1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 76 #define CREATE_TRACE_POINTS 77 #include <trace/events/io_uring.h> 78 79 #include <uapi/linux/io_uring.h> 80 81 #include "io-wq.h" 82 83 #include "io_uring.h" 84 #include "opdef.h" 85 #include "refs.h" 86 #include "tctx.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 95 #include "timeout.h" 96 #include "poll.h" 97 #include "alloc_cache.h" 98 99 #define IORING_MAX_ENTRIES 32768 100 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 101 102 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 103 IORING_REGISTER_LAST + IORING_OP_LAST) 104 105 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 106 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 107 108 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 109 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 110 111 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 112 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 113 REQ_F_ASYNC_DATA) 114 115 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 116 IO_REQ_CLEAN_FLAGS) 117 118 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 119 120 #define IO_COMPL_BATCH 32 121 #define IO_REQ_ALLOC_BATCH 8 122 123 enum { 124 IO_CHECK_CQ_OVERFLOW_BIT, 125 IO_CHECK_CQ_DROPPED_BIT, 126 }; 127 128 enum { 129 IO_EVENTFD_OP_SIGNAL_BIT, 130 IO_EVENTFD_OP_FREE_BIT, 131 }; 132 133 struct io_defer_entry { 134 struct list_head list; 135 struct io_kiocb *req; 136 u32 seq; 137 }; 138 139 /* requests with any of those set should undergo io_disarm_next() */ 140 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 141 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 142 143 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 144 struct task_struct *task, 145 bool cancel_all); 146 147 static void io_dismantle_req(struct io_kiocb *req); 148 static void io_clean_op(struct io_kiocb *req); 149 static void io_queue_sqe(struct io_kiocb *req); 150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx); 151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx); 152 153 static struct kmem_cache *req_cachep; 154 155 struct sock *io_uring_get_socket(struct file *file) 156 { 157 #if defined(CONFIG_UNIX) 158 if (io_is_uring_fops(file)) { 159 struct io_ring_ctx *ctx = file->private_data; 160 161 return ctx->ring_sock->sk; 162 } 163 #endif 164 return NULL; 165 } 166 EXPORT_SYMBOL(io_uring_get_socket); 167 168 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 169 { 170 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) 171 __io_submit_flush_completions(ctx); 172 } 173 174 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 175 { 176 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 177 } 178 179 static bool io_match_linked(struct io_kiocb *head) 180 { 181 struct io_kiocb *req; 182 183 io_for_each_link(req, head) { 184 if (req->flags & REQ_F_INFLIGHT) 185 return true; 186 } 187 return false; 188 } 189 190 /* 191 * As io_match_task() but protected against racing with linked timeouts. 192 * User must not hold timeout_lock. 193 */ 194 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 195 bool cancel_all) 196 { 197 bool matched; 198 199 if (task && head->task != task) 200 return false; 201 if (cancel_all) 202 return true; 203 204 if (head->flags & REQ_F_LINK_TIMEOUT) { 205 struct io_ring_ctx *ctx = head->ctx; 206 207 /* protect against races with linked timeouts */ 208 spin_lock_irq(&ctx->timeout_lock); 209 matched = io_match_linked(head); 210 spin_unlock_irq(&ctx->timeout_lock); 211 } else { 212 matched = io_match_linked(head); 213 } 214 return matched; 215 } 216 217 static inline void req_fail_link_node(struct io_kiocb *req, int res) 218 { 219 req_set_fail(req); 220 io_req_set_res(req, res, 0); 221 } 222 223 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 224 { 225 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 226 } 227 228 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 229 { 230 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 231 232 complete(&ctx->ref_comp); 233 } 234 235 static __cold void io_fallback_req_func(struct work_struct *work) 236 { 237 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 238 fallback_work.work); 239 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 240 struct io_kiocb *req, *tmp; 241 bool locked = false; 242 243 percpu_ref_get(&ctx->refs); 244 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 245 req->io_task_work.func(req, &locked); 246 247 if (locked) { 248 io_submit_flush_completions(ctx); 249 mutex_unlock(&ctx->uring_lock); 250 } 251 percpu_ref_put(&ctx->refs); 252 } 253 254 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 255 { 256 unsigned hash_buckets = 1U << bits; 257 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 258 259 table->hbs = kmalloc(hash_size, GFP_KERNEL); 260 if (!table->hbs) 261 return -ENOMEM; 262 263 table->hash_bits = bits; 264 init_hash_table(table, hash_buckets); 265 return 0; 266 } 267 268 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 269 { 270 struct io_ring_ctx *ctx; 271 int hash_bits; 272 273 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 274 if (!ctx) 275 return NULL; 276 277 xa_init(&ctx->io_bl_xa); 278 279 /* 280 * Use 5 bits less than the max cq entries, that should give us around 281 * 32 entries per hash list if totally full and uniformly spread, but 282 * don't keep too many buckets to not overconsume memory. 283 */ 284 hash_bits = ilog2(p->cq_entries) - 5; 285 hash_bits = clamp(hash_bits, 1, 8); 286 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 287 goto err; 288 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 289 goto err; 290 291 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL); 292 if (!ctx->dummy_ubuf) 293 goto err; 294 /* set invalid range, so io_import_fixed() fails meeting it */ 295 ctx->dummy_ubuf->ubuf = -1UL; 296 297 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 298 0, GFP_KERNEL)) 299 goto err; 300 301 ctx->flags = p->flags; 302 init_waitqueue_head(&ctx->sqo_sq_wait); 303 INIT_LIST_HEAD(&ctx->sqd_list); 304 INIT_LIST_HEAD(&ctx->cq_overflow_list); 305 INIT_LIST_HEAD(&ctx->io_buffers_cache); 306 io_alloc_cache_init(&ctx->apoll_cache); 307 io_alloc_cache_init(&ctx->netmsg_cache); 308 init_completion(&ctx->ref_comp); 309 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 310 mutex_init(&ctx->uring_lock); 311 init_waitqueue_head(&ctx->cq_wait); 312 spin_lock_init(&ctx->completion_lock); 313 spin_lock_init(&ctx->timeout_lock); 314 INIT_WQ_LIST(&ctx->iopoll_list); 315 INIT_LIST_HEAD(&ctx->io_buffers_pages); 316 INIT_LIST_HEAD(&ctx->io_buffers_comp); 317 INIT_LIST_HEAD(&ctx->defer_list); 318 INIT_LIST_HEAD(&ctx->timeout_list); 319 INIT_LIST_HEAD(&ctx->ltimeout_list); 320 spin_lock_init(&ctx->rsrc_ref_lock); 321 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 322 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work); 323 init_llist_head(&ctx->rsrc_put_llist); 324 init_llist_head(&ctx->work_llist); 325 INIT_LIST_HEAD(&ctx->tctx_list); 326 ctx->submit_state.free_list.next = NULL; 327 INIT_WQ_LIST(&ctx->locked_free_list); 328 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 329 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 330 return ctx; 331 err: 332 kfree(ctx->dummy_ubuf); 333 kfree(ctx->cancel_table.hbs); 334 kfree(ctx->cancel_table_locked.hbs); 335 kfree(ctx->io_bl); 336 xa_destroy(&ctx->io_bl_xa); 337 kfree(ctx); 338 return NULL; 339 } 340 341 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 342 { 343 struct io_rings *r = ctx->rings; 344 345 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 346 ctx->cq_extra--; 347 } 348 349 static bool req_need_defer(struct io_kiocb *req, u32 seq) 350 { 351 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 352 struct io_ring_ctx *ctx = req->ctx; 353 354 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 355 } 356 357 return false; 358 } 359 360 static inline void io_req_track_inflight(struct io_kiocb *req) 361 { 362 if (!(req->flags & REQ_F_INFLIGHT)) { 363 req->flags |= REQ_F_INFLIGHT; 364 atomic_inc(&req->task->io_uring->inflight_tracked); 365 } 366 } 367 368 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 369 { 370 if (WARN_ON_ONCE(!req->link)) 371 return NULL; 372 373 req->flags &= ~REQ_F_ARM_LTIMEOUT; 374 req->flags |= REQ_F_LINK_TIMEOUT; 375 376 /* linked timeouts should have two refs once prep'ed */ 377 io_req_set_refcount(req); 378 __io_req_set_refcount(req->link, 2); 379 return req->link; 380 } 381 382 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 383 { 384 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 385 return NULL; 386 return __io_prep_linked_timeout(req); 387 } 388 389 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 390 { 391 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 392 } 393 394 static inline void io_arm_ltimeout(struct io_kiocb *req) 395 { 396 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 397 __io_arm_ltimeout(req); 398 } 399 400 static void io_prep_async_work(struct io_kiocb *req) 401 { 402 const struct io_op_def *def = &io_op_defs[req->opcode]; 403 struct io_ring_ctx *ctx = req->ctx; 404 405 if (!(req->flags & REQ_F_CREDS)) { 406 req->flags |= REQ_F_CREDS; 407 req->creds = get_current_cred(); 408 } 409 410 req->work.list.next = NULL; 411 req->work.flags = 0; 412 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 413 if (req->flags & REQ_F_FORCE_ASYNC) 414 req->work.flags |= IO_WQ_WORK_CONCURRENT; 415 416 if (req->file && !io_req_ffs_set(req)) 417 req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT; 418 419 if (req->flags & REQ_F_ISREG) { 420 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL)) 421 io_wq_hash_work(&req->work, file_inode(req->file)); 422 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 423 if (def->unbound_nonreg_file) 424 req->work.flags |= IO_WQ_WORK_UNBOUND; 425 } 426 } 427 428 static void io_prep_async_link(struct io_kiocb *req) 429 { 430 struct io_kiocb *cur; 431 432 if (req->flags & REQ_F_LINK_TIMEOUT) { 433 struct io_ring_ctx *ctx = req->ctx; 434 435 spin_lock_irq(&ctx->timeout_lock); 436 io_for_each_link(cur, req) 437 io_prep_async_work(cur); 438 spin_unlock_irq(&ctx->timeout_lock); 439 } else { 440 io_for_each_link(cur, req) 441 io_prep_async_work(cur); 442 } 443 } 444 445 void io_queue_iowq(struct io_kiocb *req, bool *dont_use) 446 { 447 struct io_kiocb *link = io_prep_linked_timeout(req); 448 struct io_uring_task *tctx = req->task->io_uring; 449 450 BUG_ON(!tctx); 451 BUG_ON(!tctx->io_wq); 452 453 /* init ->work of the whole link before punting */ 454 io_prep_async_link(req); 455 456 /* 457 * Not expected to happen, but if we do have a bug where this _can_ 458 * happen, catch it here and ensure the request is marked as 459 * canceled. That will make io-wq go through the usual work cancel 460 * procedure rather than attempt to run this request (or create a new 461 * worker for it). 462 */ 463 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 464 req->work.flags |= IO_WQ_WORK_CANCEL; 465 466 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 467 io_wq_enqueue(tctx->io_wq, &req->work); 468 if (link) 469 io_queue_linked_timeout(link); 470 } 471 472 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 473 { 474 while (!list_empty(&ctx->defer_list)) { 475 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 476 struct io_defer_entry, list); 477 478 if (req_need_defer(de->req, de->seq)) 479 break; 480 list_del_init(&de->list); 481 io_req_task_queue(de->req); 482 kfree(de); 483 } 484 } 485 486 487 static void io_eventfd_ops(struct rcu_head *rcu) 488 { 489 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 490 int ops = atomic_xchg(&ev_fd->ops, 0); 491 492 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 493 eventfd_signal(ev_fd->cq_ev_fd, 1); 494 495 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 496 * ordering in a race but if references are 0 we know we have to free 497 * it regardless. 498 */ 499 if (atomic_dec_and_test(&ev_fd->refs)) { 500 eventfd_ctx_put(ev_fd->cq_ev_fd); 501 kfree(ev_fd); 502 } 503 } 504 505 static void io_eventfd_signal(struct io_ring_ctx *ctx) 506 { 507 struct io_ev_fd *ev_fd = NULL; 508 509 rcu_read_lock(); 510 /* 511 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 512 * and eventfd_signal 513 */ 514 ev_fd = rcu_dereference(ctx->io_ev_fd); 515 516 /* 517 * Check again if ev_fd exists incase an io_eventfd_unregister call 518 * completed between the NULL check of ctx->io_ev_fd at the start of 519 * the function and rcu_read_lock. 520 */ 521 if (unlikely(!ev_fd)) 522 goto out; 523 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 524 goto out; 525 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 526 goto out; 527 528 if (likely(eventfd_signal_allowed())) { 529 eventfd_signal(ev_fd->cq_ev_fd, 1); 530 } else { 531 atomic_inc(&ev_fd->refs); 532 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 533 call_rcu(&ev_fd->rcu, io_eventfd_ops); 534 else 535 atomic_dec(&ev_fd->refs); 536 } 537 538 out: 539 rcu_read_unlock(); 540 } 541 542 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 543 { 544 bool skip; 545 546 spin_lock(&ctx->completion_lock); 547 548 /* 549 * Eventfd should only get triggered when at least one event has been 550 * posted. Some applications rely on the eventfd notification count 551 * only changing IFF a new CQE has been added to the CQ ring. There's 552 * no depedency on 1:1 relationship between how many times this 553 * function is called (and hence the eventfd count) and number of CQEs 554 * posted to the CQ ring. 555 */ 556 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 557 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 558 spin_unlock(&ctx->completion_lock); 559 if (skip) 560 return; 561 562 io_eventfd_signal(ctx); 563 } 564 565 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 566 { 567 if (ctx->off_timeout_used || ctx->drain_active) { 568 spin_lock(&ctx->completion_lock); 569 if (ctx->off_timeout_used) 570 io_flush_timeouts(ctx); 571 if (ctx->drain_active) 572 io_queue_deferred(ctx); 573 spin_unlock(&ctx->completion_lock); 574 } 575 if (ctx->has_evfd) 576 io_eventfd_flush_signal(ctx); 577 } 578 579 static inline void io_cqring_ev_posted(struct io_ring_ctx *ctx) 580 { 581 io_commit_cqring_flush(ctx); 582 io_cqring_wake(ctx); 583 } 584 585 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 586 __releases(ctx->completion_lock) 587 { 588 io_commit_cqring(ctx); 589 spin_unlock(&ctx->completion_lock); 590 io_cqring_ev_posted(ctx); 591 } 592 593 void io_cq_unlock_post(struct io_ring_ctx *ctx) 594 { 595 __io_cq_unlock_post(ctx); 596 } 597 598 /* Returns