xref: /openbmc/linux/io_uring/io_uring.c (revision 2fdd6fb5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 #include <asm/shmparam.h>
76 
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/io_uring.h>
79 
80 #include <uapi/linux/io_uring.h>
81 
82 #include "io-wq.h"
83 
84 #include "io_uring.h"
85 #include "opdef.h"
86 #include "refs.h"
87 #include "tctx.h"
88 #include "sqpoll.h"
89 #include "fdinfo.h"
90 #include "kbuf.h"
91 #include "rsrc.h"
92 #include "cancel.h"
93 #include "net.h"
94 #include "notif.h"
95 
96 #include "timeout.h"
97 #include "poll.h"
98 #include "rw.h"
99 #include "alloc_cache.h"
100 
101 #define IORING_MAX_ENTRIES	32768
102 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
103 
104 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
105 				 IORING_REGISTER_LAST + IORING_OP_LAST)
106 
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109 
110 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112 
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 				REQ_F_ASYNC_DATA)
116 
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 				 IO_REQ_CLEAN_FLAGS)
119 
120 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
121 
122 #define IO_COMPL_BATCH			32
123 #define IO_REQ_ALLOC_BATCH		8
124 
125 enum {
126 	IO_CHECK_CQ_OVERFLOW_BIT,
127 	IO_CHECK_CQ_DROPPED_BIT,
128 };
129 
130 enum {
131 	IO_EVENTFD_OP_SIGNAL_BIT,
132 	IO_EVENTFD_OP_FREE_BIT,
133 };
134 
135 struct io_defer_entry {
136 	struct list_head	list;
137 	struct io_kiocb		*req;
138 	u32			seq;
139 };
140 
141 /* requests with any of those set should undergo io_disarm_next() */
142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
144 
145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
146 					 struct task_struct *task,
147 					 bool cancel_all);
148 
149 static void io_queue_sqe(struct io_kiocb *req);
150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx);
151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
152 static __cold void io_fallback_tw(struct io_uring_task *tctx);
153 
154 struct kmem_cache *req_cachep;
155 
156 struct sock *io_uring_get_socket(struct file *file)
157 {
158 #if defined(CONFIG_UNIX)
159 	if (io_is_uring_fops(file)) {
160 		struct io_ring_ctx *ctx = file->private_data;
161 
162 		return ctx->ring_sock->sk;
163 	}
164 #endif
165 	return NULL;
166 }
167 EXPORT_SYMBOL(io_uring_get_socket);
168 
169 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
170 {
171 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
172 	    ctx->submit_state.cqes_count)
173 		__io_submit_flush_completions(ctx);
174 }
175 
176 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
177 {
178 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
179 }
180 
181 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
182 {
183 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
184 }
185 
186 static bool io_match_linked(struct io_kiocb *head)
187 {
188 	struct io_kiocb *req;
189 
190 	io_for_each_link(req, head) {
191 		if (req->flags & REQ_F_INFLIGHT)
192 			return true;
193 	}
194 	return false;
195 }
196 
197 /*
198  * As io_match_task() but protected against racing with linked timeouts.
199  * User must not hold timeout_lock.
200  */
201 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
202 			bool cancel_all)
203 {
204 	bool matched;
205 
206 	if (task && head->task != task)
207 		return false;
208 	if (cancel_all)
209 		return true;
210 
211 	if (head->flags & REQ_F_LINK_TIMEOUT) {
212 		struct io_ring_ctx *ctx = head->ctx;
213 
214 		/* protect against races with linked timeouts */
215 		spin_lock_irq(&ctx->timeout_lock);
216 		matched = io_match_linked(head);
217 		spin_unlock_irq(&ctx->timeout_lock);
218 	} else {
219 		matched = io_match_linked(head);
220 	}
221 	return matched;
222 }
223 
224 static inline void req_fail_link_node(struct io_kiocb *req, int res)
225 {
226 	req_set_fail(req);
227 	io_req_set_res(req, res, 0);
228 }
229 
230 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
231 {
232 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
233 	kasan_poison_object_data(req_cachep, req);
234 }
235 
236 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
237 {
238 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
239 
240 	complete(&ctx->ref_comp);
241 }
242 
243 static __cold void io_fallback_req_func(struct work_struct *work)
244 {
245 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
246 						fallback_work.work);
247 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
248 	struct io_kiocb *req, *tmp;
249 	struct io_tw_state ts = { .locked = true, };
250 
251 	mutex_lock(&ctx->uring_lock);
252 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
253 		req->io_task_work.func(req, &ts);
254 	if (WARN_ON_ONCE(!ts.locked))
255 		return;
256 	io_submit_flush_completions(ctx);
257 	mutex_unlock(&ctx->uring_lock);
258 }
259 
260 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
261 {
262 	unsigned hash_buckets = 1U << bits;
263 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
264 
265 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
266 	if (!table->hbs)
267 		return -ENOMEM;
268 
269 	table->hash_bits = bits;
270 	init_hash_table(table, hash_buckets);
271 	return 0;
272 }
273 
274 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
275 {
276 	struct io_ring_ctx *ctx;
277 	int hash_bits;
278 
279 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
280 	if (!ctx)
281 		return NULL;
282 
283 	xa_init(&ctx->io_bl_xa);
284 
285 	/*
286 	 * Use 5 bits less than the max cq entries, that should give us around
287 	 * 32 entries per hash list if totally full and uniformly spread, but
288 	 * don't keep too many buckets to not overconsume memory.
289 	 */
290 	hash_bits = ilog2(p->cq_entries) - 5;
291 	hash_bits = clamp(hash_bits, 1, 8);
292 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
293 		goto err;
294 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
295 		goto err;
296 
297 	ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
298 	if (!ctx->dummy_ubuf)
299 		goto err;
300 	/* set invalid range, so io_import_fixed() fails meeting it */
301 	ctx->dummy_ubuf->ubuf = -1UL;
302 
303 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
304 			    0, GFP_KERNEL))
305 		goto err;
306 
307 	ctx->flags = p->flags;
308 	init_waitqueue_head(&ctx->sqo_sq_wait);
309 	INIT_LIST_HEAD(&ctx->sqd_list);
310 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
311 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
312 	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
313 			    sizeof(struct io_rsrc_node));
314 	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
315 			    sizeof(struct async_poll));
316 	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
317 			    sizeof(struct io_async_msghdr));
318 	init_completion(&ctx->ref_comp);
319 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
320 	mutex_init(&ctx->uring_lock);
321 	init_waitqueue_head(&ctx->cq_wait);
322 	init_waitqueue_head(&ctx->poll_wq);
323 	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
324 	spin_lock_init(&ctx->completion_lock);
325 	spin_lock_init(&ctx->timeout_lock);
326 	INIT_WQ_LIST(&ctx->iopoll_list);
327 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
328 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
329 	INIT_LIST_HEAD(&ctx->defer_list);
330 	INIT_LIST_HEAD(&ctx->timeout_list);
331 	INIT_LIST_HEAD(&ctx->ltimeout_list);
332 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
333 	init_llist_head(&ctx->work_llist);
334 	INIT_LIST_HEAD(&ctx->tctx_list);
335 	ctx->submit_state.free_list.next = NULL;
336 	INIT_WQ_LIST(&ctx->locked_free_list);
337 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
338 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
339 	return ctx;
340 err:
341 	kfree(ctx->dummy_ubuf);
342 	kfree(ctx->cancel_table.hbs);
343 	kfree(ctx->cancel_table_locked.hbs);
344 	kfree(ctx->io_bl);
345 	xa_destroy(&ctx->io_bl_xa);
346 	kfree(ctx);
347 	return NULL;
348 }
349 
350 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
351 {
352 	struct io_rings *r = ctx->rings;
353 
354 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
355 	ctx->cq_extra--;
356 }
357 
358 static bool req_need_defer(struct io_kiocb *req, u32 seq)
359 {
360 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
361 		struct io_ring_ctx *ctx = req->ctx;
362 
363 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
364 	}
365 
366 	return false;
367 }
368 
369 static void io_clean_op(struct io_kiocb *req)
370 {
371 	if (req->flags & REQ_F_BUFFER_SELECTED) {
372 		spin_lock(&req->ctx->completion_lock);
373 		io_put_kbuf_comp(req);
374 		spin_unlock(&req->ctx->completion_lock);
375 	}
376 
377 	if (req->flags & REQ_F_NEED_CLEANUP) {
378 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
379 
380 		if (def->cleanup)
381 			def->cleanup(req);
382 	}
383 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
384 		kfree(req->apoll->double_poll);
385 		kfree(req->apoll);
386 		req->apoll = NULL;
387 	}
388 	if (req->flags & REQ_F_INFLIGHT) {
389 		struct io_uring_task *tctx = req->task->io_uring;
390 
391 		atomic_dec(&tctx->inflight_tracked);
392 	}
393 	if (req->flags & REQ_F_CREDS)
394 		put_cred(req->creds);
395 	if (req->flags & REQ_F_ASYNC_DATA) {
396 		kfree(req->async_data);
397 		req->async_data = NULL;
398 	}
399 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
400 }
401 
402 static inline void io_req_track_inflight(struct io_kiocb *req)
403 {
404 	if (!(req->flags & REQ_F_INFLIGHT)) {
405 		req->flags |= REQ_F_INFLIGHT;
406 		atomic_inc(&req->task->io_uring->inflight_tracked);
407 	}
408 }
409 
410 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
411 {
412 	if (WARN_ON_ONCE(!req->link))
413 		return NULL;
414 
415 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
416 	req->flags |= REQ_F_LINK_TIMEOUT;
417 
418 	/* linked timeouts should have two refs once prep'ed */
419 	io_req_set_refcount(req);
420 	__io_req_set_refcount(req->link, 2);
421 	return req->link;
422 }
423 
424 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
425 {
426 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
427 		return NULL;
428 	return __io_prep_linked_timeout(req);
429 }
430 
431 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
432 {
433 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
434 }
435 
436 static inline void io_arm_ltimeout(struct io_kiocb *req)
437 {
438 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
439 		__io_arm_ltimeout(req);
440 }
441 
442 static void io_prep_async_work(struct io_kiocb *req)
443 {
444 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
445 	struct io_ring_ctx *ctx = req->ctx;
446 
447 	if (!(req->flags & REQ_F_CREDS)) {
448 		req->flags |= REQ_F_CREDS;
449 		req->creds = get_current_cred();
450 	}
451 
452 	req->work.list.next = NULL;
453 	req->work.flags = 0;
454 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
455 	if (req->flags & REQ_F_FORCE_ASYNC)
456 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
457 
458 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
459 		req->flags |= io_file_get_flags(req->file);
460 
461 	if (req->file && (req->flags & REQ_F_ISREG)) {
462 		bool should_hash = def->hash_reg_file;
463 
464 		/* don't serialize this request if the fs doesn't need it */
465 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
466 		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
467 			should_hash = false;
468 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
469 			io_wq_hash_work(&req->work, file_inode(req->file));
470 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
471 		if (def->unbound_nonreg_file)
472 			req->work.flags |= IO_WQ_WORK_UNBOUND;
473 	}
474 }
475 
476 static void io_prep_async_link(struct io_kiocb *req)
477 {
478 	struct io_kiocb *cur;
479 
480 	if (req->flags & REQ_F_LINK_TIMEOUT) {
481 		struct io_ring_ctx *ctx = req->ctx;
482 
483 		spin_lock_irq(&ctx->timeout_lock);
484 		io_for_each_link(cur, req)
485 			io_prep_async_work(cur);
486 		spin_unlock_irq(&ctx->timeout_lock);
487 	} else {
488 		io_for_each_link(cur, req)
489 			io_prep_async_work(cur);
490 	}
491 }
492 
493 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
494 {
495 	struct io_kiocb *link = io_prep_linked_timeout(req);
496 	struct io_uring_task *tctx = req->task->io_uring;
497 
498 	BUG_ON(!tctx);
499 	BUG_ON(!tctx->io_wq);
500 
501 	/* init ->work of the whole link before punting */
502 	io_prep_async_link(req);
503 
504 	/*
505 	 * Not expected to happen, but if we do have a bug where this _can_
506 	 * happen, catch it here and ensure the request is marked as
507 	 * canceled. That will make io-wq go through the usual work cancel
508 	 * procedure rather than attempt to run this request (or create a new
509 	 * worker for it).
510 	 */
511 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
512 		req->work.flags |= IO_WQ_WORK_CANCEL;
513 
514 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
515 	io_wq_enqueue(tctx->io_wq, &req->work);
516 	if (link)
517 		io_queue_linked_timeout(link);
518 }
519 
520 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
521 {
522 	while (!list_empty(&ctx->defer_list)) {
523 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
524 						struct io_defer_entry, list);
525 
526 		if (req_need_defer(de->req, de->seq))
527 			break;
528 		list_del_init(&de->list);
529 		io_req_task_queue(de->req);
530 		kfree(de);
531 	}
532 }
533 
534 
535 static void io_eventfd_ops(struct rcu_head *rcu)
536 {
537 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
538 	int ops = atomic_xchg(&ev_fd->ops, 0);
539 
540 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
541 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
542 
543 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
544 	 * ordering in a race but if references are 0 we know we have to free
545 	 * it regardless.
546 	 */
547 	if (atomic_dec_and_test(&ev_fd->refs)) {
548 		eventfd_ctx_put(ev_fd->cq_ev_fd);
549 		kfree(ev_fd);
550 	}
551 }
552 
553 static void io_eventfd_signal(struct io_ring_ctx *ctx)
554 {
555 	struct io_ev_fd *ev_fd = NULL;
556 
557 	rcu_read_lock();
558 	/*
559 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
560 	 * and eventfd_signal
561 	 */
562 	ev_fd = rcu_dereference(ctx->io_ev_fd);
563 
564 	/*
565 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
566 	 * completed between the NULL check of ctx->io_ev_fd at the start of
567 	 * the function and rcu_read_lock.
568 	 */
569 	if (unlikely(!ev_fd))
570 		goto out;
571 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
572 		goto out;
573 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
574 		goto out;
575 
576 	if (likely(eventfd_signal_allowed())) {
577 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
578 	} else {
579 		atomic_inc(&ev_fd->refs);
580 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
581 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
582 		else
583 			atomic_dec(&ev_fd->refs);
584 	}
585 
586 out:
587 	rcu_read_unlock();
588 }
589 
590 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
591 {
592 	bool skip;
593 
594 	spin_lock(&ctx->completion_lock);
595 
596 	/*
597 	 * Eventfd should only get triggered when at least one event has been
598 	 * posted. Some applications rely on the eventfd notification count
599 	 * only changing IFF a new CQE has been added to the CQ ring. There's
600 	 * no depedency on 1:1 relationship between how many times this
601 	 * function is called (and hence the eventfd count) and number of CQEs
602 	 * posted to the CQ ring.
603 	 */
604 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
605 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
606 	spin_unlock(&ctx->completion_lock);
607 	if (skip)
608 		return;
609 
610 	io_eventfd_signal(ctx);
611 }
612 
613 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
614 {
615 	if (ctx->poll_activated)
616 		io_poll_wq_wake(ctx);
617 	if (ctx->off_timeout_used)
618 		io_flush_timeouts(ctx);
619 	if (ctx->drain_active) {
620 		spin_lock(&ctx->completion_lock);
621 		io_queue_deferred(ctx);
622 		spin_unlock(&ctx->completion_lock);
623 	}
624 	if (ctx->has_evfd)
625 		io_eventfd_flush_signal(ctx);
626 }
627 
628 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
629 	__acquires(ctx->completion_lock)
630 {
631 	if (!ctx->task_complete)
632 		spin_lock(&ctx->completion_lock);
633 }
634 
635 static inline void __io_cq_unlock(struct io_ring_ctx *ctx)
636 {
637 	if (!ctx->task_complete)
638 		spin_unlock(&ctx->completion_lock);
639 }
640 
641 static inline void io_cq_lock(struct io_ring_ctx *ctx)
642 	__acquires(ctx->completion_lock)
643 {
644 	spin_lock(&ctx->completion_lock);
645 }
646 
647 static inline void io_cq_unlock(struct io_ring_ctx *ctx)
648 	__releases(ctx->completion_lock)
649 {
650 	spin_unlock(&ctx->completion_lock);
651 }
652 
653 /* keep it inlined for io_submit_flush_completions() */
654 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
655 	__releases(ctx->completion_lock)
656 {
657 	io_commit_cqring(ctx);
658 	__io_cq_unlock(ctx);
659 	io_commit_cqring_flush(ctx);
660 	io_cqring_wake(ctx);
661 }
662 
663 static void __io_cq_unlock_post_flush(struct io_ring_ctx *ctx)
664 	__releases(ctx->completion_lock)
665 {
666 	io_commit_cqring(ctx);
667 
668 	if (ctx->task_complete) {
669 		/*
670 		 * ->task_complete implies that only current might be waiting
671 		 * for CQEs, and obviously, we currently don't. No one is
672 		 * waiting, wakeups are futile, skip them.
