1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 #include <asm/shmparam.h> 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/io_uring.h> 79 80 #include <uapi/linux/io_uring.h> 81 82 #include "io-wq.h" 83 84 #include "io_uring.h" 85 #include "opdef.h" 86 #include "refs.h" 87 #include "tctx.h" 88 #include "sqpoll.h" 89 #include "fdinfo.h" 90 #include "kbuf.h" 91 #include "rsrc.h" 92 #include "cancel.h" 93 #include "net.h" 94 #include "notif.h" 95 96 #include "timeout.h" 97 #include "poll.h" 98 #include "rw.h" 99 #include "alloc_cache.h" 100 101 #define IORING_MAX_ENTRIES 32768 102 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 103 104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 105 IORING_REGISTER_LAST + IORING_OP_LAST) 106 107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 108 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 109 110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 112 113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 115 REQ_F_ASYNC_DATA) 116 117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 118 IO_REQ_CLEAN_FLAGS) 119 120 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 121 122 #define IO_COMPL_BATCH 32 123 #define IO_REQ_ALLOC_BATCH 8 124 125 enum { 126 IO_CHECK_CQ_OVERFLOW_BIT, 127 IO_CHECK_CQ_DROPPED_BIT, 128 }; 129 130 enum { 131 IO_EVENTFD_OP_SIGNAL_BIT, 132 IO_EVENTFD_OP_FREE_BIT, 133 }; 134 135 struct io_defer_entry { 136 struct list_head list; 137 struct io_kiocb *req; 138 u32 seq; 139 }; 140 141 /* requests with any of those set should undergo io_disarm_next() */ 142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 144 145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 146 struct task_struct *task, 147 bool cancel_all); 148 149 static void io_queue_sqe(struct io_kiocb *req); 150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx); 151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx); 152 static __cold void io_fallback_tw(struct io_uring_task *tctx); 153 154 struct kmem_cache *req_cachep; 155 156 struct sock *io_uring_get_socket(struct file *file) 157 { 158 #if defined(CONFIG_UNIX) 159 if (io_is_uring_fops(file)) { 160 struct io_ring_ctx *ctx = file->private_data; 161 162 return ctx->ring_sock->sk; 163 } 164 #endif 165 return NULL; 166 } 167 EXPORT_SYMBOL(io_uring_get_socket); 168 169 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 170 { 171 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 172 ctx->submit_state.cqes_count) 173 __io_submit_flush_completions(ctx); 174 } 175 176 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 177 { 178 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 179 } 180 181 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 182 { 183 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 184 } 185 186 static bool io_match_linked(struct io_kiocb *head) 187 { 188 struct io_kiocb *req; 189 190 io_for_each_link(req, head) { 191 if (req->flags & REQ_F_INFLIGHT) 192 return true; 193 } 194 return false; 195 } 196 197 /* 198 * As io_match_task() but protected against racing with linked timeouts. 199 * User must not hold timeout_lock. 200 */ 201 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 202 bool cancel_all) 203 { 204 bool matched; 205 206 if (task && head->task != task) 207 return false; 208 if (cancel_all) 209 return true; 210 211 if (head->flags & REQ_F_LINK_TIMEOUT) { 212 struct io_ring_ctx *ctx = head->ctx; 213 214 /* protect against races with linked timeouts */ 215 spin_lock_irq(&ctx->timeout_lock); 216 matched = io_match_linked(head); 217 spin_unlock_irq(&ctx->timeout_lock); 218 } else { 219 matched = io_match_linked(head); 220 } 221 return matched; 222 } 223 224 static inline void req_fail_link_node(struct io_kiocb *req, int res) 225 { 226 req_set_fail(req); 227 io_req_set_res(req, res, 0); 228 } 229 230 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 231 { 232 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 233 kasan_poison_object_data(req_cachep, req); 234 } 235 236 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 237 { 238 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 239 240 complete(&ctx->ref_comp); 241 } 242 243 static __cold void io_fallback_req_func(struct work_struct *work) 244 { 245 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 246 fallback_work.work); 247 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 248 struct io_kiocb *req, *tmp; 249 struct io_tw_state ts = { .locked = true, }; 250 251 mutex_lock(&ctx->uring_lock); 252 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 253 req->io_task_work.func(req, &ts); 254 if (WARN_ON_ONCE(!ts.locked)) 255 return; 256 io_submit_flush_completions(ctx); 257 mutex_unlock(&ctx->uring_lock); 258 } 259 260 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 261 { 262 unsigned hash_buckets = 1U << bits; 263 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 264 265 table->hbs = kmalloc(hash_size, GFP_KERNEL); 266 if (!table->hbs) 267 return -ENOMEM; 268 269 table->hash_bits = bits; 270 init_hash_table(table, hash_buckets); 271 return 0; 272 } 273 274 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 275 { 276 struct io_ring_ctx *ctx; 277 int hash_bits; 278 279 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 280 if (!ctx) 281 return NULL; 282 283 xa_init(&ctx->io_bl_xa); 284 285 /* 286 * Use 5 bits less than the max cq entries, that should give us around 287 * 32 entries per hash list if totally full and uniformly spread, but 288 * don't keep too many buckets to not overconsume memory. 289 */ 290 hash_bits = ilog2(p->cq_entries) - 5; 291 hash_bits = clamp(hash_bits, 1, 8); 292 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 293 goto err; 294 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 295 goto err; 296 297 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL); 298 if (!ctx->dummy_ubuf) 299 goto err; 300 /* set invalid range, so io_import_fixed() fails meeting it */ 301 ctx->dummy_ubuf->ubuf = -1UL; 302 303 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 304 0, GFP_KERNEL)) 305 goto err; 306 307 ctx->flags = p->flags; 308 init_waitqueue_head(&ctx->sqo_sq_wait); 309 INIT_LIST_HEAD(&ctx->sqd_list); 310 INIT_LIST_HEAD(&ctx->cq_overflow_list); 311 INIT_LIST_HEAD(&ctx->io_buffers_cache); 312 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 313 sizeof(struct io_rsrc_node)); 314 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, 315 sizeof(struct async_poll)); 316 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 317 sizeof(struct io_async_msghdr)); 318 init_completion(&ctx->ref_comp); 319 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 320 mutex_init(&ctx->uring_lock); 321 init_waitqueue_head(&ctx->cq_wait); 322 init_waitqueue_head(&ctx->poll_wq); 323 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 324 spin_lock_init(&ctx->completion_lock); 325 spin_lock_init(&ctx->timeout_lock); 326 INIT_WQ_LIST(&ctx->iopoll_list); 327 INIT_LIST_HEAD(&ctx->io_buffers_pages); 328 INIT_LIST_HEAD(&ctx->io_buffers_comp); 329 INIT_LIST_HEAD(&ctx->defer_list); 330 INIT_LIST_HEAD(&ctx->timeout_list); 331 INIT_LIST_HEAD(&ctx->ltimeout_list); 332 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 333 init_llist_head(&ctx->work_llist); 334 INIT_LIST_HEAD(&ctx->tctx_list); 335 ctx->submit_state.free_list.next = NULL; 336 INIT_WQ_LIST(&ctx->locked_free_list); 337 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 338 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 339 return ctx; 340 err: 341 kfree(ctx->dummy_ubuf); 342 kfree(ctx->cancel_table.hbs); 343 kfree(ctx->cancel_table_locked.hbs); 344 kfree(ctx->io_bl); 345 xa_destroy(&ctx->io_bl_xa); 346 kfree(ctx); 347 return NULL; 348 } 349 350 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 351 { 352 struct io_rings *r = ctx->rings; 353 354 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 355 ctx->cq_extra--; 356 } 357 358 static bool req_need_defer(struct io_kiocb *req, u32 seq) 359 { 360 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 361 struct io_ring_ctx *ctx = req->ctx; 362 363 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 364 } 365 366 return false; 367 } 368 369 static void io_clean_op(struct io_kiocb *req) 370 { 371 if (req->flags & REQ_F_BUFFER_SELECTED) { 372 spin_lock(&req->ctx->completion_lock); 373 io_put_kbuf_comp(req); 374 spin_unlock(&req->ctx->completion_lock); 375 } 376 377 if (req->flags & REQ_F_NEED_CLEANUP) { 378 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 379 380 if (def->cleanup) 381 def->cleanup(req); 382 } 383 if ((req->flags & REQ_F_POLLED) && req->apoll) { 384 kfree(req->apoll->double_poll); 385 kfree(req->apoll); 386 req->apoll = NULL; 387 } 388 if (req->flags & REQ_F_INFLIGHT) { 389 struct io_uring_task *tctx = req->task->io_uring; 390 391 atomic_dec(&tctx->inflight_tracked); 392 } 393 if (req->flags & REQ_F_CREDS) 394 put_cred(req->creds); 395 if (req->flags & REQ_F_ASYNC_DATA) { 396 kfree(req->async_data); 397 req->async_data = NULL; 398 } 399 req->flags &= ~IO_REQ_CLEAN_FLAGS; 400 } 401 402 static inline void io_req_track_inflight(struct io_kiocb *req) 403 { 404 if (!(req->flags & REQ_F_INFLIGHT)) { 405 req->flags |= REQ_F_INFLIGHT; 406 atomic_inc(&req->task->io_uring->inflight_tracked); 407 } 408 } 409 410 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 411 { 412 if (WARN_ON_ONCE(!req->link)) 413 return NULL; 414 415 req->flags &= ~REQ_F_ARM_LTIMEOUT; 416 req->flags |= REQ_F_LINK_TIMEOUT; 417 418 /* linked timeouts should have two refs once prep'ed */ 419 io_req_set_refcount(req); 420 __io_req_set_refcount(req->link, 2); 421 return req->link; 422 } 423 424 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 425 { 426 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 427 return NULL; 428 return __io_prep_linked_timeout(req); 429 } 430 431 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 432 { 433 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 434 } 435 436 static inline void io_arm_ltimeout(struct io_kiocb *req) 437 { 438 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 439 __io_arm_ltimeout(req); 440 } 441 442 static void io_prep_async_work(struct io_kiocb *req) 443 { 444 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 445 struct io_ring_ctx *ctx = req->ctx; 446 447 if (!(req->flags & REQ_F_CREDS)) { 448 req->flags |= REQ_F_CREDS; 449 req->creds = get_current_cred(); 450 } 451 452 req->work.list.next = NULL; 453 req->work.flags = 0; 454 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 455 if (req->flags & REQ_F_FORCE_ASYNC) 456 req->work.flags |= IO_WQ_WORK_CONCURRENT; 457 458 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 459 req->flags |= io_file_get_flags(req->file); 460 461 if (req->file && (req->flags & REQ_F_ISREG)) { 462 bool should_hash = def->hash_reg_file; 463 464 /* don't serialize this request if the fs doesn't need it */ 465 if (should_hash && (req->file->f_flags & O_DIRECT) && 466 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) 467 should_hash = false; 468 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 469 io_wq_hash_work(&req->work, file_inode(req->file)); 470 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 471 if (def->unbound_nonreg_file) 472 req->work.flags |= IO_WQ_WORK_UNBOUND; 473 } 474 } 475 476 static void io_prep_async_link(struct io_kiocb *req) 477 { 478 struct io_kiocb *cur; 479 480 if (req->flags & REQ_F_LINK_TIMEOUT) { 481 struct io_ring_ctx *ctx = req->ctx; 482 483 spin_lock_irq(&ctx->timeout_lock); 484 io_for_each_link(cur, req) 485 io_prep_async_work(cur); 486 spin_unlock_irq(&ctx->timeout_lock); 487 } else { 488 io_for_each_link(cur, req) 489 io_prep_async_work(cur); 490 } 491 } 492 493 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) 494 { 495 struct io_kiocb *link = io_prep_linked_timeout(req); 496 struct io_uring_task *tctx = req->task->io_uring; 497 498 BUG_ON(!tctx); 499 BUG_ON(!tctx->io_wq); 500 501 /* init ->work of the whole link before punting */ 502 io_prep_async_link(req); 503 504 /* 505 * Not expected to happen, but if we do have a bug where this _can_ 506 * happen, catch it here and ensure the request is marked as 507 * canceled. That will make io-wq go through the usual work cancel 508 * procedure rather than attempt to run this request (or create a new 509 * worker for it). 510 */ 511 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 512 req->work.flags |= IO_WQ_WORK_CANCEL; 513 514 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 515 io_wq_enqueue(tctx->io_wq, &req->work); 516 if (link) 517 io_queue_linked_timeout(link); 518 } 519 520 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 521 { 522 while (!list_empty(&ctx->defer_list)) { 523 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 524 struct io_defer_entry, list); 525 526 if (req_need_defer(de->req, de->seq)) 527 break; 528 list_del_init(&de->list); 529 io_req_task_queue(de->req); 530 kfree(de); 531 } 532 } 533 534 535 static void io_eventfd_ops(struct rcu_head *rcu) 536 { 537 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 538 int ops = atomic_xchg(&ev_fd->ops, 0); 539 540 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 541 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 542 543 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 544 * ordering in a race but if references are 0 we know we have to free 545 * it regardless. 546 */ 547 if (atomic_dec_and_test(&ev_fd->refs)) { 548 eventfd_ctx_put(ev_fd->cq_ev_fd); 549 kfree(ev_fd); 550 } 551 } 552 553 static void io_eventfd_signal(struct io_ring_ctx *ctx) 554 { 555 struct io_ev_fd *ev_fd = NULL; 556 557 rcu_read_lock(); 558 /* 559 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 560 * and eventfd_signal 561 */ 562 ev_fd = rcu_dereference(ctx->io_ev_fd); 563 564 /* 565 * Check again if ev_fd exists incase an io_eventfd_unregister call 566 * completed between the NULL check of ctx->io_ev_fd at the start of 567 * the function and rcu_read_lock. 568 */ 569 if (unlikely(!ev_fd)) 570 goto out; 571 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 572 goto out; 573 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 574 goto out; 575 576 if (likely(eventfd_signal_allowed())) { 577 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 578 } else { 579 atomic_inc(&ev_fd->refs); 580 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 581 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 582 else 583 atomic_dec(&ev_fd->refs); 584 } 585 586 out: 587 rcu_read_unlock(); 588 } 589 590 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 591 { 592 bool skip; 593 594 spin_lock(&ctx->completion_lock); 595 596 /* 597 * Eventfd should only get triggered when at least one event has been 598 * posted. Some applications rely on the eventfd notification count 599 * only changing IFF a new CQE has been added to the CQ ring. There's 600 * no depedency on 1:1 relationship between how many times this 601 * function is called (and hence the eventfd count) and number of CQEs 602 * posted to the CQ ring. 603 */ 604 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 605 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 606 spin_unlock(&ctx->completion_lock); 607 if (skip) 608 return; 609 610 io_eventfd_signal(ctx); 611 } 612 613 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 614 { 615 if (ctx->poll_activated) 616 io_poll_wq_wake(ctx); 617 if (ctx->off_timeout_used) 618 io_flush_timeouts(ctx); 619 if (ctx->drain_active) { 620 spin_lock(&ctx->completion_lock); 621 io_queue_deferred(ctx); 622 spin_unlock(&ctx->completion_lock); 623 } 624 if (ctx->has_evfd) 625 io_eventfd_flush_signal(ctx); 626 } 627 628 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 629 __acquires(ctx->completion_lock) 630 { 631 if (!ctx->task_complete) 632 spin_lock(&ctx->completion_lock); 633 } 634 635 static inline void __io_cq_unlock(struct io_ring_ctx *ctx) 636 { 637 if (!ctx->task_complete) 638 spin_unlock(&ctx->completion_lock); 639 } 640 641 static inline void io_cq_lock(struct io_ring_ctx *ctx) 642 __acquires(ctx->completion_lock) 643 { 644 spin_lock(&ctx->completion_lock); 645 } 646 647 static inline void io_cq_unlock(struct io_ring_ctx *ctx) 648 __releases(ctx->completion_lock) 649 { 650 spin_unlock(&ctx->completion_lock); 651 } 652 653 /* keep it inlined for io_submit_flush_completions() */ 654 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 655 __releases(ctx->completion_lock) 656 { 657 io_commit_cqring(ctx); 