true if there are no backlogged entries after the flush */ 599 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force) 600 { 601 bool all_flushed; 602 size_t cqe_size = sizeof(struct io_uring_cqe); 603 604 if (!force && __io_cqring_events(ctx) == ctx->cq_entries) 605 return false; 606 607 if (ctx->flags & IORING_SETUP_CQE32) 608 cqe_size <<= 1; 609 610 io_cq_lock(ctx); 611 while (!list_empty(&ctx->cq_overflow_list)) { 612 struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true); 613 struct io_overflow_cqe *ocqe; 614 615 if (!cqe && !force) 616 break; 617 ocqe = list_first_entry(&ctx->cq_overflow_list, 618 struct io_overflow_cqe, list); 619 if (cqe) 620 memcpy(cqe, &ocqe->cqe, cqe_size); 621 else 622 io_account_cq_overflow(ctx); 623 624 list_del(&ocqe->list); 625 kfree(ocqe); 626 } 627 628 all_flushed = list_empty(&ctx->cq_overflow_list); 629 if (all_flushed) { 630 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 631 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 632 } 633 634 io_cq_unlock_post(ctx); 635 return all_flushed; 636 } 637 638 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx) 639 { 640 bool ret = true; 641 642 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 643 /* iopoll syncs against uring_lock, not completion_lock */ 644 if (ctx->flags & IORING_SETUP_IOPOLL) 645 mutex_lock(&ctx->uring_lock); 646 ret = __io_cqring_overflow_flush(ctx, false); 647 if (ctx->flags & IORING_SETUP_IOPOLL) 648 mutex_unlock(&ctx->uring_lock); 649 } 650 651 return ret; 652 } 653 654 void __io_put_task(struct task_struct *task, int nr) 655 { 656 struct io_uring_task *tctx = task->io_uring; 657 658 percpu_counter_sub(&tctx->inflight, nr); 659 if (unlikely(atomic_read(&tctx->in_idle))) 660 wake_up(&tctx->wait); 661 put_task_struct_many(task, nr); 662 } 663 664 void io_task_refs_refill(struct io_uring_task *tctx) 665 { 666 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 667 668 percpu_counter_add(&tctx->inflight, refill); 669 refcount_add(refill, ¤t->usage); 670 tctx->cached_refs += refill; 671 } 672 673 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 674 { 675 struct io_uring_task *tctx = task->io_uring; 676 unsigned int refs = tctx->cached_refs; 677 678 if (refs) { 679 tctx->cached_refs = 0; 680 percpu_counter_sub(&tctx->inflight, refs); 681 put_task_struct_many(task, refs); 682 } 683 } 684 685 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 686 s32 res, u32 cflags, u64 extra1, u64 extra2) 687 { 688 struct io_overflow_cqe *ocqe; 689 size_t ocq_size = sizeof(struct io_overflow_cqe); 690 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 691 692 if (is_cqe32) 693 ocq_size += sizeof(struct io_uring_cqe); 694 695 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 696 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 697 if (!ocqe) { 698 /* 699 * If we're in ring overflow flush mode, or in task cancel mode, 700 * or cannot allocate an overflow entry, then we need to drop it 701 * on the floor. 702 */ 703 io_account_cq_overflow(ctx); 704 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 705 return false; 706 } 707 if (list_empty(&ctx->cq_overflow_list)) { 708 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 709 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 710 711 } 712 ocqe->cqe.user_data = user_data; 713 ocqe->cqe.res = res; 714 ocqe->cqe.flags = cflags; 715 if (is_cqe32) { 716 ocqe->cqe.big_cqe[0] = extra1; 717 ocqe->cqe.big_cqe[1] = extra2; 718 } 719 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 720 return true; 721 } 722 723 bool io_req_cqe_overflow(struct io_kiocb *req) 724 { 725 if (!(req->flags & REQ_F_CQE32_INIT)) { 726 req->extra1 = 0; 727 req->extra2 = 0; 728 } 729 return io_cqring_event_overflow(req->ctx, req->cqe.user_data, 730 req->cqe.res, req->cqe.flags, 731 req->extra1, req->extra2); 732 } 733 734 /* 735 * writes to the cq entry need to come after reading head; the 736 * control dependency is enough as we're using WRITE_ONCE to 737 * fill the cq entry 738 */ 739 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow) 740 { 741 struct io_rings *rings = ctx->rings; 742 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 743 unsigned int free, queued, len; 744 745 /* 746 * Posting into the CQ when there are pending overflowed CQEs may break 747 * ordering guarantees, which will affect links, F_MORE users and more. 748 * Force overflow the completion. 749 */ 750 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 751 return NULL; 752 753 /* userspace may cheat modifying the tail, be safe and do min */ 754 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 755 free = ctx->cq_entries - queued; 756 /* we need a contiguous range, limit based on the current array offset */ 757 len = min(free, ctx->cq_entries - off); 758 if (!len) 759 return NULL; 760 761 if (ctx->flags & IORING_SETUP_CQE32) { 762 off <<= 1; 763 len <<= 1; 764 } 765 766 ctx->cqe_cached = &rings->cqes[off]; 767 ctx->cqe_sentinel = ctx->cqe_cached + len; 768 769 ctx->cached_cq_tail++; 770 ctx->cqe_cached++; 771 if (ctx->flags & IORING_SETUP_CQE32) 772 ctx->cqe_cached++; 773 return &rings->cqes[off]; 774 } 775 776 bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 777 bool allow_overflow) 778 { 779 struct io_uring_cqe *cqe; 780 781 ctx->cq_extra++; 782 783 /* 784 * If we can't get a cq entry, userspace overflowed the 785 * submission (by quite a lot). Increment the overflow count in 786 * the ring. 787 */ 788 cqe = io_get_cqe(ctx); 789 if (likely(cqe)) { 790 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 791 792 WRITE_ONCE(cqe->user_data, user_data); 793 WRITE_ONCE(cqe->res, res); 794 WRITE_ONCE(cqe->flags, cflags); 795 796 if (ctx->flags & IORING_SETUP_CQE32) { 797 WRITE_ONCE(cqe->big_cqe[0], 0); 798 WRITE_ONCE(cqe->big_cqe[1], 0); 799 } 800 return true; 801 } 802 803 if (allow_overflow) 804 return io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 805 806 return false; 807 } 808 809 bool io_post_aux_cqe(struct io_ring_ctx *ctx, 810 u64 user_data, s32 res, u32 cflags, 811 bool allow_overflow) 812 { 813 bool filled; 814 815 io_cq_lock(ctx); 816 filled = io_fill_cqe_aux(ctx, user_data, res, cflags, allow_overflow); 817 io_cq_unlock_post(ctx); 818 return filled; 819 } 820 821 static void __io_req_complete_put(struct io_kiocb *req) 822 { 823 /* 824 * If we're the last reference to this request, add to our locked 825 * free_list cache. 826 */ 827 if (req_ref_put_and_test(req)) { 828 struct io_ring_ctx *ctx = req->ctx; 829 830 if (req->flags & IO_REQ_LINK_FLAGS) { 831 if (req->flags & IO_DISARM_MASK) 832 io_disarm_next(req); 833 if (req->link) { 834 io_req_task_queue(req->link); 835 req->link = NULL; 836 } 837 } 838 io_req_put_rsrc(req); 839 /* 840 * Selected buffer deallocation in io_clean_op() assumes that 841 * we don't hold ->completion_lock. Clean them here to avoid 842 * deadlocks. 843 */ 844 io_put_kbuf_comp(req); 845 io_dismantle_req(req); 846 io_put_task(req->task, 1); 847 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 848 ctx->locked_free_nr++; 849 } 850 } 851 852 void __io_req_complete_post(struct io_kiocb *req) 853 { 854 if (!(req->flags & REQ_F_CQE_SKIP)) 855 __io_fill_cqe_req(req->ctx, req); 856 __io_req_complete_put(req); 857 } 858 859 void io_req_complete_post(struct io_kiocb *req) 860 { 861 struct io_ring_ctx *ctx = req->ctx; 862 863 io_cq_lock(ctx); 864 __io_req_complete_post(req); 865 io_cq_unlock_post(ctx); 866 } 867 868 inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags) 869 { 870 io_req_complete_post(req); 871 } 872 873 void io_req_complete_failed(struct io_kiocb *req, s32 res) 874 { 875 const struct io_op_def *def = &io_op_defs[req->opcode]; 876 877 req_set_fail(req); 878 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 879 if (def->fail) 880 def->fail(req); 881 io_req_complete_post(req); 882 } 883 884 /* 885 * Don't initialise the fields below on every allocation, but do that in 886 * advance and keep them valid across allocations. 887 */ 888 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 889 { 890 req->ctx = ctx; 891 req->link = NULL; 892 req->async_data = NULL; 893 /* not necessary, but safer to zero */ 894 req->cqe.res = 0; 895 } 896 897 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 898 struct io_submit_state *state) 899 { 900 spin_lock(&ctx->completion_lock); 901 wq_list_splice(&ctx->locked_free_list, &state->free_list); 902 ctx->locked_free_nr = 0; 903 spin_unlock(&ctx->completion_lock); 904 } 905 906 /* 907 * A request might get retired back into the request caches even before opcode 908 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 909 * Because of that, io_alloc_req() should be called only under ->uring_lock 910 * and with extra caution to not get a request that is still worked on. 911 */ 912 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 913 __must_hold(&ctx->uring_lock) 914 { 915 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 916 void *reqs[IO_REQ_ALLOC_BATCH]; 917 int ret, i; 918 919 /* 920 * If we have more than a batch's worth of requests in our IRQ side 921 * locked cache, grab the lock and move them over to our submission 922 * side cache. 923 */ 924 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 925 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 926 if (!io_req_cache_empty(ctx)) 927 return true; 928 } 929 930 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 931 932 /* 933 * Bulk alloc is all-or-nothing. If we fail to get a batch, 934 * retry single alloc to be on the safe side. 935 */ 936 if (unlikely(ret <= 0)) { 937 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 938 if (!reqs[0]) 939 return false; 940 ret = 1; 941 } 942 943 percpu_ref_get_many(&ctx->refs, ret); 944 for (i = 0; i < ret; i++) { 945 struct io_kiocb *req = reqs[i]; 946 947 io_preinit_req(req, ctx); 948 io_req_add_to_cache(req, ctx); 949 } 950 return true; 951 } 952 953 static inline void io_dismantle_req(struct io_kiocb *req) 954 { 955 unsigned int flags = req->flags; 956 957 if (unlikely(flags & IO_REQ_CLEAN_FLAGS)) 958 io_clean_op(req); 959 if (!(flags & REQ_F_FIXED_FILE)) 960 io_put_file(req->file); 961 } 962 963 __cold void io_free_req(struct io_kiocb *req) 964 { 965 struct io_ring_ctx *ctx = req->ctx; 966 967 io_req_put_rsrc(req); 968 io_dismantle_req(req); 969 io_put_task(req->task, 1); 970 971 spin_lock(&ctx->completion_lock); 972 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 973 ctx->locked_free_nr++; 974 spin_unlock(&ctx->completion_lock); 975 } 976 977 static void __io_req_find_next_prep(struct io_kiocb *req) 978 { 979 struct io_ring_ctx *ctx = req->ctx; 980 981 io_cq_lock(ctx); 982 io_disarm_next(req); 983 io_cq_unlock_post(ctx); 984 } 985 986 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 987 { 988 struct io_kiocb *nxt; 989 990 /* 991 * If LINK is set, we have dependent requests in this chain. If we 992 * didn't fail this request, queue the first one up, moving any other 993 * dependencies to the next request. In case of failure, fail the rest 994 * of the chain. 995 */ 996 if (unlikely(req->flags & IO_DISARM_MASK)) 997 __io_req_find_next_prep(req); 998 nxt = req->link; 999 req->link = NULL; 1000 return nxt; 1001 } 1002 1003 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked) 1004 { 1005 if (!ctx) 1006 return; 1007 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1008 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1009 if (*locked) { 1010 io_submit_flush_completions(ctx); 1011 mutex_unlock(&ctx->uring_lock); 1012 *locked = false; 1013 } 1014 percpu_ref_put(&ctx->refs); 1015 } 1016 1017 static unsigned int handle_tw_list(struct llist_node *node, 1018 struct io_ring_ctx **ctx, bool *locked, 1019 struct llist_node *last) 1020 { 1021 unsigned int count = 0; 1022 1023 while (node != last) { 1024 struct llist_node *next = node->next; 1025 struct io_kiocb *req = container_of(node, struct io_kiocb, 1026 io_task_work.node); 1027 1028 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1029 1030 if (req->ctx != *ctx) { 1031 ctx_flush_and_put(*ctx, locked); 1032 *ctx = req->ctx; 1033 /* if not contended, grab and improve batching */ 1034 *locked = mutex_trylock(&(*ctx)->uring_lock); 1035 percpu_ref_get(&(*ctx)->refs); 1036 } 1037 req->io_task_work.func(req, locked); 1038 node = next; 1039 count++; 1040 } 1041 1042 return count; 1043 } 1044 1045 /** 1046 * io_llist_xchg - swap all entries in a lock-less list 1047 * @head: the head of lock-less list to delete all entries 1048 * @new: new entry as the head of the list 1049 * 1050 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1051 * The order of entries returned is from the newest to the oldest added one. 1052 */ 1053 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1054 struct llist_node *new) 1055 { 1056 return xchg(&head->first, new); 1057 } 1058 1059 /** 1060 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1061 * @head: the head of lock-less list to delete all entries 1062 * @old: expected old value of the first entry of the list 1063 * @new: new entry as the head of the list 1064 * 1065 * perform a cmpxchg on the first entry of the list. 1066 */ 1067 1068 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1069 struct llist_node *old, 1070 struct llist_node *new) 1071 { 1072 return cmpxchg(&head->first, old, new); 1073 } 1074 1075 void tctx_task_work(struct callback_head *cb) 1076 { 1077 bool uring_locked = false; 1078 struct io_ring_ctx *ctx = NULL; 1079 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1080 task_work); 1081 struct llist_node fake = {}; 1082 struct llist_node *node = io_llist_xchg(&tctx->task_list, &fake); 1083 unsigned int loops = 1; 1084 unsigned int count = handle_tw_list(node, &ctx, &uring_locked, NULL); 1085 1086 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1087 while (node != &fake) { 1088 loops++; 1089 node = io_llist_xchg(&tctx->task_list, &fake); 1090 count += handle_tw_list(node, &ctx, &uring_locked, &fake); 1091 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1092 } 1093 1094 ctx_flush_and_put(ctx, &uring_locked); 1095 1096 /* relaxed read is enough as only the task itself sets ->in_idle */ 1097 if (unlikely(atomic_read(&tctx->in_idle))) 1098 io_uring_drop_tctx_refs(current); 1099 1100 trace_io_uring_task_work_run(tctx, count, loops); 1101 } 1102 1103 static void io_req_local_work_add(struct io_kiocb *req) 1104 { 1105 struct io_ring_ctx *ctx = req->ctx; 1106 1107 if (!llist_add(&req->io_task_work.node, &ctx->work_llist)) 1108 return; 1109 /* need it for the following io_cqring_wake() */ 1110 smp_mb__after_atomic(); 1111 1112 if (unlikely(atomic_read(&req->task->io_uring->in_idle))) { 