
2037 			ctx->drain_active = true;
2038 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2039 		}
2040 	}
2041 
2042 	if (!def->ioprio && sqe->ioprio)
2043 		return -EINVAL;
2044 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2045 		return -EINVAL;
2046 
2047 	if (def->needs_file) {
2048 		struct io_submit_state *state = &ctx->submit_state;
2049 
2050 		req->cqe.fd = READ_ONCE(sqe->fd);
2051 
2052 		/*
2053 		 * Plug now if we have more than 2 IO left after this, and the
2054 		 * target is potentially a read/write to block based storage.
2055 		 */
2056 		if (state->need_plug && def->plug) {
2057 			state->plug_started = true;
2058 			state->need_plug = false;
2059 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2060 		}
2061 	}
2062 
2063 	personality = READ_ONCE(sqe->personality);
2064 	if (personality) {
2065 		int ret;
2066 
2067 		req->creds = xa_load(&ctx->personalities, personality);
2068 		if (!req->creds)
2069 			return -EINVAL;
2070 		get_cred(req->creds);
2071 		ret = security_uring_override_creds(req->creds);
2072 		if (ret) {
2073 			put_cred(req->creds);
2074 			return ret;
2075 		}
2076 		req->flags |= REQ_F_CREDS;
2077 	}
2078 
2079 	return def->prep(req, sqe);
2080 }
2081 
2082 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2083 				      struct io_kiocb *req, int ret)
2084 {
2085 	struct io_ring_ctx *ctx = req->ctx;
2086 	struct io_submit_link *link = &ctx->submit_state.link;
2087 	struct io_kiocb *head = link->head;
2088 
2089 	trace_io_uring_req_failed(sqe, req, ret);
2090 
2091 	/*
2092 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2093 	 * unusable. Instead of failing eagerly, continue assembling the link if
2094 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2095 	 * should find the flag and handle the rest.
2096 	 */
2097 	req_fail_link_node(req, ret);
2098 	if (head && !(head->flags & REQ_F_FAIL))
2099 		req_fail_link_node(head, -ECANCELED);
2100 
2101 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2102 		if (head) {
2103 			link->last->link = req;
2104 			link->head = NULL;
2105 			req = head;
2106 		}
2107 		io_queue_sqe_fallback(req);
2108 		return ret;
2109 	}
2110 
2111 	if (head)
2112 		link->last->link = req;
2113 	else
2114 		link->head = req;
2115 	link->last = req;
2116 	return 0;
2117 }
2118 
2119 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2120 			 const struct io_uring_sqe *sqe)
2121 	__must_hold(&ctx->uring_lock)
2122 {
2123 	struct io_submit_link *link = &ctx->submit_state.link;
2124 	int ret;
2125 
2126 	ret = io_init_req(ctx, req, sqe);
2127 	if (unlikely(ret))
2128 		return io_submit_fail_init(sqe, req, ret);
2129 
2130 	/* don't need @sqe from now on */
2131 	trace_io_uring_submit_sqe(req, true);
2132 
2133 	/*
2134 	 * If we already have a head request, queue this one for async
2135 	 * submittal once the head completes. If we don't have a head but
2136 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2137 	 * submitted sync once the chain is complete. If none of those
2138 	 * conditions are true (normal request), then just queue it.
2139 	 */
2140 	if (unlikely(link->head)) {
2141 		ret = io_req_prep_async(req);
2142 		if (unlikely(ret))
2143 			return io_submit_fail_init(sqe, req, ret);
2144 
2145 		trace_io_uring_link(req, link->head);
2146 		link->last->link = req;
2147 		link->last = req;
2148 
2149 		if (req->flags & IO_REQ_LINK_FLAGS)
2150 			return 0;
2151 		/* last request of the link, flush it */
2152 		req = link->head;
2153 		link->head = NULL;
2154 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2155 			goto fallback;
2156 
2157 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2158 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2159 		if (req->flags & IO_REQ_LINK_FLAGS) {
2160 			link->head = req;
2161 			link->last = req;
2162 		} else {
2163 fallback:
2164 			io_queue_sqe_fallback(req);
2165 		}
2166 		return 0;
2167 	}
2168 
2169 	io_queue_sqe(req);
2170 	return 0;
2171 }
2172 
2173 /*
2174  * Batched submission is done, ensure local IO is flushed out.
2175  */
2176 static void io_submit_state_end(struct io_ring_ctx *ctx)
2177 {
2178 	struct io_submit_state *state = &ctx->submit_state;
2179 
2180 	if (unlikely(state->link.head))
2181 		io_queue_sqe_fallback(state->link.head);
2182 	/* flush only after queuing links as they can generate completions */
2183 	io_submit_flush_completions(ctx);
2184 	if (state->plug_started)
2185 		blk_finish_plug(&state->plug);
2186 }
2187 
2188 /*
2189  * Start submission side cache.
2190  */
2191 static void io_submit_state_start(struct io_submit_state *state,
2192 				  unsigned int max_ios)
2193 {
2194 	state->plug_started = false;
2195 	state->need_plug = max_ios > 2;
2196 	state->submit_nr = max_ios;
2197 	/* set only head, no need to init link_last in advance */
2198 	state->link.head = NULL;
2199 }
2200 
2201 static void io_commit_sqring(struct io_ring_ctx *ctx)
2202 {
2203 	struct io_rings *rings = ctx->rings;
2204 
2205 	/*
2206 	 * Ensure any loads from the SQEs are done at this point,
2207 	 * since once we write the new head, the application could
2208 	 * write new data to them.
2209 	 */
2210 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2211 }
2212 
2213 /*
2214  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2215  * that is mapped by userspace. This means that care needs to be taken to
2216  * ensure that reads are stable, as we cannot rely on userspace always
2217  * being a good citizen. If members of the sqe are validated and then later
2218  * used, it's important that those reads are done through READ_ONCE() to
2219  * prevent a re-load down the line.
2220  */
2221 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
2222 {
2223 	unsigned head, mask = ctx->sq_entries - 1;
2224 	unsigned sq_idx = ctx->cached_sq_head++ & mask;
2225 
2226 	/*
2227 	 * The cached sq head (or cq tail) serves two purposes:
2228 	 *
2229 	 * 1) allows us to batch the cost of updating the user visible
2230 	 *    head updates.
2231 	 * 2) allows the kernel side to track the head on its own, even
2232 	 *    though the application is the one updating it.
2233 	 */
2234 	head = READ_ONCE(ctx->sq_array[sq_idx]);
2235 	if (likely(head < ctx->sq_entries)) {
2236 		/* double index for 128-byte SQEs, twice as long */
2237 		if (ctx->flags & IORING_SETUP_SQE128)
2238 			head <<= 1;
2239 		return &ctx->sq_sqes[head];
2240 	}
2241 
2242 	/* drop invalid entries */
2243 	ctx->cq_extra--;
2244 	WRITE_ONCE(ctx->rings->sq_dropped,
2245 		   READ_ONCE(ctx->rings->sq_dropped) + 1);
2246 	return NULL;
2247 }
2248 
2249 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2250 	__must_hold(&ctx->uring_lock)
2251 {
2252 	unsigned int entries = io_sqring_entries(ctx);
2253 	unsigned int left;
2254 	int ret;
2255 
2256 	if (unlikely(!entries))
2257 		return 0;
2258 	/* make sure SQ entry isn't read before tail */
2259 	ret = left = min3(nr, ctx->sq_entries, entries);
2260 	io_get_task_refs(left);
2261 	io_submit_state_start(&ctx->submit_state, left);
2262 
2263 	do {
2264 		const struct io_uring_sqe *sqe;
2265 		struct io_kiocb *req;
2266 
2267 		if (unlikely(!io_alloc_req_refill(ctx)))
2268 			break;
2269 		req = io_alloc_req(ctx);
2270 		sqe = io_get_sqe(ctx);
2271 		if (unlikely(!sqe)) {
2272 			io_req_add_to_cache(req, ctx);
2273 			break;
2274 		}
2275 
2276 		/*
2277 		 * Continue submitting even for sqe failure if the
2278 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2279 		 */
2280 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2281 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2282 			left--;
2283 			break;
2284 		}
2285 	} while (--left);
2286 
2287 	if (unlikely(left)) {
2288 		ret -= left;
2289 		/* try again if it submitted nothing and can't allocate a req */
2290 		if (!ret && io_req_cache_empty(ctx))
2291 			ret = -EAGAIN;
2292 		current->io_uring->cached_refs += left;
2293 	}
2294 
2295 	io_submit_state_end(ctx);
2296 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2297 	io_commit_sqring(ctx);
2298 	return ret;
2299 }
2300 
2301 struct io_wait_queue {
2302 	struct wait_queue_entry wq;
2303 	struct io_ring_ctx *ctx;
2304 	unsigned cq_tail;
2305 	unsigned nr_timeouts;
2306 };
2307 
2308 static inline bool io_has_work(struct io_ring_ctx *ctx)
2309 {
2310 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2311 	       ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
2312 		!llist_empty(&ctx->work_llist));
2313 }
2314 
2315 static inline bool io_should_wake(struct io_wait_queue *iowq)
2316 {
2317 	struct io_ring_ctx *ctx = iowq->ctx;
2318 	int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
2319 
2320 	/*
2321 	 * Wake up if we have enough events, or if a timeout occurred since we
2322 	 * started waiting. For timeouts, we always want to return to userspace,
2323 	 * regardless of event count.
