xref: /openbmc/linux/io_uring/io_uring.c (revision 27e45f2e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/io_uring.h>
78 
79 #include <uapi/linux/io_uring.h>
80 
81 #include "io-wq.h"
82 
83 #include "io_uring.h"
84 #include "opdef.h"
85 #include "refs.h"
86 #include "tctx.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 
95 #include "timeout.h"
96 #include "poll.h"
97 #include "alloc_cache.h"
98 
99 #define IORING_MAX_ENTRIES	32768
100 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
101 
102 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
103 				 IORING_REGISTER_LAST + IORING_OP_LAST)
104 
105 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
106 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
107 
108 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
109 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
110 
111 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
112 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
113 				REQ_F_ASYNC_DATA)
114 
115 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
116 				 IO_REQ_CLEAN_FLAGS)
117 
118 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
119 
120 #define IO_COMPL_BATCH			32
121 #define IO_REQ_ALLOC_BATCH		8
122 
123 enum {
124 	IO_CHECK_CQ_OVERFLOW_BIT,
125 	IO_CHECK_CQ_DROPPED_BIT,
126 };
127 
128 enum {
129 	IO_EVENTFD_OP_SIGNAL_BIT,
130 	IO_EVENTFD_OP_FREE_BIT,
131 };
132 
133 struct io_defer_entry {
134 	struct list_head	list;
135 	struct io_kiocb		*req;
136 	u32			seq;
137 };
138 
139 /* requests with any of those set should undergo io_disarm_next() */
140 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
141 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
142 
143 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
144 					 struct task_struct *task,
145 					 bool cancel_all);
146 
147 static void io_dismantle_req(struct io_kiocb *req);
148 static void io_clean_op(struct io_kiocb *req);
149 static void io_queue_sqe(struct io_kiocb *req);
150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx);
151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
152 static __cold void io_fallback_tw(struct io_uring_task *tctx);
153 
154 static struct kmem_cache *req_cachep;
155 
156 struct sock *io_uring_get_socket(struct file *file)
157 {
158 #if defined(CONFIG_UNIX)
159 	if (io_is_uring_fops(file)) {
160 		struct io_ring_ctx *ctx = file->private_data;
161 
162 		return ctx->ring_sock->sk;
163 	}
164 #endif
165 	return NULL;
166 }
167 EXPORT_SYMBOL(io_uring_get_socket);
168 
169 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
170 {
171 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
172 	    ctx->submit_state.cqes_count)
173 		__io_submit_flush_completions(ctx);
174 }
175 
176 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
177 {
178 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
179 }
180 
181 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
182 {
183 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
184 }
185 
186 static bool io_match_linked(struct io_kiocb *head)
187 {
188 	struct io_kiocb *req;
189 
190 	io_for_each_link(req, head) {
191 		if (req->flags & REQ_F_INFLIGHT)
192 			return true;
193 	}
194 	return false;
195 }
196 
197 /*
198  * As io_match_task() but protected against racing with linked timeouts.
199  * User must not hold timeout_lock.
200  */
201 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
202 			bool cancel_all)
203 {
204 	bool matched;
205 
206 	if (task && head->task != task)
207 		return false;
208 	if (cancel_all)
209 		return true;
210 
211 	if (head->flags & REQ_F_LINK_TIMEOUT) {
212 		struct io_ring_ctx *ctx = head->ctx;
213 
214 		/* protect against races with linked timeouts */
215 		spin_lock_irq(&ctx->timeout_lock);
216 		matched = io_match_linked(head);
217 		spin_unlock_irq(&ctx->timeout_lock);
218 	} else {
219 		matched = io_match_linked(head);
220 	}
221 	return matched;
222 }
223 
224 static inline void req_fail_link_node(struct io_kiocb *req, int res)
225 {
226 	req_set_fail(req);
227 	io_req_set_res(req, res, 0);
228 }
229 
230 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
231 {
232 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
233 }
234 
235 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
236 {
237 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
238 
239 	complete(&ctx->ref_comp);
240 }
241 
242 static __cold void io_fallback_req_func(struct work_struct *work)
243 {
244 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
245 						fallback_work.work);
246 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
247 	struct io_kiocb *req, *tmp;
248 	bool locked = false;
249 
250 	percpu_ref_get(&ctx->refs);
251 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
252 		req->io_task_work.func(req, &locked);
253 
254 	if (locked) {
255 		io_submit_flush_completions(ctx);
256 		mutex_unlock(&ctx->uring_lock);
257 	}
258 	percpu_ref_put(&ctx->refs);
259 }
260 
261 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
262 {
263 	unsigned hash_buckets = 1U << bits;
264 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
265 
266 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
267 	if (!table->hbs)
268 		return -ENOMEM;
269 
270 	table->hash_bits = bits;
271 	init_hash_table(table, hash_buckets);
272 	return 0;
273 }
274 
275 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
276 {
277 	struct io_ring_ctx *ctx;
278 	int hash_bits;
279 
280 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
281 	if (!ctx)
282 		return NULL;
283 
284 	xa_init(&ctx->io_bl_xa);
285 
286 	/*
287 	 * Use 5 bits less than the max cq entries, that should give us around
288 	 * 32 entries per hash list if totally full and uniformly spread, but
289 	 * don't keep too many buckets to not overconsume memory.
290 	 */
291 	hash_bits = ilog2(p->cq_entries) - 5;
292 	hash_bits = clamp(hash_bits, 1, 8);
293 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
294 		goto err;
295 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
296 		goto err;
297 
298 	ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
299 	if (!ctx->dummy_ubuf)
300 		goto err;
301 	/* set invalid range, so io_import_fixed() fails meeting it */
302 	ctx->dummy_ubuf->ubuf = -1UL;
303 
304 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
305 			    0, GFP_KERNEL))
306 		goto err;
307 
308 	ctx->flags = p->flags;
309 	init_waitqueue_head(&ctx->sqo_sq_wait);
310 	INIT_LIST_HEAD(&ctx->sqd_list);
311 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
312 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
313 	io_alloc_cache_init(&ctx->apoll_cache);
314 	io_alloc_cache_init(&ctx->netmsg_cache);
315 	init_completion(&ctx->ref_comp);
316 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
317 	mutex_init(&ctx->uring_lock);
318 	init_waitqueue_head(&ctx->cq_wait);
319 	spin_lock_init(&ctx->completion_lock);
320 	spin_lock_init(&ctx->timeout_lock);
321 	INIT_WQ_LIST(&ctx->iopoll_list);
322 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
323 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
324 	INIT_LIST_HEAD(&ctx->defer_list);
325 	INIT_LIST_HEAD(&ctx->timeout_list);
326 	INIT_LIST_HEAD(&ctx->ltimeout_list);
327 	spin_lock_init(&ctx->rsrc_ref_lock);
328 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
329 	INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
330 	init_task_work(&ctx->rsrc_put_tw, io_rsrc_put_tw);
331 	init_llist_head(&ctx->rsrc_put_llist);
332 	init_llist_head(&ctx->work_llist);
333 	INIT_LIST_HEAD(&ctx->tctx_list);
334 	ctx->submit_state.free_list.next = NULL;
335 	INIT_WQ_LIST(&ctx->locked_free_list);
336 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
337 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
338 	return ctx;
339 err:
340 	kfree(ctx->dummy_ubuf);
341 	kfree(ctx->cancel_table.hbs);
342 	kfree(ctx->cancel_table_locked.hbs);
343 	kfree(ctx->io_bl);
344 	xa_destroy(&ctx->io_bl_xa);
345 	kfree(ctx);
346 	return NULL;
347 }
348 
349 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
350 {
351 	struct io_rings *r = ctx->rings;
352 
353 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
354 	ctx->cq_extra--;
355 }
356 
357 static bool req_need_defer(struct io_kiocb *req, u32 seq)
358 {
359 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
360 		struct io_ring_ctx *ctx = req->ctx;
361 
362 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
363 	}
364 
365 	return false;
366 }
367 
368 static inline void io_req_track_inflight(struct io_kiocb *req)
369 {
370 	if (!(req->flags & REQ_F_INFLIGHT)) {
371 		req->flags |= REQ_F_INFLIGHT;
372 		atomic_inc(&req->task->io_uring->inflight_tracked);
373 	}
374 }
375 
376 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
377 {
378 	if (WARN_ON_ONCE(!req->link))
379 		return NULL;
380 
381 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
382 	req->flags |= REQ_F_LINK_TIMEOUT;
383 
384 	/* linked timeouts should have two refs once prep'ed */
385 	io_req_set_refcount(req);
386 	__io_req_set_refcount(req->link, 2);
387 	return req->link;
388 }
389 
390 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
391 {
392 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
393 		return NULL;
394 	return __io_prep_linked_timeout(req);
395 }
396 
397 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
398 {
399 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
400 }
401 
402 static inline void io_arm_ltimeout(struct io_kiocb *req)
403 {
404 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
405 		__io_arm_ltimeout(req);
406 }
407 
408 static void io_prep_async_work(struct io_kiocb *req)
409 {
410 	const struct io_op_def *def = &io_op_defs[req->opcode];
411 	struct io_ring_ctx *ctx = req->ctx;
412 
413 	if (!(req->flags & REQ_F_CREDS)) {
414 		req->flags |= REQ_F_CREDS;
415 		req->creds = get_current_cred();
416 	}
417 
418 	req->work.list.next = NULL;
419 	req->work.flags = 0;
420 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
421 	if (req->flags & REQ_F_FORCE_ASYNC)
422 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
423 
424 	if (req->file && !io_req_ffs_set(req))
425 		req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT;
426 
427 	if (req->flags & REQ_F_ISREG) {
428 		if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
429 			io_wq_hash_work(&req->work, file_inode(req->file));
430 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
431 		if (def->unbound_nonreg_file)
432 			req->work.flags |= IO_WQ_WORK_UNBOUND;
433 	}
434 }
435 
436 static void io_prep_async_link(struct io_kiocb *req)
437 {
438 	struct io_kiocb *cur;
439 
440 	if (req->flags & REQ_F_LINK_TIMEOUT) {
441 		struct io_ring_ctx *ctx = req->ctx;
442 
443 		spin_lock_irq(&ctx->timeout_lock);
444 		io_for_each_link(cur, req)
445 			io_prep_async_work(cur);
446 		spin_unlock_irq(&ctx->timeout_lock);
447 	} else {
448 		io_for_each_link(cur, req)
449 			io_prep_async_work(cur);
450 	}
451 }
452 
453 void io_queue_iowq(struct io_kiocb *req, bool *dont_use)
454 {
455 	struct io_kiocb *link = io_prep_linked_timeout(req);
456 	struct io_uring_task *tctx = req->task->io_uring;
457 
458 	BUG_ON(!tctx);
459 	BUG_ON(!tctx->io_wq);
460 
461 	/* init ->work of the whole link before punting */
462 	io_prep_async_link(req);
463 
464 	/*
465 	 * Not expected to happen, but if we do have a bug where this _can_
466 	 * happen, catch it here and ensure the request is marked as
467 	 * canceled. That will make io-wq go through the usual work cancel
468 	 * procedure rather than attempt to run this request (or create a new
469 	 * worker for it).
470 	 */
471 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
472 		req->work.flags |= IO_WQ_WORK_CANCEL;
473 
474 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
475 	io_wq_enqueue(tctx->io_wq, &req->work);
476 	if (link)
477 		io_queue_linked_timeout(link);
478 }
479 
480 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
481 {
482 	while (!list_empty(&ctx->defer_list)) {
483 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
484 						struct io_defer_entry, list);
485 
486 		if (req_need_defer(de->req, de->seq))
487 			break;
488 		list_del_init(&de->list);
489 		io_req_task_queue(de->req);
490 		kfree(de);
491 	}
492 }
493 
494 
495 static void io_eventfd_ops(struct rcu_head *rcu)
496 {
497 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
498 	int ops = atomic_xchg(&ev_fd->ops, 0);
499 
500 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
501 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
502 
503 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
504 	 * ordering in a race but if references are 0 we know we have to free
505 	 * it regardless.
506 	 */
507 	if (atomic_dec_and_test(&ev_fd->refs)) {
508 		eventfd_ctx_put(ev_fd->cq_ev_fd);
509 		kfree(ev_fd);
510 	}
511 }
512 
513 static void io_eventfd_signal(struct io_ring_ctx *ctx)
514 {
515 	struct io_ev_fd *ev_fd = NULL;
516 
517 	rcu_read_lock();
518 	/*
519 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
520 	 * and eventfd_signal
521 	 */
522 	ev_fd = rcu_dereference(ctx->io_ev_fd);
523 
524 	/*
525 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
526 	 * completed between the NULL check of ctx->io_ev_fd at the start of
527 	 * the function and rcu_read_lock.
528 	 */
529 	if (unlikely(!ev_fd))
530 		goto out;
531 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
532 		goto out;
533 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
534 		goto out;
535 
536 	if (likely(eventfd_signal_allowed())) {
537 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
538 	} else {
539 		atomic_inc(&ev_fd->refs);
540 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
541 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
542 		else
543 			atomic_dec(&ev_fd->refs);
544 	}
545 
546 out:
547 	rcu_read_unlock();
548 }
549 
550 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
551 {
552 	bool skip;
553 
554 	spin_lock(&ctx->completion_lock);
555 
556 	/*
557 	 * Eventfd should only get triggered when at least one event has been
558 	 * posted. Some applications rely on the eventfd notification count
559 	 * only changing IFF a new CQE has been added to the CQ ring. There's
560 	 * no depedency on 1:1 relationship between how many times this
561 	 * function is called (and hence the eventfd count) and number of CQEs
562 	 * posted to the CQ ring.