1113 io_move_task_work_from_local(ctx); 1114 return; 1115 } 1116 1117 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1118 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1119 1120 if (ctx->has_evfd) 1121 io_eventfd_signal(ctx); 1122 __io_cqring_wake(ctx); 1123 } 1124 1125 static inline void __io_req_task_work_add(struct io_kiocb *req, bool allow_local) 1126 { 1127 struct io_uring_task *tctx = req->task->io_uring; 1128 struct io_ring_ctx *ctx = req->ctx; 1129 struct llist_node *node; 1130 1131 if (allow_local && ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1132 io_req_local_work_add(req); 1133 return; 1134 } 1135 1136 /* task_work already pending, we're done */ 1137 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1138 return; 1139 1140 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1141 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1142 1143 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1144 return; 1145 1146 node = llist_del_all(&tctx->task_list); 1147 1148 while (node) { 1149 req = container_of(node, struct io_kiocb, io_task_work.node); 1150 node = node->next; 1151 if (llist_add(&req->io_task_work.node, 1152 &req->ctx->fallback_llist)) 1153 schedule_delayed_work(&req->ctx->fallback_work, 1); 1154 } 1155 } 1156 1157 void io_req_task_work_add(struct io_kiocb *req) 1158 { 1159 __io_req_task_work_add(req, true); 1160 } 1161 1162 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1163 { 1164 struct llist_node *node; 1165 1166 node = llist_del_all(&ctx->work_llist); 1167 while (node) { 1168 struct io_kiocb *req = container_of(node, struct io_kiocb, 1169 io_task_work.node); 1170 1171 node = node->next; 1172 __io_req_task_work_add(req, false); 1173 } 1174 } 1175 1176 int __io_run_local_work(struct io_ring_ctx *ctx, bool *locked) 1177 { 1178 struct llist_node *node; 1179 struct llist_node fake; 1180 struct llist_node *current_final = NULL; 1181 int ret; 1182 unsigned int loops = 1; 1183 1184 if (unlikely(ctx->submitter_task != current)) 1185 return -EEXIST; 1186 1187 node = io_llist_xchg(&ctx->work_llist, &fake); 1188 ret = 0; 1189 again: 1190 while (node != current_final) { 1191 struct llist_node *next = node->next; 1192 struct io_kiocb *req = container_of(node, struct io_kiocb, 1193 io_task_work.node); 1194 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1195 req->io_task_work.func(req, locked); 1196 ret++; 1197 node = next; 1198 } 1199 1200 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1201 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1202 1203 node = io_llist_cmpxchg(&ctx->work_llist, &fake, NULL); 1204 if (node != &fake) { 1205 loops++; 1206 current_final = &fake; 1207 node = io_llist_xchg(&ctx->work_llist, &fake); 1208 goto again; 1209 } 1210 1211 if (*locked) 1212 io_submit_flush_completions(ctx); 1213 trace_io_uring_local_work_run(ctx, ret, loops); 1214 return ret; 1215 1216 } 1217 1218 int io_run_local_work(struct io_ring_ctx *ctx) 1219 { 1220 bool locked; 1221 int ret; 1222 1223 if (llist_empty(&ctx->work_llist)) 1224 return 0; 1225 1226 __set_current_state(TASK_RUNNING); 1227 locked = mutex_trylock(&ctx->uring_lock); 1228 ret = __io_run_local_work(ctx, &locked); 1229 if (locked) 1230 mutex_unlock(&ctx->uring_lock); 1231 1232 return ret; 1233 } 1234 1235 static void io_req_tw_post(struct io_kiocb *req, bool *locked) 1236 { 1237 io_req_complete_post(req); 1238 } 1239 1240 void io_req_tw_post_queue(struct io_kiocb *req, s32 res, u32 cflags) 1241 { 1242 io_req_set_res(req, res, cflags); 1243 req->io_task_work.func = io_req_tw_post; 1244 io_req_task_work_add(req); 1245 } 1246 1247 static void io_req_task_cancel(struct io_kiocb *req, bool *locked) 1248 { 1249 /* not needed for normal modes, but SQPOLL depends on it */ 1250 io_tw_lock(req->ctx, locked); 1251 io_req_complete_failed(req, req->cqe.res); 1252 } 1253 1254 void io_req_task_submit(struct io_kiocb *req, bool *locked) 1255 { 1256 io_tw_lock(req->ctx, locked); 1257 /* req->task == current here, checking PF_EXITING is safe */ 1258 if (likely(!(req->task->flags & PF_EXITING))) 1259 io_queue_sqe(req); 1260 else 1261 io_req_complete_failed(req, -EFAULT); 1262 } 1263 1264 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1265 { 1266 io_req_set_res(req, ret, 0); 1267 req->io_task_work.func = io_req_task_cancel; 1268 io_req_task_work_add(req); 1269 } 1270 1271 void io_req_task_queue(struct io_kiocb *req) 1272 { 1273 req->io_task_work.func = io_req_task_submit; 1274 io_req_task_work_add(req); 1275 } 1276 1277 void io_queue_next(struct io_kiocb *req) 1278 { 1279 struct io_kiocb *nxt = io_req_find_next(req); 1280 1281 if (nxt) 1282 io_req_task_queue(nxt); 1283 } 1284 1285 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node) 1286 __must_hold(&ctx->uring_lock) 1287 { 1288 struct task_struct *task = NULL; 1289 int task_refs = 0; 1290 1291 do { 1292 struct io_kiocb *req = container_of(node, struct io_kiocb, 1293 comp_list); 1294 1295 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1296 if (req->flags & REQ_F_REFCOUNT) { 1297 node = req->comp_list.next; 1298 if (!req_ref_put_and_test(req)) 1299 continue; 1300 } 1301 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1302 struct async_poll *apoll = req->apoll; 1303 1304 if (apoll->double_poll) 1305 kfree(apoll->double_poll); 1306 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1307 kfree(apoll); 1308 req->flags &= ~REQ_F_POLLED; 1309 } 1310 if (req->flags & IO_REQ_LINK_FLAGS) 1311 io_queue_next(req); 1312 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1313 io_clean_op(req); 1314 } 1315 if (!(req->flags & REQ_F_FIXED_FILE)) 1316 io_put_file(req->file); 1317 1318 io_req_put_rsrc_locked(req, ctx); 1319 1320 if (req->task != task) { 1321 if (task) 1322 io_put_task(task, task_refs); 1323 task = req->task; 1324 task_refs = 0; 1325 } 1326 task_refs++; 1327 node = req->comp_list.next; 1328 io_req_add_to_cache(req, ctx); 1329 } while (node); 1330 1331 if (task) 1332 io_put_task(task, task_refs); 1333 } 1334 1335 static void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1336 __must_hold(&ctx->uring_lock) 1337 { 1338 struct io_wq_work_node *node, *prev; 1339 struct io_submit_state *state = &ctx->submit_state; 1340 1341 io_cq_lock(ctx); 1342 wq_list_for_each(node, prev, &state->compl_reqs) { 1343 struct io_kiocb *req = container_of(node, struct io_kiocb, 1344 comp_list); 1345 1346 if (!(req->flags & REQ_F_CQE_SKIP)) 1347 __io_fill_cqe_req(ctx, req); 1348 } 1349 __io_cq_unlock_post(ctx); 1350 1351 io_free_batch_list(ctx, state->compl_reqs.first); 1352 INIT_WQ_LIST(&state->compl_reqs); 1353 } 1354 1355 /* 1356 * Drop reference to request, return next in chain (if there is one) if this 1357 * was the last reference to this request. 1358 */ 1359 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req) 1360 { 1361 struct io_kiocb *nxt = NULL; 1362 1363 if (req_ref_put_and_test(req)) { 1364 if (unlikely(req->flags & IO_REQ_LINK_FLAGS)) 1365 nxt = io_req_find_next(req); 1366 io_free_req(req); 1367 } 1368 return nxt; 1369 } 1370 1371 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1372 { 1373 /* See comment at the top of this file */ 1374 smp_rmb(); 1375 return __io_cqring_events(ctx); 1376 } 1377 1378 /* 1379 * We can't just wait for polled events to come to us, we have to actively 1380 * find and complete them. 1381 */ 1382 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1383 { 1384 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1385 return; 1386 1387 mutex_lock(&ctx->uring_lock); 1388 while (!wq_list_empty(&ctx->iopoll_list)) { 1389 /* let it sleep and repeat later if can't complete a request */ 1390 if (io_do_iopoll(ctx, true) == 0) 1391 break; 1392 /* 1393 * Ensure we allow local-to-the-cpu processing to take place, 1394 * in this case we need to ensure that we reap all events. 1395 * Also let task_work, etc. to progress by releasing the mutex 1396 */ 1397 if (need_resched()) { 1398 mutex_unlock(&ctx->uring_lock); 1399 cond_resched(); 1400 mutex_lock(&ctx->uring_lock); 1401 } 1402 } 1403 mutex_unlock(&ctx->uring_lock); 1404 } 1405 1406 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1407 { 1408 unsigned int nr_events = 0; 1409 int ret = 0; 1410 unsigned long check_cq; 1411 1412 if (!io_allowed_run_tw(ctx)) 1413 return -EEXIST; 1414 1415 check_cq = READ_ONCE(ctx->check_cq); 1416 if (unlikely(check_cq)) { 1417 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1418 __io_cqring_overflow_flush(ctx, false); 1419 /* 1420 * Similarly do not spin if we have not informed the user of any 1421 * dropped CQE. 1422 */ 1423 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1424 return -EBADR; 1425 } 1426 /* 1427 * Don't enter poll loop if we already have events pending. 1428 * If we do, we can potentially be spinning for commands that 1429 * already triggered a CQE (eg in error). 1430 */ 1431 if (io_cqring_events(ctx)) 1432 return 0; 1433 1434 do { 1435 /* 1436 * If a submit got punted to a workqueue, we can have the 1437 * application entering polling for a command before it gets 1438 * issued. That app will hold the uring_lock for the duration 1439 * of the poll right here, so we need to take a breather every 1440 * now and then to ensure that the issue has a chance to add 1441 * the poll to the issued list. Otherwise we can spin here 1442 * forever, while the workqueue is stuck trying to acquire the 1443 * very same mutex. 1444 */ 1445 if (wq_list_empty(&ctx->iopoll_list) || 1446 io_task_work_pending(ctx)) { 1447 u32 tail = ctx->cached_cq_tail; 1448 1449 (void) io_run_local_work_locked(ctx); 1450 1451 if (task_work_pending(current) || 1452 wq_list_empty(&ctx->iopoll_list)) { 1453 mutex_unlock(&ctx->uring_lock); 1454 io_run_task_work(); 1455 mutex_lock(&ctx->uring_lock); 1456 } 1457 /* some requests don't go through iopoll_list */ 1458 if (tail != ctx->cached_cq_tail || 1459 wq_list_empty(&ctx->iopoll_list)) 1460 break; 1461 } 1462 ret = io_do_iopoll(ctx, !min); 1463 if (ret < 0) 1464 break; 1465 nr_events += ret; 1466 ret = 0; 1467 } while (nr_events < min && !need_resched()); 1468 1469 return ret; 1470 } 1471 1472 void io_req_task_complete(struct io_kiocb *req, bool *locked) 1473 { 1474 if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)) { 1475 unsigned issue_flags = *locked ? 0 : IO_URING_F_UNLOCKED; 1476 1477 req->cqe.flags |= io_put_kbuf(req, issue_flags); 1478 } 1479 1480 if (*locked) 1481 io_req_complete_defer(req); 1482 else 1483 io_req_complete_post(req); 1484 } 1485 1486 /* 1487 * After the iocb has been issued, it's safe to be found on the poll list. 1488 * Adding the kiocb to the list AFTER submission ensures that we don't 1489 * find it from a io_do_iopoll() thread before the issuer is done 1490 * accessing the kiocb cookie. 1491 */ 1492 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1493 { 1494 struct io_ring_ctx *ctx = req->ctx; 1495 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1496 1497 /* workqueue context doesn't hold uring_lock, grab it now */ 1498 if (unlikely(needs_lock)) 1499 mutex_lock(&ctx->uring_lock); 1500 1501 /* 1502 * Track whether we have multiple files in our lists. This will impact 1503 * how we do polling eventually, not spinning if we're on potentially 1504 * different devices. 1505 */ 1506 if (wq_list_empty(&ctx->iopoll_list)) { 1507 ctx->poll_multi_queue = false; 1508 } else if (!ctx->poll_multi_queue) { 1509 struct io_kiocb *list_req; 1510 1511 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1512 comp_list); 1513 if (list_req->file != req->file) 1514 ctx->poll_multi_queue = true; 1515 } 1516 1517 /* 1518 * For fast devices, IO may have already completed. If it has, add 1519 * it to the front so we find it first. 1520 */ 1521 if (READ_ONCE(req->iopoll_completed)) 1522 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1523 else 1524 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1525 1526 if (unlikely(needs_lock)) { 1527 /* 1528 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1529 * in sq thread task context or in io worker task context. If 1530 * current task context is sq thread, we don't need to check 1531 * whether should wake up sq thread. 1532 */ 1533 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1534 wq_has_sleeper(&ctx->sq_data->wait)) 1535 wake_up(&ctx->sq_data->wait); 1536 1537 mutex_unlock(&ctx->uring_lock); 1538 } 1539 } 1540 1541 static bool io_bdev_nowait(struct block_device *bdev) 1542 { 1543 return !bdev || bdev_nowait(bdev); 1544 } 1545 1546 /* 1547 * If we tracked the file through the SCM inflight mechanism, we could support 1548 * any file. For now, just ensure that anything potentially problematic is done 1549 * inline. 1550 */ 1551 static bool __io_file_supports_nowait(struct file *file, umode_t mode) 1552 { 1553 if (S_ISBLK(mode)) { 1554 if (IS_ENABLED(CONFIG_BLOCK) && 1555 io_bdev_nowait(I_BDEV(file->f_mapping->host))) 1556 return true; 1557 return false; 1558 } 1559 if (S_ISSOCK(mode)) 1560 return true; 1561 if (S_ISREG(mode)) { 1562 if (IS_ENABLED(CONFIG_BLOCK) && 1563 io_bdev_nowait(file->f_inode->i_sb->s_bdev) && 1564 !io_is_uring_fops(file)) 1565 return true; 1566 return false; 1567 } 1568 1569 /* any ->read/write should understand O_NONBLOCK */ 1570 if (file->f_flags & O_NONBLOCK) 1571 return true; 1572 return file->f_mode & FMODE_NOWAIT; 1573 } 1574 1575 /* 1576 * If we tracked the file through the SCM inflight mechanism, we could support 1577 * any file. For now, just ensure that anything potentially problematic is done 1578 * inline. 