2324 	 */
2325 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2326 }
2327 
2328 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2329 			    int wake_flags, void *key)
2330 {
2331 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
2332 							wq);
2333 	struct io_ring_ctx *ctx = iowq->ctx;
2334 
2335 	/*
2336 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2337 	 * the task, and the next invocation will do it.
2338 	 */
2339 	if (io_should_wake(iowq) || io_has_work(ctx))
2340 		return autoremove_wake_function(curr, mode, wake_flags, key);
2341 	return -1;
2342 }
2343 
2344 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2345 {
2346 	if (io_run_task_work_ctx(ctx) > 0)
2347 		return 1;
2348 	if (task_sigpending(current))
2349 		return -EINTR;
2350 	return 0;
2351 }
2352 
2353 /* when returns >0, the caller should retry */
2354 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2355 					  struct io_wait_queue *iowq,
2356 					  ktime_t timeout)
2357 {
2358 	int ret;
2359 	unsigned long check_cq;
2360 
2361 	/* make sure we run task_work before checking for signals */
2362 	ret = io_run_task_work_sig(ctx);
2363 	if (ret || io_should_wake(iowq))
2364 		return ret;
2365 
2366 	check_cq = READ_ONCE(ctx->check_cq);
2367 	if (unlikely(check_cq)) {
2368 		/* let the caller flush overflows, retry */
2369 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2370 			return 1;
2371 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
2372 			return -EBADR;
2373 	}
2374 	if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS))
2375 		return -ETIME;
2376 	return 1;
2377 }
2378 
2379 /*
2380  * Wait until events become available, if we don't already have some. The
2381  * application must reap them itself, as they reside on the shared cq ring.
2382  */
2383 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2384 			  const sigset_t __user *sig, size_t sigsz,
2385 			  struct __kernel_timespec __user *uts)
2386 {
2387 	struct io_wait_queue iowq;
2388 	struct io_rings *rings = ctx->rings;
2389 	ktime_t timeout = KTIME_MAX;
2390 	int ret;
2391 
2392 	if (!io_allowed_run_tw(ctx))
2393 		return -EEXIST;
2394 
2395 	do {
2396 		/* always run at least 1 task work to process local work */
2397 		ret = io_run_task_work_ctx(ctx);
2398 		if (ret < 0)
2399 			return ret;
2400 		io_cqring_overflow_flush(ctx);
2401 
2402 		if (io_cqring_events(ctx) >= min_events)
2403 			return 0;
2404 	} while (ret > 0);
2405 
2406 	if (sig) {
2407 #ifdef CONFIG_COMPAT
2408 		if (in_compat_syscall())
2409 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2410 						      sigsz);
2411 		else
2412 #endif
2413 			ret = set_user_sigmask(sig, sigsz);
2414 
2415 		if (ret)
2416 			return ret;
2417 	}
2418 
2419 	if (uts) {
2420 		struct timespec64 ts;
2421 
2422 		if (get_timespec64(&ts, uts))
2423 			return -EFAULT;
2424 		timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2425 	}
2426 
2427 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2428 	iowq.wq.private = current;
2429 	INIT_LIST_HEAD(&iowq.wq.entry);
2430 	iowq.ctx = ctx;
2431 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2432 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2433 
2434 	trace_io_uring_cqring_wait(ctx, min_events);
2435 	do {
2436 		/* if we can't even flush overflow, don't wait for more */
2437 		if (!io_cqring_overflow_flush(ctx)) {
2438 			ret = -EBUSY;
2439 			break;
2440 		}
2441 		prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2442 						TASK_INTERRUPTIBLE);
2443 		ret = io_cqring_wait_schedule(ctx, &iowq, timeout);
2444 		cond_resched();
2445 	} while (ret > 0);
2446 
2447 	finish_wait(&ctx->cq_wait, &iowq.wq);
2448 	restore_saved_sigmask_unless(ret == -EINTR);
2449 
2450 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2451 }
2452 
2453 static void io_mem_free(void *ptr)
2454 {
2455 	struct page *page;
2456 
2457 	if (!ptr)
2458 		return;
2459 
2460 	page = virt_to_head_page(ptr);
2461 	if (put_page_testzero(page))
2462 		free_compound_page(page);
2463 }
2464 
2465 static void *io_mem_alloc(size_t size)
2466 {
2467 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2468 
2469 	return (void *) __get_free_pages(gfp, get_order(size));
2470 }
2471 
2472 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2473 				unsigned int cq_entries, size_t *sq_offset)
2474 {
2475 	struct io_rings *rings;
2476 	size_t off, sq_array_size;
2477 
2478 	off = struct_size(rings, cqes, cq_entries);
2479 	if (off == SIZE_MAX)
2480 		return SIZE_MAX;
2481 	if (ctx->flags & IORING_SETUP_CQE32) {
2482 		if (check_shl_overflow(off, 1, &off))
2483 			return SIZE_MAX;
2484 	}
2485 
2486 #ifdef CONFIG_SMP
2487 	off = ALIGN(off, SMP_CACHE_BYTES);
2488 	if (off == 0)
2489 		return SIZE_MAX;
2490 #endif
2491 
2492 	if (sq_offset)
2493 		*sq_offset = off;
2494 
2495 	sq_array_size = array_size(sizeof(u32), sq_entries);
2496 	if (sq_array_size == SIZE_MAX)
2497 		return SIZE_MAX;
2498 
2499 	if (check_add_overflow(off, sq_array_size, &off))
2500 		return SIZE_MAX;
2501 
2502 	return off;
2503 }
2504 
2505 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2506 			       unsigned int eventfd_async)
2507 {
2508 	struct io_ev_fd *ev_fd;
2509 	__s32 __user *fds = arg;
2510 	int fd;
2511 
2512 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2513 					lockdep_is_held(&ctx->uring_lock));
2514 	if (ev_fd)
2515 		return -EBUSY;
2516 
2517 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2518 		return -EFAULT;
2519 
2520 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2521 	if (!ev_fd)
2522 		return -ENOMEM;
2523 
2524 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2525 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2526 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2527 		kfree(ev_fd);
2528 		return ret;
2529 	}
2530 
2531 	spin_lock(&ctx->completion_lock);
2532 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2533 	spin_unlock(&ctx->completion_lock);
2534 
2535 	ev_fd->eventfd_async = eventfd_async;
2536 	ctx->has_evfd = true;
2537 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2538 	atomic_set(&ev_fd->refs, 1);
2539 	atomic_set(&ev_fd->ops, 0);
2540 	return 0;
2541 }
2542 
2543 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2544 {
2545 	struct io_ev_fd *ev_fd;
2546 
2547 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2548 					lockdep_is_held(&ctx->uring_lock));
2549 	if (ev_fd) {
2550 		ctx->has_evfd = false;
2551 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2552 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2553 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2554 		return 0;