658 __io_cq_unlock(ctx); 659 io_commit_cqring_flush(ctx); 660 io_cqring_wake(ctx); 661 } 662 663 static void __io_cq_unlock_post_flush(struct io_ring_ctx *ctx) 664 __releases(ctx->completion_lock) 665 { 666 io_commit_cqring(ctx); 667 668 if (ctx->task_complete) { 669 /* 670 * ->task_complete implies that only current might be waiting 671 * for CQEs, and obviously, we currently don't. No one is 672 * waiting, wakeups are futile, skip them. 673 */ 674 io_commit_cqring_flush(ctx); 675 } else { 676 __io_cq_unlock(ctx); 677 io_commit_cqring_flush(ctx); 678 io_cqring_wake(ctx); 679 } 680 } 681 682 void io_cq_unlock_post(struct io_ring_ctx *ctx) 683 __releases(ctx->completion_lock) 684 { 685 io_commit_cqring(ctx); 686 spin_unlock(&ctx->completion_lock); 687 io_commit_cqring_flush(ctx); 688 io_cqring_wake(ctx); 689 } 690 691 /* Returns true if there are no backlogged entries after the flush */ 692 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 693 { 694 struct io_overflow_cqe *ocqe; 695 LIST_HEAD(list); 696 697 io_cq_lock(ctx); 698 list_splice_init(&ctx->cq_overflow_list, &list); 699 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 700 io_cq_unlock(ctx); 701 702 while (!list_empty(&list)) { 703 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 704 list_del(&ocqe->list); 705 kfree(ocqe); 706 } 707 } 708 709 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 710 { 711 size_t cqe_size = sizeof(struct io_uring_cqe); 712 713 if (__io_cqring_events(ctx) == ctx->cq_entries) 714 return; 715 716 if (ctx->flags & IORING_SETUP_CQE32) 717 cqe_size <<= 1; 718 719 io_cq_lock(ctx); 720 while (!list_empty(&ctx->cq_overflow_list)) { 721 struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true); 722 struct io_overflow_cqe *ocqe; 723 724 if (!cqe) 725 break; 726 ocqe = list_first_entry(&ctx->cq_overflow_list, 727 struct io_overflow_cqe, list); 728 memcpy(cqe, &ocqe->cqe, cqe_size); 729 list_del(&ocqe->list); 730 kfree(ocqe); 731 } 732 733 if (list_empty(&ctx->cq_overflow_list)) { 734 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 735 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 736 } 737 io_cq_unlock_post(ctx); 738 } 739 740 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 741 { 742 /* iopoll syncs against uring_lock, not completion_lock */ 743 if (ctx->flags & IORING_SETUP_IOPOLL) 744 mutex_lock(&ctx->uring_lock); 745 __io_cqring_overflow_flush(ctx); 746 if (ctx->flags & IORING_SETUP_IOPOLL) 747 mutex_unlock(&ctx->uring_lock); 748 } 749 750 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 751 { 752 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 753 io_cqring_do_overflow_flush(ctx); 754 } 755 756 /* can be called by any task */ 757 static void io_put_task_remote(struct task_struct *task) 758 { 759 struct io_uring_task *tctx = task->io_uring; 760 761 percpu_counter_sub(&tctx->inflight, 1); 762 if (unlikely(atomic_read(&tctx->in_cancel))) 763 wake_up(&tctx->wait); 764 put_task_struct(task); 765 } 766 767 /* used by a task to put its own references */ 768 static void io_put_task_local(struct task_struct *task) 769 { 770 task->io_uring->cached_refs++; 771 } 772 773 /* must to be called somewhat shortly after putting a request */ 774 static inline void io_put_task(struct task_struct *task) 775 { 776 if (likely(task == current)) 777 io_put_task_local(task); 778 else 779 io_put_task_remote(task); 780 } 781 782 void io_task_refs_refill(struct io_uring_task *tctx) 783 { 784 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 785 786 percpu_counter_add(&tctx->inflight, refill); 787 refcount_add(refill, ¤t->usage); 788 tctx->cached_refs += refill; 789 } 790 791 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 792 { 793 struct io_uring_task *tctx = task->io_uring; 794 unsigned int refs = tctx->cached_refs; 795 796 if (refs) { 797 tctx->cached_refs = 0; 798 percpu_counter_sub(&tctx->inflight, refs); 799 put_task_struct_many(task, refs); 800 } 801 } 802 803 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 804 s32 res, u32 cflags, u64 extra1, u64 extra2) 805 { 806 struct io_overflow_cqe *ocqe; 807 size_t ocq_size = sizeof(struct io_overflow_cqe); 808 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 809 810 lockdep_assert_held(&ctx->completion_lock); 811 812 if (is_cqe32) 813 ocq_size += sizeof(struct io_uring_cqe); 814 815 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 816 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 817 if (!ocqe) { 818 /* 819 * If we're in ring overflow flush mode, or in task cancel mode, 820 * or cannot allocate an overflow entry, then we need to drop it 821 * on the floor. 822 */ 823 io_account_cq_overflow(ctx); 824 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 825 return false; 826 } 827 if (list_empty(&ctx->cq_overflow_list)) { 828 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 829 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 830 831 } 832 ocqe->cqe.user_data = user_data; 833 ocqe->cqe.res = res; 834 ocqe->cqe.flags = cflags; 835 if (is_cqe32) { 836 ocqe->cqe.big_cqe[0] = extra1; 837 ocqe->cqe.big_cqe[1] = extra2; 838 } 839 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 840 return true; 841 } 842 843 bool io_req_cqe_overflow(struct io_kiocb *req) 844 { 845 if (!(req->flags & REQ_F_CQE32_INIT)) { 846 req->extra1 = 0; 847 req->extra2 = 0; 848 } 849 return io_cqring_event_overflow(req->ctx, req->cqe.user_data, 850 req->cqe.res, req->cqe.flags, 851 req->extra1, req->extra2); 852 } 853 854 /* 855 * writes to the cq entry need to come after reading head; the 856 * control dependency is enough as we're using WRITE_ONCE to 857 * fill the cq entry 858 */ 859 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow) 860 { 861 struct io_rings *rings = ctx->rings; 862 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 863 unsigned int free, queued, len; 864 865 /* 866 * Posting into the CQ when there are pending overflowed CQEs may break 867 * ordering guarantees, which will affect links, F_MORE users and more. 868 * Force overflow the completion. 869 */ 870 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 871 return NULL; 872 873 /* userspace may cheat modifying the tail, be safe and do min */ 874 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 875 free = ctx->cq_entries - queued; 876 /* we need a contiguous range, limit based on the current array offset */ 877 len = min(free, ctx->cq_entries - off); 878 if (!len) 879 return NULL; 880 881 if (ctx->flags & IORING_SETUP_CQE32) { 882 off <<= 1; 883 len <<= 1; 884 } 885 886 ctx->cqe_cached = &rings->cqes[off]; 887 ctx->cqe_sentinel = ctx->cqe_cached + len; 888 889 ctx->cached_cq_tail++; 890 ctx->cqe_cached++; 891 if (ctx->flags & IORING_SETUP_CQE32) 892 ctx->cqe_cached++; 893 return &rings->cqes[off]; 894 } 895 896 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 897 u32 cflags) 898 { 899 struct io_uring_cqe *cqe; 900 901 ctx->cq_extra++; 902 903 /* 904 * If we can't get a cq entry, userspace overflowed the 905 * submission (by quite a lot). Increment the overflow count in 906 * the ring. 907 */ 908 cqe = io_get_cqe(ctx); 909 if (likely(cqe)) { 910 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 911 912 WRITE_ONCE(cqe->user_data, user_data); 913 WRITE_ONCE(cqe->res, res); 914 WRITE_ONCE(cqe->flags, cflags); 915 916 if (ctx->flags & IORING_SETUP_CQE32) { 917 WRITE_ONCE(cqe->big_cqe[0], 0); 918 WRITE_ONCE(cqe->big_cqe[1], 0); 919 } 920 return true; 921 } 922 return false; 923 } 924 925 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 926 __must_hold(&ctx->uring_lock) 927 { 928 struct io_submit_state *state = &ctx->submit_state; 929 unsigned int i; 930 931 lockdep_assert_held(&ctx->uring_lock); 932 for (i = 0; i < state->cqes_count; i++) { 933 struct io_uring_cqe *cqe = &state->cqes[i]; 934 935 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 936 if (ctx->task_complete) { 937 spin_lock(&ctx->completion_lock); 938 io_cqring_event_overflow(ctx, cqe->user_data, 939 cqe->res, cqe->flags, 0, 0); 940 spin_unlock(&ctx->completion_lock); 941 } else { 942 io_cqring_event_overflow(ctx, cqe->user_data, 943 cqe->res, cqe->flags, 0, 0); 944 } 945 } 946 } 947 state->cqes_count = 0; 948 } 949 950 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 951 bool allow_overflow) 952 { 953 bool filled; 954 955 io_cq_lock(ctx); 956 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 957 if (!filled && allow_overflow) 958 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 959 960 io_cq_unlock_post(ctx); 961 return filled; 962 } 963 964 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 965 { 966 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 967 } 968 969 bool io_aux_cqe(const struct io_kiocb *req, bool defer, s32 res, u32 cflags, 970 bool allow_overflow) 971 { 972 struct io_ring_ctx *ctx = req->ctx; 973 u64 user_data = req->cqe.user_data; 974 struct io_uring_cqe *cqe; 975 976 if (!defer) 977 return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow); 978 979 lockdep_assert_held(&ctx->uring_lock); 980 981 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->submit_state.cqes)) { 982 __io_cq_lock(ctx); 983 __io_flush_post_cqes(ctx); 984 /* no need to flush - flush is deferred */ 985 __io_cq_unlock_post(ctx); 986 } 987 988 /* For defered completions this is not as strict as it is otherwise, 989 * however it's main job is to prevent unbounded posted completions, 990 * and in that it works just as well. 991 */ 992 if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 993 return false; 994 995 cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++]; 996 cqe->user_data = user_data; 997 cqe->res = res; 998 cqe->flags = cflags; 999 return true; 1000 } 1001 1002 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1003 { 1004 struct io_ring_ctx *ctx = req->ctx; 1005 struct io_rsrc_node *rsrc_node = NULL; 1006 1007 io_cq_lock(ctx); 1008 if (!(req->flags & REQ_F_CQE_SKIP)) 1009 io_fill_cqe_req(ctx, req); 1010 1011 /* 1012 * If we're the last reference to this request, add to our locked 1013 * free_list cache. 1014 */ 1015 if (req_ref_put_and_test(req)) { 1016 if (req->flags & IO_REQ_LINK_FLAGS) { 1017 if (req->flags & IO_DISARM_MASK) 1018 io_disarm_next(req); 1019 if (req->link) { 1020 io_req_task_queue(req->link); 1021 req->link = NULL; 1022 } 1023 } 1024 io_put_kbuf_comp(req); 1025 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1026 io_clean_op(req); 1027 if (!(req->flags & REQ_F_FIXED_FILE)) 1028 io_put_file(req->file); 1029 1030 rsrc_node = req->rsrc_node; 1031 /* 1032 * Selected buffer deallocation in io_clean_op() assumes that 1033 * we don't hold ->completion_lock. Clean them here to avoid 1034 * deadlocks. 1035 */ 1036 io_put_task_remote(req->task); 1037 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1038 ctx->locked_free_nr++; 1039 } 1040 io_cq_unlock_post(ctx); 1041 1042 if (rsrc_node) { 1043 io_ring_submit_lock(ctx, issue_flags); 1044 io_put_rsrc_node(ctx, rsrc_node); 1045 io_ring_submit_unlock(ctx, issue_flags); 1046 } 1047 } 1048 1049 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1050 { 1051 if (req->ctx->task_complete && req->ctx->submitter_task != current) { 1052 req->io_task_work.func = io_req_task_complete; 1053 io_req_task_work_add(req); 1054 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1055 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 1056 __io_req_complete_post(req, issue_flags); 1057 } else { 1058 struct io_ring_ctx *ctx = req->ctx; 1059 1060 mutex_lock(&ctx->uring_lock); 1061 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); 1062 mutex_unlock(&ctx->uring_lock); 1063 } 1064 } 1065 1066 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1067 __must_hold(&ctx->uring_lock) 1068 { 1069 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1070 1071 lockdep_assert_held(&req->ctx->uring_lock); 1072 1073 req_set_fail(req); 1074 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1075 if (def->fail) 1076 def->fail(req); 1077 io_req_complete_defer(req); 1078 } 1079 1080 /* 1081 * Don't initialise the fields below on every allocation, but do that in 1082 * advance and keep them valid across allocations. 1083 */ 1084 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1085 { 1086 req->ctx = ctx; 1087 req->link = NULL; 1088 req->async_data = NULL; 1089 /* not necessary, but safer to zero */ 1090 req->cqe.res = 0; 1091 } 1092 1093 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1094 struct io_submit_state *state) 1095 { 1096 spin_lock(&ctx->completion_lock); 1097 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1098 ctx->locked_free_nr = 0; 1099 spin_unlock(&ctx->completion_lock); 1100 } 1101 1102 /* 1103 * A request might get retired back into the request caches even before opcode 1104 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1105 * Because of that, io_alloc_req() should be called only under ->uring_lock 1106 * and with extra caution to not get a request that is still worked on. 1107 */ 1108 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1109 __must_hold(&ctx->uring_lock) 1110 { 1111 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1112 void *reqs[IO_REQ_ALLOC_BATCH]; 1113 int ret, i; 1114 1115 /* 1116 * If we have more than a batch's worth of requests in our IRQ side 1117 * locked cache, grab the lock and move them over to our submission 1118 * side cache. 1119 */ 1120 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1121 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1122 if (!io_req_cache_empty(ctx)) 1123 return true; 1124 } 1125 1126 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1127 1128 /* 1129 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1130 * retry single alloc to be on the safe side. 1131 */ 1132 if (unlikely(ret <= 0)) { 1133 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1134 if (!reqs[0]) 1135 return false; 1136 ret = 1; 1137 } 1138 1139 percpu_ref_get_many(&ctx->refs, ret); 1140 for (i = 0; i < ret; i++) { 1141 struct io_kiocb *req = reqs[i]; 1142 1143 io_preinit_req(req, ctx); 1144 io_req_add_to_cache(req, ctx); 1145 } 1146 return true; 1147 } 1148 1149 __cold void io_free_req(struct io_kiocb *req) 1150 { 1151 /* refs were already put, restore them for io_req_task_complete() */ 1152 req->flags &= ~REQ_F_REFCOUNT; 1153 /* we only want to free it, don't post CQEs */ 1154 req->flags |= REQ_F_CQE_SKIP; 1155 req->io_task_work.func = io_req_task_complete; 1156 io_req_task_work_add(req); 1157 } 1158 1159 static void __io_req_find_next_prep(struct io_kiocb *req) 1160 { 1161 struct io_ring_ctx *ctx = req->ctx; 1162 1163 spin_lock(&ctx->completion_lock); 1164 io_disarm_next(req); 1165 spin_unlock(&ctx->completion_lock); 1166 } 1167 1168 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1169 { 1170 struct io_kiocb *nxt; 1171 1172 /* 1173 * If LINK is set, we have dependent requests in this chain. If we 1174 * didn't fail this request, queue the first one up, moving any other 1175 * dependencies to the next request. In case of failure, fail the rest 1176 * of the chain. 