1579 */ 1580 unsigned int io_file_get_flags(struct file *file) 1581 { 1582 umode_t mode = file_inode(file)->i_mode; 1583 unsigned int res = 0; 1584 1585 if (S_ISREG(mode)) 1586 res |= FFS_ISREG; 1587 if (__io_file_supports_nowait(file, mode)) 1588 res |= FFS_NOWAIT; 1589 return res; 1590 } 1591 1592 bool io_alloc_async_data(struct io_kiocb *req) 1593 { 1594 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size); 1595 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL); 1596 if (req->async_data) { 1597 req->flags |= REQ_F_ASYNC_DATA; 1598 return false; 1599 } 1600 return true; 1601 } 1602 1603 int io_req_prep_async(struct io_kiocb *req) 1604 { 1605 const struct io_op_def *def = &io_op_defs[req->opcode]; 1606 1607 /* assign early for deferred execution for non-fixed file */ 1608 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE)) 1609 req->file = io_file_get_normal(req, req->cqe.fd); 1610 if (!def->prep_async) 1611 return 0; 1612 if (WARN_ON_ONCE(req_has_async_data(req))) 1613 return -EFAULT; 1614 if (!io_op_defs[req->opcode].manual_alloc) { 1615 if (io_alloc_async_data(req)) 1616 return -EAGAIN; 1617 } 1618 return def->prep_async(req); 1619 } 1620 1621 static u32 io_get_sequence(struct io_kiocb *req) 1622 { 1623 u32 seq = req->ctx->cached_sq_head; 1624 struct io_kiocb *cur; 1625 1626 /* need original cached_sq_head, but it was increased for each req */ 1627 io_for_each_link(cur, req) 1628 seq--; 1629 return seq; 1630 } 1631 1632 static __cold void io_drain_req(struct io_kiocb *req) 1633 { 1634 struct io_ring_ctx *ctx = req->ctx; 1635 struct io_defer_entry *de; 1636 int ret; 1637 u32 seq = io_get_sequence(req); 1638 1639 /* Still need defer if there is pending req in defer list. */ 1640 spin_lock(&ctx->completion_lock); 1641 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1642 spin_unlock(&ctx->completion_lock); 1643 queue: 1644 ctx->drain_active = false; 1645 io_req_task_queue(req); 1646 return; 1647 } 1648 spin_unlock(&ctx->completion_lock); 1649 1650 ret = io_req_prep_async(req); 1651 if (ret) { 1652 fail: 1653 io_req_complete_failed(req, ret); 1654 return; 1655 } 1656 io_prep_async_link(req); 1657 de = kmalloc(sizeof(*de), GFP_KERNEL); 1658 if (!de) { 1659 ret = -ENOMEM; 1660 goto fail; 1661 } 1662 1663 spin_lock(&ctx->completion_lock); 1664 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1665 spin_unlock(&ctx->completion_lock); 1666 kfree(de); 1667 goto queue; 1668 } 1669 1670 trace_io_uring_defer(req); 1671 de->req = req; 1672 de->seq = seq; 1673 list_add_tail(&de->list, &ctx->defer_list); 1674 spin_unlock(&ctx->completion_lock); 1675 } 1676 1677 static void io_clean_op(struct io_kiocb *req) 1678 { 1679 if (req->flags & REQ_F_BUFFER_SELECTED) { 1680 spin_lock(&req->ctx->completion_lock); 1681 io_put_kbuf_comp(req); 1682 spin_unlock(&req->ctx->completion_lock); 1683 } 1684 1685 if (req->flags & REQ_F_NEED_CLEANUP) { 1686 const struct io_op_def *def = &io_op_defs[req->opcode]; 1687 1688 if (def->cleanup) 1689 def->cleanup(req); 1690 } 1691 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1692 kfree(req->apoll->double_poll); 1693 kfree(req->apoll); 1694 req->apoll = NULL; 1695 } 1696 if (req->flags & REQ_F_INFLIGHT) { 1697 struct io_uring_task *tctx = req->task->io_uring; 1698 1699 atomic_dec(&tctx->inflight_tracked); 1700 } 1701 if (req->flags & REQ_F_CREDS) 1702 put_cred(req->creds); 1703 if (req->flags & REQ_F_ASYNC_DATA) { 1704 kfree(req->async_data); 1705 req->async_data = NULL; 1706 } 1707 req->flags &= ~IO_REQ_CLEAN_FLAGS; 1708 } 1709 1710 static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags) 1711 { 1712 if (req->file || !io_op_defs[req->opcode].needs_file) 1713 return true; 1714 1715 if (req->flags & REQ_F_FIXED_FILE) 1716 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1717 else 1718 req->file = io_file_get_normal(req, req->cqe.fd); 1719 1720 return !!req->file; 1721 } 1722 1723 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1724 { 1725 const struct io_op_def *def = &io_op_defs[req->opcode]; 1726 const struct cred *creds = NULL; 1727 int ret; 1728 1729 if (unlikely(!io_assign_file(req, issue_flags))) 1730 return -EBADF; 1731 1732 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1733 creds = override_creds(req->creds); 1734 1735 if (!def->audit_skip) 1736 audit_uring_entry(req->opcode); 1737 1738 ret = def->issue(req, issue_flags); 1739 1740 if (!def->audit_skip) 1741 audit_uring_exit(!ret, ret); 1742 1743 if (creds) 1744 revert_creds(creds); 1745 1746 if (ret == IOU_OK) { 1747 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1748 io_req_complete_defer(req); 1749 else 1750 io_req_complete_post(req); 1751 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1752 return ret; 1753 1754 /* If the op doesn't have a file, we're not polling for it */ 1755 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && req->file) 1756 io_iopoll_req_issued(req, issue_flags); 1757 1758 return 0; 1759 } 1760 1761 int io_poll_issue(struct io_kiocb *req, bool *locked) 1762 { 1763 io_tw_lock(req->ctx, locked); 1764 if (unlikely(req->task->flags & PF_EXITING)) 1765 return -EFAULT; 1766 return io_issue_sqe(req, IO_URING_F_NONBLOCK); 1767 } 1768 1769 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1770 { 1771 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1772 1773 req = io_put_req_find_next(req); 1774 return req ? &req->work : NULL; 1775 } 1776 1777 void io_wq_submit_work(struct io_wq_work *work) 1778 { 1779 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1780 const struct io_op_def *def = &io_op_defs[req->opcode]; 1781 unsigned int issue_flags = IO_URING_F_UNLOCKED; 1782 bool needs_poll = false; 1783 int ret = 0, err = -ECANCELED; 1784 1785 /* one will be dropped by ->io_free_work() after returning to io-wq */ 1786 if (!(req->flags & REQ_F_REFCOUNT)) 1787 __io_req_set_refcount(req, 2); 1788 else 1789 req_ref_get(req); 1790 1791 io_arm_ltimeout(req); 1792 1793 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1794 if (work->flags & IO_WQ_WORK_CANCEL) { 1795 fail: 1796 io_req_task_queue_fail(req, err); 1797 return; 1798 } 1799 if (!io_assign_file(req, issue_flags)) { 1800 err = -EBADF; 1801 work->flags |= IO_WQ_WORK_CANCEL; 1802 goto fail; 1803 } 1804 1805 if (req->flags & REQ_F_FORCE_ASYNC) { 1806 bool opcode_poll = def->pollin || def->pollout; 1807 1808 if (opcode_poll && file_can_poll(req->file)) { 1809 needs_poll = true; 1810 issue_flags |= IO_URING_F_NONBLOCK; 1811 } 1812 } 1813 1814 do { 1815 ret = io_issue_sqe(req, issue_flags); 1816 if (ret != -EAGAIN) 1817 break; 1818 /* 1819 * We can get EAGAIN for iopolled IO even though we're 1820 * forcing a sync submission from here, since we can't 1821 * wait for request slots on the block side. 1822 */ 1823 if (!needs_poll) { 1824 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1825 break; 1826 cond_resched(); 1827 continue; 1828 } 1829 1830 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1831 return; 1832 /* aborted or ready, in either case retry blocking */ 1833 needs_poll = false; 1834 issue_flags &= ~IO_URING_F_NONBLOCK; 1835 } while (1); 1836 1837 /* avoid locking problems by failing it from a clean context */ 1838 if (ret < 0) 1839 io_req_task_queue_fail(req, ret); 1840 } 1841 1842 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1843 unsigned int issue_flags) 1844 { 1845 struct io_ring_ctx *ctx = req->ctx; 1846 struct file *file = NULL; 1847 unsigned long file_ptr; 1848 1849 io_ring_submit_lock(ctx, issue_flags); 1850 1851 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 1852 goto out; 1853 fd = array_index_nospec(fd, ctx->nr_user_files); 1854 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr; 1855 file = (struct file *) (file_ptr & FFS_MASK); 1856 file_ptr &= ~FFS_MASK; 1857 /* mask in overlapping REQ_F and FFS bits */ 1858 req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT); 1859 io_req_set_rsrc_node(req, ctx, 0); 1860 out: 1861 io_ring_submit_unlock(ctx, issue_flags); 1862 return file; 1863 } 1864 1865 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1866 { 1867 struct file *file = fget(fd); 1868 1869 trace_io_uring_file_get(req, fd); 1870 1871 /* we don't allow fixed io_uring files */ 1872 if (file && io_is_uring_fops(file)) 1873 io_req_track_inflight(req); 1874 return file; 1875 } 1876 1877 static void io_queue_async(struct io_kiocb *req, int ret) 1878 __must_hold(&req->ctx->uring_lock) 1879 { 1880 struct io_kiocb *linked_timeout; 1881 1882 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1883 io_req_complete_failed(req, ret); 1884 return; 1885 } 1886 1887 linked_timeout = io_prep_linked_timeout(req); 1888 1889 switch (io_arm_poll_handler(req, 0)) { 1890 case IO_APOLL_READY: 1891 io_kbuf_recycle(req, 0); 1892 io_req_task_queue(req); 1893 break; 1894 case IO_APOLL_ABORTED: 1895 io_kbuf_recycle(req, 0); 1896 io_queue_iowq(req, NULL); 1897 break; 1898 case IO_APOLL_OK: 1899 break; 1900 } 1901 1902 if (linked_timeout) 1903 io_queue_linked_timeout(linked_timeout); 1904 } 1905 1906 static inline void io_queue_sqe(struct io_kiocb *req) 1907 __must_hold(&req->ctx->uring_lock) 1908 { 1909 int ret; 1910 1911 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 1912 1913 /* 1914 * We async punt it if the file wasn't marked NOWAIT, or if the file 1915 * doesn't support non-blocking read/write attempts 1916 */ 1917 if (likely(!ret)) 1918 io_arm_ltimeout(req); 1919 else 1920 io_queue_async(req, ret); 1921 } 1922 1923 static void io_queue_sqe_fallback(struct io_kiocb *req) 1924 __must_hold(&req->ctx->uring_lock) 1925 { 1926 if (unlikely(req->flags & REQ_F_FAIL)) { 1927 /* 1928 * We don't submit, fail them all, for that replace hardlinks 1929 * with normal links. Extra REQ_F_LINK is tolerated. 1930 */ 1931 req->flags &= ~REQ_F_HARDLINK; 1932 req->flags |= REQ_F_LINK; 1933 io_req_complete_failed(req, req->cqe.res); 1934 } else if (unlikely(req->ctx->drain_active)) { 1935 io_drain_req(req); 1936 } else { 1937 int ret = io_req_prep_async(req); 1938 1939 if (unlikely(ret)) 1940 io_req_complete_failed(req, ret); 1941 else 1942 io_queue_iowq(req, NULL); 1943 } 1944 } 1945 1946 /* 1947 * Check SQE restrictions (opcode and flags). 1948 * 1949 * Returns 'true' if SQE is allowed, 'false' otherwise. 1950 */ 1951 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 1952 struct io_kiocb *req, 1953 unsigned int sqe_flags) 1954 { 1955 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 1956 return false; 1957 1958 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 1959 ctx->restrictions.sqe_flags_required) 1960 return false; 1961 1962 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 1963 ctx->restrictions.sqe_flags_required)) 1964 return false; 1965 1966 return true; 1967 } 1968 1969 static void io_init_req_drain(struct io_kiocb *req) 1970 { 1971 struct io_ring_ctx *ctx = req->ctx; 1972 struct io_kiocb *head = ctx->submit_state.link.head; 1973 1974 ctx->drain_active = true; 1975 if (head) { 1976 /* 1977 * If we need to drain a request in the middle of a link, drain 1978 * the head request and the next request/link after the current 1979 * link. Considering sequential execution of links, 1980 * REQ_F_IO_DRAIN will be maintained for every request of our 1981 * link. 1982 */ 1983 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 1984 ctx->drain_next = true; 1985 } 1986 } 1987 1988 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 1989 const struct io_uring_sqe *sqe) 1990 __must_hold(&ctx->uring_lock) 1991 { 1992 const struct io_op_def *def; 1993 unsigned int sqe_flags; 1994 int personality; 1995 u8 opcode; 1996 1997 /* req is partially pre-initialised, see io_preinit_req() */ 1998 req->opcode = opcode = READ_ONCE(sqe->opcode); 1999 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2000 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2001 req->cqe.user_data = READ_ONCE(sqe->user_data); 2002 req->file = NULL; 2003 req->rsrc_node = NULL; 2004 req->task = current; 2005 2006 if (unlikely(opcode >= IORING_OP_LAST)) { 2007 req->opcode = 0; 2008 return -EINVAL; 2009 } 2010 def = &io_op_defs[opcode]; 2011 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2012 /* enforce forwards compatibility on users */ 2013 if (sqe_flags & ~SQE_VALID_FLAGS) 2014 return -EINVAL; 2015 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2016 if (!def->buffer_select) 2017 return -EOPNOTSUPP; 2018 req->buf_index = READ_ONCE(sqe->buf_group); 2019 } 2020 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2021 ctx->drain_disabled = true; 2022 if (sqe_flags & IOSQE_IO_DRAIN) { 2023 if (ctx->drain_disabled) 2024 return -EOPNOTSUPP; 2025 io_init_req_drain(req); 2026 } 2027 } 2028 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2029 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2030 return -EACCES; 2031 /* knock it to the slow queue path, will be drained there */ 2032 if (ctx->drain_active) 2033 req->flags |= REQ_F_FORCE_ASYNC; 2034 /* if there is no link, we're at "next" request and need to drain */ 2035 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2036 ctx->drain_next = false; 2037 ctx->drain_active = true; 2038 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2039 } 2040 } 2041 2042 if (!def->ioprio && sqe->ioprio) 2043 return -EINVAL; 2044 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2045 return -EINVAL; 2046 2047 if (def->needs_file) { 2048 struct io_submit_state *state = &ctx->submit_state; 2049 2050 req->cqe.fd = READ_ONCE(sqe->fd); 2051 2052 /* 2053 * Plug now if we have more than 2 IO left after this, and the 2054 * target is potentially a read/write to block based storage. 2055 */ 2056 if (state->need_plug && def->plug) { 2057 state->plug_started = true; 2058 state->need_plug = false; 2059 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2060 } 2061 } 2062 2063 personality = READ_ONCE(sqe->personality); 2064 if (personality) { 2065 int ret; 2066 2067 req->creds = xa_load(&ctx->personalities, personality); 2068 if (!req->creds) 2069 return -EINVAL; 2070 get_cred(req->creds); 2071 ret = security_uring_override_creds(req->creds); 2072 if (ret) { 2073 put_cred(req->creds); 2074 return ret; 2075 } 2076 req->flags |= REQ_F_CREDS; 2077 } 2078 2079 return def->prep(req, sqe); 2080 } 2081 2082 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2083 struct io_kiocb *req, int ret) 2084 { 2085 struct io_ring_ctx *ctx = req->ctx; 2086 struct io_submit_link *link = &ctx->submit_state.link; 2087 struct io_kiocb *head = link->head; 2088 2089 trace_io_uring_req_failed(sqe, req, ret); 2090 2091 /* 2092 * Avoid breaking links in the middle as it renders links with SQPOLL 2093 * unusable. Instead of failing eagerly, continue assembling the link if 2094 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2095 * should find the flag and handle the rest. 2096 */ 2097 req_fail_link_node(req, ret); 2098 if (head && !