2555 	}
2556 
2557 	return -ENXIO;
2558 }
2559 
2560 static void io_req_caches_free(struct io_ring_ctx *ctx)
2561 {
2562 	int nr = 0;
2563 
2564 	mutex_lock(&ctx->uring_lock);
2565 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2566 
2567 	while (!io_req_cache_empty(ctx)) {
2568 		struct io_kiocb *req = io_alloc_req(ctx);
2569 
2570 		kmem_cache_free(req_cachep, req);
2571 		nr++;
2572 	}
2573 	if (nr)
2574 		percpu_ref_put_many(&ctx->refs, nr);
2575 	mutex_unlock(&ctx->uring_lock);
2576 }
2577 
2578 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2579 {
2580 	io_sq_thread_finish(ctx);
2581 	io_rsrc_refs_drop(ctx);
2582 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2583 	io_wait_rsrc_data(ctx->buf_data);
2584 	io_wait_rsrc_data(ctx->file_data);
2585 
2586 	mutex_lock(&ctx->uring_lock);
2587 	if (ctx->buf_data)
2588 		__io_sqe_buffers_unregister(ctx);
2589 	if (ctx->file_data)
2590 		__io_sqe_files_unregister(ctx);
2591 	if (ctx->rings)
2592 		__io_cqring_overflow_flush(ctx, true);
2593 	io_eventfd_unregister(ctx);
2594 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2595 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2596 	mutex_unlock(&ctx->uring_lock);
2597 	io_destroy_buffers(ctx);
2598 	if (ctx->sq_creds)
2599 		put_cred(ctx->sq_creds);
2600 	if (ctx->submitter_task)
2601 		put_task_struct(ctx->submitter_task);
2602 
2603 	/* there are no registered resources left, nobody uses it */
2604 	if (ctx->rsrc_node)
2605 		io_rsrc_node_destroy(ctx->rsrc_node);
2606 	if (ctx->rsrc_backup_node)
2607 		io_rsrc_node_destroy(ctx->rsrc_backup_node);
2608 	flush_delayed_work(&ctx->rsrc_put_work);
2609 	flush_delayed_work(&ctx->fallback_work);
2610 
2611 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2612 	WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
2613 
2614 #if defined(CONFIG_UNIX)
2615 	if (ctx->ring_sock) {
2616 		ctx->ring_sock->file = NULL; /* so that iput() is called */
2617 		sock_release(ctx->ring_sock);
2618 	}
2619 #endif
2620 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2621 
2622 	if (ctx->mm_account) {
2623 		mmdrop(ctx->mm_account);
2624 		ctx->mm_account = NULL;
2625 	}
2626 	io_mem_free(ctx->rings);
2627 	io_mem_free(ctx->sq_sqes);
2628 
2629 	percpu_ref_exit(&ctx->refs);
2630 	free_uid(ctx->user);
2631 	io_req_caches_free(ctx);
2632 	if (ctx->hash_map)
2633 		io_wq_put_hash(ctx->hash_map);
2634 	kfree(ctx->cancel_table.hbs);
2635 	kfree(ctx->cancel_table_locked.hbs);
2636 	kfree(ctx->dummy_ubuf);
2637 	kfree(ctx->io_bl);
2638 	xa_destroy(&ctx->io_bl_xa);
2639 	kfree(ctx);
2640 }
2641 
2642 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2643 {
2644 	struct io_ring_ctx *ctx = file->private_data;
2645 	__poll_t mask = 0;
2646 
2647 	poll_wait(file, &ctx->cq_wait, wait);
2648 	/*
2649 	 * synchronizes with barrier from wq_has_sleeper call in
2650 	 * io_commit_cqring
2651 	 */
2652 	smp_rmb();
2653 	if (!io_sqring_full(ctx))
2654 		mask |= EPOLLOUT | EPOLLWRNORM;
2655 
2656 	/*
2657 	 * Don't flush cqring overflow list here, just do a simple check.
2658 	 * Otherwise there could possible be ABBA deadlock:
2659 	 *      CPU0                    CPU1
2660 	 *      ----                    ----
2661 	 * lock(&ctx->uring_lock);
2662 	 *                              lock(&ep->mtx);
2663 	 *                              lock(&ctx->uring_lock);
2664 	 * lock(&ep->mtx);
2665 	 *
2666 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2667 	 * pushs them to do the flush.
2668 	 */
2669 
2670 	if (io_cqring_events(ctx) || io_has_work(ctx))
2671 		mask |= EPOLLIN | EPOLLRDNORM;
2672 
2673 	return mask;
2674 }
2675 
2676 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2677 {
2678 	const struct cred *creds;
2679 
2680 	creds = xa_erase(&ctx->personalities, id);
2681 	if (creds) {
2682 		put_cred(creds);
2683 		return 0;
2684 	}
2685 
2686 	return -EINVAL;
2687 }
2688 
2689 struct io_tctx_exit {
2690 	struct callback_head		task_work;
2691 	struct completion		completion;
2692 	struct io_ring_ctx		*ctx;
2693 };
2694 
2695 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2696 {
2697 	struct io_uring_task *tctx = current->io_uring;
2698 	struct io_tctx_exit *work;
2699 
2700 	work = container_of(cb, struct io_tctx_exit, task_work);
2701 	/*
2702 	 * When @in_idle, we're in cancellation and it's racy to remove the
2703 	 * node. It'll be removed by the end of cancellation, just ignore it.
2704 	 */
2705 	if (!atomic_read(&tctx->in_idle))
2706 		io_uring_del_tctx_node((unsigned long)work->ctx);
2707 	complete(&work->completion);
2708 }
2709 
2710 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2711 {
2712 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2713 
2714 	return req->ctx == data;
2715 }
2716 
2717 static __cold void io_ring_exit_work(struct work_struct *work)
2718 {
2719 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2720 	unsigned long timeout = jiffies + HZ * 60 * 5;
2721 	unsigned long interval = HZ / 20;
2722 	struct io_tctx_exit exit;
2723 	struct io_tctx_node *node;
2724 	int ret;
2725 
2726 	/*
2727 	 * If we're doing polled IO and end up having requests being
2728 	 * submitted async (out-of-line), then completions can come in while
2729 	 * we're waiting for refs to drop. We need to reap these manually,
2730 	 * as nobody else will be looking for them.
2731 	 */
2732 	do {
2733 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2734 			io_move_task_work_from_local(ctx);
2735 
2736 		while (io_uring_try_cancel_requests(ctx, NULL, true))
2737 			cond_resched();
2738 
2739 		if (ctx->sq_data) {
2740 			struct io_sq_data *sqd = ctx->sq_data;
2741 			struct task_struct *tsk;
2742 
2743 			io_sq_thread_park(sqd);
2744 			tsk = sqd->thread;
2745 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2746 				io_wq_cancel_cb(tsk->io_uring->io_wq,
2747 						io_cancel_ctx_cb, ctx, true);
2748 			io_sq_thread_unpark(sqd);
2749 		}
2750 
2751 		io_req_caches_free(ctx);
2752 
2753 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2754 			/* there is little hope left, don't run it too often */
2755 			interval = HZ * 60;
2756 		}
2757 	} while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
2758 
2759 	init_completion(&exit.completion);
2760 	init_task_work(&exit.task_work, io_tctx_exit_cb);
2761 	exit.ctx = ctx;
2762 	/*
2763 	 * Some may use context even when all refs and requests have been put,
2764 	 * and they are free to do so while still holding uring_lock or
2765 	 * completion_lock, see io_req_task_submit(). Apart from other work,
2766 	 * this lock/unlock section also waits them to finish.