673 		 */
674 		io_commit_cqring_flush(ctx);
675 	} else {
676 		__io_cq_unlock(ctx);
677 		io_commit_cqring_flush(ctx);
678 		io_cqring_wake(ctx);
679 	}
680 }
681 
682 void io_cq_unlock_post(struct io_ring_ctx *ctx)
683 	__releases(ctx->completion_lock)
684 {
685 	io_commit_cqring(ctx);
686 	spin_unlock(&ctx->completion_lock);
687 	io_commit_cqring_flush(ctx);
688 	io_cqring_wake(ctx);
689 }
690 
691 /* Returns true if there are no backlogged entries after the flush */
692 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
693 {
694 	struct io_overflow_cqe *ocqe;
695 	LIST_HEAD(list);
696 
697 	io_cq_lock(ctx);
698 	list_splice_init(&ctx->cq_overflow_list, &list);
699 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
700 	io_cq_unlock(ctx);
701 
702 	while (!list_empty(&list)) {
703 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
704 		list_del(&ocqe->list);
705 		kfree(ocqe);
706 	}
707 }
708 
709 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
710 {
711 	size_t cqe_size = sizeof(struct io_uring_cqe);
712 
713 	if (__io_cqring_events(ctx) == ctx->cq_entries)
714 		return;
715 
716 	if (ctx->flags & IORING_SETUP_CQE32)
717 		cqe_size <<= 1;
718 
719 	io_cq_lock(ctx);
720 	while (!list_empty(&ctx->cq_overflow_list)) {
721 		struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true);
722 		struct io_overflow_cqe *ocqe;
723 
724 		if (!cqe)
725 			break;
726 		ocqe = list_first_entry(&ctx->cq_overflow_list,
727 					struct io_overflow_cqe, list);
728 		memcpy(cqe, &ocqe->cqe, cqe_size);
729 		list_del(&ocqe->list);
730 		kfree(ocqe);
731 	}
732 
733 	if (list_empty(&ctx->cq_overflow_list)) {
734 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
735 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
736 	}
737 	io_cq_unlock_post(ctx);
738 }
739 
740 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
741 {
742 	/* iopoll syncs against uring_lock, not completion_lock */
743 	if (ctx->flags & IORING_SETUP_IOPOLL)
744 		mutex_lock(&ctx->uring_lock);
745 	__io_cqring_overflow_flush(ctx);
746 	if (ctx->flags & IORING_SETUP_IOPOLL)
747 		mutex_unlock(&ctx->uring_lock);
748 }
749 
750 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
751 {
752 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
753 		io_cqring_do_overflow_flush(ctx);
754 }
755 
756 /* can be called by any task */
757 static void io_put_task_remote(struct task_struct *task)
758 {
759 	struct io_uring_task *tctx = task->io_uring;
760 
761 	percpu_counter_sub(&tctx->inflight, 1);
762 	if (unlikely(atomic_read(&tctx->in_cancel)))
763 		wake_up(&tctx->wait);
764 	put_task_struct(task);
765 }
766 
767 /* used by a task to put its own references */
768 static void io_put_task_local(struct task_struct *task)
769 {
770 	task->io_uring->cached_refs++;
771 }
772 
773 /* must to be called somewhat shortly after putting a request */
774 static inline void io_put_task(struct task_struct *task)
775 {
776 	if (likely(task == current))
777 		io_put_task_local(task);
778 	else
779 		io_put_task_remote(task);
780 }
781 
782 void io_task_refs_refill(struct io_uring_task *tctx)
783 {
784 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
785 
786 	percpu_counter_add(&tctx->inflight, refill);
787 	refcount_add(refill, &current->usage);
788 	tctx->cached_refs += refill;
789 }
790 
791 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
792 {
793 	struct io_uring_task *tctx = task->io_uring;
794 	unsigned int refs = tctx->cached_refs;
795 
796 	if (refs) {
797 		tctx->cached_refs = 0;
798 		percpu_counter_sub(&tctx->inflight, refs);
799 		put_task_struct_many(task, refs);
800 	}
801 }
802 
803 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
804 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
805 {
806 	struct io_overflow_cqe *ocqe;
807 	size_t ocq_size = sizeof(struct io_overflow_cqe);
808 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
809 
810 	lockdep_assert_held(&ctx->completion_lock);
811 
812 	if (is_cqe32)
813 		ocq_size += sizeof(struct io_uring_cqe);
814 
815 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
816 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
817 	if (!ocqe) {
818 		/*
819 		 * If we're in ring overflow flush mode, or in task cancel mode,
820 		 * or cannot allocate an overflow entry, then we need to drop it
821 		 * on the floor.
822 		 */
823 		io_account_cq_overflow(ctx);
824 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
825 		return false;
826 	}
827 	if (list_empty(&ctx->cq_overflow_list)) {
828 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
829 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
830 
831 	}
832 	ocqe->cqe.user_data = user_data;
833 	ocqe->cqe.res = res;
834 	ocqe->cqe.flags = cflags;
835 	if (is_cqe32) {
836 		ocqe->cqe.big_cqe[0] = extra1;
837 		ocqe->cqe.big_cqe[1] = extra2;
838 	}
839 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
840 	return true;
841 }
842 
843 bool io_req_cqe_overflow(struct io_kiocb *req)
844 {
845 	if (!(req->flags & REQ_F_CQE32_INIT)) {
846 		req->extra1 = 0;
847 		req->extra2 = 0;
848 	}
849 	return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
850 					req->cqe.res, req->cqe.flags,
851 					req->extra1, req->extra2);
852 }
853 
854 /*
855  * writes to the cq entry need to come after reading head; the
856  * control dependency is enough as we're using WRITE_ONCE to
857  * fill the cq entry
858  */
859 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow)
860 {
861 	struct io_rings *rings = ctx->rings;
862 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
863 	unsigned int free, queued, len;
864 
865 	/*
866 	 * Posting into the CQ when there are pending overflowed CQEs may break
867 	 * ordering guarantees, which will affect links, F_MORE users and more.
868 	 * Force overflow the completion.
869 	 */
870 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
871 		return NULL;
872 
873 	/* userspace may cheat modifying the tail, be safe and do min */
874 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
875 	free = ctx->cq_entries - queued;
876 	/* we need a contiguous range, limit based on the current array offset */
877 	len = min(free, ctx->cq_entries - off);
878 	if (!len)
879 		return NULL;
880 
881 	if (ctx->flags & IORING_SETUP_CQE32) {
882 		off <<= 1;
883 		len <<= 1;
884 	}
885 
886 	ctx->cqe_cached = &rings->cqes[off];
887 	ctx->cqe_sentinel = ctx->cqe_cached + len;
888 
889 	ctx->cached_cq_tail++;
890 	ctx->cqe_cached++;
891 	if (ctx->flags & IORING_SETUP_CQE32)
892 		ctx->cqe_cached++;
893 	return &rings->cqes[off];
894 }
895 
896 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
897 			      u32 cflags)
898 {
899 	struct io_uring_cqe *cqe;
900 
901 	ctx->cq_extra++;
902 
903 	/*
904 	 * If we can't get a cq entry, userspace overflowed the
905 	 * submission (by quite a lot). Increment the overflow count in
906 	 * the ring.
907 	 */
908 	cqe = io_get_cqe(ctx);
909 	if (likely(cqe)) {
910 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
911 
912 		WRITE_ONCE(cqe->user_data, user_data);
913 		WRITE_ONCE(cqe->res, res);
914 		WRITE_ONCE(cqe->flags, cflags);
915 
916 		if (ctx->flags & IORING_SETUP_CQE32) {
917 			WRITE_ONCE(cqe->big_cqe[0], 0);
918 			WRITE_ONCE(cqe->big_cqe[1], 0);
919 		}
920 		return true;
921 	}
922 	return false;
923 }
924 
925 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
926 	__must_hold(&ctx->uring_lock)
927 {
928 	struct io_submit_state *state = &ctx->submit_state;
929 	unsigned int i;
930 
931 	lockdep_assert_held(&ctx->uring_lock);
932 	for (i = 0; i < state->cqes_count; i++) {
933 		struct io_uring_cqe *cqe = &state->cqes[i];
934 
935 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
936 			if (ctx->task_complete) {
937 				spin_lock(&ctx->completion_lock);
938 				io_cqring_event_overflow(ctx, cqe->user_data,
939 							cqe->res, cqe->flags, 0, 0);
940 				spin_unlock(&ctx->completion_lock);
941 			} else {
942 				io_cqring_event_overflow(ctx, cqe->user_data,
943 							cqe->res, cqe->flags, 0, 0);
944 			}
945 		}
946 	}
947 	state->cqes_count = 0;
948 }
949 
950 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
951 			      bool allow_overflow)
952 {
953 	bool filled;
954 
955 	io_cq_lock(ctx);
956 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
957 	if (!filled && allow_overflow)
958 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
959 
960 	io_cq_unlock_post(ctx);
961 	return filled;
962 }
963 
964 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
965 {
966 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
967 }
968 
969 bool io_aux_cqe(const struct io_kiocb *req, bool defer, s32 res, u32 cflags,
970 		bool allow_overflow)
971 {
972 	struct io_ring_ctx *ctx = req->ctx;
973 	u64 user_data = req->cqe.user_data;
974 	struct io_uring_cqe *cqe;
975 
976 	if (!defer)
977 		return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow);
978 
979 	lockdep_assert_held(&ctx->uring_lock);
980 
981 	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->submit_state.cqes)) {
982 		__io_cq_lock(ctx);
983 		__io_flush_post_cqes(ctx);
984 		/* no need to flush - flush is deferred */
985 		__io_cq_unlock_post(ctx);
986 	}
987 
988 	/* For defered completions this is not as strict as it is otherwise,
989 	 * however it's main job is to prevent unbounded posted completions,
990 	 * and in that it works just as well.
991 	 */
992 	if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
993 		return false;
994 
995 	cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++];
996 	cqe->user_data = user_data;
997 	cqe->res = res;
998 	cqe->flags = cflags;
999 	return true;
1000 }
1001 
1002 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1003 {
1004 	struct io_ring_ctx *ctx = req->ctx;
1005 	struct io_rsrc_node *rsrc_node = NULL;
1006 
1007 	io_cq_lock(ctx);
1008 	if (!(req->flags & REQ_F_CQE_SKIP))
1009 		io_fill_cqe_req(ctx, req);
1010 
1011 	/*
1012 	 * If we're the last reference to this request, add to our locked
1013 	 * free_list cache.
1014 	 */
1015 	if (req_ref_put_and_test(req)) {
1016 		if (req->flags & IO_REQ_LINK_FLAGS) {
1017 			if (req->flags & IO_DISARM_MASK)
1018 				io_disarm_next(req);
1019 			if (req->link) {
1020 				io_req_task_queue(req->link);
1021 				req->link = NULL;
1022 			}
1023 		}
1024 		io_put_kbuf_comp(req);
1025 		if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1026 			io_clean_op(req);
1027 		if (!(req->flags & REQ_F_FIXED_FILE))
1028 			io_put_file(req->file);
1029 
1030 		rsrc_node = req->rsrc_node;
1031 		/*
1032 		 * Selected buffer deallocation in io_clean_op() assumes that
1033 		 * we don't hold ->completion_lock. Clean them here to avoid
1034 		 * deadlocks.
1035 		 */
1036 		io_put_task_remote(req->task);
1037 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1038 		ctx->locked_free_nr++;
1039 	}
1040 	io_cq_unlock_post(ctx);
1041 
1042 	if (rsrc_node) {
1043 		io_ring_submit_lock(ctx, issue_flags);
1044 		io_put_rsrc_node(ctx, rsrc_node);
1045 		io_ring_submit_unlock(ctx, issue_flags);
1046 	}
1047 }
1048 
1049 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1050 {
1051 	if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1052 		req->io_task_work.func = io_req_task_complete;
1053 		io_req_task_work_add(req);
1054 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1055 		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1056 		__io_req_complete_post(req, issue_flags);
1057 	} else {
1058 		struct io_ring_ctx *ctx = req->ctx;
1059 
1060 		mutex_lock(&ctx->uring_lock);
1061 		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1062 		mutex_unlock(&ctx->uring_lock);
1063 	}
1064 }
1065 
1066 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1067 	__must_hold(&ctx->uring_lock)
1068 {
1069 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1070 
1071 	lockdep_assert_held(&req->ctx->uring_lock);
1072 
1073 	req_set_fail(req);
1074 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1075 	if (def->fail)
1076 		def->fail(req);
1077 	io_req_complete_defer(req);
1078 }
1079 
1080 /*
1081  * Don't initialise the fields below on every allocation, but do that in
1082  * advance and keep them valid across allocations.
1083  */
1084 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1085 {
1086 	req->ctx = ctx;
1087 	req->link = NULL;
1088 	req->async_data = NULL;
1089 	/* not necessary, but safer to zero */
1090 	req->cqe.res = 0;
1091 }
1092 
1093 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1094 					struct io_submit_state *state)
1095 {
1096 	spin_lock(&ctx->completion_lock);
1097 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1098 	ctx->locked_free_nr = 0;
1099 	spin_unlock(&ctx->completion_lock);
1100 }
1101 
1102 /*
1103  * A request might get retired back into the request caches even before opcode
1104  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1105  * Because of that, io_alloc_req() should be called only under ->uring_lock
1106  * and with extra caution to not get a request that is still worked on.
1107  */
1108 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1109 	__must_hold(&ctx->uring_lock)
1110 {
1111 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1112 	void *reqs[IO_REQ_ALLOC_BATCH];
1113 	int ret, i;
1114 
1115 	/*
1116 	 * If we have more than a batch's worth of requests in our IRQ side
1117 	 * locked cache, grab the lock and move them over to our submission
1118 	 * side cache.
1119 	 */
1120 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1121 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1122 		if (!io_req_cache_empty(ctx))
1123 			return true;
1124 	}
1125 
1126 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1127 
1128 	/*
1129 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1130 	 * retry single alloc to be on the safe side.
1131 	 */
1132 	if (unlikely(ret <= 0)) {
1133 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1134 		if (!reqs[0])
1135 			return false;
1136 		ret = 1;
1137 	}
1138 
1139 	percpu_ref_get_many(&ctx->refs, ret);
1140 	for (i = 0; i < ret; i++) {
1141 		struct io_kiocb *req = reqs[i];
1142 
1143 		io_preinit_req(req, ctx);
1144 		io_req_add_to_cache(req, ctx);
1145 	}
1146 	return true;
1147 }
1148 
1149 __cold void io_free_req(struct io_kiocb *req)
1150 {
1151 	/* refs were already put, restore them for io_req_task_complete() */
1152 	req->flags &= ~REQ_F_REFCOUNT;
1153 	/* we only want to free it, don't post CQEs */
1154 	req->flags |= REQ_F_CQE_SKIP;
1155 	req->io_task_work.func = io_req_task_complete;
1156 	io_req_task_work_add(req);
1157 }
1158 
1159 static void __io_req_find_next_prep(struct io_kiocb *req)
1160 {
1161 	struct io_ring_ctx *ctx = req->ctx;
1162 
1163 	spin_lock(&ctx->completion_lock);
1164 	io_disarm_next(req);
1165 	spin_unlock(&ctx->completion_lock);
1166 }
1167 
1168 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1169 {
1170 	struct io_kiocb *nxt;
1171 
1172 	/*
1173 	 * If LINK is set, we have dependent requests in this chain. If we
1174 	 * didn't fail this request, queue the first one up, moving any other
1175 	 * dependencies to the next request. In case of failure, fail the rest
1176 	 * of the chain.
1177 	 */
1178 	if (unlikely(req->flags & IO_DISARM_MASK))
1179 		__io_req_find_next_prep(req);
1180 	nxt = req->link;
1181 	req->link = NULL;
1182 	return nxt;
1183 }
1184 
1185 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1186 {
1187 	if (!ctx)
1188 		return;
1189 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1190 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1191 	if (ts->locked) {
1192 		io_submit_flush_completions(ctx);
1193 		mutex_unlock(&ctx->uring_lock);
1194 		ts->locked = false;
1195 	}
1196 	percpu_ref_put(&ctx->refs);
1197 }
1198 
1199 static unsigned int handle_tw_list(struct llist_node *node,
1200 				   struct io_ring_ctx **ctx,
1201 				   struct io_tw_state *ts,
1202 				   struct llist_node *last)
1203 {
1204 	unsigned int count = 0;
1205 
1206 	while (node && node != last) {
1207 		struct llist_node *next = node->next;
1208 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1209 						    io_task_work.node);
1210 
1211 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1212 
1213 		if (req->ctx != *ctx) {
1214 			ctx_flush_and_put(*ctx, ts);
1215 			*ctx = req->ctx;
1216 			/* if not contended, grab and improve batching */
1217 			ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1218 			percpu_ref_get(&(*ctx)->refs);
1219 		}
1220 		INDIRECT_CALL_2(req->io_task_work.func,
1221 				io_poll_task_func, io_req_rw_complete,
1222 				req, ts);
1223 		node = next;
1224 		count++;
1225 		if (unlikely(need_resched())) {
1226 			ctx_flush_and_put(*ctx, ts);
1227 			*ctx = NULL;
1228 			cond_resched();
1229 		}
1230 	}
1231 
1232 	return count;
1233 }
1234 
1235 /**
1236  * io_llist_xchg - swap all entries in a lock-less list
1237  * @head:	the head of lock-less list to delete all entries
1238  * @new:	new entry as the head of the list
1239  *
1240  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1241  * The order of entries returned is from the newest to the oldest added one.