(head->flags & REQ_F_FAIL)) 2099 req_fail_link_node(head, -ECANCELED); 2100 2101 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2102 if (head) { 2103 link->last->link = req; 2104 link->head = NULL; 2105 req = head; 2106 } 2107 io_queue_sqe_fallback(req); 2108 return ret; 2109 } 2110 2111 if (head) 2112 link->last->link = req; 2113 else 2114 link->head = req; 2115 link->last = req; 2116 return 0; 2117 } 2118 2119 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2120 const struct io_uring_sqe *sqe) 2121 __must_hold(&ctx->uring_lock) 2122 { 2123 struct io_submit_link *link = &ctx->submit_state.link; 2124 int ret; 2125 2126 ret = io_init_req(ctx, req, sqe); 2127 if (unlikely(ret)) 2128 return io_submit_fail_init(sqe, req, ret); 2129 2130 /* don't need @sqe from now on */ 2131 trace_io_uring_submit_sqe(req, true); 2132 2133 /* 2134 * If we already have a head request, queue this one for async 2135 * submittal once the head completes. If we don't have a head but 2136 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2137 * submitted sync once the chain is complete. If none of those 2138 * conditions are true (normal request), then just queue it. 2139 */ 2140 if (unlikely(link->head)) { 2141 ret = io_req_prep_async(req); 2142 if (unlikely(ret)) 2143 return io_submit_fail_init(sqe, req, ret); 2144 2145 trace_io_uring_link(req, link->head); 2146 link->last->link = req; 2147 link->last = req; 2148 2149 if (req->flags & IO_REQ_LINK_FLAGS) 2150 return 0; 2151 /* last request of the link, flush it */ 2152 req = link->head; 2153 link->head = NULL; 2154 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2155 goto fallback; 2156 2157 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2158 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2159 if (req->flags & IO_REQ_LINK_FLAGS) { 2160 link->head = req; 2161 link->last = req; 2162 } else { 2163 fallback: 2164 io_queue_sqe_fallback(req); 2165 } 2166 return 0; 2167 } 2168 2169 io_queue_sqe(req); 2170 return 0; 2171 } 2172 2173 /* 2174 * Batched submission is done, ensure local IO is flushed out. 2175 */ 2176 static void io_submit_state_end(struct io_ring_ctx *ctx) 2177 { 2178 struct io_submit_state *state = &ctx->submit_state; 2179 2180 if (unlikely(state->link.head)) 2181 io_queue_sqe_fallback(state->link.head); 2182 /* flush only after queuing links as they can generate completions */ 2183 io_submit_flush_completions(ctx); 2184 if (state->plug_started) 2185 blk_finish_plug(&state->plug); 2186 } 2187 2188 /* 2189 * Start submission side cache. 2190 */ 2191 static void io_submit_state_start(struct io_submit_state *state, 2192 unsigned int max_ios) 2193 { 2194 state->plug_started = false; 2195 state->need_plug = max_ios > 2; 2196 state->submit_nr = max_ios; 2197 /* set only head, no need to init link_last in advance */ 2198 state->link.head = NULL; 2199 } 2200 2201 static void io_commit_sqring(struct io_ring_ctx *ctx) 2202 { 2203 struct io_rings *rings = ctx->rings; 2204 2205 /* 2206 * Ensure any loads from the SQEs are done at this point, 2207 * since once we write the new head, the application could 2208 * write new data to them. 2209 */ 2210 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2211 } 2212 2213 /* 2214 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2215 * that is mapped by userspace. This means that care needs to be taken to 2216 * ensure that reads are stable, as we cannot rely on userspace always 2217 * being a good citizen. If members of the sqe are validated and then later 2218 * used, it's important that those reads are done through READ_ONCE() to 2219 * prevent a re-load down the line. 2220 */ 2221 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx) 2222 { 2223 unsigned head, mask = ctx->sq_entries - 1; 2224 unsigned sq_idx = ctx->cached_sq_head++ & mask; 2225 2226 /* 2227 * The cached sq head (or cq tail) serves two purposes: 2228 * 2229 * 1) allows us to batch the cost of updating the user visible 2230 * head updates. 2231 * 2) allows the kernel side to track the head on its own, even 2232 * though the application is the one updating it. 2233 */ 2234 head = READ_ONCE(ctx->sq_array[sq_idx]); 2235 if (likely(head < ctx->sq_entries)) { 2236 /* double index for 128-byte SQEs, twice as long */ 2237 if (ctx->flags & IORING_SETUP_SQE128) 2238 head <<= 1; 2239 return &ctx->sq_sqes[head]; 2240 } 2241 2242 /* drop invalid entries */ 2243 ctx->cq_extra--; 2244 WRITE_ONCE(ctx->rings->sq_dropped, 2245 READ_ONCE(ctx->rings->sq_dropped) + 1); 2246 return NULL; 2247 } 2248 2249 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2250 __must_hold(&ctx->uring_lock) 2251 { 2252 unsigned int entries = io_sqring_entries(ctx); 2253 unsigned int left; 2254 int ret; 2255 2256 if (unlikely(!entries)) 2257 return 0; 2258 /* make sure SQ entry isn't read before tail */ 2259 ret = left = min3(nr, ctx->sq_entries, entries); 2260 io_get_task_refs(left); 2261 io_submit_state_start(&ctx->submit_state, left); 2262 2263 do { 2264 const struct io_uring_sqe *sqe; 2265 struct io_kiocb *req; 2266 2267 if (unlikely(!io_alloc_req_refill(ctx))) 2268 break; 2269 req = io_alloc_req(ctx); 2270 sqe = io_get_sqe(ctx); 2271 if (unlikely(!sqe)) { 2272 io_req_add_to_cache(req, ctx); 2273 break; 2274 } 2275 2276 /* 2277 * Continue submitting even for sqe failure if the 2278 * ring was setup with IORING_SETUP_SUBMIT_ALL 2279 */ 2280 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2281 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2282 left--; 2283 break; 2284 } 2285 } while (--left); 2286 2287 if (unlikely(left)) { 2288 ret -= left; 2289 /* try again if it submitted nothing and can't allocate a req */ 2290 if (!ret && io_req_cache_empty(ctx)) 2291 ret = -EAGAIN; 2292 current->io_uring->cached_refs += left; 2293 } 2294 2295 io_submit_state_end(ctx); 2296 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2297 io_commit_sqring(ctx); 2298 return ret; 2299 } 2300 2301 struct io_wait_queue { 2302 struct wait_queue_entry wq; 2303 struct io_ring_ctx *ctx; 2304 unsigned cq_tail; 2305 unsigned nr_timeouts; 2306 }; 2307 2308 static inline bool io_has_work(struct io_ring_ctx *ctx) 2309 { 2310 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2311 ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 2312 !llist_empty(&ctx->work_llist)); 2313 } 2314 2315 static inline bool io_should_wake(struct io_wait_queue *iowq) 2316 { 2317 struct io_ring_ctx *ctx = iowq->ctx; 2318 int dist = ctx->cached_cq_tail - (int) iowq->cq_tail; 2319 2320 /* 2321 * Wake up if we have enough events, or if a timeout occurred since we 2322 * started waiting. For timeouts, we always want to return to userspace, 2323 * regardless of event count. 2324 */ 2325 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2326 } 2327 2328 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2329 int wake_flags, void *key) 2330 { 2331 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, 2332 wq); 2333 struct io_ring_ctx *ctx = iowq->ctx; 2334 2335 /* 2336 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2337 * the task, and the next invocation will do it. 2338 */ 2339 if (io_should_wake(iowq) || io_has_work(ctx)) 2340 return autoremove_wake_function(curr, mode, wake_flags, key); 2341 return -1; 2342 } 2343 2344 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2345 { 2346 if (io_run_task_work_ctx(ctx) > 0) 2347 return 1; 2348 if (task_sigpending(current)) 2349 return -EINTR; 2350 return 0; 2351 } 2352 2353 /* when returns >0, the caller should retry */ 2354 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2355 struct io_wait_queue *iowq, 2356 ktime_t timeout) 2357 { 2358 int ret; 2359 unsigned long check_cq; 2360 2361 /* make sure we run task_work before checking for signals */ 2362 ret = io_run_task_work_sig(ctx); 2363 if (ret || io_should_wake(iowq)) 2364 return ret; 2365 2366 check_cq = READ_ONCE(ctx->check_cq); 2367 if (unlikely(check_cq)) { 2368 /* let the caller flush overflows, retry */ 2369 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2370 return 1; 2371 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 2372 return -EBADR; 2373 } 2374 if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS)) 2375 return -ETIME; 2376 return 1; 2377 } 2378 2379 /* 2380 * Wait until events become available, if we don't already have some. The 2381 * application must reap them itself, as they reside on the shared cq ring. 2382 */ 2383 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2384 const sigset_t __user *sig, size_t sigsz, 2385 struct __kernel_timespec __user *uts) 2386 { 2387 struct io_wait_queue iowq; 2388 struct io_rings *rings = ctx->rings; 2389 ktime_t timeout = KTIME_MAX; 2390 int ret; 2391 2392 if (!io_allowed_run_tw(ctx)) 2393 return -EEXIST; 2394 2395 do { 2396 /* always run at least 1 task work to process local work */ 2397 ret = io_run_task_work_ctx(ctx); 2398 if (ret < 0) 2399 return ret; 2400 io_cqring_overflow_flush(ctx); 2401 2402 if (io_cqring_events(ctx) >= min_events) 2403 return 0; 2404 } while (ret > 0); 2405 2406 if (sig) { 2407 #ifdef CONFIG_COMPAT 2408 if (in_compat_syscall()) 2409 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2410 sigsz); 2411 else 2412 #endif 2413 ret = set_user_sigmask(sig, sigsz); 2414 2415 if (ret) 2416 return ret; 2417 } 2418 2419 if (uts) { 2420 struct timespec64 ts; 2421 2422 if (get_timespec64(&ts, uts)) 2423 return -EFAULT; 2424 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2425 } 2426 2427 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2428 iowq.wq.private = current; 2429 INIT_LIST_HEAD(&iowq.wq.entry); 2430 iowq.ctx = ctx; 2431 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2432 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2433 2434 trace_io_uring_cqring_wait(ctx, min_events); 2435 do { 2436 /* if we can't even flush overflow, don't wait for more */ 2437 if (!io_cqring_overflow_flush(ctx)) { 2438 ret = -EBUSY; 2439 break; 2440 } 2441 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2442 TASK_INTERRUPTIBLE); 2443 ret = io_cqring_wait_schedule(ctx, &iowq, timeout); 2444 cond_resched(); 2445 } while (ret > 0); 2446 2447 finish_wait(&ctx->cq_wait, &iowq.wq); 2448 restore_saved_sigmask_unless(ret == -EINTR); 2449 2450 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2451 } 2452 2453 static void io_mem_free(void *ptr) 2454 { 2455 struct page *page; 2456 2457 if (!ptr) 2458 return; 2459 2460 page = virt_to_head_page(ptr); 2461 if (put_page_testzero(page)) 2462 free_compound_page(page); 2463 } 2464 2465 static void *io_mem_alloc(size_t size) 2466 { 2467 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2468 2469 return (void *) __get_free_pages(gfp, get_order(size)); 2470 } 2471 2472 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2473 unsigned int cq_entries, size_t *sq_offset) 2474 { 2475 struct io_rings *rings; 2476 size_t off, sq_array_size; 2477 2478 off = struct_size(rings, cqes, cq_entries); 2479 if (off == SIZE_MAX) 2480 return SIZE_MAX; 2481 if (ctx->flags & IORING_SETUP_CQE32) { 2482 if (check_shl_overflow(off, 1, &off)) 2483 return SIZE_MAX; 2484 } 2485 2486 #ifdef CONFIG_SMP 2487 off = ALIGN(off, SMP_CACHE_BYTES); 2488 if (off == 0) 2489 return SIZE_MAX; 2490 #endif 2491 2492 if (sq_offset) 2493 *sq_offset = off; 2494 2495 sq_array_size = array_size(sizeof(u32), sq_entries); 2496 if (sq_array_size == SIZE_MAX) 2497 return SIZE_MAX; 2498 2499 if (check_add_overflow(off, sq_array_size, &off)) 2500 return SIZE_MAX; 2501 2502 return off; 2503 } 2504 2505 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2506 unsigned int eventfd_async) 2507 { 2508 struct io_ev_fd *ev_fd; 2509 __s32 __user *fds = arg; 2510 int fd; 2511 2512 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2513 lockdep_is_held(&ctx->uring_lock)); 2514 if (ev_fd) 2515 return -EBUSY; 2516 2517 if (copy_from_user(&fd, fds, sizeof(*fds))) 2518 return -EFAULT; 2519 2520 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2521 if (!ev_fd) 2522 return -ENOMEM; 2523 2524 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2525 if (IS_ERR(ev_fd->cq_ev_fd)) { 2526 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2527 kfree(ev_fd); 2528 return ret; 2529 } 2530 2531 spin_lock(&ctx->completion_lock); 2532 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2533 spin_unlock(&ctx->completion_lock); 2534 2535 ev_fd->eventfd_async = eventfd_async; 2536 ctx->has_evfd = true; 2537 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2538 atomic_set(&ev_fd->refs, 1); 2539 atomic_set(&ev_fd->ops, 0); 2540 return 0; 2541 } 2542 2543 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2544 { 2545 struct io_ev_fd *ev_fd; 2546 2547 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2548 lockdep_is_held(&ctx->uring_lock)); 2549 if (ev_fd) { 2550 ctx->has_evfd = false; 2551 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2552 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2553 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2554 return 0; 2555 } 2556 2557 return -ENXIO; 2558 } 2559 2560 static void io_req_caches_free(struct io_ring_ctx *ctx) 2561 { 2562 int nr = 0; 2563 2564 mutex_lock(&ctx->uring_lock); 2565 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2566 2567 while (!io_req_cache_empty(ctx)) { 2568 struct io_kiocb *req = io_alloc_req(ctx); 2569 2570 kmem_cache_free(req_cachep, req); 2571 nr++; 2572 } 2573 if (nr) 2574 percpu_ref_put_many(&ctx->refs, nr); 2575 mutex_unlock(&ctx->uring_lock); 2576 } 2577 2578 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2579 { 2580 io_sq_thread_finish(ctx); 2581 io_rsrc_refs_drop(ctx); 2582 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2583 io_wait_rsrc_data(ctx->buf_data); 2584 io_wait_rsrc_data(ctx->file_data); 2585 2586 mutex_lock(&ctx->uring_lock); 2587 if (ctx->buf_data) 2588 __io_sqe_buffers_unregister(ctx); 2589 if (ctx->file_data) 2590 __io_sqe_files_unregister(ctx); 2591 if (ctx->rings) 2592 __io_cqring_overflow_flush(ctx, true); 2593 io_eventfd_unregister(ctx); 2594 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2595 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2596 mutex_unlock(&ctx->uring_lock); 2597 io_destroy_buffers(ctx); 2598 if (ctx->sq_creds) 2599 put_cred(ctx->sq_creds); 2600 if (ctx->submitter_task) 2601 put_task_struct(ctx->submitter_task); 2602 2603 /* there are no registered resources left, nobody uses it */ 2604 if (ctx->rsrc_node) 2605 io_rsrc_node_destroy(ctx->rsrc_node); 2606 if (ctx->rsrc_backup_node) 2607 io_rsrc_node_destroy(ctx->rsrc_backup_node); 2608 flush_delayed_work(&ctx->rsrc_put_work); 2609 flush_delayed_work(&ctx->fallback_work); 2610 2611 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2612 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist)); 2613 2614 #if defined(CONFIG_UNIX) 2615 if (ctx->ring_sock) { 2616 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2617 sock_release(ctx->ring_sock); 2618 } 2619 #endif 2620 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2621 2622 if (ctx->mm_account) { 2623 mmdrop(ctx->mm_account); 2624 ctx->mm_account = NULL; 2625 } 2626 io_mem_free(ctx->rings); 2627 io_mem_free(ctx->sq_sqes); 2628 2629 percpu_ref_exit(&ctx->refs); 2630 free_uid(ctx->user); 2631 io_req_caches_free(ctx); 2632 if (ctx->hash_map) 2633 io_wq_put_hash(ctx->hash_map); 2634 kfree(ctx->cancel_table.hbs); 2635 kfree(ctx->cancel_table_locked.hbs); 2636 kfree(ctx->dummy_ubuf); 2637 kfree(ctx->io_bl); 2638 xa_destroy(&ctx->io_bl_xa); 2639 kfree(ctx); 2640 } 2641 2642 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2643 { 2644 struct io_ring_ctx *ctx = file->private_data; 2645 __poll_t mask = 0; 2646 2647 poll_wait(file, &ctx->cq_wait, wait); 2648 /* 2649 * synchronizes with barrier from wq_has_sleeper call in 2650 * io_commit_cqring 2651 */ 2652 smp_rmb(); 2653 if (!io_sqring_full(ctx)) 2654 mask |= EPOLLOUT | EPOLLWRNORM; 2655 2656 /* 2657 * Don't flush cqring overflow list here, just do a simple check. 