563 	 */
564 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
565 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
566 	spin_unlock(&ctx->completion_lock);
567 	if (skip)
568 		return;
569 
570 	io_eventfd_signal(ctx);
571 }
572 
573 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
574 {
575 	if (ctx->off_timeout_used)
576 		io_flush_timeouts(ctx);
577 	if (ctx->drain_active) {
578 		spin_lock(&ctx->completion_lock);
579 		io_queue_deferred(ctx);
580 		spin_unlock(&ctx->completion_lock);
581 	}
582 	if (ctx->has_evfd)
583 		io_eventfd_flush_signal(ctx);
584 }
585 
586 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
587 	__acquires(ctx->completion_lock)
588 {
589 	if (!ctx->task_complete)
590 		spin_lock(&ctx->completion_lock);
591 }
592 
593 static inline void __io_cq_unlock(struct io_ring_ctx *ctx)
594 {
595 	if (!ctx->task_complete)
596 		spin_unlock(&ctx->completion_lock);
597 }
598 
599 static inline void io_cq_lock(struct io_ring_ctx *ctx)
600 	__acquires(ctx->completion_lock)
601 {
602 	spin_lock(&ctx->completion_lock);
603 }
604 
605 static inline void io_cq_unlock(struct io_ring_ctx *ctx)
606 	__releases(ctx->completion_lock)
607 {
608 	spin_unlock(&ctx->completion_lock);
609 }
610 
611 /* keep it inlined for io_submit_flush_completions() */
612 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
613 	__releases(ctx->completion_lock)
614 {
615 	io_commit_cqring(ctx);
616 	__io_cq_unlock(ctx);
617 	io_commit_cqring_flush(ctx);
618 	io_cqring_wake(ctx);
619 }
620 
621 void io_cq_unlock_post(struct io_ring_ctx *ctx)
622 	__releases(ctx->completion_lock)
623 {
624 	io_commit_cqring(ctx);
625 	spin_unlock(&ctx->completion_lock);
626 	io_commit_cqring_flush(ctx);
627 	io_cqring_wake(ctx);
628 }
629 
630 /* Returns true if there are no backlogged entries after the flush */
631 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
632 {
633 	struct io_overflow_cqe *ocqe;
634 	LIST_HEAD(list);
635 
636 	io_cq_lock(ctx);
637 	list_splice_init(&ctx->cq_overflow_list, &list);
638 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
639 	io_cq_unlock(ctx);
640 
641 	while (!list_empty(&list)) {
642 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
643 		list_del(&ocqe->list);
644 		kfree(ocqe);
645 	}
646 }
647 
648 /* Returns true if there are no backlogged entries after the flush */
649 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
650 {
651 	size_t cqe_size = sizeof(struct io_uring_cqe);
652 
653 	if (__io_cqring_events(ctx) == ctx->cq_entries)
654 		return;
655 
656 	if (ctx->flags & IORING_SETUP_CQE32)
657 		cqe_size <<= 1;
658 
659 	io_cq_lock(ctx);
660 	while (!list_empty(&ctx->cq_overflow_list)) {
661 		struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true);
662 		struct io_overflow_cqe *ocqe;
663 
664 		if (!cqe)
665 			break;
666 		ocqe = list_first_entry(&ctx->cq_overflow_list,
667 					struct io_overflow_cqe, list);
668 		memcpy(cqe, &ocqe->cqe, cqe_size);
669 		list_del(&ocqe->list);
670 		kfree(ocqe);
671 	}
672 
673 	if (list_empty(&ctx->cq_overflow_list)) {
674 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
675 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
676 	}
677 	io_cq_unlock_post(ctx);
678 }
679 
680 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
681 {
682 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
683 		/* iopoll syncs against uring_lock, not completion_lock */
684 		if (ctx->flags & IORING_SETUP_IOPOLL)
685 			mutex_lock(&ctx->uring_lock);
686 		__io_cqring_overflow_flush(ctx);
687 		if (ctx->flags & IORING_SETUP_IOPOLL)
688 			mutex_unlock(&ctx->uring_lock);
689 	}
690 }
691 
692 void __io_put_task(struct task_struct *task, int nr)
693 {
694 	struct io_uring_task *tctx = task->io_uring;
695 
696 	percpu_counter_sub(&tctx->inflight, nr);
697 	if (unlikely(atomic_read(&tctx->in_idle)))
698 		wake_up(&tctx->wait);
699 	put_task_struct_many(task, nr);
700 }
701 
702 void io_task_refs_refill(struct io_uring_task *tctx)
703 {
704 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
705 
706 	percpu_counter_add(&tctx->inflight, refill);
707 	refcount_add(refill, &current->usage);
708 	tctx->cached_refs += refill;
709 }
710 
711 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
712 {
713 	struct io_uring_task *tctx = task->io_uring;
714 	unsigned int refs = tctx->cached_refs;
715 
716 	if (refs) {
717 		tctx->cached_refs = 0;
718 		percpu_counter_sub(&tctx->inflight, refs);
719 		put_task_struct_many(task, refs);
720 	}
721 }
722 
723 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
724 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
725 {
726 	struct io_overflow_cqe *ocqe;
727 	size_t ocq_size = sizeof(struct io_overflow_cqe);
728 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
729 
730 	if (is_cqe32)
731 		ocq_size += sizeof(struct io_uring_cqe);
732 
733 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
734 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
735 	if (!ocqe) {
736 		/*
737 		 * If we're in ring overflow flush mode, or in task cancel mode,
738 		 * or cannot allocate an overflow entry, then we need to drop it
739 		 * on the floor.
740 		 */
741 		io_account_cq_overflow(ctx);
742 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
743 		return false;
744 	}
745 	if (list_empty(&ctx->cq_overflow_list)) {
746 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
747 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
748 
749 	}
750 	ocqe->cqe.user_data = user_data;
751 	ocqe->cqe.res = res;
752 	ocqe->cqe.flags = cflags;
753 	if (is_cqe32) {
754 		ocqe->cqe.big_cqe[0] = extra1;
755 		ocqe->cqe.big_cqe[1] = extra2;
756 	}
757 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
758 	return true;
759 }
760 
761 bool io_req_cqe_overflow(struct io_kiocb *req)
762 {
763 	if (!(req->flags & REQ_F_CQE32_INIT)) {
764 		req->extra1 = 0;
765 		req->extra2 = 0;
766 	}
767 	return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
768 					req->cqe.res, req->cqe.flags,
769 					req->extra1, req->extra2);
770 }
771 
772 /*
773  * writes to the cq entry need to come after reading head; the
774  * control dependency is enough as we're using WRITE_ONCE to
775  * fill the cq entry
776  */
777 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow)
778 {
779 	struct io_rings *rings = ctx->rings;
780 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
781 	unsigned int free, queued, len;
782 
783 	/*
784 	 * Posting into the CQ when there are pending overflowed CQEs may break
785 	 * ordering guarantees, which will affect links, F_MORE users and more.
786 	 * Force overflow the completion.
787 	 */
788 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
789 		return NULL;
790 
791 	/* userspace may cheat modifying the tail, be safe and do min */
792 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
793 	free = ctx->cq_entries - queued;
794 	/* we need a contiguous range, limit based on the current array offset */
795 	len = min(free, ctx->cq_entries - off);
796 	if (!len)
797 		return NULL;
798 
799 	if (ctx->flags & IORING_SETUP_CQE32) {
800 		off <<= 1;
801 		len <<= 1;
802 	}
803 
804 	ctx->cqe_cached = &rings->cqes[off];
805 	ctx->cqe_sentinel = ctx->cqe_cached + len;
806 
807 	ctx->cached_cq_tail++;
808 	ctx->cqe_cached++;
809 	if (ctx->flags & IORING_SETUP_CQE32)
810 		ctx->cqe_cached++;
811 	return &rings->cqes[off];
812 }
813 
814 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
815 			      u32 cflags)
816 {
817 	struct io_uring_cqe *cqe;
818 
819 	if (!ctx->task_complete)
820 		lockdep_assert_held(&ctx->completion_lock);
821 
822 	ctx->cq_extra++;
823 
824 	/*
825 	 * If we can't get a cq entry, userspace overflowed the
826 	 * submission (by quite a lot). Increment the overflow count in
827 	 * the ring.
828 	 */
829 	cqe = io_get_cqe(ctx);
830 	if (likely(cqe)) {
831 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
832 
833 		WRITE_ONCE(cqe->user_data, user_data);
834 		WRITE_ONCE(cqe->res, res);
835 		WRITE_ONCE(cqe->flags, cflags);
836 
837 		if (ctx->flags & IORING_SETUP_CQE32) {
838 			WRITE_ONCE(cqe->big_cqe[0], 0);
839 			WRITE_ONCE(cqe->big_cqe[1], 0);
840 		}
841 		return true;
842 	}
843 	return false;
844 }
845 
846 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
847 	__must_hold(&ctx->uring_lock)
848 {
849 	struct io_submit_state *state = &ctx->submit_state;
850 	unsigned int i;
851 
852 	lockdep_assert_held(&ctx->uring_lock);
853 	for (i = 0; i < state->cqes_count; i++) {
854 		struct io_uring_cqe *cqe = &state->cqes[i];
855 
856 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
857 			if (ctx->task_complete) {
858 				spin_lock(&ctx->completion_lock);
859 				io_cqring_event_overflow(ctx, cqe->user_data,
860 							cqe->res, cqe->flags, 0, 0);
861 				spin_unlock(&ctx->completion_lock);
862 			} else {
863 				io_cqring_event_overflow(ctx, cqe->user_data,
864 							cqe->res, cqe->flags, 0, 0);
865 			}
866 		}
867 	}
868 	state->cqes_count = 0;
869 }
870 
871 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
872 			      bool allow_overflow)
873 {
874 	bool filled;
875 
876 	io_cq_lock(ctx);
877 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
878 	if (!filled && allow_overflow)
879 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
880 
881 	io_cq_unlock_post(ctx);
882 	return filled;
883 }
884 
885 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
886 {
887 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
888 }
889 
890 bool io_aux_cqe(struct io_ring_ctx *ctx, bool defer, u64 user_data, s32 res, u32 cflags,
891 		bool allow_overflow)
892 {
893 	struct io_uring_cqe *cqe;
894 	unsigned int length;
895 
896 	if (!defer)
897 		return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow);
898 
899 	length = ARRAY_SIZE(ctx->submit_state.cqes);
900 
901 	lockdep_assert_held(&ctx->uring_lock);
902 
903 	if (ctx->submit_state.cqes_count == length) {
904 		__io_cq_lock(ctx);
905 		__io_flush_post_cqes(ctx);
906 		/* no need to flush - flush is deferred */
907 		__io_cq_unlock_post(ctx);
908 	}
909 
910 	/* For defered completions this is not as strict as it is otherwise,
911 	 * however it's main job is to prevent unbounded posted completions,
912 	 * and in that it works just as well.
913 	 */
914 	if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
915 		return false;
916 
917 	cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++];
918 	cqe->user_data = user_data;
919 	cqe->res = res;
920 	cqe->flags = cflags;
921 	return true;
922 }
923 
924 static void __io_req_complete_post(struct io_kiocb *req)
925 {
926 	struct io_ring_ctx *ctx = req->ctx;
927 
928 	io_cq_lock(ctx);
929 	if (!(req->flags & REQ_F_CQE_SKIP))
930 		io_fill_cqe_req(ctx, req);
931 
932 	/*
933 	 * If we're the last reference to this request, add to our locked
934 	 * free_list cache.
935 	 */
936 	if (req_ref_put_and_test(req)) {
937 		if (req->flags & IO_REQ_LINK_FLAGS) {
938 			if (req->flags & IO_DISARM_MASK)
939 				io_disarm_next(req);
940 			if (req->link) {
941 				io_req_task_queue(req->link);
942 				req->link = NULL;
943 			}
944 		}
945 		io_req_put_rsrc(req);
946 		/*
947 		 * Selected buffer deallocation in io_clean_op() assumes that
948 		 * we don't hold ->completion_lock. Clean them here to avoid
949 		 * deadlocks.
950 		 */
951 		io_put_kbuf_comp(req);
952 		io_dismantle_req(req);
953 		io_put_task(req->task, 1);
954 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
955 		ctx->locked_free_nr++;
956 	}
957 	io_cq_unlock_post(ctx);
958 }
959 
960 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
961 {
962 	if (req->ctx->task_complete && (issue_flags & IO_URING_F_IOWQ)) {
963 		req->io_task_work.func = io_req_task_complete;
964 		io_req_task_work_add(req);
965 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
966 		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
967 		__io_req_complete_post(req);
968 	} else {
969 		struct io_ring_ctx *ctx = req->ctx;
970 
971 		mutex_lock(&ctx->uring_lock);
972 		__io_req_complete_post(req);
973 		mutex_unlock(&ctx->uring_lock);
974 	}
975 }
976 
977 void io_req_defer_failed(struct io_kiocb *req, s32 res)
978 	__must_hold(&ctx->uring_lock)
979 {
980 	const struct io_op_def *def = &io_op_defs[req->opcode];
981 
982 	lockdep_assert_held(&req->ctx->uring_lock);
983 
984 	req_set_fail(req);
985 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
986 	if (def->fail)
987 		def->fail(req);
988 	io_req_complete_defer(req);
989 }
990 
991 /*
992  * Don't initialise the fields below on every allocation, but do that in
993  * advance and keep them valid across allocations.
994  */
995 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
996 {
997 	req->ctx = ctx;
998 	req->link = NULL;
999 	req->async_data = NULL;
1000 	/* not necessary, but safer to zero */
1001 	req->cqe.res = 0;
1002 }
1003 
1004 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1005 					struct io_submit_state *state)
1006 {
1007 	spin_lock(&ctx->completion_lock);
1008 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1009 	ctx->locked_free_nr = 0;
1010 	spin_unlock(&ctx->completion_lock);
1011 }
1012 
1013 /*
1014  * A request might get retired back into the request caches even before opcode
1015  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1016  * Because of that, io_alloc_req() should be called only under ->uring_lock
1017  * and with extra caution to not get a request that is still worked on.
1018  */
1019 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1020 	__must_hold(&ctx->uring_lock)
1021 {
1022 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1023 	void *reqs[IO_REQ_ALLOC_BATCH];
1024 	int ret, i;
1025 
1026 	/*
1027 	 * If we have more than a batch's worth of requests in our IRQ side
1028 	 * locked cache, grab the lock and move them over to our submission
1029 	 * side cache.
1030 	 */
1031 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1032 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1033 		if (!io_req_cache_empty(ctx))
1034 			return true;
1035 	}
1036 
1037 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1038 
1039 	/*
1040 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1041 	 * retry single alloc to be on the safe side.
1042 	 */
1043 	if (unlikely(ret <= 0)) {
1044 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1045 		if (!reqs[0])
1046 			return false;
1047 		ret = 1;
1048 	}
1049 
1050 	percpu_ref_get_many(&ctx->refs, ret);
1051 	for (i = 0; i < ret; i++) {
1052 		struct io_kiocb *req = reqs[i];
1053 
1054 		io_preinit_req(req, ctx);
1055 		io_req_add_to_cache(req, ctx);
1056 	}
1057 	return true;
1058 }
1059 
1060 static inline void io_dismantle_req(struct io_kiocb *req)
1061 {
1062 	unsigned int flags = req->flags;
1063 
1064 	if (unlikely(flags & IO_REQ_CLEAN_FLAGS))
1065 		io_clean_op(req);
1066 	if (!(flags & REQ_F_FIXED_FILE))
1067 		io_put_file(req->file);
1068 }
1069 
1070 __cold void io_free_req(struct io_kiocb *req)
1071 {
1072 	struct io_ring_ctx *ctx = req->ctx;
1073 
1074 	io_req_put_rsrc(req);
1075 	io_dismantle_req(req);
1076 	io_put_task(req->task, 1);
1077 
1078 	spin_lock(&ctx->completion_lock);
1079 	wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1080 	ctx->locked_free_nr++;
1081 	spin_unlock(&ctx->completion_lock);
1082 }
1083 
1084 static void __io_req_find_next_prep(struct io_kiocb *req)
1085 {
1086 	struct io_ring_ctx *ctx = req->ctx;
1087 
1088 	spin_lock(&ctx->completion_lock);
1089 	io_disarm_next(req);
1090 	spin_unlock(&ctx->completion_lock);
1091 }
1092 
1093 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1094 {
1095 	struct io_kiocb *nxt;
1096 
1097 	/*
1098 	 * If LINK is set, we have dependent requests in this chain. If we
1099 	 * didn't fail this request, queue the first one up, moving any other
1100 	 * dependencies to the next request. In case of failure, fail the rest
1101 	 * of the chain.