1242  */
1243 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1244 					       struct llist_node *new)
1245 {
1246 	return xchg(&head->first, new);
1247 }
1248 
1249 /**
1250  * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1251  * @head:	the head of lock-less list to delete all entries
1252  * @old:	expected old value of the first entry of the list
1253  * @new:	new entry as the head of the list
1254  *
1255  * perform a cmpxchg on the first entry of the list.
1256  */
1257 
1258 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1259 						  struct llist_node *old,
1260 						  struct llist_node *new)
1261 {
1262 	return cmpxchg(&head->first, old, new);
1263 }
1264 
1265 void tctx_task_work(struct callback_head *cb)
1266 {
1267 	struct io_tw_state ts = {};
1268 	struct io_ring_ctx *ctx = NULL;
1269 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1270 						  task_work);
1271 	struct llist_node fake = {};
1272 	struct llist_node *node;
1273 	unsigned int loops = 0;
1274 	unsigned int count = 0;
1275 
1276 	if (unlikely(current->flags & PF_EXITING)) {
1277 		io_fallback_tw(tctx);
1278 		return;
1279 	}
1280 
1281 	do {
1282 		loops++;
1283 		node = io_llist_xchg(&tctx->task_list, &fake);
1284 		count += handle_tw_list(node, &ctx, &ts, &fake);
1285 
1286 		/* skip expensive cmpxchg if there are items in the list */
1287 		if (READ_ONCE(tctx->task_list.first) != &fake)
1288 			continue;
1289 		if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1290 			io_submit_flush_completions(ctx);
1291 			if (READ_ONCE(tctx->task_list.first) != &fake)
1292 				continue;
1293 		}
1294 		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1295 	} while (node != &fake);
1296 
1297 	ctx_flush_and_put(ctx, &ts);
1298 
1299 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1300 	if (unlikely(atomic_read(&tctx->in_cancel)))
1301 		io_uring_drop_tctx_refs(current);
1302 
1303 	trace_io_uring_task_work_run(tctx, count, loops);
1304 }
1305 
1306 static __cold void io_fallback_tw(struct io_uring_task *tctx)
1307 {
1308 	struct llist_node *node = llist_del_all(&tctx->task_list);
1309 	struct io_kiocb *req;
1310 
1311 	while (node) {
1312 		req = container_of(node, struct io_kiocb, io_task_work.node);
1313 		node = node->next;
1314 		if (llist_add(&req->io_task_work.node,
1315 			      &req->ctx->fallback_llist))
1316 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1317 	}
1318 }
1319 
1320 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1321 {
1322 	struct io_ring_ctx *ctx = req->ctx;
1323 	unsigned nr_wait, nr_tw, nr_tw_prev;
1324 	struct llist_node *first;
1325 
1326 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1327 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1328 
1329 	first = READ_ONCE(ctx->work_llist.first);
1330 	do {
1331 		nr_tw_prev = 0;
1332 		if (first) {
1333 			struct io_kiocb *first_req = container_of(first,
1334 							struct io_kiocb,
1335 							io_task_work.node);
1336 			/*
1337 			 * Might be executed at any moment, rely on
1338 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1339 			 */
1340 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1341 		}
1342 		nr_tw = nr_tw_prev + 1;
1343 		/* Large enough to fail the nr_wait comparison below */
1344 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1345 			nr_tw = -1U;
1346 
1347 		req->nr_tw = nr_tw;
1348 		req->io_task_work.node.next = first;
1349 	} while (!try_cmpxchg(&ctx->work_llist.first, &first,
1350 			      &req->io_task_work.node));
1351 
1352 	if (!first) {
1353 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1354 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1355 		if (ctx->has_evfd)
1356 			io_eventfd_signal(ctx);
1357 	}
1358 
1359 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1360 	/* no one is waiting */
1361 	if (!nr_wait)
1362 		return;
1363 	/* either not enough or the previous add has already woken it up */
1364 	if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1365 		return;
1366 	/* pairs with set_current_state() in io_cqring_wait() */
1367 	smp_mb__after_atomic();
1368 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1369 }
1370 
1371 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1372 {
1373 	struct io_uring_task *tctx = req->task->io_uring;
1374 	struct io_ring_ctx *ctx = req->ctx;
1375 
1376 	if (!(flags & IOU_F_TWQ_FORCE_NORMAL) &&
1377 	    (ctx->flags & IORING_SETUP_DEFER_TASKRUN)) {
1378 		rcu_read_lock();
1379 		io_req_local_work_add(req, flags);
1380 		rcu_read_unlock();
1381 		return;
1382 	}
1383 
1384 	/* task_work already pending, we're done */
1385 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1386 		return;
1387 
1388 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1389 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1390 
1391 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1392 		return;
1393 
1394 	io_fallback_tw(tctx);
1395 }
1396 
1397 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1398 {
1399 	struct llist_node *node;
1400 
1401 	node = llist_del_all(&ctx->work_llist);
1402 	while (node) {
1403 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1404 						    io_task_work.node);
1405 
1406 		node = node->next;
1407 		__io_req_task_work_add(req, IOU_F_TWQ_FORCE_NORMAL);
1408 	}
1409 }
1410 
1411 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1412 {
1413 	struct llist_node *node;
1414 	unsigned int loops = 0;
1415 	int ret = 0;
1416 
1417 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1418 		return -EEXIST;
1419 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1420 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1421 again:
1422 	/*
1423 	 * llists are in reverse order, flip it back the right way before
1424 	 * running the pending items.
1425 	 */
1426 	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1427 	while (node) {
1428 		struct llist_node *next = node->next;
1429 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1430 						    io_task_work.node);
1431 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1432 		INDIRECT_CALL_2(req->io_task_work.func,
1433 				io_poll_task_func, io_req_rw_complete,
1434 				req, ts);
1435 		ret++;
1436 		node = next;
1437 	}
1438 	loops++;
1439 
1440 	if (!llist_empty(&ctx->work_llist))
1441 		goto again;
1442 	if (ts->locked) {
1443 		io_submit_flush_completions(ctx);
1444 		if (!llist_empty(&ctx->work_llist))
1445 			goto again;
1446 	}
1447 	trace_io_uring_local_work_run(ctx, ret, loops);
1448 	return ret;
1449 }
1450 
1451 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1452 {
1453 	struct io_tw_state ts = { .locked = true, };
1454 	int ret;
1455 
1456 	if (llist_empty(&ctx->work_llist))
1457 		return 0;
1458 
1459 	ret = __io_run_local_work(ctx, &ts);
1460 	/* shouldn't happen! */
1461 	if (WARN_ON_ONCE(!ts.locked))
1462 		mutex_lock(&ctx->uring_lock);
1463 	return ret;
1464 }
1465 
1466 static int io_run_local_work(struct io_ring_ctx *ctx)
1467 {
1468 	struct io_tw_state ts = {};
1469 	int ret;
1470 
1471 	ts.locked = mutex_trylock(&ctx->uring_lock);
1472 	ret = __io_run_local_work(ctx, &ts);
1473 	if (ts.locked)
1474 		mutex_unlock(&ctx->uring_lock);
1475 
1476 	return ret;
1477 }
1478 
1479 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1480 {
1481 	io_tw_lock(req->ctx, ts);
1482 	io_req_defer_failed(req, req->cqe.res);
1483 }
1484 
1485 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1486 {
1487 	io_tw_lock(req->ctx, ts);
1488 	/* req->task == current here, checking PF_EXITING is safe */
1489 	if (unlikely(req->task->flags & PF_EXITING))
1490 		io_req_defer_failed(req, -EFAULT);
1491 	else if (req->flags & REQ_F_FORCE_ASYNC)
1492 		io_queue_iowq(req, ts);
1493 	else
1494 		io_queue_sqe(req);
1495 }
1496 
1497 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1498 {
1499 	io_req_set_res(req, ret, 0);
1500 	req->io_task_work.func = io_req_task_cancel;
1501 	io_req_task_work_add(req);
1502 }
1503 
1504 void io_req_task_queue(struct io_kiocb *req)
1505 {
1506 	req->io_task_work.func = io_req_task_submit;
1507 	io_req_task_work_add(req);
1508 }
1509 
1510 void io_queue_next(struct io_kiocb *req)
1511 {
1512 	struct io_kiocb *nxt = io_req_find_next(req);
1513 
1514 	if (nxt)
1515 		io_req_task_queue(nxt);
1516 }
1517 
1518 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1519 	__must_hold(&ctx->uring_lock)
1520 {
1521 	do {
1522 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1523 						    comp_list);
1524 
1525 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1526 			if (req->flags & REQ_F_REFCOUNT) {
1527 				node = req->comp_list.next;
1528 				if (!req_ref_put_and_test(req))
1529 					continue;
1530 			}
1531 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1532 				struct async_poll *apoll = req->apoll;
1533 
1534 				if (apoll->double_poll)
1535 					kfree(apoll->double_poll);
1536 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1537 					kfree(apoll);
1538 				req->flags &= ~REQ_F_POLLED;
1539 			}
1540 			if (req->flags & IO_REQ_LINK_FLAGS)
1541 				io_queue_next(req);
1542 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1543 				io_clean_op(req);
1544 		}
1545 		if (!(req->flags & REQ_F_FIXED_FILE))
1546 			io_put_file(req->file);
1547 
1548 		io_req_put_rsrc_locked(req, ctx);
1549 
1550 		io_put_task(req->task);
1551 		node = req->comp_list.next;
1552 		io_req_add_to_cache(req, ctx);
1553 	} while (node);
1554 }
1555 
1556 static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1557 	__must_hold(&ctx->uring_lock)
1558 {
1559 	struct io_submit_state *state = &ctx->submit_state;
1560 	struct io_wq_work_node *node;
1561 
1562 	__io_cq_lock(ctx);
1563 	/* must come first to preserve CQE ordering in failure cases */
1564 	if (state->cqes_count)
1565 		__io_flush_post_cqes(ctx);
1566 	__wq_list_for_each(node, &state->compl_reqs) {
1567 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1568 					    comp_list);
1569 
1570 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1571 		    unlikely(!__io_fill_cqe_req(ctx, req))) {
1572 			if (ctx->task_complete) {
1573 				spin_lock(&ctx->completion_lock);
1574 				io_req_cqe_overflow(req);
1575 				spin_unlock(&ctx->completion_lock);
1576 			} else {
1577 				io_req_cqe_overflow(req);
1578 			}
1579 		}
1580 	}
1581 	__io_cq_unlock_post_flush(ctx);
1582 
1583 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1584 		io_free_batch_list(ctx, state->compl_reqs.first);
1585 		INIT_WQ_LIST(&state->compl_reqs);
1586 	}
1587 }
1588 
1589 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1590 {
1591 	/* See comment at the top of this file */
1592 	smp_rmb();
1593 	return __io_cqring_events(ctx);
1594 }
1595 
1596 /*
1597  * We can't just wait for polled events to come to us, we have to actively
1598  * find and complete them.
1599  */
1600 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1601 {
1602 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1603 		return;
1604 
1605 	mutex_lock(&ctx->uring_lock);
1606 	while (!wq_list_empty(&ctx->iopoll_list)) {
1607 		/* let it sleep and repeat later if can't complete a request */
1608 		if (io_do_iopoll(ctx, true) == 0)
1609 			break;
1610 		/*
1611 		 * Ensure we allow local-to-the-cpu processing to take place,
1612 		 * in this case we need to ensure that we reap all events.
1613 		 * Also let task_work, etc. to progress by releasing the mutex
1614 		 */
1615 		if (need_resched()) {
1616 			mutex_unlock(&ctx->uring_lock);
1617 			cond_resched();
1618 			mutex_lock(&ctx->uring_lock);
1619 		}
1620 	}
1621 	mutex_unlock(&ctx->uring_lock);
1622 }
1623 
1624 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1625 {
1626 	unsigned int nr_events = 0;
1627 	int ret = 0;
1628 	unsigned long check_cq;
1629 
1630 	if (!io_allowed_run_tw(ctx))
1631 		return -EEXIST;
1632 
1633 	check_cq = READ_ONCE(ctx->check_cq);
1634 	if (unlikely(check_cq)) {
1635 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1636 			__io_cqring_overflow_flush(ctx);
1637 		/*
1638 		 * Similarly do not spin if we have not informed the user of any
1639 		 * dropped CQE.
1640 		 */
1641 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1642 			return -EBADR;
1643 	}
1644 	/*
1645 	 * Don't enter poll loop if we already have events pending.
1646 	 * If we do, we can potentially be spinning for commands that
1647 	 * already triggered a CQE (eg in error).
1648 	 */
1649 	if (io_cqring_events(ctx))
1650 		return 0;
1651 
1652 	do {
1653 		/*
1654 		 * If a submit got punted to a workqueue, we can have the
1655 		 * application entering polling for a command before it gets
1656 		 * issued. That app will hold the uring_lock for the duration
1657 		 * of the poll right here, so we need to take a breather every
1658 		 * now and then to ensure that the issue has a chance to add
1659 		 * the poll to the issued list. Otherwise we can spin here
1660 		 * forever, while the workqueue is stuck trying to acquire the
1661 		 * very same mutex.
1662 		 */
1663 		if (wq_list_empty(&ctx->iopoll_list) ||
1664 		    io_task_work_pending(ctx)) {
1665 			u32 tail = ctx->cached_cq_tail;
1666 
1667 			(void) io_run_local_work_locked(ctx);
1668 
1669 			if (task_work_pending(current) ||
1670 			    wq_list_empty(&ctx->iopoll_list)) {
1671 				mutex_unlock(&ctx->uring_lock);
1672 				io_run_task_work();
1673 				mutex_lock(&ctx->uring_lock);
1674 			}
1675 			/* some requests don't go through iopoll_list */
1676 			if (tail != ctx->cached_cq_tail ||
1677 			    wq_list_empty(&ctx->iopoll_list))
1678 				break;
1679 		}
1680 		ret = io_do_iopoll(ctx, !min);
1681 		if (ret < 0)
1682 			break;
1683 		nr_events += ret;
1684 		ret = 0;
1685 	} while (nr_events < min && !need_resched());
1686 
1687 	return ret;
1688 }
1689 
1690 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1691 {
1692 	if (ts->locked)
1693 		io_req_complete_defer(req);
1694 	else
1695 		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1696 }
1697 
1698 /*
1699  * After the iocb has been issued, it's safe to be found on the poll list.
1700  * Adding the kiocb to the list AFTER submission ensures that we don't
1701  * find it from a io_do_iopoll() thread before the issuer is done
1702  * accessing the kiocb cookie.
1703  */
1704 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1705 {
1706 	struct io_ring_ctx *ctx = req->ctx;
1707 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1708 
1709 	/* workqueue context doesn't hold uring_lock, grab it now */
1710 	if (unlikely(needs_lock))
1711 		mutex_lock(&ctx->uring_lock);
1712 
1713 	/*
1714 	 * Track whether we have multiple files in our lists. This will impact
1715 	 * how we do polling eventually, not spinning if we're on potentially
1716 	 * different devices.
1717 	 */
1718 	if (wq_list_empty(&ctx->iopoll_list)) {
1719 		ctx->poll_multi_queue = false;
1720 	} else if (!ctx->poll_multi_queue) {
1721 		struct io_kiocb *list_req;
1722 
1723 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1724 					comp_list);
1725 		if (list_req->file != req->file)
1726 			ctx->poll_multi_queue = true;
1727 	}
1728 
1729 	/*
1730 	 * For fast devices, IO may have already completed. If it has, add
1731 	 * it to the front so we find it first.
1732 	 */
1733 	if (READ_ONCE(req->iopoll_completed))
1734 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1735 	else
1736 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1737 
1738 	if (unlikely(needs_lock)) {
1739 		/*
1740 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1741 		 * in sq thread task context or in io worker task context. If
1742 		 * current task context is sq thread, we don't need to check
1743 		 * whether should wake up sq thread.