1177 */ 1178 if (unlikely(req->flags & IO_DISARM_MASK)) 1179 __io_req_find_next_prep(req); 1180 nxt = req->link; 1181 req->link = NULL; 1182 return nxt; 1183 } 1184 1185 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1186 { 1187 if (!ctx) 1188 return; 1189 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1190 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1191 if (ts->locked) { 1192 io_submit_flush_completions(ctx); 1193 mutex_unlock(&ctx->uring_lock); 1194 ts->locked = false; 1195 } 1196 percpu_ref_put(&ctx->refs); 1197 } 1198 1199 static unsigned int handle_tw_list(struct llist_node *node, 1200 struct io_ring_ctx **ctx, 1201 struct io_tw_state *ts, 1202 struct llist_node *last) 1203 { 1204 unsigned int count = 0; 1205 1206 while (node && node != last) { 1207 struct llist_node *next = node->next; 1208 struct io_kiocb *req = container_of(node, struct io_kiocb, 1209 io_task_work.node); 1210 1211 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1212 1213 if (req->ctx != *ctx) { 1214 ctx_flush_and_put(*ctx, ts); 1215 *ctx = req->ctx; 1216 /* if not contended, grab and improve batching */ 1217 ts->locked = mutex_trylock(&(*ctx)->uring_lock); 1218 percpu_ref_get(&(*ctx)->refs); 1219 } 1220 INDIRECT_CALL_2(req->io_task_work.func, 1221 io_poll_task_func, io_req_rw_complete, 1222 req, ts); 1223 node = next; 1224 count++; 1225 if (unlikely(need_resched())) { 1226 ctx_flush_and_put(*ctx, ts); 1227 *ctx = NULL; 1228 cond_resched(); 1229 } 1230 } 1231 1232 return count; 1233 } 1234 1235 /** 1236 * io_llist_xchg - swap all entries in a lock-less list 1237 * @head: the head of lock-less list to delete all entries 1238 * @new: new entry as the head of the list 1239 * 1240 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1241 * The order of entries returned is from the newest to the oldest added one. 1242 */ 1243 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1244 struct llist_node *new) 1245 { 1246 return xchg(&head->first, new); 1247 } 1248 1249 /** 1250 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1251 * @head: the head of lock-less list to delete all entries 1252 * @old: expected old value of the first entry of the list 1253 * @new: new entry as the head of the list 1254 * 1255 * perform a cmpxchg on the first entry of the list. 1256 */ 1257 1258 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1259 struct llist_node *old, 1260 struct llist_node *new) 1261 { 1262 return cmpxchg(&head->first, old, new); 1263 } 1264 1265 void tctx_task_work(struct callback_head *cb) 1266 { 1267 struct io_tw_state ts = {}; 1268 struct io_ring_ctx *ctx = NULL; 1269 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1270 task_work); 1271 struct llist_node fake = {}; 1272 struct llist_node *node; 1273 unsigned int loops = 0; 1274 unsigned int count = 0; 1275 1276 if (unlikely(current->flags & PF_EXITING)) { 1277 io_fallback_tw(tctx); 1278 return; 1279 } 1280 1281 do { 1282 loops++; 1283 node = io_llist_xchg(&tctx->task_list, &fake); 1284 count += handle_tw_list(node, &ctx, &ts, &fake); 1285 1286 /* skip expensive cmpxchg if there are items in the list */ 1287 if (READ_ONCE(tctx->task_list.first) != &fake) 1288 continue; 1289 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) { 1290 io_submit_flush_completions(ctx); 1291 if (READ_ONCE(tctx->task_list.first) != &fake) 1292 continue; 1293 } 1294 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1295 } while (node != &fake); 1296 1297 ctx_flush_and_put(ctx, &ts); 1298 1299 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1300 if (unlikely(atomic_read(&tctx->in_cancel))) 1301 io_uring_drop_tctx_refs(current); 1302 1303 trace_io_uring_task_work_run(tctx, count, loops); 1304 } 1305 1306 static __cold void io_fallback_tw(struct io_uring_task *tctx) 1307 { 1308 struct llist_node *node = llist_del_all(&tctx->task_list); 1309 struct io_kiocb *req; 1310 1311 while (node) { 1312 req = container_of(node, struct io_kiocb, io_task_work.node); 1313 node = node->next; 1314 if (llist_add(&req->io_task_work.node, 1315 &req->ctx->fallback_llist)) 1316 schedule_delayed_work(&req->ctx->fallback_work, 1); 1317 } 1318 } 1319 1320 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1321 { 1322 struct io_ring_ctx *ctx = req->ctx; 1323 unsigned nr_wait, nr_tw, nr_tw_prev; 1324 struct llist_node *first; 1325 1326 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1327 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1328 1329 first = READ_ONCE(ctx->work_llist.first); 1330 do { 1331 nr_tw_prev = 0; 1332 if (first) { 1333 struct io_kiocb *first_req = container_of(first, 1334 struct io_kiocb, 1335 io_task_work.node); 1336 /* 1337 * Might be executed at any moment, rely on 1338 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1339 */ 1340 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1341 } 1342 nr_tw = nr_tw_prev + 1; 1343 /* Large enough to fail the nr_wait comparison below */ 1344 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1345 nr_tw = -1U; 1346 1347 req->nr_tw = nr_tw; 1348 req->io_task_work.node.next = first; 1349 } while (!try_cmpxchg(&ctx->work_llist.first, &first, 1350 &req->io_task_work.node)); 1351 1352 if (!first) { 1353 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1354 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1355 if (ctx->has_evfd) 1356 io_eventfd_signal(ctx); 1357 } 1358 1359 nr_wait = atomic_read(&ctx->cq_wait_nr); 1360 /* no one is waiting */ 1361 if (!nr_wait) 1362 return; 1363 /* either not enough or the previous add has already woken it up */ 1364 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait) 1365 return; 1366 /* pairs with set_current_state() in io_cqring_wait() */ 1367 smp_mb__after_atomic(); 1368 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1369 } 1370 1371 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1372 { 1373 struct io_uring_task *tctx = req->task->io_uring; 1374 struct io_ring_ctx *ctx = req->ctx; 1375 1376 if (!(flags & IOU_F_TWQ_FORCE_NORMAL) && 1377 (ctx->flags & IORING_SETUP_DEFER_TASKRUN)) { 1378 rcu_read_lock(); 1379 io_req_local_work_add(req, flags); 1380 rcu_read_unlock(); 1381 return; 1382 } 1383 1384 /* task_work already pending, we're done */ 1385 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1386 return; 1387 1388 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1389 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1390 1391 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1392 return; 1393 1394 io_fallback_tw(tctx); 1395 } 1396 1397 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1398 { 1399 struct llist_node *node; 1400 1401 node = llist_del_all(&ctx->work_llist); 1402 while (node) { 1403 struct io_kiocb *req = container_of(node, struct io_kiocb, 1404 io_task_work.node); 1405 1406 node = node->next; 1407 __io_req_task_work_add(req, IOU_F_TWQ_FORCE_NORMAL); 1408 } 1409 } 1410 1411 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1412 { 1413 struct llist_node *node; 1414 unsigned int loops = 0; 1415 int ret = 0; 1416 1417 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1418 return -EEXIST; 1419 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1420 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1421 again: 1422 /* 1423 * llists are in reverse order, flip it back the right way before 1424 * running the pending items. 1425 */ 1426 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1427 while (node) { 1428 struct llist_node *next = node->next; 1429 struct io_kiocb *req = container_of(node, struct io_kiocb, 1430 io_task_work.node); 1431 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1432 INDIRECT_CALL_2(req->io_task_work.func, 1433 io_poll_task_func, io_req_rw_complete, 1434 req, ts); 1435 ret++; 1436 node = next; 1437 } 1438 loops++; 1439 1440 if (!llist_empty(&ctx->work_llist)) 1441 goto again; 1442 if (ts->locked) { 1443 io_submit_flush_completions(ctx); 1444 if (!llist_empty(&ctx->work_llist)) 1445 goto again; 1446 } 1447 trace_io_uring_local_work_run(ctx, ret, loops); 1448 return ret; 1449 } 1450 1451 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx) 1452 { 1453 struct io_tw_state ts = { .locked = true, }; 1454 int ret; 1455 1456 if (llist_empty(&ctx->work_llist)) 1457 return 0; 1458 1459 ret = __io_run_local_work(ctx, &ts); 1460 /* shouldn't happen! */ 1461 if (WARN_ON_ONCE(!ts.locked)) 1462 mutex_lock(&ctx->uring_lock); 1463 return ret; 1464 } 1465 1466 static int io_run_local_work(struct io_ring_ctx *ctx) 1467 { 1468 struct io_tw_state ts = {}; 1469 int ret; 1470 1471 ts.locked = mutex_trylock(&ctx->uring_lock); 1472 ret = __io_run_local_work(ctx, &ts); 1473 if (ts.locked) 1474 mutex_unlock(&ctx->uring_lock); 1475 1476 return ret; 1477 } 1478 1479 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1480 { 1481 io_tw_lock(req->ctx, ts); 1482 io_req_defer_failed(req, req->cqe.res); 1483 } 1484 1485 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1486 { 1487 io_tw_lock(req->ctx, ts); 1488 /* req->task == current here, checking PF_EXITING is safe */ 1489 if (unlikely(req->task->flags & PF_EXITING)) 1490 io_req_defer_failed(req, -EFAULT); 1491 else if (req->flags & REQ_F_FORCE_ASYNC) 1492 io_queue_iowq(req, ts); 1493 else 1494 io_queue_sqe(req); 1495 } 1496 1497 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1498 { 1499 io_req_set_res(req, ret, 0); 1500 req->io_task_work.func = io_req_task_cancel; 1501 io_req_task_work_add(req); 1502 } 1503 1504 void io_req_task_queue(struct io_kiocb *req) 1505 { 1506 req->io_task_work.func = io_req_task_submit; 1507 io_req_task_work_add(req); 1508 } 1509 1510 void io_queue_next(struct io_kiocb *req) 1511 { 1512 struct io_kiocb *nxt = io_req_find_next(req); 1513 1514 if (nxt) 1515 io_req_task_queue(nxt); 1516 } 1517 1518 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node) 1519 __must_hold(&ctx->uring_lock) 1520 { 1521 do { 1522 struct io_kiocb *req = container_of(node, struct io_kiocb, 1523 comp_list); 1524 1525 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1526 if (req->flags & REQ_F_REFCOUNT) { 1527 node = req->comp_list.next; 1528 if (!req_ref_put_and_test(req)) 1529 continue; 1530 } 1531 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1532 struct async_poll *apoll = req->apoll; 1533 1534 if (apoll->double_poll) 1535 kfree(apoll->double_poll); 1536 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1537 kfree(apoll); 1538 req->flags &= ~REQ_F_POLLED; 1539 } 1540 if (req->flags & IO_REQ_LINK_FLAGS) 1541 io_queue_next(req); 1542 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1543 io_clean_op(req); 1544 } 1545 if (!(req->flags & REQ_F_FIXED_FILE)) 1546 io_put_file(req->file); 1547 1548 io_req_put_rsrc_locked(req, ctx); 1549 1550 io_put_task(req->task); 1551 node = req->comp_list.next; 1552 io_req_add_to_cache(req, ctx); 1553 } while (node); 1554 } 1555 1556 static void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1557 __must_hold(&ctx->uring_lock) 1558 { 1559 struct io_submit_state *state = &ctx->submit_state; 1560 struct io_wq_work_node *node; 1561 1562 __io_cq_lock(ctx); 1563 /* must come first to preserve CQE ordering in failure cases */ 1564 if (state->cqes_count) 1565 __io_flush_post_cqes(ctx); 1566 __wq_list_for_each(node, &state->compl_reqs) { 1567 struct io_kiocb *req = container_of(node, struct io_kiocb, 1568 comp_list); 1569 1570 if (!(req->flags & REQ_F_CQE_SKIP) && 1571 unlikely(!__io_fill_cqe_req(ctx, req))) { 1572 if (ctx->task_complete) { 1573 spin_lock(&ctx->completion_lock); 1574 io_req_cqe_overflow(req); 1575 spin_unlock(&ctx->completion_lock); 1576 } else { 1577 io_req_cqe_overflow(req); 1578 } 1579 } 1580 } 1581 __io_cq_unlock_post_flush(ctx); 1582 1583 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1584 io_free_batch_list(ctx, state->compl_reqs.first); 1585 INIT_WQ_LIST(&state->compl_reqs); 1586 } 1587 } 1588 1589 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1590 { 1591 /* See comment at the top of this file */ 1592 smp_rmb(); 1593 return __io_cqring_events(ctx); 1594 } 1595 1596 /* 1597 * We can't just wait for polled events to come to us, we have to actively 1598 * find and complete them. 1599 */ 1600 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1601 { 1602 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1603 return; 1604 1605 mutex_lock(&ctx->uring_lock); 1606 while (!wq_list_empty(&ctx->iopoll_list)) { 1607 /* let it sleep and repeat later if can't complete a request */ 1608 if (io_do_iopoll(ctx, true) == 0) 1609 break; 1610 /* 1611 * Ensure we allow local-to-the-cpu processing to take place, 1612 * in this case we need to ensure that we reap all events. 1613 * Also let task_work, etc. to progress by releasing the mutex 1614 */ 1615 if (need_resched()) { 1616 mutex_unlock(&ctx->uring_lock); 1617 cond_resched(); 1618 mutex_lock(&ctx->uring_lock); 1619 } 1620 } 1621 mutex_unlock(&ctx->uring_lock); 1622 } 1623 1624 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1625 { 1626 unsigned int nr_events = 0; 1627 int ret = 0; 1628 unsigned long check_cq; 1629 1630 if (!io_allowed_run_tw(ctx)) 1631 return -EEXIST; 1632 1633 check_cq = READ_ONCE(ctx->check_cq); 1634 if (unlikely(check_cq)) { 1635 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1636 __io_cqring_overflow_flush(ctx); 1637 /* 1638 * Similarly do not spin if we have not informed the user of any 1639 * dropped CQE. 1640 */ 1641 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1642 return -EBADR; 1643 } 1644 /* 1645 * Don't enter poll loop if we already have events pending. 1646 * If we do, we can potentially be spinning for commands that 1647 * already triggered a CQE (eg in error). 1648 */ 1649 if (io_cqring_events(ctx)) 1650 return 0; 1651 1652 do { 1653 /* 1654 * If a submit got punted to a workqueue, we can have the 1655 * application entering polling for a command before it gets 1656 * issued. That app will hold the uring_lock for the duration 1657 * of the poll right here, so we need to take a breather every 1658 * now and then to ensure that the issue has a chance to add 1659 * the poll to the issued list. Otherwise we can spin here 1660 * forever, while the workqueue is stuck trying to acquire the 1661 * very same mutex. 1662 */ 1663 if (wq_list_empty(&ctx->iopoll_list) || 1664 io_task_work_pending(ctx)) { 1665 u32 tail = ctx->cached_cq_tail; 1666 1667 (void) io_run_local_work_locked(ctx); 1668 1669 if (task_work_pending(current) || 1670 wq_list_empty(&ctx->iopoll_list)) { 1671 mutex_unlock(&ctx->uring_lock); 1672 io_run_task_work(); 1673 mutex_lock(&ctx->uring_lock); 1674 } 1675 /* some requests don't go through iopoll_list */ 1676 if (tail != ctx->cached_cq_tail || 1677 wq_list_empty(&ctx->iopoll_list)) 1678 break; 1679 } 1680 ret = io_do_iopoll(ctx, !min); 1681 if (ret < 0) 1682 break; 1683 nr_events += ret; 1684 ret = 0; 1685 } while (nr_events < min && !need_resched()); 1686 1687 return ret; 1688 } 1689 1690 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1691 { 1692 if (ts->locked) 1693 io_req_complete_defer(req); 1694 else 1695 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1696 } 1697 1698 /* 1699 * After the iocb has been issued, it's safe to be found on the poll list. 1700 * Adding the kiocb to the list AFTER submission ensures that we don't 1701 * find it from a io_do_iopoll() thread before the issuer is done 1702 * accessing the kiocb cookie. 1703 */ 1704 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1705 { 1706 struct io_ring_ctx *ctx = req->ctx; 1707 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1708 1709 /* workqueue context doesn't hold uring_lock, grab it now */ 1710 if (unlikely(needs_lock)) 1711 mutex_lock(&ctx->uring_lock); 1712 1713 /* 1714 * Track whether we have multiple files in our lists. This will impact 1715 * how we do polling eventually, not spinning if we're on potentially 1716 * different devices. 1717 */ 1718 if (wq_list_empty(&ctx->iopoll_list)) { 1719 ctx->poll_multi_queue = false; 1720 } else if (!ctx->poll_multi_queue) { 1721 struct io_kiocb *list_req; 1722 1723 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1724 comp_list); 1725 if (list_req->file != req->file) 1726 ctx->poll_multi_queue = true; 1727 } 1728 1729 /* 1730 * For fast devices, IO may have already completed. If it has, add 1731 * it to the front so we find it first. 1732 */ 1733 if (READ_ONCE(req->iopoll_completed)) 1734 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1735 else 1736 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1737 1738 if (unlikely(needs_lock)) { 1739 /* 1740 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1741 * in sq thread task context or in io worker task context. If 1742 * current task context is sq thread, we don't need to check 1743 * whether should wake up sq thread. 