2767 	 */
2768 	mutex_lock(&ctx->uring_lock);
2769 	while (!list_empty(&ctx->tctx_list)) {
2770 		WARN_ON_ONCE(time_after(jiffies, timeout));
2771 
2772 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2773 					ctx_node);
2774 		/* don't spin on a single task if cancellation failed */
2775 		list_rotate_left(&ctx->tctx_list);
2776 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2777 		if (WARN_ON_ONCE(ret))
2778 			continue;
2779 
2780 		mutex_unlock(&ctx->uring_lock);
2781 		wait_for_completion(&exit.completion);
2782 		mutex_lock(&ctx->uring_lock);
2783 	}
2784 	mutex_unlock(&ctx->uring_lock);
2785 	spin_lock(&ctx->completion_lock);
2786 	spin_unlock(&ctx->completion_lock);
2787 
2788 	io_ring_ctx_free(ctx);
2789 }
2790 
2791 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2792 {
2793 	unsigned long index;
2794 	struct creds *creds;
2795 
2796 	mutex_lock(&ctx->uring_lock);
2797 	percpu_ref_kill(&ctx->refs);
2798 	if (ctx->rings)
2799 		__io_cqring_overflow_flush(ctx, true);
2800 	xa_for_each(&ctx->personalities, index, creds)
2801 		io_unregister_personality(ctx, index);
2802 	if (ctx->rings)
2803 		io_poll_remove_all(ctx, NULL, true);
2804 	mutex_unlock(&ctx->uring_lock);
2805 
2806 	/*
2807 	 * If we failed setting up the ctx, we might not have any rings
2808 	 * and therefore did not submit any requests
2809 	 */
2810 	if (ctx->rings)
2811 		io_kill_timeouts(ctx, NULL, true);
2812 
2813 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2814 	/*
2815 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
2816 	 * if we're exiting a ton of rings at the same time. It just adds
2817 	 * noise and overhead, there's no discernable change in runtime
2818 	 * over using system_wq.
2819 	 */
2820 	queue_work(system_unbound_wq, &ctx->exit_work);
2821 }
2822 
2823 static int io_uring_release(struct inode *inode, struct file *file)
2824 {
2825 	struct io_ring_ctx *ctx = file->private_data;
2826 
2827 	file->private_data = NULL;
2828 	io_ring_ctx_wait_and_kill(ctx);
2829 	return 0;
2830 }
2831 
2832 struct io_task_cancel {
2833 	struct task_struct *task;
2834 	bool all;
2835 };
2836 
2837 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
2838 {
2839 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2840 	struct io_task_cancel *cancel = data;
2841 
2842 	return io_match_task_safe(req, cancel->task, cancel->all);
2843 }
2844 
2845 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
2846 					 struct task_struct *task,
2847 					 bool cancel_all)
2848 {
2849 	struct io_defer_entry *de;
2850 	LIST_HEAD(list);
2851 
2852 	spin_lock(&ctx->completion_lock);
2853 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
2854 		if (io_match_task_safe(de->req, task, cancel_all)) {
2855 			list_cut_position(&list, &ctx->defer_list, &de->list);
2856 			break;
2857 		}
2858 	}
2859 	spin_unlock(&ctx->completion_lock);
2860 	if (list_empty(&list))
2861 		return false;
2862 
2863 	while (!list_empty(&list)) {
2864 		de = list_first_entry(&list, struct io_defer_entry, list);
2865 		list_del_init(&de->list);
2866 		io_req_complete_failed(de->req, -ECANCELED);
2867 		kfree(de);
2868 	}
2869 	return true;
2870 }
2871 
2872 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
2873 {
2874 	struct io_tctx_node *node;
2875 	enum io_wq_cancel cret;
2876 	bool ret = false;
2877 
2878 	mutex_lock(&ctx->uring_lock);
2879 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
2880 		struct io_uring_task *tctx = node->task->io_uring;
2881 
2882 		/*
2883 		 * io_wq will stay alive while we hold uring_lock, because it's
2884 		 * killed after ctx nodes, which requires to take the lock.
2885 		 */
2886 		if (!tctx || !tctx->io_wq)
2887 			continue;
2888 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
2889 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
2890 	}
2891 	mutex_unlock(&ctx->uring_lock);
2892 
2893 	return ret;
2894 }
2895 
2896 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
2897 						struct task_struct *task,
2898 						bool cancel_all)
2899 {
2900 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
2901 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
2902 	enum io_wq_cancel cret;
2903 	bool ret = false;
2904 
2905 	/* failed during ring init, it couldn't have issued any requests */
2906 	if (!ctx->rings)
2907 		return false;
2908 
2909 	if (!task) {
2910 		ret |= io_uring_try_cancel_iowq(ctx);
2911 	} else if (tctx && tctx->io_wq) {
2912 		/*
2913 		 * Cancels requests of all rings, not only @ctx, but
2914 		 * it's fine as the task is in exit/exec.
2915 		 */
2916 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
2917 				       &cancel, true);
2918 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
2919 	}
2920 
2921 	/* SQPOLL thread does its own polling */
2922 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
2923 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
2924 		while (!wq_list_empty(&ctx->iopoll_list)) {
2925 			io_iopoll_try_reap_events(ctx);
2926 			ret = true;
2927 		}
2928 	}
2929 
2930 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2931 		ret |= io_run_local_work(ctx) > 0;
2932 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
2933 	mutex_lock(&ctx->uring_lock);
2934 	ret |= io_poll_remove_all(ctx, task, cancel_all);
2935 	mutex_unlock(&ctx->uring_lock);
2936 	ret |= io_kill_timeouts(ctx, task, cancel_all);
2937 	if (task)
2938 		ret |= io_run_task_work() > 0;
2939 	return ret;
2940 }
2941 
2942 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
2943 {
2944 	if (tracked)
2945 		return atomic_read(&tctx->inflight_tracked);
2946 	return percpu_counter_sum(&tctx->inflight);
2947 }
2948 
2949 /*
2950  * Find any io_uring ctx that this task has registered or done IO on, and cancel
2951  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
2952  */
2953 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
2954 {
2955 	struct io_uring_task *tctx = current->io_uring;
2956 	struct io_ring_ctx *ctx;
2957 	s64 inflight;
2958 	DEFINE_WAIT(wait);
2959 
2960 	WARN_ON_ONCE(sqd && sqd->thread != current);
2961 
2962 	if (!current->io_uring)
2963 		return;
2964 	if (tctx->io_wq)
2965 		io_wq_exit_start(tctx->io_wq);
2966 
2967 	atomic_inc(&tctx->in_idle);
2968 	do {
2969 		bool loop = false;
2970 
2971 		io_uring_drop_tctx_refs(current);
2972 		/* read completions before cancelations */
2973 		inflight = tctx_inflight(tctx, !cancel_all);
2974 		if (!inflight)
2975 			break;
2976 
2977 		if (!sqd) {
2978 			struct io_tctx_node *node;
2979 			unsigned long index;
2980 
2981 			xa_for_each(&tctx->xa, index, node) {
2982 				/* sqpoll task will cancel all its requests */
2983 				if (node->ctx->sq_data)
2984 					continue;
2985 				loop |= io_uring_try_cancel_requests(node->ctx,
2986 							current, cancel_all);
2987 			}
2988 		} else {
2989 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
2990 				loop |= io_uring_try_cancel_requests(ctx,
2991 								     current,
2992 								     cancel_all);
2993 		}
2994 
2995 		if (loop) {
2996 			cond_resched();
2997 			continue;
2998 		}
2999 
3000 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3001 		io_run_task_work();
3002 		io_uring_drop_tctx_refs(current);
3003 
3004 		/*
3005 		 * If we've seen completions, retry without waiting. This
3006 		 * avoids a race where a completion comes in before we did
3007 		 * prepare_to_wait().
3008 		 */
3009 		if (inflight == tctx_inflight(tctx, !cancel_all))
3010 			schedule();
3011 		finish_wait(&tctx->wait, &wait);
3012 	} while (1);
3013 
3014 	io_uring_clean_tctx(tctx);
3015 	if (cancel_all) {
3016 		/*
3017 		 * We shouldn't run task_works after cancel, so just leave
3018 		 * ->in_idle set for normal exit.