1744 		 */
1745 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1746 		    wq_has_sleeper(&ctx->sq_data->wait))
1747 			wake_up(&ctx->sq_data->wait);
1748 
1749 		mutex_unlock(&ctx->uring_lock);
1750 	}
1751 }
1752 
1753 unsigned int io_file_get_flags(struct file *file)
1754 {
1755 	unsigned int res = 0;
1756 
1757 	if (S_ISREG(file_inode(file)->i_mode))
1758 		res |= REQ_F_ISREG;
1759 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1760 		res |= REQ_F_SUPPORT_NOWAIT;
1761 	return res;
1762 }
1763 
1764 bool io_alloc_async_data(struct io_kiocb *req)
1765 {
1766 	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1767 	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1768 	if (req->async_data) {
1769 		req->flags |= REQ_F_ASYNC_DATA;
1770 		return false;
1771 	}
1772 	return true;
1773 }
1774 
1775 int io_req_prep_async(struct io_kiocb *req)
1776 {
1777 	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1778 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1779 
1780 	/* assign early for deferred execution for non-fixed file */
1781 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1782 		req->file = io_file_get_normal(req, req->cqe.fd);
1783 	if (!cdef->prep_async)
1784 		return 0;
1785 	if (WARN_ON_ONCE(req_has_async_data(req)))
1786 		return -EFAULT;
1787 	if (!def->manual_alloc) {
1788 		if (io_alloc_async_data(req))
1789 			return -EAGAIN;
1790 	}
1791 	return cdef->prep_async(req);
1792 }
1793 
1794 static u32 io_get_sequence(struct io_kiocb *req)
1795 {
1796 	u32 seq = req->ctx->cached_sq_head;
1797 	struct io_kiocb *cur;
1798 
1799 	/* need original cached_sq_head, but it was increased for each req */
1800 	io_for_each_link(cur, req)
1801 		seq--;
1802 	return seq;
1803 }
1804 
1805 static __cold void io_drain_req(struct io_kiocb *req)
1806 	__must_hold(&ctx->uring_lock)
1807 {
1808 	struct io_ring_ctx *ctx = req->ctx;
1809 	struct io_defer_entry *de;
1810 	int ret;
1811 	u32 seq = io_get_sequence(req);
1812 
1813 	/* Still need defer if there is pending req in defer list. */
1814 	spin_lock(&ctx->completion_lock);
1815 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1816 		spin_unlock(&ctx->completion_lock);
1817 queue:
1818 		ctx->drain_active = false;
1819 		io_req_task_queue(req);
1820 		return;
1821 	}
1822 	spin_unlock(&ctx->completion_lock);
1823 
1824 	io_prep_async_link(req);
1825 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1826 	if (!de) {
1827 		ret = -ENOMEM;
1828 		io_req_defer_failed(req, ret);
1829 		return;
1830 	}
1831 
1832 	spin_lock(&ctx->completion_lock);
1833 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1834 		spin_unlock(&ctx->completion_lock);
1835 		kfree(de);
1836 		goto queue;
1837 	}
1838 
1839 	trace_io_uring_defer(req);
1840 	de->req = req;
1841 	de->seq = seq;
1842 	list_add_tail(&de->list, &ctx->defer_list);
1843 	spin_unlock(&ctx->completion_lock);
1844 }
1845 
1846 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1847 			   unsigned int issue_flags)
1848 {
1849 	if (req->file || !def->needs_file)
1850 		return true;
1851 
1852 	if (req->flags & REQ_F_FIXED_FILE)
1853 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1854 	else
1855 		req->file = io_file_get_normal(req, req->cqe.fd);
1856 
1857 	return !!req->file;
1858 }
1859 
1860 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1861 {
1862 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1863 	const struct cred *creds = NULL;
1864 	int ret;
1865 
1866 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1867 		return -EBADF;
1868 
1869 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1870 		creds = override_creds(req->creds);
1871 
1872 	if (!def->audit_skip)
1873 		audit_uring_entry(req->opcode);
1874 
1875 	ret = def->issue(req, issue_flags);
1876 
1877 	if (!def->audit_skip)
1878 		audit_uring_exit(!ret, ret);
1879 
1880 	if (creds)
1881 		revert_creds(creds);
1882 
1883 	if (ret == IOU_OK) {
1884 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1885 			io_req_complete_defer(req);
1886 		else
1887 			io_req_complete_post(req, issue_flags);
1888 	} else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1889 		return ret;
1890 
1891 	/* If the op doesn't have a file, we're not polling for it */
1892 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1893 		io_iopoll_req_issued(req, issue_flags);
1894 
1895 	return 0;
1896 }
1897 
1898 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1899 {
1900 	io_tw_lock(req->ctx, ts);
1901 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1902 				 IO_URING_F_COMPLETE_DEFER);
1903 }
1904 
1905 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1906 {
1907 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1908 	struct io_kiocb *nxt = NULL;
1909 
1910 	if (req_ref_put_and_test(req)) {
1911 		if (req->flags & IO_REQ_LINK_FLAGS)
1912 			nxt = io_req_find_next(req);
1913 		io_free_req(req);
1914 	}
1915 	return nxt ? &nxt->work : NULL;
1916 }
1917 
1918 void io_wq_submit_work(struct io_wq_work *work)
1919 {
1920 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1921 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1922 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1923 	bool needs_poll = false;
1924 	int ret = 0, err = -ECANCELED;
1925 
1926 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1927 	if (!(req->flags & REQ_F_REFCOUNT))
1928 		__io_req_set_refcount(req, 2);
1929 	else
1930 		req_ref_get(req);
1931 
1932 	io_arm_ltimeout(req);
1933 
1934 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1935 	if (work->flags & IO_WQ_WORK_CANCEL) {
1936 fail:
1937 		io_req_task_queue_fail(req, err);
1938 		return;
1939 	}
1940 	if (!io_assign_file(req, def, issue_flags)) {
1941 		err = -EBADF;
1942 		work->flags |= IO_WQ_WORK_CANCEL;
1943 		goto fail;
1944 	}
1945 
1946 	if (req->flags & REQ_F_FORCE_ASYNC) {
1947 		bool opcode_poll = def->pollin || def->pollout;
1948 
1949 		if (opcode_poll && file_can_poll(req->file)) {
1950 			needs_poll = true;
1951 			issue_flags |= IO_URING_F_NONBLOCK;
1952 		}
1953 	}
1954 
1955 	do {
1956 		ret = io_issue_sqe(req, issue_flags);
1957 		if (ret != -EAGAIN)
1958 			break;
1959 		/*
1960 		 * We can get EAGAIN for iopolled IO even though we're
1961 		 * forcing a sync submission from here, since we can't
1962 		 * wait for request slots on the block side.
1963 		 */
1964 		if (!needs_poll) {
1965 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1966 				break;
1967 			cond_resched();
1968 			continue;
1969 		}
1970 
1971 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1972 			return;
1973 		/* aborted or ready, in either case retry blocking */
1974 		needs_poll = false;
1975 		issue_flags &= ~IO_URING_F_NONBLOCK;
1976 	} while (1);
1977 
1978 	/* avoid locking problems by failing it from a clean context */
1979 	if (ret < 0)
1980 		io_req_task_queue_fail(req, ret);
1981 }
1982 
1983 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1984 				      unsigned int issue_flags)
1985 {
1986 	struct io_ring_ctx *ctx = req->ctx;
1987 	struct io_fixed_file *slot;
1988 	struct file *file = NULL;
1989 
1990 	io_ring_submit_lock(ctx, issue_flags);
1991 
1992 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1993 		goto out;
1994 	fd = array_index_nospec(fd, ctx->nr_user_files);
1995 	slot = io_fixed_file_slot(&ctx->file_table, fd);
1996 	file = io_slot_file(slot);
1997 	req->flags |= io_slot_flags(slot);
1998 	io_req_set_rsrc_node(req, ctx, 0);
1999 out:
2000 	io_ring_submit_unlock(ctx, issue_flags);
2001 	return file;
2002 }
2003 
2004 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2005 {
2006 	struct file *file = fget(fd);
2007 
2008 	trace_io_uring_file_get(req, fd);
2009 
2010 	/* we don't allow fixed io_uring files */
2011 	if (file && io_is_uring_fops(file))
2012 		io_req_track_inflight(req);
2013 	return file;
2014 }
2015 
2016 static void io_queue_async(struct io_kiocb *req, int ret)
2017 	__must_hold(&req->ctx->uring_lock)
2018 {
2019 	struct io_kiocb *linked_timeout;
2020 
2021 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2022 		io_req_defer_failed(req, ret);
2023 		return;
2024 	}
2025 
2026 	linked_timeout = io_prep_linked_timeout(req);
2027 
2028 	switch (io_arm_poll_handler(req, 0)) {
2029 	case IO_APOLL_READY:
2030 		io_kbuf_recycle(req, 0);
2031 		io_req_task_queue(req);
2032 		break;
2033 	case IO_APOLL_ABORTED:
2034 		io_kbuf_recycle(req, 0);
2035 		io_queue_iowq(req, NULL);
2036 		break;
2037 	case IO_APOLL_OK:
2038 		break;
2039 	}
2040 
2041 	if (linked_timeout)
2042 		io_queue_linked_timeout(linked_timeout);
2043 }
2044 
2045 static inline void io_queue_sqe(struct io_kiocb *req)
2046 	__must_hold(&req->ctx->uring_lock)
2047 {
2048 	int ret;
2049 
2050 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2051 
2052 	/*
2053 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2054 	 * doesn't support non-blocking read/write attempts
2055 	 */
2056 	if (likely(!ret))
2057 		io_arm_ltimeout(req);
2058 	else
2059 		io_queue_async(req, ret);
2060 }
2061 
2062 static void io_queue_sqe_fallback(struct io_kiocb *req)
2063 	__must_hold(&req->ctx->uring_lock)
2064 {
2065 	if (unlikely(req->flags & REQ_F_FAIL)) {
2066 		/*
2067 		 * We don't submit, fail them all, for that replace hardlinks
2068 		 * with normal links. Extra REQ_F_LINK is tolerated.
2069 		 */
2070 		req->flags &= ~REQ_F_HARDLINK;
2071 		req->flags |= REQ_F_LINK;
2072 		io_req_defer_failed(req, req->cqe.res);
2073 	} else {
2074 		int ret = io_req_prep_async(req);
2075 
2076 		if (unlikely(ret)) {
2077 			io_req_defer_failed(req, ret);
2078 			return;
2079 		}
2080 
2081 		if (unlikely(req->ctx->drain_active))
2082 			io_drain_req(req);
2083 		else
2084 			io_queue_iowq(req, NULL);
2085 	}
2086 }
2087 
2088 /*
2089  * Check SQE restrictions (opcode and flags).
2090  *
2091  * Returns 'true' if SQE is allowed, 'false' otherwise.
2092  */
2093 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2094 					struct io_kiocb *req,
2095 					unsigned int sqe_flags)
2096 {
2097 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2098 		return false;
2099 
2100 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2101 	    ctx->restrictions.sqe_flags_required)
2102 		return false;
2103 
2104 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2105 			  ctx->restrictions.sqe_flags_required))
2106 		return false;
2107 
2108 	return true;
2109 }
2110 
2111 static void io_init_req_drain(struct io_kiocb *req)
2112 {
2113 	struct io_ring_ctx *ctx = req->ctx;
2114 	struct io_kiocb *head = ctx->submit_state.link.head;
2115 
2116 	ctx->drain_active = true;
2117 	if (head) {
2118 		/*
2119 		 * If we need to drain a request in the middle of a link, drain
2120 		 * the head request and the next request/link after the current
2121 		 * link. Considering sequential execution of links,
2122 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2123 		 * link.
2124 		 */
2125 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2126 		ctx->drain_next = true;
2127 	}
2128 }
2129 
2130 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2131 		       const struct io_uring_sqe *sqe)
2132 	__must_hold(&ctx->uring_lock)
2133 {
2134 	const struct io_issue_def *def;
2135 	unsigned int sqe_flags;
2136 	int personality;
2137 	u8 opcode;
2138 
2139 	/* req is partially pre-initialised, see io_preinit_req() */
2140 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2141 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2142 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2143 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2144 	req->file = NULL;
2145 	req->rsrc_node = NULL;
2146 	req->task = current;
2147 
2148 	if (unlikely(opcode >= IORING_OP_LAST)) {
2149 		req->opcode = 0;
2150 		return -EINVAL;
2151 	}
2152 	def = &io_issue_defs[opcode];
2153 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2154 		/* enforce forwards compatibility on users */
2155 		if (sqe_flags & ~SQE_VALID_FLAGS)
2156 			return -EINVAL;
2157 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2158 			if (!def->buffer_select)
2159 				return -EOPNOTSUPP;
2160 			req->buf_index = READ_ONCE(sqe->buf_group);
2161 		}
2162 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2163 			ctx->drain_disabled = true;
2164 		if (sqe_flags & IOSQE_IO_DRAIN) {
2165 			if (ctx->drain_disabled)
2166 				return -EOPNOTSUPP;
2167 			io_init_req_drain(req);
2168 		}
2169 	}
2170 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2171 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2172 			return -EACCES;
2173 		/* knock it to the slow queue path, will be drained there */
2174 		if (ctx->drain_active)
2175 			req->flags |= REQ_F_FORCE_ASYNC;
2176 		/* if there is no link, we're at "next" request and need to drain */
2177 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2178 			ctx->drain_next = false;
2179 			ctx->drain_active = true;
2180 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2181 		}
2182 	}
2183 
2184 	if (!def->ioprio && sqe->ioprio)
2185 		return -EINVAL;
2186 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2187 		return -EINVAL;
2188 
2189 	if (def->needs_file) {
2190 		struct io_submit_state *state = &ctx->submit_state;
2191 
2192 		req->cqe.fd = READ_ONCE(sqe->fd);
2193 
2194 		/*
2195 		 * Plug now if we have more than 2 IO left after this, and the
2196 		 * target is potentially a read/write to block based storage.
2197 		 */
2198 		if (state->need_plug && def->plug) {
2199 			state->plug_started = true;
2200 			state->need_plug = false;
2201 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2202 		}
2203 	}
2204 
2205 	personality = READ_ONCE(sqe->personality);
2206 	if (personality) {
2207 		int ret;
2208 
2209 		req->creds = xa_load(&ctx->personalities, personality);
2210 		if (!req->creds)
2211 			return -EINVAL;
2212 		get_cred(req->creds);
2213 		ret = security_uring_override_creds(req->creds);
2214 		if (ret) {
2215 			put_cred(req->creds);
2216 			return ret;
2217 		}
2218 		req->flags |= REQ_F_CREDS;
2219 	}
2220 
2221 	return def->prep(req, sqe);
2222 }
2223 
2224 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2225 				      struct io_kiocb *req, int ret)
2226 {
2227 	struct io_ring_ctx *ctx = req->ctx;
2228 	struct io_submit_link *link = &ctx->submit_state.link;
2229 	struct io_kiocb *head = link->head;
2230 
2231 	trace_io_uring_req_failed(sqe, req, ret);
2232 
2233 	/*
2234 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2235 	 * unusable. Instead of failing eagerly, continue assembling the link if
2236 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2237 	 * should find the flag and handle the rest.
2238 	 */
2239 	req_fail_link_node(req, ret);
2240 	if (head && !(head->flags & REQ_F_FAIL))
2241 		req_fail_link_node(head, -ECANCELED);
2242 
2243 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2244 		if (head) {
2245 			link->last->link = req;
2246 			link->head = NULL;
2247 			req = head;
2248 		}
2249 		io_queue_sqe_fallback(req);
2250 		return ret;
2251 	}
2252 
2253 	if (head)
2254 		link->last->link = req;
2255 	else
2256 		link->head = req;
2257 	link->last = req;
2258 	return 0;
2259 }
2260 
2261 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2262 			 const struct io_uring_sqe *sqe)
2263 	__must_hold(&ctx->uring_lock)
2264 {
2265 	struct io_submit_link *link = &ctx->submit_state.link;
2266 	int ret;
2267 
2268 	ret = io_init_req(ctx, req, sqe);
2269 	if (unlikely(ret))
2270 		return io_submit_fail_init(sqe, req, ret);
2271 
2272 	trace_io_uring_submit_req(req);
2273 
2274 	/*
2275 	 * If we already have a head request, queue this one for async
2276 	 * submittal once the head completes. If we don't have a head but
2277 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2278 	 * submitted sync once the chain is complete. If none of those
2279 	 * conditions are true (normal request), then just queue it.
2280 	 */
2281 	if (unlikely(link->head)) {
2282 		ret = io_req_prep_async(req);
2283 		if (unlikely(ret))
2284 			return io_submit_fail_init(sqe, req, ret);
2285 
2286 		trace_io_uring_link(req, link->head);
2287 		link->last->link = req;
2288 		link->last = req;
2289 
2290 		if (req->flags & IO_REQ_LINK_FLAGS)
2291 			return 0;
2292 		/* last request of the link, flush it */
2293 		req = link->head;
2294 		link->head = NULL;
2295 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2296 			goto fallback;
2297 
2298 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2299 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2300 		if (req->flags & IO_REQ_LINK_FLAGS) {
2301 			link->head = req;
2302 			link->last = req;
2303 		} else {
2304 fallback:
2305 			io_queue_sqe_fallback(req);
2306 		}
2307 		return 0;
2308 	}
2309 
2310 	io_queue_sqe(req);
2311 	return 0;
2312 }
2313 
2314 /*
2315  * Batched submission is done, ensure local IO is flushed out.
2316  */
2317 static void io_submit_state_end(struct io_ring_ctx *ctx)
2318 {
2319 	struct io_submit_state *state = &ctx->submit_state;
2320 
2321 	if (unlikely(state->link.head))
2322 		io_queue_sqe_fallback(state->link.head);
2323 	/* flush only after queuing links as they can generate completions */
2324 	io_submit_flush_completions(ctx);
2325 	if (state->plug_started)
2326 		blk_finish_plug(&state->plug);
2327 }
2328 
2329 /*
2330  * Start submission side cache.
