xref: /openbmc/linux/io_uring/io_uring.c (revision 404e077a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 #include <asm/shmparam.h>
76 
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/io_uring.h>
79 
80 #include <uapi/linux/io_uring.h>
81 
82 #include "io-wq.h"
83 
84 #include "io_uring.h"
85 #include "opdef.h"
86 #include "refs.h"
87 #include "tctx.h"
88 #include "sqpoll.h"
89 #include "fdinfo.h"
90 #include "kbuf.h"
91 #include "rsrc.h"
92 #include "cancel.h"
93 #include "net.h"
94 #include "notif.h"
95 
96 #include "timeout.h"
97 #include "poll.h"
98 #include "rw.h"
99 #include "alloc_cache.h"
100 
101 #define IORING_MAX_ENTRIES	32768
102 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
103 
104 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
105 				 IORING_REGISTER_LAST + IORING_OP_LAST)
106 
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109 
110 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112 
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 				REQ_F_ASYNC_DATA)
116 
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 				 IO_REQ_CLEAN_FLAGS)
119 
120 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
121 
122 #define IO_COMPL_BATCH			32
123 #define IO_REQ_ALLOC_BATCH		8
124 
125 enum {
126 	IO_CHECK_CQ_OVERFLOW_BIT,
127 	IO_CHECK_CQ_DROPPED_BIT,
128 };
129 
130 enum {
131 	IO_EVENTFD_OP_SIGNAL_BIT,
132 	IO_EVENTFD_OP_FREE_BIT,
133 };
134 
135 struct io_defer_entry {
136 	struct list_head	list;
137 	struct io_kiocb		*req;
138 	u32			seq;
139 };
140 
141 /* requests with any of those set should undergo io_disarm_next() */
142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
144 
145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
146 					 struct task_struct *task,
147 					 bool cancel_all);
148 
149 static void io_queue_sqe(struct io_kiocb *req);
150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx);
151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
152 
153 struct kmem_cache *req_cachep;
154 
155 struct sock *io_uring_get_socket(struct file *file)
156 {
157 #if defined(CONFIG_UNIX)
158 	if (io_is_uring_fops(file)) {
159 		struct io_ring_ctx *ctx = file->private_data;
160 
161 		return ctx->ring_sock->sk;
162 	}
163 #endif
164 	return NULL;
165 }
166 EXPORT_SYMBOL(io_uring_get_socket);
167 
168 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
169 {
170 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
171 	    ctx->submit_state.cqes_count)
172 		__io_submit_flush_completions(ctx);
173 }
174 
175 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
176 {
177 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
178 }
179 
180 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
181 {
182 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
183 }
184 
185 static bool io_match_linked(struct io_kiocb *head)
186 {
187 	struct io_kiocb *req;
188 
189 	io_for_each_link(req, head) {
190 		if (req->flags & REQ_F_INFLIGHT)
191 			return true;
192 	}
193 	return false;
194 }
195 
196 /*
197  * As io_match_task() but protected against racing with linked timeouts.
198  * User must not hold timeout_lock.
199  */
200 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
201 			bool cancel_all)
202 {
203 	bool matched;
204 
205 	if (task && head->task != task)
206 		return false;
207 	if (cancel_all)
208 		return true;
209 
210 	if (head->flags & REQ_F_LINK_TIMEOUT) {
211 		struct io_ring_ctx *ctx = head->ctx;
212 
213 		/* protect against races with linked timeouts */
214 		spin_lock_irq(&ctx->timeout_lock);
215 		matched = io_match_linked(head);
216 		spin_unlock_irq(&ctx->timeout_lock);
217 	} else {
218 		matched = io_match_linked(head);
219 	}
220 	return matched;
221 }
222 
223 static inline void req_fail_link_node(struct io_kiocb *req, int res)
224 {
225 	req_set_fail(req);
226 	io_req_set_res(req, res, 0);
227 }
228 
229 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
230 {
231 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
232 	kasan_poison_object_data(req_cachep, req);
233 }
234 
235 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
236 {
237 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
238 
239 	complete(&ctx->ref_comp);
240 }
241 
242 static __cold void io_fallback_req_func(struct work_struct *work)
243 {
244 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
245 						fallback_work.work);
246 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
247 	struct io_kiocb *req, *tmp;
248 	struct io_tw_state ts = { .locked = true, };
249 
250 	mutex_lock(&ctx->uring_lock);
251 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
252 		req->io_task_work.func(req, &ts);
253 	if (WARN_ON_ONCE(!ts.locked))
254 		return;
255 	io_submit_flush_completions(ctx);
256 	mutex_unlock(&ctx->uring_lock);
257 }
258 
259 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
260 {
261 	unsigned hash_buckets = 1U << bits;
262 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
263 
264 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
265 	if (!table->hbs)
266 		return -ENOMEM;
267 
268 	table->hash_bits = bits;
269 	init_hash_table(table, hash_buckets);
270 	return 0;
271 }
272 
273 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
274 {
275 	struct io_ring_ctx *ctx;
276 	int hash_bits;
277 
278 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
279 	if (!ctx)
280 		return NULL;
281 
282 	xa_init(&ctx->io_bl_xa);
283 
284 	/*
285 	 * Use 5 bits less than the max cq entries, that should give us around
286 	 * 32 entries per hash list if totally full and uniformly spread, but
287 	 * don't keep too many buckets to not overconsume memory.
288 	 */
289 	hash_bits = ilog2(p->cq_entries) - 5;
290 	hash_bits = clamp(hash_bits, 1, 8);
291 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
292 		goto err;
293 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
294 		goto err;
295 
296 	ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
297 	if (!ctx->dummy_ubuf)
298 		goto err;
299 	/* set invalid range, so io_import_fixed() fails meeting it */
300 	ctx->dummy_ubuf->ubuf = -1UL;
301 
302 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
303 			    0, GFP_KERNEL))
304 		goto err;
305 
306 	ctx->flags = p->flags;
307 	init_waitqueue_head(&ctx->sqo_sq_wait);
308 	INIT_LIST_HEAD(&ctx->sqd_list);
309 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
310 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
311 	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
312 			    sizeof(struct io_rsrc_node));
313 	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
314 			    sizeof(struct async_poll));
315 	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
316 			    sizeof(struct io_async_msghdr));
317 	init_completion(&ctx->ref_comp);
318 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
319 	mutex_init(&ctx->uring_lock);
320 	init_waitqueue_head(&ctx->cq_wait);
321 	init_waitqueue_head(&ctx->poll_wq);
322 	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
323 	spin_lock_init(&ctx->completion_lock);
324 	spin_lock_init(&ctx->timeout_lock);
325 	INIT_WQ_LIST(&ctx->iopoll_list);
326 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
327 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
328 	INIT_LIST_HEAD(&ctx->defer_list);
329 	INIT_LIST_HEAD(&ctx->timeout_list);
330 	INIT_LIST_HEAD(&ctx->ltimeout_list);
331 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
332 	init_llist_head(&ctx->work_llist);
333 	INIT_LIST_HEAD(&ctx->tctx_list);
334 	ctx->submit_state.free_list.next = NULL;
335 	INIT_WQ_LIST(&ctx->locked_free_list);
336 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
337 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
338 	return ctx;
339 err:
340 	kfree(ctx->dummy_ubuf);
341 	kfree(ctx->cancel_table.hbs);
342 	kfree(ctx->cancel_table_locked.hbs);
343 	kfree(ctx->io_bl);
344 	xa_destroy(&ctx->io_bl_xa);
345 	kfree(ctx);
346 	return NULL;
347 }
348 
349 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
350 {
351 	struct io_rings *r = ctx->rings;
352 
353 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
354 	ctx->cq_extra--;
355 }
356 
357 static bool req_need_defer(struct io_kiocb *req, u32 seq)
358 {
359 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
360 		struct io_ring_ctx *ctx = req->ctx;
361 
362 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
363 	}
364 
365 	return false;
366 }
367 
368 static void io_clean_op(struct io_kiocb *req)
369 {
370 	if (req->flags & REQ_F_BUFFER_SELECTED) {
371 		spin_lock(&req->ctx->completion_lock);
372 		io_put_kbuf_comp(req);
373 		spin_unlock(&req->ctx->completion_lock);
374 	}
375 
376 	if (req->flags & REQ_F_NEED_CLEANUP) {
377 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
378 
379 		if (def->cleanup)
380 			def->cleanup(req);
381 	}
382 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
383 		kfree(req->apoll->double_poll);
384 		kfree(req->apoll);
385 		req->apoll = NULL;
386 	}
387 	if (req->flags & REQ_F_INFLIGHT) {
388 		struct io_uring_task *tctx = req->task->io_uring;
389 
390 		atomic_dec(&tctx->inflight_tracked);
391 	}
392 	if (req->flags & REQ_F_CREDS)
393 		put_cred(req->creds);
394 	if (req->flags & REQ_F_ASYNC_DATA) {
395 		kfree(req->async_data);
396 		req->async_data = NULL;
397 	}
398 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
399 }
400 
401 static inline void io_req_track_inflight(struct io_kiocb *req)
402 {
403 	if (!(req->flags & REQ_F_INFLIGHT)) {
404 		req->flags |= REQ_F_INFLIGHT;
405 		atomic_inc(&req->task->io_uring->inflight_tracked);
406 	}
407 }
408 
409 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
410 {
411 	if (WARN_ON_ONCE(!req->link))
412 		return NULL;
413 
414 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
415 	req->flags |= REQ_F_LINK_TIMEOUT;
416 
417 	/* linked timeouts should have two refs once prep'ed */
418 	io_req_set_refcount(req);
419 	__io_req_set_refcount(req->link, 2);
420 	return req->link;
421 }
422 
423 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
424 {
425 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
426 		return NULL;
427 	return __io_prep_linked_timeout(req);
428 }
429 
430 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
431 {
432 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
433 }
434 
435 static inline void io_arm_ltimeout(struct io_kiocb *req)
436 {
437 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
438 		__io_arm_ltimeout(req);
439 }
440 
441 static void io_prep_async_work(struct io_kiocb *req)
442 {
443 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
444 	struct io_ring_ctx *ctx = req->ctx;
445 
446 	if (!(req->flags & REQ_F_CREDS)) {
447 		req->flags |= REQ_F_CREDS;
448 		req->creds = get_current_cred();
449 	}
450 
451 	req->work.list.next = NULL;
452 	req->work.flags = 0;
453 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
454 	if (req->flags & REQ_F_FORCE_ASYNC)
455 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
456 
457 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
458 		req->flags |= io_file_get_flags(req->file);
459 
460 	if (req->file && (req->flags & REQ_F_ISREG)) {
461 		bool should_hash = def->hash_reg_file;
462 
463 		/* don't serialize this request if the fs doesn't need it */
464 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
465 		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
466 			should_hash = false;
467 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
468 			io_wq_hash_work(&req->work, file_inode(req->file));
469 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
470 		if (def->unbound_nonreg_file)
471 			req->work.flags |= IO_WQ_WORK_UNBOUND;
472 	}
473 }
474 
475 static void io_prep_async_link(struct io_kiocb *req)
476 {
477 	struct io_kiocb *cur;
478 
479 	if (req->flags & REQ_F_LINK_TIMEOUT) {
480 		struct io_ring_ctx *ctx = req->ctx;
481 
482 		spin_lock_irq(&ctx->timeout_lock);
483 		io_for_each_link(cur, req)
484 			io_prep_async_work(cur);
485 		spin_unlock_irq(&ctx->timeout_lock);
486 	} else {
487 		io_for_each_link(cur, req)
488 			io_prep_async_work(cur);
489 	}
490 }
491 
492 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
493 {
494 	struct io_kiocb *link = io_prep_linked_timeout(req);
495 	struct io_uring_task *tctx = req->task->io_uring;
496 
497 	BUG_ON(!tctx);
498 	BUG_ON(!tctx->io_wq);
499 
500 	/* init ->work of the whole link before punting */
501 	io_prep_async_link(req);
502 
503 	/*
504 	 * Not expected to happen, but if we do have a bug where this _can_
505 	 * happen, catch it here and ensure the request is marked as
506 	 * canceled. That will make io-wq go through the usual work cancel
507 	 * procedure rather than attempt to run this request (or create a new
508 	 * worker for it).
509 	 */
510 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
511 		req->work.flags |= IO_WQ_WORK_CANCEL;
512 
513 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
514 	io_wq_enqueue(tctx->io_wq, &req->work);
515 	if (link)
516 		io_queue_linked_timeout(link);
517 }
518 
519 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
520 {
521 	while (!list_empty(&ctx->defer_list)) {
522 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
523 						struct io_defer_entry, list);
524 
525 		if (req_need_defer(de->req, de->seq))
526 			break;
527 		list_del_init(&de->list);
528 		io_req_task_queue(de->req);
529 		kfree(de);
530 	}
531 }
532 
533 
534 static void io_eventfd_ops(struct rcu_head *rcu)
535 {
536 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
537 	int ops = atomic_xchg(&ev_fd->ops, 0);
538 
539 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
540 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
541 
542 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
543 	 * ordering in a race but if references are 0 we know we have to free
544 	 * it regardless.
545 	 */
546 	if (atomic_dec_and_test(&ev_fd->refs)) {
547 		eventfd_ctx_put(ev_fd->cq_ev_fd);
548 		kfree(ev_fd);
549 	}
550 }
551 
552 static void io_eventfd_signal(struct io_ring_ctx *ctx)
553 {
554 	struct io_ev_fd *ev_fd = NULL;
555 
556 	rcu_read_lock();
557 	/*
558 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
559 	 * and eventfd_signal
560 	 */
561 	ev_fd = rcu_dereference(ctx->io_ev_fd);
562 
563 	/*
564 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
565 	 * completed between the NULL check of ctx->io_ev_fd at the start of
566 	 * the function and rcu_read_lock.
567 	 */
568 	if (unlikely(!ev_fd))
569 		goto out;
570 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
571 		goto out;
572 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
573 		goto out;
574 
575 	if (likely(eventfd_signal_allowed())) {
576 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
577 	} else {
578 		atomic_inc(&ev_fd->refs);
579 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
580 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
581 		else
582 			atomic_dec(&ev_fd->refs);
583 	}
584 
585 out:
586 	rcu_read_unlock();
587 }
588 
589 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
590 {
591 	bool skip;
592 
593 	spin_lock(&ctx->completion_lock);
594 
595 	/*
596 	 * Eventfd should only get triggered when at least one event has been
597 	 * posted. Some applications rely on the eventfd notification count
598 	 * only changing IFF a new CQE has been added to the CQ ring. There's
599 	 * no depedency on 1:1 relationship between how many times this
600 	 * function is called (and hence the eventfd count) and number of CQEs
601 	 * posted to the CQ ring.
602 	 */
603 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
604 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
605 	spin_unlock(&ctx->completion_lock);
606 	if (skip)
607 		return;
608 
609 	io_eventfd_signal(ctx);
610 }
611 
612 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
613 {
614 	if (ctx->poll_activated)
615 		io_poll_wq_wake(ctx);
616 	if (ctx->off_timeout_used)
617 		io_flush_timeouts(ctx);
618 	if (ctx->drain_active) {
619 		spin_lock(&ctx->completion_lock);
620 		io_queue_deferred(ctx);
621 		spin_unlock(&ctx->completion_lock);
622 	}
623 	if (ctx->has_evfd)
624 		io_eventfd_flush_signal(ctx);
625 }
626 
627 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
628 {
629 	if (!ctx->task_complete)
630 		spin_lock(&ctx->completion_lock);
631 }
632 
633 static inline void io_cq_lock(struct io_ring_ctx *ctx)
634 	__acquires(ctx->completion_lock)
635 {
636 	spin_lock(&ctx->completion_lock);
637 }
638 
639 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
640 {
641 	io_commit_cqring(ctx);
642 
643 	if (ctx->task_complete) {
644 		/*
645 		 * ->task_complete implies that only current might be waiting
646 		 * for CQEs, and obviously, we currently don't. No one is
647 		 * waiting, wakeups are futile, skip them.