1102 	 */
1103 	if (unlikely(req->flags & IO_DISARM_MASK))
1104 		__io_req_find_next_prep(req);
1105 	nxt = req->link;
1106 	req->link = NULL;
1107 	return nxt;
1108 }
1109 
1110 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
1111 {
1112 	if (!ctx)
1113 		return;
1114 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1115 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1116 	if (*locked) {
1117 		io_submit_flush_completions(ctx);
1118 		mutex_unlock(&ctx->uring_lock);
1119 		*locked = false;
1120 	}
1121 	percpu_ref_put(&ctx->refs);
1122 }
1123 
1124 static unsigned int handle_tw_list(struct llist_node *node,
1125 				   struct io_ring_ctx **ctx, bool *locked,
1126 				   struct llist_node *last)
1127 {
1128 	unsigned int count = 0;
1129 
1130 	while (node != last) {
1131 		struct llist_node *next = node->next;
1132 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1133 						    io_task_work.node);
1134 
1135 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1136 
1137 		if (req->ctx != *ctx) {
1138 			ctx_flush_and_put(*ctx, locked);
1139 			*ctx = req->ctx;
1140 			/* if not contended, grab and improve batching */
1141 			*locked = mutex_trylock(&(*ctx)->uring_lock);
1142 			percpu_ref_get(&(*ctx)->refs);
1143 		}
1144 		req->io_task_work.func(req, locked);
1145 		node = next;
1146 		count++;
1147 	}
1148 
1149 	return count;
1150 }
1151 
1152 /**
1153  * io_llist_xchg - swap all entries in a lock-less list
1154  * @head:	the head of lock-less list to delete all entries
1155  * @new:	new entry as the head of the list
1156  *
1157  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1158  * The order of entries returned is from the newest to the oldest added one.
1159  */
1160 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1161 					       struct llist_node *new)
1162 {
1163 	return xchg(&head->first, new);
1164 }
1165 
1166 /**
1167  * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1168  * @head:	the head of lock-less list to delete all entries
1169  * @old:	expected old value of the first entry of the list
1170  * @new:	new entry as the head of the list
1171  *
1172  * perform a cmpxchg on the first entry of the list.
1173  */
1174 
1175 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1176 						  struct llist_node *old,
1177 						  struct llist_node *new)
1178 {
1179 	return cmpxchg(&head->first, old, new);
1180 }
1181 
1182 void tctx_task_work(struct callback_head *cb)
1183 {
1184 	bool uring_locked = false;
1185 	struct io_ring_ctx *ctx = NULL;
1186 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1187 						  task_work);
1188 	struct llist_node fake = {};
1189 	struct llist_node *node;
1190 	unsigned int loops = 1;
1191 	unsigned int count;
1192 
1193 	if (unlikely(current->flags & PF_EXITING)) {
1194 		io_fallback_tw(tctx);
1195 		return;
1196 	}
1197 
1198 	node = io_llist_xchg(&tctx->task_list, &fake);
1199 	count = handle_tw_list(node, &ctx, &uring_locked, NULL);
1200 	node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1201 	while (node != &fake) {
1202 		loops++;
1203 		node = io_llist_xchg(&tctx->task_list, &fake);
1204 		count += handle_tw_list(node, &ctx, &uring_locked, &fake);
1205 		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1206 	}
1207 
1208 	ctx_flush_and_put(ctx, &uring_locked);
1209 
1210 	/* relaxed read is enough as only the task itself sets ->in_idle */
1211 	if (unlikely(atomic_read(&tctx->in_idle)))
1212 		io_uring_drop_tctx_refs(current);
1213 
1214 	trace_io_uring_task_work_run(tctx, count, loops);
1215 }
1216 
1217 static __cold void io_fallback_tw(struct io_uring_task *tctx)
1218 {
1219 	struct llist_node *node = llist_del_all(&tctx->task_list);
1220 	struct io_kiocb *req;
1221 
1222 	while (node) {
1223 		req = container_of(node, struct io_kiocb, io_task_work.node);
1224 		node = node->next;
1225 		if (llist_add(&req->io_task_work.node,
1226 			      &req->ctx->fallback_llist))
1227 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1228 	}
1229 }
1230 
1231 static void io_req_local_work_add(struct io_kiocb *req)
1232 {
1233 	struct io_ring_ctx *ctx = req->ctx;
1234 
1235 	if (!llist_add(&req->io_task_work.node, &ctx->work_llist))
1236 		return;
1237 	/* need it for the following io_cqring_wake() */
1238 	smp_mb__after_atomic();
1239 
1240 	if (unlikely(atomic_read(&req->task->io_uring->in_idle))) {
1241 		io_move_task_work_from_local(ctx);
1242 		return;
1243 	}
1244 
1245 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1246 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1247 
1248 	if (ctx->has_evfd)
1249 		io_eventfd_signal(ctx);
1250 	__io_cqring_wake(ctx);
1251 }
1252 
1253 void __io_req_task_work_add(struct io_kiocb *req, bool allow_local)
1254 {
1255 	struct io_uring_task *tctx = req->task->io_uring;
1256 	struct io_ring_ctx *ctx = req->ctx;
1257 
1258 	if (allow_local && ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1259 		io_req_local_work_add(req);
1260 		return;
1261 	}
1262 
1263 	/* task_work already pending, we're done */
1264 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1265 		return;
1266 
1267 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1268 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1269 
1270 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1271 		return;
1272 
1273 	io_fallback_tw(tctx);
1274 }
1275 
1276 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1277 {
1278 	struct llist_node *node;
1279 
1280 	node = llist_del_all(&ctx->work_llist);
1281 	while (node) {
1282 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1283 						    io_task_work.node);
1284 
1285 		node = node->next;
1286 		__io_req_task_work_add(req, false);
1287 	}
1288 }
1289 
1290 int __io_run_local_work(struct io_ring_ctx *ctx, bool *locked)
1291 {
1292 	struct llist_node *node;
1293 	struct llist_node fake;
1294 	struct llist_node *current_final = NULL;
1295 	int ret;
1296 	unsigned int loops = 1;
1297 
1298 	if (unlikely(ctx->submitter_task != current))
1299 		return -EEXIST;
1300 
1301 	node = io_llist_xchg(&ctx->work_llist, &fake);
1302 	ret = 0;
1303 again:
1304 	while (node != current_final) {
1305 		struct llist_node *next = node->next;
1306 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1307 						    io_task_work.node);
1308 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1309 		req->io_task_work.func(req, locked);
1310 		ret++;
1311 		node = next;
1312 	}
1313 
1314 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1315 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1316 
1317 	node = io_llist_cmpxchg(&ctx->work_llist, &fake, NULL);
1318 	if (node != &fake) {
1319 		loops++;
1320 		current_final = &fake;
1321 		node = io_llist_xchg(&ctx->work_llist, &fake);
1322 		goto again;
1323 	}
1324 
1325 	if (*locked)
1326 		io_submit_flush_completions(ctx);
1327 	trace_io_uring_local_work_run(ctx, ret, loops);
1328 	return ret;
1329 
1330 }
1331 
1332 int io_run_local_work(struct io_ring_ctx *ctx)
1333 {
1334 	bool locked;
1335 	int ret;
1336 
1337 	if (llist_empty(&ctx->work_llist))
1338 		return 0;
1339 
1340 	__set_current_state(TASK_RUNNING);
1341 	locked = mutex_trylock(&ctx->uring_lock);
1342 	ret = __io_run_local_work(ctx, &locked);
1343 	if (locked)
1344 		mutex_unlock(&ctx->uring_lock);
1345 
1346 	return ret;
1347 }
1348 
1349 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
1350 {
1351 	io_tw_lock(req->ctx, locked);
1352 	io_req_defer_failed(req, req->cqe.res);
1353 }
1354 
1355 void io_req_task_submit(struct io_kiocb *req, bool *locked)
1356 {
1357 	io_tw_lock(req->ctx, locked);
1358 	/* req->task == current here, checking PF_EXITING is safe */
1359 	if (likely(!(req->task->flags & PF_EXITING)))
1360 		io_queue_sqe(req);
1361 	else
1362 		io_req_defer_failed(req, -EFAULT);
1363 }
1364 
1365 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1366 {
1367 	io_req_set_res(req, ret, 0);
1368 	req->io_task_work.func = io_req_task_cancel;
1369 	io_req_task_work_add(req);
1370 }
1371 
1372 void io_req_task_queue(struct io_kiocb *req)
1373 {
1374 	req->io_task_work.func = io_req_task_submit;
1375 	io_req_task_work_add(req);
1376 }
1377 
1378 void io_queue_next(struct io_kiocb *req)
1379 {
1380 	struct io_kiocb *nxt = io_req_find_next(req);
1381 
1382 	if (nxt)
1383 		io_req_task_queue(nxt);
1384 }
1385 
1386 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1387 	__must_hold(&ctx->uring_lock)
1388 {
1389 	struct task_struct *task = NULL;
1390 	int task_refs = 0;
1391 
1392 	do {
1393 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1394 						    comp_list);
1395 
1396 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1397 			if (req->flags & REQ_F_REFCOUNT) {
1398 				node = req->comp_list.next;
1399 				if (!req_ref_put_and_test(req))
1400 					continue;
1401 			}
1402 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1403 				struct async_poll *apoll = req->apoll;
1404 
1405 				if (apoll->double_poll)
1406 					kfree(apoll->double_poll);
1407 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1408 					kfree(apoll);
1409 				req->flags &= ~REQ_F_POLLED;
1410 			}
1411 			if (req->flags & IO_REQ_LINK_FLAGS)
1412 				io_queue_next(req);
1413 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1414 				io_clean_op(req);
1415 		}
1416 		if (!(req->flags & REQ_F_FIXED_FILE))
1417 			io_put_file(req->file);
1418 
1419 		io_req_put_rsrc_locked(req, ctx);
1420 
1421 		if (req->task != task) {
1422 			if (task)
1423 				io_put_task(task, task_refs);
1424 			task = req->task;
1425 			task_refs = 0;
1426 		}
1427 		task_refs++;
1428 		node = req->comp_list.next;
1429 		io_req_add_to_cache(req, ctx);
1430 	} while (node);
1431 
1432 	if (task)
1433 		io_put_task(task, task_refs);
1434 }
1435 
1436 static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1437 	__must_hold(&ctx->uring_lock)
1438 {
1439 	struct io_wq_work_node *node, *prev;
1440 	struct io_submit_state *state = &ctx->submit_state;
1441 
1442 	__io_cq_lock(ctx);
1443 	/* must come first to preserve CQE ordering in failure cases */
1444 	if (state->cqes_count)
1445 		__io_flush_post_cqes(ctx);
1446 	wq_list_for_each(node, prev, &state->compl_reqs) {
1447 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1448 					    comp_list);
1449 
1450 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1451 		    unlikely(!__io_fill_cqe_req(ctx, req))) {
1452 			if (ctx->task_complete) {
1453 				spin_lock(&ctx->completion_lock);
1454 				io_req_cqe_overflow(req);
1455 				spin_unlock(&ctx->completion_lock);
1456 			} else {
1457 				io_req_cqe_overflow(req);
1458 			}
1459 		}
1460 	}
1461 	__io_cq_unlock_post(ctx);
1462 
1463 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1464 		io_free_batch_list(ctx, state->compl_reqs.first);
1465 		INIT_WQ_LIST(&state->compl_reqs);
1466 	}
1467 }
1468 
1469 /*
1470  * Drop reference to request, return next in chain (if there is one) if this
1471  * was the last reference to this request.
1472  */
1473 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
1474 {
1475 	struct io_kiocb *nxt = NULL;
1476 
1477 	if (req_ref_put_and_test(req)) {
1478 		if (unlikely(req->flags & IO_REQ_LINK_FLAGS))
1479 			nxt = io_req_find_next(req);
1480 		io_free_req(req);
1481 	}
1482 	return nxt;
1483 }
1484 
1485 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1486 {
1487 	/* See comment at the top of this file */
1488 	smp_rmb();
1489 	return __io_cqring_events(ctx);
1490 }
1491 
1492 /*
1493  * We can't just wait for polled events to come to us, we have to actively
1494  * find and complete them.
1495  */
1496 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1497 {
1498 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1499 		return;
1500 
1501 	mutex_lock(&ctx->uring_lock);
1502 	while (!wq_list_empty(&ctx->iopoll_list)) {
1503 		/* let it sleep and repeat later if can't complete a request */
1504 		if (io_do_iopoll(ctx, true) == 0)
1505 			break;
1506 		/*
1507 		 * Ensure we allow local-to-the-cpu processing to take place,
1508 		 * in this case we need to ensure that we reap all events.
1509 		 * Also let task_work, etc. to progress by releasing the mutex
1510 		 */
1511 		if (need_resched()) {
1512 			mutex_unlock(&ctx->uring_lock);
1513 			cond_resched();
1514 			mutex_lock(&ctx->uring_lock);
1515 		}
1516 	}
1517 	mutex_unlock(&ctx->uring_lock);
1518 }
1519 
1520 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1521 {
1522 	unsigned int nr_events = 0;
1523 	int ret = 0;
1524 	unsigned long check_cq;
1525 
1526 	if (!io_allowed_run_tw(ctx))
1527 		return -EEXIST;
1528 
1529 	check_cq = READ_ONCE(ctx->check_cq);
1530 	if (unlikely(check_cq)) {
1531 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1532 			__io_cqring_overflow_flush(ctx);
1533 		/*
1534 		 * Similarly do not spin if we have not informed the user of any
1535 		 * dropped CQE.
1536 		 */
1537 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1538 			return -EBADR;
1539 	}
1540 	/*
1541 	 * Don't enter poll loop if we already have events pending.
1542 	 * If we do, we can potentially be spinning for commands that
1543 	 * already triggered a CQE (eg in error).