2331  */
2332 static void io_submit_state_start(struct io_submit_state *state,
2333 				  unsigned int max_ios)
2334 {
2335 	state->plug_started = false;
2336 	state->need_plug = max_ios > 2;
2337 	state->submit_nr = max_ios;
2338 	/* set only head, no need to init link_last in advance */
2339 	state->link.head = NULL;
2340 }
2341 
2342 static void io_commit_sqring(struct io_ring_ctx *ctx)
2343 {
2344 	struct io_rings *rings = ctx->rings;
2345 
2346 	/*
2347 	 * Ensure any loads from the SQEs are done at this point,
2348 	 * since once we write the new head, the application could
2349 	 * write new data to them.
2350 	 */
2351 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2352 }
2353 
2354 /*
2355  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2356  * that is mapped by userspace. This means that care needs to be taken to
2357  * ensure that reads are stable, as we cannot rely on userspace always
2358  * being a good citizen. If members of the sqe are validated and then later
2359  * used, it's important that those reads are done through READ_ONCE() to
2360  * prevent a re-load down the line.
2361  */
2362 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2363 {
2364 	unsigned head, mask = ctx->sq_entries - 1;
2365 	unsigned sq_idx = ctx->cached_sq_head++ & mask;
2366 
2367 	/*
2368 	 * The cached sq head (or cq tail) serves two purposes:
2369 	 *
2370 	 * 1) allows us to batch the cost of updating the user visible
2371 	 *    head updates.
2372 	 * 2) allows the kernel side to track the head on its own, even
2373 	 *    though the application is the one updating it.
2374 	 */
2375 	head = READ_ONCE(ctx->sq_array[sq_idx]);
2376 	if (likely(head < ctx->sq_entries)) {
2377 		/* double index for 128-byte SQEs, twice as long */
2378 		if (ctx->flags & IORING_SETUP_SQE128)
2379 			head <<= 1;
2380 		*sqe = &ctx->sq_sqes[head];
2381 		return true;
2382 	}
2383 
2384 	/* drop invalid entries */
2385 	ctx->cq_extra--;
2386 	WRITE_ONCE(ctx->rings->sq_dropped,
2387 		   READ_ONCE(ctx->rings->sq_dropped) + 1);
2388 	return false;
2389 }
2390 
2391 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2392 	__must_hold(&ctx->uring_lock)
2393 {
2394 	unsigned int entries = io_sqring_entries(ctx);
2395 	unsigned int left;
2396 	int ret;
2397 
2398 	if (unlikely(!entries))
2399 		return 0;
2400 	/* make sure SQ entry isn't read before tail */
2401 	ret = left = min(nr, entries);
2402 	io_get_task_refs(left);
2403 	io_submit_state_start(&ctx->submit_state, left);
2404 
2405 	do {
2406 		const struct io_uring_sqe *sqe;
2407 		struct io_kiocb *req;
2408 
2409 		if (unlikely(!io_alloc_req(ctx, &req)))
2410 			break;
2411 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2412 			io_req_add_to_cache(req, ctx);
2413 			break;
2414 		}
2415 
2416 		/*
2417 		 * Continue submitting even for sqe failure if the
2418 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2419 		 */
2420 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2421 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2422 			left--;
2423 			break;
2424 		}
2425 	} while (--left);
2426 
2427 	if (unlikely(left)) {
2428 		ret -= left;
2429 		/* try again if it submitted nothing and can't allocate a req */
2430 		if (!ret && io_req_cache_empty(ctx))
2431 			ret = -EAGAIN;
2432 		current->io_uring->cached_refs += left;
2433 	}
2434 
2435 	io_submit_state_end(ctx);
2436 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2437 	io_commit_sqring(ctx);
2438 	return ret;
2439 }
2440 
2441 struct io_wait_queue {
2442 	struct wait_queue_entry wq;
2443 	struct io_ring_ctx *ctx;
2444 	unsigned cq_tail;
2445 	unsigned nr_timeouts;
2446 	ktime_t timeout;
2447 };
2448 
2449 static inline bool io_has_work(struct io_ring_ctx *ctx)
2450 {
2451 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2452 	       !llist_empty(&ctx->work_llist);
2453 }
2454 
2455 static inline bool io_should_wake(struct io_wait_queue *iowq)
2456 {
2457 	struct io_ring_ctx *ctx = iowq->ctx;
2458 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2459 
2460 	/*
2461 	 * Wake up if we have enough events, or if a timeout occurred since we
2462 	 * started waiting. For timeouts, we always want to return to userspace,
2463 	 * regardless of event count.
2464 	 */
2465 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2466 }
2467 
2468 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2469 			    int wake_flags, void *key)
2470 {
2471 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2472 
2473 	/*
2474 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2475 	 * the task, and the next invocation will do it.
2476 	 */
2477 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2478 		return autoremove_wake_function(curr, mode, wake_flags, key);
2479 	return -1;
2480 }
2481 
2482 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2483 {
2484 	if (!llist_empty(&ctx->work_llist)) {
2485 		__set_current_state(TASK_RUNNING);
2486 		if (io_run_local_work(ctx) > 0)
2487 			return 1;
2488 	}
2489 	if (io_run_task_work() > 0)
2490 		return 1;
2491 	if (task_sigpending(current))
2492 		return -EINTR;
2493 	return 0;
2494 }
2495 
2496 /* when returns >0, the caller should retry */
2497 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2498 					  struct io_wait_queue *iowq)
2499 {
2500 	if (unlikely(READ_ONCE(ctx->check_cq)))
2501 		return 1;
2502 	if (unlikely(!llist_empty(&ctx->work_llist)))
2503 		return 1;
2504 	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2505 		return 1;
2506 	if (unlikely(task_sigpending(current)))
2507 		return -EINTR;
2508 	if (unlikely(io_should_wake(iowq)))
2509 		return 0;
2510 	if (iowq->timeout == KTIME_MAX)
2511 		schedule();
2512 	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2513 		return -ETIME;
2514 	return 0;
2515 }
2516 
2517 /*
2518  * Wait until events become available, if we don't already have some. The
2519  * application must reap them itself, as they reside on the shared cq ring.
2520  */
2521 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2522 			  const sigset_t __user *sig, size_t sigsz,
2523 			  struct __kernel_timespec __user *uts)
2524 {
2525 	struct io_wait_queue iowq;
2526 	struct io_rings *rings = ctx->rings;
2527 	int ret;
2528 
2529 	if (!io_allowed_run_tw(ctx))
2530 		return -EEXIST;
2531 	if (!llist_empty(&ctx->work_llist))
2532 		io_run_local_work(ctx);
2533 	io_run_task_work();
2534 	io_cqring_overflow_flush(ctx);
2535 	/* if user messes with these they will just get an early return */
2536 	if (__io_cqring_events_user(ctx) >= min_events)
2537 		return 0;
2538 
2539 	if (sig) {
2540 #ifdef CONFIG_COMPAT
2541 		if (in_compat_syscall())
2542 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2543 						      sigsz);
2544 		else
2545 #endif
2546 			ret = set_user_sigmask(sig, sigsz);
2547 
2548 		if (ret)
2549 			return ret;
2550 	}
2551 
2552 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2553 	iowq.wq.private = current;
2554 	INIT_LIST_HEAD(&iowq.wq.entry);
2555 	iowq.ctx = ctx;
2556 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2557 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2558 	iowq.timeout = KTIME_MAX;
2559 
2560 	if (uts) {
2561 		struct timespec64 ts;
2562 
2563 		if (get_timespec64(&ts, uts))
2564 			return -EFAULT;
2565 		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2566 	}
2567 
2568 	trace_io_uring_cqring_wait(ctx, min_events);
2569 	do {
2570 		unsigned long check_cq;
2571 
2572 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2573 			int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2574 
2575 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2576 			set_current_state(TASK_INTERRUPTIBLE);
2577 		} else {
2578 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2579 							TASK_INTERRUPTIBLE);
2580 		}
2581 
2582 		ret = io_cqring_wait_schedule(ctx, &iowq);
2583 		__set_current_state(TASK_RUNNING);
2584 		atomic_set(&ctx->cq_wait_nr, 0);
2585 
2586 		if (ret < 0)
2587 			break;
2588 		/*
2589 		 * Run task_work after scheduling and before io_should_wake().
2590 		 * If we got woken because of task_work being processed, run it
2591 		 * now rather than let the caller do another wait loop.
2592 		 */
2593 		io_run_task_work();
2594 		if (!llist_empty(&ctx->work_llist))
2595 			io_run_local_work(ctx);
2596 
2597 		check_cq = READ_ONCE(ctx->check_cq);
2598 		if (unlikely(check_cq)) {
2599 			/* let the caller flush overflows, retry */
2600 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2601 				io_cqring_do_overflow_flush(ctx);
2602 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2603 				ret = -EBADR;
2604 				break;
2605 			}
2606 		}
2607 
2608 		if (io_should_wake(&iowq)) {
2609 			ret = 0;
2610 			break;
2611 		}
2612 		cond_resched();
2613 	} while (1);
2614 
2615 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2616 		finish_wait(&ctx->cq_wait, &iowq.wq);
2617 	restore_saved_sigmask_unless(ret == -EINTR);
2618 
2619 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2620 }
2621 
2622 static void io_mem_free(void *ptr)
2623 {
2624 	struct page *page;
2625 
2626 	if (!ptr)
2627 		return;
2628 
2629 	page = virt_to_head_page(ptr);
2630 	if (put_page_testzero(page))
2631 		free_compound_page(page);
2632 }
2633 
2634 static void io_pages_free(struct page ***pages, int npages)
2635 {
2636 	struct page **page_array;
2637 	int i;
2638 
2639 	if (!pages)
2640 		return;
2641 	page_array = *pages;
2642 	for (i = 0; i < npages; i++)
2643 		unpin_user_page(page_array[i]);
2644 	kvfree(page_array);
2645 	*pages = NULL;
2646 }
2647 
2648 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2649 			    unsigned long uaddr, size_t size)
2650 {
2651 	struct page **page_array;
2652 	unsigned int nr_pages;
2653 	int ret;
2654 
2655 	*npages = 0;
2656 
2657 	if (uaddr & (PAGE_SIZE - 1) || !size)
2658 		return ERR_PTR(-EINVAL);
2659 
2660 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2661 	if (nr_pages > USHRT_MAX)
2662 		return ERR_PTR(-EINVAL);
2663 	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2664 	if (!page_array)
2665 		return ERR_PTR(-ENOMEM);
2666 
2667 	ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2668 					page_array);
2669 	if (ret != nr_pages) {
2670 err:
2671 		io_pages_free(&page_array, ret > 0 ? ret : 0);
2672 		return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT);
2673 	}
2674 	/*
2675 	 * Should be a single page. If the ring is small enough that we can
2676 	 * use a normal page, that is fine. If we need multiple pages, then
2677 	 * userspace should use a huge page. That's the only way to guarantee
2678 	 * that we get contigious memory, outside of just being lucky or
2679 	 * (currently) having low memory fragmentation.
2680 	 */
2681 	if (page_array[0] != page_array[ret - 1])
2682 		goto err;
2683 	*pages = page_array;
2684 	*npages = nr_pages;
2685 	return page_to_virt(page_array[0]);
2686 }
2687 
2688 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2689 			  size_t size)
2690 {
2691 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2692 				size);
2693 }
2694 
2695 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2696 			 size_t size)
2697 {
2698 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2699 				size);
2700 }
2701 
2702 static void io_rings_free(struct io_ring_ctx *ctx)
2703 {
2704 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2705 		io_mem_free(ctx->rings);
2706 		io_mem_free(ctx->sq_sqes);
2707 		ctx->rings = NULL;
2708 		ctx->sq_sqes = NULL;
2709 	} else {
2710 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2711 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2712 	}
2713 }
2714 
2715 static void *io_mem_alloc(size_t size)
2716 {
2717 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2718 	void *ret;
2719 
2720 	ret = (void *) __get_free_pages(gfp, get_order(size));
2721 	if (ret)
2722 		return ret;
2723 	return ERR_PTR(-ENOMEM);
2724 }
2725 
2726 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2727 				unsigned int cq_entries, size_t *sq_offset)
2728 {
2729 	struct io_rings *rings;
2730 	size_t off, sq_array_size;
2731 
2732 	off = struct_size(rings, cqes, cq_entries);
2733 	if (off == SIZE_MAX)
2734 		return SIZE_MAX;
2735 	if (ctx->flags & IORING_SETUP_CQE32) {
2736 		if (check_shl_overflow(off, 1, &off))
2737 			return SIZE_MAX;
2738 	}
2739 
2740 #ifdef CONFIG_SMP
2741 	off = ALIGN(off, SMP_CACHE_BYTES);
2742 	if (off == 0)
2743 		return SIZE_MAX;
2744 #endif
2745 
2746 	if (sq_offset)
2747 		*sq_offset = off;
2748 
2749 	sq_array_size = array_size(sizeof(u32), sq_entries);
2750 	if (sq_array_size == SIZE_MAX)
2751 		return SIZE_MAX;
2752 
2753 	if (check_add_overflow(off, sq_array_size, &off))
2754 		return SIZE_MAX;
2755 
2756 	return off;
2757 }
2758 
2759 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2760 			       unsigned int eventfd_async)
2761 {
2762 	struct io_ev_fd *ev_fd;
2763 	__s32 __user *fds = arg;
2764 	int fd;
2765 
2766 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2767 					lockdep_is_held(&ctx->uring_lock));
2768 	if (ev_fd)
2769 		return -EBUSY;
2770 
2771 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2772 		return -EFAULT;
2773 
2774 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2775 	if (!ev_fd)
2776 		return -ENOMEM;
2777 
2778 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2779 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2780 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2781 		kfree(ev_fd);
2782 		return ret;
2783 	}
2784 
2785 	spin_lock(&ctx->completion_lock);
2786 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2787 	spin_unlock(&ctx->completion_lock);
2788 
2789 	ev_fd->eventfd_async = eventfd_async;
2790 	ctx->has_evfd = true;
2791 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2792 	atomic_set(&ev_fd->refs, 1);
2793 	atomic_set(&ev_fd->ops, 0);
2794 	return 0;
2795 }
2796 
2797 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2798 {
2799 	struct io_ev_fd *ev_fd;
2800 
2801 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2802 					lockdep_is_held(&ctx->uring_lock));
2803 	if (ev_fd) {
2804 		ctx->has_evfd = false;
2805 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2806 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2807 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2808 		return 0;
2809 	}
2810 
2811 	return -ENXIO;
2812 }
2813 
2814 static void io_req_caches_free(struct io_ring_ctx *ctx)
2815 {
2816 	struct io_kiocb *req;
2817 	int nr = 0;
2818 
2819 	mutex_lock(&ctx->uring_lock);
2820 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2821 
2822 	while (!io_req_cache_empty(ctx)) {
2823 		req = io_extract_req(ctx);
2824 		kmem_cache_free(req_cachep, req);
2825 		nr++;
2826 	}
2827 	if (nr)
2828 		percpu_ref_put_many(&ctx->refs, nr);
2829 	mutex_unlock(&ctx->uring_lock);
2830 }
2831 
2832 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2833 {
2834 	kfree(container_of(entry, struct io_rsrc_node, cache));
2835 }
2836 
2837 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2838 {
2839 	io_sq_thread_finish(ctx);
2840 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2841 	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2842 		return;
2843 
2844 	mutex_lock(&ctx->uring_lock);
2845 	if (ctx->buf_data)
2846 		__io_sqe_buffers_unregister(ctx);
2847 	if (ctx->file_data)
2848 		__io_sqe_files_unregister(ctx);
2849 	io_cqring_overflow_kill(ctx);
2850 	io_eventfd_unregister(ctx);
2851 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2852 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2853 	io_destroy_buffers(ctx);
2854 	mutex_unlock(&ctx->uring_lock);
2855 	if (ctx->sq_creds)
2856 		put_cred(ctx->sq_creds);
2857 	if (ctx->submitter_task)
2858 		put_task_struct(ctx->submitter_task);
2859 
2860 	/* there are no registered resources left, nobody uses it */
2861 	if (ctx->rsrc_node)
2862 		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2863 
2864 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2865 
2866 #if defined(CONFIG_UNIX)
2867 	if (ctx->ring_sock) {
2868 		ctx->ring_sock->file = NULL; /* so that iput() is called */
2869 		sock_release(ctx->ring_sock);
2870 	}
2871 #endif
2872 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2873 
2874 	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2875 	if (ctx->mm_account) {
2876 		mmdrop(ctx->mm_account);
2877 		ctx->mm_account = NULL;
2878 	}
2879 	io_rings_free(ctx);
2880 
2881 	percpu_ref_exit(&ctx->refs);
2882 	free_uid(ctx->user);
2883 	io_req_caches_free(ctx);
2884 	if (ctx->hash_map)
2885 		io_wq_put_hash(ctx->hash_map);
2886 	kfree(ctx->cancel_table.hbs);
2887 	kfree(ctx->cancel_table_locked.hbs);
2888 	kfree(ctx->dummy_ubuf);
2889 	kfree(ctx->io_bl);
2890 	xa_destroy(&ctx->io_bl_xa);
2891 	kfree(ctx);
2892 }
2893 
2894 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2895 {
2896 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2897 					       poll_wq_task_work);
2898 
2899 	mutex_lock(&ctx->uring_lock);
2900 	ctx->poll_activated = true;
2901 	mutex_unlock(&ctx->uring_lock);
2902 
2903 	/*
2904 	 * Wake ups for some events between start of polling and activation
2905 	 * might've been lost due to loose synchronisation.