648 		 */
649 		io_commit_cqring_flush(ctx);
650 	} else {
651 		spin_unlock(&ctx->completion_lock);
652 		io_commit_cqring_flush(ctx);
653 		io_cqring_wake(ctx);
654 	}
655 }
656 
657 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
658 	__releases(ctx->completion_lock)
659 {
660 	io_commit_cqring(ctx);
661 	spin_unlock(&ctx->completion_lock);
662 	io_commit_cqring_flush(ctx);
663 	io_cqring_wake(ctx);
664 }
665 
666 /* Returns true if there are no backlogged entries after the flush */
667 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
668 {
669 	struct io_overflow_cqe *ocqe;
670 	LIST_HEAD(list);
671 
672 	spin_lock(&ctx->completion_lock);
673 	list_splice_init(&ctx->cq_overflow_list, &list);
674 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
675 	spin_unlock(&ctx->completion_lock);
676 
677 	while (!list_empty(&list)) {
678 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
679 		list_del(&ocqe->list);
680 		kfree(ocqe);
681 	}
682 }
683 
684 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
685 {
686 	size_t cqe_size = sizeof(struct io_uring_cqe);
687 
688 	if (__io_cqring_events(ctx) == ctx->cq_entries)
689 		return;
690 
691 	if (ctx->flags & IORING_SETUP_CQE32)
692 		cqe_size <<= 1;
693 
694 	io_cq_lock(ctx);
695 	while (!list_empty(&ctx->cq_overflow_list)) {
696 		struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true);
697 		struct io_overflow_cqe *ocqe;
698 
699 		if (!cqe)
700 			break;
701 		ocqe = list_first_entry(&ctx->cq_overflow_list,
702 					struct io_overflow_cqe, list);
703 		memcpy(cqe, &ocqe->cqe, cqe_size);
704 		list_del(&ocqe->list);
705 		kfree(ocqe);
706 	}
707 
708 	if (list_empty(&ctx->cq_overflow_list)) {
709 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
710 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
711 	}
712 	io_cq_unlock_post(ctx);
713 }
714 
715 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
716 {
717 	/* iopoll syncs against uring_lock, not completion_lock */
718 	if (ctx->flags & IORING_SETUP_IOPOLL)
719 		mutex_lock(&ctx->uring_lock);
720 	__io_cqring_overflow_flush(ctx);
721 	if (ctx->flags & IORING_SETUP_IOPOLL)
722 		mutex_unlock(&ctx->uring_lock);
723 }
724 
725 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
726 {
727 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
728 		io_cqring_do_overflow_flush(ctx);
729 }
730 
731 /* can be called by any task */
732 static void io_put_task_remote(struct task_struct *task)
733 {
734 	struct io_uring_task *tctx = task->io_uring;
735 
736 	percpu_counter_sub(&tctx->inflight, 1);
737 	if (unlikely(atomic_read(&tctx->in_cancel)))
738 		wake_up(&tctx->wait);
739 	put_task_struct(task);
740 }
741 
742 /* used by a task to put its own references */
743 static void io_put_task_local(struct task_struct *task)
744 {
745 	task->io_uring->cached_refs++;
746 }
747 
748 /* must to be called somewhat shortly after putting a request */
749 static inline void io_put_task(struct task_struct *task)
750 {
751 	if (likely(task == current))
752 		io_put_task_local(task);
753 	else
754 		io_put_task_remote(task);
755 }
756 
757 void io_task_refs_refill(struct io_uring_task *tctx)
758 {
759 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
760 
761 	percpu_counter_add(&tctx->inflight, refill);
762 	refcount_add(refill, &current->usage);
763 	tctx->cached_refs += refill;
764 }
765 
766 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
767 {
768 	struct io_uring_task *tctx = task->io_uring;
769 	unsigned int refs = tctx->cached_refs;
770 
771 	if (refs) {
772 		tctx->cached_refs = 0;
773 		percpu_counter_sub(&tctx->inflight, refs);
774 		put_task_struct_many(task, refs);
775 	}
776 }
777 
778 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
779 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
780 {
781 	struct io_overflow_cqe *ocqe;
782 	size_t ocq_size = sizeof(struct io_overflow_cqe);
783 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
784 
785 	lockdep_assert_held(&ctx->completion_lock);
786 
787 	if (is_cqe32)
788 		ocq_size += sizeof(struct io_uring_cqe);
789 
790 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
791 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
792 	if (!ocqe) {
793 		/*
794 		 * If we're in ring overflow flush mode, or in task cancel mode,
795 		 * or cannot allocate an overflow entry, then we need to drop it
796 		 * on the floor.
797 		 */
798 		io_account_cq_overflow(ctx);
799 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
800 		return false;
801 	}
802 	if (list_empty(&ctx->cq_overflow_list)) {
803 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
804 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
805 
806 	}
807 	ocqe->cqe.user_data = user_data;
808 	ocqe->cqe.res = res;
809 	ocqe->cqe.flags = cflags;
810 	if (is_cqe32) {
811 		ocqe->cqe.big_cqe[0] = extra1;
812 		ocqe->cqe.big_cqe[1] = extra2;
813 	}
814 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
815 	return true;
816 }
817 
818 bool io_req_cqe_overflow(struct io_kiocb *req)
819 {
820 	if (!(req->flags & REQ_F_CQE32_INIT)) {
821 		req->extra1 = 0;
822 		req->extra2 = 0;
823 	}
824 	return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
825 					req->cqe.res, req->cqe.flags,
826 					req->extra1, req->extra2);
827 }
828 
829 /*
830  * writes to the cq entry need to come after reading head; the
831  * control dependency is enough as we're using WRITE_ONCE to
832  * fill the cq entry
833  */
834 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow)
835 {
836 	struct io_rings *rings = ctx->rings;
837 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
838 	unsigned int free, queued, len;
839 
840 	/*
841 	 * Posting into the CQ when there are pending overflowed CQEs may break
842 	 * ordering guarantees, which will affect links, F_MORE users and more.
843 	 * Force overflow the completion.
844 	 */
845 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
846 		return NULL;
847 
848 	/* userspace may cheat modifying the tail, be safe and do min */
849 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
850 	free = ctx->cq_entries - queued;
851 	/* we need a contiguous range, limit based on the current array offset */
852 	len = min(free, ctx->cq_entries - off);
853 	if (!len)
854 		return NULL;
855 
856 	if (ctx->flags & IORING_SETUP_CQE32) {
857 		off <<= 1;
858 		len <<= 1;
859 	}
860 
861 	ctx->cqe_cached = &rings->cqes[off];
862 	ctx->cqe_sentinel = ctx->cqe_cached + len;
863 
864 	ctx->cached_cq_tail++;
865 	ctx->cqe_cached++;
866 	if (ctx->flags & IORING_SETUP_CQE32)
867 		ctx->cqe_cached++;
868 	return &rings->cqes[off];
869 }
870 
871 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
872 			      u32 cflags)
873 {
874 	struct io_uring_cqe *cqe;
875 
876 	ctx->cq_extra++;
877 
878 	/*
879 	 * If we can't get a cq entry, userspace overflowed the
880 	 * submission (by quite a lot). Increment the overflow count in
881 	 * the ring.
882 	 */
883 	cqe = io_get_cqe(ctx);
884 	if (likely(cqe)) {
885 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
886 
887 		WRITE_ONCE(cqe->user_data, user_data);
888 		WRITE_ONCE(cqe->res, res);
889 		WRITE_ONCE(cqe->flags, cflags);
890 
891 		if (ctx->flags & IORING_SETUP_CQE32) {
892 			WRITE_ONCE(cqe->big_cqe[0], 0);
893 			WRITE_ONCE(cqe->big_cqe[1], 0);
894 		}
895 		return true;
896 	}
897 	return false;
898 }
899 
900 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
901 	__must_hold(&ctx->uring_lock)
902 {
903 	struct io_submit_state *state = &ctx->submit_state;
904 	unsigned int i;
905 
906 	lockdep_assert_held(&ctx->uring_lock);
907 	for (i = 0; i < state->cqes_count; i++) {
908 		struct io_uring_cqe *cqe = &state->cqes[i];
909 
910 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
911 			if (ctx->task_complete) {
912 				spin_lock(&ctx->completion_lock);
913 				io_cqring_event_overflow(ctx, cqe->user_data,
914 							cqe->res, cqe->flags, 0, 0);
915 				spin_unlock(&ctx->completion_lock);
916 			} else {
917 				io_cqring_event_overflow(ctx, cqe->user_data,
918 							cqe->res, cqe->flags, 0, 0);
919 			}
920 		}
921 	}
922 	state->cqes_count = 0;
923 }
924 
925 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
926 			      bool allow_overflow)
927 {
928 	bool filled;
929 
930 	io_cq_lock(ctx);
931 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
932 	if (!filled && allow_overflow)
933 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
934 
935 	io_cq_unlock_post(ctx);
936 	return filled;
937 }
938 
939 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
940 {
941 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
942 }
943 
944 bool io_aux_cqe(const struct io_kiocb *req, bool defer, s32 res, u32 cflags,
945 		bool allow_overflow)
946 {
947 	struct io_ring_ctx *ctx = req->ctx;
948 	u64 user_data = req->cqe.user_data;
949 	struct io_uring_cqe *cqe;
950 
951 	if (!defer)
952 		return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow);
953 
954 	lockdep_assert_held(&ctx->uring_lock);
955 
956 	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->submit_state.cqes)) {
957 		__io_cq_lock(ctx);
958 		__io_flush_post_cqes(ctx);
959 		/* no need to flush - flush is deferred */
960 		__io_cq_unlock_post(ctx);
961 	}
962 
963 	/* For defered completions this is not as strict as it is otherwise,
964 	 * however it's main job is to prevent unbounded posted completions,
965 	 * and in that it works just as well.
966 	 */
967 	if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
968 		return false;
969 
970 	cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++];
971 	cqe->user_data = user_data;
972 	cqe->res = res;
973 	cqe->flags = cflags;
974 	return true;
975 }
976 
977 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
978 {
979 	struct io_ring_ctx *ctx = req->ctx;
980 	struct io_rsrc_node *rsrc_node = NULL;
981 
982 	io_cq_lock(ctx);
983 	if (!(req->flags & REQ_F_CQE_SKIP))
984 		io_fill_cqe_req(ctx, req);
985 
986 	/*
987 	 * If we're the last reference to this request, add to our locked
988 	 * free_list cache.
989 	 */
990 	if (req_ref_put_and_test(req)) {
991 		if (req->flags & IO_REQ_LINK_FLAGS) {
992 			if (req->flags & IO_DISARM_MASK)
993 				io_disarm_next(req);
994 			if (req->link) {
995 				io_req_task_queue(req->link);
996 				req->link = NULL;
997 			}
998 		}
999 		io_put_kbuf_comp(req);
1000 		if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1001 			io_clean_op(req);
1002 		if (!(req->flags & REQ_F_FIXED_FILE))
1003 			io_put_file(req->file);
1004 
1005 		rsrc_node = req->rsrc_node;
1006 		/*
1007 		 * Selected buffer deallocation in io_clean_op() assumes that
1008 		 * we don't hold ->completion_lock. Clean them here to avoid
1009 		 * deadlocks.
1010 		 */
1011 		io_put_task_remote(req->task);
1012 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1013 		ctx->locked_free_nr++;
1014 	}
1015 	io_cq_unlock_post(ctx);
1016 
1017 	if (rsrc_node) {
1018 		io_ring_submit_lock(ctx, issue_flags);
1019 		io_put_rsrc_node(ctx, rsrc_node);
1020 		io_ring_submit_unlock(ctx, issue_flags);
1021 	}
1022 }
1023 
1024 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1025 {
1026 	if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1027 		req->io_task_work.func = io_req_task_complete;
1028 		io_req_task_work_add(req);
1029 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1030 		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1031 		__io_req_complete_post(req, issue_flags);
1032 	} else {
1033 		struct io_ring_ctx *ctx = req->ctx;
1034 
1035 		mutex_lock(&ctx->uring_lock);
1036 		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1037 		mutex_unlock(&ctx->uring_lock);
1038 	}
1039 }
1040 
1041 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1042 	__must_hold(&ctx->uring_lock)
1043 {
1044 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1045 
1046 	lockdep_assert_held(&req->ctx->uring_lock);
1047 
1048 	req_set_fail(req);
1049 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1050 	if (def->fail)
1051 		def->fail(req);
1052 	io_req_complete_defer(req);
1053 }
1054 
1055 /*
1056  * Don't initialise the fields below on every allocation, but do that in
1057  * advance and keep them valid across allocations.
1058  */
1059 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1060 {
1061 	req->ctx = ctx;
1062 	req->link = NULL;
1063 	req->async_data = NULL;
1064 	/* not necessary, but safer to zero */
1065 	req->cqe.res = 0;
1066 }
1067 
1068 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1069 					struct io_submit_state *state)
1070 {
1071 	spin_lock(&ctx->completion_lock);
1072 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1073 	ctx->locked_free_nr = 0;
1074 	spin_unlock(&ctx->completion_lock);
1075 }
1076 
1077 /*
1078  * A request might get retired back into the request caches even before opcode
1079  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1080  * Because of that, io_alloc_req() should be called only under ->uring_lock
1081  * and with extra caution to not get a request that is still worked on.
1082  */
1083 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1084 	__must_hold(&ctx->uring_lock)
1085 {
1086 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1087 	void *reqs[IO_REQ_ALLOC_BATCH];
1088 	int ret, i;
1089 
1090 	/*
1091 	 * If we have more than a batch's worth of requests in our IRQ side
1092 	 * locked cache, grab the lock and move them over to our submission
1093 	 * side cache.
1094 	 */
1095 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1096 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1097 		if (!io_req_cache_empty(ctx))
1098 			return true;
1099 	}
1100 
1101 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1102 
1103 	/*
1104 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1105 	 * retry single alloc to be on the safe side.
1106 	 */
1107 	if (unlikely(ret <= 0)) {
1108 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1109 		if (!reqs[0])
1110 			return false;
1111 		ret = 1;
1112 	}
1113 
1114 	percpu_ref_get_many(&ctx->refs, ret);
1115 	for (i = 0; i < ret; i++) {
1116 		struct io_kiocb *req = reqs[i];
1117 
1118 		io_preinit_req(req, ctx);
1119 		io_req_add_to_cache(req, ctx);
1120 	}
1121 	return true;
1122 }
1123 
1124 __cold void io_free_req(struct io_kiocb *req)
1125 {
1126 	/* refs were already put, restore them for io_req_task_complete() */
1127 	req->flags &= ~REQ_F_REFCOUNT;
1128 	/* we only want to free it, don't post CQEs */
1129 	req->flags |= REQ_F_CQE_SKIP;
1130 	req->io_task_work.func = io_req_task_complete;
1131 	io_req_task_work_add(req);
1132 }
1133 
1134 static void __io_req_find_next_prep(struct io_kiocb *req)
1135 {
1136 	struct io_ring_ctx *ctx = req->ctx;
1137 
1138 	spin_lock(&ctx->completion_lock);
1139 	io_disarm_next(req);
1140 	spin_unlock(&ctx->completion_lock);
1141 }
1142 
1143 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1144 {
1145 	struct io_kiocb *nxt;
1146 
1147 	/*
1148 	 * If LINK is set, we have dependent requests in this chain. If we
1149 	 * didn't fail this request, queue the first one up, moving any other
1150 	 * dependencies to the next request. In case of failure, fail the rest
1151 	 * of the chain.
1152 	 */
1153 	if (unlikely(req->flags & IO_DISARM_MASK))
1154 		__io_req_find_next_prep(req);
1155 	nxt = req->link;
1156 	req->link = NULL;
1157 	return nxt;
1158 }
1159 
1160 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1161 {
1162 	if (!ctx)
1163 		return;
1164 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1165 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1166 	if (ts->locked) {
1167 		io_submit_flush_completions(ctx);
1168 		mutex_unlock(&ctx->uring_lock);
1169 		ts->locked = false;
1170 	}
1171 	percpu_ref_put(&ctx->refs);
1172 }
1173 
1174 static unsigned int handle_tw_list(struct llist_node *node,
1175 				   struct io_ring_ctx **ctx,
1176 				   struct io_tw_state *ts,
1177 				   struct llist_node *last)
1178 {
1179 	unsigned int count = 0;
1180 
1181 	while (node && node != last) {
1182 		struct llist_node *next = node->next;
1183 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1184 						    io_task_work.node);
1185 
1186 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1187 
1188 		if (req->ctx != *ctx) {
1189 			ctx_flush_and_put(*ctx, ts);
1190 			*ctx = req->ctx;
1191 			/* if not contended, grab and improve batching */
1192 			ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1193 			percpu_ref_get(&(*ctx)->refs);
1194 		}
1195 		INDIRECT_CALL_2(req->io_task_work.func,
1196 				io_poll_task_func, io_req_rw_complete,
1197 				req, ts);
1198 		node = next;
1199 		count++;
1200 		if (unlikely(need_resched())) {
1201 			ctx_flush_and_put(*ctx, ts);
1202 			*ctx = NULL;
1203 			cond_resched();
1204 		}
1205 	}
1206 
1207 	return count;
1208 }
1209 
1210 /**
1211  * io_llist_xchg - swap all entries in a lock-less list
1212  * @head:	the head of lock-less list to delete all entries
1213  * @new:	new entry as the head of the list
1214  *
1215  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1216  * The order of entries returned is from the newest to the oldest added one.
1217  */
1218 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1219 					       struct llist_node *new)
1220 {
1221 	return xchg(&head->first, new);
1222 }
1223 
1224 /**
1225  * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1226  * @head:	the head of lock-less list to delete all entries
1227  * @old:	expected old value of the first entry of the list
1228  * @new:	new entry as the head of the list
1229  *
1230  * perform a cmpxchg on the first entry of the list.