3019 		 */
3020 		atomic_dec(&tctx->in_idle);
3021 		/* for exec all current's requests should be gone, kill tctx */
3022 		__io_uring_free(current);
3023 	}
3024 }
3025 
3026 void __io_uring_cancel(bool cancel_all)
3027 {
3028 	io_uring_cancel_generic(cancel_all, NULL);
3029 }
3030 
3031 static void *io_uring_validate_mmap_request(struct file *file,
3032 					    loff_t pgoff, size_t sz)
3033 {
3034 	struct io_ring_ctx *ctx = file->private_data;
3035 	loff_t offset = pgoff << PAGE_SHIFT;
3036 	struct page *page;
3037 	void *ptr;
3038 
3039 	switch (offset) {
3040 	case IORING_OFF_SQ_RING:
3041 	case IORING_OFF_CQ_RING:
3042 		ptr = ctx->rings;
3043 		break;
3044 	case IORING_OFF_SQES:
3045 		ptr = ctx->sq_sqes;
3046 		break;
3047 	default:
3048 		return ERR_PTR(-EINVAL);
3049 	}
3050 
3051 	page = virt_to_head_page(ptr);
3052 	if (sz > page_size(page))
3053 		return ERR_PTR(-EINVAL);
3054 
3055 	return ptr;
3056 }
3057 
3058 #ifdef CONFIG_MMU
3059 
3060 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3061 {
3062 	size_t sz = vma->vm_end - vma->vm_start;
3063 	unsigned long pfn;
3064 	void *ptr;
3065 
3066 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3067 	if (IS_ERR(ptr))
3068 		return PTR_ERR(ptr);
3069 
3070 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3071 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3072 }
3073 
3074 #else /* !CONFIG_MMU */
3075 
3076 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3077 {
3078 	return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
3079 }
3080 
3081 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3082 {
3083 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3084 }
3085 
3086 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3087 	unsigned long addr, unsigned long len,
3088 	unsigned long pgoff, unsigned long flags)
3089 {
3090 	void *ptr;
3091 
3092 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3093 	if (IS_ERR(ptr))
3094 		return PTR_ERR(ptr);
3095 
3096 	return (unsigned long) ptr;
3097 }
3098 
3099 #endif /* !CONFIG_MMU */
3100 
3101 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3102 {
3103 	if (flags & IORING_ENTER_EXT_ARG) {
3104 		struct io_uring_getevents_arg arg;
3105 
3106 		if (argsz != sizeof(arg))
3107 			return -EINVAL;
3108 		if (copy_from_user(&arg, argp, sizeof(arg)))
3109 			return -EFAULT;
3110 	}
3111 	return 0;
3112 }
3113 
3114 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3115 			  struct __kernel_timespec __user **ts,
3116 			  const sigset_t __user **sig)
3117 {
3118 	struct io_uring_getevents_arg arg;
3119 
3120 	/*
3121 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3122 	 * is just a pointer to the sigset_t.
3123 	 */
3124 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3125 		*sig = (const sigset_t __user *) argp;
3126 		*ts = NULL;
3127 		return 0;
3128 	}
3129 
3130 	/*
3131 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3132 	 * timespec and sigset_t pointers if good.
3133 	 */
3134 	if (*argsz != sizeof(arg))
3135 		return -EINVAL;
3136 	if (copy_from_user(&arg, argp, sizeof(arg)))
3137 		return -EFAULT;
3138 	if (arg.pad)
3139 		return -EINVAL;
3140 	*sig = u64_to_user_ptr(arg.sigmask);
3141 	*argsz = arg.sigmask_sz;
3142 	*ts = u64_to_user_ptr(arg.ts);
3143 	return 0;
3144 }
3145 
3146 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3147 		u32, min_complete, u32, flags, const void __user *, argp,
3148 		size_t, argsz)
3149 {
3150 	struct io_ring_ctx *ctx;
3151 	struct fd f;
3152 	long ret;
3153 
3154 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3155 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3156 			       IORING_ENTER_REGISTERED_RING)))
3157 		return -EINVAL;
3158 
3159 	/*
3160 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3161 	 * need only dereference our task private array to find it.
3162 	 */
3163 	if (flags & IORING_ENTER_REGISTERED_RING) {
3164 		struct io_uring_task *tctx = current->io_uring;
3165 
3166 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3167 			return -EINVAL;
3168 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3169 		f.file = tctx->registered_rings[fd];
3170 		f.flags = 0;
3171 		if (unlikely(!f.file))
3172 			return -EBADF;
3173 	} else {
3174 		f = fdget(fd);
3175 		if (unlikely(!f.file))
3176 			return -EBADF;
3177 		ret = -EOPNOTSUPP;
3178 		if (unlikely(!io_is_uring_fops(f.file)))
3179 			goto out;
3180 	}
3181 
3182 	ctx = f.file->private_data;
3183 	ret = -EBADFD;
3184 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3185 		goto out;
3186 
3187 	/*
3188 	 * For SQ polling, the thread will do all submissions and completions.
3189 	 * Just return the requested submit count, and wake the thread if
3190 	 * we were asked to.
3191 	 */
3192 	ret = 0;
3193 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3194 		io_cqring_overflow_flush(ctx);
3195 
3196 		if (unlikely(ctx->sq_data->thread == NULL)) {
3197 			ret = -EOWNERDEAD;
3198 			goto out;
3199 		}
3200 		if (flags & IORING_ENTER_SQ_WAKEUP)
3201 			wake_up(&ctx->sq_data->wait);
3202 		if (flags & IORING_ENTER_SQ_WAIT) {
3203 			ret = io_sqpoll_wait_sq(ctx);
3204 			if (ret)
3205 				goto out;
3206 		}
3207 		ret = to_submit;
3208 	} else if (to_submit) {
3209 		ret = io_uring_add_tctx_node(ctx);
3210 		if (unlikely(ret))
3211 			goto out;
3212 
3213 		mutex_lock(&ctx->uring_lock);
3214 		ret = io_submit_sqes(ctx, to_submit);
3215 		if (ret != to_submit) {
3216 			mutex_unlock(&ctx->uring_lock);
3217 			goto out;
3218 		}
3219 		if (flags & IORING_ENTER_GETEVENTS) {
3220 			if (ctx->syscall_iopoll)
3221 				goto iopoll_locked;
3222 			/*
3223 			 * Ignore errors, we'll soon call io_cqring_wait() and
3224 			 * it should handle ownership problems if any.
3225 			 */
3226 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3227 				(void)io_run_local_work_locked(ctx);
3228 		}
3229 		mutex_unlock(&ctx->uring_lock);
3230 	}
3231 
3232 	if (flags & IORING_ENTER_GETEVENTS) {
3233 		int ret2;
3234 
3235 		if (ctx->syscall_iopoll) {
3236 			/*
3237 			 * We disallow the app entering submit/complete with
3238 			 * polling, but we still need to lock the ring to
3239 			 * prevent racing with polled issue that got punted to
3240 			 * a workqueue.
3241 			 */
3242 			mutex_lock(&ctx->uring_lock);
3243 iopoll_locked:
3244 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3245 			if (likely(!ret2)) {
3246 				min_complete = min(min_complete,
3247 						   ctx->cq_entries);
3248 				ret2 = io_iopoll_check(ctx, min_complete);
3249 			}
3250 			mutex_unlock(&ctx->uring_lock);
3251 		} else {
3252 			const sigset_t __user *sig;
3253 			struct __kernel_timespec __user *ts;
3254 
3255 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3256 			if (likely(!ret2)) {
3257 				min_complete = min(min_complete,
3258 						   ctx->cq_entries);
3259 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3260 						      argsz, ts);
3261 			}
3262 		}
3263 
3264 		if (!ret) {
3265 			ret = ret2;
3266 
3267 			/*
3268 			 * EBADR indicates that one or more CQE were dropped.
3269 			 * Once the user has been informed we can clear the bit
3270 			 * as they are obviously ok with those drops.