2906 	 */
2907 	wake_up_all(&ctx->poll_wq);
2908 	percpu_ref_put(&ctx->refs);
2909 }
2910 
2911 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2912 {
2913 	spin_lock(&ctx->completion_lock);
2914 	/* already activated or in progress */
2915 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2916 		goto out;
2917 	if (WARN_ON_ONCE(!ctx->task_complete))
2918 		goto out;
2919 	if (!ctx->submitter_task)
2920 		goto out;
2921 	/*
2922 	 * with ->submitter_task only the submitter task completes requests, we
2923 	 * only need to sync with it, which is done by injecting a tw
2924 	 */
2925 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2926 	percpu_ref_get(&ctx->refs);
2927 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2928 		percpu_ref_put(&ctx->refs);
2929 out:
2930 	spin_unlock(&ctx->completion_lock);
2931 }
2932 
2933 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2934 {
2935 	struct io_ring_ctx *ctx = file->private_data;
2936 	__poll_t mask = 0;
2937 
2938 	if (unlikely(!ctx->poll_activated))
2939 		io_activate_pollwq(ctx);
2940 
2941 	poll_wait(file, &ctx->poll_wq, wait);
2942 	/*
2943 	 * synchronizes with barrier from wq_has_sleeper call in
2944 	 * io_commit_cqring
2945 	 */
2946 	smp_rmb();
2947 	if (!io_sqring_full(ctx))
2948 		mask |= EPOLLOUT | EPOLLWRNORM;
2949 
2950 	/*
2951 	 * Don't flush cqring overflow list here, just do a simple check.
2952 	 * Otherwise there could possible be ABBA deadlock:
2953 	 *      CPU0                    CPU1
2954 	 *      ----                    ----
2955 	 * lock(&ctx->uring_lock);
2956 	 *                              lock(&ep->mtx);
2957 	 *                              lock(&ctx->uring_lock);
2958 	 * lock(&ep->mtx);
2959 	 *
2960 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2961 	 * pushes them to do the flush.
2962 	 */
2963 
2964 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2965 		mask |= EPOLLIN | EPOLLRDNORM;
2966 
2967 	return mask;
2968 }
2969 
2970 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2971 {
2972 	const struct cred *creds;
2973 
2974 	creds = xa_erase(&ctx->personalities, id);
2975 	if (creds) {
2976 		put_cred(creds);
2977 		return 0;
2978 	}
2979 
2980 	return -EINVAL;
2981 }
2982 
2983 struct io_tctx_exit {
2984 	struct callback_head		task_work;
2985 	struct completion		completion;
2986 	struct io_ring_ctx		*ctx;
2987 };
2988 
2989 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2990 {
2991 	struct io_uring_task *tctx = current->io_uring;
2992 	struct io_tctx_exit *work;
2993 
2994 	work = container_of(cb, struct io_tctx_exit, task_work);
2995 	/*
2996 	 * When @in_cancel, we're in cancellation and it's racy to remove the
2997 	 * node. It'll be removed by the end of cancellation, just ignore it.
2998 	 * tctx can be NULL if the queueing of this task_work raced with
2999 	 * work cancelation off the exec path.
3000 	 */
3001 	if (tctx && !atomic_read(&tctx->in_cancel))
3002 		io_uring_del_tctx_node((unsigned long)work->ctx);
3003 	complete(&work->completion);
3004 }
3005 
3006 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3007 {
3008 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3009 
3010 	return req->ctx == data;
3011 }
3012 
3013 static __cold void io_ring_exit_work(struct work_struct *work)
3014 {
3015 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3016 	unsigned long timeout = jiffies + HZ * 60 * 5;
3017 	unsigned long interval = HZ / 20;
3018 	struct io_tctx_exit exit;
3019 	struct io_tctx_node *node;
3020 	int ret;
3021 
3022 	/*
3023 	 * If we're doing polled IO and end up having requests being
3024 	 * submitted async (out-of-line), then completions can come in while
3025 	 * we're waiting for refs to drop. We need to reap these manually,
3026 	 * as nobody else will be looking for them.
3027 	 */
3028 	do {
3029 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3030 			mutex_lock(&ctx->uring_lock);
3031 			io_cqring_overflow_kill(ctx);
3032 			mutex_unlock(&ctx->uring_lock);
3033 		}
3034 
3035 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3036 			io_move_task_work_from_local(ctx);
3037 
3038 		while (io_uring_try_cancel_requests(ctx, NULL, true))
3039 			cond_resched();
3040 
3041 		if (ctx->sq_data) {
3042 			struct io_sq_data *sqd = ctx->sq_data;
3043 			struct task_struct *tsk;
3044 
3045 			io_sq_thread_park(sqd);
3046 			tsk = sqd->thread;
3047 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3048 				io_wq_cancel_cb(tsk->io_uring->io_wq,
3049 						io_cancel_ctx_cb, ctx, true);
3050 			io_sq_thread_unpark(sqd);
3051 		}
3052 
3053 		io_req_caches_free(ctx);
3054 
3055 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3056 			/* there is little hope left, don't run it too often */
3057 			interval = HZ * 60;
3058 		}
3059 		/*
3060 		 * This is really an uninterruptible wait, as it has to be
3061 		 * complete. But it's also run from a kworker, which doesn't
3062 		 * take signals, so it's fine to make it interruptible. This
3063 		 * avoids scenarios where we knowingly can wait much longer
3064 		 * on completions, for example if someone does a SIGSTOP on
3065 		 * a task that needs to finish task_work to make this loop
3066 		 * complete. That's a synthetic situation that should not
3067 		 * cause a stuck task backtrace, and hence a potential panic
3068 		 * on stuck tasks if that is enabled.
3069 		 */
3070 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3071 
3072 	init_completion(&exit.completion);
3073 	init_task_work(&exit.task_work, io_tctx_exit_cb);
3074 	exit.ctx = ctx;
3075 	/*
3076 	 * Some may use context even when all refs and requests have been put,
3077 	 * and they are free to do so while still holding uring_lock or
3078 	 * completion_lock, see io_req_task_submit(). Apart from other work,
3079 	 * this lock/unlock section also waits them to finish.
3080 	 */
3081 	mutex_lock(&ctx->uring_lock);
3082 	while (!list_empty(&ctx->tctx_list)) {
3083 		WARN_ON_ONCE(time_after(jiffies, timeout));
3084 
3085 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3086 					ctx_node);
3087 		/* don't spin on a single task if cancellation failed */
3088 		list_rotate_left(&ctx->tctx_list);
3089 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3090 		if (WARN_ON_ONCE(ret))
3091 			continue;
3092 
3093 		mutex_unlock(&ctx->uring_lock);
3094 		/*
3095 		 * See comment above for
3096 		 * wait_for_completion_interruptible_timeout() on why this
3097 		 * wait is marked as interruptible.
3098 		 */
3099 		wait_for_completion_interruptible(&exit.completion);
3100 		mutex_lock(&ctx->uring_lock);
3101 	}
3102 	mutex_unlock(&ctx->uring_lock);
3103 	spin_lock(&ctx->completion_lock);
3104 	spin_unlock(&ctx->completion_lock);
3105 
3106 	/* pairs with RCU read section in io_req_local_work_add() */
3107 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3108 		synchronize_rcu();
3109 
3110 	io_ring_ctx_free(ctx);
3111 }
3112 
3113 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3114 {
3115 	unsigned long index;
3116 	struct creds *creds;
3117 
3118 	mutex_lock(&ctx->uring_lock);
3119 	percpu_ref_kill(&ctx->refs);
3120 	xa_for_each(&ctx->personalities, index, creds)
3121 		io_unregister_personality(ctx, index);
3122 	if (ctx->rings)
3123 		io_poll_remove_all(ctx, NULL, true);
3124 	mutex_unlock(&ctx->uring_lock);
3125 
3126 	/*
3127 	 * If we failed setting up the ctx, we might not have any rings
3128 	 * and therefore did not submit any requests
3129 	 */
3130 	if (ctx->rings)
3131 		io_kill_timeouts(ctx, NULL, true);
3132 
3133 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3134 	/*
3135 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3136 	 * if we're exiting a ton of rings at the same time. It just adds
3137 	 * noise and overhead, there's no discernable change in runtime
3138 	 * over using system_wq.
3139 	 */
3140 	queue_work(system_unbound_wq, &ctx->exit_work);
3141 }
3142 
3143 static int io_uring_release(struct inode *inode, struct file *file)
3144 {
3145 	struct io_ring_ctx *ctx = file->private_data;
3146 
3147 	file->private_data = NULL;
3148 	io_ring_ctx_wait_and_kill(ctx);
3149 	return 0;
3150 }
3151 
3152 struct io_task_cancel {
3153 	struct task_struct *task;
3154 	bool all;
3155 };
3156 
3157 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3158 {
3159 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3160 	struct io_task_cancel *cancel = data;
3161 
3162 	return io_match_task_safe(req, cancel->task, cancel->all);
3163 }
3164 
3165 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3166 					 struct task_struct *task,
3167 					 bool cancel_all)
3168 {
3169 	struct io_defer_entry *de;
3170 	LIST_HEAD(list);
3171 
3172 	spin_lock(&ctx->completion_lock);
3173 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3174 		if (io_match_task_safe(de->req, task, cancel_all)) {
3175 			list_cut_position(&list, &ctx->defer_list, &de->list);
3176 			break;
3177 		}
3178 	}
3179 	spin_unlock(&ctx->completion_lock);
3180 	if (list_empty(&list))
3181 		return false;
3182 
3183 	while (!list_empty(&list)) {
3184 		de = list_first_entry(&list, struct io_defer_entry, list);
3185 		list_del_init(&de->list);
3186 		io_req_task_queue_fail(de->req, -ECANCELED);
3187 		kfree(de);
3188 	}
3189 	return true;
3190 }
3191 
3192 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3193 {
3194 	struct io_tctx_node *node;
3195 	enum io_wq_cancel cret;
3196 	bool ret = false;
3197 
3198 	mutex_lock(&ctx->uring_lock);
3199 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3200 		struct io_uring_task *tctx = node->task->io_uring;
3201 
3202 		/*
3203 		 * io_wq will stay alive while we hold uring_lock, because it's
3204 		 * killed after ctx nodes, which requires to take the lock.
3205 		 */
3206 		if (!tctx || !tctx->io_wq)
3207 			continue;
3208 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3209 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3210 	}
3211 	mutex_unlock(&ctx->uring_lock);
3212 
3213 	return ret;
3214 }
3215 
3216 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3217 						struct task_struct *task,
3218 						bool cancel_all)
3219 {
3220 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3221 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3222 	enum io_wq_cancel cret;
3223 	bool ret = false;
3224 
3225 	/* set it so io_req_local_work_add() would wake us up */
3226 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3227 		atomic_set(&ctx->cq_wait_nr, 1);
3228 		smp_mb();
3229 	}
3230 
3231 	/* failed during ring init, it couldn't have issued any requests */
3232 	if (!ctx->rings)
3233 		return false;
3234 
3235 	if (!task) {
3236 		ret |= io_uring_try_cancel_iowq(ctx);
3237 	} else if (tctx && tctx->io_wq) {
3238 		/*
3239 		 * Cancels requests of all rings, not only @ctx, but
3240 		 * it's fine as the task is in exit/exec.
3241 		 */
3242 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3243 				       &cancel, true);
3244 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3245 	}
3246 
3247 	/* SQPOLL thread does its own polling */
3248 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3249 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3250 		while (!wq_list_empty(&ctx->iopoll_list)) {
3251 			io_iopoll_try_reap_events(ctx);
3252 			ret = true;
3253 			cond_resched();
3254 		}
3255 	}
3256 
3257 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3258 	    io_allowed_defer_tw_run(ctx))
3259 		ret |= io_run_local_work(ctx) > 0;
3260 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3261 	mutex_lock(&ctx->uring_lock);
3262 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3263 	mutex_unlock(&ctx->uring_lock);
3264 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3265 	if (task)
3266 		ret |= io_run_task_work() > 0;
3267 	return ret;
3268 }
3269 
3270 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3271 {
3272 	if (tracked)
3273 		return atomic_read(&tctx->inflight_tracked);
3274 	return percpu_counter_sum(&tctx->inflight);
3275 }
3276 
3277 /*
3278  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3279  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3280  */
3281 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3282 {
3283 	struct io_uring_task *tctx = current->io_uring;
3284 	struct io_ring_ctx *ctx;
3285 	struct io_tctx_node *node;
3286 	unsigned long index;
3287 	s64 inflight;
3288 	DEFINE_WAIT(wait);
3289 
3290 	WARN_ON_ONCE(sqd && sqd->thread != current);
3291 
3292 	if (!current->io_uring)
3293 		return;
3294 	if (tctx->io_wq)
3295 		io_wq_exit_start(tctx->io_wq);
3296 
3297 	atomic_inc(&tctx->in_cancel);
3298 	do {
3299 		bool loop = false;
3300 
3301 		io_uring_drop_tctx_refs(current);
3302 		/* read completions before cancelations */
3303 		inflight = tctx_inflight(tctx, !cancel_all);
3304 		if (!inflight)
3305 			break;
3306 
3307 		if (!sqd) {
3308 			xa_for_each(&tctx->xa, index, node) {
3309 				/* sqpoll task will cancel all its requests */
3310 				if (node->ctx->sq_data)
3311 					continue;
3312 				loop |= io_uring_try_cancel_requests(node->ctx,
3313 							current, cancel_all);
3314 			}
3315 		} else {
3316 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3317 				loop |= io_uring_try_cancel_requests(ctx,
3318 								     current,
3319 								     cancel_all);
3320 		}
3321 
3322 		if (loop) {
3323 			cond_resched();
3324 			continue;
3325 		}
3326 
3327 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3328 		io_run_task_work();
3329 		io_uring_drop_tctx_refs(current);
3330 		xa_for_each(&tctx->xa, index, node) {
3331 			if (!llist_empty(&node->ctx->work_llist)) {
3332 				WARN_ON_ONCE(node->ctx->submitter_task &&
3333 					     node->ctx->submitter_task != current);
3334 				goto end_wait;
3335 			}
3336 		}
3337 		/*
3338 		 * If we've seen completions, retry without waiting. This
3339 		 * avoids a race where a completion comes in before we did
3340 		 * prepare_to_wait().
3341 		 */
3342 		if (inflight == tctx_inflight(tctx, !cancel_all))
3343 			schedule();
3344 end_wait:
3345 		finish_wait(&tctx->wait, &wait);
3346 	} while (1);
3347 
3348 	io_uring_clean_tctx(tctx);
3349 	if (cancel_all) {
3350 		/*
3351 		 * We shouldn't run task_works after cancel, so just leave
3352 		 * ->in_cancel set for normal exit.
3353 		 */
3354 		atomic_dec(&tctx->in_cancel);
3355 		/* for exec all current's requests should be gone, kill tctx */
3356 		__io_uring_free(current);
3357 	}
3358 }
3359 
3360 void __io_uring_cancel(bool cancel_all)
3361 {
3362 	io_uring_cancel_generic(cancel_all, NULL);
3363 }
3364 
3365 static void *io_uring_validate_mmap_request(struct file *file,
3366 					    loff_t pgoff, size_t sz)
3367 {
3368 	struct io_ring_ctx *ctx = file->private_data;
3369 	loff_t offset = pgoff << PAGE_SHIFT;
3370 	struct page *page;
3371 	void *ptr;
3372 
3373 	/* Don't allow mmap if the ring was setup without it */
3374 	if (ctx->flags & IORING_SETUP_NO_MMAP)
3375 		return ERR_PTR(-EINVAL);
3376 
3377 	switch (offset & IORING_OFF_MMAP_MASK) {
3378 	case IORING_OFF_SQ_RING:
3379 	case IORING_OFF_CQ_RING:
3380 		ptr = ctx->rings;
3381 		break;
3382 	case IORING_OFF_SQES:
3383 		ptr = ctx->sq_sqes;
3384 		break;
3385 	case IORING_OFF_PBUF_RING: {
3386 		unsigned int bgid;
3387 
3388 		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3389 		mutex_lock(&ctx->uring_lock);
3390 		ptr = io_pbuf_get_address(ctx, bgid);
3391 		mutex_unlock(&ctx->uring_lock);
3392 		if (!ptr)
3393 			return ERR_PTR(-EINVAL);
3394 		break;
3395 		}
3396 	default:
3397 		return ERR_PTR(-EINVAL);
3398 	}
3399 
3400 	page = virt_to_head_page(ptr);
3401 	if (sz > page_size(page))
3402 		return ERR_PTR(-EINVAL);
3403 
3404 	return ptr;
3405 }
3406 
3407 #ifdef CONFIG_MMU
3408 
3409 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3410 {
3411 	size_t sz = vma->vm_end - vma->vm_start;
3412 	unsigned long pfn;
3413 	void *ptr;
3414 
3415 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3416 	if (IS_ERR(ptr))
3417 		return PTR_ERR(ptr);
3418 
3419 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3420 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3421 }
3422 
3423 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3424 			unsigned long addr, unsigned long len,
3425 			unsigned long pgoff, unsigned long flags)
3426 {
3427 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
3428 	struct vm_unmapped_area_info info;
3429 	void *ptr;
3430 
3431 	/*
3432 	 * Do not allow to map to user-provided address to avoid breaking the
3433 	 * aliasing rules. Userspace is not able to guess the offset address of
3434 	 * kernel kmalloc()ed memory area.