1231  */
1232 
1233 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1234 						  struct llist_node *old,
1235 						  struct llist_node *new)
1236 {
1237 	return cmpxchg(&head->first, old, new);
1238 }
1239 
1240 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1241 {
1242 	struct llist_node *node = llist_del_all(&tctx->task_list);
1243 	struct io_ring_ctx *last_ctx = NULL;
1244 	struct io_kiocb *req;
1245 
1246 	while (node) {
1247 		req = container_of(node, struct io_kiocb, io_task_work.node);
1248 		node = node->next;
1249 		if (sync && last_ctx != req->ctx) {
1250 			if (last_ctx) {
1251 				flush_delayed_work(&last_ctx->fallback_work);
1252 				percpu_ref_put(&last_ctx->refs);
1253 			}
1254 			last_ctx = req->ctx;
1255 			percpu_ref_get(&last_ctx->refs);
1256 		}
1257 		if (llist_add(&req->io_task_work.node,
1258 			      &req->ctx->fallback_llist))
1259 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1260 	}
1261 
1262 	if (last_ctx) {
1263 		flush_delayed_work(&last_ctx->fallback_work);
1264 		percpu_ref_put(&last_ctx->refs);
1265 	}
1266 }
1267 
1268 void tctx_task_work(struct callback_head *cb)
1269 {
1270 	struct io_tw_state ts = {};
1271 	struct io_ring_ctx *ctx = NULL;
1272 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1273 						  task_work);
1274 	struct llist_node fake = {};
1275 	struct llist_node *node;
1276 	unsigned int loops = 0;
1277 	unsigned int count = 0;
1278 
1279 	if (unlikely(current->flags & PF_EXITING)) {
1280 		io_fallback_tw(tctx, true);
1281 		return;
1282 	}
1283 
1284 	do {
1285 		loops++;
1286 		node = io_llist_xchg(&tctx->task_list, &fake);
1287 		count += handle_tw_list(node, &ctx, &ts, &fake);
1288 
1289 		/* skip expensive cmpxchg if there are items in the list */
1290 		if (READ_ONCE(tctx->task_list.first) != &fake)
1291 			continue;
1292 		if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1293 			io_submit_flush_completions(ctx);
1294 			if (READ_ONCE(tctx->task_list.first) != &fake)
1295 				continue;
1296 		}
1297 		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1298 	} while (node != &fake);
1299 
1300 	ctx_flush_and_put(ctx, &ts);
1301 
1302 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1303 	if (unlikely(atomic_read(&tctx->in_cancel)))
1304 		io_uring_drop_tctx_refs(current);
1305 
1306 	trace_io_uring_task_work_run(tctx, count, loops);
1307 }
1308 
1309 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1310 {
1311 	struct io_ring_ctx *ctx = req->ctx;
1312 	unsigned nr_wait, nr_tw, nr_tw_prev;
1313 	struct llist_node *first;
1314 
1315 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1316 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1317 
1318 	first = READ_ONCE(ctx->work_llist.first);
1319 	do {
1320 		nr_tw_prev = 0;
1321 		if (first) {
1322 			struct io_kiocb *first_req = container_of(first,
1323 							struct io_kiocb,
1324 							io_task_work.node);
1325 			/*
1326 			 * Might be executed at any moment, rely on
1327 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1328 			 */
1329 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1330 		}
1331 		nr_tw = nr_tw_prev + 1;
1332 		/* Large enough to fail the nr_wait comparison below */
1333 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1334 			nr_tw = -1U;
1335 
1336 		req->nr_tw = nr_tw;
1337 		req->io_task_work.node.next = first;
1338 	} while (!try_cmpxchg(&ctx->work_llist.first, &first,
1339 			      &req->io_task_work.node));
1340 
1341 	if (!first) {
1342 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1343 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1344 		if (ctx->has_evfd)
1345 			io_eventfd_signal(ctx);
1346 	}
1347 
1348 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1349 	/* no one is waiting */
1350 	if (!nr_wait)
1351 		return;
1352 	/* either not enough or the previous add has already woken it up */
1353 	if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1354 		return;
1355 	/* pairs with set_current_state() in io_cqring_wait() */
1356 	smp_mb__after_atomic();
1357 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1358 }
1359 
1360 static void io_req_normal_work_add(struct io_kiocb *req)
1361 {
1362 	struct io_uring_task *tctx = req->task->io_uring;
1363 	struct io_ring_ctx *ctx = req->ctx;
1364 
1365 	/* task_work already pending, we're done */
1366 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1367 		return;
1368 
1369 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1370 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1371 
1372 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1373 		return;
1374 
1375 	io_fallback_tw(tctx, false);
1376 }
1377 
1378 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1379 {
1380 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1381 		rcu_read_lock();
1382 		io_req_local_work_add(req, flags);
1383 		rcu_read_unlock();
1384 	} else {
1385 		io_req_normal_work_add(req);
1386 	}
1387 }
1388 
1389 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1390 {
1391 	struct llist_node *node;
1392 
1393 	node = llist_del_all(&ctx->work_llist);
1394 	while (node) {
1395 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1396 						    io_task_work.node);
1397 
1398 		node = node->next;
1399 		io_req_normal_work_add(req);
1400 	}
1401 }
1402 
1403 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1404 {
1405 	struct llist_node *node;
1406 	unsigned int loops = 0;
1407 	int ret = 0;
1408 
1409 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1410 		return -EEXIST;
1411 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1412 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1413 again:
1414 	/*
1415 	 * llists are in reverse order, flip it back the right way before
1416 	 * running the pending items.
1417 	 */
1418 	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1419 	while (node) {
1420 		struct llist_node *next = node->next;
1421 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1422 						    io_task_work.node);
1423 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1424 		INDIRECT_CALL_2(req->io_task_work.func,
1425 				io_poll_task_func, io_req_rw_complete,
1426 				req, ts);
1427 		ret++;
1428 		node = next;
1429 	}
1430 	loops++;
1431 
1432 	if (!llist_empty(&ctx->work_llist))
1433 		goto again;
1434 	if (ts->locked) {
1435 		io_submit_flush_completions(ctx);
1436 		if (!llist_empty(&ctx->work_llist))
1437 			goto again;
1438 	}
1439 	trace_io_uring_local_work_run(ctx, ret, loops);
1440 	return ret;
1441 }
1442 
1443 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1444 {
1445 	struct io_tw_state ts = { .locked = true, };
1446 	int ret;
1447 
1448 	if (llist_empty(&ctx->work_llist))
1449 		return 0;
1450 
1451 	ret = __io_run_local_work(ctx, &ts);
1452 	/* shouldn't happen! */
1453 	if (WARN_ON_ONCE(!ts.locked))
1454 		mutex_lock(&ctx->uring_lock);
1455 	return ret;
1456 }
1457 
1458 static int io_run_local_work(struct io_ring_ctx *ctx)
1459 {
1460 	struct io_tw_state ts = {};
1461 	int ret;
1462 
1463 	ts.locked = mutex_trylock(&ctx->uring_lock);
1464 	ret = __io_run_local_work(ctx, &ts);
1465 	if (ts.locked)
1466 		mutex_unlock(&ctx->uring_lock);
1467 
1468 	return ret;
1469 }
1470 
1471 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1472 {
1473 	io_tw_lock(req->ctx, ts);
1474 	io_req_defer_failed(req, req->cqe.res);
1475 }
1476 
1477 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1478 {
1479 	io_tw_lock(req->ctx, ts);
1480 	/* req->task == current here, checking PF_EXITING is safe */
1481 	if (unlikely(req->task->flags & PF_EXITING))
1482 		io_req_defer_failed(req, -EFAULT);
1483 	else if (req->flags & REQ_F_FORCE_ASYNC)
1484 		io_queue_iowq(req, ts);
1485 	else
1486 		io_queue_sqe(req);
1487 }
1488 
1489 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1490 {
1491 	io_req_set_res(req, ret, 0);
1492 	req->io_task_work.func = io_req_task_cancel;
1493 	io_req_task_work_add(req);
1494 }
1495 
1496 void io_req_task_queue(struct io_kiocb *req)
1497 {
1498 	req->io_task_work.func = io_req_task_submit;
1499 	io_req_task_work_add(req);
1500 }
1501 
1502 void io_queue_next(struct io_kiocb *req)
1503 {
1504 	struct io_kiocb *nxt = io_req_find_next(req);
1505 
1506 	if (nxt)
1507 		io_req_task_queue(nxt);
1508 }
1509 
1510 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1511 	__must_hold(&ctx->uring_lock)
1512 {
1513 	do {
1514 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1515 						    comp_list);
1516 
1517 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1518 			if (req->flags & REQ_F_REFCOUNT) {
1519 				node = req->comp_list.next;
1520 				if (!req_ref_put_and_test(req))
1521 					continue;
1522 			}
1523 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1524 				struct async_poll *apoll = req->apoll;
1525 
1526 				if (apoll->double_poll)
1527 					kfree(apoll->double_poll);
1528 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1529 					kfree(apoll);
1530 				req->flags &= ~REQ_F_POLLED;
1531 			}
1532 			if (req->flags & IO_REQ_LINK_FLAGS)
1533 				io_queue_next(req);
1534 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1535 				io_clean_op(req);
1536 		}
1537 		if (!(req->flags & REQ_F_FIXED_FILE))
1538 			io_put_file(req->file);
1539 
1540 		io_req_put_rsrc_locked(req, ctx);
1541 
1542 		io_put_task(req->task);
1543 		node = req->comp_list.next;
1544 		io_req_add_to_cache(req, ctx);
1545 	} while (node);
1546 }
1547 
1548 static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1549 	__must_hold(&ctx->uring_lock)
1550 {
1551 	struct io_submit_state *state = &ctx->submit_state;
1552 	struct io_wq_work_node *node;
1553 
1554 	__io_cq_lock(ctx);
1555 	/* must come first to preserve CQE ordering in failure cases */
1556 	if (state->cqes_count)
1557 		__io_flush_post_cqes(ctx);
1558 	__wq_list_for_each(node, &state->compl_reqs) {
1559 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1560 					    comp_list);
1561 
1562 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1563 		    unlikely(!__io_fill_cqe_req(ctx, req))) {
1564 			if (ctx->task_complete) {
1565 				spin_lock(&ctx->completion_lock);
1566 				io_req_cqe_overflow(req);
1567 				spin_unlock(&ctx->completion_lock);
1568 			} else {
1569 				io_req_cqe_overflow(req);
1570 			}
1571 		}
1572 	}
1573 	__io_cq_unlock_post(ctx);
1574 
1575 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1576 		io_free_batch_list(ctx, state->compl_reqs.first);
1577 		INIT_WQ_LIST(&state->compl_reqs);
1578 	}
1579 }
1580 
1581 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1582 {
1583 	/* See comment at the top of this file */
1584 	smp_rmb();
1585 	return __io_cqring_events(ctx);
1586 }
1587 
1588 /*
1589  * We can't just wait for polled events to come to us, we have to actively
1590  * find and complete them.
1591  */
1592 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1593 {
1594 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1595 		return;
1596 
1597 	mutex_lock(&ctx->uring_lock);
1598 	while (!wq_list_empty(&ctx->iopoll_list)) {
1599 		/* let it sleep and repeat later if can't complete a request */
1600 		if (io_do_iopoll(ctx, true) == 0)
1601 			break;
1602 		/*
1603 		 * Ensure we allow local-to-the-cpu processing to take place,
1604 		 * in this case we need to ensure that we reap all events.
1605 		 * Also let task_work, etc. to progress by releasing the mutex
1606 		 */
1607 		if (need_resched()) {
1608 			mutex_unlock(&ctx->uring_lock);
1609 			cond_resched();
1610 			mutex_lock(&ctx->uring_lock);
1611 		}
1612 	}
1613 	mutex_unlock(&ctx->uring_lock);
1614 }
1615 
1616 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1617 {
1618 	unsigned int nr_events = 0;
1619 	int ret = 0;
1620 	unsigned long check_cq;
1621 
1622 	if (!io_allowed_run_tw(ctx))
1623 		return -EEXIST;
1624 
1625 	check_cq = READ_ONCE(ctx->check_cq);
1626 	if (unlikely(check_cq)) {
1627 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1628 			__io_cqring_overflow_flush(ctx);
1629 		/*
1630 		 * Similarly do not spin if we have not informed the user of any
1631 		 * dropped CQE.
1632 		 */
1633 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1634 			return -EBADR;
1635 	}
1636 	/*
1637 	 * Don't enter poll loop if we already have events pending.
1638 	 * If we do, we can potentially be spinning for commands that
1639 	 * already triggered a CQE (eg in error).
1640 	 */
1641 	if (io_cqring_events(ctx))
1642 		return 0;
1643 
1644 	do {
1645 		/*
1646 		 * If a submit got punted to a workqueue, we can have the
1647 		 * application entering polling for a command before it gets
1648 		 * issued. That app will hold the uring_lock for the duration
1649 		 * of the poll right here, so we need to take a breather every
1650 		 * now and then to ensure that the issue has a chance to add
1651 		 * the poll to the issued list. Otherwise we can spin here
1652 		 * forever, while the workqueue is stuck trying to acquire the
1653 		 * very same mutex.
1654 		 */
1655 		if (wq_list_empty(&ctx->iopoll_list) ||
1656 		    io_task_work_pending(ctx)) {
1657 			u32 tail = ctx->cached_cq_tail;
1658 
1659 			(void) io_run_local_work_locked(ctx);
1660 
1661 			if (task_work_pending(current) ||
1662 			    wq_list_empty(&ctx->iopoll_list)) {
1663 				mutex_unlock(&ctx->uring_lock);
1664 				io_run_task_work();
1665 				mutex_lock(&ctx->uring_lock);
1666 			}
1667 			/* some requests don't go through iopoll_list */
1668 			if (tail != ctx->cached_cq_tail ||
1669 			    wq_list_empty(&ctx->iopoll_list))
1670 				break;
1671 		}
1672 		ret = io_do_iopoll(ctx, !min);
1673 		if (ret < 0)
1674 			break;
1675 		nr_events += ret;
1676 		ret = 0;
1677 	} while (nr_events < min && !need_resched());
1678 
1679 	return ret;
1680 }
1681 
1682 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1683 {
1684 	if (ts->locked)
1685 		io_req_complete_defer(req);
1686 	else
1687 		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1688 }
1689 
1690 /*
1691  * After the iocb has been issued, it's safe to be found on the poll list.
1692  * Adding the kiocb to the list AFTER submission ensures that we don't
1693  * find it from a io_do_iopoll() thread before the issuer is done
1694  * accessing the kiocb cookie.
1695  */
1696 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1697 {
1698 	struct io_ring_ctx *ctx = req->ctx;
1699 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1700 
1701 	/* workqueue context doesn't hold uring_lock, grab it now */
1702 	if (unlikely(needs_lock))
1703 		mutex_lock(&ctx->uring_lock);
1704 
1705 	/*
1706 	 * Track whether we have multiple files in our lists. This will impact
1707 	 * how we do polling eventually, not spinning if we're on potentially
1708 	 * different devices.
1709 	 */
1710 	if (wq_list_empty(&ctx->iopoll_list)) {
1711 		ctx->poll_multi_queue = false;
1712 	} else if (!ctx->poll_multi_queue) {
1713 		struct io_kiocb *list_req;
1714 
1715 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1716 					comp_list);
1717 		if (list_req->file != req->file)
1718 			ctx->poll_multi_queue = true;
1719 	}
1720 
1721 	/*
1722 	 * For fast devices, IO may have already completed. If it has, add
1723 	 * it to the front so we find it first.
1724 	 */
1725 	if (READ_ONCE(req->iopoll_completed))
1726 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1727 	else
1728 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1729 
1730 	if (unlikely(needs_lock)) {
1731 		/*
1732 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1733 		 * in sq thread task context or in io worker task context. If
1734 		 * current task context is sq thread, we don't need to check
1735 		 * whether should wake up sq thread.