1744 */ 1745 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1746 wq_has_sleeper(&ctx->sq_data->wait)) 1747 wake_up(&ctx->sq_data->wait); 1748 1749 mutex_unlock(&ctx->uring_lock); 1750 } 1751 } 1752 1753 unsigned int io_file_get_flags(struct file *file) 1754 { 1755 unsigned int res = 0; 1756 1757 if (S_ISREG(file_inode(file)->i_mode)) 1758 res |= REQ_F_ISREG; 1759 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1760 res |= REQ_F_SUPPORT_NOWAIT; 1761 return res; 1762 } 1763 1764 bool io_alloc_async_data(struct io_kiocb *req) 1765 { 1766 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1767 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1768 if (req->async_data) { 1769 req->flags |= REQ_F_ASYNC_DATA; 1770 return false; 1771 } 1772 return true; 1773 } 1774 1775 int io_req_prep_async(struct io_kiocb *req) 1776 { 1777 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1778 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1779 1780 /* assign early for deferred execution for non-fixed file */ 1781 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1782 req->file = io_file_get_normal(req, req->cqe.fd); 1783 if (!cdef->prep_async) 1784 return 0; 1785 if (WARN_ON_ONCE(req_has_async_data(req))) 1786 return -EFAULT; 1787 if (!def->manual_alloc) { 1788 if (io_alloc_async_data(req)) 1789 return -EAGAIN; 1790 } 1791 return cdef->prep_async(req); 1792 } 1793 1794 static u32 io_get_sequence(struct io_kiocb *req) 1795 { 1796 u32 seq = req->ctx->cached_sq_head; 1797 struct io_kiocb *cur; 1798 1799 /* need original cached_sq_head, but it was increased for each req */ 1800 io_for_each_link(cur, req) 1801 seq--; 1802 return seq; 1803 } 1804 1805 static __cold void io_drain_req(struct io_kiocb *req) 1806 __must_hold(&ctx->uring_lock) 1807 { 1808 struct io_ring_ctx *ctx = req->ctx; 1809 struct io_defer_entry *de; 1810 int ret; 1811 u32 seq = io_get_sequence(req); 1812 1813 /* Still need defer if there is pending req in defer list. */ 1814 spin_lock(&ctx->completion_lock); 1815 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1816 spin_unlock(&ctx->completion_lock); 1817 queue: 1818 ctx->drain_active = false; 1819 io_req_task_queue(req); 1820 return; 1821 } 1822 spin_unlock(&ctx->completion_lock); 1823 1824 io_prep_async_link(req); 1825 de = kmalloc(sizeof(*de), GFP_KERNEL); 1826 if (!de) { 1827 ret = -ENOMEM; 1828 io_req_defer_failed(req, ret); 1829 return; 1830 } 1831 1832 spin_lock(&ctx->completion_lock); 1833 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1834 spin_unlock(&ctx->completion_lock); 1835 kfree(de); 1836 goto queue; 1837 } 1838 1839 trace_io_uring_defer(req); 1840 de->req = req; 1841 de->seq = seq; 1842 list_add_tail(&de->list, &ctx->defer_list); 1843 spin_unlock(&ctx->completion_lock); 1844 } 1845 1846 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1847 unsigned int issue_flags) 1848 { 1849 if (req->file || !def->needs_file) 1850 return true; 1851 1852 if (req->flags & REQ_F_FIXED_FILE) 1853 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1854 else 1855 req->file = io_file_get_normal(req, req->cqe.fd); 1856 1857 return !!req->file; 1858 } 1859 1860 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1861 { 1862 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1863 const struct cred *creds = NULL; 1864 int ret; 1865 1866 if (unlikely(!io_assign_file(req, def, issue_flags))) 1867 return -EBADF; 1868 1869 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1870 creds = override_creds(req->creds); 1871 1872 if (!def->audit_skip) 1873 audit_uring_entry(req->opcode); 1874 1875 ret = def->issue(req, issue_flags); 1876 1877 if (!def->audit_skip) 1878 audit_uring_exit(!ret, ret); 1879 1880 if (creds) 1881 revert_creds(creds); 1882 1883 if (ret == IOU_OK) { 1884 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1885 io_req_complete_defer(req); 1886 else 1887 io_req_complete_post(req, issue_flags); 1888 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1889 return ret; 1890 1891 /* If the op doesn't have a file, we're not polling for it */ 1892 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1893 io_iopoll_req_issued(req, issue_flags); 1894 1895 return 0; 1896 } 1897 1898 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1899 { 1900 io_tw_lock(req->ctx, ts); 1901 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1902 IO_URING_F_COMPLETE_DEFER); 1903 } 1904 1905 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1906 { 1907 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1908 struct io_kiocb *nxt = NULL; 1909 1910 if (req_ref_put_and_test(req)) { 1911 if (req->flags & IO_REQ_LINK_FLAGS) 1912 nxt = io_req_find_next(req); 1913 io_free_req(req); 1914 } 1915 return nxt ? &nxt->work : NULL; 1916 } 1917 1918 void io_wq_submit_work(struct io_wq_work *work) 1919 { 1920 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1921 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1922 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1923 bool needs_poll = false; 1924 int ret = 0, err = -ECANCELED; 1925 1926 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1927 if (!(req->flags & REQ_F_REFCOUNT)) 1928 __io_req_set_refcount(req, 2); 1929 else 1930 req_ref_get(req); 1931 1932 io_arm_ltimeout(req); 1933 1934 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1935 if (work->flags & IO_WQ_WORK_CANCEL) { 1936 fail: 1937 io_req_task_queue_fail(req, err); 1938 return; 1939 } 1940 if (!io_assign_file(req, def, issue_flags)) { 1941 err = -EBADF; 1942 work->flags |= IO_WQ_WORK_CANCEL; 1943 goto fail; 1944 } 1945 1946 if (req->flags & REQ_F_FORCE_ASYNC) { 1947 bool opcode_poll = def->pollin || def->pollout; 1948 1949 if (opcode_poll && file_can_poll(req->file)) { 1950 needs_poll = true; 1951 issue_flags |= IO_URING_F_NONBLOCK; 1952 } 1953 } 1954 1955 do { 1956 ret = io_issue_sqe(req, issue_flags); 1957 if (ret != -EAGAIN) 1958 break; 1959 /* 1960 * We can get EAGAIN for iopolled IO even though we're 1961 * forcing a sync submission from here, since we can't 1962 * wait for request slots on the block side. 1963 */ 1964 if (!needs_poll) { 1965 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1966 break; 1967 cond_resched(); 1968 continue; 1969 } 1970 1971 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1972 return; 1973 /* aborted or ready, in either case retry blocking */ 1974 needs_poll = false; 1975 issue_flags &= ~IO_URING_F_NONBLOCK; 1976 } while (1); 1977 1978 /* avoid locking problems by failing it from a clean context */ 1979 if (ret < 0) 1980 io_req_task_queue_fail(req, ret); 1981 } 1982 1983 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1984 unsigned int issue_flags) 1985 { 1986 struct io_ring_ctx *ctx = req->ctx; 1987 struct io_fixed_file *slot; 1988 struct file *file = NULL; 1989 1990 io_ring_submit_lock(ctx, issue_flags); 1991 1992 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 1993 goto out; 1994 fd = array_index_nospec(fd, ctx->nr_user_files); 1995 slot = io_fixed_file_slot(&ctx->file_table, fd); 1996 file = io_slot_file(slot); 1997 req->flags |= io_slot_flags(slot); 1998 io_req_set_rsrc_node(req, ctx, 0); 1999 out: 2000 io_ring_submit_unlock(ctx, issue_flags); 2001 return file; 2002 } 2003 2004 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 2005 { 2006 struct file *file = fget(fd); 2007 2008 trace_io_uring_file_get(req, fd); 2009 2010 /* we don't allow fixed io_uring files */ 2011 if (file && io_is_uring_fops(file)) 2012 io_req_track_inflight(req); 2013 return file; 2014 } 2015 2016 static void io_queue_async(struct io_kiocb *req, int ret) 2017 __must_hold(&req->ctx->uring_lock) 2018 { 2019 struct io_kiocb *linked_timeout; 2020 2021 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2022 io_req_defer_failed(req, ret); 2023 return; 2024 } 2025 2026 linked_timeout = io_prep_linked_timeout(req); 2027 2028 switch (io_arm_poll_handler(req, 0)) { 2029 case IO_APOLL_READY: 2030 io_kbuf_recycle(req, 0); 2031 io_req_task_queue(req); 2032 break; 2033 case IO_APOLL_ABORTED: 2034 io_kbuf_recycle(req, 0); 2035 io_queue_iowq(req, NULL); 2036 break; 2037 case IO_APOLL_OK: 2038 break; 2039 } 2040 2041 if (linked_timeout) 2042 io_queue_linked_timeout(linked_timeout); 2043 } 2044 2045 static inline void io_queue_sqe(struct io_kiocb *req) 2046 __must_hold(&req->ctx->uring_lock) 2047 { 2048 int ret; 2049 2050 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2051 2052 /* 2053 * We async punt it if the file wasn't marked NOWAIT, or if the file 2054 * doesn't support non-blocking read/write attempts 2055 */ 2056 if (likely(!ret)) 2057 io_arm_ltimeout(req); 2058 else 2059 io_queue_async(req, ret); 2060 } 2061 2062 static void io_queue_sqe_fallback(struct io_kiocb *req) 2063 __must_hold(&req->ctx->uring_lock) 2064 { 2065 if (unlikely(req->flags & REQ_F_FAIL)) { 2066 /* 2067 * We don't submit, fail them all, for that replace hardlinks 2068 * with normal links. Extra REQ_F_LINK is tolerated. 2069 */ 2070 req->flags &= ~REQ_F_HARDLINK; 2071 req->flags |= REQ_F_LINK; 2072 io_req_defer_failed(req, req->cqe.res); 2073 } else { 2074 int ret = io_req_prep_async(req); 2075 2076 if (unlikely(ret)) { 2077 io_req_defer_failed(req, ret); 2078 return; 2079 } 2080 2081 if (unlikely(req->ctx->drain_active)) 2082 io_drain_req(req); 2083 else 2084 io_queue_iowq(req, NULL); 2085 } 2086 } 2087 2088 /* 2089 * Check SQE restrictions (opcode and flags). 2090 * 2091 * Returns 'true' if SQE is allowed, 'false' otherwise. 2092 */ 2093 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2094 struct io_kiocb *req, 2095 unsigned int sqe_flags) 2096 { 2097 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2098 return false; 2099 2100 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2101 ctx->restrictions.sqe_flags_required) 2102 return false; 2103 2104 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2105 ctx->restrictions.sqe_flags_required)) 2106 return false; 2107 2108 return true; 2109 } 2110 2111 static void io_init_req_drain(struct io_kiocb *req) 2112 { 2113 struct io_ring_ctx *ctx = req->ctx; 2114 struct io_kiocb *head = ctx->submit_state.link.head; 2115 2116 ctx->drain_active = true; 2117 if (head) { 2118 /* 2119 * If we need to drain a request in the middle of a link, drain 2120 * the head request and the next request/link after the current 2121 * link. Considering sequential execution of links, 2122 * REQ_F_IO_DRAIN will be maintained for every request of our 2123 * link. 2124 */ 2125 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2126 ctx->drain_next = true; 2127 } 2128 } 2129 2130 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2131 const struct io_uring_sqe *sqe) 2132 __must_hold(&ctx->uring_lock) 2133 { 2134 const struct io_issue_def *def; 2135 unsigned int sqe_flags; 2136 int personality; 2137 u8 opcode; 2138 2139 /* req is partially pre-initialised, see io_preinit_req() */ 2140 req->opcode = opcode = READ_ONCE(sqe->opcode); 2141 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2142 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2143 req->cqe.user_data = READ_ONCE(sqe->user_data); 2144 req->file = NULL; 2145 req->rsrc_node = NULL; 2146 req->task = current; 2147 2148 if (unlikely(opcode >= IORING_OP_LAST)) { 2149 req->opcode = 0; 2150 return -EINVAL; 2151 } 2152 def = &io_issue_defs[opcode]; 2153 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2154 /* enforce forwards compatibility on users */ 2155 if (sqe_flags & ~SQE_VALID_FLAGS) 2156 return -EINVAL; 2157 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2158 if (!def->buffer_select) 2159 return -EOPNOTSUPP; 2160 req->buf_index = READ_ONCE(sqe->buf_group); 2161 } 2162 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2163 ctx->drain_disabled = true; 2164 if (sqe_flags & IOSQE_IO_DRAIN) { 2165 if (ctx->drain_disabled) 2166 return -EOPNOTSUPP; 2167 io_init_req_drain(req); 2168 } 2169 } 2170 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2171 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2172 return -EACCES; 2173 /* knock it to the slow queue path, will be drained there */ 2174 if (ctx->drain_active) 2175 req->flags |= REQ_F_FORCE_ASYNC; 2176 /* if there is no link, we're at "next" request and need to drain */ 2177 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2178 ctx->drain_next = false; 2179 ctx->drain_active = true; 2180 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2181 } 2182 } 2183 2184 if (!def->ioprio && sqe->ioprio) 2185 return -EINVAL; 2186 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2187 return -EINVAL; 2188 2189 if (def->needs_file) { 2190 struct io_submit_state *state = &ctx->submit_state; 2191 2192 req->cqe.fd = READ_ONCE(sqe->fd); 2193 2194 /* 2195 * Plug now if we have more than 2 IO left after this, and the 2196 * target is potentially a read/write to block based storage. 2197 */ 2198 if (state->need_plug && def->plug) { 2199 state->plug_started = true; 2200 state->need_plug = false; 2201 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2202 } 2203 } 2204 2205 personality = READ_ONCE(sqe->personality); 2206 if (personality) { 2207 int ret; 2208 2209 req->creds = xa_load(&ctx->personalities, personality); 2210 if (!req->creds) 2211 return -EINVAL; 2212 get_cred(req->creds); 2213 ret = security_uring_override_creds(req->creds); 2214 if (ret) { 2215 put_cred(req->creds); 2216 return ret; 2217 } 2218 req->flags |= REQ_F_CREDS; 2219 } 2220 2221 return def->prep(req, sqe); 2222 } 2223 2224 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2225 struct io_kiocb *req, int ret) 2226 { 2227 struct io_ring_ctx *ctx = req->ctx; 2228 struct io_submit_link *link = &ctx->submit_state.link; 2229 struct io_kiocb *head = link->head; 2230 2231 trace_io_uring_req_failed(sqe, req, ret); 2232 2233 /* 2234 * Avoid breaking links in the middle as it renders links with SQPOLL 2235 * unusable. Instead of failing eagerly, continue assembling the link if 2236 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2237 * should find the flag and handle the rest. 2238 */ 2239 req_fail_link_node(req, ret); 2240 if (head && !(head->flags & REQ_F_FAIL)) 2241 req_fail_link_node(head, -ECANCELED); 2242 2243 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2244 if (head) { 2245 link->last->link = req; 2246 link->head = NULL; 2247 req = head; 2248 } 2249 io_queue_sqe_fallback(req); 2250 return ret; 2251 } 2252 2253 if (head) 2254 link->last->link = req; 2255 else 2256 link->head = req; 2257 link->last = req; 2258 return 0; 2259 } 2260 2261 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2262 const struct io_uring_sqe *sqe) 2263 __must_hold(&ctx->uring_lock) 2264 { 2265 struct io_submit_link *link = &ctx->submit_state.link; 2266 int ret; 2267 2268 ret = io_init_req(ctx, req, sqe); 2269 if (unlikely(ret)) 2270 return io_submit_fail_init(sqe, req, ret); 2271 2272 trace_io_uring_submit_req(req); 2273 2274 /* 2275 * If we already have a head request, queue this one for async 2276 * submittal once the head completes. If we don't have a head but 2277 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2278 * submitted sync once the chain is complete. If none of those 2279 * conditions are true (normal request), then just queue it. 2280 */ 2281 if (unlikely(link->head)) { 2282 ret = io_req_prep_async(req); 2283 if (unlikely(ret)) 2284 return io_submit_fail_init(sqe, req, ret); 2285 2286 trace_io_uring_link(req, link->head); 2287 link->last->link = req; 2288 link->last = req; 2289 2290 if (req->flags & IO_REQ_LINK_FLAGS) 2291 return 0; 2292 /* last request of the link, flush it */ 2293 req = link->head; 2294 link->head = NULL; 2295 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2296 goto fallback; 2297 2298 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2299 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2300 if (req->flags & IO_REQ_LINK_FLAGS) { 2301 link->head = req; 2302 link->last = req; 2303 } else { 2304 fallback: 2305 io_queue_sqe_fallback(req); 2306 } 2307 return 0; 2308 } 2309 2310 io_queue_sqe(req); 2311 return 0; 2312 } 2313 2314 /* 2315 * Batched submission is done, ensure local IO is flushed out. 2316 */ 2317 static void io_submit_state_end(struct io_ring_ctx *ctx) 2318 { 2319 struct io_submit_state *state = &ctx->submit_state; 2320 2321 if (unlikely(state->link.head)) 2322 io_queue_sqe_fallback(state->link.head); 2323 /* flush only after queuing links as they can generate completions */ 2324 io_submit_flush_completions(ctx); 2325 if (state->plug_started) 2326 blk_finish_plug(&state->plug); 2327 } 2328 2329 /* 2330 * Start submission side cache. 2331 */ 2332 static void io_submit_state_start(struct io_submit_state *state, 2333 unsigned int max_ios) 2334 { 2335 state->plug_started = false; 2336 state->need_plug = max_ios > 2; 2337 state->submit_nr = max_ios; 2338 /* set only head, no need to init link_last in advance */ 2339 state->link.head = NULL; 2340 } 2341 2342 static void io_commit_sqring(struct io_ring_ctx *ctx) 2343 { 2344 struct io_rings *rings = ctx->rings; 2345 2346 /* 2347 * Ensure any loads from the SQEs are done at this point, 2348 * since once we write the new head, the application could 2349 * write new data to them. 2350 */ 2351 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2352 } 2353 2354 /* 2355 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2356 * that is mapped by userspace. This means that care needs to be taken to 2357 * ensure that reads are stable, as we cannot rely on userspace always 2358 * being a good citizen. If members of the sqe are validated and then later 2359 * used, it's important that those reads are done through READ_ONCE() to 2360 * prevent a re-load down the line. 2361 */ 2362 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2363 { 2364 unsigned head, mask = ctx->sq_entries - 1; 2365 unsigned sq_idx = ctx->cached_sq_head++ & mask; 2366 2367 /* 2368 * The cached sq head (or cq tail) serves two purposes: 2369 * 2370 * 1) allows us to batch the cost of updating the user visible 2371 * head updates. 