3435 	 */
3436 	if (addr)
3437 		return -EINVAL;
3438 
3439 	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3440 	if (IS_ERR(ptr))
3441 		return -ENOMEM;
3442 
3443 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
3444 	info.length = len;
3445 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
3446 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
3447 #ifdef SHM_COLOUR
3448 	info.align_mask = PAGE_MASK & (SHM_COLOUR - 1UL);
3449 #else
3450 	info.align_mask = PAGE_MASK & (SHMLBA - 1UL);
3451 #endif
3452 	info.align_offset = (unsigned long) ptr;
3453 
3454 	/*
3455 	 * A failed mmap() very likely causes application failure,
3456 	 * so fall back to the bottom-up function here. This scenario
3457 	 * can happen with large stack limits and large mmap()
3458 	 * allocations.
3459 	 */
3460 	addr = vm_unmapped_area(&info);
3461 	if (offset_in_page(addr)) {
3462 		info.flags = 0;
3463 		info.low_limit = TASK_UNMAPPED_BASE;
3464 		info.high_limit = mmap_end;
3465 		addr = vm_unmapped_area(&info);
3466 	}
3467 
3468 	return addr;
3469 }
3470 
3471 #else /* !CONFIG_MMU */
3472 
3473 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3474 {
3475 	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3476 }
3477 
3478 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3479 {
3480 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3481 }
3482 
3483 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3484 	unsigned long addr, unsigned long len,
3485 	unsigned long pgoff, unsigned long flags)
3486 {
3487 	void *ptr;
3488 
3489 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3490 	if (IS_ERR(ptr))
3491 		return PTR_ERR(ptr);
3492 
3493 	return (unsigned long) ptr;
3494 }
3495 
3496 #endif /* !CONFIG_MMU */
3497 
3498 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3499 {
3500 	if (flags & IORING_ENTER_EXT_ARG) {
3501 		struct io_uring_getevents_arg arg;
3502 
3503 		if (argsz != sizeof(arg))
3504 			return -EINVAL;
3505 		if (copy_from_user(&arg, argp, sizeof(arg)))
3506 			return -EFAULT;
3507 	}
3508 	return 0;
3509 }
3510 
3511 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3512 			  struct __kernel_timespec __user **ts,
3513 			  const sigset_t __user **sig)
3514 {
3515 	struct io_uring_getevents_arg arg;
3516 
3517 	/*
3518 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3519 	 * is just a pointer to the sigset_t.
3520 	 */
3521 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3522 		*sig = (const sigset_t __user *) argp;
3523 		*ts = NULL;
3524 		return 0;
3525 	}
3526 
3527 	/*
3528 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3529 	 * timespec and sigset_t pointers if good.
3530 	 */
3531 	if (*argsz != sizeof(arg))
3532 		return -EINVAL;
3533 	if (copy_from_user(&arg, argp, sizeof(arg)))
3534 		return -EFAULT;
3535 	if (arg.pad)
3536 		return -EINVAL;
3537 	*sig = u64_to_user_ptr(arg.sigmask);
3538 	*argsz = arg.sigmask_sz;
3539 	*ts = u64_to_user_ptr(arg.ts);
3540 	return 0;
3541 }
3542 
3543 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3544 		u32, min_complete, u32, flags, const void __user *, argp,
3545 		size_t, argsz)
3546 {
3547 	struct io_ring_ctx *ctx;
3548 	struct fd f;
3549 	long ret;
3550 
3551 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3552 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3553 			       IORING_ENTER_REGISTERED_RING)))
3554 		return -EINVAL;
3555 
3556 	/*
3557 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3558 	 * need only dereference our task private array to find it.
3559 	 */
3560 	if (flags & IORING_ENTER_REGISTERED_RING) {
3561 		struct io_uring_task *tctx = current->io_uring;
3562 
3563 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3564 			return -EINVAL;
3565 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3566 		f.file = tctx->registered_rings[fd];
3567 		f.flags = 0;
3568 		if (unlikely(!f.file))
3569 			return -EBADF;
3570 	} else {
3571 		f = fdget(fd);
3572 		if (unlikely(!f.file))
3573 			return -EBADF;
3574 		ret = -EOPNOTSUPP;
3575 		if (unlikely(!io_is_uring_fops(f.file)))
3576 			goto out;
3577 	}
3578 
3579 	ctx = f.file->private_data;
3580 	ret = -EBADFD;
3581 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3582 		goto out;
3583 
3584 	/*
3585 	 * For SQ polling, the thread will do all submissions and completions.
3586 	 * Just return the requested submit count, and wake the thread if
3587 	 * we were asked to.
3588 	 */
3589 	ret = 0;
3590 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3591 		io_cqring_overflow_flush(ctx);
3592 
3593 		if (unlikely(ctx->sq_data->thread == NULL)) {
3594 			ret = -EOWNERDEAD;
3595 			goto out;
3596 		}
3597 		if (flags & IORING_ENTER_SQ_WAKEUP)
3598 			wake_up(&ctx->sq_data->wait);
3599 		if (flags & IORING_ENTER_SQ_WAIT)
3600 			io_sqpoll_wait_sq(ctx);
3601 
3602 		ret = to_submit;
3603 	} else if (to_submit) {
3604 		ret = io_uring_add_tctx_node(ctx);
3605 		if (unlikely(ret))
3606 			goto out;
3607 
3608 		mutex_lock(&ctx->uring_lock);
3609 		ret = io_submit_sqes(ctx, to_submit);
3610 		if (ret != to_submit) {
3611 			mutex_unlock(&ctx->uring_lock);
3612 			goto out;
3613 		}
3614 		if (flags & IORING_ENTER_GETEVENTS) {
3615 			if (ctx->syscall_iopoll)
3616 				goto iopoll_locked;
3617 			/*
3618 			 * Ignore errors, we'll soon call io_cqring_wait() and
3619 			 * it should handle ownership problems if any.
3620 			 */
3621 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3622 				(void)io_run_local_work_locked(ctx);
3623 		}
3624 		mutex_unlock(&ctx->uring_lock);
3625 	}
3626 
3627 	if (flags & IORING_ENTER_GETEVENTS) {
3628 		int ret2;
3629 
3630 		if (ctx->syscall_iopoll) {
3631 			/*
3632 			 * We disallow the app entering submit/complete with
3633 			 * polling, but we still need to lock the ring to
3634 			 * prevent racing with polled issue that got punted to
3635 			 * a workqueue.
3636 			 */
3637 			mutex_lock(&ctx->uring_lock);
3638 iopoll_locked:
3639 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3640 			if (likely(!ret2)) {
3641 				min_complete = min(min_complete,
3642 						   ctx->cq_entries);
3643 				ret2 = io_iopoll_check(ctx, min_complete);
3644 			}
3645 			mutex_unlock(&ctx->uring_lock);
3646 		} else {
3647 			const sigset_t __user *sig;
3648 			struct __kernel_timespec __user *ts;
3649 
3650 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3651 			if (likely(!ret2)) {
3652 				min_complete = min(min_complete,
3653 						   ctx->cq_entries);
3654 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3655 						      argsz, ts);
3656 			}
3657 		}
3658 
3659 		if (!ret) {
3660 			ret = ret2;
3661 
3662 			/*
3663 			 * EBADR indicates that one or more CQE were dropped.
3664 			 * Once the user has been informed we can clear the bit
3665 			 * as they are obviously ok with those drops.
3666 			 */
3667 			if (unlikely(ret2 == -EBADR))
3668 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3669 					  &ctx->check_cq);
3670 		}
3671 	}
3672 out:
3673 	fdput(f);
3674 	return ret;
3675 }
3676 
3677 static const struct file_operations io_uring_fops = {
3678 	.release	= io_uring_release,
3679 	.mmap		= io_uring_mmap,
3680 #ifndef CONFIG_MMU
3681 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3682 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3683 #else
3684 	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3685 #endif
3686 	.poll		= io_uring_poll,
3687 #ifdef CONFIG_PROC_FS
3688 	.show_fdinfo	= io_uring_show_fdinfo,
3689 #endif
3690 };
3691 
3692 bool io_is_uring_fops(struct file *file)
3693 {
3694 	return file->f_op == &io_uring_fops;
3695 }
3696 
3697 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3698 					 struct io_uring_params *p)
3699 {
3700 	struct io_rings *rings;
3701 	size_t size, sq_array_offset;
3702 	void *ptr;
3703 
3704 	/* make sure these are sane, as we already accounted them */
3705 	ctx->sq_entries = p->sq_entries;
3706 	ctx->cq_entries = p->cq_entries;
3707 
3708 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3709 	if (size == SIZE_MAX)
3710 		return -EOVERFLOW;
3711 
3712 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3713 		rings = io_mem_alloc(size);
3714 	else
3715 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3716 
3717 	if (IS_ERR(rings))
3718 		return PTR_ERR(rings);
3719 
3720 	ctx->rings = rings;
3721 	ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3722 	rings->sq_ring_mask = p->sq_entries - 1;
3723 	rings->cq_ring_mask = p->cq_entries - 1;
3724 	rings->sq_ring_entries = p->sq_entries;
3725 	rings->cq_ring_entries = p->cq_entries;
3726 
3727 	if (p->flags & IORING_SETUP_SQE128)
3728 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3729 	else
3730 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3731 	if (size == SIZE_MAX) {
3732 		io_rings_free(ctx);
3733 		return -EOVERFLOW;
3734 	}
3735 
3736 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3737 		ptr = io_mem_alloc(size);
3738 	else
3739 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3740 
3741 	if (IS_ERR(ptr)) {
3742 		io_rings_free(ctx);
3743 		return PTR_ERR(ptr);
3744 	}
3745 
3746 	ctx->sq_sqes = ptr;
3747 	return 0;
3748 }
3749 
3750 static int io_uring_install_fd(struct file *file)
3751 {
3752 	int fd;
3753 
3754 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3755 	if (fd < 0)
3756 		return fd;
3757 	fd_install(fd, file);
3758 	return fd;
3759 }
3760 
3761 /*
3762  * Allocate an anonymous fd, this is what constitutes the application
3763  * visible backing of an io_uring instance. The application mmaps this
3764  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3765  * we have to tie this fd to a socket for file garbage collection purposes.
3766  */
3767 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3768 {
3769 	struct file *file;
3770 #if defined(CONFIG_UNIX)
3771 	int ret;
3772 
3773 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3774 				&ctx->ring_sock);
3775 	if (ret)
3776 		return ERR_PTR(ret);
3777 #endif
3778 
3779 	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3780 					 O_RDWR | O_CLOEXEC, NULL);
3781 #if defined(CONFIG_UNIX)
3782 	if (IS_ERR(file)) {
3783 		sock_release(ctx->ring_sock);
3784 		ctx->ring_sock = NULL;
3785 	} else {
3786 		ctx->ring_sock->file = file;
3787 	}
3788 #endif
3789 	return file;
3790 }
3791 
3792 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3793 				  struct io_uring_params __user *params)
3794 {
3795 	struct io_ring_ctx *ctx;
3796 	struct io_uring_task *tctx;
3797 	struct file *file;
3798 	int ret;
3799 
3800 	if (!entries)
3801 		return -EINVAL;
3802 	if (entries > IORING_MAX_ENTRIES) {
3803 		if (!(p->flags & IORING_SETUP_CLAMP))
3804 			return -EINVAL;
3805 		entries = IORING_MAX_ENTRIES;
3806 	}
3807 
3808 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3809 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3810 		return -EINVAL;
3811 
3812 	/*
3813 	 * Use twice as many entries for the CQ ring. It's possible for the
3814 	 * application to drive a higher depth than the size of the SQ ring,
3815 	 * since the sqes are only used at submission time. This allows for
3816 	 * some flexibility in overcommitting a bit. If the application has
3817 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3818 	 * of CQ ring entries manually.
3819 	 */
3820 	p->sq_entries = roundup_pow_of_two(entries);
3821 	if (p->flags & IORING_SETUP_CQSIZE) {
3822 		/*
3823 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3824 		 * to a power-of-two, if it isn't already. We do NOT impose
3825 		 * any cq vs sq ring sizing.
3826 		 */
3827 		if (!p->cq_entries)
3828 			return -EINVAL;
3829 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3830 			if (!(p->flags & IORING_SETUP_CLAMP))
3831 				return -EINVAL;
3832 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3833 		}
3834 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3835 		if (p->cq_entries < p->sq_entries)
3836 			return -EINVAL;
3837 	} else {
3838 		p->cq_entries = 2 * p->sq_entries;
3839 	}
3840 
3841 	ctx = io_ring_ctx_alloc(p);
3842 	if (!ctx)
3843 		return -ENOMEM;
3844 
3845 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3846 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3847 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3848 		ctx->task_complete = true;
3849 
3850 	/*
3851 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3852 	 * purposes, see io_activate_pollwq()
3853 	 */
3854 	if (!ctx->task_complete)
3855 		ctx->poll_activated = true;
3856 
3857 	/*
3858 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3859 	 * space applications don't need to do io completion events
3860 	 * polling again, they can rely on io_sq_thread to do polling
3861 	 * work, which can reduce cpu usage and uring_lock contention.
3862 	 */
3863 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3864 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3865 		ctx->syscall_iopoll = 1;
3866 
3867 	ctx->compat = in_compat_syscall();
3868 	if (!capable(CAP_IPC_LOCK))
3869 		ctx->user = get_uid(current_user());
3870 
3871 	/*
3872 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3873 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3874 	 */
3875 	ret = -EINVAL;
3876 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3877 		/* IPI related flags don't make sense with SQPOLL */
3878 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3879 				  IORING_SETUP_TASKRUN_FLAG |
3880 				  IORING_SETUP_DEFER_TASKRUN))
3881 			goto err;
3882 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3883 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3884 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3885 	} else {
3886 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3887 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3888 			goto err;
3889 		ctx->notify_method = TWA_SIGNAL;
3890 	}
3891 
3892 	/*
3893 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3894 	 * submission task. This implies that there is only one submitter, so enforce
3895 	 * that.
3896 	 */
3897 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3898 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3899 		goto err;
3900 	}
3901 
3902 	/*
3903 	 * This is just grabbed for accounting purposes. When a process exits,
3904 	 * the mm is exited and dropped before the files, hence we need to hang
3905 	 * on to this mm purely for the purposes of being able to unaccount
3906 	 * memory (locked/pinned vm). It's not used for anything else.
3907 	 */
3908 	mmgrab(current->mm);
3909 	ctx->mm_account = current->mm;
3910 
3911 	ret = io_allocate_scq_urings(ctx, p);
3912 	if (ret)
3913 		goto err;
3914 
3915 	ret = io_sq_offload_create(ctx, p);
3916 	if (ret)
3917 		goto err;
3918 
3919 	ret = io_rsrc_init(ctx);
3920 	if (ret)
3921 		goto err;
3922 
3923 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3924 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3925 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3926 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3927 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3928 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3929 	p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3930 	p->sq_off.resv1 = 0;
3931 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3932 		p->sq_off.user_addr = 0;
3933 
3934 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3935 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3936 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3937 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3938 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3939 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3940 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3941 	p->cq_off.resv1 = 0;
3942 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3943 		p->cq_off.user_addr = 0;
3944 
3945 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3946 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3947 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3948 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3949 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3950 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3951 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
3952 
3953 	if (copy_to_user(params, p, sizeof(*p))) {
3954 		ret = -EFAULT;
3955 		goto err;
3956 	}
3957 
3958 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3959 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3960 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3961 
3962 	file = io_uring_get_file(ctx);
3963 	if (IS_ERR(file)) {
3964 		ret = PTR_ERR(file);
3965 		goto err;
3966 	}
3967 
3968 	ret = __io_uring_add_tctx_node(ctx);
3969 	if (ret)
3970 		goto err_fput;
3971 	tctx = current->io_uring;
3972 
3973 	/*
3974 	 * Install ring fd as the very last thing, so we don't risk someone
3975 	 * having closed it before we finish setup
3976 	 */
3977 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3978 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3979 	else
3980 		ret = io_uring_install_fd(file);
3981 	if (ret < 0)
3982 		goto err_fput;
3983 
3984 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3985 	return ret;
3986 err:
3987 	io_ring_ctx_wait_and_kill(ctx);
3988 	return ret;
3989 err_fput:
3990 	fput(file);
3991 	return ret;
3992 }
3993 
3994 /*
3995  * Sets up an aio uring context, and returns the fd. Applications asks for a
3996  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3997  * params structure passed in.