1736 		 */
1737 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1738 		    wq_has_sleeper(&ctx->sq_data->wait))
1739 			wake_up(&ctx->sq_data->wait);
1740 
1741 		mutex_unlock(&ctx->uring_lock);
1742 	}
1743 }
1744 
1745 unsigned int io_file_get_flags(struct file *file)
1746 {
1747 	unsigned int res = 0;
1748 
1749 	if (S_ISREG(file_inode(file)->i_mode))
1750 		res |= REQ_F_ISREG;
1751 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1752 		res |= REQ_F_SUPPORT_NOWAIT;
1753 	return res;
1754 }
1755 
1756 bool io_alloc_async_data(struct io_kiocb *req)
1757 {
1758 	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1759 	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1760 	if (req->async_data) {
1761 		req->flags |= REQ_F_ASYNC_DATA;
1762 		return false;
1763 	}
1764 	return true;
1765 }
1766 
1767 int io_req_prep_async(struct io_kiocb *req)
1768 {
1769 	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1770 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1771 
1772 	/* assign early for deferred execution for non-fixed file */
1773 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1774 		req->file = io_file_get_normal(req, req->cqe.fd);
1775 	if (!cdef->prep_async)
1776 		return 0;
1777 	if (WARN_ON_ONCE(req_has_async_data(req)))
1778 		return -EFAULT;
1779 	if (!def->manual_alloc) {
1780 		if (io_alloc_async_data(req))
1781 			return -EAGAIN;
1782 	}
1783 	return cdef->prep_async(req);
1784 }
1785 
1786 static u32 io_get_sequence(struct io_kiocb *req)
1787 {
1788 	u32 seq = req->ctx->cached_sq_head;
1789 	struct io_kiocb *cur;
1790 
1791 	/* need original cached_sq_head, but it was increased for each req */
1792 	io_for_each_link(cur, req)
1793 		seq--;
1794 	return seq;
1795 }
1796 
1797 static __cold void io_drain_req(struct io_kiocb *req)
1798 	__must_hold(&ctx->uring_lock)
1799 {
1800 	struct io_ring_ctx *ctx = req->ctx;
1801 	struct io_defer_entry *de;
1802 	int ret;
1803 	u32 seq = io_get_sequence(req);
1804 
1805 	/* Still need defer if there is pending req in defer list. */
1806 	spin_lock(&ctx->completion_lock);
1807 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1808 		spin_unlock(&ctx->completion_lock);
1809 queue:
1810 		ctx->drain_active = false;
1811 		io_req_task_queue(req);
1812 		return;
1813 	}
1814 	spin_unlock(&ctx->completion_lock);
1815 
1816 	io_prep_async_link(req);
1817 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1818 	if (!de) {
1819 		ret = -ENOMEM;
1820 		io_req_defer_failed(req, ret);
1821 		return;
1822 	}
1823 
1824 	spin_lock(&ctx->completion_lock);
1825 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1826 		spin_unlock(&ctx->completion_lock);
1827 		kfree(de);
1828 		goto queue;
1829 	}
1830 
1831 	trace_io_uring_defer(req);
1832 	de->req = req;
1833 	de->seq = seq;
1834 	list_add_tail(&de->list, &ctx->defer_list);
1835 	spin_unlock(&ctx->completion_lock);
1836 }
1837 
1838 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1839 			   unsigned int issue_flags)
1840 {
1841 	if (req->file || !def->needs_file)
1842 		return true;
1843 
1844 	if (req->flags & REQ_F_FIXED_FILE)
1845 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1846 	else
1847 		req->file = io_file_get_normal(req, req->cqe.fd);
1848 
1849 	return !!req->file;
1850 }
1851 
1852 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1853 {
1854 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1855 	const struct cred *creds = NULL;
1856 	int ret;
1857 
1858 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1859 		return -EBADF;
1860 
1861 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1862 		creds = override_creds(req->creds);
1863 
1864 	if (!def->audit_skip)
1865 		audit_uring_entry(req->opcode);
1866 
1867 	ret = def->issue(req, issue_flags);
1868 
1869 	if (!def->audit_skip)
1870 		audit_uring_exit(!ret, ret);
1871 
1872 	if (creds)
1873 		revert_creds(creds);
1874 
1875 	if (ret == IOU_OK) {
1876 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1877 			io_req_complete_defer(req);
1878 		else
1879 			io_req_complete_post(req, issue_flags);
1880 	} else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1881 		return ret;
1882 
1883 	/* If the op doesn't have a file, we're not polling for it */
1884 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1885 		io_iopoll_req_issued(req, issue_flags);
1886 
1887 	return 0;
1888 }
1889 
1890 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1891 {
1892 	io_tw_lock(req->ctx, ts);
1893 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1894 				 IO_URING_F_COMPLETE_DEFER);
1895 }
1896 
1897 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1898 {
1899 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1900 	struct io_kiocb *nxt = NULL;
1901 
1902 	if (req_ref_put_and_test(req)) {
1903 		if (req->flags & IO_REQ_LINK_FLAGS)
1904 			nxt = io_req_find_next(req);
1905 		io_free_req(req);
1906 	}
1907 	return nxt ? &nxt->work : NULL;
1908 }
1909 
1910 void io_wq_submit_work(struct io_wq_work *work)
1911 {
1912 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1913 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1914 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1915 	bool needs_poll = false;
1916 	int ret = 0, err = -ECANCELED;
1917 
1918 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1919 	if (!(req->flags & REQ_F_REFCOUNT))
1920 		__io_req_set_refcount(req, 2);
1921 	else
1922 		req_ref_get(req);
1923 
1924 	io_arm_ltimeout(req);
1925 
1926 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1927 	if (work->flags & IO_WQ_WORK_CANCEL) {
1928 fail:
1929 		io_req_task_queue_fail(req, err);
1930 		return;
1931 	}
1932 	if (!io_assign_file(req, def, issue_flags)) {
1933 		err = -EBADF;
1934 		work->flags |= IO_WQ_WORK_CANCEL;
1935 		goto fail;
1936 	}
1937 
1938 	if (req->flags & REQ_F_FORCE_ASYNC) {
1939 		bool opcode_poll = def->pollin || def->pollout;
1940 
1941 		if (opcode_poll && file_can_poll(req->file)) {
1942 			needs_poll = true;
1943 			issue_flags |= IO_URING_F_NONBLOCK;
1944 		}
1945 	}
1946 
1947 	do {
1948 		ret = io_issue_sqe(req, issue_flags);
1949 		if (ret != -EAGAIN)
1950 			break;
1951 		/*
1952 		 * We can get EAGAIN for iopolled IO even though we're
1953 		 * forcing a sync submission from here, since we can't
1954 		 * wait for request slots on the block side.
1955 		 */
1956 		if (!needs_poll) {
1957 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1958 				break;
1959 			cond_resched();
1960 			continue;
1961 		}
1962 
1963 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1964 			return;
1965 		/* aborted or ready, in either case retry blocking */
1966 		needs_poll = false;
1967 		issue_flags &= ~IO_URING_F_NONBLOCK;
1968 	} while (1);
1969 
1970 	/* avoid locking problems by failing it from a clean context */
1971 	if (ret < 0)
1972 		io_req_task_queue_fail(req, ret);
1973 }
1974 
1975 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1976 				      unsigned int issue_flags)
1977 {
1978 	struct io_ring_ctx *ctx = req->ctx;
1979 	struct io_fixed_file *slot;
1980 	struct file *file = NULL;
1981 
1982 	io_ring_submit_lock(ctx, issue_flags);
1983 
1984 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1985 		goto out;
1986 	fd = array_index_nospec(fd, ctx->nr_user_files);
1987 	slot = io_fixed_file_slot(&ctx->file_table, fd);
1988 	file = io_slot_file(slot);
1989 	req->flags |= io_slot_flags(slot);
1990 	io_req_set_rsrc_node(req, ctx, 0);
1991 out:
1992 	io_ring_submit_unlock(ctx, issue_flags);
1993 	return file;
1994 }
1995 
1996 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1997 {
1998 	struct file *file = fget(fd);
1999 
2000 	trace_io_uring_file_get(req, fd);
2001 
2002 	/* we don't allow fixed io_uring files */
2003 	if (file && io_is_uring_fops(file))
2004 		io_req_track_inflight(req);
2005 	return file;
2006 }
2007 
2008 static void io_queue_async(struct io_kiocb *req, int ret)
2009 	__must_hold(&req->ctx->uring_lock)
2010 {
2011 	struct io_kiocb *linked_timeout;
2012 
2013 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2014 		io_req_defer_failed(req, ret);
2015 		return;
2016 	}
2017 
2018 	linked_timeout = io_prep_linked_timeout(req);
2019 
2020 	switch (io_arm_poll_handler(req, 0)) {
2021 	case IO_APOLL_READY:
2022 		io_kbuf_recycle(req, 0);
2023 		io_req_task_queue(req);
2024 		break;
2025 	case IO_APOLL_ABORTED:
2026 		io_kbuf_recycle(req, 0);
2027 		io_queue_iowq(req, NULL);
2028 		break;
2029 	case IO_APOLL_OK:
2030 		break;
2031 	}
2032 
2033 	if (linked_timeout)
2034 		io_queue_linked_timeout(linked_timeout);
2035 }
2036 
2037 static inline void io_queue_sqe(struct io_kiocb *req)
2038 	__must_hold(&req->ctx->uring_lock)
2039 {
2040 	int ret;
2041 
2042 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2043 
2044 	/*
2045 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2046 	 * doesn't support non-blocking read/write attempts
2047 	 */
2048 	if (likely(!ret))
2049 		io_arm_ltimeout(req);
2050 	else
2051 		io_queue_async(req, ret);
2052 }
2053 
2054 static void io_queue_sqe_fallback(struct io_kiocb *req)
2055 	__must_hold(&req->ctx->uring_lock)
2056 {
2057 	if (unlikely(req->flags & REQ_F_FAIL)) {
2058 		/*
2059 		 * We don't submit, fail them all, for that replace hardlinks
2060 		 * with normal links. Extra REQ_F_LINK is tolerated.
2061 		 */
2062 		req->flags &= ~REQ_F_HARDLINK;
2063 		req->flags |= REQ_F_LINK;
2064 		io_req_defer_failed(req, req->cqe.res);
2065 	} else {
2066 		int ret = io_req_prep_async(req);
2067 
2068 		if (unlikely(ret)) {
2069 			io_req_defer_failed(req, ret);
2070 			return;
2071 		}
2072 
2073 		if (unlikely(req->ctx->drain_active))
2074 			io_drain_req(req);
2075 		else
2076 			io_queue_iowq(req, NULL);
2077 	}
2078 }
2079 
2080 /*
2081  * Check SQE restrictions (opcode and flags).
2082  *
2083  * Returns 'true' if SQE is allowed, 'false' otherwise.
2084  */
2085 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2086 					struct io_kiocb *req,
2087 					unsigned int sqe_flags)
2088 {
2089 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2090 		return false;
2091 
2092 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2093 	    ctx->restrictions.sqe_flags_required)
2094 		return false;
2095 
2096 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2097 			  ctx->restrictions.sqe_flags_required))
2098 		return false;
2099 
2100 	return true;
2101 }
2102 
2103 static void io_init_req_drain(struct io_kiocb *req)
2104 {
2105 	struct io_ring_ctx *ctx = req->ctx;
2106 	struct io_kiocb *head = ctx->submit_state.link.head;
2107 
2108 	ctx->drain_active = true;
2109 	if (head) {
2110 		/*
2111 		 * If we need to drain a request in the middle of a link, drain
2112 		 * the head request and the next request/link after the current
2113 		 * link. Considering sequential execution of links,
2114 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2115 		 * link.
2116 		 */
2117 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2118 		ctx->drain_next = true;
2119 	}
2120 }
2121 
2122 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2123 		       const struct io_uring_sqe *sqe)
2124 	__must_hold(&ctx->uring_lock)
2125 {
2126 	const struct io_issue_def *def;
2127 	unsigned int sqe_flags;
2128 	int personality;
2129 	u8 opcode;
2130 
2131 	/* req is partially pre-initialised, see io_preinit_req() */
2132 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2133 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2134 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2135 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2136 	req->file = NULL;
2137 	req->rsrc_node = NULL;
2138 	req->task = current;
2139 
2140 	if (unlikely(opcode >= IORING_OP_LAST)) {
2141 		req->opcode = 0;
2142 		return -EINVAL;
2143 	}
2144 	def = &io_issue_defs[opcode];
2145 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2146 		/* enforce forwards compatibility on users */
2147 		if (sqe_flags & ~SQE_VALID_FLAGS)
2148 			return -EINVAL;
2149 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2150 			if (!def->buffer_select)
2151 				return -EOPNOTSUPP;
2152 			req->buf_index = READ_ONCE(sqe->buf_group);
2153 		}
2154 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2155 			ctx->drain_disabled = true;
2156 		if (sqe_flags & IOSQE_IO_DRAIN) {
2157 			if (ctx->drain_disabled)
2158 				return -EOPNOTSUPP;
2159 			io_init_req_drain(req);
2160 		}
2161 	}
2162 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2163 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2164 			return -EACCES;
2165 		/* knock it to the slow queue path, will be drained there */
2166 		if (ctx->drain_active)
2167 			req->flags |= REQ_F_FORCE_ASYNC;
2168 		/* if there is no link, we're at "next" request and need to drain */
2169 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2170 			ctx->drain_next = false;
2171 			ctx->drain_active = true;
2172 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2173 		}
2174 	}
2175 
2176 	if (!def->ioprio && sqe->ioprio)
2177 		return -EINVAL;
2178 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2179 		return -EINVAL;
2180 
2181 	if (def->needs_file) {
2182 		struct io_submit_state *state = &ctx->submit_state;
2183 
2184 		req->cqe.fd = READ_ONCE(sqe->fd);
2185 
2186 		/*
2187 		 * Plug now if we have more than 2 IO left after this, and the
2188 		 * target is potentially a read/write to block based storage.
2189 		 */
2190 		if (state->need_plug && def->plug) {
2191 			state->plug_started = true;
2192 			state->need_plug = false;
2193 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2194 		}
2195 	}
2196 
2197 	personality = READ_ONCE(sqe->personality);
2198 	if (personality) {
2199 		int ret;
2200 
2201 		req->creds = xa_load(&ctx->personalities, personality);
2202 		if (!req->creds)
2203 			return -EINVAL;
2204 		get_cred(req->creds);
2205 		ret = security_uring_override_creds(req->creds);
2206 		if (ret) {
2207 			put_cred(req->creds);
2208 			return ret;
2209 		}
2210 		req->flags |= REQ_F_CREDS;
2211 	}
2212 
2213 	return def->prep(req, sqe);
2214 }
2215 
2216 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2217 				      struct io_kiocb *req, int ret)
2218 {
2219 	struct io_ring_ctx *ctx = req->ctx;
2220 	struct io_submit_link *link = &ctx->submit_state.link;
2221 	struct io_kiocb *head = link->head;
2222 
2223 	trace_io_uring_req_failed(sqe, req, ret);
2224 
2225 	/*
2226 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2227 	 * unusable. Instead of failing eagerly, continue assembling the link if
2228 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2229 	 * should find the flag and handle the rest.
2230 	 */
2231 	req_fail_link_node(req, ret);
2232 	if (head && !(head->flags & REQ_F_FAIL))
2233 		req_fail_link_node(head, -ECANCELED);
2234 
2235 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2236 		if (head) {
2237 			link->last->link = req;
2238 			link->head = NULL;
2239 			req = head;
2240 		}
2241 		io_queue_sqe_fallback(req);
2242 		return ret;
2243 	}
2244 
2245 	if (head)
2246 		link->last->link = req;
2247 	else
2248 		link->head = req;
2249 	link->last = req;
2250 	return 0;
2251 }
2252 
2253 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2254 			 const struct io_uring_sqe *sqe)
2255 	__must_hold(&ctx->uring_lock)
2256 {
2257 	struct io_submit_link *link = &ctx->submit_state.link;
2258 	int ret;
2259 
2260 	ret = io_init_req(ctx, req, sqe);
2261 	if (unlikely(ret))
2262 		return io_submit_fail_init(sqe, req, ret);
2263 
2264 	trace_io_uring_submit_req(req);
2265 
2266 	/*
2267 	 * If we already have a head request, queue this one for async
2268 	 * submittal once the head completes. If we don't have a head but
2269 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2270 	 * submitted sync once the chain is complete. If none of those
2271 	 * conditions are true (normal request), then just queue it.
2272 	 */
2273 	if (unlikely(link->head)) {
2274 		ret = io_req_prep_async(req);
2275 		if (unlikely(ret))
2276 			return io_submit_fail_init(sqe, req, ret);
2277 
2278 		trace_io_uring_link(req, link->head);
2279 		link->last->link = req;
2280 		link->last = req;
2281 
2282 		if (req->flags & IO_REQ_LINK_FLAGS)
2283 			return 0;
2284 		/* last request of the link, flush it */
2285 		req = link->head;
2286 		link->head = NULL;
2287 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2288 			goto fallback;
2289 
2290 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2291 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2292 		if (req->flags & IO_REQ_LINK_FLAGS) {
2293 			link->head = req;
2294 			link->last = req;
2295 		} else {
2296 fallback:
2297 			io_queue_sqe_fallback(req);
2298 		}
2299 		return 0;
2300 	}
2301 
2302 	io_queue_sqe(req);
2303 	return 0;
2304 }
2305 
2306 /*
2307  * Batched submission is done, ensure local IO is flushed out.
2308  */
2309 static void io_submit_state_end(struct io_ring_ctx *ctx)
2310 {
2311 	struct io_submit_state *state = &ctx->submit_state;
2312 
2313 	if (unlikely(state->link.head))
2314 		io_queue_sqe_fallback(state->link.head);
2315 	/* flush only after queuing links as they can generate completions */
2316 	io_submit_flush_completions(ctx);
2317 	if (state->plug_started)
2318 		blk_finish_plug(&state->plug);
2319 }
2320 
2321 /*
2322  * Start submission side cache.
2323  */
2324 static void io_submit_state_start(struct io_submit_state *state,
2325 				  unsigned int max_ios)
2326 {
2327 	state->plug_started = false;
2328 	state->need_plug = max_ios > 2;
2329 	state->submit_nr = max_ios;
2330 	/* set only head, no need to init link_last in advance */
2331 	state->link.head = NULL;
2332 }
2333 
2334 static void io_commit_sqring(struct io_ring_ctx *ctx)
2335 {
2336 	struct io_rings *rings = ctx->rings;
2337 
2338 	/*
2339 	 * Ensure any loads from the SQEs are done at this point,
2340 	 * since once we write the new head, the application could
2341 	 * write new data to them.