1544 	 */
1545 	if (io_cqring_events(ctx))
1546 		return 0;
1547 
1548 	do {
1549 		/*
1550 		 * If a submit got punted to a workqueue, we can have the
1551 		 * application entering polling for a command before it gets
1552 		 * issued. That app will hold the uring_lock for the duration
1553 		 * of the poll right here, so we need to take a breather every
1554 		 * now and then to ensure that the issue has a chance to add
1555 		 * the poll to the issued list. Otherwise we can spin here
1556 		 * forever, while the workqueue is stuck trying to acquire the
1557 		 * very same mutex.
1558 		 */
1559 		if (wq_list_empty(&ctx->iopoll_list) ||
1560 		    io_task_work_pending(ctx)) {
1561 			u32 tail = ctx->cached_cq_tail;
1562 
1563 			(void) io_run_local_work_locked(ctx);
1564 
1565 			if (task_work_pending(current) ||
1566 			    wq_list_empty(&ctx->iopoll_list)) {
1567 				mutex_unlock(&ctx->uring_lock);
1568 				io_run_task_work();
1569 				mutex_lock(&ctx->uring_lock);
1570 			}
1571 			/* some requests don't go through iopoll_list */
1572 			if (tail != ctx->cached_cq_tail ||
1573 			    wq_list_empty(&ctx->iopoll_list))
1574 				break;
1575 		}
1576 		ret = io_do_iopoll(ctx, !min);
1577 		if (ret < 0)
1578 			break;
1579 		nr_events += ret;
1580 		ret = 0;
1581 	} while (nr_events < min && !need_resched());
1582 
1583 	return ret;
1584 }
1585 
1586 void io_req_task_complete(struct io_kiocb *req, bool *locked)
1587 {
1588 	if (*locked)
1589 		io_req_complete_defer(req);
1590 	else
1591 		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1592 }
1593 
1594 /*
1595  * After the iocb has been issued, it's safe to be found on the poll list.
1596  * Adding the kiocb to the list AFTER submission ensures that we don't
1597  * find it from a io_do_iopoll() thread before the issuer is done
1598  * accessing the kiocb cookie.
1599  */
1600 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1601 {
1602 	struct io_ring_ctx *ctx = req->ctx;
1603 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1604 
1605 	/* workqueue context doesn't hold uring_lock, grab it now */
1606 	if (unlikely(needs_lock))
1607 		mutex_lock(&ctx->uring_lock);
1608 
1609 	/*
1610 	 * Track whether we have multiple files in our lists. This will impact
1611 	 * how we do polling eventually, not spinning if we're on potentially
1612 	 * different devices.
1613 	 */
1614 	if (wq_list_empty(&ctx->iopoll_list)) {
1615 		ctx->poll_multi_queue = false;
1616 	} else if (!ctx->poll_multi_queue) {
1617 		struct io_kiocb *list_req;
1618 
1619 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1620 					comp_list);
1621 		if (list_req->file != req->file)
1622 			ctx->poll_multi_queue = true;
1623 	}
1624 
1625 	/*
1626 	 * For fast devices, IO may have already completed. If it has, add
1627 	 * it to the front so we find it first.
1628 	 */
1629 	if (READ_ONCE(req->iopoll_completed))
1630 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1631 	else
1632 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1633 
1634 	if (unlikely(needs_lock)) {
1635 		/*
1636 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1637 		 * in sq thread task context or in io worker task context. If
1638 		 * current task context is sq thread, we don't need to check
1639 		 * whether should wake up sq thread.
1640 		 */
1641 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1642 		    wq_has_sleeper(&ctx->sq_data->wait))
1643 			wake_up(&ctx->sq_data->wait);
1644 
1645 		mutex_unlock(&ctx->uring_lock);
1646 	}
1647 }
1648 
1649 static bool io_bdev_nowait(struct block_device *bdev)
1650 {
1651 	return !bdev || bdev_nowait(bdev);
1652 }
1653 
1654 /*
1655  * If we tracked the file through the SCM inflight mechanism, we could support
1656  * any file. For now, just ensure that anything potentially problematic is done
1657  * inline.
1658  */
1659 static bool __io_file_supports_nowait(struct file *file, umode_t mode)
1660 {
1661 	if (S_ISBLK(mode)) {
1662 		if (IS_ENABLED(CONFIG_BLOCK) &&
1663 		    io_bdev_nowait(I_BDEV(file->f_mapping->host)))
1664 			return true;
1665 		return false;
1666 	}
1667 	if (S_ISSOCK(mode))
1668 		return true;
1669 	if (S_ISREG(mode)) {
1670 		if (IS_ENABLED(CONFIG_BLOCK) &&
1671 		    io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
1672 		    !io_is_uring_fops(file))
1673 			return true;
1674 		return false;
1675 	}
1676 
1677 	/* any ->read/write should understand O_NONBLOCK */
1678 	if (file->f_flags & O_NONBLOCK)
1679 		return true;
1680 	return file->f_mode & FMODE_NOWAIT;
1681 }
1682 
1683 /*
1684  * If we tracked the file through the SCM inflight mechanism, we could support
1685  * any file. For now, just ensure that anything potentially problematic is done
1686  * inline.
1687  */
1688 unsigned int io_file_get_flags(struct file *file)
1689 {
1690 	umode_t mode = file_inode(file)->i_mode;
1691 	unsigned int res = 0;
1692 
1693 	if (S_ISREG(mode))
1694 		res |= FFS_ISREG;
1695 	if (__io_file_supports_nowait(file, mode))
1696 		res |= FFS_NOWAIT;
1697 	return res;
1698 }
1699 
1700 bool io_alloc_async_data(struct io_kiocb *req)
1701 {
1702 	WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
1703 	req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
1704 	if (req->async_data) {
1705 		req->flags |= REQ_F_ASYNC_DATA;
1706 		return false;
1707 	}
1708 	return true;
1709 }
1710 
1711 int io_req_prep_async(struct io_kiocb *req)
1712 {
1713 	const struct io_op_def *def = &io_op_defs[req->opcode];
1714 
1715 	/* assign early for deferred execution for non-fixed file */
1716 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE))
1717 		req->file = io_file_get_normal(req, req->cqe.fd);
1718 	if (!def->prep_async)
1719 		return 0;
1720 	if (WARN_ON_ONCE(req_has_async_data(req)))
1721 		return -EFAULT;
1722 	if (!io_op_defs[req->opcode].manual_alloc) {
1723 		if (io_alloc_async_data(req))
1724 			return -EAGAIN;
1725 	}
1726 	return def->prep_async(req);
1727 }
1728 
1729 static u32 io_get_sequence(struct io_kiocb *req)
1730 {
1731 	u32 seq = req->ctx->cached_sq_head;
1732 	struct io_kiocb *cur;
1733 
1734 	/* need original cached_sq_head, but it was increased for each req */
1735 	io_for_each_link(cur, req)
1736 		seq--;
1737 	return seq;
1738 }
1739 
1740 static __cold void io_drain_req(struct io_kiocb *req)
1741 	__must_hold(&ctx->uring_lock)
1742 {
1743 	struct io_ring_ctx *ctx = req->ctx;
1744 	struct io_defer_entry *de;
1745 	int ret;
1746 	u32 seq = io_get_sequence(req);
1747 
1748 	/* Still need defer if there is pending req in defer list. */
1749 	spin_lock(&ctx->completion_lock);
1750 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1751 		spin_unlock(&ctx->completion_lock);
1752 queue:
1753 		ctx->drain_active = false;
1754 		io_req_task_queue(req);
1755 		return;
1756 	}
1757 	spin_unlock(&ctx->completion_lock);
1758 
1759 	ret = io_req_prep_async(req);
1760 	if (ret) {
1761 fail:
1762 		io_req_defer_failed(req, ret);
1763 		return;
1764 	}
1765 	io_prep_async_link(req);
1766 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1767 	if (!de) {
1768 		ret = -ENOMEM;
1769 		goto fail;
1770 	}
1771 
1772 	spin_lock(&ctx->completion_lock);
1773 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1774 		spin_unlock(&ctx->completion_lock);
1775 		kfree(de);
1776 		goto queue;
1777 	}
1778 
1779 	trace_io_uring_defer(req);
1780 	de->req = req;
1781 	de->seq = seq;
1782 	list_add_tail(&de->list, &ctx->defer_list);
1783 	spin_unlock(&ctx->completion_lock);
1784 }
1785 
1786 static void io_clean_op(struct io_kiocb *req)
1787 {
1788 	if (req->flags & REQ_F_BUFFER_SELECTED) {
1789 		spin_lock(&req->ctx->completion_lock);
1790 		io_put_kbuf_comp(req);
1791 		spin_unlock(&req->ctx->completion_lock);
1792 	}
1793 
1794 	if (req->flags & REQ_F_NEED_CLEANUP) {
1795 		const struct io_op_def *def = &io_op_defs[req->opcode];
1796 
1797 		if (def->cleanup)
1798 			def->cleanup(req);
1799 	}
1800 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
1801 		kfree(req->apoll->double_poll);
1802 		kfree(req->apoll);
1803 		req->apoll = NULL;
1804 	}
1805 	if (req->flags & REQ_F_INFLIGHT) {
1806 		struct io_uring_task *tctx = req->task->io_uring;
1807 
1808 		atomic_dec(&tctx->inflight_tracked);
1809 	}
1810 	if (req->flags & REQ_F_CREDS)
1811 		put_cred(req->creds);
1812 	if (req->flags & REQ_F_ASYNC_DATA) {
1813 		kfree(req->async_data);
1814 		req->async_data = NULL;
1815 	}
1816 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
1817 }
1818 
1819 static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags)
1820 {
1821 	if (req->file || !io_op_defs[req->opcode].needs_file)
1822 		return true;
1823 
1824 	if (req->flags & REQ_F_FIXED_FILE)
1825 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1826 	else
1827 		req->file = io_file_get_normal(req, req->cqe.fd);
1828 
1829 	return !!req->file;
1830 }
1831 
1832 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1833 {
1834 	const struct io_op_def *def = &io_op_defs[req->opcode];
1835 	const struct cred *creds = NULL;
1836 	int ret;
1837 
1838 	if (unlikely(!io_assign_file(req, issue_flags)))
1839 		return -EBADF;
1840 
1841 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1842 		creds = override_creds(req->creds);
1843 
1844 	if (!def->audit_skip)
1845 		audit_uring_entry(req->opcode);
1846 
1847 	ret = def->issue(req, issue_flags);
1848 
1849 	if (!def->audit_skip)
1850 		audit_uring_exit(!ret, ret);
1851 
1852 	if (creds)
1853 		revert_creds(creds);
1854 
1855 	if (ret == IOU_OK) {
1856 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1857 			io_req_complete_defer(req);
1858 		else
1859 			io_req_complete_post(req, issue_flags);
1860 	} else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1861 		return ret;
1862 
1863 	/* If the op doesn't have a file, we're not polling for it */
1864 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1865 		io_iopoll_req_issued(req, issue_flags);
1866 
1867 	return 0;
1868 }
1869 
1870 int io_poll_issue(struct io_kiocb *req, bool *locked)
1871 {
1872 	io_tw_lock(req->ctx, locked);
1873 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1874 				 IO_URING_F_COMPLETE_DEFER);
1875 }
1876 
1877 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1878 {
1879 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1880 
1881 	req = io_put_req_find_next(req);
1882 	return req ? &req->work : NULL;
1883 }
1884 
1885 void io_wq_submit_work(struct io_wq_work *work)
1886 {
1887 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1888 	const struct io_op_def *def = &io_op_defs[req->opcode];
1889 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1890 	bool needs_poll = false;
1891 	int ret = 0, err = -ECANCELED;
1892 
1893 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1894 	if (!(req->flags & REQ_F_REFCOUNT))
1895 		__io_req_set_refcount(req, 2);
1896 	else
1897 		req_ref_get(req);
1898 
1899 	io_arm_ltimeout(req);
1900 
1901 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1902 	if (work->flags & IO_WQ_WORK_CANCEL) {
1903 fail:
1904 		io_req_task_queue_fail(req, err);
1905 		return;
1906 	}
1907 	if (!io_assign_file(req, issue_flags)) {
1908 		err = -EBADF;
1909 		work->flags |= IO_WQ_WORK_CANCEL;
1910 		goto fail;
1911 	}
1912 
1913 	if (req->flags & REQ_F_FORCE_ASYNC) {
1914 		bool opcode_poll = def->pollin || def->pollout;
1915 
1916 		if (opcode_poll && file_can_poll(req->file)) {
1917 			needs_poll = true;
1918 			issue_flags |= IO_URING_F_NONBLOCK;
1919 		}
1920 	}
1921 
1922 	do {
1923 		ret = io_issue_sqe(req, issue_flags);
1924 		if (ret != -EAGAIN)
1925 			break;
1926 		/*
1927 		 * We can get EAGAIN for iopolled IO even though we're
1928 		 * forcing a sync submission from here, since we can't
1929 		 * wait for request slots on the block side.
1930 		 */
1931 		if (!needs_poll) {
1932 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1933 				break;
1934 			cond_resched();
1935 			continue;
1936 		}
1937 
1938 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1939 			return;
1940 		/* aborted or ready, in either case retry blocking */
1941 		needs_poll = false;
1942 		issue_flags &= ~IO_URING_F_NONBLOCK;
1943 	} while (1);
1944 
1945 	/* avoid locking problems by failing it from a clean context */
1946 	if (ret < 0)
1947 		io_req_task_queue_fail(req, ret);
1948 }
1949 
1950 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1951 				      unsigned int issue_flags)
1952 {
1953 	struct io_ring_ctx *ctx = req->ctx;
1954 	struct file *file = NULL;
1955 	unsigned long file_ptr;
1956 
1957 	io_ring_submit_lock(ctx, issue_flags);
1958 
1959 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1960 		goto out;
1961 	fd = array_index_nospec(fd, ctx->nr_user_files);
1962 	file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
1963 	file = (struct file *) (file_ptr & FFS_MASK);
1964 	file_ptr &= ~FFS_MASK;
1965 	/* mask in overlapping REQ_F and FFS bits */
1966 	req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT);
1967 	io_req_set_rsrc_node(req, ctx, 0);
1968 out:
1969 	io_ring_submit_unlock(ctx, issue_flags);
1970 	return file;
1971 }
1972 
1973 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1974 {
1975 	struct file *file = fget(fd);
1976 
1977 	trace_io_uring_file_get(req, fd);
1978 
1979 	/* we don't allow fixed io_uring files */
1980 	if (file && io_is_uring_fops(file))
1981 		io_req_track_inflight(req);
1982 	return file;
1983 }
1984 
1985 static void io_queue_async(struct io_kiocb *req, int ret)
1986 	__must_hold(&req->ctx->uring_lock)
1987 {
1988 	struct io_kiocb *linked_timeout;
1989 
1990 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1991 		io_req_defer_failed(req, ret);
1992 		return;
1993 	}
1994 
1995 	linked_timeout = io_prep_linked_timeout(req);
1996 
1997 	switch (io_arm_poll_handler(req, 0)) {
1998 	case IO_APOLL_READY:
1999 		io_kbuf_recycle(req, 0);
2000 		io_req_task_queue(req);
2001 		break;
2002 	case IO_APOLL_ABORTED:
2003 		io_kbuf_recycle(req, 0);
2004 		io_queue_iowq(req, NULL);
2005 		break;
2006 	case IO_APOLL_OK:
2007 		break;
2008 	}
2009 
2010 	if (linked_timeout)
2011 		io_queue_linked_timeout(linked_timeout);
2012 }
2013 
2014 static inline void io_queue_sqe(struct io_kiocb *req)
2015 	__must_hold(&req->ctx->uring_lock)
2016 {
2017 	int ret;
2018 
2019 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2020 
2021 	/*
2022 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2023 	 * doesn't support non-blocking read/write attempts
2024 	 */
2025 	if (likely(!ret))
2026 		io_arm_ltimeout(req);
2027 	else
2028 		io_queue_async(req, ret);
2029 }
2030 
2031 static void io_queue_sqe_fallback(struct io_kiocb *req)
2032 	__must_hold(&req->ctx->uring_lock)
2033 {
2034 	if (unlikely(req->flags & REQ_F_FAIL)) {
2035 		/*
2036 		 * We don't submit, fail them all, for that replace hardlinks
2037 		 * with normal links. Extra REQ_F_LINK is tolerated.