2658 * Otherwise there could possible be ABBA deadlock: 2659 * CPU0 CPU1 2660 * ---- ---- 2661 * lock(&ctx->uring_lock); 2662 * lock(&ep->mtx); 2663 * lock(&ctx->uring_lock); 2664 * lock(&ep->mtx); 2665 * 2666 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2667 * pushs them to do the flush. 2668 */ 2669 2670 if (io_cqring_events(ctx) || io_has_work(ctx)) 2671 mask |= EPOLLIN | EPOLLRDNORM; 2672 2673 return mask; 2674 } 2675 2676 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 2677 { 2678 const struct cred *creds; 2679 2680 creds = xa_erase(&ctx->personalities, id); 2681 if (creds) { 2682 put_cred(creds); 2683 return 0; 2684 } 2685 2686 return -EINVAL; 2687 } 2688 2689 struct io_tctx_exit { 2690 struct callback_head task_work; 2691 struct completion completion; 2692 struct io_ring_ctx *ctx; 2693 }; 2694 2695 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2696 { 2697 struct io_uring_task *tctx = current->io_uring; 2698 struct io_tctx_exit *work; 2699 2700 work = container_of(cb, struct io_tctx_exit, task_work); 2701 /* 2702 * When @in_idle, we're in cancellation and it's racy to remove the 2703 * node. It'll be removed by the end of cancellation, just ignore it. 2704 */ 2705 if (!atomic_read(&tctx->in_idle)) 2706 io_uring_del_tctx_node((unsigned long)work->ctx); 2707 complete(&work->completion); 2708 } 2709 2710 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2711 { 2712 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2713 2714 return req->ctx == data; 2715 } 2716 2717 static __cold void io_ring_exit_work(struct work_struct *work) 2718 { 2719 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2720 unsigned long timeout = jiffies + HZ * 60 * 5; 2721 unsigned long interval = HZ / 20; 2722 struct io_tctx_exit exit; 2723 struct io_tctx_node *node; 2724 int ret; 2725 2726 /* 2727 * If we're doing polled IO and end up having requests being 2728 * submitted async (out-of-line), then completions can come in while 2729 * we're waiting for refs to drop. We need to reap these manually, 2730 * as nobody else will be looking for them. 2731 */ 2732 do { 2733 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2734 io_move_task_work_from_local(ctx); 2735 2736 while (io_uring_try_cancel_requests(ctx, NULL, true)) 2737 cond_resched(); 2738 2739 if (ctx->sq_data) { 2740 struct io_sq_data *sqd = ctx->sq_data; 2741 struct task_struct *tsk; 2742 2743 io_sq_thread_park(sqd); 2744 tsk = sqd->thread; 2745 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2746 io_wq_cancel_cb(tsk->io_uring->io_wq, 2747 io_cancel_ctx_cb, ctx, true); 2748 io_sq_thread_unpark(sqd); 2749 } 2750 2751 io_req_caches_free(ctx); 2752 2753 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2754 /* there is little hope left, don't run it too often */ 2755 interval = HZ * 60; 2756 } 2757 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval)); 2758 2759 init_completion(&exit.completion); 2760 init_task_work(&exit.task_work, io_tctx_exit_cb); 2761 exit.ctx = ctx; 2762 /* 2763 * Some may use context even when all refs and requests have been put, 2764 * and they are free to do so while still holding uring_lock or 2765 * completion_lock, see io_req_task_submit(). Apart from other work, 2766 * this lock/unlock section also waits them to finish. 2767 */ 2768 mutex_lock(&ctx->uring_lock); 2769 while (!list_empty(&ctx->tctx_list)) { 2770 WARN_ON_ONCE(time_after(jiffies, timeout)); 2771 2772 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 2773 ctx_node); 2774 /* don't spin on a single task if cancellation failed */ 2775 list_rotate_left(&ctx->tctx_list); 2776 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 2777 if (WARN_ON_ONCE(ret)) 2778 continue; 2779 2780 mutex_unlock(&ctx->uring_lock); 2781 wait_for_completion(&exit.completion); 2782 mutex_lock(&ctx->uring_lock); 2783 } 2784 mutex_unlock(&ctx->uring_lock); 2785 spin_lock(&ctx->completion_lock); 2786 spin_unlock(&ctx->completion_lock); 2787 2788 io_ring_ctx_free(ctx); 2789 } 2790 2791 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 2792 { 2793 unsigned long index; 2794 struct creds *creds; 2795 2796 mutex_lock(&ctx->uring_lock); 2797 percpu_ref_kill(&ctx->refs); 2798 if (ctx->rings) 2799 __io_cqring_overflow_flush(ctx, true); 2800 xa_for_each(&ctx->personalities, index, creds) 2801 io_unregister_personality(ctx, index); 2802 if (ctx->rings) 2803 io_poll_remove_all(ctx, NULL, true); 2804 mutex_unlock(&ctx->uring_lock); 2805 2806 /* 2807 * If we failed setting up the ctx, we might not have any rings 2808 * and therefore did not submit any requests 2809 */ 2810 if (ctx->rings) 2811 io_kill_timeouts(ctx, NULL, true); 2812 2813 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 2814 /* 2815 * Use system_unbound_wq to avoid spawning tons of event kworkers 2816 * if we're exiting a ton of rings at the same time. It just adds 2817 * noise and overhead, there's no discernable change in runtime 2818 * over using system_wq. 2819 */ 2820 queue_work(system_unbound_wq, &ctx->exit_work); 2821 } 2822 2823 static int io_uring_release(struct inode *inode, struct file *file) 2824 { 2825 struct io_ring_ctx *ctx = file->private_data; 2826 2827 file->private_data = NULL; 2828 io_ring_ctx_wait_and_kill(ctx); 2829 return 0; 2830 } 2831 2832 struct io_task_cancel { 2833 struct task_struct *task; 2834 bool all; 2835 }; 2836 2837 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 2838 { 2839 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2840 struct io_task_cancel *cancel = data; 2841 2842 return io_match_task_safe(req, cancel->task, cancel->all); 2843 } 2844 2845 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 2846 struct task_struct *task, 2847 bool cancel_all) 2848 { 2849 struct io_defer_entry *de; 2850 LIST_HEAD(list); 2851 2852 spin_lock(&ctx->completion_lock); 2853 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 2854 if (io_match_task_safe(de->req, task, cancel_all)) { 2855 list_cut_position(&list, &ctx->defer_list, &de->list); 2856 break; 2857 } 2858 } 2859 spin_unlock(&ctx->completion_lock); 2860 if (list_empty(&list)) 2861 return false; 2862 2863 while (!list_empty(&list)) { 2864 de = list_first_entry(&list, struct io_defer_entry, list); 2865 list_del_init(&de->list); 2866 io_req_complete_failed(de->req, -ECANCELED); 2867 kfree(de); 2868 } 2869 return true; 2870 } 2871 2872 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 2873 { 2874 struct io_tctx_node *node; 2875 enum io_wq_cancel cret; 2876 bool ret = false; 2877 2878 mutex_lock(&ctx->uring_lock); 2879 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 2880 struct io_uring_task *tctx = node->task->io_uring; 2881 2882 /* 2883 * io_wq will stay alive while we hold uring_lock, because it's 2884 * killed after ctx nodes, which requires to take the lock. 2885 */ 2886 if (!tctx || !tctx->io_wq) 2887 continue; 2888 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 2889 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 2890 } 2891 mutex_unlock(&ctx->uring_lock); 2892 2893 return ret; 2894 } 2895 2896 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 2897 struct task_struct *task, 2898 bool cancel_all) 2899 { 2900 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 2901 struct io_uring_task *tctx = task ? task->io_uring : NULL; 2902 enum io_wq_cancel cret; 2903 bool ret = false; 2904 2905 /* failed during ring init, it couldn't have issued any requests */ 2906 if (!ctx->rings) 2907 return false; 2908 2909 if (!task) { 2910 ret |= io_uring_try_cancel_iowq(ctx); 2911 } else if (tctx && tctx->io_wq) { 2912 /* 2913 * Cancels requests of all rings, not only @ctx, but 2914 * it's fine as the task is in exit/exec. 2915 */ 2916 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 2917 &cancel, true); 2918 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 2919 } 2920 2921 /* SQPOLL thread does its own polling */ 2922 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 2923 (ctx->sq_data && ctx->sq_data->thread == current)) { 2924 while (!wq_list_empty(&ctx->iopoll_list)) { 2925 io_iopoll_try_reap_events(ctx); 2926 ret = true; 2927 } 2928 } 2929 2930 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2931 ret |= io_run_local_work(ctx) > 0; 2932 ret |= io_cancel_defer_files(ctx, task, cancel_all); 2933 mutex_lock(&ctx->uring_lock); 2934 ret |= io_poll_remove_all(ctx, task, cancel_all); 2935 mutex_unlock(&ctx->uring_lock); 2936 ret |= io_kill_timeouts(ctx, task, cancel_all); 2937 if (task) 2938 ret |= io_run_task_work() > 0; 2939 return ret; 2940 } 2941 2942 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 2943 { 2944 if (tracked) 2945 return atomic_read(&tctx->inflight_tracked); 2946 return percpu_counter_sum(&tctx->inflight); 2947 } 2948 2949 /* 2950 * Find any io_uring ctx that this task has registered or done IO on, and cancel 2951 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 2952 */ 2953 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 2954 { 2955 struct io_uring_task *tctx = current->io_uring; 2956 struct io_ring_ctx *ctx; 2957 s64 inflight; 2958 DEFINE_WAIT(wait); 2959 2960 WARN_ON_ONCE(sqd && sqd->thread != current); 2961 2962 if (!current->io_uring) 2963 return; 2964 if (tctx->io_wq) 2965 io_wq_exit_start(tctx->io_wq); 2966 2967 atomic_inc(&tctx->in_idle); 2968 do { 2969 bool loop = false; 2970 2971 io_uring_drop_tctx_refs(current); 2972 /* read completions before cancelations */ 2973 inflight = tctx_inflight(tctx, !cancel_all); 2974 if (!inflight) 2975 break; 2976 2977 if (!sqd) { 2978 struct io_tctx_node *node; 2979 unsigned long index; 2980 2981 xa_for_each(&tctx->xa, index, node) { 2982 /* sqpoll task will cancel all its requests */ 2983 if (node->ctx->sq_data) 2984 continue; 2985 loop |= io_uring_try_cancel_requests(node->ctx, 2986 current, cancel_all); 2987 } 2988 } else { 2989 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 2990 loop |= io_uring_try_cancel_requests(ctx, 2991 current, 2992 cancel_all); 2993 } 2994 2995 if (loop) { 2996 cond_resched(); 2997 continue; 2998 } 2999 3000 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3001 io_run_task_work(); 3002 io_uring_drop_tctx_refs(current); 3003 3004 /* 3005 * If we've seen completions, retry without waiting. This 3006 * avoids a race where a completion comes in before we did 3007 * prepare_to_wait(). 3008 */ 3009 if (inflight == tctx_inflight(tctx, !cancel_all)) 3010 schedule(); 3011 finish_wait(&tctx->wait, &wait); 3012 } while (1); 3013 3014 io_uring_clean_tctx(tctx); 3015 if (cancel_all) { 3016 /* 3017 * We shouldn't run task_works after cancel, so just leave 3018 * ->in_idle set for normal exit. 3019 */ 3020 atomic_dec(&tctx->in_idle); 3021 /* for exec all current's requests should be gone, kill tctx */ 3022 __io_uring_free(current); 3023 } 3024 } 3025 3026 void __io_uring_cancel(bool cancel_all) 3027 { 3028 io_uring_cancel_generic(cancel_all, NULL); 3029 } 3030 3031 static void *io_uring_validate_mmap_request(struct file *file, 3032 loff_t pgoff, size_t sz) 3033 { 3034 struct io_ring_ctx *ctx = file->private_data; 3035 loff_t offset = pgoff << PAGE_SHIFT; 3036 struct page *page; 3037 void *ptr; 3038 3039 switch (offset) { 3040 case IORING_OFF_SQ_RING: 3041 case IORING_OFF_CQ_RING: 3042 ptr = ctx->rings; 3043 break; 3044 case IORING_OFF_SQES: 3045 ptr = ctx->sq_sqes; 3046 break; 3047 default: 3048 return ERR_PTR(-EINVAL); 3049 } 3050 3051 page = virt_to_head_page(ptr); 3052 if (sz > page_size(page)) 3053 return ERR_PTR(-EINVAL); 3054 3055 return ptr; 3056 } 3057 3058 #ifdef CONFIG_MMU 3059 3060 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3061 { 3062 size_t sz = vma->vm_end - vma->vm_start; 3063 unsigned long pfn; 3064 void *ptr; 3065 3066 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3067 if (IS_ERR(ptr)) 3068 return PTR_ERR(ptr); 3069 3070 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3071 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3072 } 3073 3074 #else /* !CONFIG_MMU */ 3075 3076 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3077 { 3078 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL; 3079 } 3080 3081 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3082 { 3083 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3084 } 3085 3086 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3087 unsigned long addr, unsigned long len, 3088 unsigned long pgoff, unsigned long flags) 3089 { 3090 void *ptr; 3091 3092 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3093 if (IS_ERR(ptr)) 3094 return PTR_ERR(ptr); 3095 3096 return (unsigned long) ptr; 3097 } 3098 3099 #endif /* !CONFIG_MMU */ 3100 3101 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3102 { 3103 if (flags & IORING_ENTER_EXT_ARG) { 3104 struct io_uring_getevents_arg arg; 3105 3106 if (argsz != sizeof(arg)) 3107 return -EINVAL; 3108 if (copy_from_user(&arg, argp, sizeof(arg))) 3109 return -EFAULT; 3110 } 3111 return 0; 3112 } 3113 3114 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3115 struct __kernel_timespec __user **ts, 3116 const sigset_t __user **sig) 3117 { 3118 struct io_uring_getevents_arg arg; 3119 3120 /* 3121 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3122 * is just a pointer to the sigset_t. 3123 */ 3124 if (!(flags & IORING_ENTER_EXT_ARG)) { 3125 *sig = (const sigset_t __user *) argp; 3126 *ts = NULL; 3127 return 0; 3128 } 3129 3130 /* 3131 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3132 * timespec and sigset_t pointers if good. 3133 */ 3134 if (*argsz != sizeof(arg)) 3135 return -EINVAL; 3136 if (copy_from_user(&arg, argp, sizeof(arg))) 3137 return -EFAULT; 3138 if (arg.pad) 3139 return -EINVAL; 3140 *sig = u64_to_user_ptr(arg.sigmask); 3141 *argsz = arg.sigmask_sz; 3142 *ts = u64_to_user_ptr(arg.ts); 3143 return 0; 3144 } 3145 3146 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3147 u32, min_complete, u32, flags, const void __user *, argp, 3148 size_t, argsz) 3149 { 3150 struct io_ring_ctx *ctx; 3151 struct fd f; 3152 long ret; 3153 3154 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3155 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3156 IORING_ENTER_REGISTERED_RING))) 3157 return -EINVAL; 3158 3159 /* 3160 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3161 * need only dereference our task private array to find it. 3162 */ 3163 if (flags & IORING_ENTER_REGISTERED_RING) { 3164 struct io_uring_task *tctx = current->io_uring; 3165 3166 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3167 return -EINVAL; 3168 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3169 f.file = tctx->registered_rings[fd]; 3170 f.flags = 0; 3171 if (unlikely(!f.file)) 3172 return -EBADF; 3173 } else { 3174 f = fdget(fd); 3175 if (unlikely(!f.file)) 3176 return -EBADF; 3177 ret = -EOPNOTSUPP; 3178 if (unlikely(!io_is_uring_fops(f.file))) 3179 goto out; 3180 } 3181 3182 ctx = f.file->private_data; 3183 ret = -EBADFD; 3184 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3185 goto out; 3186 3187 /* 3188 * For SQ polling, the thread will do all submissions and completions. 