2342 	 */
2343 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2344 }
2345 
2346 /*
2347  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2348  * that is mapped by userspace. This means that care needs to be taken to
2349  * ensure that reads are stable, as we cannot rely on userspace always
2350  * being a good citizen. If members of the sqe are validated and then later
2351  * used, it's important that those reads are done through READ_ONCE() to
2352  * prevent a re-load down the line.
2353  */
2354 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2355 {
2356 	unsigned head, mask = ctx->sq_entries - 1;
2357 	unsigned sq_idx = ctx->cached_sq_head++ & mask;
2358 
2359 	/*
2360 	 * The cached sq head (or cq tail) serves two purposes:
2361 	 *
2362 	 * 1) allows us to batch the cost of updating the user visible
2363 	 *    head updates.
2364 	 * 2) allows the kernel side to track the head on its own, even
2365 	 *    though the application is the one updating it.
2366 	 */
2367 	head = READ_ONCE(ctx->sq_array[sq_idx]);
2368 	if (likely(head < ctx->sq_entries)) {
2369 		/* double index for 128-byte SQEs, twice as long */
2370 		if (ctx->flags & IORING_SETUP_SQE128)
2371 			head <<= 1;
2372 		*sqe = &ctx->sq_sqes[head];
2373 		return true;
2374 	}
2375 
2376 	/* drop invalid entries */
2377 	ctx->cq_extra--;
2378 	WRITE_ONCE(ctx->rings->sq_dropped,
2379 		   READ_ONCE(ctx->rings->sq_dropped) + 1);
2380 	return false;
2381 }
2382 
2383 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2384 	__must_hold(&ctx->uring_lock)
2385 {
2386 	unsigned int entries = io_sqring_entries(ctx);
2387 	unsigned int left;
2388 	int ret;
2389 
2390 	if (unlikely(!entries))
2391 		return 0;
2392 	/* make sure SQ entry isn't read before tail */
2393 	ret = left = min(nr, entries);
2394 	io_get_task_refs(left);
2395 	io_submit_state_start(&ctx->submit_state, left);
2396 
2397 	do {
2398 		const struct io_uring_sqe *sqe;
2399 		struct io_kiocb *req;
2400 
2401 		if (unlikely(!io_alloc_req(ctx, &req)))
2402 			break;
2403 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2404 			io_req_add_to_cache(req, ctx);
2405 			break;
2406 		}
2407 
2408 		/*
2409 		 * Continue submitting even for sqe failure if the
2410 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2411 		 */
2412 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2413 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2414 			left--;
2415 			break;
2416 		}
2417 	} while (--left);
2418 
2419 	if (unlikely(left)) {
2420 		ret -= left;
2421 		/* try again if it submitted nothing and can't allocate a req */
2422 		if (!ret && io_req_cache_empty(ctx))
2423 			ret = -EAGAIN;
2424 		current->io_uring->cached_refs += left;
2425 	}
2426 
2427 	io_submit_state_end(ctx);
2428 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2429 	io_commit_sqring(ctx);
2430 	return ret;
2431 }
2432 
2433 struct io_wait_queue {
2434 	struct wait_queue_entry wq;
2435 	struct io_ring_ctx *ctx;
2436 	unsigned cq_tail;
2437 	unsigned nr_timeouts;
2438 	ktime_t timeout;
2439 };
2440 
2441 static inline bool io_has_work(struct io_ring_ctx *ctx)
2442 {
2443 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2444 	       !llist_empty(&ctx->work_llist);
2445 }
2446 
2447 static inline bool io_should_wake(struct io_wait_queue *iowq)
2448 {
2449 	struct io_ring_ctx *ctx = iowq->ctx;
2450 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2451 
2452 	/*
2453 	 * Wake up if we have enough events, or if a timeout occurred since we
2454 	 * started waiting. For timeouts, we always want to return to userspace,
2455 	 * regardless of event count.
2456 	 */
2457 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2458 }
2459 
2460 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2461 			    int wake_flags, void *key)
2462 {
2463 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2464 
2465 	/*
2466 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2467 	 * the task, and the next invocation will do it.
2468 	 */
2469 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2470 		return autoremove_wake_function(curr, mode, wake_flags, key);
2471 	return -1;
2472 }
2473 
2474 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2475 {
2476 	if (!llist_empty(&ctx->work_llist)) {
2477 		__set_current_state(TASK_RUNNING);
2478 		if (io_run_local_work(ctx) > 0)
2479 			return 1;
2480 	}
2481 	if (io_run_task_work() > 0)
2482 		return 1;
2483 	if (task_sigpending(current))
2484 		return -EINTR;
2485 	return 0;
2486 }
2487 
2488 /* when returns >0, the caller should retry */
2489 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2490 					  struct io_wait_queue *iowq)
2491 {
2492 	int token, ret;
2493 
2494 	if (unlikely(READ_ONCE(ctx->check_cq)))
2495 		return 1;
2496 	if (unlikely(!llist_empty(&ctx->work_llist)))
2497 		return 1;
2498 	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2499 		return 1;
2500 	if (unlikely(task_sigpending(current)))
2501 		return -EINTR;
2502 	if (unlikely(io_should_wake(iowq)))
2503 		return 0;
2504 
2505 	/*
2506 	 * Use io_schedule_prepare/finish, so cpufreq can take into account
2507 	 * that the task is waiting for IO - turns out to be important for low
2508 	 * QD IO.
2509 	 */
2510 	token = io_schedule_prepare();
2511 	ret = 0;
2512 	if (iowq->timeout == KTIME_MAX)
2513 		schedule();
2514 	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2515 		ret = -ETIME;
2516 	io_schedule_finish(token);
2517 	return ret;
2518 }
2519 
2520 /*
2521  * Wait until events become available, if we don't already have some. The
2522  * application must reap them itself, as they reside on the shared cq ring.
2523  */
2524 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2525 			  const sigset_t __user *sig, size_t sigsz,
2526 			  struct __kernel_timespec __user *uts)
2527 {
2528 	struct io_wait_queue iowq;
2529 	struct io_rings *rings = ctx->rings;
2530 	int ret;
2531 
2532 	if (!io_allowed_run_tw(ctx))
2533 		return -EEXIST;
2534 	if (!llist_empty(&ctx->work_llist))
2535 		io_run_local_work(ctx);
2536 	io_run_task_work();
2537 	io_cqring_overflow_flush(ctx);
2538 	/* if user messes with these they will just get an early return */
2539 	if (__io_cqring_events_user(ctx) >= min_events)
2540 		return 0;
2541 
2542 	if (sig) {
2543 #ifdef CONFIG_COMPAT
2544 		if (in_compat_syscall())
2545 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2546 						      sigsz);
2547 		else
2548 #endif
2549 			ret = set_user_sigmask(sig, sigsz);
2550 
2551 		if (ret)
2552 			return ret;
2553 	}
2554 
2555 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2556 	iowq.wq.private = current;
2557 	INIT_LIST_HEAD(&iowq.wq.entry);
2558 	iowq.ctx = ctx;
2559 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2560 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2561 	iowq.timeout = KTIME_MAX;
2562 
2563 	if (uts) {
2564 		struct timespec64 ts;
2565 
2566 		if (get_timespec64(&ts, uts))
2567 			return -EFAULT;
2568 		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2569 	}
2570 
2571 	trace_io_uring_cqring_wait(ctx, min_events);
2572 	do {
2573 		unsigned long check_cq;
2574 
2575 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2576 			int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2577 
2578 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2579 			set_current_state(TASK_INTERRUPTIBLE);
2580 		} else {
2581 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2582 							TASK_INTERRUPTIBLE);
2583 		}
2584 
2585 		ret = io_cqring_wait_schedule(ctx, &iowq);
2586 		__set_current_state(TASK_RUNNING);
2587 		atomic_set(&ctx->cq_wait_nr, 0);
2588 
2589 		if (ret < 0)
2590 			break;
2591 		/*
2592 		 * Run task_work after scheduling and before io_should_wake().
2593 		 * If we got woken because of task_work being processed, run it
2594 		 * now rather than let the caller do another wait loop.
2595 		 */
2596 		io_run_task_work();
2597 		if (!llist_empty(&ctx->work_llist))
2598 			io_run_local_work(ctx);
2599 
2600 		check_cq = READ_ONCE(ctx->check_cq);
2601 		if (unlikely(check_cq)) {
2602 			/* let the caller flush overflows, retry */
2603 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2604 				io_cqring_do_overflow_flush(ctx);
2605 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2606 				ret = -EBADR;
2607 				break;
2608 			}
2609 		}
2610 
2611 		if (io_should_wake(&iowq)) {
2612 			ret = 0;
2613 			break;
2614 		}
2615 		cond_resched();
2616 	} while (1);
2617 
2618 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2619 		finish_wait(&ctx->cq_wait, &iowq.wq);
2620 	restore_saved_sigmask_unless(ret == -EINTR);
2621 
2622 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2623 }
2624 
2625 static void io_mem_free(void *ptr)
2626 {
2627 	struct page *page;
2628 
2629 	if (!ptr)
2630 		return;
2631 
2632 	page = virt_to_head_page(ptr);
2633 	if (put_page_testzero(page))
2634 		free_compound_page(page);
2635 }
2636 
2637 static void io_pages_free(struct page ***pages, int npages)
2638 {
2639 	struct page **page_array;
2640 	int i;
2641 
2642 	if (!pages)
2643 		return;
2644 	page_array = *pages;
2645 	for (i = 0; i < npages; i++)
2646 		unpin_user_page(page_array[i]);
2647 	kvfree(page_array);
2648 	*pages = NULL;
2649 }
2650 
2651 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2652 			    unsigned long uaddr, size_t size)
2653 {
2654 	struct page **page_array;
2655 	unsigned int nr_pages;
2656 	int ret;
2657 
2658 	*npages = 0;
2659 
2660 	if (uaddr & (PAGE_SIZE - 1) || !size)
2661 		return ERR_PTR(-EINVAL);
2662 
2663 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2664 	if (nr_pages > USHRT_MAX)
2665 		return ERR_PTR(-EINVAL);
2666 	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2667 	if (!page_array)
2668 		return ERR_PTR(-ENOMEM);
2669 
2670 	ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2671 					page_array);
2672 	if (ret != nr_pages) {
2673 err:
2674 		io_pages_free(&page_array, ret > 0 ? ret : 0);
2675 		return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT);
2676 	}
2677 	/*
2678 	 * Should be a single page. If the ring is small enough that we can
2679 	 * use a normal page, that is fine. If we need multiple pages, then
2680 	 * userspace should use a huge page. That's the only way to guarantee
2681 	 * that we get contigious memory, outside of just being lucky or
2682 	 * (currently) having low memory fragmentation.
2683 	 */
2684 	if (page_array[0] != page_array[ret - 1])
2685 		goto err;
2686 	*pages = page_array;
2687 	*npages = nr_pages;
2688 	return page_to_virt(page_array[0]);
2689 }
2690 
2691 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2692 			  size_t size)
2693 {
2694 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2695 				size);
2696 }
2697 
2698 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2699 			 size_t size)
2700 {
2701 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2702 				size);
2703 }
2704 
2705 static void io_rings_free(struct io_ring_ctx *ctx)
2706 {
2707 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2708 		io_mem_free(ctx->rings);
2709 		io_mem_free(ctx->sq_sqes);
2710 		ctx->rings = NULL;
2711 		ctx->sq_sqes = NULL;
2712 	} else {
2713 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2714 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2715 	}
2716 }
2717 
2718 static void *io_mem_alloc(size_t size)
2719 {
2720 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2721 	void *ret;
2722 
2723 	ret = (void *) __get_free_pages(gfp, get_order(size));
2724 	if (ret)
2725 		return ret;
2726 	return ERR_PTR(-ENOMEM);
2727 }
2728 
2729 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2730 				unsigned int cq_entries, size_t *sq_offset)
2731 {
2732 	struct io_rings *rings;
2733 	size_t off, sq_array_size;
2734 
2735 	off = struct_size(rings, cqes, cq_entries);
2736 	if (off == SIZE_MAX)
2737 		return SIZE_MAX;
2738 	if (ctx->flags & IORING_SETUP_CQE32) {
2739 		if (check_shl_overflow(off, 1, &off))
2740 			return SIZE_MAX;
2741 	}
2742 
2743 #ifdef CONFIG_SMP
2744 	off = ALIGN(off, SMP_CACHE_BYTES);
2745 	if (off == 0)
2746 		return SIZE_MAX;
2747 #endif
2748 
2749 	if (sq_offset)
2750 		*sq_offset = off;
2751 
2752 	sq_array_size = array_size(sizeof(u32), sq_entries);
2753 	if (sq_array_size == SIZE_MAX)
2754 		return SIZE_MAX;
2755 
2756 	if (check_add_overflow(off, sq_array_size, &off))
2757 		return SIZE_MAX;
2758 
2759 	return off;
2760 }
2761 
2762 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2763 			       unsigned int eventfd_async)
2764 {
2765 	struct io_ev_fd *ev_fd;
2766 	__s32 __user *fds = arg;
2767 	int fd;
2768 
2769 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2770 					lockdep_is_held(&ctx->uring_lock));
2771 	if (ev_fd)
2772 		return -EBUSY;
2773 
2774 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2775 		return -EFAULT;
2776 
2777 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2778 	if (!ev_fd)
2779 		return -ENOMEM;
2780 
2781 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2782 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2783 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2784 		kfree(ev_fd);
2785 		return ret;
2786 	}
2787 
2788 	spin_lock(&ctx->completion_lock);
2789 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2790 	spin_unlock(&ctx->completion_lock);
2791 
2792 	ev_fd->eventfd_async = eventfd_async;
2793 	ctx->has_evfd = true;
2794 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2795 	atomic_set(&ev_fd->refs, 1);
2796 	atomic_set(&ev_fd->ops, 0);
2797 	return 0;
2798 }
2799 
2800 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2801 {
2802 	struct io_ev_fd *ev_fd;
2803 
2804 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2805 					lockdep_is_held(&ctx->uring_lock));
2806 	if (ev_fd) {
2807 		ctx->has_evfd = false;
2808 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2809 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2810 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2811 		return 0;
2812 	}
2813 
2814 	return -ENXIO;
2815 }
2816 
2817 static void io_req_caches_free(struct io_ring_ctx *ctx)
2818 {
2819 	struct io_kiocb *req;
2820 	int nr = 0;
2821 
2822 	mutex_lock(&ctx->uring_lock);
2823 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2824 
2825 	while (!io_req_cache_empty(ctx)) {
2826 		req = io_extract_req(ctx);
2827 		kmem_cache_free(req_cachep, req);
2828 		nr++;
2829 	}
2830 	if (nr)
2831 		percpu_ref_put_many(&ctx->refs, nr);
2832 	mutex_unlock(&ctx->uring_lock);
2833 }
2834 
2835 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2836 {
2837 	kfree(container_of(entry, struct io_rsrc_node, cache));
2838 }
2839 
2840 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2841 {
2842 	io_sq_thread_finish(ctx);
2843 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2844 	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2845 		return;
2846 
2847 	mutex_lock(&ctx->uring_lock);
2848 	if (ctx->buf_data)
2849 		__io_sqe_buffers_unregister(ctx);
2850 	if (ctx->file_data)
2851 		__io_sqe_files_unregister(ctx);
2852 	io_cqring_overflow_kill(ctx);
2853 	io_eventfd_unregister(ctx);
2854 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2855 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2856 	io_destroy_buffers(ctx);
2857 	mutex_unlock(&ctx->uring_lock);
2858 	if (ctx->sq_creds)
2859 		put_cred(ctx->sq_creds);
2860 	if (ctx->submitter_task)
2861 		put_task_struct(ctx->submitter_task);
2862 
2863 	/* there are no registered resources left, nobody uses it */
2864 	if (ctx->rsrc_node)
2865 		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2866 
2867 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2868 
2869 #if defined(CONFIG_UNIX)
2870 	if (ctx->ring_sock) {
2871 		ctx->ring_sock->file = NULL; /* so that iput() is called */
2872 		sock_release(ctx->ring_sock);
2873 	}
2874 #endif
2875 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2876 
2877 	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2878 	if (ctx->mm_account) {
2879 		mmdrop(ctx->mm_account);
2880 		ctx->mm_account = NULL;
2881 	}
2882 	io_rings_free(ctx);
2883 
2884 	percpu_ref_exit(&ctx->refs);
2885 	free_uid(ctx->user);
2886 	io_req_caches_free(ctx);
2887 	if (ctx->hash_map)
2888 		io_wq_put_hash(ctx->hash_map);
2889 	kfree(ctx->cancel_table.hbs);
2890 	kfree(ctx->cancel_table_locked.hbs);
2891 	kfree(ctx->dummy_ubuf);
2892 	kfree(ctx->io_bl);
2893 	xa_destroy(&ctx->io_bl_xa);
2894 	kfree(ctx);
2895 }
2896 
2897 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2898 {
2899 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2900 					       poll_wq_task_work);
2901 
2902 	mutex_lock(&ctx->uring_lock);
2903 	ctx->poll_activated = true;
2904 	mutex_unlock(&ctx->uring_lock);
2905 
2906 	/*
2907 	 * Wake ups for some events between start of polling and activation
2908 	 * might've been lost due to loose synchronisation.