2372 * 2) allows the kernel side to track the head on its own, even 2373 * though the application is the one updating it. 2374 */ 2375 head = READ_ONCE(ctx->sq_array[sq_idx]); 2376 if (likely(head < ctx->sq_entries)) { 2377 /* double index for 128-byte SQEs, twice as long */ 2378 if (ctx->flags & IORING_SETUP_SQE128) 2379 head <<= 1; 2380 *sqe = &ctx->sq_sqes[head]; 2381 return true; 2382 } 2383 2384 /* drop invalid entries */ 2385 ctx->cq_extra--; 2386 WRITE_ONCE(ctx->rings->sq_dropped, 2387 READ_ONCE(ctx->rings->sq_dropped) + 1); 2388 return false; 2389 } 2390 2391 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2392 __must_hold(&ctx->uring_lock) 2393 { 2394 unsigned int entries = io_sqring_entries(ctx); 2395 unsigned int left; 2396 int ret; 2397 2398 if (unlikely(!entries)) 2399 return 0; 2400 /* make sure SQ entry isn't read before tail */ 2401 ret = left = min(nr, entries); 2402 io_get_task_refs(left); 2403 io_submit_state_start(&ctx->submit_state, left); 2404 2405 do { 2406 const struct io_uring_sqe *sqe; 2407 struct io_kiocb *req; 2408 2409 if (unlikely(!io_alloc_req(ctx, &req))) 2410 break; 2411 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2412 io_req_add_to_cache(req, ctx); 2413 break; 2414 } 2415 2416 /* 2417 * Continue submitting even for sqe failure if the 2418 * ring was setup with IORING_SETUP_SUBMIT_ALL 2419 */ 2420 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2421 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2422 left--; 2423 break; 2424 } 2425 } while (--left); 2426 2427 if (unlikely(left)) { 2428 ret -= left; 2429 /* try again if it submitted nothing and can't allocate a req */ 2430 if (!ret && io_req_cache_empty(ctx)) 2431 ret = -EAGAIN; 2432 current->io_uring->cached_refs += left; 2433 } 2434 2435 io_submit_state_end(ctx); 2436 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2437 io_commit_sqring(ctx); 2438 return ret; 2439 } 2440 2441 struct io_wait_queue { 2442 struct wait_queue_entry wq; 2443 struct io_ring_ctx *ctx; 2444 unsigned cq_tail; 2445 unsigned nr_timeouts; 2446 ktime_t timeout; 2447 }; 2448 2449 static inline bool io_has_work(struct io_ring_ctx *ctx) 2450 { 2451 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2452 !llist_empty(&ctx->work_llist); 2453 } 2454 2455 static inline bool io_should_wake(struct io_wait_queue *iowq) 2456 { 2457 struct io_ring_ctx *ctx = iowq->ctx; 2458 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2459 2460 /* 2461 * Wake up if we have enough events, or if a timeout occurred since we 2462 * started waiting. For timeouts, we always want to return to userspace, 2463 * regardless of event count. 2464 */ 2465 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2466 } 2467 2468 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2469 int wake_flags, void *key) 2470 { 2471 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2472 2473 /* 2474 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2475 * the task, and the next invocation will do it. 2476 */ 2477 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2478 return autoremove_wake_function(curr, mode, wake_flags, key); 2479 return -1; 2480 } 2481 2482 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2483 { 2484 if (!llist_empty(&ctx->work_llist)) { 2485 __set_current_state(TASK_RUNNING); 2486 if (io_run_local_work(ctx) > 0) 2487 return 1; 2488 } 2489 if (io_run_task_work() > 0) 2490 return 1; 2491 if (task_sigpending(current)) 2492 return -EINTR; 2493 return 0; 2494 } 2495 2496 /* when returns >0, the caller should retry */ 2497 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2498 struct io_wait_queue *iowq) 2499 { 2500 if (unlikely(READ_ONCE(ctx->check_cq))) 2501 return 1; 2502 if (unlikely(!llist_empty(&ctx->work_llist))) 2503 return 1; 2504 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) 2505 return 1; 2506 if (unlikely(task_sigpending(current))) 2507 return -EINTR; 2508 if (unlikely(io_should_wake(iowq))) 2509 return 0; 2510 if (iowq->timeout == KTIME_MAX) 2511 schedule(); 2512 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2513 return -ETIME; 2514 return 0; 2515 } 2516 2517 /* 2518 * Wait until events become available, if we don't already have some. The 2519 * application must reap them itself, as they reside on the shared cq ring. 2520 */ 2521 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2522 const sigset_t __user *sig, size_t sigsz, 2523 struct __kernel_timespec __user *uts) 2524 { 2525 struct io_wait_queue iowq; 2526 struct io_rings *rings = ctx->rings; 2527 int ret; 2528 2529 if (!io_allowed_run_tw(ctx)) 2530 return -EEXIST; 2531 if (!llist_empty(&ctx->work_llist)) 2532 io_run_local_work(ctx); 2533 io_run_task_work(); 2534 io_cqring_overflow_flush(ctx); 2535 /* if user messes with these they will just get an early return */ 2536 if (__io_cqring_events_user(ctx) >= min_events) 2537 return 0; 2538 2539 if (sig) { 2540 #ifdef CONFIG_COMPAT 2541 if (in_compat_syscall()) 2542 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2543 sigsz); 2544 else 2545 #endif 2546 ret = set_user_sigmask(sig, sigsz); 2547 2548 if (ret) 2549 return ret; 2550 } 2551 2552 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2553 iowq.wq.private = current; 2554 INIT_LIST_HEAD(&iowq.wq.entry); 2555 iowq.ctx = ctx; 2556 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2557 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2558 iowq.timeout = KTIME_MAX; 2559 2560 if (uts) { 2561 struct timespec64 ts; 2562 2563 if (get_timespec64(&ts, uts)) 2564 return -EFAULT; 2565 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2566 } 2567 2568 trace_io_uring_cqring_wait(ctx, min_events); 2569 do { 2570 unsigned long check_cq; 2571 2572 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2573 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2574 2575 atomic_set(&ctx->cq_wait_nr, nr_wait); 2576 set_current_state(TASK_INTERRUPTIBLE); 2577 } else { 2578 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2579 TASK_INTERRUPTIBLE); 2580 } 2581 2582 ret = io_cqring_wait_schedule(ctx, &iowq); 2583 __set_current_state(TASK_RUNNING); 2584 atomic_set(&ctx->cq_wait_nr, 0); 2585 2586 if (ret < 0) 2587 break; 2588 /* 2589 * Run task_work after scheduling and before io_should_wake(). 2590 * If we got woken because of task_work being processed, run it 2591 * now rather than let the caller do another wait loop. 2592 */ 2593 io_run_task_work(); 2594 if (!llist_empty(&ctx->work_llist)) 2595 io_run_local_work(ctx); 2596 2597 check_cq = READ_ONCE(ctx->check_cq); 2598 if (unlikely(check_cq)) { 2599 /* let the caller flush overflows, retry */ 2600 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2601 io_cqring_do_overflow_flush(ctx); 2602 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2603 ret = -EBADR; 2604 break; 2605 } 2606 } 2607 2608 if (io_should_wake(&iowq)) { 2609 ret = 0; 2610 break; 2611 } 2612 cond_resched(); 2613 } while (1); 2614 2615 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2616 finish_wait(&ctx->cq_wait, &iowq.wq); 2617 restore_saved_sigmask_unless(ret == -EINTR); 2618 2619 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2620 } 2621 2622 static void io_mem_free(void *ptr) 2623 { 2624 struct page *page; 2625 2626 if (!ptr) 2627 return; 2628 2629 page = virt_to_head_page(ptr); 2630 if (put_page_testzero(page)) 2631 free_compound_page(page); 2632 } 2633 2634 static void io_pages_free(struct page ***pages, int npages) 2635 { 2636 struct page **page_array; 2637 int i; 2638 2639 if (!pages) 2640 return; 2641 page_array = *pages; 2642 for (i = 0; i < npages; i++) 2643 unpin_user_page(page_array[i]); 2644 kvfree(page_array); 2645 *pages = NULL; 2646 } 2647 2648 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, 2649 unsigned long uaddr, size_t size) 2650 { 2651 struct page **page_array; 2652 unsigned int nr_pages; 2653 int ret; 2654 2655 *npages = 0; 2656 2657 if (uaddr & (PAGE_SIZE - 1) || !size) 2658 return ERR_PTR(-EINVAL); 2659 2660 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2661 if (nr_pages > USHRT_MAX) 2662 return ERR_PTR(-EINVAL); 2663 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); 2664 if (!page_array) 2665 return ERR_PTR(-ENOMEM); 2666 2667 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, 2668 page_array); 2669 if (ret != nr_pages) { 2670 err: 2671 io_pages_free(&page_array, ret > 0 ? ret : 0); 2672 return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT); 2673 } 2674 /* 2675 * Should be a single page. If the ring is small enough that we can 2676 * use a normal page, that is fine. If we need multiple pages, then 2677 * userspace should use a huge page. That's the only way to guarantee 2678 * that we get contigious memory, outside of just being lucky or 2679 * (currently) having low memory fragmentation. 2680 */ 2681 if (page_array[0] != page_array[ret - 1]) 2682 goto err; 2683 *pages = page_array; 2684 *npages = nr_pages; 2685 return page_to_virt(page_array[0]); 2686 } 2687 2688 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2689 size_t size) 2690 { 2691 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2692 size); 2693 } 2694 2695 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2696 size_t size) 2697 { 2698 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2699 size); 2700 } 2701 2702 static void io_rings_free(struct io_ring_ctx *ctx) 2703 { 2704 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2705 io_mem_free(ctx->rings); 2706 io_mem_free(ctx->sq_sqes); 2707 ctx->rings = NULL; 2708 ctx->sq_sqes = NULL; 2709 } else { 2710 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2711 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2712 } 2713 } 2714 2715 static void *io_mem_alloc(size_t size) 2716 { 2717 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2718 void *ret; 2719 2720 ret = (void *) __get_free_pages(gfp, get_order(size)); 2721 if (ret) 2722 return ret; 2723 return ERR_PTR(-ENOMEM); 2724 } 2725 2726 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2727 unsigned int cq_entries, size_t *sq_offset) 2728 { 2729 struct io_rings *rings; 2730 size_t off, sq_array_size; 2731 2732 off = struct_size(rings, cqes, cq_entries); 2733 if (off == SIZE_MAX) 2734 return SIZE_MAX; 2735 if (ctx->flags & IORING_SETUP_CQE32) { 2736 if (check_shl_overflow(off, 1, &off)) 2737 return SIZE_MAX; 2738 } 2739 2740 #ifdef CONFIG_SMP 2741 off = ALIGN(off, SMP_CACHE_BYTES); 2742 if (off == 0) 2743 return SIZE_MAX; 2744 #endif 2745 2746 if (sq_offset) 2747 *sq_offset = off; 2748 2749 sq_array_size = array_size(sizeof(u32), sq_entries); 2750 if (sq_array_size == SIZE_MAX) 2751 return SIZE_MAX; 2752 2753 if (check_add_overflow(off, sq_array_size, &off)) 2754 return SIZE_MAX; 2755 2756 return off; 2757 } 2758 2759 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2760 unsigned int eventfd_async) 2761 { 2762 struct io_ev_fd *ev_fd; 2763 __s32 __user *fds = arg; 2764 int fd; 2765 2766 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2767 lockdep_is_held(&ctx->uring_lock)); 2768 if (ev_fd) 2769 return -EBUSY; 2770 2771 if (copy_from_user(&fd, fds, sizeof(*fds))) 2772 return -EFAULT; 2773 2774 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2775 if (!ev_fd) 2776 return -ENOMEM; 2777 2778 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2779 if (IS_ERR(ev_fd->cq_ev_fd)) { 2780 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2781 kfree(ev_fd); 2782 return ret; 2783 } 2784 2785 spin_lock(&ctx->completion_lock); 2786 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2787 spin_unlock(&ctx->completion_lock); 2788 2789 ev_fd->eventfd_async = eventfd_async; 2790 ctx->has_evfd = true; 2791 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2792 atomic_set(&ev_fd->refs, 1); 2793 atomic_set(&ev_fd->ops, 0); 2794 return 0; 2795 } 2796 2797 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2798 { 2799 struct io_ev_fd *ev_fd; 2800 2801 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2802 lockdep_is_held(&ctx->uring_lock)); 2803 if (ev_fd) { 2804 ctx->has_evfd = false; 2805 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2806 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2807 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2808 return 0; 2809 } 2810 2811 return -ENXIO; 2812 } 2813 2814 static void io_req_caches_free(struct io_ring_ctx *ctx) 2815 { 2816 struct io_kiocb *req; 2817 int nr = 0; 2818 2819 mutex_lock(&ctx->uring_lock); 2820 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2821 2822 while (!io_req_cache_empty(ctx)) { 2823 req = io_extract_req(ctx); 2824 kmem_cache_free(req_cachep, req); 2825 nr++; 2826 } 2827 if (nr) 2828 percpu_ref_put_many(&ctx->refs, nr); 2829 mutex_unlock(&ctx->uring_lock); 2830 } 2831 2832 static void io_rsrc_node_cache_free(struct io_cache_entry *entry) 2833 { 2834 kfree(container_of(entry, struct io_rsrc_node, cache)); 2835 } 2836 2837 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2838 { 2839 io_sq_thread_finish(ctx); 2840 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2841 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2842 return; 2843 2844 mutex_lock(&ctx->uring_lock); 2845 if (ctx->buf_data) 2846 __io_sqe_buffers_unregister(ctx); 2847 if (ctx->file_data) 2848 __io_sqe_files_unregister(ctx); 2849 io_cqring_overflow_kill(ctx); 2850 io_eventfd_unregister(ctx); 2851 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2852 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2853 io_destroy_buffers(ctx); 2854 mutex_unlock(&ctx->uring_lock); 2855 if (ctx->sq_creds) 2856 put_cred(ctx->sq_creds); 2857 if (ctx->submitter_task) 2858 put_task_struct(ctx->submitter_task); 2859 2860 /* there are no registered resources left, nobody uses it */ 2861 if (ctx->rsrc_node) 2862 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2863 2864 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2865 2866 #if defined(CONFIG_UNIX) 2867 if (ctx->ring_sock) { 2868 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2869 sock_release(ctx->ring_sock); 2870 } 2871 #endif 2872 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2873 2874 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); 2875 if (ctx->mm_account) { 2876 mmdrop(ctx->mm_account); 2877 ctx->mm_account = NULL; 2878 } 2879 io_rings_free(ctx); 2880 2881 percpu_ref_exit(&ctx->refs); 2882 free_uid(ctx->user); 2883 io_req_caches_free(ctx); 2884 if (ctx->hash_map) 2885 io_wq_put_hash(ctx->hash_map); 2886 kfree(ctx->cancel_table.hbs); 2887 kfree(ctx->cancel_table_locked.hbs); 2888 kfree(ctx->dummy_ubuf); 2889 kfree(ctx->io_bl); 2890 xa_destroy(&ctx->io_bl_xa); 2891 kfree(ctx); 2892 } 2893 2894 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2895 { 2896 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2897 poll_wq_task_work); 2898 2899 mutex_lock(&ctx->uring_lock); 2900 ctx->poll_activated = true; 2901 mutex_unlock(&ctx->uring_lock); 2902 2903 /* 2904 * Wake ups for some events between start of polling and activation 2905 * might've been lost due to loose synchronisation. 2906 */ 2907 wake_up_all(&ctx->poll_wq); 2908 percpu_ref_put(&ctx->refs); 2909 } 2910 2911 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2912 { 2913 spin_lock(&ctx->completion_lock); 2914 /* already activated or in progress */ 2915 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2916 goto out; 2917 if (WARN_ON_ONCE(!ctx->task_complete)) 2918 goto out; 2919 if (!ctx->submitter_task) 2920 goto out; 2921 /* 2922 * with ->submitter_task only the submitter task completes requests, we 2923 * only need to sync with it, which is done by injecting a tw 2924 */ 2925 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2926 percpu_ref_get(&ctx->refs); 2927 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2928 percpu_ref_put(&ctx->refs); 2929 out: 2930 spin_unlock(&ctx->completion_lock); 2931 } 2932 2933 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2934 { 2935 struct io_ring_ctx *ctx = file->private_data; 2936 __poll_t mask = 0; 2937 2938 if (unlikely(!ctx->poll_activated)) 2939 io_activate_pollwq(ctx); 2940 2941 poll_wait(file, &ctx->poll_wq, wait); 2942 /* 2943 * synchronizes with barrier from wq_has_sleeper call in 2944 * io_commit_cqring 2945 */ 2946 smp_rmb(); 2947 if (!io_sqring_full(ctx)) 2948 mask |= EPOLLOUT | EPOLLWRNORM; 2949 2950 /* 2951 * Don't flush cqring overflow list here, just do a simple check. 