2038 		 */
2039 		req->flags &= ~REQ_F_HARDLINK;
2040 		req->flags |= REQ_F_LINK;
2041 		io_req_defer_failed(req, req->cqe.res);
2042 	} else if (unlikely(req->ctx->drain_active)) {
2043 		io_drain_req(req);
2044 	} else {
2045 		int ret = io_req_prep_async(req);
2046 
2047 		if (unlikely(ret))
2048 			io_req_defer_failed(req, ret);
2049 		else
2050 			io_queue_iowq(req, NULL);
2051 	}
2052 }
2053 
2054 /*
2055  * Check SQE restrictions (opcode and flags).
2056  *
2057  * Returns 'true' if SQE is allowed, 'false' otherwise.
2058  */
2059 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2060 					struct io_kiocb *req,
2061 					unsigned int sqe_flags)
2062 {
2063 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2064 		return false;
2065 
2066 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2067 	    ctx->restrictions.sqe_flags_required)
2068 		return false;
2069 
2070 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2071 			  ctx->restrictions.sqe_flags_required))
2072 		return false;
2073 
2074 	return true;
2075 }
2076 
2077 static void io_init_req_drain(struct io_kiocb *req)
2078 {
2079 	struct io_ring_ctx *ctx = req->ctx;
2080 	struct io_kiocb *head = ctx->submit_state.link.head;
2081 
2082 	ctx->drain_active = true;
2083 	if (head) {
2084 		/*
2085 		 * If we need to drain a request in the middle of a link, drain
2086 		 * the head request and the next request/link after the current
2087 		 * link. Considering sequential execution of links,
2088 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2089 		 * link.
2090 		 */
2091 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2092 		ctx->drain_next = true;
2093 	}
2094 }
2095 
2096 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2097 		       const struct io_uring_sqe *sqe)
2098 	__must_hold(&ctx->uring_lock)
2099 {
2100 	const struct io_op_def *def;
2101 	unsigned int sqe_flags;
2102 	int personality;
2103 	u8 opcode;
2104 
2105 	/* req is partially pre-initialised, see io_preinit_req() */
2106 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2107 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2108 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2109 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2110 	req->file = NULL;
2111 	req->rsrc_node = NULL;
2112 	req->task = current;
2113 
2114 	if (unlikely(opcode >= IORING_OP_LAST)) {
2115 		req->opcode = 0;
2116 		return -EINVAL;
2117 	}
2118 	def = &io_op_defs[opcode];
2119 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2120 		/* enforce forwards compatibility on users */
2121 		if (sqe_flags & ~SQE_VALID_FLAGS)
2122 			return -EINVAL;
2123 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2124 			if (!def->buffer_select)
2125 				return -EOPNOTSUPP;
2126 			req->buf_index = READ_ONCE(sqe->buf_group);
2127 		}
2128 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2129 			ctx->drain_disabled = true;
2130 		if (sqe_flags & IOSQE_IO_DRAIN) {
2131 			if (ctx->drain_disabled)
2132 				return -EOPNOTSUPP;
2133 			io_init_req_drain(req);
2134 		}
2135 	}
2136 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2137 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2138 			return -EACCES;
2139 		/* knock it to the slow queue path, will be drained there */
2140 		if (ctx->drain_active)
2141 			req->flags |= REQ_F_FORCE_ASYNC;
2142 		/* if there is no link, we're at "next" request and need to drain */
2143 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2144 			ctx->drain_next = false;
2145 			ctx->drain_active = true;
2146 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2147 		}
2148 	}
2149 
2150 	if (!def->ioprio && sqe->ioprio)
2151 		return -EINVAL;
2152 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2153 		return -EINVAL;
2154 
2155 	if (def->needs_file) {
2156 		struct io_submit_state *state = &ctx->submit_state;
2157 
2158 		req->cqe.fd = READ_ONCE(sqe->fd);
2159 
2160 		/*
2161 		 * Plug now if we have more than 2 IO left after this, and the
2162 		 * target is potentially a read/write to block based storage.
2163 		 */
2164 		if (state->need_plug && def->plug) {
2165 			state->plug_started = true;
2166 			state->need_plug = false;
2167 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2168 		}
2169 	}
2170 
2171 	personality = READ_ONCE(sqe->personality);
2172 	if (personality) {
2173 		int ret;
2174 
2175 		req->creds = xa_load(&ctx->personalities, personality);
2176 		if (!req->creds)
2177 			return -EINVAL;
2178 		get_cred(req->creds);
2179 		ret = security_uring_override_creds(req->creds);
2180 		if (ret) {
2181 			put_cred(req->creds);
2182 			return ret;
2183 		}
2184 		req->flags |= REQ_F_CREDS;
2185 	}
2186 
2187 	return def->prep(req, sqe);
2188 }
2189 
2190 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2191 				      struct io_kiocb *req, int ret)
2192 {
2193 	struct io_ring_ctx *ctx = req->ctx;
2194 	struct io_submit_link *link = &ctx->submit_state.link;
2195 	struct io_kiocb *head = link->head;
2196 
2197 	trace_io_uring_req_failed(sqe, req, ret);
2198 
2199 	/*
2200 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2201 	 * unusable. Instead of failing eagerly, continue assembling the link if
2202 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2203 	 * should find the flag and handle the rest.
2204 	 */
2205 	req_fail_link_node(req, ret);
2206 	if (head && !(head->flags & REQ_F_FAIL))
2207 		req_fail_link_node(head, -ECANCELED);
2208 
2209 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2210 		if (head) {
2211 			link->last->link = req;
2212 			link->head = NULL;
2213 			req = head;
2214 		}
2215 		io_queue_sqe_fallback(req);
2216 		return ret;
2217 	}
2218 
2219 	if (head)
2220 		link->last->link = req;
2221 	else
2222 		link->head = req;
2223 	link->last = req;
2224 	return 0;
2225 }
2226 
2227 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2228 			 const struct io_uring_sqe *sqe)
2229 	__must_hold(&ctx->uring_lock)
2230 {
2231 	struct io_submit_link *link = &ctx->submit_state.link;
2232 	int ret;
2233 
2234 	ret = io_init_req(ctx, req, sqe);
2235 	if (unlikely(ret))
2236 		return io_submit_fail_init(sqe, req, ret);
2237 
2238 	/* don't need @sqe from now on */
2239 	trace_io_uring_submit_sqe(req, true);
2240 
2241 	/*
2242 	 * If we already have a head request, queue this one for async
2243 	 * submittal once the head completes. If we don't have a head but
2244 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2245 	 * submitted sync once the chain is complete. If none of those
2246 	 * conditions are true (normal request), then just queue it.
2247 	 */
2248 	if (unlikely(link->head)) {
2249 		ret = io_req_prep_async(req);
2250 		if (unlikely(ret))
2251 			return io_submit_fail_init(sqe, req, ret);
2252 
2253 		trace_io_uring_link(req, link->head);
2254 		link->last->link = req;
2255 		link->last = req;
2256 
2257 		if (req->flags & IO_REQ_LINK_FLAGS)
2258 			return 0;
2259 		/* last request of the link, flush it */
2260 		req = link->head;
2261 		link->head = NULL;
2262 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2263 			goto fallback;
2264 
2265 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2266 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2267 		if (req->flags & IO_REQ_LINK_FLAGS) {
2268 			link->head = req;
2269 			link->last = req;
2270 		} else {
2271 fallback:
2272 			io_queue_sqe_fallback(req);
2273 		}
2274 		return 0;
2275 	}
2276 
2277 	io_queue_sqe(req);
2278 	return 0;
2279 }
2280 
2281 /*
2282  * Batched submission is done, ensure local IO is flushed out.
2283  */
2284 static void io_submit_state_end(struct io_ring_ctx *ctx)
2285 {
2286 	struct io_submit_state *state = &ctx->submit_state;
2287 
2288 	if (unlikely(state->link.head))
2289 		io_queue_sqe_fallback(state->link.head);
2290 	/* flush only after queuing links as they can generate completions */
2291 	io_submit_flush_completions(ctx);
2292 	if (state->plug_started)
2293 		blk_finish_plug(&state->plug);
2294 }
2295 
2296 /*
2297  * Start submission side cache.
2298  */
2299 static void io_submit_state_start(struct io_submit_state *state,
2300 				  unsigned int max_ios)
2301 {
2302 	state->plug_started = false;
2303 	state->need_plug = max_ios > 2;
2304 	state->submit_nr = max_ios;
2305 	/* set only head, no need to init link_last in advance */
2306 	state->link.head = NULL;
2307 }
2308 
2309 static void io_commit_sqring(struct io_ring_ctx *ctx)
2310 {
2311 	struct io_rings *rings = ctx->rings;
2312 
2313 	/*
2314 	 * Ensure any loads from the SQEs are done at this point,
2315 	 * since once we write the new head, the application could
2316 	 * write new data to them.
2317 	 */
2318 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2319 }
2320 
2321 /*
2322  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2323  * that is mapped by userspace. This means that care needs to be taken to
2324  * ensure that reads are stable, as we cannot rely on userspace always
2325  * being a good citizen. If members of the sqe are validated and then later
2326  * used, it's important that those reads are done through READ_ONCE() to
2327  * prevent a re-load down the line.
2328  */
2329 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
2330 {
2331 	unsigned head, mask = ctx->sq_entries - 1;
2332 	unsigned sq_idx = ctx->cached_sq_head++ & mask;
2333 
2334 	/*
2335 	 * The cached sq head (or cq tail) serves two purposes:
2336 	 *
2337 	 * 1) allows us to batch the cost of updating the user visible
2338 	 *    head updates.
2339 	 * 2) allows the kernel side to track the head on its own, even
2340 	 *    though the application is the one updating it.
2341 	 */
2342 	head = READ_ONCE(ctx->sq_array[sq_idx]);
2343 	if (likely(head < ctx->sq_entries)) {
2344 		/* double index for 128-byte SQEs, twice as long */
2345 		if (ctx->flags & IORING_SETUP_SQE128)
2346 			head <<= 1;
2347 		return &ctx->sq_sqes[head];
2348 	}
2349 
2350 	/* drop invalid entries */
2351 	ctx->cq_extra--;
2352 	WRITE_ONCE(ctx->rings->sq_dropped,
2353 		   READ_ONCE(ctx->rings->sq_dropped) + 1);
2354 	return NULL;
2355 }
2356 
2357 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2358 	__must_hold(&ctx->uring_lock)
2359 {
2360 	unsigned int entries = io_sqring_entries(ctx);
2361 	unsigned int left;
2362 	int ret;
2363 
2364 	if (unlikely(!entries))
2365 		return 0;
2366 	/* make sure SQ entry isn't read before tail */
2367 	ret = left = min3(nr, ctx->sq_entries, entries);
2368 	io_get_task_refs(left);
2369 	io_submit_state_start(&ctx->submit_state, left);
2370 
2371 	do {
2372 		const struct io_uring_sqe *sqe;
2373 		struct io_kiocb *req;
2374 
2375 		if (unlikely(!io_alloc_req_refill(ctx)))
2376 			break;
2377 		req = io_alloc_req(ctx);
2378 		sqe = io_get_sqe(ctx);
2379 		if (unlikely(!sqe)) {
2380 			io_req_add_to_cache(req, ctx);
2381 			break;
2382 		}
2383 
2384 		/*
2385 		 * Continue submitting even for sqe failure if the
2386 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2387 		 */
2388 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2389 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2390 			left--;
2391 			break;
2392 		}
2393 	} while (--left);
2394 
2395 	if (unlikely(left)) {
2396 		ret -= left;
2397 		/* try again if it submitted nothing and can't allocate a req */
2398 		if (!ret && io_req_cache_empty(ctx))
2399 			ret = -EAGAIN;
2400 		current->io_uring->cached_refs += left;
2401 	}
2402 
2403 	io_submit_state_end(ctx);
2404 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2405 	io_commit_sqring(ctx);
2406 	return ret;
2407 }
2408 
2409 struct io_wait_queue {
2410 	struct wait_queue_entry wq;
2411 	struct io_ring_ctx *ctx;
2412 	unsigned cq_tail;
2413 	unsigned nr_timeouts;
2414 };
2415 
2416 static inline bool io_has_work(struct io_ring_ctx *ctx)
2417 {
2418 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2419 	       ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
2420 		!llist_empty(&ctx->work_llist));
2421 }
2422 
2423 static inline bool io_should_wake(struct io_wait_queue *iowq)
2424 {
2425 	struct io_ring_ctx *ctx = iowq->ctx;
2426 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2427 
2428 	/*
2429 	 * Wake up if we have enough events, or if a timeout occurred since we
2430 	 * started waiting. For timeouts, we always want to return to userspace,
2431 	 * regardless of event count.
2432 	 */
2433 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2434 }
2435 
2436 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2437 			    int wake_flags, void *key)
2438 {
2439 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
2440 							wq);
2441 	struct io_ring_ctx *ctx = iowq->ctx;
2442 
2443 	/*
2444 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2445 	 * the task, and the next invocation will do it.