2909 	 */
2910 	wake_up_all(&ctx->poll_wq);
2911 	percpu_ref_put(&ctx->refs);
2912 }
2913 
2914 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2915 {
2916 	spin_lock(&ctx->completion_lock);
2917 	/* already activated or in progress */
2918 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2919 		goto out;
2920 	if (WARN_ON_ONCE(!ctx->task_complete))
2921 		goto out;
2922 	if (!ctx->submitter_task)
2923 		goto out;
2924 	/*
2925 	 * with ->submitter_task only the submitter task completes requests, we
2926 	 * only need to sync with it, which is done by injecting a tw
2927 	 */
2928 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2929 	percpu_ref_get(&ctx->refs);
2930 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2931 		percpu_ref_put(&ctx->refs);
2932 out:
2933 	spin_unlock(&ctx->completion_lock);
2934 }
2935 
2936 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2937 {
2938 	struct io_ring_ctx *ctx = file->private_data;
2939 	__poll_t mask = 0;
2940 
2941 	if (unlikely(!ctx->poll_activated))
2942 		io_activate_pollwq(ctx);
2943 
2944 	poll_wait(file, &ctx->poll_wq, wait);
2945 	/*
2946 	 * synchronizes with barrier from wq_has_sleeper call in
2947 	 * io_commit_cqring
2948 	 */
2949 	smp_rmb();
2950 	if (!io_sqring_full(ctx))
2951 		mask |= EPOLLOUT | EPOLLWRNORM;
2952 
2953 	/*
2954 	 * Don't flush cqring overflow list here, just do a simple check.
2955 	 * Otherwise there could possible be ABBA deadlock:
2956 	 *      CPU0                    CPU1
2957 	 *      ----                    ----
2958 	 * lock(&ctx->uring_lock);
2959 	 *                              lock(&ep->mtx);
2960 	 *                              lock(&ctx->uring_lock);
2961 	 * lock(&ep->mtx);
2962 	 *
2963 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2964 	 * pushes them to do the flush.
2965 	 */
2966 
2967 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2968 		mask |= EPOLLIN | EPOLLRDNORM;
2969 
2970 	return mask;
2971 }
2972 
2973 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2974 {
2975 	const struct cred *creds;
2976 
2977 	creds = xa_erase(&ctx->personalities, id);
2978 	if (creds) {
2979 		put_cred(creds);
2980 		return 0;
2981 	}
2982 
2983 	return -EINVAL;
2984 }
2985 
2986 struct io_tctx_exit {
2987 	struct callback_head		task_work;
2988 	struct completion		completion;
2989 	struct io_ring_ctx		*ctx;
2990 };
2991 
2992 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2993 {
2994 	struct io_uring_task *tctx = current->io_uring;
2995 	struct io_tctx_exit *work;
2996 
2997 	work = container_of(cb, struct io_tctx_exit, task_work);
2998 	/*
2999 	 * When @in_cancel, we're in cancellation and it's racy to remove the
3000 	 * node. It'll be removed by the end of cancellation, just ignore it.
3001 	 * tctx can be NULL if the queueing of this task_work raced with
3002 	 * work cancelation off the exec path.
3003 	 */
3004 	if (tctx && !atomic_read(&tctx->in_cancel))
3005 		io_uring_del_tctx_node((unsigned long)work->ctx);
3006 	complete(&work->completion);
3007 }
3008 
3009 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3010 {
3011 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3012 
3013 	return req->ctx == data;
3014 }
3015 
3016 static __cold void io_ring_exit_work(struct work_struct *work)
3017 {
3018 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3019 	unsigned long timeout = jiffies + HZ * 60 * 5;
3020 	unsigned long interval = HZ / 20;
3021 	struct io_tctx_exit exit;
3022 	struct io_tctx_node *node;
3023 	int ret;
3024 
3025 	/*
3026 	 * If we're doing polled IO and end up having requests being
3027 	 * submitted async (out-of-line), then completions can come in while
3028 	 * we're waiting for refs to drop. We need to reap these manually,
3029 	 * as nobody else will be looking for them.
3030 	 */
3031 	do {
3032 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3033 			mutex_lock(&ctx->uring_lock);
3034 			io_cqring_overflow_kill(ctx);
3035 			mutex_unlock(&ctx->uring_lock);
3036 		}
3037 
3038 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3039 			io_move_task_work_from_local(ctx);
3040 
3041 		while (io_uring_try_cancel_requests(ctx, NULL, true))
3042 			cond_resched();
3043 
3044 		if (ctx->sq_data) {
3045 			struct io_sq_data *sqd = ctx->sq_data;
3046 			struct task_struct *tsk;
3047 
3048 			io_sq_thread_park(sqd);
3049 			tsk = sqd->thread;
3050 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3051 				io_wq_cancel_cb(tsk->io_uring->io_wq,
3052 						io_cancel_ctx_cb, ctx, true);
3053 			io_sq_thread_unpark(sqd);
3054 		}
3055 
3056 		io_req_caches_free(ctx);
3057 
3058 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3059 			/* there is little hope left, don't run it too often */
3060 			interval = HZ * 60;
3061 		}
3062 		/*
3063 		 * This is really an uninterruptible wait, as it has to be
3064 		 * complete. But it's also run from a kworker, which doesn't
3065 		 * take signals, so it's fine to make it interruptible. This
3066 		 * avoids scenarios where we knowingly can wait much longer
3067 		 * on completions, for example if someone does a SIGSTOP on
3068 		 * a task that needs to finish task_work to make this loop
3069 		 * complete. That's a synthetic situation that should not
3070 		 * cause a stuck task backtrace, and hence a potential panic
3071 		 * on stuck tasks if that is enabled.
3072 		 */
3073 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3074 
3075 	init_completion(&exit.completion);
3076 	init_task_work(&exit.task_work, io_tctx_exit_cb);
3077 	exit.ctx = ctx;
3078 	/*
3079 	 * Some may use context even when all refs and requests have been put,
3080 	 * and they are free to do so while still holding uring_lock or
3081 	 * completion_lock, see io_req_task_submit(). Apart from other work,
3082 	 * this lock/unlock section also waits them to finish.
3083 	 */
3084 	mutex_lock(&ctx->uring_lock);
3085 	while (!list_empty(&ctx->tctx_list)) {
3086 		WARN_ON_ONCE(time_after(jiffies, timeout));
3087 
3088 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3089 					ctx_node);
3090 		/* don't spin on a single task if cancellation failed */
3091 		list_rotate_left(&ctx->tctx_list);
3092 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3093 		if (WARN_ON_ONCE(ret))
3094 			continue;
3095 
3096 		mutex_unlock(&ctx->uring_lock);
3097 		/*
3098 		 * See comment above for
3099 		 * wait_for_completion_interruptible_timeout() on why this
3100 		 * wait is marked as interruptible.
3101 		 */
3102 		wait_for_completion_interruptible(&exit.completion);
3103 		mutex_lock(&ctx->uring_lock);
3104 	}
3105 	mutex_unlock(&ctx->uring_lock);
3106 	spin_lock(&ctx->completion_lock);
3107 	spin_unlock(&ctx->completion_lock);
3108 
3109 	/* pairs with RCU read section in io_req_local_work_add() */
3110 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3111 		synchronize_rcu();
3112 
3113 	io_ring_ctx_free(ctx);
3114 }
3115 
3116 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3117 {
3118 	unsigned long index;
3119 	struct creds *creds;
3120 
3121 	mutex_lock(&ctx->uring_lock);
3122 	percpu_ref_kill(&ctx->refs);
3123 	xa_for_each(&ctx->personalities, index, creds)
3124 		io_unregister_personality(ctx, index);
3125 	if (ctx->rings)
3126 		io_poll_remove_all(ctx, NULL, true);
3127 	mutex_unlock(&ctx->uring_lock);
3128 
3129 	/*
3130 	 * If we failed setting up the ctx, we might not have any rings
3131 	 * and therefore did not submit any requests
3132 	 */
3133 	if (ctx->rings)
3134 		io_kill_timeouts(ctx, NULL, true);
3135 
3136 	flush_delayed_work(&ctx->fallback_work);
3137 
3138 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3139 	/*
3140 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3141 	 * if we're exiting a ton of rings at the same time. It just adds
3142 	 * noise and overhead, there's no discernable change in runtime
3143 	 * over using system_wq.
3144 	 */
3145 	queue_work(system_unbound_wq, &ctx->exit_work);
3146 }
3147 
3148 static int io_uring_release(struct inode *inode, struct file *file)
3149 {
3150 	struct io_ring_ctx *ctx = file->private_data;
3151 
3152 	file->private_data = NULL;
3153 	io_ring_ctx_wait_and_kill(ctx);
3154 	return 0;
3155 }
3156 
3157 struct io_task_cancel {
3158 	struct task_struct *task;
3159 	bool all;
3160 };
3161 
3162 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3163 {
3164 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3165 	struct io_task_cancel *cancel = data;
3166 
3167 	return io_match_task_safe(req, cancel->task, cancel->all);
3168 }
3169 
3170 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3171 					 struct task_struct *task,
3172 					 bool cancel_all)
3173 {
3174 	struct io_defer_entry *de;
3175 	LIST_HEAD(list);
3176 
3177 	spin_lock(&ctx->completion_lock);
3178 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3179 		if (io_match_task_safe(de->req, task, cancel_all)) {
3180 			list_cut_position(&list, &ctx->defer_list, &de->list);
3181 			break;
3182 		}
3183 	}
3184 	spin_unlock(&ctx->completion_lock);
3185 	if (list_empty(&list))
3186 		return false;
3187 
3188 	while (!list_empty(&list)) {
3189 		de = list_first_entry(&list, struct io_defer_entry, list);
3190 		list_del_init(&de->list);
3191 		io_req_task_queue_fail(de->req, -ECANCELED);
3192 		kfree(de);
3193 	}
3194 	return true;
3195 }
3196 
3197 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3198 {
3199 	struct io_tctx_node *node;
3200 	enum io_wq_cancel cret;
3201 	bool ret = false;
3202 
3203 	mutex_lock(&ctx->uring_lock);
3204 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3205 		struct io_uring_task *tctx = node->task->io_uring;
3206 
3207 		/*
3208 		 * io_wq will stay alive while we hold uring_lock, because it's
3209 		 * killed after ctx nodes, which requires to take the lock.
3210 		 */
3211 		if (!tctx || !tctx->io_wq)
3212 			continue;
3213 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3214 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3215 	}
3216 	mutex_unlock(&ctx->uring_lock);
3217 
3218 	return ret;
3219 }
3220 
3221 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3222 						struct task_struct *task,
3223 						bool cancel_all)
3224 {
3225 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3226 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3227 	enum io_wq_cancel cret;
3228 	bool ret = false;
3229 
3230 	/* set it so io_req_local_work_add() would wake us up */
3231 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3232 		atomic_set(&ctx->cq_wait_nr, 1);
3233 		smp_mb();
3234 	}
3235 
3236 	/* failed during ring init, it couldn't have issued any requests */
3237 	if (!ctx->rings)
3238 		return false;
3239 
3240 	if (!task) {
3241 		ret |= io_uring_try_cancel_iowq(ctx);
3242 	} else if (tctx && tctx->io_wq) {
3243 		/*
3244 		 * Cancels requests of all rings, not only @ctx, but
3245 		 * it's fine as the task is in exit/exec.
3246 		 */
3247 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3248 				       &cancel, true);
3249 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3250 	}
3251 
3252 	/* SQPOLL thread does its own polling */
3253 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3254 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3255 		while (!wq_list_empty(&ctx->iopoll_list)) {
3256 			io_iopoll_try_reap_events(ctx);
3257 			ret = true;
3258 			cond_resched();
3259 		}
3260 	}
3261 
3262 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3263 	    io_allowed_defer_tw_run(ctx))
3264 		ret |= io_run_local_work(ctx) > 0;
3265 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3266 	mutex_lock(&ctx->uring_lock);
3267 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3268 	mutex_unlock(&ctx->uring_lock);
3269 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3270 	if (task)
3271 		ret |= io_run_task_work() > 0;
3272 	return ret;
3273 }
3274 
3275 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3276 {
3277 	if (tracked)
3278 		return atomic_read(&tctx->inflight_tracked);
3279 	return percpu_counter_sum(&tctx->inflight);
3280 }
3281 
3282 /*
3283  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3284  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3285  */
3286 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3287 {
3288 	struct io_uring_task *tctx = current->io_uring;
3289 	struct io_ring_ctx *ctx;
3290 	struct io_tctx_node *node;
3291 	unsigned long index;
3292 	s64 inflight;
3293 	DEFINE_WAIT(wait);
3294 
3295 	WARN_ON_ONCE(sqd && sqd->thread != current);
3296 
3297 	if (!current->io_uring)
3298 		return;
3299 	if (tctx->io_wq)
3300 		io_wq_exit_start(tctx->io_wq);
3301 
3302 	atomic_inc(&tctx->in_cancel);
3303 	do {
3304 		bool loop = false;
3305 
3306 		io_uring_drop_tctx_refs(current);
3307 		/* read completions before cancelations */
3308 		inflight = tctx_inflight(tctx, !cancel_all);
3309 		if (!inflight)
3310 			break;
3311 
3312 		if (!sqd) {
3313 			xa_for_each(&tctx->xa, index, node) {
3314 				/* sqpoll task will cancel all its requests */
3315 				if (node->ctx->sq_data)
3316 					continue;
3317 				loop |= io_uring_try_cancel_requests(node->ctx,
3318 							current, cancel_all);
3319 			}
3320 		} else {
3321 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3322 				loop |= io_uring_try_cancel_requests(ctx,
3323 								     current,
3324 								     cancel_all);
3325 		}
3326 
3327 		if (loop) {
3328 			cond_resched();
3329 			continue;
3330 		}
3331 
3332 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3333 		io_run_task_work();
3334 		io_uring_drop_tctx_refs(current);
3335 		xa_for_each(&tctx->xa, index, node) {
3336 			if (!llist_empty(&node->ctx->work_llist)) {
3337 				WARN_ON_ONCE(node->ctx->submitter_task &&
3338 					     node->ctx->submitter_task != current);
3339 				goto end_wait;
3340 			}
3341 		}
3342 		/*
3343 		 * If we've seen completions, retry without waiting. This
3344 		 * avoids a race where a completion comes in before we did
3345 		 * prepare_to_wait().
3346 		 */
3347 		if (inflight == tctx_inflight(tctx, !cancel_all))
3348 			schedule();
3349 end_wait:
3350 		finish_wait(&tctx->wait, &wait);
3351 	} while (1);
3352 
3353 	io_uring_clean_tctx(tctx);
3354 	if (cancel_all) {
3355 		/*
3356 		 * We shouldn't run task_works after cancel, so just leave
3357 		 * ->in_cancel set for normal exit.
3358 		 */
3359 		atomic_dec(&tctx->in_cancel);
3360 		/* for exec all current's requests should be gone, kill tctx */
3361 		__io_uring_free(current);
3362 	}
3363 }
3364 
3365 void __io_uring_cancel(bool cancel_all)
3366 {
3367 	io_uring_cancel_generic(cancel_all, NULL);
3368 }
3369 
3370 static void *io_uring_validate_mmap_request(struct file *file,
3371 					    loff_t pgoff, size_t sz)
3372 {
3373 	struct io_ring_ctx *ctx = file->private_data;
3374 	loff_t offset = pgoff << PAGE_SHIFT;
3375 	struct page *page;
3376 	void *ptr;
3377 
3378 	/* Don't allow mmap if the ring was setup without it */
3379 	if (ctx->flags & IORING_SETUP_NO_MMAP)
3380 		return ERR_PTR(-EINVAL);
3381 
3382 	switch (offset & IORING_OFF_MMAP_MASK) {
3383 	case IORING_OFF_SQ_RING:
3384 	case IORING_OFF_CQ_RING:
3385 		ptr = ctx->rings;
3386 		break;
3387 	case IORING_OFF_SQES:
3388 		ptr = ctx->sq_sqes;
3389 		break;
3390 	case IORING_OFF_PBUF_RING: {
3391 		unsigned int bgid;
3392 
3393 		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3394 		mutex_lock(&ctx->uring_lock);
3395 		ptr = io_pbuf_get_address(ctx, bgid);
3396 		mutex_unlock(&ctx->uring_lock);
3397 		if (!ptr)
3398 			return ERR_PTR(-EINVAL);
3399 		break;
3400 		}
3401 	default:
3402 		return ERR_PTR(-EINVAL);
3403 	}
3404 
3405 	page = virt_to_head_page(ptr);
3406 	if (sz > page_size(page))
3407 		return ERR_PTR(-EINVAL);
3408 
3409 	return ptr;
3410 }
3411 
3412 #ifdef CONFIG_MMU
3413 
3414 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3415 {
3416 	size_t sz = vma->vm_end - vma->vm_start;
3417 	unsigned long pfn;
3418 	void *ptr;
3419 
3420 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3421 	if (IS_ERR(ptr))
3422 		return PTR_ERR(ptr);
3423 
3424 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3425 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3426 }
3427 
3428 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3429 			unsigned long addr, unsigned long len,
3430 			unsigned long pgoff, unsigned long flags)
3431 {
3432 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
3433 	struct vm_unmapped_area_info info;
3434 	void *ptr;
3435 
3436 	/*
3437 	 * Do not allow to map to user-provided address to avoid breaking the
3438 	 * aliasing rules. Userspace is not able to guess the offset address of
3439 	 * kernel kmalloc()ed memory area.