3271 			 */
3272 			if (unlikely(ret2 == -EBADR))
3273 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3274 					  &ctx->check_cq);
3275 		}
3276 	}
3277 out:
3278 	fdput(f);
3279 	return ret;
3280 }
3281 
3282 static const struct file_operations io_uring_fops = {
3283 	.release	= io_uring_release,
3284 	.mmap		= io_uring_mmap,
3285 #ifndef CONFIG_MMU
3286 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3287 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3288 #endif
3289 	.poll		= io_uring_poll,
3290 #ifdef CONFIG_PROC_FS
3291 	.show_fdinfo	= io_uring_show_fdinfo,
3292 #endif
3293 };
3294 
3295 bool io_is_uring_fops(struct file *file)
3296 {
3297 	return file->f_op == &io_uring_fops;
3298 }
3299 
3300 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3301 					 struct io_uring_params *p)
3302 {
3303 	struct io_rings *rings;
3304 	size_t size, sq_array_offset;
3305 
3306 	/* make sure these are sane, as we already accounted them */
3307 	ctx->sq_entries = p->sq_entries;
3308 	ctx->cq_entries = p->cq_entries;
3309 
3310 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3311 	if (size == SIZE_MAX)
3312 		return -EOVERFLOW;
3313 
3314 	rings = io_mem_alloc(size);
3315 	if (!rings)
3316 		return -ENOMEM;
3317 
3318 	ctx->rings = rings;
3319 	ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3320 	rings->sq_ring_mask = p->sq_entries - 1;
3321 	rings->cq_ring_mask = p->cq_entries - 1;
3322 	rings->sq_ring_entries = p->sq_entries;
3323 	rings->cq_ring_entries = p->cq_entries;
3324 
3325 	if (p->flags & IORING_SETUP_SQE128)
3326 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3327 	else
3328 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3329 	if (size == SIZE_MAX) {
3330 		io_mem_free(ctx->rings);
3331 		ctx->rings = NULL;
3332 		return -EOVERFLOW;
3333 	}
3334 
3335 	ctx->sq_sqes = io_mem_alloc(size);
3336 	if (!ctx->sq_sqes) {
3337 		io_mem_free(ctx->rings);
3338 		ctx->rings = NULL;
3339 		return -ENOMEM;
3340 	}
3341 
3342 	return 0;
3343 }
3344 
3345 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
3346 {
3347 	int ret, fd;
3348 
3349 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3350 	if (fd < 0)
3351 		return fd;
3352 
3353 	ret = __io_uring_add_tctx_node(ctx);
3354 	if (ret) {
3355 		put_unused_fd(fd);
3356 		return ret;
3357 	}
3358 	fd_install(fd, file);
3359 	return fd;
3360 }
3361 
3362 /*
3363  * Allocate an anonymous fd, this is what constitutes the application
3364  * visible backing of an io_uring instance. The application mmaps this
3365  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3366  * we have to tie this fd to a socket for file garbage collection purposes.
3367  */
3368 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3369 {
3370 	struct file *file;
3371 #if defined(CONFIG_UNIX)
3372 	int ret;
3373 
3374 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3375 				&ctx->ring_sock);
3376 	if (ret)
3377 		return ERR_PTR(ret);
3378 #endif
3379 
3380 	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3381 					 O_RDWR | O_CLOEXEC, NULL);
3382 #if defined(CONFIG_UNIX)
3383 	if (IS_ERR(file)) {
3384 		sock_release(ctx->ring_sock);
3385 		ctx->ring_sock = NULL;
3386 	} else {
3387 		ctx->ring_sock->file = file;
3388 	}
3389 #endif
3390 	return file;
3391 }
3392 
3393 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3394 				  struct io_uring_params __user *params)
3395 {
3396 	struct io_ring_ctx *ctx;
3397 	struct file *file;
3398 	int ret;
3399 
3400 	if (!entries)
3401 		return -EINVAL;
3402 	if (entries > IORING_MAX_ENTRIES) {
3403 		if (!(p->flags & IORING_SETUP_CLAMP))
3404 			return -EINVAL;
3405 		entries = IORING_MAX_ENTRIES;
3406 	}
3407 
3408 	/*
3409 	 * Use twice as many entries for the CQ ring. It's possible for the
3410 	 * application to drive a higher depth than the size of the SQ ring,
3411 	 * since the sqes are only used at submission time. This allows for
3412 	 * some flexibility in overcommitting a bit. If the application has
3413 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3414 	 * of CQ ring entries manually.
3415 	 */
3416 	p->sq_entries = roundup_pow_of_two(entries);
3417 	if (p->flags & IORING_SETUP_CQSIZE) {
3418 		/*
3419 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3420 		 * to a power-of-two, if it isn't already. We do NOT impose
3421 		 * any cq vs sq ring sizing.
3422 		 */
3423 		if (!p->cq_entries)
3424 			return -EINVAL;
3425 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3426 			if (!(p->flags & IORING_SETUP_CLAMP))
3427 				return -EINVAL;
3428 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3429 		}
3430 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3431 		if (p->cq_entries < p->sq_entries)
3432 			return -EINVAL;
3433 	} else {
3434 		p->cq_entries = 2 * p->sq_entries;
3435 	}
3436 
3437 	ctx = io_ring_ctx_alloc(p);
3438 	if (!ctx)
3439 		return -ENOMEM;
3440 
3441 	/*
3442 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3443 	 * space applications don't need to do io completion events
3444 	 * polling again, they can rely on io_sq_thread to do polling
3445 	 * work, which can reduce cpu usage and uring_lock contention.
3446 	 */
3447 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3448 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3449 		ctx->syscall_iopoll = 1;
3450 
3451 	ctx->compat = in_compat_syscall();
3452 	if (!capable(CAP_IPC_LOCK))
3453 		ctx->user = get_uid(current_user());
3454 
3455 	/*
3456 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3457 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3458 	 */
3459 	ret = -EINVAL;
3460 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3461 		/* IPI related flags don't make sense with SQPOLL */
3462 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3463 				  IORING_SETUP_TASKRUN_FLAG |
3464 				  IORING_SETUP_DEFER_TASKRUN))
3465 			goto err;
3466 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3467 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3468 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3469 	} else {
3470 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3471 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3472 			goto err;
3473 		ctx->notify_method = TWA_SIGNAL;
3474 	}
3475 
3476 	/*
3477 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3478 	 * submission task. This implies that there is only one submitter, so enforce
3479 	 * that.
3480 	 */
3481 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3482 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3483 		goto err;
3484 	}
3485 
3486 	/*
3487 	 * This is just grabbed for accounting purposes. When a process exits,
3488 	 * the mm is exited and dropped before the files, hence we need to hang
3489 	 * on to this mm purely for the purposes of being able to unaccount
3490 	 * memory (locked/pinned vm). It's not used for anything else.
3491 	 */
3492 	mmgrab(current->mm);
3493 	ctx->mm_account = current->mm;
3494 
3495 	ret = io_allocate_scq_urings(ctx, p);
3496 	if (ret)
3497 		goto err;
3498 
3499 	ret = io_sq_offload_create(ctx, p);
3500 	if (ret)
3501 		goto err;
3502 	/* always set a rsrc node */
3503 	ret = io_rsrc_node_switch_start(ctx);
3504 	if (ret)
3505 		goto err;
3506 	io_rsrc_node_switch(ctx, NULL);
3507 
3508 	memset(&p->sq_off, 0, sizeof(p->sq_off));
3509 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3510 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3511 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3512 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3513 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3514 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3515 	p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3516 
3517 	memset(&p->cq_off, 0, sizeof(p->cq_off));
3518 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3519 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3520 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3521 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3522 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3523 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3524 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3525 
3526 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3527 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3528 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3529 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3530 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3531 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3532 			IORING_FEAT_LINKED_FILE;
3533 
3534 	if (copy_to_user(params, p, sizeof(*p))) {
3535 		ret = -EFAULT;
3536 		goto err;
3537 	}
3538 
3539 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3540 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3541 		ctx->submitter_task = get_task_struct(current);
3542 
3543 	file = io_uring_get_file(ctx);
3544 	if (IS_ERR(file)) {
3545 		ret = PTR_ERR(file);
3546 		goto err;
3547 	}
3548 
3549 	/*
3550 	 * Install ring fd as the very last thing, so we don't risk someone
3551 	 * having closed it before we finish setup
3552 	 */
3553 	ret = io_uring_install_fd(ctx, file);
3554 	if (ret < 0) {
3555 		/* fput will clean it up */
3556 		fput(file);
3557 		return ret;
3558 	}
3559 
3560 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3561 	return ret;
3562 err:
3563 	io_ring_ctx_wait_and_kill(ctx);
3564 	return ret;
3565 }
3566 
3567 /*
3568  * Sets up an aio uring context, and returns the fd. Applications asks for a
3569  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3570  * params structure passed in.