2952 * Otherwise there could possible be ABBA deadlock: 2953 * CPU0 CPU1 2954 * ---- ---- 2955 * lock(&ctx->uring_lock); 2956 * lock(&ep->mtx); 2957 * lock(&ctx->uring_lock); 2958 * lock(&ep->mtx); 2959 * 2960 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2961 * pushes them to do the flush. 2962 */ 2963 2964 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2965 mask |= EPOLLIN | EPOLLRDNORM; 2966 2967 return mask; 2968 } 2969 2970 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 2971 { 2972 const struct cred *creds; 2973 2974 creds = xa_erase(&ctx->personalities, id); 2975 if (creds) { 2976 put_cred(creds); 2977 return 0; 2978 } 2979 2980 return -EINVAL; 2981 } 2982 2983 struct io_tctx_exit { 2984 struct callback_head task_work; 2985 struct completion completion; 2986 struct io_ring_ctx *ctx; 2987 }; 2988 2989 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2990 { 2991 struct io_uring_task *tctx = current->io_uring; 2992 struct io_tctx_exit *work; 2993 2994 work = container_of(cb, struct io_tctx_exit, task_work); 2995 /* 2996 * When @in_cancel, we're in cancellation and it's racy to remove the 2997 * node. It'll be removed by the end of cancellation, just ignore it. 2998 * tctx can be NULL if the queueing of this task_work raced with 2999 * work cancelation off the exec path. 3000 */ 3001 if (tctx && !atomic_read(&tctx->in_cancel)) 3002 io_uring_del_tctx_node((unsigned long)work->ctx); 3003 complete(&work->completion); 3004 } 3005 3006 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 3007 { 3008 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3009 3010 return req->ctx == data; 3011 } 3012 3013 static __cold void io_ring_exit_work(struct work_struct *work) 3014 { 3015 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 3016 unsigned long timeout = jiffies + HZ * 60 * 5; 3017 unsigned long interval = HZ / 20; 3018 struct io_tctx_exit exit; 3019 struct io_tctx_node *node; 3020 int ret; 3021 3022 /* 3023 * If we're doing polled IO and end up having requests being 3024 * submitted async (out-of-line), then completions can come in while 3025 * we're waiting for refs to drop. We need to reap these manually, 3026 * as nobody else will be looking for them. 3027 */ 3028 do { 3029 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 3030 mutex_lock(&ctx->uring_lock); 3031 io_cqring_overflow_kill(ctx); 3032 mutex_unlock(&ctx->uring_lock); 3033 } 3034 3035 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3036 io_move_task_work_from_local(ctx); 3037 3038 while (io_uring_try_cancel_requests(ctx, NULL, true)) 3039 cond_resched(); 3040 3041 if (ctx->sq_data) { 3042 struct io_sq_data *sqd = ctx->sq_data; 3043 struct task_struct *tsk; 3044 3045 io_sq_thread_park(sqd); 3046 tsk = sqd->thread; 3047 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 3048 io_wq_cancel_cb(tsk->io_uring->io_wq, 3049 io_cancel_ctx_cb, ctx, true); 3050 io_sq_thread_unpark(sqd); 3051 } 3052 3053 io_req_caches_free(ctx); 3054 3055 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3056 /* there is little hope left, don't run it too often */ 3057 interval = HZ * 60; 3058 } 3059 /* 3060 * This is really an uninterruptible wait, as it has to be 3061 * complete. But it's also run from a kworker, which doesn't 3062 * take signals, so it's fine to make it interruptible. This 3063 * avoids scenarios where we knowingly can wait much longer 3064 * on completions, for example if someone does a SIGSTOP on 3065 * a task that needs to finish task_work to make this loop 3066 * complete. That's a synthetic situation that should not 3067 * cause a stuck task backtrace, and hence a potential panic 3068 * on stuck tasks if that is enabled. 3069 */ 3070 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 3071 3072 init_completion(&exit.completion); 3073 init_task_work(&exit.task_work, io_tctx_exit_cb); 3074 exit.ctx = ctx; 3075 /* 3076 * Some may use context even when all refs and requests have been put, 3077 * and they are free to do so while still holding uring_lock or 3078 * completion_lock, see io_req_task_submit(). Apart from other work, 3079 * this lock/unlock section also waits them to finish. 3080 */ 3081 mutex_lock(&ctx->uring_lock); 3082 while (!list_empty(&ctx->tctx_list)) { 3083 WARN_ON_ONCE(time_after(jiffies, timeout)); 3084 3085 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3086 ctx_node); 3087 /* don't spin on a single task if cancellation failed */ 3088 list_rotate_left(&ctx->tctx_list); 3089 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3090 if (WARN_ON_ONCE(ret)) 3091 continue; 3092 3093 mutex_unlock(&ctx->uring_lock); 3094 /* 3095 * See comment above for 3096 * wait_for_completion_interruptible_timeout() on why this 3097 * wait is marked as interruptible. 3098 */ 3099 wait_for_completion_interruptible(&exit.completion); 3100 mutex_lock(&ctx->uring_lock); 3101 } 3102 mutex_unlock(&ctx->uring_lock); 3103 spin_lock(&ctx->completion_lock); 3104 spin_unlock(&ctx->completion_lock); 3105 3106 /* pairs with RCU read section in io_req_local_work_add() */ 3107 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3108 synchronize_rcu(); 3109 3110 io_ring_ctx_free(ctx); 3111 } 3112 3113 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3114 { 3115 unsigned long index; 3116 struct creds *creds; 3117 3118 mutex_lock(&ctx->uring_lock); 3119 percpu_ref_kill(&ctx->refs); 3120 xa_for_each(&ctx->personalities, index, creds) 3121 io_unregister_personality(ctx, index); 3122 if (ctx->rings) 3123 io_poll_remove_all(ctx, NULL, true); 3124 mutex_unlock(&ctx->uring_lock); 3125 3126 /* 3127 * If we failed setting up the ctx, we might not have any rings 3128 * and therefore did not submit any requests 3129 */ 3130 if (ctx->rings) 3131 io_kill_timeouts(ctx, NULL, true); 3132 3133 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3134 /* 3135 * Use system_unbound_wq to avoid spawning tons of event kworkers 3136 * if we're exiting a ton of rings at the same time. It just adds 3137 * noise and overhead, there's no discernable change in runtime 3138 * over using system_wq. 3139 */ 3140 queue_work(system_unbound_wq, &ctx->exit_work); 3141 } 3142 3143 static int io_uring_release(struct inode *inode, struct file *file) 3144 { 3145 struct io_ring_ctx *ctx = file->private_data; 3146 3147 file->private_data = NULL; 3148 io_ring_ctx_wait_and_kill(ctx); 3149 return 0; 3150 } 3151 3152 struct io_task_cancel { 3153 struct task_struct *task; 3154 bool all; 3155 }; 3156 3157 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3158 { 3159 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3160 struct io_task_cancel *cancel = data; 3161 3162 return io_match_task_safe(req, cancel->task, cancel->all); 3163 } 3164 3165 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3166 struct task_struct *task, 3167 bool cancel_all) 3168 { 3169 struct io_defer_entry *de; 3170 LIST_HEAD(list); 3171 3172 spin_lock(&ctx->completion_lock); 3173 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3174 if (io_match_task_safe(de->req, task, cancel_all)) { 3175 list_cut_position(&list, &ctx->defer_list, &de->list); 3176 break; 3177 } 3178 } 3179 spin_unlock(&ctx->completion_lock); 3180 if (list_empty(&list)) 3181 return false; 3182 3183 while (!list_empty(&list)) { 3184 de = list_first_entry(&list, struct io_defer_entry, list); 3185 list_del_init(&de->list); 3186 io_req_task_queue_fail(de->req, -ECANCELED); 3187 kfree(de); 3188 } 3189 return true; 3190 } 3191 3192 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3193 { 3194 struct io_tctx_node *node; 3195 enum io_wq_cancel cret; 3196 bool ret = false; 3197 3198 mutex_lock(&ctx->uring_lock); 3199 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3200 struct io_uring_task *tctx = node->task->io_uring; 3201 3202 /* 3203 * io_wq will stay alive while we hold uring_lock, because it's 3204 * killed after ctx nodes, which requires to take the lock. 3205 */ 3206 if (!tctx || !tctx->io_wq) 3207 continue; 3208 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3209 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3210 } 3211 mutex_unlock(&ctx->uring_lock); 3212 3213 return ret; 3214 } 3215 3216 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3217 struct task_struct *task, 3218 bool cancel_all) 3219 { 3220 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3221 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3222 enum io_wq_cancel cret; 3223 bool ret = false; 3224 3225 /* set it so io_req_local_work_add() would wake us up */ 3226 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3227 atomic_set(&ctx->cq_wait_nr, 1); 3228 smp_mb(); 3229 } 3230 3231 /* failed during ring init, it couldn't have issued any requests */ 3232 if (!ctx->rings) 3233 return false; 3234 3235 if (!task) { 3236 ret |= io_uring_try_cancel_iowq(ctx); 3237 } else if (tctx && tctx->io_wq) { 3238 /* 3239 * Cancels requests of all rings, not only @ctx, but 3240 * it's fine as the task is in exit/exec. 3241 */ 3242 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3243 &cancel, true); 3244 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3245 } 3246 3247 /* SQPOLL thread does its own polling */ 3248 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3249 (ctx->sq_data && ctx->sq_data->thread == current)) { 3250 while (!wq_list_empty(&ctx->iopoll_list)) { 3251 io_iopoll_try_reap_events(ctx); 3252 ret = true; 3253 cond_resched(); 3254 } 3255 } 3256 3257 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3258 io_allowed_defer_tw_run(ctx)) 3259 ret |= io_run_local_work(ctx) > 0; 3260 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3261 mutex_lock(&ctx->uring_lock); 3262 ret |= io_poll_remove_all(ctx, task, cancel_all); 3263 mutex_unlock(&ctx->uring_lock); 3264 ret |= io_kill_timeouts(ctx, task, cancel_all); 3265 if (task) 3266 ret |= io_run_task_work() > 0; 3267 return ret; 3268 } 3269 3270 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3271 { 3272 if (tracked) 3273 return atomic_read(&tctx->inflight_tracked); 3274 return percpu_counter_sum(&tctx->inflight); 3275 } 3276 3277 /* 3278 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3279 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3280 */ 3281 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3282 { 3283 struct io_uring_task *tctx = current->io_uring; 3284 struct io_ring_ctx *ctx; 3285 struct io_tctx_node *node; 3286 unsigned long index; 3287 s64 inflight; 3288 DEFINE_WAIT(wait); 3289 3290 WARN_ON_ONCE(sqd && sqd->thread != current); 3291 3292 if (!current->io_uring) 3293 return; 3294 if (tctx->io_wq) 3295 io_wq_exit_start(tctx->io_wq); 3296 3297 atomic_inc(&tctx->in_cancel); 3298 do { 3299 bool loop = false; 3300 3301 io_uring_drop_tctx_refs(current); 3302 /* read completions before cancelations */ 3303 inflight = tctx_inflight(tctx, !cancel_all); 3304 if (!inflight) 3305 break; 3306 3307 if (!sqd) { 3308 xa_for_each(&tctx->xa, index, node) { 3309 /* sqpoll task will cancel all its requests */ 3310 if (node->ctx->sq_data) 3311 continue; 3312 loop |= io_uring_try_cancel_requests(node->ctx, 3313 current, cancel_all); 3314 } 3315 } else { 3316 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3317 loop |= io_uring_try_cancel_requests(ctx, 3318 current, 3319 cancel_all); 3320 } 3321 3322 if (loop) { 3323 cond_resched(); 3324 continue; 3325 } 3326 3327 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3328 io_run_task_work(); 3329 io_uring_drop_tctx_refs(current); 3330 xa_for_each(&tctx->xa, index, node) { 3331 if (!llist_empty(&node->ctx->work_llist)) { 3332 WARN_ON_ONCE(node->ctx->submitter_task && 3333 node->ctx->submitter_task != current); 3334 goto end_wait; 3335 } 3336 } 3337 /* 3338 * If we've seen completions, retry without waiting. This 3339 * avoids a race where a completion comes in before we did 3340 * prepare_to_wait(). 3341 */ 3342 if (inflight == tctx_inflight(tctx, !cancel_all)) 3343 schedule(); 3344 end_wait: 3345 finish_wait(&tctx->wait, &wait); 3346 } while (1); 3347 3348 io_uring_clean_tctx(tctx); 3349 if (cancel_all) { 3350 /* 3351 * We shouldn't run task_works after cancel, so just leave 3352 * ->in_cancel set for normal exit. 3353 */ 3354 atomic_dec(&tctx->in_cancel); 3355 /* for exec all current's requests should be gone, kill tctx */ 3356 __io_uring_free(current); 3357 } 3358 } 3359 3360 void __io_uring_cancel(bool cancel_all) 3361 { 3362 io_uring_cancel_generic(cancel_all, NULL); 3363 } 3364 3365 static void *io_uring_validate_mmap_request(struct file *file, 3366 loff_t pgoff, size_t sz) 3367 { 3368 struct io_ring_ctx *ctx = file->private_data; 3369 loff_t offset = pgoff << PAGE_SHIFT; 3370 struct page *page; 3371 void *ptr; 3372 3373 /* Don't allow mmap if the ring was setup without it */ 3374 if (ctx->flags & IORING_SETUP_NO_MMAP) 3375 return ERR_PTR(-EINVAL); 3376 3377 switch (offset & IORING_OFF_MMAP_MASK) { 3378 case IORING_OFF_SQ_RING: 3379 case IORING_OFF_CQ_RING: 3380 ptr = ctx->rings; 3381 break; 3382 case IORING_OFF_SQES: 3383 ptr = ctx->sq_sqes; 3384 break; 3385 case IORING_OFF_PBUF_RING: { 3386 unsigned int bgid; 3387 3388 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; 3389 mutex_lock(&ctx->uring_lock); 3390 ptr = io_pbuf_get_address(ctx, bgid); 3391 mutex_unlock(&ctx->uring_lock); 3392 if (!ptr) 3393 return ERR_PTR(-EINVAL); 3394 break; 3395 } 3396 default: 3397 return ERR_PTR(-EINVAL); 3398 } 3399 3400 page = virt_to_head_page(ptr); 3401 if (sz > page_size(page)) 3402 return ERR_PTR(-EINVAL); 3403 3404 return ptr; 3405 } 3406 3407 #ifdef CONFIG_MMU 3408 3409 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3410 { 3411 size_t sz = vma->vm_end - vma->vm_start; 3412 unsigned long pfn; 3413 void *ptr; 3414 3415 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3416 if (IS_ERR(ptr)) 3417 return PTR_ERR(ptr); 3418 3419 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3420 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3421 } 3422 3423 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, 3424 unsigned long addr, unsigned long len, 3425 unsigned long pgoff, unsigned long flags) 3426 { 3427 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 3428 struct vm_unmapped_area_info info; 3429 void *ptr; 3430 3431 /* 3432 * Do not allow to map to user-provided address to avoid breaking the 3433 * aliasing rules. Userspace is not able to guess the offset address of 3434 * kernel kmalloc()ed memory area. 3435 */ 3436 if (addr) 3437 return -EINVAL; 3438 3439 ptr = io_uring_validate_mmap_request(filp, pgoff, len); 3440 if (IS_ERR(ptr)) 3441 return -ENOMEM; 3442 3443 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 3444 info.length = len; 3445 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 3446 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base); 3447 #ifdef SHM_COLOUR 3448 info.align_mask = PAGE_MASK & (SHM_COLOUR - 1UL); 3449 #else 3450 info.align_mask = PAGE_MASK & (SHMLBA - 1UL); 3451 #endif 3452 info.align_offset = (unsigned long) ptr; 3453 3454 /* 3455 * A failed mmap() very likely causes application failure, 3456 * so fall back to the bottom-up function here. This scenario 3457 * can happen with large stack limits and large mmap() 3458 * allocations. 3459 */ 3460 addr = vm_unmapped_area(&info); 3461 if (offset_in_page(addr)) { 3462 info.flags = 0; 3463 info.low_limit = TASK_UNMAPPED_BASE; 3464 info.high_limit = mmap_end; 3465 addr = vm_unmapped_area(&info); 3466 } 3467 3468 return addr; 3469 } 3470 3471 #else /* !CONFIG_MMU */ 3472 3473 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3474 { 3475 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3476 } 3477 3478 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3479 { 3480 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3481 } 3482 3483 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3484 unsigned long addr, unsigned long len, 3485 unsigned long pgoff, unsigned long flags) 3486 { 3487 void *ptr; 3488 3489 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3490 if (IS_ERR(ptr)) 3491 return PTR_ERR(ptr); 3492 3493 return (unsigned long) ptr; 3494 } 3495 3496 #endif /* !CONFIG_MMU */ 3497 3498 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3499 { 3500 if (flags & IORING_ENTER_EXT_ARG) { 3501 struct io_uring_getevents_arg arg; 3502 3503 if (argsz != sizeof(arg)) 3504 return -EINVAL; 3505 if (copy_from_user(&arg, argp, sizeof(arg))) 3506 return -EFAULT; 3507 } 3508 return 0; 3509 } 3510 3511 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3512 struct __kernel_timespec __user **ts, 3513 const sigset_t __user **sig) 3514 { 3515 struct io_uring_getevents_arg arg; 3516 3517 /* 3518 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3519 * is just a pointer to the sigset_t. 3520 */ 3521 if (!