2446 	 */
2447 	if (io_should_wake(iowq) || io_has_work(ctx))
2448 		return autoremove_wake_function(curr, mode, wake_flags, key);
2449 	return -1;
2450 }
2451 
2452 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2453 {
2454 	if (io_run_task_work_ctx(ctx) > 0)
2455 		return 1;
2456 	if (task_sigpending(current))
2457 		return -EINTR;
2458 	return 0;
2459 }
2460 
2461 /* when returns >0, the caller should retry */
2462 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2463 					  struct io_wait_queue *iowq,
2464 					  ktime_t timeout)
2465 {
2466 	int ret;
2467 	unsigned long check_cq;
2468 
2469 	/* make sure we run task_work before checking for signals */
2470 	ret = io_run_task_work_sig(ctx);
2471 	if (ret || io_should_wake(iowq))
2472 		return ret;
2473 
2474 	check_cq = READ_ONCE(ctx->check_cq);
2475 	if (unlikely(check_cq)) {
2476 		/* let the caller flush overflows, retry */
2477 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2478 			return 1;
2479 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
2480 			return -EBADR;
2481 	}
2482 	if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS))
2483 		return -ETIME;
2484 
2485 	/*
2486 	 * Run task_work after scheduling. If we got woken because of
2487 	 * task_work being processed, run it now rather than let the caller
2488 	 * do another wait loop.
2489 	 */
2490 	ret = io_run_task_work_sig(ctx);
2491 	return ret < 0 ? ret : 1;
2492 }
2493 
2494 /*
2495  * Wait until events become available, if we don't already have some. The
2496  * application must reap them itself, as they reside on the shared cq ring.
2497  */
2498 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2499 			  const sigset_t __user *sig, size_t sigsz,
2500 			  struct __kernel_timespec __user *uts)
2501 {
2502 	struct io_wait_queue iowq;
2503 	struct io_rings *rings = ctx->rings;
2504 	ktime_t timeout = KTIME_MAX;
2505 	int ret;
2506 
2507 	if (!io_allowed_run_tw(ctx))
2508 		return -EEXIST;
2509 
2510 	do {
2511 		/* always run at least 1 task work to process local work */
2512 		ret = io_run_task_work_ctx(ctx);
2513 		if (ret < 0)
2514 			return ret;
2515 		io_cqring_overflow_flush(ctx);
2516 
2517 		/* if user messes with these they will just get an early return */
2518 		if (__io_cqring_events_user(ctx) >= min_events)
2519 			return 0;
2520 	} while (ret > 0);
2521 
2522 	if (sig) {
2523 #ifdef CONFIG_COMPAT
2524 		if (in_compat_syscall())
2525 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2526 						      sigsz);
2527 		else
2528 #endif
2529 			ret = set_user_sigmask(sig, sigsz);
2530 
2531 		if (ret)
2532 			return ret;
2533 	}
2534 
2535 	if (uts) {
2536 		struct timespec64 ts;
2537 
2538 		if (get_timespec64(&ts, uts))
2539 			return -EFAULT;
2540 		timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2541 	}
2542 
2543 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2544 	iowq.wq.private = current;
2545 	INIT_LIST_HEAD(&iowq.wq.entry);
2546 	iowq.ctx = ctx;
2547 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2548 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2549 
2550 	trace_io_uring_cqring_wait(ctx, min_events);
2551 	do {
2552 		io_cqring_overflow_flush(ctx);
2553 		prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2554 						TASK_INTERRUPTIBLE);
2555 		ret = io_cqring_wait_schedule(ctx, &iowq, timeout);
2556 		if (__io_cqring_events_user(ctx) >= min_events)
2557 			break;
2558 		cond_resched();
2559 	} while (ret > 0);
2560 
2561 	finish_wait(&ctx->cq_wait, &iowq.wq);
2562 	restore_saved_sigmask_unless(ret == -EINTR);
2563 
2564 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2565 }
2566 
2567 static void io_mem_free(void *ptr)
2568 {
2569 	struct page *page;
2570 
2571 	if (!ptr)
2572 		return;
2573 
2574 	page = virt_to_head_page(ptr);
2575 	if (put_page_testzero(page))
2576 		free_compound_page(page);
2577 }
2578 
2579 static void *io_mem_alloc(size_t size)
2580 {
2581 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2582 
2583 	return (void *) __get_free_pages(gfp, get_order(size));
2584 }
2585 
2586 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2587 				unsigned int cq_entries, size_t *sq_offset)
2588 {
2589 	struct io_rings *rings;
2590 	size_t off, sq_array_size;
2591 
2592 	off = struct_size(rings, cqes, cq_entries);
2593 	if (off == SIZE_MAX)
2594 		return SIZE_MAX;
2595 	if (ctx->flags & IORING_SETUP_CQE32) {
2596 		if (check_shl_overflow(off, 1, &off))
2597 			return SIZE_MAX;
2598 	}
2599 
2600 #ifdef CONFIG_SMP
2601 	off = ALIGN(off, SMP_CACHE_BYTES);
2602 	if (off == 0)
2603 		return SIZE_MAX;
2604 #endif
2605 
2606 	if (sq_offset)
2607 		*sq_offset = off;
2608 
2609 	sq_array_size = array_size(sizeof(u32), sq_entries);
2610 	if (sq_array_size == SIZE_MAX)
2611 		return SIZE_MAX;
2612 
2613 	if (check_add_overflow(off, sq_array_size, &off))
2614 		return SIZE_MAX;
2615 
2616 	return off;
2617 }
2618 
2619 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2620 			       unsigned int eventfd_async)
2621 {
2622 	struct io_ev_fd *ev_fd;
2623 	__s32 __user *fds = arg;
2624 	int fd;
2625 
2626 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2627 					lockdep_is_held(&ctx->uring_lock));
2628 	if (ev_fd)
2629 		return -EBUSY;
2630 
2631 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2632 		return -EFAULT;
2633 
2634 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2635 	if (!ev_fd)
2636 		return -ENOMEM;
2637 
2638 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2639 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2640 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2641 		kfree(ev_fd);
2642 		return ret;
2643 	}
2644 
2645 	spin_lock(&ctx->completion_lock);
2646 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2647 	spin_unlock(&ctx->completion_lock);
2648 
2649 	ev_fd->eventfd_async = eventfd_async;
2650 	ctx->has_evfd = true;
2651 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2652 	atomic_set(&ev_fd->refs, 1);
2653 	atomic_set(&ev_fd->ops, 0);
2654 	return 0;
2655 }
2656 
2657 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2658 {
2659 	struct io_ev_fd *ev_fd;
2660 
2661 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2662 					lockdep_is_held(&ctx->uring_lock));
2663 	if (ev_fd) {
2664 		ctx->has_evfd = false;
2665 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2666 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2667 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2668 		return 0;
2669 	}
2670 
2671 	return -ENXIO;
2672 }
2673 
2674 static void io_req_caches_free(struct io_ring_ctx *ctx)
2675 {
2676 	int nr = 0;
2677 
2678 	mutex_lock(&ctx->uring_lock);
2679 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2680 
2681 	while (!io_req_cache_empty(ctx)) {
2682 		struct io_kiocb *req = io_alloc_req(ctx);
2683 
2684 		kmem_cache_free(req_cachep, req);
2685 		nr++;
2686 	}
2687 	if (nr)
2688 		percpu_ref_put_many(&ctx->refs, nr);
2689 	mutex_unlock(&ctx->uring_lock);
2690 }
2691 
2692 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2693 {
2694 	io_sq_thread_finish(ctx);
2695 	io_rsrc_refs_drop(ctx);
2696 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2697 	io_wait_rsrc_data(ctx->buf_data);
2698 	io_wait_rsrc_data(ctx->file_data);
2699 
2700 	mutex_lock(&ctx->uring_lock);
2701 	if (ctx->buf_data)
2702 		__io_sqe_buffers_unregister(ctx);
2703 	if (ctx->file_data)
2704 		__io_sqe_files_unregister(ctx);
2705 	io_cqring_overflow_kill(ctx);
2706 	io_eventfd_unregister(ctx);
2707 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2708 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2709 	mutex_unlock(&ctx->uring_lock);
2710 	io_destroy_buffers(ctx);
2711 	if (ctx->sq_creds)
2712 		put_cred(ctx->sq_creds);
2713 	if (ctx->submitter_task)
2714 		put_task_struct(ctx->submitter_task);
2715 
2716 	/* there are no registered resources left, nobody uses it */
2717 	if (ctx->rsrc_node)
2718 		io_rsrc_node_destroy(ctx->rsrc_node);
2719 	if (ctx->rsrc_backup_node)
2720 		io_rsrc_node_destroy(ctx->rsrc_backup_node);
2721 	flush_delayed_work(&ctx->rsrc_put_work);
2722 	flush_delayed_work(&ctx->fallback_work);
2723 
2724 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2725 	WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
2726 
2727 #if defined(CONFIG_UNIX)
2728 	if (ctx->ring_sock) {
2729 		ctx->ring_sock->file = NULL; /* so that iput() is called */
2730 		sock_release(ctx->ring_sock);
2731 	}
2732 #endif
2733 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2734 
2735 	if (ctx->mm_account) {
2736 		mmdrop(ctx->mm_account);
2737 		ctx->mm_account = NULL;
2738 	}
2739 	io_mem_free(ctx->rings);
2740 	io_mem_free(ctx->sq_sqes);
2741 
2742 	percpu_ref_exit(&ctx->refs);
2743 	free_uid(ctx->user);
2744 	io_req_caches_free(ctx);
2745 	if (ctx->hash_map)
2746 		io_wq_put_hash(ctx->hash_map);
2747 	kfree(ctx->cancel_table.hbs);
2748 	kfree(ctx->cancel_table_locked.hbs);
2749 	kfree(ctx->dummy_ubuf);
2750 	kfree(ctx->io_bl);
2751 	xa_destroy(&ctx->io_bl_xa);
2752 	kfree(ctx);
2753 }
2754 
2755 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2756 {
2757 	struct io_ring_ctx *ctx = file->private_data;
2758 	__poll_t mask = 0;
2759 
2760 	poll_wait(file, &ctx->cq_wait, wait);
2761 	/*
2762 	 * synchronizes with barrier from wq_has_sleeper call in
2763 	 * io_commit_cqring
2764 	 */
2765 	smp_rmb();
2766 	if (!io_sqring_full(ctx))
2767 		mask |= EPOLLOUT | EPOLLWRNORM;
2768 
2769 	/*
2770 	 * Don't flush cqring overflow list here, just do a simple check.
2771 	 * Otherwise there could possible be ABBA deadlock:
2772 	 *      CPU0                    CPU1
2773 	 *      ----                    ----
2774 	 * lock(&ctx->uring_lock);
2775 	 *                              lock(&ep->mtx);
2776 	 *                              lock(&ctx->uring_lock);
2777 	 * lock(&ep->mtx);
2778 	 *
2779 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2780 	 * pushes them to do the flush.
2781 	 */
2782 
2783 	if (io_cqring_events(ctx) || io_has_work(ctx))
2784 		mask |= EPOLLIN | EPOLLRDNORM;
2785 
2786 	return mask;
2787 }
2788 
2789 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2790 {
2791 	const struct cred *creds;
2792 
2793 	creds = xa_erase(&ctx->personalities, id);
2794 	if (creds) {
2795 		put_cred(creds);
2796 		return 0;
2797 	}
2798 
2799 	return -EINVAL;
2800 }
2801 
2802 struct io_tctx_exit {
2803 	struct callback_head		task_work;
2804 	struct completion		completion;
2805 	struct io_ring_ctx		*ctx;
2806 };
2807 
2808 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2809 {
2810 	struct io_uring_task *tctx = current->io_uring;
2811 	struct io_tctx_exit *work;
2812 
2813 	work = container_of(cb, struct io_tctx_exit, task_work);
2814 	/*
2815 	 * When @in_idle, we're in cancellation and it's racy to remove the
2816 	 * node. It'll be removed by the end of cancellation, just ignore it.
2817 	 * tctx can be NULL if the queueing of this task_work raced with
2818 	 * work cancelation off the exec path.
2819 	 */
2820 	if (tctx && !atomic_read(&tctx->in_idle))
2821 		io_uring_del_tctx_node((unsigned long)work->ctx);
2822 	complete(&work->completion);
2823 }
2824 
2825 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2826 {
2827 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2828 
2829 	return req->ctx == data;
2830 }
2831 
2832 static __cold void io_ring_exit_work(struct work_struct *work)
2833 {
2834 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2835 	unsigned long timeout = jiffies + HZ * 60 * 5;
2836 	unsigned long interval = HZ / 20;
2837 	struct io_tctx_exit exit;
2838 	struct io_tctx_node *node;
2839 	int ret;
2840 
2841 	/*
2842 	 * If we're doing polled IO and end up having requests being
2843 	 * submitted async (out-of-line), then completions can come in while
2844 	 * we're waiting for refs to drop. We need to reap these manually,
2845 	 * as nobody else will be looking for them.
2846 	 */
2847 	do {
2848 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2849 			mutex_lock(&ctx->uring_lock);
2850 			io_cqring_overflow_kill(ctx);
2851 			mutex_unlock(&ctx->uring_lock);
2852 		}
2853 
2854 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2855 			io_move_task_work_from_local(ctx);
2856 
2857 		while (io_uring_try_cancel_requests(ctx, NULL, true))
2858 			cond_resched();
2859 
2860 		if (ctx->sq_data) {
2861 			struct io_sq_data *sqd = ctx->sq_data;
2862 			struct task_struct *tsk;
2863 
2864 			io_sq_thread_park(sqd);
2865 			tsk = sqd->thread;
2866 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2867 				io_wq_cancel_cb(tsk->io_uring->io_wq,
2868 						io_cancel_ctx_cb, ctx, true);
2869 			io_sq_thread_unpark(sqd);
2870 		}
2871 
2872 		io_req_caches_free(ctx);
2873 
2874 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2875 			/* there is little hope left, don't run it too often */
2876 			interval = HZ * 60;
2877 		}
2878 	} while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
2879 
2880 	init_completion(&exit.completion);
2881 	init_task_work(&exit.task_work, io_tctx_exit_cb);
2882 	exit.ctx = ctx;
2883 	/*
2884 	 * Some may use context even when all refs and requests have been put,
2885 	 * and they are free to do so while still holding uring_lock or
2886 	 * completion_lock, see io_req_task_submit(). Apart from other work,
2887 	 * this lock/unlock section also waits them to finish.