3440 	 */
3441 	if (addr)
3442 		return -EINVAL;
3443 
3444 	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3445 	if (IS_ERR(ptr))
3446 		return -ENOMEM;
3447 
3448 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
3449 	info.length = len;
3450 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
3451 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
3452 #ifdef SHM_COLOUR
3453 	info.align_mask = PAGE_MASK & (SHM_COLOUR - 1UL);
3454 #else
3455 	info.align_mask = PAGE_MASK & (SHMLBA - 1UL);
3456 #endif
3457 	info.align_offset = (unsigned long) ptr;
3458 
3459 	/*
3460 	 * A failed mmap() very likely causes application failure,
3461 	 * so fall back to the bottom-up function here. This scenario
3462 	 * can happen with large stack limits and large mmap()
3463 	 * allocations.
3464 	 */
3465 	addr = vm_unmapped_area(&info);
3466 	if (offset_in_page(addr)) {
3467 		info.flags = 0;
3468 		info.low_limit = TASK_UNMAPPED_BASE;
3469 		info.high_limit = mmap_end;
3470 		addr = vm_unmapped_area(&info);
3471 	}
3472 
3473 	return addr;
3474 }
3475 
3476 #else /* !CONFIG_MMU */
3477 
3478 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3479 {
3480 	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3481 }
3482 
3483 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3484 {
3485 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3486 }
3487 
3488 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3489 	unsigned long addr, unsigned long len,
3490 	unsigned long pgoff, unsigned long flags)
3491 {
3492 	void *ptr;
3493 
3494 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3495 	if (IS_ERR(ptr))
3496 		return PTR_ERR(ptr);
3497 
3498 	return (unsigned long) ptr;
3499 }
3500 
3501 #endif /* !CONFIG_MMU */
3502 
3503 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3504 {
3505 	if (flags & IORING_ENTER_EXT_ARG) {
3506 		struct io_uring_getevents_arg arg;
3507 
3508 		if (argsz != sizeof(arg))
3509 			return -EINVAL;
3510 		if (copy_from_user(&arg, argp, sizeof(arg)))
3511 			return -EFAULT;
3512 	}
3513 	return 0;
3514 }
3515 
3516 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3517 			  struct __kernel_timespec __user **ts,
3518 			  const sigset_t __user **sig)
3519 {
3520 	struct io_uring_getevents_arg arg;
3521 
3522 	/*
3523 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3524 	 * is just a pointer to the sigset_t.
3525 	 */
3526 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3527 		*sig = (const sigset_t __user *) argp;
3528 		*ts = NULL;
3529 		return 0;
3530 	}
3531 
3532 	/*
3533 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3534 	 * timespec and sigset_t pointers if good.
3535 	 */
3536 	if (*argsz != sizeof(arg))
3537 		return -EINVAL;
3538 	if (copy_from_user(&arg, argp, sizeof(arg)))
3539 		return -EFAULT;
3540 	if (arg.pad)
3541 		return -EINVAL;
3542 	*sig = u64_to_user_ptr(arg.sigmask);
3543 	*argsz = arg.sigmask_sz;
3544 	*ts = u64_to_user_ptr(arg.ts);
3545 	return 0;
3546 }
3547 
3548 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3549 		u32, min_complete, u32, flags, const void __user *, argp,
3550 		size_t, argsz)
3551 {
3552 	struct io_ring_ctx *ctx;
3553 	struct fd f;
3554 	long ret;
3555 
3556 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3557 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3558 			       IORING_ENTER_REGISTERED_RING)))
3559 		return -EINVAL;
3560 
3561 	/*
3562 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3563 	 * need only dereference our task private array to find it.
3564 	 */
3565 	if (flags & IORING_ENTER_REGISTERED_RING) {
3566 		struct io_uring_task *tctx = current->io_uring;
3567 
3568 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3569 			return -EINVAL;
3570 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3571 		f.file = tctx->registered_rings[fd];
3572 		f.flags = 0;
3573 		if (unlikely(!f.file))
3574 			return -EBADF;
3575 	} else {
3576 		f = fdget(fd);
3577 		if (unlikely(!f.file))
3578 			return -EBADF;
3579 		ret = -EOPNOTSUPP;
3580 		if (unlikely(!io_is_uring_fops(f.file)))
3581 			goto out;
3582 	}
3583 
3584 	ctx = f.file->private_data;
3585 	ret = -EBADFD;
3586 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3587 		goto out;
3588 
3589 	/*
3590 	 * For SQ polling, the thread will do all submissions and completions.
3591 	 * Just return the requested submit count, and wake the thread if
3592 	 * we were asked to.
3593 	 */
3594 	ret = 0;
3595 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3596 		io_cqring_overflow_flush(ctx);
3597 
3598 		if (unlikely(ctx->sq_data->thread == NULL)) {
3599 			ret = -EOWNERDEAD;
3600 			goto out;
3601 		}
3602 		if (flags & IORING_ENTER_SQ_WAKEUP)
3603 			wake_up(&ctx->sq_data->wait);
3604 		if (flags & IORING_ENTER_SQ_WAIT)
3605 			io_sqpoll_wait_sq(ctx);
3606 
3607 		ret = to_submit;
3608 	} else if (to_submit) {
3609 		ret = io_uring_add_tctx_node(ctx);
3610 		if (unlikely(ret))
3611 			goto out;
3612 
3613 		mutex_lock(&ctx->uring_lock);
3614 		ret = io_submit_sqes(ctx, to_submit);
3615 		if (ret != to_submit) {
3616 			mutex_unlock(&ctx->uring_lock);
3617 			goto out;
3618 		}
3619 		if (flags & IORING_ENTER_GETEVENTS) {
3620 			if (ctx->syscall_iopoll)
3621 				goto iopoll_locked;
3622 			/*
3623 			 * Ignore errors, we'll soon call io_cqring_wait() and
3624 			 * it should handle ownership problems if any.
3625 			 */
3626 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3627 				(void)io_run_local_work_locked(ctx);
3628 		}
3629 		mutex_unlock(&ctx->uring_lock);
3630 	}
3631 
3632 	if (flags & IORING_ENTER_GETEVENTS) {
3633 		int ret2;
3634 
3635 		if (ctx->syscall_iopoll) {
3636 			/*
3637 			 * We disallow the app entering submit/complete with
3638 			 * polling, but we still need to lock the ring to
3639 			 * prevent racing with polled issue that got punted to
3640 			 * a workqueue.
3641 			 */
3642 			mutex_lock(&ctx->uring_lock);
3643 iopoll_locked:
3644 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3645 			if (likely(!ret2)) {
3646 				min_complete = min(min_complete,
3647 						   ctx->cq_entries);
3648 				ret2 = io_iopoll_check(ctx, min_complete);
3649 			}
3650 			mutex_unlock(&ctx->uring_lock);
3651 		} else {
3652 			const sigset_t __user *sig;
3653 			struct __kernel_timespec __user *ts;
3654 
3655 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3656 			if (likely(!ret2)) {
3657 				min_complete = min(min_complete,
3658 						   ctx->cq_entries);
3659 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3660 						      argsz, ts);
3661 			}
3662 		}
3663 
3664 		if (!ret) {
3665 			ret = ret2;
3666 
3667 			/*
3668 			 * EBADR indicates that one or more CQE were dropped.
3669 			 * Once the user has been informed we can clear the bit
3670 			 * as they are obviously ok with those drops.
3671 			 */
3672 			if (unlikely(ret2 == -EBADR))
3673 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3674 					  &ctx->check_cq);
3675 		}
3676 	}
3677 out:
3678 	fdput(f);
3679 	return ret;
3680 }
3681 
3682 static const struct file_operations io_uring_fops = {
3683 	.release	= io_uring_release,
3684 	.mmap		= io_uring_mmap,
3685 #ifndef CONFIG_MMU
3686 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3687 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3688 #else
3689 	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3690 #endif
3691 	.poll		= io_uring_poll,
3692 #ifdef CONFIG_PROC_FS
3693 	.show_fdinfo	= io_uring_show_fdinfo,
3694 #endif
3695 };
3696 
3697 bool io_is_uring_fops(struct file *file)
3698 {
3699 	return file->f_op == &io_uring_fops;
3700 }
3701 
3702 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3703 					 struct io_uring_params *p)
3704 {
3705 	struct io_rings *rings;
3706 	size_t size, sq_array_offset;
3707 	void *ptr;
3708 
3709 	/* make sure these are sane, as we already accounted them */
3710 	ctx->sq_entries = p->sq_entries;
3711 	ctx->cq_entries = p->cq_entries;
3712 
3713 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3714 	if (size == SIZE_MAX)
3715 		return -EOVERFLOW;
3716 
3717 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3718 		rings = io_mem_alloc(size);
3719 	else
3720 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3721 
3722 	if (IS_ERR(rings))
3723 		return PTR_ERR(rings);
3724 
3725 	ctx->rings = rings;
3726 	ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3727 	rings->sq_ring_mask = p->sq_entries - 1;
3728 	rings->cq_ring_mask = p->cq_entries - 1;
3729 	rings->sq_ring_entries = p->sq_entries;
3730 	rings->cq_ring_entries = p->cq_entries;
3731 
3732 	if (p->flags & IORING_SETUP_SQE128)
3733 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3734 	else
3735 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3736 	if (size == SIZE_MAX) {
3737 		io_rings_free(ctx);
3738 		return -EOVERFLOW;
3739 	}
3740 
3741 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3742 		ptr = io_mem_alloc(size);
3743 	else
3744 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3745 
3746 	if (IS_ERR(ptr)) {
3747 		io_rings_free(ctx);
3748 		return PTR_ERR(ptr);
3749 	}
3750 
3751 	ctx->sq_sqes = ptr;
3752 	return 0;
3753 }
3754 
3755 static int io_uring_install_fd(struct file *file)
3756 {
3757 	int fd;
3758 
3759 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3760 	if (fd < 0)
3761 		return fd;
3762 	fd_install(fd, file);
3763 	return fd;
3764 }
3765 
3766 /*
3767  * Allocate an anonymous fd, this is what constitutes the application
3768  * visible backing of an io_uring instance. The application mmaps this
3769  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3770  * we have to tie this fd to a socket for file garbage collection purposes.
3771  */
3772 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3773 {
3774 	struct file *file;
3775 #if defined(CONFIG_UNIX)
3776 	int ret;
3777 
3778 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3779 				&ctx->ring_sock);
3780 	if (ret)
3781 		return ERR_PTR(ret);
3782 #endif
3783 
3784 	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3785 					 O_RDWR | O_CLOEXEC, NULL);
3786 #if defined(CONFIG_UNIX)
3787 	if (IS_ERR(file)) {
3788 		sock_release(ctx->ring_sock);
3789 		ctx->ring_sock = NULL;
3790 	} else {
3791 		ctx->ring_sock->file = file;
3792 	}
3793 #endif
3794 	return file;
3795 }
3796 
3797 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3798 				  struct io_uring_params __user *params)
3799 {
3800 	struct io_ring_ctx *ctx;
3801 	struct io_uring_task *tctx;
3802 	struct file *file;
3803 	int ret;
3804 
3805 	if (!entries)
3806 		return -EINVAL;
3807 	if (entries > IORING_MAX_ENTRIES) {
3808 		if (!(p->flags & IORING_SETUP_CLAMP))
3809 			return -EINVAL;
3810 		entries = IORING_MAX_ENTRIES;
3811 	}
3812 
3813 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3814 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3815 		return -EINVAL;
3816 
3817 	/*
3818 	 * Use twice as many entries for the CQ ring. It's possible for the
3819 	 * application to drive a higher depth than the size of the SQ ring,
3820 	 * since the sqes are only used at submission time. This allows for
3821 	 * some flexibility in overcommitting a bit. If the application has
3822 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3823 	 * of CQ ring entries manually.
3824 	 */
3825 	p->sq_entries = roundup_pow_of_two(entries);
3826 	if (p->flags & IORING_SETUP_CQSIZE) {
3827 		/*
3828 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3829 		 * to a power-of-two, if it isn't already. We do NOT impose
3830 		 * any cq vs sq ring sizing.
3831 		 */
3832 		if (!p->cq_entries)
3833 			return -EINVAL;
3834 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3835 			if (!(p->flags & IORING_SETUP_CLAMP))
3836 				return -EINVAL;
3837 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3838 		}
3839 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3840 		if (p->cq_entries < p->sq_entries)
3841 			return -EINVAL;
3842 	} else {
3843 		p->cq_entries = 2 * p->sq_entries;
3844 	}
3845 
3846 	ctx = io_ring_ctx_alloc(p);
3847 	if (!ctx)
3848 		return -ENOMEM;
3849 
3850 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3851 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3852 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3853 		ctx->task_complete = true;
3854 
3855 	/*
3856 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3857 	 * purposes, see io_activate_pollwq()
3858 	 */
3859 	if (!ctx->task_complete)
3860 		ctx->poll_activated = true;
3861 
3862 	/*
3863 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3864 	 * space applications don't need to do io completion events
3865 	 * polling again, they can rely on io_sq_thread to do polling
3866 	 * work, which can reduce cpu usage and uring_lock contention.
3867 	 */
3868 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3869 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3870 		ctx->syscall_iopoll = 1;
3871 
3872 	ctx->compat = in_compat_syscall();
3873 	if (!capable(CAP_IPC_LOCK))
3874 		ctx->user = get_uid(current_user());
3875 
3876 	/*
3877 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3878 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3879 	 */
3880 	ret = -EINVAL;
3881 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3882 		/* IPI related flags don't make sense with SQPOLL */
3883 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3884 				  IORING_SETUP_TASKRUN_FLAG |
3885 				  IORING_SETUP_DEFER_TASKRUN))
3886 			goto err;
3887 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3888 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3889 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3890 	} else {
3891 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3892 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3893 			goto err;
3894 		ctx->notify_method = TWA_SIGNAL;
3895 	}
3896 
3897 	/*
3898 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3899 	 * submission task. This implies that there is only one submitter, so enforce
3900 	 * that.
3901 	 */
3902 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3903 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3904 		goto err;
3905 	}
3906 
3907 	/*
3908 	 * This is just grabbed for accounting purposes. When a process exits,
3909 	 * the mm is exited and dropped before the files, hence we need to hang
3910 	 * on to this mm purely for the purposes of being able to unaccount
3911 	 * memory (locked/pinned vm). It's not used for anything else.
3912 	 */
3913 	mmgrab(current->mm);
3914 	ctx->mm_account = current->mm;
3915 
3916 	ret = io_allocate_scq_urings(ctx, p);
3917 	if (ret)
3918 		goto err;
3919 
3920 	ret = io_sq_offload_create(ctx, p);
3921 	if (ret)
3922 		goto err;
3923 
3924 	ret = io_rsrc_init(ctx);
3925 	if (ret)
3926 		goto err;
3927 
3928 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3929 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3930 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3931 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3932 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3933 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3934 	p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3935 	p->sq_off.resv1 = 0;
3936 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3937 		p->sq_off.user_addr = 0;
3938 
3939 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3940 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3941 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3942 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3943 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3944 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3945 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3946 	p->cq_off.resv1 = 0;
3947 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3948 		p->cq_off.user_addr = 0;
3949 
3950 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3951 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3952 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3953 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3954 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3955 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3956 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
3957 
3958 	if (copy_to_user(params, p, sizeof(*p))) {
3959 		ret = -EFAULT;
3960 		goto err;
3961 	}
3962 
3963 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3964 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3965 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3966 
3967 	file = io_uring_get_file(ctx);
3968 	if (IS_ERR(file)) {
3969 		ret = PTR_ERR(file);
3970 		goto err;
3971 	}
3972 
3973 	ret = __io_uring_add_tctx_node(ctx);
3974 	if (ret)
3975 		goto err_fput;
3976 	tctx = current->io_uring;
3977 
3978 	/*
3979 	 * Install ring fd as the very last thing, so we don't risk someone
3980 	 * having closed it before we finish setup
3981 	 */
3982 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3983 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3984 	else
3985 		ret = io_uring_install_fd(file);
3986 	if (ret < 0)
3987 		goto err_fput;
3988 
3989 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3990 	return ret;
3991 err:
3992 	io_ring_ctx_wait_and_kill(ctx);
3993 	return ret;
3994 err_fput:
3995 	fput(file);
3996 	return ret;
3997 }
3998 
3999 /*
4000  * Sets up an aio uring context, and returns the fd. Applications asks for a
4001  * ring size, we return the actual sq/cq ring sizes (among other things) in the
4002  * params structure passed in.