(flags & IORING_ENTER_EXT_ARG)) { 3522 *sig = (const sigset_t __user *) argp; 3523 *ts = NULL; 3524 return 0; 3525 } 3526 3527 /* 3528 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3529 * timespec and sigset_t pointers if good. 3530 */ 3531 if (*argsz != sizeof(arg)) 3532 return -EINVAL; 3533 if (copy_from_user(&arg, argp, sizeof(arg))) 3534 return -EFAULT; 3535 if (arg.pad) 3536 return -EINVAL; 3537 *sig = u64_to_user_ptr(arg.sigmask); 3538 *argsz = arg.sigmask_sz; 3539 *ts = u64_to_user_ptr(arg.ts); 3540 return 0; 3541 } 3542 3543 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3544 u32, min_complete, u32, flags, const void __user *, argp, 3545 size_t, argsz) 3546 { 3547 struct io_ring_ctx *ctx; 3548 struct fd f; 3549 long ret; 3550 3551 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3552 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3553 IORING_ENTER_REGISTERED_RING))) 3554 return -EINVAL; 3555 3556 /* 3557 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3558 * need only dereference our task private array to find it. 3559 */ 3560 if (flags & IORING_ENTER_REGISTERED_RING) { 3561 struct io_uring_task *tctx = current->io_uring; 3562 3563 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3564 return -EINVAL; 3565 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3566 f.file = tctx->registered_rings[fd]; 3567 f.flags = 0; 3568 if (unlikely(!f.file)) 3569 return -EBADF; 3570 } else { 3571 f = fdget(fd); 3572 if (unlikely(!f.file)) 3573 return -EBADF; 3574 ret = -EOPNOTSUPP; 3575 if (unlikely(!io_is_uring_fops(f.file))) 3576 goto out; 3577 } 3578 3579 ctx = f.file->private_data; 3580 ret = -EBADFD; 3581 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3582 goto out; 3583 3584 /* 3585 * For SQ polling, the thread will do all submissions and completions. 3586 * Just return the requested submit count, and wake the thread if 3587 * we were asked to. 3588 */ 3589 ret = 0; 3590 if (ctx->flags & IORING_SETUP_SQPOLL) { 3591 io_cqring_overflow_flush(ctx); 3592 3593 if (unlikely(ctx->sq_data->thread == NULL)) { 3594 ret = -EOWNERDEAD; 3595 goto out; 3596 } 3597 if (flags & IORING_ENTER_SQ_WAKEUP) 3598 wake_up(&ctx->sq_data->wait); 3599 if (flags & IORING_ENTER_SQ_WAIT) 3600 io_sqpoll_wait_sq(ctx); 3601 3602 ret = to_submit; 3603 } else if (to_submit) { 3604 ret = io_uring_add_tctx_node(ctx); 3605 if (unlikely(ret)) 3606 goto out; 3607 3608 mutex_lock(&ctx->uring_lock); 3609 ret = io_submit_sqes(ctx, to_submit); 3610 if (ret != to_submit) { 3611 mutex_unlock(&ctx->uring_lock); 3612 goto out; 3613 } 3614 if (flags & IORING_ENTER_GETEVENTS) { 3615 if (ctx->syscall_iopoll) 3616 goto iopoll_locked; 3617 /* 3618 * Ignore errors, we'll soon call io_cqring_wait() and 3619 * it should handle ownership problems if any. 3620 */ 3621 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3622 (void)io_run_local_work_locked(ctx); 3623 } 3624 mutex_unlock(&ctx->uring_lock); 3625 } 3626 3627 if (flags & IORING_ENTER_GETEVENTS) { 3628 int ret2; 3629 3630 if (ctx->syscall_iopoll) { 3631 /* 3632 * We disallow the app entering submit/complete with 3633 * polling, but we still need to lock the ring to 3634 * prevent racing with polled issue that got punted to 3635 * a workqueue. 3636 */ 3637 mutex_lock(&ctx->uring_lock); 3638 iopoll_locked: 3639 ret2 = io_validate_ext_arg(flags, argp, argsz); 3640 if (likely(!ret2)) { 3641 min_complete = min(min_complete, 3642 ctx->cq_entries); 3643 ret2 = io_iopoll_check(ctx, min_complete); 3644 } 3645 mutex_unlock(&ctx->uring_lock); 3646 } else { 3647 const sigset_t __user *sig; 3648 struct __kernel_timespec __user *ts; 3649 3650 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3651 if (likely(!ret2)) { 3652 min_complete = min(min_complete, 3653 ctx->cq_entries); 3654 ret2 = io_cqring_wait(ctx, min_complete, sig, 3655 argsz, ts); 3656 } 3657 } 3658 3659 if (!ret) { 3660 ret = ret2; 3661 3662 /* 3663 * EBADR indicates that one or more CQE were dropped. 3664 * Once the user has been informed we can clear the bit 3665 * as they are obviously ok with those drops. 3666 */ 3667 if (unlikely(ret2 == -EBADR)) 3668 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3669 &ctx->check_cq); 3670 } 3671 } 3672 out: 3673 fdput(f); 3674 return ret; 3675 } 3676 3677 static const struct file_operations io_uring_fops = { 3678 .release = io_uring_release, 3679 .mmap = io_uring_mmap, 3680 #ifndef CONFIG_MMU 3681 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3682 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3683 #else 3684 .get_unmapped_area = io_uring_mmu_get_unmapped_area, 3685 #endif 3686 .poll = io_uring_poll, 3687 #ifdef CONFIG_PROC_FS 3688 .show_fdinfo = io_uring_show_fdinfo, 3689 #endif 3690 }; 3691 3692 bool io_is_uring_fops(struct file *file) 3693 { 3694 return file->f_op == &io_uring_fops; 3695 } 3696 3697 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3698 struct io_uring_params *p) 3699 { 3700 struct io_rings *rings; 3701 size_t size, sq_array_offset; 3702 void *ptr; 3703 3704 /* make sure these are sane, as we already accounted them */ 3705 ctx->sq_entries = p->sq_entries; 3706 ctx->cq_entries = p->cq_entries; 3707 3708 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3709 if (size == SIZE_MAX) 3710 return -EOVERFLOW; 3711 3712 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3713 rings = io_mem_alloc(size); 3714 else 3715 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3716 3717 if (IS_ERR(rings)) 3718 return PTR_ERR(rings); 3719 3720 ctx->rings = rings; 3721 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3722 rings->sq_ring_mask = p->sq_entries - 1; 3723 rings->cq_ring_mask = p->cq_entries - 1; 3724 rings->sq_ring_entries = p->sq_entries; 3725 rings->cq_ring_entries = p->cq_entries; 3726 3727 if (p->flags & IORING_SETUP_SQE128) 3728 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3729 else 3730 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3731 if (size == SIZE_MAX) { 3732 io_rings_free(ctx); 3733 return -EOVERFLOW; 3734 } 3735 3736 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3737 ptr = io_mem_alloc(size); 3738 else 3739 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3740 3741 if (IS_ERR(ptr)) { 3742 io_rings_free(ctx); 3743 return PTR_ERR(ptr); 3744 } 3745 3746 ctx->sq_sqes = ptr; 3747 return 0; 3748 } 3749 3750 static int io_uring_install_fd(struct file *file) 3751 { 3752 int fd; 3753 3754 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3755 if (fd < 0) 3756 return fd; 3757 fd_install(fd, file); 3758 return fd; 3759 } 3760 3761 /* 3762 * Allocate an anonymous fd, this is what constitutes the application 3763 * visible backing of an io_uring instance. The application mmaps this 3764 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3765 * we have to tie this fd to a socket for file garbage collection purposes. 3766 */ 3767 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3768 { 3769 struct file *file; 3770 #if defined(CONFIG_UNIX) 3771 int ret; 3772 3773 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3774 &ctx->ring_sock); 3775 if (ret) 3776 return ERR_PTR(ret); 3777 #endif 3778 3779 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3780 O_RDWR | O_CLOEXEC, NULL); 3781 #if defined(CONFIG_UNIX) 3782 if (IS_ERR(file)) { 3783 sock_release(ctx->ring_sock); 3784 ctx->ring_sock = NULL; 3785 } else { 3786 ctx->ring_sock->file = file; 3787 } 3788 #endif 3789 return file; 3790 } 3791 3792 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3793 struct io_uring_params __user *params) 3794 { 3795 struct io_ring_ctx *ctx; 3796 struct io_uring_task *tctx; 3797 struct file *file; 3798 int ret; 3799 3800 if (!entries) 3801 return -EINVAL; 3802 if (entries > IORING_MAX_ENTRIES) { 3803 if (!(p->flags & IORING_SETUP_CLAMP)) 3804 return -EINVAL; 3805 entries = IORING_MAX_ENTRIES; 3806 } 3807 3808 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3809 && !(p->flags & IORING_SETUP_NO_MMAP)) 3810 return -EINVAL; 3811 3812 /* 3813 * Use twice as many entries for the CQ ring. It's possible for the 3814 * application to drive a higher depth than the size of the SQ ring, 3815 * since the sqes are only used at submission time. This allows for 3816 * some flexibility in overcommitting a bit. If the application has 3817 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3818 * of CQ ring entries manually. 3819 */ 3820 p->sq_entries = roundup_pow_of_two(entries); 3821 if (p->flags & IORING_SETUP_CQSIZE) { 3822 /* 3823 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3824 * to a power-of-two, if it isn't already. We do NOT impose 3825 * any cq vs sq ring sizing. 3826 */ 3827 if (!p->cq_entries) 3828 return -EINVAL; 3829 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3830 if (!(p->flags & IORING_SETUP_CLAMP)) 3831 return -EINVAL; 3832 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3833 } 3834 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3835 if (p->cq_entries < p->sq_entries) 3836 return -EINVAL; 3837 } else { 3838 p->cq_entries = 2 * p->sq_entries; 3839 } 3840 3841 ctx = io_ring_ctx_alloc(p); 3842 if (!ctx) 3843 return -ENOMEM; 3844 3845 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3846 !(ctx->flags & IORING_SETUP_IOPOLL) && 3847 !(ctx->flags & IORING_SETUP_SQPOLL)) 3848 ctx->task_complete = true; 3849 3850 /* 3851 * lazy poll_wq activation relies on ->task_complete for synchronisation 3852 * purposes, see io_activate_pollwq() 3853 */ 3854 if (!ctx->task_complete) 3855 ctx->poll_activated = true; 3856 3857 /* 3858 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3859 * space applications don't need to do io completion events 3860 * polling again, they can rely on io_sq_thread to do polling 3861 * work, which can reduce cpu usage and uring_lock contention. 3862 */ 3863 if (ctx->flags & IORING_SETUP_IOPOLL && 3864 !(ctx->flags & IORING_SETUP_SQPOLL)) 3865 ctx->syscall_iopoll = 1; 3866 3867 ctx->compat = in_compat_syscall(); 3868 if (!capable(CAP_IPC_LOCK)) 3869 ctx->user = get_uid(current_user()); 3870 3871 /* 3872 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3873 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3874 */ 3875 ret = -EINVAL; 3876 if (ctx->flags & IORING_SETUP_SQPOLL) { 3877 /* IPI related flags don't make sense with SQPOLL */ 3878 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3879 IORING_SETUP_TASKRUN_FLAG | 3880 IORING_SETUP_DEFER_TASKRUN)) 3881 goto err; 3882 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3883 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3884 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3885 } else { 3886 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3887 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3888 goto err; 3889 ctx->notify_method = TWA_SIGNAL; 3890 } 3891 3892 /* 3893 * For DEFER_TASKRUN we require the completion task to be the same as the 3894 * submission task. This implies that there is only one submitter, so enforce 3895 * that. 3896 */ 3897 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3898 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3899 goto err; 3900 } 3901 3902 /* 3903 * This is just grabbed for accounting purposes. When a process exits, 3904 * the mm is exited and dropped before the files, hence we need to hang 3905 * on to this mm purely for the purposes of being able to unaccount 3906 * memory (locked/pinned vm). It's not used for anything else. 3907 */ 3908 mmgrab(current->mm); 3909 ctx->mm_account = current->mm; 3910 3911 ret = io_allocate_scq_urings(ctx, p); 3912 if (ret) 3913 goto err; 3914 3915 ret = io_sq_offload_create(ctx, p); 3916 if (ret) 3917 goto err; 3918 3919 ret = io_rsrc_init(ctx); 3920 if (ret) 3921 goto err; 3922 3923 p->sq_off.head = offsetof(struct io_rings, sq.head); 3924 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3925 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3926 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3927 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3928 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3929 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3930 p->sq_off.resv1 = 0; 3931 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3932 p->sq_off.user_addr = 0; 3933 3934 p->cq_off.head = offsetof(struct io_rings, cq.head); 3935 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3936 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3937 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3938 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3939 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3940 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3941 p->cq_off.resv1 = 0; 3942 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3943 p->cq_off.user_addr = 0; 3944 3945 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3946 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3947 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3948 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3949 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3950 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3951 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 3952 3953 if (copy_to_user(params, p, sizeof(*p))) { 3954 ret = -EFAULT; 3955 goto err; 3956 } 3957 3958 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3959 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3960 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3961 3962 file = io_uring_get_file(ctx); 3963 if (IS_ERR(file)) { 3964 ret = PTR_ERR(file); 3965 goto err; 3966 } 3967 3968 ret = __io_uring_add_tctx_node(ctx); 3969 if (ret) 3970 goto err_fput; 3971 tctx = current->io_uring; 3972 3973 /* 3974 * Install ring fd as the very last thing, so we don't risk someone 3975 * having closed it before we finish setup 3976 */ 3977 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3978 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3979 else 3980 ret = io_uring_install_fd(file); 3981 if (ret < 0) 3982 goto err_fput; 3983 3984 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3985 return ret; 3986 err: 3987 io_ring_ctx_wait_and_kill(ctx); 3988 return ret; 3989 err_fput: 3990 fput(file); 3991 return ret; 3992 } 3993 3994 /* 3995 * Sets up an aio uring context, and returns the fd. Applications asks for a 3996 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3997 * params structure passed in. 3998 */ 3999 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 4000 { 4001 struct io_uring_params p; 4002 int i; 4003 4004 if (copy_from_user(&p, params, sizeof(p))) 4005 return -EFAULT; 4006 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 4007 if (p.resv[i]) 4008 return -EINVAL; 4009 } 4010 4011 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 4012 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 4013 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 4014 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 4015 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 4016 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 4017 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 4018 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY)) 4019 return -EINVAL; 4020 4021 return io_uring_create(entries, &p, params); 4022 } 4023 4024 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 4025 struct io_uring_params __user *, params) 4026 { 4027 return io_uring_setup(entries, params); 4028 } 4029 4030 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 4031 unsigned nr_args) 4032 { 4033 struct io_uring_probe *p; 4034 size_t size; 4035 int i, ret; 4036 4037 size = struct_size(p, ops, nr_args); 4038 if (size == SIZE_MAX) 4039 return -EOVERFLOW; 4040 p = kzalloc(size, GFP_KERNEL); 4041 if (!p) 4042 return -ENOMEM; 4043 4044 ret = -EFAULT; 4045 if (copy_from_user(p, arg, size)) 4046 goto out; 