2888 	 */
2889 	mutex_lock(&ctx->uring_lock);
2890 	while (!list_empty(&ctx->tctx_list)) {
2891 		WARN_ON_ONCE(time_after(jiffies, timeout));
2892 
2893 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2894 					ctx_node);
2895 		/* don't spin on a single task if cancellation failed */
2896 		list_rotate_left(&ctx->tctx_list);
2897 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2898 		if (WARN_ON_ONCE(ret))
2899 			continue;
2900 
2901 		mutex_unlock(&ctx->uring_lock);
2902 		wait_for_completion(&exit.completion);
2903 		mutex_lock(&ctx->uring_lock);
2904 	}
2905 	mutex_unlock(&ctx->uring_lock);
2906 	spin_lock(&ctx->completion_lock);
2907 	spin_unlock(&ctx->completion_lock);
2908 
2909 	io_ring_ctx_free(ctx);
2910 }
2911 
2912 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2913 {
2914 	unsigned long index;
2915 	struct creds *creds;
2916 
2917 	mutex_lock(&ctx->uring_lock);
2918 	percpu_ref_kill(&ctx->refs);
2919 	xa_for_each(&ctx->personalities, index, creds)
2920 		io_unregister_personality(ctx, index);
2921 	if (ctx->rings)
2922 		io_poll_remove_all(ctx, NULL, true);
2923 	mutex_unlock(&ctx->uring_lock);
2924 
2925 	/*
2926 	 * If we failed setting up the ctx, we might not have any rings
2927 	 * and therefore did not submit any requests
2928 	 */
2929 	if (ctx->rings)
2930 		io_kill_timeouts(ctx, NULL, true);
2931 
2932 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2933 	/*
2934 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
2935 	 * if we're exiting a ton of rings at the same time. It just adds
2936 	 * noise and overhead, there's no discernable change in runtime
2937 	 * over using system_wq.
2938 	 */
2939 	queue_work(system_unbound_wq, &ctx->exit_work);
2940 }
2941 
2942 static int io_uring_release(struct inode *inode, struct file *file)
2943 {
2944 	struct io_ring_ctx *ctx = file->private_data;
2945 
2946 	file->private_data = NULL;
2947 	io_ring_ctx_wait_and_kill(ctx);
2948 	return 0;
2949 }
2950 
2951 struct io_task_cancel {
2952 	struct task_struct *task;
2953 	bool all;
2954 };
2955 
2956 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
2957 {
2958 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2959 	struct io_task_cancel *cancel = data;
2960 
2961 	return io_match_task_safe(req, cancel->task, cancel->all);
2962 }
2963 
2964 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
2965 					 struct task_struct *task,
2966 					 bool cancel_all)
2967 {
2968 	struct io_defer_entry *de;
2969 	LIST_HEAD(list);
2970 
2971 	spin_lock(&ctx->completion_lock);
2972 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
2973 		if (io_match_task_safe(de->req, task, cancel_all)) {
2974 			list_cut_position(&list, &ctx->defer_list, &de->list);
2975 			break;
2976 		}
2977 	}
2978 	spin_unlock(&ctx->completion_lock);
2979 	if (list_empty(&list))
2980 		return false;
2981 
2982 	while (!list_empty(&list)) {
2983 		de = list_first_entry(&list, struct io_defer_entry, list);
2984 		list_del_init(&de->list);
2985 		io_req_task_queue_fail(de->req, -ECANCELED);
2986 		kfree(de);
2987 	}
2988 	return true;
2989 }
2990 
2991 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
2992 {
2993 	struct io_tctx_node *node;
2994 	enum io_wq_cancel cret;
2995 	bool ret = false;
2996 
2997 	mutex_lock(&ctx->uring_lock);
2998 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
2999 		struct io_uring_task *tctx = node->task->io_uring;
3000 
3001 		/*
3002 		 * io_wq will stay alive while we hold uring_lock, because it's
3003 		 * killed after ctx nodes, which requires to take the lock.
3004 		 */
3005 		if (!tctx || !tctx->io_wq)
3006 			continue;
3007 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3008 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3009 	}
3010 	mutex_unlock(&ctx->uring_lock);
3011 
3012 	return ret;
3013 }
3014 
3015 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3016 						struct task_struct *task,
3017 						bool cancel_all)
3018 {
3019 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3020 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3021 	enum io_wq_cancel cret;
3022 	bool ret = false;
3023 
3024 	/* failed during ring init, it couldn't have issued any requests */
3025 	if (!ctx->rings)
3026 		return false;
3027 
3028 	if (!task) {
3029 		ret |= io_uring_try_cancel_iowq(ctx);
3030 	} else if (tctx && tctx->io_wq) {
3031 		/*
3032 		 * Cancels requests of all rings, not only @ctx, but
3033 		 * it's fine as the task is in exit/exec.
3034 		 */
3035 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3036 				       &cancel, true);
3037 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3038 	}
3039 
3040 	/* SQPOLL thread does its own polling */
3041 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3042 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3043 		while (!wq_list_empty(&ctx->iopoll_list)) {
3044 			io_iopoll_try_reap_events(ctx);
3045 			ret = true;
3046 		}
3047 	}
3048 
3049 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3050 		ret |= io_run_local_work(ctx) > 0;
3051 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3052 	mutex_lock(&ctx->uring_lock);
3053 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3054 	mutex_unlock(&ctx->uring_lock);
3055 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3056 	if (task)
3057 		ret |= io_run_task_work() > 0;
3058 	return ret;
3059 }
3060 
3061 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3062 {
3063 	if (tracked)
3064 		return atomic_read(&tctx->inflight_tracked);
3065 	return percpu_counter_sum(&tctx->inflight);
3066 }
3067 
3068 /*
3069  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3070  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3071  */
3072 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3073 {
3074 	struct io_uring_task *tctx = current->io_uring;
3075 	struct io_ring_ctx *ctx;
3076 	s64 inflight;
3077 	DEFINE_WAIT(wait);
3078 
3079 	WARN_ON_ONCE(sqd && sqd->thread != current);
3080 
3081 	if (!current->io_uring)
3082 		return;
3083 	if (tctx->io_wq)
3084 		io_wq_exit_start(tctx->io_wq);
3085 
3086 	atomic_inc(&tctx->in_idle);
3087 	do {
3088 		bool loop = false;
3089 
3090 		io_uring_drop_tctx_refs(current);
3091 		/* read completions before cancelations */
3092 		inflight = tctx_inflight(tctx, !cancel_all);
3093 		if (!inflight)
3094 			break;
3095 
3096 		if (!sqd) {
3097 			struct io_tctx_node *node;
3098 			unsigned long index;
3099 
3100 			xa_for_each(&tctx->xa, index, node) {
3101 				/* sqpoll task will cancel all its requests */
3102 				if (node->ctx->sq_data)
3103 					continue;
3104 				loop |= io_uring_try_cancel_requests(node->ctx,
3105 							current, cancel_all);
3106 			}
3107 		} else {
3108 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3109 				loop |= io_uring_try_cancel_requests(ctx,
3110 								     current,
3111 								     cancel_all);
3112 		}
3113 
3114 		if (loop) {
3115 			cond_resched();
3116 			continue;
3117 		}
3118 
3119 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3120 		io_run_task_work();
3121 		io_uring_drop_tctx_refs(current);
3122 
3123 		/*
3124 		 * If we've seen completions, retry without waiting. This
3125 		 * avoids a race where a completion comes in before we did
3126 		 * prepare_to_wait().
3127 		 */
3128 		if (inflight == tctx_inflight(tctx, !cancel_all))
3129 			schedule();
3130 		finish_wait(&tctx->wait, &wait);
3131 	} while (1);
3132 
3133 	io_uring_clean_tctx(tctx);
3134 	if (cancel_all) {
3135 		/*
3136 		 * We shouldn't run task_works after cancel, so just leave
3137 		 * ->in_idle set for normal exit.
3138 		 */
3139 		atomic_dec(&tctx->in_idle);
3140 		/* for exec all current's requests should be gone, kill tctx */
3141 		__io_uring_free(current);
3142 	}
3143 }
3144 
3145 void __io_uring_cancel(bool cancel_all)
3146 {
3147 	io_uring_cancel_generic(cancel_all, NULL);
3148 }
3149 
3150 static void *io_uring_validate_mmap_request(struct file *file,
3151 					    loff_t pgoff, size_t sz)
3152 {
3153 	struct io_ring_ctx *ctx = file->private_data;
3154 	loff_t offset = pgoff << PAGE_SHIFT;
3155 	struct page *page;
3156 	void *ptr;
3157 
3158 	switch (offset) {
3159 	case IORING_OFF_SQ_RING:
3160 	case IORING_OFF_CQ_RING:
3161 		ptr = ctx->rings;
3162 		break;
3163 	case IORING_OFF_SQES:
3164 		ptr = ctx->sq_sqes;
3165 		break;
3166 	default:
3167 		return ERR_PTR(-EINVAL);
3168 	}
3169 
3170 	page = virt_to_head_page(ptr);
3171 	if (sz > page_size(page))
3172 		return ERR_PTR(-EINVAL);
3173 
3174 	return ptr;
3175 }
3176 
3177 #ifdef CONFIG_MMU
3178 
3179 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3180 {
3181 	size_t sz = vma->vm_end - vma->vm_start;
3182 	unsigned long pfn;
3183 	void *ptr;
3184 
3185 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3186 	if (IS_ERR(ptr))
3187 		return PTR_ERR(ptr);
3188 
3189 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3190 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3191 }
3192 
3193 #else /* !CONFIG_MMU */
3194 
3195 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3196 {
3197 	return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
3198 }
3199 
3200 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3201 {
3202 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3203 }
3204 
3205 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3206 	unsigned long addr, unsigned long len,
3207 	unsigned long pgoff, unsigned long flags)
3208 {
3209 	void *ptr;
3210 
3211 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3212 	if (IS_ERR(ptr))
3213 		return PTR_ERR(ptr);
3214 
3215 	return (unsigned long) ptr;
3216 }
3217 
3218 #endif /* !CONFIG_MMU */
3219 
3220 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3221 {
3222 	if (flags & IORING_ENTER_EXT_ARG) {
3223 		struct io_uring_getevents_arg arg;
3224 
3225 		if (argsz != sizeof(arg))
3226 			return -EINVAL;
3227 		if (copy_from_user(&arg, argp, sizeof(arg)))
3228 			return -EFAULT;
3229 	}
3230 	return 0;
3231 }
3232 
3233 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3234 			  struct __kernel_timespec __user **ts,
3235 			  const sigset_t __user **sig)
3236 {
3237 	struct io_uring_getevents_arg arg;
3238 
3239 	/*
3240 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3241 	 * is just a pointer to the sigset_t.
3242 	 */
3243 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3244 		*sig = (const sigset_t __user *) argp;
3245 		*ts = NULL;
3246 		return 0;
3247 	}
3248 
3249 	/*
3250 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3251 	 * timespec and sigset_t pointers if good.
3252 	 */
3253 	if (*argsz != sizeof(arg))
3254 		return -EINVAL;
3255 	if (copy_from_user(&arg, argp, sizeof(arg)))
3256 		return -EFAULT;
3257 	if (arg.pad)
3258 		return -EINVAL;
3259 	*sig = u64_to_user_ptr(arg.sigmask);
3260 	*argsz = arg.sigmask_sz;
3261 	*ts = u64_to_user_ptr(arg.ts);
3262 	return 0;
3263 }
3264 
3265 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3266 		u32, min_complete, u32, flags, const void __user *, argp,
3267 		size_t, argsz)
3268 {
3269 	struct io_ring_ctx *ctx;
3270 	struct fd f;
3271 	long ret;
3272 
3273 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3274 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3275 			       IORING_ENTER_REGISTERED_RING)))
3276 		return -EINVAL;
3277 
3278 	/*
3279 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3280 	 * need only dereference our task private array to find it.
3281 	 */
3282 	if (flags & IORING_ENTER_REGISTERED_RING) {
3283 		struct io_uring_task *tctx = current->io_uring;
3284 
3285 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3286 			return -EINVAL;
3287 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3288 		f.file = tctx->registered_rings[fd];
3289 		f.flags = 0;
3290 		if (unlikely(!f.file))
3291 			return -EBADF;
3292 	} else {
3293 		f = fdget(fd);
3294 		if (unlikely(!f.file))
3295 			return -EBADF;
3296 		ret = -EOPNOTSUPP;
3297 		if (unlikely(!io_is_uring_fops(f.file)))
3298 			goto out;
3299 	}
3300 
3301 	ctx = f.file->private_data;
3302 	ret = -EBADFD;
3303 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3304 		goto out;
3305 
3306 	/*
3307 	 * For SQ polling, the thread will do all submissions and completions.
3308 	 * Just return the requested submit count, and wake the thread if
3309 	 * we were asked to.
3310 	 */
3311 	ret = 0;
3312 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3313 		io_cqring_overflow_flush(ctx);
3314 
3315 		if (unlikely(ctx->sq_data->thread == NULL)) {
3316 			ret = -EOWNERDEAD;
3317 			goto out;
3318 		}
3319 		if (flags & IORING_ENTER_SQ_WAKEUP)
3320 			wake_up(&ctx->sq_data->wait);
3321 		if (flags & IORING_ENTER_SQ_WAIT) {
3322 			ret = io_sqpoll_wait_sq(ctx);
3323 			if (ret)
3324 				goto out;
3325 		}
3326 		ret = to_submit;
3327 	} else if (to_submit) {
3328 		ret = io_uring_add_tctx_node(ctx);
3329 		if (unlikely(ret))
3330 			goto out;
3331 
3332 		mutex_lock(&ctx->uring_lock);
3333 		ret = io_submit_sqes(ctx, to_submit);
3334 		if (ret != to_submit) {
3335 			mutex_unlock(&ctx->uring_lock);
3336 			goto out;
3337 		}
3338 		if (flags & IORING_ENTER_GETEVENTS) {
3339 			if (ctx->syscall_iopoll)
3340 				goto iopoll_locked;
3341 			/*
3342 			 * Ignore errors, we'll soon call io_cqring_wait() and
3343 			 * it should handle ownership problems if any.
3344 			 */
3345 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3346 				(void)io_run_local_work_locked(ctx);
3347 		}
3348 		mutex_unlock(&ctx->uring_lock);
3349 	}
3350 
3351 	if (flags & IORING_ENTER_GETEVENTS) {
3352 		int ret2;
3353 
3354 		if (ctx->syscall_iopoll) {
3355 			/*
3356 			 * We disallow the app entering submit/complete with
3357 			 * polling, but we still need to lock the ring to
3358 			 * prevent racing with polled issue that got punted to
3359 			 * a workqueue.
3360 			 */
3361 			mutex_lock(&ctx->uring_lock);
3362 iopoll_locked:
3363 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3364 			if (likely(!ret2)) {
3365 				min_complete = min(min_complete,
3366 						   ctx->cq_entries);
3367 				ret2 = io_iopoll_check(ctx, min_complete);
3368 			}
3369 			mutex_unlock(&ctx->uring_lock);
3370 		} else {
3371 			const sigset_t __user *sig;
3372 			struct __kernel_timespec __user *ts;
3373 
3374 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3375 			if (likely(!ret2)) {
3376 				min_complete = min(min_complete,
3377 						   ctx->cq_entries);
3378 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3379 						      argsz, ts);
3380 			}
3381 		}
3382 
3383 		if (!ret) {
3384 			ret = ret2;
3385 
3386 			/*
3387 			 * EBADR indicates that one or more CQE were dropped.