3189 * Just return the requested submit count, and wake the thread if 3190 * we were asked to. 3191 */ 3192 ret = 0; 3193 if (ctx->flags & IORING_SETUP_SQPOLL) { 3194 io_cqring_overflow_flush(ctx); 3195 3196 if (unlikely(ctx->sq_data->thread == NULL)) { 3197 ret = -EOWNERDEAD; 3198 goto out; 3199 } 3200 if (flags & IORING_ENTER_SQ_WAKEUP) 3201 wake_up(&ctx->sq_data->wait); 3202 if (flags & IORING_ENTER_SQ_WAIT) { 3203 ret = io_sqpoll_wait_sq(ctx); 3204 if (ret) 3205 goto out; 3206 } 3207 ret = to_submit; 3208 } else if (to_submit) { 3209 ret = io_uring_add_tctx_node(ctx); 3210 if (unlikely(ret)) 3211 goto out; 3212 3213 mutex_lock(&ctx->uring_lock); 3214 ret = io_submit_sqes(ctx, to_submit); 3215 if (ret != to_submit) { 3216 mutex_unlock(&ctx->uring_lock); 3217 goto out; 3218 } 3219 if (flags & IORING_ENTER_GETEVENTS) { 3220 if (ctx->syscall_iopoll) 3221 goto iopoll_locked; 3222 /* 3223 * Ignore errors, we'll soon call io_cqring_wait() and 3224 * it should handle ownership problems if any. 3225 */ 3226 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3227 (void)io_run_local_work_locked(ctx); 3228 } 3229 mutex_unlock(&ctx->uring_lock); 3230 } 3231 3232 if (flags & IORING_ENTER_GETEVENTS) { 3233 int ret2; 3234 3235 if (ctx->syscall_iopoll) { 3236 /* 3237 * We disallow the app entering submit/complete with 3238 * polling, but we still need to lock the ring to 3239 * prevent racing with polled issue that got punted to 3240 * a workqueue. 3241 */ 3242 mutex_lock(&ctx->uring_lock); 3243 iopoll_locked: 3244 ret2 = io_validate_ext_arg(flags, argp, argsz); 3245 if (likely(!ret2)) { 3246 min_complete = min(min_complete, 3247 ctx->cq_entries); 3248 ret2 = io_iopoll_check(ctx, min_complete); 3249 } 3250 mutex_unlock(&ctx->uring_lock); 3251 } else { 3252 const sigset_t __user *sig; 3253 struct __kernel_timespec __user *ts; 3254 3255 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3256 if (likely(!ret2)) { 3257 min_complete = min(min_complete, 3258 ctx->cq_entries); 3259 ret2 = io_cqring_wait(ctx, min_complete, sig, 3260 argsz, ts); 3261 } 3262 } 3263 3264 if (!ret) { 3265 ret = ret2; 3266 3267 /* 3268 * EBADR indicates that one or more CQE were dropped. 3269 * Once the user has been informed we can clear the bit 3270 * as they are obviously ok with those drops. 3271 */ 3272 if (unlikely(ret2 == -EBADR)) 3273 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3274 &ctx->check_cq); 3275 } 3276 } 3277 out: 3278 fdput(f); 3279 return ret; 3280 } 3281 3282 static const struct file_operations io_uring_fops = { 3283 .release = io_uring_release, 3284 .mmap = io_uring_mmap, 3285 #ifndef CONFIG_MMU 3286 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3287 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3288 #endif 3289 .poll = io_uring_poll, 3290 #ifdef CONFIG_PROC_FS 3291 .show_fdinfo = io_uring_show_fdinfo, 3292 #endif 3293 }; 3294 3295 bool io_is_uring_fops(struct file *file) 3296 { 3297 return file->f_op == &io_uring_fops; 3298 } 3299 3300 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3301 struct io_uring_params *p) 3302 { 3303 struct io_rings *rings; 3304 size_t size, sq_array_offset; 3305 3306 /* make sure these are sane, as we already accounted them */ 3307 ctx->sq_entries = p->sq_entries; 3308 ctx->cq_entries = p->cq_entries; 3309 3310 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3311 if (size == SIZE_MAX) 3312 return -EOVERFLOW; 3313 3314 rings = io_mem_alloc(size); 3315 if (!rings) 3316 return -ENOMEM; 3317 3318 ctx->rings = rings; 3319 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3320 rings->sq_ring_mask = p->sq_entries - 1; 3321 rings->cq_ring_mask = p->cq_entries - 1; 3322 rings->sq_ring_entries = p->sq_entries; 3323 rings->cq_ring_entries = p->cq_entries; 3324 3325 if (p->flags & IORING_SETUP_SQE128) 3326 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3327 else 3328 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3329 if (size == SIZE_MAX) { 3330 io_mem_free(ctx->rings); 3331 ctx->rings = NULL; 3332 return -EOVERFLOW; 3333 } 3334 3335 ctx->sq_sqes = io_mem_alloc(size); 3336 if (!ctx->sq_sqes) { 3337 io_mem_free(ctx->rings); 3338 ctx->rings = NULL; 3339 return -ENOMEM; 3340 } 3341 3342 return 0; 3343 } 3344 3345 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file) 3346 { 3347 int ret, fd; 3348 3349 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3350 if (fd < 0) 3351 return fd; 3352 3353 ret = __io_uring_add_tctx_node(ctx); 3354 if (ret) { 3355 put_unused_fd(fd); 3356 return ret; 3357 } 3358 fd_install(fd, file); 3359 return fd; 3360 } 3361 3362 /* 3363 * Allocate an anonymous fd, this is what constitutes the application 3364 * visible backing of an io_uring instance. The application mmaps this 3365 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3366 * we have to tie this fd to a socket for file garbage collection purposes. 3367 */ 3368 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3369 { 3370 struct file *file; 3371 #if defined(CONFIG_UNIX) 3372 int ret; 3373 3374 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3375 &ctx->ring_sock); 3376 if (ret) 3377 return ERR_PTR(ret); 3378 #endif 3379 3380 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3381 O_RDWR | O_CLOEXEC, NULL); 3382 #if defined(CONFIG_UNIX) 3383 if (IS_ERR(file)) { 3384 sock_release(ctx->ring_sock); 3385 ctx->ring_sock = NULL; 3386 } else { 3387 ctx->ring_sock->file = file; 3388 } 3389 #endif 3390 return file; 3391 } 3392 3393 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3394 struct io_uring_params __user *params) 3395 { 3396 struct io_ring_ctx *ctx; 3397 struct file *file; 3398 int ret; 3399 3400 if (!entries) 3401 return -EINVAL; 3402 if (entries > IORING_MAX_ENTRIES) { 3403 if (!(p->flags & IORING_SETUP_CLAMP)) 3404 return -EINVAL; 3405 entries = IORING_MAX_ENTRIES; 3406 } 3407 3408 /* 3409 * Use twice as many entries for the CQ ring. It's possible for the 3410 * application to drive a higher depth than the size of the SQ ring, 3411 * since the sqes are only used at submission time. This allows for 3412 * some flexibility in overcommitting a bit. If the application has 3413 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3414 * of CQ ring entries manually. 3415 */ 3416 p->sq_entries = roundup_pow_of_two(entries); 3417 if (p->flags & IORING_SETUP_CQSIZE) { 3418 /* 3419 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3420 * to a power-of-two, if it isn't already. We do NOT impose 3421 * any cq vs sq ring sizing. 3422 */ 3423 if (!p->cq_entries) 3424 return -EINVAL; 3425 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3426 if (!(p->flags & IORING_SETUP_CLAMP)) 3427 return -EINVAL; 3428 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3429 } 3430 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3431 if (p->cq_entries < p->sq_entries) 3432 return -EINVAL; 3433 } else { 3434 p->cq_entries = 2 * p->sq_entries; 3435 } 3436 3437 ctx = io_ring_ctx_alloc(p); 3438 if (!ctx) 3439 return -ENOMEM; 3440 3441 /* 3442 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3443 * space applications don't need to do io completion events 3444 * polling again, they can rely on io_sq_thread to do polling 3445 * work, which can reduce cpu usage and uring_lock contention. 3446 */ 3447 if (ctx->flags & IORING_SETUP_IOPOLL && 3448 !(ctx->flags & IORING_SETUP_SQPOLL)) 3449 ctx->syscall_iopoll = 1; 3450 3451 ctx->compat = in_compat_syscall(); 3452 if (!capable(CAP_IPC_LOCK)) 3453 ctx->user = get_uid(current_user()); 3454 3455 /* 3456 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3457 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3458 */ 3459 ret = -EINVAL; 3460 if (ctx->flags & IORING_SETUP_SQPOLL) { 3461 /* IPI related flags don't make sense with SQPOLL */ 3462 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3463 IORING_SETUP_TASKRUN_FLAG | 3464 IORING_SETUP_DEFER_TASKRUN)) 3465 goto err; 3466 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3467 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3468 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3469 } else { 3470 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3471 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3472 goto err; 3473 ctx->notify_method = TWA_SIGNAL; 3474 } 3475 3476 /* 3477 * For DEFER_TASKRUN we require the completion task to be the same as the 3478 * submission task. This implies that there is only one submitter, so enforce 3479 * that. 3480 */ 3481 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3482 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3483 goto err; 3484 } 3485 3486 /* 3487 * This is just grabbed for accounting purposes. When a process exits, 3488 * the mm is exited and dropped before the files, hence we need to hang 3489 * on to this mm purely for the purposes of being able to unaccount 3490 * memory (locked/pinned vm). It's not used for anything else. 3491 */ 3492 mmgrab(current->mm); 3493 ctx->mm_account = current->mm; 3494 3495 ret = io_allocate_scq_urings(ctx, p); 3496 if (ret) 3497 goto err; 3498 3499 ret = io_sq_offload_create(ctx, p); 3500 if (ret) 3501 goto err; 3502 /* always set a rsrc node */ 3503 ret = io_rsrc_node_switch_start(ctx); 3504 if (ret) 3505 goto err; 3506 io_rsrc_node_switch(ctx, NULL); 3507 3508 memset(&p->sq_off, 0, sizeof(p->sq_off)); 3509 p->sq_off.head = offsetof(struct io_rings, sq.head); 3510 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3511 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3512 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3513 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3514 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3515 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3516 3517 memset(&p->cq_off, 0, sizeof(p->cq_off)); 3518 p->cq_off.head = offsetof(struct io_rings, cq.head); 3519 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3520 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3521 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3522 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3523 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3524 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3525 3526 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3527 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3528 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3529 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3530 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3531 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3532 IORING_FEAT_LINKED_FILE; 3533 3534 if (copy_to_user(params, p, sizeof(*p))) { 3535 ret = -EFAULT; 3536 goto err; 3537 } 3538 3539 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3540 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3541 ctx->submitter_task = get_task_struct(current); 3542 3543 file = io_uring_get_file(ctx); 3544 if (IS_ERR(file)) { 3545 ret = PTR_ERR(file); 3546 goto err; 3547 } 3548 3549 /* 3550 * Install ring fd as the very last thing, so we don't risk someone 3551 * having closed it before we finish setup 3552 */ 3553 ret = io_uring_install_fd(ctx, file); 3554 if (ret < 0) { 3555 /* fput will clean it up */ 3556 fput(file); 3557 return ret; 3558 } 3559 3560 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3561 return ret; 3562 err: 3563 io_ring_ctx_wait_and_kill(ctx); 3564 return ret; 3565 } 3566 3567 /* 3568 * Sets up an aio uring context, and returns the fd. Applications asks for a 3569 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3570 * params structure passed in. 3571 */ 3572 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3573 { 3574 struct io_uring_params p; 3575 int i; 3576 3577 if (copy_from_user(&p, params, sizeof(p))) 3578 return -EFAULT; 3579 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3580 if (p.resv[i]) 3581 return -EINVAL; 3582 } 3583 3584 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3585 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3586 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3587 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3588 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3589 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3590 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN)) 3591 return -EINVAL; 3592 3593 return io_uring_create(entries, &p, params); 3594 } 3595 3596 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3597 struct io_uring_params __user *, params) 3598 { 3599 return io_uring_setup(entries, params); 3600 } 3601 3602 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 3603 unsigned nr_args) 3604 { 3605 struct io_uring_probe *p; 3606 size_t size; 3607 int i, ret; 3608 3609 size = struct_size(p, ops, nr_args); 3610 if (size == SIZE_MAX) 3611 return -EOVERFLOW; 3612 p = kzalloc(size, GFP_KERNEL); 3613 if (!p) 3614 return -ENOMEM; 3615 3616 ret = -EFAULT; 3617 if (copy_from_user(p, arg, size)) 3618 goto out; 3619 ret = -EINVAL; 3620 if (memchr_inv(p, 0, size)) 3621 goto out; 3622 3623 p->last_op = IORING_OP_LAST - 1; 3624 if (nr_args > IORING_OP_LAST) 3625 nr_args = IORING_OP_LAST; 3626 3627 for (i = 0; i < nr_args; i++) { 3628 p->ops[i].op = i; 3629 if (!io_op_defs[i].not_supported) 3630 p->ops[i].flags = IO_URING_OP_SUPPORTED; 3631 } 3632 p->ops_len = i; 3633 3634 ret = 0; 3635 if (copy_to_user(arg, p, size)) 3636 ret = -EFAULT; 3637 out: 3638 kfree(p); 3639 return ret; 3640 } 3641 3642 static int io_register_personality(struct io_ring_ctx *ctx) 3643 { 3644 const struct cred *creds; 3645 u32 id; 3646 int ret; 3647 3648 creds = get_current_cred(); 3649 3650 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 3651 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 3652 if (ret < 0) { 3653 put_cred(creds); 3654 return ret; 3655 } 3656 return id; 3657 } 3658 3659 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 3660 void __user *arg, unsigned int nr_args) 3661 { 3662 struct io_uring_restriction *res; 3663 size_t size; 3664 int i, ret; 3665 3666 /* Restrictions allowed only if rings started disabled */ 3667 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 3668 return -EBADFD; 3669 3670 /* We allow only a single restrictions registration */ 3671 if (ctx->restrictions.registered) 3672 return -EBUSY; 3673 3674 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 3675 return -EINVAL; 3676 3677 size = array_size(nr_args, sizeof(*res)); 3678 if (size == SIZE_MAX) 3679 return -EOVERFLOW; 3680 3681 res = memdup_user(arg, size); 3682 if (IS_ERR(res)) 3683 return PTR_ERR(res); 3684 3685 ret = 0; 3686 3687 for (i = 0; i < nr_args; i++) { 3688 switch (res[i].opcode) { 3689 case IORING_RESTRICTION_REGISTER_OP: 3690 if (res[i].register_op >= IORING_REGISTER_LAST) { 3691 ret = -EINVAL; 3692 goto out; 3693 } 3694 3695 __set_bit(res[i].register_op, 3696 ctx->restrictions.register_op); 3697 break; 3698 case IORING_RESTRICTION_SQE_OP: 3699 if (res[i].sqe_op >= IORING_OP_LAST) { 3700 ret = -EINVAL; 3701 goto out; 3702 } 3703 3704 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 3705 break; 3706 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 3707 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 3708 break; 3709 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 3710 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 3711 break; 3712 default: 3713 ret = -EINVAL; 3714 goto out; 3715 } 3716 } 3717 3718 out: 3719 /* Reset all restrictions if an error happened */ 3720 if (ret != 0) 3721 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 3722 else 3723 ctx->restrictions.registered = true; 3724 3725 kfree(res); 3726 return ret; 3727 } 3728 3729 static int io_register_enable_rings(struct io_ring_ctx *ctx) 3730 { 3731 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 3732 return -EBADFD; 3733 3734 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) 3735 ctx->submitter_task = get_task_struct(current); 3736 3737 if (ctx->restrictions.registered) 3738 ctx->restricted = 1; 3739 3740 ctx->flags &= ~IORING_SETUP_R_DISABLED; 3741 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 3742 wake_up(&ctx->sq_data->wait); 3743 return 0; 3744 } 3745 3746 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 3747 void __user *arg, unsigned len) 3748 { 3749 struct io_uring_task *tctx = current->io_uring; 3750 cpumask_var_t new_mask; 3751 int ret; 3752 3753 if (!tctx || !tctx->io_wq) 3754 return -EINVAL; 3755 3756 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 3757 return -ENOMEM; 3758 3759 cpumask_clear(new_mask); 3760 if (len > cpumask_size()) 3761 len = cpumask_size(); 3762 3763 if (in_compat_syscall()) { 3764 ret = compat_get_bitmap(cpumask_bits(new_mask), 3765 (const compat_ulong_t __user *)arg, 3766 len * 8 /* CHAR_BIT */); 3767 } else { 3768 ret = copy_from_user(new_mask, arg, len); 3769 } 3770 3771 if (ret) { 3772 free_cpumask_var(new_mask); 3773 return -EFAULT; 3774 } 3775 3776 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask); 3777 free_cpumask_var(new_mask); 3778 return ret; 3779 } 3780 3781 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 3782 { 3783 struct io_uring_task *tctx = current->io_uring; 3784 3785 if (!tctx || !tctx->io_wq) 3786 return -EINVAL; 3787 3788 return io_wq_cpu_affinity(tctx->io_wq, NULL); 3789 } 3790 3791 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 3792 void __user *arg) 3793 __must_hold(&ctx->uring_lock) 3794 { 3795 struct io_tctx_node *node; 3796 struct io_uring_task *tctx = NULL; 3797 struct io_sq_data *sqd = NULL; 3798 __u32 new_count[2]; 3799 int i, ret; 3800 3801 if (copy_from_user(new_count, arg, sizeof(new_count))) 3802 return -EFAULT; 3803 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3804 if (new_count[i] > INT_MAX) 3805 return -EINVAL; 3806 3807 if (ctx->flags & IORING_SETUP_SQPOLL) { 3808 sqd = ctx->sq_data; 3809 if (sqd) { 3810 /* 3811 * Observe the correct sqd->lock -> ctx->uring_lock 3812 * ordering. Fine to drop uring_lock here, we hold 3813 * a ref to the ctx. 3814 */ 3815 refcount_inc(&sqd->refs); 3816 mutex_unlock(&ctx->uring_lock); 3817 mutex_lock(&sqd->lock); 3818 mutex_lock(&ctx->uring_lock); 3819 if (sqd->thread) 3820 tctx = sqd->thread->io_uring; 3821 } 3822 } else { 3823 tctx = current->io_uring; 3824 } 3825 3826 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 3827 3828 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3829 if (new_count[i]) 3830 ctx->iowq_limits[i] = new_count[i]; 3831 ctx->iowq_limits_set = true; 3832 3833 if (tctx && tctx->io_wq) { 3834 ret = io_wq_max_workers(tctx->io_wq, new_count); 3835 if (ret) 3836 goto err; 3837 } else { 3838 memset(new_count, 0, sizeof(new_count)); 3839 } 3840 3841 if (sqd) { 3842 mutex_unlock(&sqd->lock); 3843 io_put_sq_data(sqd); 3844 } 3845 3846 if (copy_to_user(arg, new_count, sizeof(new_count))) 3847 return -EFAULT; 3848 3849 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 3850 if (sqd) 3851 return 0; 3852 3853 /* now propagate the restriction to all registered users */ 3854 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3855 struct io_uring_task *tctx = node->task->io_uring; 3856 3857 if (WARN_ON_ONCE(!tctx->io_wq)) 3858 continue; 3859 3860 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3861 new_count[i] = ctx->iowq_limits[i]; 3862 /* ignore errors, it always returns zero anyway */ 3863 (void)io_wq_max_workers(tctx->io_wq, new_count); 3864 } 3865 return 0; 3866 err: 3867 if (sqd) { 3868 mutex_unlock(&sqd->lock); 3869 io_put_sq_data(sqd); 3870 } 3871 return ret; 3872 } 3873 3874 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 3875 void __user *arg, unsigned nr_args) 3876 __releases(ctx->uring_lock) 3877 __acquires(ctx->uring_lock) 3878 { 3879 int ret; 3880 3881 /* 3882 * We don't quiesce the refs for register anymore and so it can't be 3883 * dying as we're holding a file ref here. 3884 */ 3885 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 3886 return -ENXIO; 3887 3888 if (ctx->submitter_task && ctx->submitter_task != current) 3889 return -EEXIST; 3890 3891 if (ctx->restricted) { 3892 if (opcode >= IORING_REGISTER_LAST) 3893 return -EINVAL; 3894 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 3895 if (!test_bit(opcode, ctx->restrictions.register_op)) 3896 return -EACCES; 3897 } 3898 3899 switch (opcode) { 3900 case IORING_REGISTER_BUFFERS: 3901 ret = -EFAULT; 3902 if (!arg) 3903 break; 3904 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 3905 break; 3906 case IORING_UNREGISTER_BUFFERS: 3907 ret = -EINVAL; 3908 if (arg || nr_args) 3909 break; 3910 ret = io_sqe_buffers_unregister(ctx); 3911 break; 3912 case IORING_REGISTER_FILES: 3913 ret = -EFAULT; 3914 if (!arg) 3915 break; 3916 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 3917 break; 3918 case IORING_UNREGISTER_FILES: 3919 ret = -EINVAL; 3920 if (arg || nr_args) 3921 break; 3922 ret = io_sqe_files_unregister(ctx); 3923 break; 3924 case IORING_REGISTER_FILES_UPDATE: 3925 ret = io_register_files_update(ctx, arg, nr_args); 3926 break; 3927 case IORING_REGISTER_EVENTFD: 3928 ret = -EINVAL; 3929 if (nr_args != 1) 3930 break; 3931 ret = io_eventfd_register(ctx, arg, 0); 3932 break; 3933 case IORING_REGISTER_EVENTFD_ASYNC: 3934 ret = -EINVAL; 3935 if (nr_args != 1) 3936 break; 3937 ret = io_eventfd_register(ctx, arg, 1); 3938 break; 3939 case IORING_UNREGISTER_EVENTFD: 3940 ret = -EINVAL; 3941 if (arg || nr_args) 3942 break; 3943 ret = io_eventfd_unregister(ctx); 3944 break; 3945 case IORING_REGISTER_PROBE: 3946 ret = -EINVAL; 3947 if (!arg || nr_args > 256) 3948 break; 3949 ret = io_probe(ctx, arg, nr_args); 3950 break; 3951 case IORING_REGISTER_PERSONALITY: 3952 ret = -EINVAL; 3953 if (arg || nr_args) 3954 break; 3955 ret = io_register_personality(ctx); 3956 break; 3957 case IORING_UNREGISTER_PERSONALITY: 3958 ret = -EINVAL; 3959 if (arg) 3960 break; 3961 ret = io_unregister_personality(ctx, nr_args); 3962 break; 3963 case IORING_REGISTER_ENABLE_RINGS: 3964 ret = -EINVAL; 3965 if (arg || nr_args) 3966 break; 3967 ret = io_register_enable_rings(ctx); 3968 break; 3969 case IORING_REGISTER_RESTRICTIONS: 3970 ret = io_register_restrictions(ctx, arg, nr_args); 3971 break; 3972 case IORING_REGISTER_FILES2: 3973 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 3974 break; 3975 case IORING_REGISTER_FILES_UPDATE2: 3976 ret = io_register_rsrc_update(ctx, arg, nr_args, 3977 IORING_RSRC_FILE); 3978 break; 3979 case IORING_REGISTER_BUFFERS2: 3980 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 3981 break; 3982 case IORING_REGISTER_BUFFERS_UPDATE: 3983 ret = io_register_rsrc_update(ctx, arg, nr_args, 3984 IORING_RSRC_BUFFER); 3985 break; 3986 case IORING_REGISTER_IOWQ_AFF: 3987 ret = -EINVAL; 3988 if (!arg || !nr_args) 3989 break; 3990 ret = io_register_iowq_aff(ctx, arg, nr_args); 3991 break; 3992 case IORING_UNREGISTER_IOWQ_AFF: 3993 ret = -EINVAL; 3994 if (arg || nr_args) 3995 break; 3996 ret = io_unregister_iowq_aff(ctx); 3997 break; 3998 case IORING_REGISTER_IOWQ_MAX_WORKERS: 3999 ret = -EINVAL; 4000 if (!arg || nr_args != 2) 4001 break; 4002 ret = io_register_iowq_max_workers(ctx, arg); 4003 break; 4004 case IORING_REGISTER_RING_FDS: 4005 ret = io_ringfd_register(ctx, arg, nr_args); 4006 break; 4007 case IORING_UNREGISTER_RING_FDS: 4008 ret = io_ringfd_unregister(ctx, arg, nr_args); 4009 break; 4010 case IORING_REGISTER_PBUF_RING: 4011 ret = -EINVAL; 4012 if (!arg || nr_args != 1) 4013 break; 4014 ret = io_register_pbuf_ring(ctx, arg); 4015 break; 4016 case IORING_UNREGISTER_PBUF_RING: 4017 ret = -EINVAL; 4018 if (!arg || nr_args != 1) 4019 break; 4020 ret = io_unregister_pbuf_ring(ctx, arg); 4021 break; 4022 case IORING_REGISTER_SYNC_CANCEL: 4023 ret = -EINVAL; 4024 if (!arg || nr_args != 1) 4025 break; 4026 ret = io_sync_cancel(ctx, arg); 4027 break; 4028 case IORING_REGISTER_FILE_ALLOC_RANGE: 4029 ret = -EINVAL; 4030 if (!arg || nr_args) 4031 break; 4032 ret = io_register_file_alloc_range(ctx, arg); 4033 break; 4034 default: 4035 ret = -EINVAL; 4036 break; 4037 } 4038 4039 return ret; 4040 } 4041 4042 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4043 void __user *, arg, unsigned int, nr_args) 4044 { 4045 struct io_ring_ctx *ctx; 4046 long ret = -EBADF; 4047 struct fd f; 4048 4049 f = fdget(fd); 4050 if (!f.file) 4051 return -EBADF; 4052 4053 ret = -EOPNOTSUPP; 4054 if (!io_is_uring_fops(f.file)) 4055 goto out_fput; 4056 4057 ctx = f.file->private_data; 4058 4059 io_run_task_work_ctx(ctx); 4060 4061 mutex_lock(&ctx->uring_lock); 4062 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4063 mutex_unlock(&ctx->uring_lock); 4064 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4065 out_fput: 4066 fdput(f); 4067 return ret; 4068 } 4069 4070 static int __init io_uring_init(void) 4071 { 4072 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4073 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4074 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4075 } while (0) 4076 4077 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4078 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4079 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4080 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4081 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4082 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4083 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4084 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4085 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4086 BUILD_BUG_SQE_ELEM(8, __u64, off); 4087 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4088 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4089 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4090 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4091 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4092 BUILD_BUG_SQE_ELEM(24, __u32, len); 4093 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4094 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4095 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4096 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4097 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4098 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4099 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4100 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4101 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4102 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4103 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4104 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4105 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4106 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4107 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4108 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4109 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4110 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4111 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4112 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4113 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4114 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4115 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4116 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4117 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4118 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4119 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4120 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4121 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4122 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4123 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4124 4125 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4126 sizeof(struct io_uring_rsrc_update)); 4127 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4128 sizeof(struct io_uring_rsrc_update2)); 4129 4130 /* ->buf_index is u16 */ 4131 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4132 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4133 offsetof(struct io_uring_buf_ring, tail)); 4134 4135 /* should fit into one byte */ 4136 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4137 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4138 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4139 4140 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4141 4142 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4143 4144 io_uring_optable_init(); 4145 4146 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4147 SLAB_ACCOUNT); 4148 return 0; 4149 }; 4150 __initcall(io_uring_init); 4151