4003  */
4004 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4005 {
4006 	struct io_uring_params p;
4007 	int i;
4008 
4009 	if (copy_from_user(&p, params, sizeof(p)))
4010 		return -EFAULT;
4011 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4012 		if (p.resv[i])
4013 			return -EINVAL;
4014 	}
4015 
4016 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4017 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4018 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4019 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4020 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4021 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4022 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4023 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY))
4024 		return -EINVAL;
4025 
4026 	return io_uring_create(entries, &p, params);
4027 }
4028 
4029 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4030 		struct io_uring_params __user *, params)
4031 {
4032 	return io_uring_setup(entries, params);
4033 }
4034 
4035 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4036 			   unsigned nr_args)
4037 {
4038 	struct io_uring_probe *p;
4039 	size_t size;
4040 	int i, ret;
4041 
4042 	size = struct_size(p, ops, nr_args);
4043 	if (size == SIZE_MAX)
4044 		return -EOVERFLOW;
4045 	p = kzalloc(size, GFP_KERNEL);
4046 	if (!p)
4047 		return -ENOMEM;
4048 
4049 	ret = -EFAULT;
4050 	if (copy_from_user(p, arg, size))
4051 		goto out;
4052 	ret = -EINVAL;
4053 	if (memchr_inv(p, 0, size))
4054 		goto out;
4055 
4056 	p->last_op = IORING_OP_LAST - 1;
4057 	if (nr_args > IORING_OP_LAST)
4058 		nr_args = IORING_OP_LAST;
4059 
4060 	for (i = 0; i < nr_args; i++) {
4061 		p->ops[i].op = i;
4062 		if (!io_issue_defs[i].not_supported)
4063 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
4064 	}
4065 	p->ops_len = i;
4066 
4067 	ret = 0;
4068 	if (copy_to_user(arg, p, size))
4069 		ret = -EFAULT;
4070 out:
4071 	kfree(p);
4072 	return ret;
4073 }
4074 
4075 static int io_register_personality(struct io_ring_ctx *ctx)
4076 {
4077 	const struct cred *creds;
4078 	u32 id;
4079 	int ret;
4080 
4081 	creds = get_current_cred();
4082 
4083 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4084 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4085 	if (ret < 0) {
4086 		put_cred(creds);
4087 		return ret;
4088 	}
4089 	return id;
4090 }
4091 
4092 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4093 					   void __user *arg, unsigned int nr_args)
4094 {
4095 	struct io_uring_restriction *res;
4096 	size_t size;
4097 	int i, ret;
4098 
4099 	/* Restrictions allowed only if rings started disabled */
4100 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4101 		return -EBADFD;
4102 
4103 	/* We allow only a single restrictions registration */
4104 	if (ctx->restrictions.registered)
4105 		return -EBUSY;
4106 
4107 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4108 		return -EINVAL;
4109 
4110 	size = array_size(nr_args, sizeof(*res));
4111 	if (size == SIZE_MAX)
4112 		return -EOVERFLOW;
4113 
4114 	res = memdup_user(arg, size);
4115 	if (IS_ERR(res))
4116 		return PTR_ERR(res);
4117 
4118 	ret = 0;
4119 
4120 	for (i = 0; i < nr_args; i++) {
4121 		switch (res[i].opcode) {
4122 		case IORING_RESTRICTION_REGISTER_OP:
4123 			if (res[i].register_op >= IORING_REGISTER_LAST) {
4124 				ret = -EINVAL;
4125 				goto out;
4126 			}
4127 
4128 			__set_bit(res[i].register_op,
4129 				  ctx->restrictions.register_op);
4130 			break;
4131 		case IORING_RESTRICTION_SQE_OP:
4132 			if (res[i].sqe_op >= IORING_OP_LAST) {
4133 				ret = -EINVAL;
4134 				goto out;
4135 			}
4136 
4137 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4138 			break;
4139 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4140 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4141 			break;
4142 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4143 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4144 			break;
4145 		default:
4146 			ret = -EINVAL;
4147 			goto out;
4148 		}
4149 	}
4150 
4151 out:
4152 	/* Reset all restrictions if an error happened */
4153 	if (ret != 0)
4154 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4155 	else
4156 		ctx->restrictions.registered = true;
4157 
4158 	kfree(res);
4159 	return ret;
4160 }
4161 
4162 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4163 {
4164 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4165 		return -EBADFD;
4166 
4167 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4168 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4169 		/*
4170 		 * Lazy activation attempts would fail if it was polled before
4171 		 * submitter_task is set.
4172 		 */
4173 		if (wq_has_sleeper(&ctx->poll_wq))
4174 			io_activate_pollwq(ctx);
4175 	}
4176 
4177 	if (ctx->restrictions.registered)
4178 		ctx->restricted = 1;
4179 
4180 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
4181 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4182 		wake_up(&ctx->sq_data->wait);
4183 	return 0;
4184 }
4185 
4186 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4187 				       void __user *arg, unsigned len)
4188 {
4189 	struct io_uring_task *tctx = current->io_uring;
4190 	cpumask_var_t new_mask;
4191 	int ret;
4192 
4193 	if (!tctx || !tctx->io_wq)
4194 		return -EINVAL;
4195 
4196 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4197 		return -ENOMEM;
4198 
4199 	cpumask_clear(new_mask);
4200 	if (len > cpumask_size())
4201 		len = cpumask_size();
4202 
4203 	if (in_compat_syscall()) {
4204 		ret = compat_get_bitmap(cpumask_bits(new_mask),
4205 					(const compat_ulong_t __user *)arg,
4206 					len * 8 /* CHAR_BIT */);
4207 	} else {
4208 		ret = copy_from_user(new_mask, arg, len);
4209 	}
4210 
4211 	if (ret) {
4212 		free_cpumask_var(new_mask);
4213 		return -EFAULT;
4214 	}
4215 
4216 	ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
4217 	free_cpumask_var(new_mask);
4218 	return ret;
4219 }
4220 
4221 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4222 {
4223 	struct io_uring_task *tctx = current->io_uring;
4224 
4225 	if (!tctx || !tctx->io_wq)
4226 		return -EINVAL;
4227 
4228 	return io_wq_cpu_affinity(tctx->io_wq, NULL);
4229 }
4230 
4231 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4232 					       void __user *arg)
4233 	__must_hold(&ctx->uring_lock)
4234 {
4235 	struct io_tctx_node *node;
4236 	struct io_uring_task *tctx = NULL;
4237 	struct io_sq_data *sqd = NULL;
4238 	__u32 new_count[2];
4239 	int i, ret;
4240 
4241 	if (copy_from_user(new_count, arg, sizeof(new_count)))
4242 		return -EFAULT;
4243 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4244 		if (new_count[i] > INT_MAX)
4245 			return -EINVAL;
4246 
4247 	if (ctx->flags & IORING_SETUP_SQPOLL) {
4248 		sqd = ctx->sq_data;
4249 		if (sqd) {
4250 			/*
4251 			 * Observe the correct sqd->lock -> ctx->uring_lock
4252 			 * ordering. Fine to drop uring_lock here, we hold
4253 			 * a ref to the ctx.
4254 			 */
4255 			refcount_inc(&sqd->refs);
4256 			mutex_unlock(&ctx->uring_lock);
4257 			mutex_lock(&sqd->lock);
4258 			mutex_lock(&ctx->uring_lock);
4259 			if (sqd->thread)
4260 				tctx = sqd->thread->io_uring;
4261 		}
4262 	} else {
4263 		tctx = current->io_uring;
4264 	}
4265 
4266 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4267 
4268 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4269 		if (new_count[i])
4270 			ctx->iowq_limits[i] = new_count[i];
4271 	ctx->iowq_limits_set = true;
4272 
4273 	if (tctx && tctx->io_wq) {
4274 		ret = io_wq_max_workers(tctx->io_wq, new_count);
4275 		if (ret)
4276 			goto err;
4277 	} else {
4278 		memset(new_count, 0, sizeof(new_count));
4279 	}
4280 
4281 	if (sqd) {
4282 		mutex_unlock(&sqd->lock);
4283 		io_put_sq_data(sqd);
4284 	}
4285 
4286 	if (copy_to_user(arg, new_count, sizeof(new_count)))
4287 		return -EFAULT;
4288 
4289 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
4290 	if (sqd)
4291 		return 0;
4292 
4293 	/* now propagate the restriction to all registered users */
4294 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4295 		struct io_uring_task *tctx = node->task->io_uring;
4296 
4297 		if (WARN_ON_ONCE(!tctx->io_wq))
4298 			continue;
4299 
4300 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
4301 			new_count[i] = ctx->iowq_limits[i];
4302 		/* ignore errors, it always returns zero anyway */
4303 		(void)io_wq_max_workers(tctx->io_wq, new_count);
4304 	}
4305 	return 0;
4306 err:
4307 	if (sqd) {
4308 		mutex_unlock(&sqd->lock);
4309 		io_put_sq_data(sqd);
4310 	}
4311 	return ret;
4312 }
4313 
4314 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4315 			       void __user *arg, unsigned nr_args)
4316 	__releases(ctx->uring_lock)
4317 	__acquires(ctx->uring_lock)
4318 {
4319 	int ret;
4320 
4321 	/*
4322 	 * We don't quiesce the refs for register anymore and so it can't be
4323 	 * dying as we're holding a file ref here.
4324 	 */
4325 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4326 		return -ENXIO;
4327 
4328 	if (ctx->submitter_task && ctx->submitter_task != current)
4329 		return -EEXIST;
4330 
4331 	if (ctx->restricted) {
4332 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4333 		if (!test_bit(opcode, ctx->restrictions.register_op))
4334 			return -EACCES;
4335 	}
4336 
4337 	switch (opcode) {
4338 	case IORING_REGISTER_BUFFERS:
4339 		ret = -EFAULT;
4340 		if (!arg)
4341 			break;
4342 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4343 		break;
4344 	case IORING_UNREGISTER_BUFFERS:
4345 		ret = -EINVAL;
4346 		if (arg || nr_args)
4347 			break;
4348 		ret = io_sqe_buffers_unregister(ctx);
4349 		break;
4350 	case IORING_REGISTER_FILES:
4351 		ret = -EFAULT;
4352 		if (!arg)
4353 			break;
4354 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4355 		break;
4356 	case IORING_UNREGISTER_FILES:
4357 		ret = -EINVAL;
4358 		if (arg || nr_args)
4359 			break;
4360 		ret = io_sqe_files_unregister(ctx);
4361 		break;
4362 	case IORING_REGISTER_FILES_UPDATE:
4363 		ret = io_register_files_update(ctx, arg, nr_args);
4364 		break;
4365 	case IORING_REGISTER_EVENTFD:
4366 		ret = -EINVAL;
4367 		if (nr_args != 1)
4368 			break;
4369 		ret = io_eventfd_register(ctx, arg, 0);
4370 		break;
4371 	case IORING_REGISTER_EVENTFD_ASYNC:
4372 		ret = -EINVAL;
4373 		if (nr_args != 1)
4374 			break;
4375 		ret = io_eventfd_register(ctx, arg, 1);
4376 		break;
4377 	case IORING_UNREGISTER_EVENTFD:
4378 		ret = -EINVAL;
4379 		if (arg || nr_args)
4380 			break;
4381 		ret = io_eventfd_unregister(ctx);
4382 		break;
4383 	case IORING_REGISTER_PROBE:
4384 		ret = -EINVAL;
4385 		if (!arg || nr_args > 256)
4386 			break;
4387 		ret = io_probe(ctx, arg, nr_args);
4388 		break;
4389 	case IORING_REGISTER_PERSONALITY:
4390 		ret = -EINVAL;
4391 		if (arg || nr_args)
4392 			break;
4393 		ret = io_register_personality(ctx);
4394 		break;
4395 	case IORING_UNREGISTER_PERSONALITY:
4396 		ret = -EINVAL;
4397 		if (arg)
4398 			break;
4399 		ret = io_unregister_personality(ctx, nr_args);
4400 		break;
4401 	case IORING_REGISTER_ENABLE_RINGS:
4402 		ret = -EINVAL;
4403 		if (arg || nr_args)
4404 			break;
4405 		ret = io_register_enable_rings(ctx);
4406 		break;
4407 	case IORING_REGISTER_RESTRICTIONS:
4408 		ret = io_register_restrictions(ctx, arg, nr_args);
4409 		break;
4410 	case IORING_REGISTER_FILES2:
4411 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4412 		break;
4413 	case IORING_REGISTER_FILES_UPDATE2:
4414 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4415 					      IORING_RSRC_FILE);
4416 		break;
4417 	case IORING_REGISTER_BUFFERS2:
4418 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4419 		break;
4420 	case IORING_REGISTER_BUFFERS_UPDATE:
4421 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4422 					      IORING_RSRC_BUFFER);
4423 		break;
4424 	case IORING_REGISTER_IOWQ_AFF:
4425 		ret = -EINVAL;
4426 		if (!arg || !nr_args)
4427 			break;
4428 		ret = io_register_iowq_aff(ctx, arg, nr_args);
4429 		break;
4430 	case IORING_UNREGISTER_IOWQ_AFF:
4431 		ret = -EINVAL;
4432 		if (arg || nr_args)
4433 			break;
4434 		ret = io_unregister_iowq_aff(ctx);
4435 		break;
4436 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4437 		ret = -EINVAL;
4438 		if (!arg || nr_args != 2)
4439 			break;
4440 		ret = io_register_iowq_max_workers(ctx, arg);
4441 		break;
4442 	case IORING_REGISTER_RING_FDS:
4443 		ret = io_ringfd_register(ctx, arg, nr_args);
4444 		break;
4445 	case IORING_UNREGISTER_RING_FDS:
4446 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4447 		break;
4448 	case IORING_REGISTER_PBUF_RING:
4449 		ret = -EINVAL;
4450 		if (!arg || nr_args != 1)
4451 			break;
4452 		ret = io_register_pbuf_ring(ctx, arg);
4453 		break;
4454 	case IORING_UNREGISTER_PBUF_RING:
4455 		ret = -EINVAL;
4456 		if (!arg || nr_args != 1)
4457 			break;
4458 		ret = io_unregister_pbuf_ring(ctx, arg);
4459 		break;
4460 	case IORING_REGISTER_SYNC_CANCEL:
4461 		ret = -EINVAL;
4462 		if (!arg || nr_args != 1)
4463 			break;
4464 		ret = io_sync_cancel(ctx, arg);
4465 		break;
4466 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4467 		ret = -EINVAL;
4468 		if (!arg || nr_args)
4469 			break;
4470 		ret = io_register_file_alloc_range(ctx, arg);
4471 		break;
4472 	default:
4473 		ret = -EINVAL;
4474 		break;
4475 	}
4476 
4477 	return ret;
4478 }
4479 
4480 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4481 		void __user *, arg, unsigned int, nr_args)
4482 {
4483 	struct io_ring_ctx *ctx;
4484 	long ret = -EBADF;
4485 	struct fd f;
4486 	bool use_registered_ring;
4487 
4488 	use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4489 	opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4490 
4491 	if (opcode >= IORING_REGISTER_LAST)
4492 		return -EINVAL;
4493 
4494 	if (use_registered_ring) {
4495 		/*
4496 		 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4497 		 * need only dereference our task private array to find it.
4498 		 */
4499 		struct io_uring_task *tctx = current->io_uring;
4500 
4501 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4502 			return -EINVAL;
4503 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4504 		f.file = tctx->registered_rings[fd];
4505 		f.flags = 0;
4506 		if (unlikely(!f.file))
4507 			return -EBADF;
4508 	} else {
4509 		f = fdget(fd);
4510 		if (unlikely(!f.file))
4511 			return -EBADF;
4512 		ret = -EOPNOTSUPP;
4513 		if (!io_is_uring_fops(f.file))
4514 			goto out_fput;
4515 	}
4516 
4517 	ctx = f.file->private_data;
4518 
4519 	mutex_lock(&ctx->uring_lock);
4520 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4521 	mutex_unlock(&ctx->uring_lock);
4522 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4523 out_fput:
4524 	fdput(f);
4525 	return ret;
4526 }
4527 
4528 static int __init io_uring_init(void)
4529 {
4530 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4531 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4532 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4533 } while (0)
4534 
4535 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4536 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4537 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4538 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4539 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4540 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4541 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4542 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4543 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4544 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4545 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4546 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4547 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4548 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4549 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4550 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4551 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4552 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4553 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4554 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4555 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4556 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4557 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4558 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4559 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4560 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4561 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4562 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4563 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4564 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4565 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4566 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4567 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4568 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4569 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4570 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4571 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4572 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4573 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4574 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4575 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4576 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4577 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4578 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4579 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4580 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4581 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4582 
4583 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4584 		     sizeof(struct io_uring_rsrc_update));
4585 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4586 		     sizeof(struct io_uring_rsrc_update2));
4587 
4588 	/* ->buf_index is u16 */
4589 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4590 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4591 		     offsetof(struct io_uring_buf_ring, tail));
4592 
4593 	/* should fit into one byte */
4594 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4595 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4596 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4597 
4598 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4599 
4600 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4601 
4602 	io_uring_optable_init();
4603 
4604 	req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4605 				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU);
4606 	return 0;
4607 };
4608 __initcall(io_uring_init);
4609