3998  */
3999 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4000 {
4001 	struct io_uring_params p;
4002 	int i;
4003 
4004 	if (copy_from_user(&p, params, sizeof(p)))
4005 		return -EFAULT;
4006 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4007 		if (p.resv[i])
4008 			return -EINVAL;
4009 	}
4010 
4011 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4012 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4013 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4014 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4015 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4016 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4017 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4018 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY))
4019 		return -EINVAL;
4020 
4021 	return io_uring_create(entries, &p, params);
4022 }
4023 
4024 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4025 		struct io_uring_params __user *, params)
4026 {
4027 	return io_uring_setup(entries, params);
4028 }
4029 
4030 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4031 			   unsigned nr_args)
4032 {
4033 	struct io_uring_probe *p;
4034 	size_t size;
4035 	int i, ret;
4036 
4037 	size = struct_size(p, ops, nr_args);
4038 	if (size == SIZE_MAX)
4039 		return -EOVERFLOW;
4040 	p = kzalloc(size, GFP_KERNEL);
4041 	if (!p)
4042 		return -ENOMEM;
4043 
4044 	ret = -EFAULT;
4045 	if (copy_from_user(p, arg, size))
4046 		goto out;
4047 	ret = -EINVAL;
4048 	if (memchr_inv(p, 0, size))
4049 		goto out;
4050 
4051 	p->last_op = IORING_OP_LAST - 1;
4052 	if (nr_args > IORING_OP_LAST)
4053 		nr_args = IORING_OP_LAST;
4054 
4055 	for (i = 0; i < nr_args; i++) {
4056 		p->ops[i].op = i;
4057 		if (!io_issue_defs[i].not_supported)
4058 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
4059 	}
4060 	p->ops_len = i;
4061 
4062 	ret = 0;
4063 	if (copy_to_user(arg, p, size))
4064 		ret = -EFAULT;
4065 out:
4066 	kfree(p);
4067 	return ret;
4068 }
4069 
4070 static int io_register_personality(struct io_ring_ctx *ctx)
4071 {
4072 	const struct cred *creds;
4073 	u32 id;
4074 	int ret;
4075 
4076 	creds = get_current_cred();
4077 
4078 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4079 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4080 	if (ret < 0) {
4081 		put_cred(creds);
4082 		return ret;
4083 	}
4084 	return id;
4085 }
4086 
4087 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4088 					   void __user *arg, unsigned int nr_args)
4089 {
4090 	struct io_uring_restriction *res;
4091 	size_t size;
4092 	int i, ret;
4093 
4094 	/* Restrictions allowed only if rings started disabled */
4095 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4096 		return -EBADFD;
4097 
4098 	/* We allow only a single restrictions registration */
4099 	if (ctx->restrictions.registered)
4100 		return -EBUSY;
4101 
4102 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4103 		return -EINVAL;
4104 
4105 	size = array_size(nr_args, sizeof(*res));
4106 	if (size == SIZE_MAX)
4107 		return -EOVERFLOW;
4108 
4109 	res = memdup_user(arg, size);
4110 	if (IS_ERR(res))
4111 		return PTR_ERR(res);
4112 
4113 	ret = 0;
4114 
4115 	for (i = 0; i < nr_args; i++) {
4116 		switch (res[i].opcode) {
4117 		case IORING_RESTRICTION_REGISTER_OP:
4118 			if (res[i].register_op >= IORING_REGISTER_LAST) {
4119 				ret = -EINVAL;
4120 				goto out;
4121 			}
4122 
4123 			__set_bit(res[i].register_op,
4124 				  ctx->restrictions.register_op);
4125 			break;
4126 		case IORING_RESTRICTION_SQE_OP:
4127 			if (res[i].sqe_op >= IORING_OP_LAST) {
4128 				ret = -EINVAL;
4129 				goto out;
4130 			}
4131 
4132 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4133 			break;
4134 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4135 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4136 			break;
4137 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4138 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4139 			break;
4140 		default:
4141 			ret = -EINVAL;
4142 			goto out;
4143 		}
4144 	}
4145 
4146 out:
4147 	/* Reset all restrictions if an error happened */
4148 	if (ret != 0)
4149 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4150 	else
4151 		ctx->restrictions.registered = true;
4152 
4153 	kfree(res);
4154 	return ret;
4155 }
4156 
4157 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4158 {
4159 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4160 		return -EBADFD;
4161 
4162 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4163 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4164 		/*
4165 		 * Lazy activation attempts would fail if it was polled before
4166 		 * submitter_task is set.
4167 		 */
4168 		if (wq_has_sleeper(&ctx->poll_wq))
4169 			io_activate_pollwq(ctx);
4170 	}
4171 
4172 	if (ctx->restrictions.registered)
4173 		ctx->restricted = 1;
4174 
4175 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
4176 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4177 		wake_up(&ctx->sq_data->wait);
4178 	return 0;
4179 }
4180 
4181 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4182 				       void __user *arg, unsigned len)
4183 {
4184 	struct io_uring_task *tctx = current->io_uring;
4185 	cpumask_var_t new_mask;
4186 	int ret;
4187 
4188 	if (!tctx || !tctx->io_wq)
4189 		return -EINVAL;
4190 
4191 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4192 		return -ENOMEM;
4193 
4194 	cpumask_clear(new_mask);
4195 	if (len > cpumask_size())
4196 		len = cpumask_size();
4197 
4198 	if (in_compat_syscall()) {
4199 		ret = compat_get_bitmap(cpumask_bits(new_mask),
4200 					(const compat_ulong_t __user *)arg,
4201 					len * 8 /* CHAR_BIT */);
4202 	} else {
4203 		ret = copy_from_user(new_mask, arg, len);
4204 	}
4205 
4206 	if (ret) {
4207 		free_cpumask_var(new_mask);
4208 		return -EFAULT;
4209 	}
4210 
4211 	ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
4212 	free_cpumask_var(new_mask);
4213 	return ret;
4214 }
4215 
4216 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4217 {
4218 	struct io_uring_task *tctx = current->io_uring;
4219 
4220 	if (!tctx || !tctx->io_wq)
4221 		return -EINVAL;
4222 
4223 	return io_wq_cpu_affinity(tctx->io_wq, NULL);
4224 }
4225 
4226 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4227 					       void __user *arg)
4228 	__must_hold(&ctx->uring_lock)
4229 {
4230 	struct io_tctx_node *node;
4231 	struct io_uring_task *tctx = NULL;
4232 	struct io_sq_data *sqd = NULL;
4233 	__u32 new_count[2];
4234 	int i, ret;
4235 
4236 	if (copy_from_user(new_count, arg, sizeof(new_count)))
4237 		return -EFAULT;
4238 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4239 		if (new_count[i] > INT_MAX)
4240 			return -EINVAL;
4241 
4242 	if (ctx->flags & IORING_SETUP_SQPOLL) {
4243 		sqd = ctx->sq_data;
4244 		if (sqd) {
4245 			/*
4246 			 * Observe the correct sqd->lock -> ctx->uring_lock
4247 			 * ordering. Fine to drop uring_lock here, we hold
4248 			 * a ref to the ctx.
4249 			 */
4250 			refcount_inc(&sqd->refs);
4251 			mutex_unlock(&ctx->uring_lock);
4252 			mutex_lock(&sqd->lock);
4253 			mutex_lock(&ctx->uring_lock);
4254 			if (sqd->thread)
4255 				tctx = sqd->thread->io_uring;
4256 		}
4257 	} else {
4258 		tctx = current->io_uring;
4259 	}
4260 
4261 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4262 
4263 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4264 		if (new_count[i])
4265 			ctx->iowq_limits[i] = new_count[i];
4266 	ctx->iowq_limits_set = true;
4267 
4268 	if (tctx && tctx->io_wq) {
4269 		ret = io_wq_max_workers(tctx->io_wq, new_count);
4270 		if (ret)
4271 			goto err;
4272 	} else {
4273 		memset(new_count, 0, sizeof(new_count));
4274 	}
4275 
4276 	if (sqd) {
4277 		mutex_unlock(&sqd->lock);
4278 		io_put_sq_data(sqd);
4279 	}
4280 
4281 	if (copy_to_user(arg, new_count, sizeof(new_count)))
4282 		return -EFAULT;
4283 
4284 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
4285 	if (sqd)
4286 		return 0;
4287 
4288 	/* now propagate the restriction to all registered users */
4289 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4290 		struct io_uring_task *tctx = node->task->io_uring;
4291 
4292 		if (WARN_ON_ONCE(!tctx->io_wq))
4293 			continue;
4294 
4295 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
4296 			new_count[i] = ctx->iowq_limits[i];
4297 		/* ignore errors, it always returns zero anyway */
4298 		(void)io_wq_max_workers(tctx->io_wq, new_count);
4299 	}
4300 	return 0;
4301 err:
4302 	if (sqd) {
4303 		mutex_unlock(&sqd->lock);
4304 		io_put_sq_data(sqd);
4305 	}
4306 	return ret;
4307 }
4308 
4309 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4310 			       void __user *arg, unsigned nr_args)
4311 	__releases(ctx->uring_lock)
4312 	__acquires(ctx->uring_lock)
4313 {
4314 	int ret;
4315 
4316 	/*
4317 	 * We don't quiesce the refs for register anymore and so it can't be
4318 	 * dying as we're holding a file ref here.
4319 	 */
4320 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4321 		return -ENXIO;
4322 
4323 	if (ctx->submitter_task && ctx->submitter_task != current)
4324 		return -EEXIST;
4325 
4326 	if (ctx->restricted) {
4327 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4328 		if (!test_bit(opcode, ctx->restrictions.register_op))
4329 			return -EACCES;
4330 	}
4331 
4332 	switch (opcode) {
4333 	case IORING_REGISTER_BUFFERS:
4334 		ret = -EFAULT;
4335 		if (!arg)
4336 			break;
4337 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4338 		break;
4339 	case IORING_UNREGISTER_BUFFERS:
4340 		ret = -EINVAL;
4341 		if (arg || nr_args)
4342 			break;
4343 		ret = io_sqe_buffers_unregister(ctx);
4344 		break;
4345 	case IORING_REGISTER_FILES:
4346 		ret = -EFAULT;
4347 		if (!arg)
4348 			break;
4349 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4350 		break;
4351 	case IORING_UNREGISTER_FILES:
4352 		ret = -EINVAL;
4353 		if (arg || nr_args)
4354 			break;
4355 		ret = io_sqe_files_unregister(ctx);
4356 		break;
4357 	case IORING_REGISTER_FILES_UPDATE:
4358 		ret = io_register_files_update(ctx, arg, nr_args);
4359 		break;
4360 	case IORING_REGISTER_EVENTFD:
4361 		ret = -EINVAL;
4362 		if (nr_args != 1)
4363 			break;
4364 		ret = io_eventfd_register(ctx, arg, 0);
4365 		break;
4366 	case IORING_REGISTER_EVENTFD_ASYNC:
4367 		ret = -EINVAL;
4368 		if (nr_args != 1)
4369 			break;
4370 		ret = io_eventfd_register(ctx, arg, 1);
4371 		break;
4372 	case IORING_UNREGISTER_EVENTFD:
4373 		ret = -EINVAL;
4374 		if (arg || nr_args)
4375 			break;
4376 		ret = io_eventfd_unregister(ctx);
4377 		break;
4378 	case IORING_REGISTER_PROBE:
4379 		ret = -EINVAL;
4380 		if (!arg || nr_args > 256)
4381 			break;
4382 		ret = io_probe(ctx, arg, nr_args);
4383 		break;
4384 	case IORING_REGISTER_PERSONALITY:
4385 		ret = -EINVAL;
4386 		if (arg || nr_args)
4387 			break;
4388 		ret = io_register_personality(ctx);
4389 		break;
4390 	case IORING_UNREGISTER_PERSONALITY:
4391 		ret = -EINVAL;
4392 		if (arg)
4393 			break;
4394 		ret = io_unregister_personality(ctx, nr_args);
4395 		break;
4396 	case IORING_REGISTER_ENABLE_RINGS:
4397 		ret = -EINVAL;
4398 		if (arg || nr_args)
4399 			break;
4400 		ret = io_register_enable_rings(ctx);
4401 		break;
4402 	case IORING_REGISTER_RESTRICTIONS:
4403 		ret = io_register_restrictions(ctx, arg, nr_args);
4404 		break;
4405 	case IORING_REGISTER_FILES2:
4406 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4407 		break;
4408 	case IORING_REGISTER_FILES_UPDATE2:
4409 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4410 					      IORING_RSRC_FILE);
4411 		break;
4412 	case IORING_REGISTER_BUFFERS2:
4413 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4414 		break;
4415 	case IORING_REGISTER_BUFFERS_UPDATE:
4416 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4417 					      IORING_RSRC_BUFFER);
4418 		break;
4419 	case IORING_REGISTER_IOWQ_AFF:
4420 		ret = -EINVAL;
4421 		if (!arg || !nr_args)
4422 			break;
4423 		ret = io_register_iowq_aff(ctx, arg, nr_args);
4424 		break;
4425 	case IORING_UNREGISTER_IOWQ_AFF:
4426 		ret = -EINVAL;
4427 		if (arg || nr_args)
4428 			break;
4429 		ret = io_unregister_iowq_aff(ctx);
4430 		break;
4431 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4432 		ret = -EINVAL;
4433 		if (!arg || nr_args != 2)
4434 			break;
4435 		ret = io_register_iowq_max_workers(ctx, arg);
4436 		break;
4437 	case IORING_REGISTER_RING_FDS:
4438 		ret = io_ringfd_register(ctx, arg, nr_args);
4439 		break;
4440 	case IORING_UNREGISTER_RING_FDS:
4441 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4442 		break;
4443 	case IORING_REGISTER_PBUF_RING:
4444 		ret = -EINVAL;
4445 		if (!arg || nr_args != 1)
4446 			break;
4447 		ret = io_register_pbuf_ring(ctx, arg);
4448 		break;
4449 	case IORING_UNREGISTER_PBUF_RING:
4450 		ret = -EINVAL;
4451 		if (!arg || nr_args != 1)
4452 			break;
4453 		ret = io_unregister_pbuf_ring(ctx, arg);
4454 		break;
4455 	case IORING_REGISTER_SYNC_CANCEL:
4456 		ret = -EINVAL;
4457 		if (!arg || nr_args != 1)
4458 			break;
4459 		ret = io_sync_cancel(ctx, arg);
4460 		break;
4461 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4462 		ret = -EINVAL;
4463 		if (!arg || nr_args)
4464 			break;
4465 		ret = io_register_file_alloc_range(ctx, arg);
4466 		break;
4467 	default:
4468 		ret = -EINVAL;
4469 		break;
4470 	}
4471 
4472 	return ret;
4473 }
4474 
4475 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4476 		void __user *, arg, unsigned int, nr_args)
4477 {
4478 	struct io_ring_ctx *ctx;
4479 	long ret = -EBADF;
4480 	struct fd f;
4481 	bool use_registered_ring;
4482 
4483 	use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4484 	opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4485 
4486 	if (opcode >= IORING_REGISTER_LAST)
4487 		return -EINVAL;
4488 
4489 	if (use_registered_ring) {
4490 		/*
4491 		 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4492 		 * need only dereference our task private array to find it.
4493 		 */
4494 		struct io_uring_task *tctx = current->io_uring;
4495 
4496 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4497 			return -EINVAL;
4498 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4499 		f.file = tctx->registered_rings[fd];
4500 		f.flags = 0;
4501 		if (unlikely(!f.file))
4502 			return -EBADF;
4503 	} else {
4504 		f = fdget(fd);
4505 		if (unlikely(!f.file))
4506 			return -EBADF;
4507 		ret = -EOPNOTSUPP;
4508 		if (!io_is_uring_fops(f.file))
4509 			goto out_fput;
4510 	}
4511 
4512 	ctx = f.file->private_data;
4513 
4514 	mutex_lock(&ctx->uring_lock);
4515 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4516 	mutex_unlock(&ctx->uring_lock);
4517 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4518 out_fput:
4519 	fdput(f);
4520 	return ret;
4521 }
4522 
4523 static int __init io_uring_init(void)
4524 {
4525 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4526 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4527 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4528 } while (0)
4529 
4530 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4531 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4532 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4533 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4534 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4535 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4536 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4537 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4538 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4539 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4540 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4541 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4542 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4543 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4544 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4545 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4546 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4547 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4548 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4549 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4550 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4551 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4552 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4553 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4554 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4555 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4556 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4557 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4558 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4559 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4560 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4561 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4562 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4563 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4564 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4565 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4566 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4567 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4568 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4569 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4570 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4571 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4572 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4573 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4574 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4575 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4576 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4577 
4578 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4579 		     sizeof(struct io_uring_rsrc_update));
4580 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4581 		     sizeof(struct io_uring_rsrc_update2));
4582 
4583 	/* ->buf_index is u16 */
4584 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4585 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4586 		     offsetof(struct io_uring_buf_ring, tail));
4587 
4588 	/* should fit into one byte */
4589 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4590 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4591 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4592 
4593 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4594 
4595 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4596 
4597 	io_uring_optable_init();
4598 
4599 	req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4600 				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU);
4601 	return 0;
4602 };
4603 __initcall(io_uring_init);
4604