4047 ret = -EINVAL; 4048 if (memchr_inv(p, 0, size)) 4049 goto out; 4050 4051 p->last_op = IORING_OP_LAST - 1; 4052 if (nr_args > IORING_OP_LAST) 4053 nr_args = IORING_OP_LAST; 4054 4055 for (i = 0; i < nr_args; i++) { 4056 p->ops[i].op = i; 4057 if (!io_issue_defs[i].not_supported) 4058 p->ops[i].flags = IO_URING_OP_SUPPORTED; 4059 } 4060 p->ops_len = i; 4061 4062 ret = 0; 4063 if (copy_to_user(arg, p, size)) 4064 ret = -EFAULT; 4065 out: 4066 kfree(p); 4067 return ret; 4068 } 4069 4070 static int io_register_personality(struct io_ring_ctx *ctx) 4071 { 4072 const struct cred *creds; 4073 u32 id; 4074 int ret; 4075 4076 creds = get_current_cred(); 4077 4078 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 4079 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 4080 if (ret < 0) { 4081 put_cred(creds); 4082 return ret; 4083 } 4084 return id; 4085 } 4086 4087 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 4088 void __user *arg, unsigned int nr_args) 4089 { 4090 struct io_uring_restriction *res; 4091 size_t size; 4092 int i, ret; 4093 4094 /* Restrictions allowed only if rings started disabled */ 4095 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4096 return -EBADFD; 4097 4098 /* We allow only a single restrictions registration */ 4099 if (ctx->restrictions.registered) 4100 return -EBUSY; 4101 4102 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 4103 return -EINVAL; 4104 4105 size = array_size(nr_args, sizeof(*res)); 4106 if (size == SIZE_MAX) 4107 return -EOVERFLOW; 4108 4109 res = memdup_user(arg, size); 4110 if (IS_ERR(res)) 4111 return PTR_ERR(res); 4112 4113 ret = 0; 4114 4115 for (i = 0; i < nr_args; i++) { 4116 switch (res[i].opcode) { 4117 case IORING_RESTRICTION_REGISTER_OP: 4118 if (res[i].register_op >= IORING_REGISTER_LAST) { 4119 ret = -EINVAL; 4120 goto out; 4121 } 4122 4123 __set_bit(res[i].register_op, 4124 ctx->restrictions.register_op); 4125 break; 4126 case IORING_RESTRICTION_SQE_OP: 4127 if (res[i].sqe_op >= IORING_OP_LAST) { 4128 ret = -EINVAL; 4129 goto out; 4130 } 4131 4132 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 4133 break; 4134 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 4135 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 4136 break; 4137 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 4138 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 4139 break; 4140 default: 4141 ret = -EINVAL; 4142 goto out; 4143 } 4144 } 4145 4146 out: 4147 /* Reset all restrictions if an error happened */ 4148 if (ret != 0) 4149 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 4150 else 4151 ctx->restrictions.registered = true; 4152 4153 kfree(res); 4154 return ret; 4155 } 4156 4157 static int io_register_enable_rings(struct io_ring_ctx *ctx) 4158 { 4159 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4160 return -EBADFD; 4161 4162 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) { 4163 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4164 /* 4165 * Lazy activation attempts would fail if it was polled before 4166 * submitter_task is set. 4167 */ 4168 if (wq_has_sleeper(&ctx->poll_wq)) 4169 io_activate_pollwq(ctx); 4170 } 4171 4172 if (ctx->restrictions.registered) 4173 ctx->restricted = 1; 4174 4175 ctx->flags &= ~IORING_SETUP_R_DISABLED; 4176 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 4177 wake_up(&ctx->sq_data->wait); 4178 return 0; 4179 } 4180 4181 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 4182 void __user *arg, unsigned len) 4183 { 4184 struct io_uring_task *tctx = current->io_uring; 4185 cpumask_var_t new_mask; 4186 int ret; 4187 4188 if (!tctx || !tctx->io_wq) 4189 return -EINVAL; 4190 4191 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4192 return -ENOMEM; 4193 4194 cpumask_clear(new_mask); 4195 if (len > cpumask_size()) 4196 len = cpumask_size(); 4197 4198 if (in_compat_syscall()) { 4199 ret = compat_get_bitmap(cpumask_bits(new_mask), 4200 (const compat_ulong_t __user *)arg, 4201 len * 8 /* CHAR_BIT */); 4202 } else { 4203 ret = copy_from_user(new_mask, arg, len); 4204 } 4205 4206 if (ret) { 4207 free_cpumask_var(new_mask); 4208 return -EFAULT; 4209 } 4210 4211 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask); 4212 free_cpumask_var(new_mask); 4213 return ret; 4214 } 4215 4216 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 4217 { 4218 struct io_uring_task *tctx = current->io_uring; 4219 4220 if (!tctx || !tctx->io_wq) 4221 return -EINVAL; 4222 4223 return io_wq_cpu_affinity(tctx->io_wq, NULL); 4224 } 4225 4226 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 4227 void __user *arg) 4228 __must_hold(&ctx->uring_lock) 4229 { 4230 struct io_tctx_node *node; 4231 struct io_uring_task *tctx = NULL; 4232 struct io_sq_data *sqd = NULL; 4233 __u32 new_count[2]; 4234 int i, ret; 4235 4236 if (copy_from_user(new_count, arg, sizeof(new_count))) 4237 return -EFAULT; 4238 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4239 if (new_count[i] > INT_MAX) 4240 return -EINVAL; 4241 4242 if (ctx->flags & IORING_SETUP_SQPOLL) { 4243 sqd = ctx->sq_data; 4244 if (sqd) { 4245 /* 4246 * Observe the correct sqd->lock -> ctx->uring_lock 4247 * ordering. Fine to drop uring_lock here, we hold 4248 * a ref to the ctx. 4249 */ 4250 refcount_inc(&sqd->refs); 4251 mutex_unlock(&ctx->uring_lock); 4252 mutex_lock(&sqd->lock); 4253 mutex_lock(&ctx->uring_lock); 4254 if (sqd->thread) 4255 tctx = sqd->thread->io_uring; 4256 } 4257 } else { 4258 tctx = current->io_uring; 4259 } 4260 4261 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 4262 4263 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4264 if (new_count[i]) 4265 ctx->iowq_limits[i] = new_count[i]; 4266 ctx->iowq_limits_set = true; 4267 4268 if (tctx && tctx->io_wq) { 4269 ret = io_wq_max_workers(tctx->io_wq, new_count); 4270 if (ret) 4271 goto err; 4272 } else { 4273 memset(new_count, 0, sizeof(new_count)); 4274 } 4275 4276 if (sqd) { 4277 mutex_unlock(&sqd->lock); 4278 io_put_sq_data(sqd); 4279 } 4280 4281 if (copy_to_user(arg, new_count, sizeof(new_count))) 4282 return -EFAULT; 4283 4284 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 4285 if (sqd) 4286 return 0; 4287 4288 /* now propagate the restriction to all registered users */ 4289 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 4290 struct io_uring_task *tctx = node->task->io_uring; 4291 4292 if (WARN_ON_ONCE(!tctx->io_wq)) 4293 continue; 4294 4295 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4296 new_count[i] = ctx->iowq_limits[i]; 4297 /* ignore errors, it always returns zero anyway */ 4298 (void)io_wq_max_workers(tctx->io_wq, new_count); 4299 } 4300 return 0; 4301 err: 4302 if (sqd) { 4303 mutex_unlock(&sqd->lock); 4304 io_put_sq_data(sqd); 4305 } 4306 return ret; 4307 } 4308 4309 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4310 void __user *arg, unsigned nr_args) 4311 __releases(ctx->uring_lock) 4312 __acquires(ctx->uring_lock) 4313 { 4314 int ret; 4315 4316 /* 4317 * We don't quiesce the refs for register anymore and so it can't be 4318 * dying as we're holding a file ref here. 4319 */ 4320 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4321 return -ENXIO; 4322 4323 if (ctx->submitter_task && ctx->submitter_task != current) 4324 return -EEXIST; 4325 4326 if (ctx->restricted) { 4327 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4328 if (!test_bit(opcode, ctx->restrictions.register_op)) 4329 return -EACCES; 4330 } 4331 4332 switch (opcode) { 4333 case IORING_REGISTER_BUFFERS: 4334 ret = -EFAULT; 4335 if (!arg) 4336 break; 4337 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4338 break; 4339 case IORING_UNREGISTER_BUFFERS: 4340 ret = -EINVAL; 4341 if (arg || nr_args) 4342 break; 4343 ret = io_sqe_buffers_unregister(ctx); 4344 break; 4345 case IORING_REGISTER_FILES: 4346 ret = -EFAULT; 4347 if (!arg) 4348 break; 4349 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4350 break; 4351 case IORING_UNREGISTER_FILES: 4352 ret = -EINVAL; 4353 if (arg || nr_args) 4354 break; 4355 ret = io_sqe_files_unregister(ctx); 4356 break; 4357 case IORING_REGISTER_FILES_UPDATE: 4358 ret = io_register_files_update(ctx, arg, nr_args); 4359 break; 4360 case IORING_REGISTER_EVENTFD: 4361 ret = -EINVAL; 4362 if (nr_args != 1) 4363 break; 4364 ret = io_eventfd_register(ctx, arg, 0); 4365 break; 4366 case IORING_REGISTER_EVENTFD_ASYNC: 4367 ret = -EINVAL; 4368 if (nr_args != 1) 4369 break; 4370 ret = io_eventfd_register(ctx, arg, 1); 4371 break; 4372 case IORING_UNREGISTER_EVENTFD: 4373 ret = -EINVAL; 4374 if (arg || nr_args) 4375 break; 4376 ret = io_eventfd_unregister(ctx); 4377 break; 4378 case IORING_REGISTER_PROBE: 4379 ret = -EINVAL; 4380 if (!arg || nr_args > 256) 4381 break; 4382 ret = io_probe(ctx, arg, nr_args); 4383 break; 4384 case IORING_REGISTER_PERSONALITY: 4385 ret = -EINVAL; 4386 if (arg || nr_args) 4387 break; 4388 ret = io_register_personality(ctx); 4389 break; 4390 case IORING_UNREGISTER_PERSONALITY: 4391 ret = -EINVAL; 4392 if (arg) 4393 break; 4394 ret = io_unregister_personality(ctx, nr_args); 4395 break; 4396 case IORING_REGISTER_ENABLE_RINGS: 4397 ret = -EINVAL; 4398 if (arg || nr_args) 4399 break; 4400 ret = io_register_enable_rings(ctx); 4401 break; 4402 case IORING_REGISTER_RESTRICTIONS: 4403 ret = io_register_restrictions(ctx, arg, nr_args); 4404 break; 4405 case IORING_REGISTER_FILES2: 4406 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4407 break; 4408 case IORING_REGISTER_FILES_UPDATE2: 4409 ret = io_register_rsrc_update(ctx, arg, nr_args, 4410 IORING_RSRC_FILE); 4411 break; 4412 case IORING_REGISTER_BUFFERS2: 4413 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4414 break; 4415 case IORING_REGISTER_BUFFERS_UPDATE: 4416 ret = io_register_rsrc_update(ctx, arg, nr_args, 4417 IORING_RSRC_BUFFER); 4418 break; 4419 case IORING_REGISTER_IOWQ_AFF: 4420 ret = -EINVAL; 4421 if (!arg || !nr_args) 4422 break; 4423 ret = io_register_iowq_aff(ctx, arg, nr_args); 4424 break; 4425 case IORING_UNREGISTER_IOWQ_AFF: 4426 ret = -EINVAL; 4427 if (arg || nr_args) 4428 break; 4429 ret = io_unregister_iowq_aff(ctx); 4430 break; 4431 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4432 ret = -EINVAL; 4433 if (!arg || nr_args != 2) 4434 break; 4435 ret = io_register_iowq_max_workers(ctx, arg); 4436 break; 4437 case IORING_REGISTER_RING_FDS: 4438 ret = io_ringfd_register(ctx, arg, nr_args); 4439 break; 4440 case IORING_UNREGISTER_RING_FDS: 4441 ret = io_ringfd_unregister(ctx, arg, nr_args); 4442 break; 4443 case IORING_REGISTER_PBUF_RING: 4444 ret = -EINVAL; 4445 if (!arg || nr_args != 1) 4446 break; 4447 ret = io_register_pbuf_ring(ctx, arg); 4448 break; 4449 case IORING_UNREGISTER_PBUF_RING: 4450 ret = -EINVAL; 4451 if (!arg || nr_args != 1) 4452 break; 4453 ret = io_unregister_pbuf_ring(ctx, arg); 4454 break; 4455 case IORING_REGISTER_SYNC_CANCEL: 4456 ret = -EINVAL; 4457 if (!arg || nr_args != 1) 4458 break; 4459 ret = io_sync_cancel(ctx, arg); 4460 break; 4461 case IORING_REGISTER_FILE_ALLOC_RANGE: 4462 ret = -EINVAL; 4463 if (!arg || nr_args) 4464 break; 4465 ret = io_register_file_alloc_range(ctx, arg); 4466 break; 4467 default: 4468 ret = -EINVAL; 4469 break; 4470 } 4471 4472 return ret; 4473 } 4474 4475 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4476 void __user *, arg, unsigned int, nr_args) 4477 { 4478 struct io_ring_ctx *ctx; 4479 long ret = -EBADF; 4480 struct fd f; 4481 bool use_registered_ring; 4482 4483 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING); 4484 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING; 4485 4486 if (opcode >= IORING_REGISTER_LAST) 4487 return -EINVAL; 4488 4489 if (use_registered_ring) { 4490 /* 4491 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 4492 * need only dereference our task private array to find it. 4493 */ 4494 struct io_uring_task *tctx = current->io_uring; 4495 4496 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 4497 return -EINVAL; 4498 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 4499 f.file = tctx->registered_rings[fd]; 4500 f.flags = 0; 4501 if (unlikely(!f.file)) 4502 return -EBADF; 4503 } else { 4504 f = fdget(fd); 4505 if (unlikely(!f.file)) 4506 return -EBADF; 4507 ret = -EOPNOTSUPP; 4508 if (!io_is_uring_fops(f.file)) 4509 goto out_fput; 4510 } 4511 4512 ctx = f.file->private_data; 4513 4514 mutex_lock(&ctx->uring_lock); 4515 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4516 mutex_unlock(&ctx->uring_lock); 4517 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4518 out_fput: 4519 fdput(f); 4520 return ret; 4521 } 4522 4523 static int __init io_uring_init(void) 4524 { 4525 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4526 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4527 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4528 } while (0) 4529 4530 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4531 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4532 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4533 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4534 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4535 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4536 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4537 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4538 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4539 BUILD_BUG_SQE_ELEM(8, __u64, off); 4540 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4541 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4542 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4543 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4544 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4545 BUILD_BUG_SQE_ELEM(24, __u32, len); 4546 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4547 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4548 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4549 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4550 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4551 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4552 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4553 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4554 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4555 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4556 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4557 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4558 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4559 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4560 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4561 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4562 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4563 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4564 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4565 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4566 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4567 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4568 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4569 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4570 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4571 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4572 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4573 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4574 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4575 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4576 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4577 4578 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4579 sizeof(struct io_uring_rsrc_update)); 4580 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4581 sizeof(struct io_uring_rsrc_update2)); 4582 4583 /* ->buf_index is u16 */ 4584 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4585 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4586 offsetof(struct io_uring_buf_ring, tail)); 4587 4588 /* should fit into one byte */ 4589 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4590 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4591 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4592 4593 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4594 4595 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4596 4597 io_uring_optable_init(); 4598 4599 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4600 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU); 4601 return 0; 4602 }; 4603 __initcall(io_uring_init); 4604