3571  */
3572 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3573 {
3574 	struct io_uring_params p;
3575 	int i;
3576 
3577 	if (copy_from_user(&p, params, sizeof(p)))
3578 		return -EFAULT;
3579 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3580 		if (p.resv[i])
3581 			return -EINVAL;
3582 	}
3583 
3584 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3585 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3586 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3587 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3588 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3589 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3590 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN))
3591 		return -EINVAL;
3592 
3593 	return io_uring_create(entries, &p, params);
3594 }
3595 
3596 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3597 		struct io_uring_params __user *, params)
3598 {
3599 	return io_uring_setup(entries, params);
3600 }
3601 
3602 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
3603 			   unsigned nr_args)
3604 {
3605 	struct io_uring_probe *p;
3606 	size_t size;
3607 	int i, ret;
3608 
3609 	size = struct_size(p, ops, nr_args);
3610 	if (size == SIZE_MAX)
3611 		return -EOVERFLOW;
3612 	p = kzalloc(size, GFP_KERNEL);
3613 	if (!p)
3614 		return -ENOMEM;
3615 
3616 	ret = -EFAULT;
3617 	if (copy_from_user(p, arg, size))
3618 		goto out;
3619 	ret = -EINVAL;
3620 	if (memchr_inv(p, 0, size))
3621 		goto out;
3622 
3623 	p->last_op = IORING_OP_LAST - 1;
3624 	if (nr_args > IORING_OP_LAST)
3625 		nr_args = IORING_OP_LAST;
3626 
3627 	for (i = 0; i < nr_args; i++) {
3628 		p->ops[i].op = i;
3629 		if (!io_op_defs[i].not_supported)
3630 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
3631 	}
3632 	p->ops_len = i;
3633 
3634 	ret = 0;
3635 	if (copy_to_user(arg, p, size))
3636 		ret = -EFAULT;
3637 out:
3638 	kfree(p);
3639 	return ret;
3640 }
3641 
3642 static int io_register_personality(struct io_ring_ctx *ctx)
3643 {
3644 	const struct cred *creds;
3645 	u32 id;
3646 	int ret;
3647 
3648 	creds = get_current_cred();
3649 
3650 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
3651 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
3652 	if (ret < 0) {
3653 		put_cred(creds);
3654 		return ret;
3655 	}
3656 	return id;
3657 }
3658 
3659 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
3660 					   void __user *arg, unsigned int nr_args)
3661 {
3662 	struct io_uring_restriction *res;
3663 	size_t size;
3664 	int i, ret;
3665 
3666 	/* Restrictions allowed only if rings started disabled */
3667 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3668 		return -EBADFD;
3669 
3670 	/* We allow only a single restrictions registration */
3671 	if (ctx->restrictions.registered)
3672 		return -EBUSY;
3673 
3674 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
3675 		return -EINVAL;
3676 
3677 	size = array_size(nr_args, sizeof(*res));
3678 	if (size == SIZE_MAX)
3679 		return -EOVERFLOW;
3680 
3681 	res = memdup_user(arg, size);
3682 	if (IS_ERR(res))
3683 		return PTR_ERR(res);
3684 
3685 	ret = 0;
3686 
3687 	for (i = 0; i < nr_args; i++) {
3688 		switch (res[i].opcode) {
3689 		case IORING_RESTRICTION_REGISTER_OP:
3690 			if (res[i].register_op >= IORING_REGISTER_LAST) {
3691 				ret = -EINVAL;
3692 				goto out;
3693 			}
3694 
3695 			__set_bit(res[i].register_op,
3696 				  ctx->restrictions.register_op);
3697 			break;
3698 		case IORING_RESTRICTION_SQE_OP:
3699 			if (res[i].sqe_op >= IORING_OP_LAST) {
3700 				ret = -EINVAL;
3701 				goto out;
3702 			}
3703 
3704 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
3705 			break;
3706 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
3707 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
3708 			break;
3709 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
3710 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
3711 			break;
3712 		default:
3713 			ret = -EINVAL;
3714 			goto out;
3715 		}
3716 	}
3717 
3718 out:
3719 	/* Reset all restrictions if an error happened */
3720 	if (ret != 0)
3721 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
3722 	else
3723 		ctx->restrictions.registered = true;
3724 
3725 	kfree(res);
3726 	return ret;
3727 }
3728 
3729 static int io_register_enable_rings(struct io_ring_ctx *ctx)
3730 {
3731 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3732 		return -EBADFD;
3733 
3734 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task)
3735 		ctx->submitter_task = get_task_struct(current);
3736 
3737 	if (ctx->restrictions.registered)
3738 		ctx->restricted = 1;
3739 
3740 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
3741 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
3742 		wake_up(&ctx->sq_data->wait);
3743 	return 0;
3744 }
3745 
3746 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
3747 				       void __user *arg, unsigned len)
3748 {
3749 	struct io_uring_task *tctx = current->io_uring;
3750 	cpumask_var_t new_mask;
3751 	int ret;
3752 
3753 	if (!tctx || !tctx->io_wq)
3754 		return -EINVAL;
3755 
3756 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3757 		return -ENOMEM;
3758 
3759 	cpumask_clear(new_mask);
3760 	if (len > cpumask_size())
3761 		len = cpumask_size();
3762 
3763 	if (in_compat_syscall()) {
3764 		ret = compat_get_bitmap(cpumask_bits(new_mask),
3765 					(const compat_ulong_t __user *)arg,
3766 					len * 8 /* CHAR_BIT */);
3767 	} else {
3768 		ret = copy_from_user(new_mask, arg, len);
3769 	}
3770 
3771 	if (ret) {
3772 		free_cpumask_var(new_mask);
3773 		return -EFAULT;
3774 	}
3775 
3776 	ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
3777 	free_cpumask_var(new_mask);
3778 	return ret;
3779 }
3780 
3781 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
3782 {
3783 	struct io_uring_task *tctx = current->io_uring;
3784 
3785 	if (!tctx || !tctx->io_wq)
3786 		return -EINVAL;
3787 
3788 	return io_wq_cpu_affinity(tctx->io_wq, NULL);
3789 }
3790 
3791 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
3792 					       void __user *arg)
3793 	__must_hold(&ctx->uring_lock)
3794 {
3795 	struct io_tctx_node *node;
3796 	struct io_uring_task *tctx = NULL;
3797 	struct io_sq_data *sqd = NULL;
3798 	__u32 new_count[2];
3799 	int i, ret;
3800 
3801 	if (copy_from_user(new_count, arg, sizeof(new_count)))
3802 		return -EFAULT;
3803 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
3804 		if (new_count[i] > INT_MAX)
3805 			return -EINVAL;
3806 
3807 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3808 		sqd = ctx->sq_data;
3809 		if (sqd) {
3810 			/*
3811 			 * Observe the correct sqd->lock -> ctx->uring_lock
3812 			 * ordering. Fine to drop uring_lock here, we hold
3813 			 * a ref to the ctx.
3814 			 */
3815 			refcount_inc(&sqd->refs);
3816 			mutex_unlock(&ctx->uring_lock);
3817 			mutex_lock(&sqd->lock);
3818 			mutex_lock(&ctx->uring_lock);
3819 			if (sqd->thread)
3820 				tctx = sqd->thread->io_uring;
3821 		}
3822 	} else {
3823 		tctx = current->io_uring;
3824 	}
3825 
3826 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
3827 
3828 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
3829 		if (new_count[i])
3830 			ctx->iowq_limits[i] = new_count[i];
3831 	ctx->iowq_limits_set = true;
3832 
3833 	if (tctx && tctx->io_wq) {
3834 		ret = io_wq_max_workers(tctx->io_wq, new_count);
3835 		if (ret)
3836 			goto err;
3837 	} else {
3838 		memset(new_count, 0, sizeof(new_count));
3839 	}
3840 
3841 	if (sqd) {
3842 		mutex_unlock(&sqd->lock);
3843 		io_put_sq_data(sqd);
3844 	}
3845 
3846 	if (copy_to_user(arg, new_count, sizeof(new_count)))
3847 		return -EFAULT;
3848 
3849 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
3850 	if (sqd)
3851 		return 0;
3852 
3853 	/* now propagate the restriction to all registered users */
3854 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3855 		struct io_uring_task *tctx = node->task->io_uring;
3856 
3857 		if (WARN_ON_ONCE(!tctx->io_wq))
3858 			continue;
3859 
3860 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
3861 			new_count[i] = ctx->iowq_limits[i];
3862 		/* ignore errors, it always returns zero anyway */
3863 		(void)io_wq_max_workers(tctx->io_wq, new_count);
3864 	}
3865 	return 0;
3866 err:
3867 	if (sqd) {
3868 		mutex_unlock(&sqd->lock);
3869 		io_put_sq_data(sqd);
3870 	}
3871 	return ret;
3872 }
3873 
3874 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
3875 			       void __user *arg, unsigned nr_args)
3876 	__releases(ctx->uring_lock)
3877 	__acquires(ctx->uring_lock)
3878 {
3879 	int ret;
3880 
3881 	/*
3882 	 * We don't quiesce the refs for register anymore and so it can't be
3883 	 * dying as we're holding a file ref here.
3884 	 */
3885 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
3886 		return -ENXIO;
3887 
3888 	if (ctx->submitter_task && ctx->submitter_task != current)
3889 		return -EEXIST;
3890 
3891 	if (ctx->restricted) {
3892 		if (opcode >= IORING_REGISTER_LAST)
3893 			return -EINVAL;
3894 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
3895 		if (!test_bit(opcode, ctx->restrictions.register_op))
3896 			return -EACCES;
3897 	}
3898 
3899 	switch (opcode) {
3900 	case IORING_REGISTER_BUFFERS:
3901 		ret = -EFAULT;
3902 		if (!arg)
3903 			break;
3904 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
3905 		break;
3906 	case IORING_UNREGISTER_BUFFERS:
3907 		ret = -EINVAL;
3908 		if (arg || nr_args)
3909 			break;
3910 		ret = io_sqe_buffers_unregister(ctx);
3911 		break;
3912 	case IORING_REGISTER_FILES:
3913 		ret = -EFAULT;
3914 		if (!arg)
3915 			break;
3916 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
3917 		break;
3918 	case IORING_UNREGISTER_FILES:
3919 		ret = -EINVAL;
3920 		if (arg || nr_args)
3921 			break;
3922 		ret = io_sqe_files_unregister(ctx);
3923 		break;
3924 	case IORING_REGISTER_FILES_UPDATE:
3925 		ret = io_register_files_update(ctx, arg, nr_args);
3926 		break;
3927 	case IORING_REGISTER_EVENTFD:
3928 		ret = -EINVAL;
3929 		if (nr_args != 1)
3930 			break;
3931 		ret = io_eventfd_register(ctx, arg, 0);
3932 		break;
3933 	case IORING_REGISTER_EVENTFD_ASYNC:
3934 		ret = -EINVAL;
3935 		if (nr_args != 1)
3936 			break;
3937 		ret = io_eventfd_register(ctx, arg, 1);
3938 		break;
3939 	case IORING_UNREGISTER_EVENTFD:
3940 		ret = -EINVAL;
3941 		if (arg || nr_args)
3942 			break;
3943 		ret = io_eventfd_unregister(ctx);
3944 		break;
3945 	case IORING_REGISTER_PROBE:
3946 		ret = -EINVAL;
3947 		if (!arg || nr_args > 256)
3948 			break;
3949 		ret = io_probe(ctx, arg, nr_args);
3950 		break;
3951 	case IORING_REGISTER_PERSONALITY:
3952 		ret = -EINVAL;
3953 		if (arg || nr_args)
3954 			break;
3955 		ret = io_register_personality(ctx);
3956 		break;
3957 	case IORING_UNREGISTER_PERSONALITY:
3958 		ret = -EINVAL;
3959 		if (arg)
3960 			break;
3961 		ret = io_unregister_personality(ctx, nr_args);
3962 		break;
3963 	case IORING_REGISTER_ENABLE_RINGS:
3964 		ret = -EINVAL;
3965 		if (arg || nr_args)
3966 			break;
3967 		ret = io_register_enable_rings(ctx);
3968 		break;
3969 	case IORING_REGISTER_RESTRICTIONS:
3970 		ret = io_register_restrictions(ctx, arg, nr_args);
3971 		break;
3972 	case IORING_REGISTER_FILES2:
3973 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
3974 		break;
3975 	case IORING_REGISTER_FILES_UPDATE2:
3976 		ret = io_register_rsrc_update(ctx, arg, nr_args,
3977 					      IORING_RSRC_FILE);
3978 		break;
3979 	case IORING_REGISTER_BUFFERS2:
3980 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
3981 		break;
3982 	case IORING_REGISTER_BUFFERS_UPDATE:
3983 		ret = io_register_rsrc_update(ctx, arg, nr_args,
3984 					      IORING_RSRC_BUFFER);
3985 		break;
3986 	case IORING_REGISTER_IOWQ_AFF:
3987 		ret = -EINVAL;
3988 		if (!arg || !nr_args)
3989 			break;
3990 		ret = io_register_iowq_aff(ctx, arg, nr_args);
3991 		break;
3992 	case IORING_UNREGISTER_IOWQ_AFF:
3993 		ret = -EINVAL;
3994 		if (arg || nr_args)
3995 			break;
3996 		ret = io_unregister_iowq_aff(ctx);
3997 		break;
3998 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
3999 		ret = -EINVAL;
4000 		if (!arg || nr_args != 2)
4001 			break;
4002 		ret = io_register_iowq_max_workers(ctx, arg);
4003 		break;
4004 	case IORING_REGISTER_RING_FDS:
4005 		ret = io_ringfd_register(ctx, arg, nr_args);
4006 		break;
4007 	case IORING_UNREGISTER_RING_FDS:
4008 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4009 		break;
4010 	case IORING_REGISTER_PBUF_RING:
4011 		ret = -EINVAL;
4012 		if (!arg || nr_args != 1)
4013 			break;
4014 		ret = io_register_pbuf_ring(ctx, arg);
4015 		break;
4016 	case IORING_UNREGISTER_PBUF_RING:
4017 		ret = -EINVAL;
4018 		if (!arg || nr_args != 1)
4019 			break;
4020 		ret = io_unregister_pbuf_ring(ctx, arg);
4021 		break;
4022 	case IORING_REGISTER_SYNC_CANCEL:
4023 		ret = -EINVAL;
4024 		if (!arg || nr_args != 1)
4025 			break;
4026 		ret = io_sync_cancel(ctx, arg);
4027 		break;
4028 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4029 		ret = -EINVAL;
4030 		if (!arg || nr_args)
4031 			break;
4032 		ret = io_register_file_alloc_range(ctx, arg);
4033 		break;
4034 	default:
4035 		ret = -EINVAL;
4036 		break;
4037 	}
4038 
4039 	return ret;
4040 }
4041 
4042 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4043 		void __user *, arg, unsigned int, nr_args)
4044 {
4045 	struct io_ring_ctx *ctx;
4046 	long ret = -EBADF;
4047 	struct fd f;
4048 
4049 	f = fdget(fd);
4050 	if (!f.file)
4051 		return -EBADF;
4052 
4053 	ret = -EOPNOTSUPP;
4054 	if (!io_is_uring_fops(f.file))
4055 		goto out_fput;
4056 
4057 	ctx = f.file->private_data;
4058 
4059 	io_run_task_work_ctx(ctx);
4060 
4061 	mutex_lock(&ctx->uring_lock);
4062 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4063 	mutex_unlock(&ctx->uring_lock);
4064 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4065 out_fput:
4066 	fdput(f);
4067 	return ret;
4068 }
4069 
4070 static int __init io_uring_init(void)
4071 {
4072 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4073 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4074 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4075 } while (0)
4076 
4077 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4078 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4079 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4080 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4081 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4082 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4083 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4084 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4085 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4086 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4087 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4088 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4089 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4090 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4091 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4092 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4093 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4094 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4095 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4096 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4097 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4098 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4099 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4100 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4101 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4102 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4103 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4104 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4105 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4106 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4107 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4108 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4109 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4110 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4111 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4112 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4113 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4114 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4115 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4116 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4117 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4118 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4119 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4120 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4121 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4122 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4123 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4124 
4125 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4126 		     sizeof(struct io_uring_rsrc_update));
4127 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4128 		     sizeof(struct io_uring_rsrc_update2));
4129 
4130 	/* ->buf_index is u16 */
4131 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4132 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4133 		     offsetof(struct io_uring_buf_ring, tail));
4134 
4135 	/* should fit into one byte */
4136 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4137 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4138 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4139 
4140 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4141 
4142 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4143 
4144 	io_uring_optable_init();
4145 
4146 	req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4147 				SLAB_ACCOUNT);
4148 	return 0;
4149 };
4150 __initcall(io_uring_init);
4151