3388 			 * Once the user has been informed we can clear the bit
3389 			 * as they are obviously ok with those drops.
3390 			 */
3391 			if (unlikely(ret2 == -EBADR))
3392 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3393 					  &ctx->check_cq);
3394 		}
3395 	}
3396 out:
3397 	fdput(f);
3398 	return ret;
3399 }
3400 
3401 static const struct file_operations io_uring_fops = {
3402 	.release	= io_uring_release,
3403 	.mmap		= io_uring_mmap,
3404 #ifndef CONFIG_MMU
3405 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3406 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3407 #endif
3408 	.poll		= io_uring_poll,
3409 #ifdef CONFIG_PROC_FS
3410 	.show_fdinfo	= io_uring_show_fdinfo,
3411 #endif
3412 };
3413 
3414 bool io_is_uring_fops(struct file *file)
3415 {
3416 	return file->f_op == &io_uring_fops;
3417 }
3418 
3419 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3420 					 struct io_uring_params *p)
3421 {
3422 	struct io_rings *rings;
3423 	size_t size, sq_array_offset;
3424 
3425 	/* make sure these are sane, as we already accounted them */
3426 	ctx->sq_entries = p->sq_entries;
3427 	ctx->cq_entries = p->cq_entries;
3428 
3429 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3430 	if (size == SIZE_MAX)
3431 		return -EOVERFLOW;
3432 
3433 	rings = io_mem_alloc(size);
3434 	if (!rings)
3435 		return -ENOMEM;
3436 
3437 	ctx->rings = rings;
3438 	ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3439 	rings->sq_ring_mask = p->sq_entries - 1;
3440 	rings->cq_ring_mask = p->cq_entries - 1;
3441 	rings->sq_ring_entries = p->sq_entries;
3442 	rings->cq_ring_entries = p->cq_entries;
3443 
3444 	if (p->flags & IORING_SETUP_SQE128)
3445 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3446 	else
3447 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3448 	if (size == SIZE_MAX) {
3449 		io_mem_free(ctx->rings);
3450 		ctx->rings = NULL;
3451 		return -EOVERFLOW;
3452 	}
3453 
3454 	ctx->sq_sqes = io_mem_alloc(size);
3455 	if (!ctx->sq_sqes) {
3456 		io_mem_free(ctx->rings);
3457 		ctx->rings = NULL;
3458 		return -ENOMEM;
3459 	}
3460 
3461 	return 0;
3462 }
3463 
3464 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
3465 {
3466 	int ret, fd;
3467 
3468 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3469 	if (fd < 0)
3470 		return fd;
3471 
3472 	ret = __io_uring_add_tctx_node(ctx);
3473 	if (ret) {
3474 		put_unused_fd(fd);
3475 		return ret;
3476 	}
3477 	fd_install(fd, file);
3478 	return fd;
3479 }
3480 
3481 /*
3482  * Allocate an anonymous fd, this is what constitutes the application
3483  * visible backing of an io_uring instance. The application mmaps this
3484  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3485  * we have to tie this fd to a socket for file garbage collection purposes.
3486  */
3487 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3488 {
3489 	struct file *file;
3490 #if defined(CONFIG_UNIX)
3491 	int ret;
3492 
3493 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3494 				&ctx->ring_sock);
3495 	if (ret)
3496 		return ERR_PTR(ret);
3497 #endif
3498 
3499 	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3500 					 O_RDWR | O_CLOEXEC, NULL);
3501 #if defined(CONFIG_UNIX)
3502 	if (IS_ERR(file)) {
3503 		sock_release(ctx->ring_sock);
3504 		ctx->ring_sock = NULL;
3505 	} else {
3506 		ctx->ring_sock->file = file;
3507 	}
3508 #endif
3509 	return file;
3510 }
3511 
3512 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3513 				  struct io_uring_params __user *params)
3514 {
3515 	struct io_ring_ctx *ctx;
3516 	struct file *file;
3517 	int ret;
3518 
3519 	if (!entries)
3520 		return -EINVAL;
3521 	if (entries > IORING_MAX_ENTRIES) {
3522 		if (!(p->flags & IORING_SETUP_CLAMP))
3523 			return -EINVAL;
3524 		entries = IORING_MAX_ENTRIES;
3525 	}
3526 
3527 	/*
3528 	 * Use twice as many entries for the CQ ring. It's possible for the
3529 	 * application to drive a higher depth than the size of the SQ ring,
3530 	 * since the sqes are only used at submission time. This allows for
3531 	 * some flexibility in overcommitting a bit. If the application has
3532 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3533 	 * of CQ ring entries manually.
3534 	 */
3535 	p->sq_entries = roundup_pow_of_two(entries);
3536 	if (p->flags & IORING_SETUP_CQSIZE) {
3537 		/*
3538 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3539 		 * to a power-of-two, if it isn't already. We do NOT impose
3540 		 * any cq vs sq ring sizing.
3541 		 */
3542 		if (!p->cq_entries)
3543 			return -EINVAL;
3544 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3545 			if (!(p->flags & IORING_SETUP_CLAMP))
3546 				return -EINVAL;
3547 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3548 		}
3549 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3550 		if (p->cq_entries < p->sq_entries)
3551 			return -EINVAL;
3552 	} else {
3553 		p->cq_entries = 2 * p->sq_entries;
3554 	}
3555 
3556 	ctx = io_ring_ctx_alloc(p);
3557 	if (!ctx)
3558 		return -ENOMEM;
3559 
3560 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3561 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3562 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3563 		ctx->task_complete = true;
3564 
3565 	/*
3566 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3567 	 * space applications don't need to do io completion events
3568 	 * polling again, they can rely on io_sq_thread to do polling
3569 	 * work, which can reduce cpu usage and uring_lock contention.
3570 	 */
3571 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3572 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3573 		ctx->syscall_iopoll = 1;
3574 
3575 	ctx->compat = in_compat_syscall();
3576 	if (!capable(CAP_IPC_LOCK))
3577 		ctx->user = get_uid(current_user());
3578 
3579 	/*
3580 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3581 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3582 	 */
3583 	ret = -EINVAL;
3584 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3585 		/* IPI related flags don't make sense with SQPOLL */
3586 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3587 				  IORING_SETUP_TASKRUN_FLAG |
3588 				  IORING_SETUP_DEFER_TASKRUN))
3589 			goto err;
3590 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3591 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3592 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3593 	} else {
3594 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3595 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3596 			goto err;
3597 		ctx->notify_method = TWA_SIGNAL;
3598 	}
3599 
3600 	/*
3601 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3602 	 * submission task. This implies that there is only one submitter, so enforce
3603 	 * that.
3604 	 */
3605 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3606 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3607 		goto err;
3608 	}
3609 
3610 	/*
3611 	 * This is just grabbed for accounting purposes. When a process exits,
3612 	 * the mm is exited and dropped before the files, hence we need to hang
3613 	 * on to this mm purely for the purposes of being able to unaccount
3614 	 * memory (locked/pinned vm). It's not used for anything else.
3615 	 */
3616 	mmgrab(current->mm);
3617 	ctx->mm_account = current->mm;
3618 
3619 	ret = io_allocate_scq_urings(ctx, p);
3620 	if (ret)
3621 		goto err;
3622 
3623 	ret = io_sq_offload_create(ctx, p);
3624 	if (ret)
3625 		goto err;
3626 	/* always set a rsrc node */
3627 	ret = io_rsrc_node_switch_start(ctx);
3628 	if (ret)
3629 		goto err;
3630 	io_rsrc_node_switch(ctx, NULL);
3631 
3632 	memset(&p->sq_off, 0, sizeof(p->sq_off));
3633 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3634 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3635 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3636 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3637 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3638 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3639 	p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3640 
3641 	memset(&p->cq_off, 0, sizeof(p->cq_off));
3642 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3643 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3644 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3645 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3646 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3647 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3648 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3649 
3650 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3651 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3652 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3653 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3654 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3655 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3656 			IORING_FEAT_LINKED_FILE;
3657 
3658 	if (copy_to_user(params, p, sizeof(*p))) {
3659 		ret = -EFAULT;
3660 		goto err;
3661 	}
3662 
3663 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3664 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3665 		ctx->submitter_task = get_task_struct(current);
3666 
3667 	file = io_uring_get_file(ctx);
3668 	if (IS_ERR(file)) {
3669 		ret = PTR_ERR(file);
3670 		goto err;
3671 	}
3672 
3673 	/*
3674 	 * Install ring fd as the very last thing, so we don't risk someone
3675 	 * having closed it before we finish setup
3676 	 */
3677 	ret = io_uring_install_fd(ctx, file);
3678 	if (ret < 0) {
3679 		/* fput will clean it up */
3680 		fput(file);
3681 		return ret;
3682 	}
3683 
3684 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3685 	return ret;
3686 err:
3687 	io_ring_ctx_wait_and_kill(ctx);
3688 	return ret;
3689 }
3690 
3691 /*
3692  * Sets up an aio uring context, and returns the fd. Applications asks for a
3693  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3694  * params structure passed in.
3695  */
3696 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3697 {
3698 	struct io_uring_params p;
3699 	int i;
3700 
3701 	if (copy_from_user(&p, params, sizeof(p)))
3702 		return -EFAULT;
3703 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3704 		if (p.resv[i])
3705 			return -EINVAL;
3706 	}
3707 
3708 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3709 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3710 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3711 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3712 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3713 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3714 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN))
3715 		return -EINVAL;
3716 
3717 	return io_uring_create(entries, &p, params);
3718 }
3719 
3720 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3721 		struct io_uring_params __user *, params)
3722 {
3723 	return io_uring_setup(entries, params);
3724 }
3725 
3726 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
3727 			   unsigned nr_args)
3728 {
3729 	struct io_uring_probe *p;
3730 	size_t size;
3731 	int i, ret;
3732 
3733 	size = struct_size(p, ops, nr_args);
3734 	if (size == SIZE_MAX)
3735 		return -EOVERFLOW;
3736 	p = kzalloc(size, GFP_KERNEL);
3737 	if (!p)
3738 		return -ENOMEM;
3739 
3740 	ret = -EFAULT;
3741 	if (copy_from_user(p, arg, size))
3742 		goto out;
3743 	ret = -EINVAL;
3744 	if (memchr_inv(p, 0, size))
3745 		goto out;
3746 
3747 	p->last_op = IORING_OP_LAST - 1;
3748 	if (nr_args > IORING_OP_LAST)
3749 		nr_args = IORING_OP_LAST;
3750 
3751 	for (i = 0; i < nr_args; i++) {
3752 		p->ops[i].op = i;
3753 		if (!io_op_defs[i].not_supported)
3754 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
3755 	}
3756 	p->ops_len = i;
3757 
3758 	ret = 0;
3759 	if (copy_to_user(arg, p, size))
3760 		ret = -EFAULT;
3761 out:
3762 	kfree(p);
3763 	return ret;
3764 }
3765 
3766 static int io_register_personality(struct io_ring_ctx *ctx)
3767 {
3768 	const struct cred *creds;
3769 	u32 id;
3770 	int ret;
3771 
3772 	creds = get_current_cred();
3773 
3774 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
3775 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
3776 	if (ret < 0) {
3777 		put_cred(creds);
3778 		return ret;
3779 	}
3780 	return id;
3781 }
3782 
3783 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
3784 					   void __user *arg, unsigned int nr_args)
3785 {
3786 	struct io_uring_restriction *res;
3787 	size_t size;
3788 	int i, ret;
3789 
3790 	/* Restrictions allowed only if rings started disabled */
3791 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3792 		return -EBADFD;
3793 
3794 	/* We allow only a single restrictions registration */
3795 	if (ctx->restrictions.registered)
3796 		return -EBUSY;
3797 
3798 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
3799 		return -EINVAL;
3800 
3801 	size = array_size(nr_args, sizeof(*res));
3802 	if (size == SIZE_MAX)
3803 		return -EOVERFLOW;
3804 
3805 	res = memdup_user(arg, size);
3806 	if (IS_ERR(res))
3807 		return PTR_ERR(res);
3808 
3809 	ret = 0;
3810 
3811 	for (i = 0; i < nr_args; i++) {
3812 		switch (res[i].opcode) {
3813 		case IORING_RESTRICTION_REGISTER_OP:
3814 			if (res[i].register_op >= IORING_REGISTER_LAST) {
3815 				ret = -EINVAL;
3816 				goto out;
3817 			}
3818 
3819 			__set_bit(res[i].register_op,
3820 				  ctx->restrictions.register_op);
3821 			break;
3822 		case IORING_RESTRICTION_SQE_OP:
3823 			if (res[i].sqe_op >= IORING_OP_LAST) {
3824 				ret = -EINVAL;
3825 				goto out;
3826 			}
3827 
3828 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
3829 			break;
3830 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
3831 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
3832 			break;
3833 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
3834 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
3835 			break;
3836 		default:
3837 			ret = -EINVAL;
3838 			goto out;
3839 		}
3840 	}
3841 
3842 out:
3843 	/* Reset all restrictions if an error happened */
3844 	if (ret != 0)
3845 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
3846 	else
3847 		ctx->restrictions.registered = true;
3848 
3849 	kfree(res);
3850 	return ret;
3851 }
3852 
3853 static int io_register_enable_rings(struct io_ring_ctx *ctx)
3854 {
3855 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3856 		return -EBADFD;
3857 
3858 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task)
3859 		ctx->submitter_task = get_task_struct(current);
3860 
3861 	if (ctx->restrictions.registered)
3862 		ctx->restricted = 1;
3863 
3864 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
3865 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
3866 		wake_up(&ctx->sq_data->wait);
3867 	return 0;
3868 }
3869 
3870 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
3871 				       void __user *arg, unsigned len)
3872 {
3873 	struct io_uring_task *tctx = current->io_uring;
3874 	cpumask_var_t new_mask;
3875 	int ret;
3876 
3877 	if (!tctx || !tctx->io_wq)
3878 		return -EINVAL;
3879 
3880 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3881 		return -ENOMEM;
3882 
3883 	cpumask_clear(new_mask);
3884 	if (len > cpumask_size())
3885 		len = cpumask_size();
3886 
3887 	if (in_compat_syscall()) {
3888 		ret = compat_get_bitmap(cpumask_bits(new_mask),
3889 					(const compat_ulong_t __user *)arg,
3890 					len * 8 /* CHAR_BIT */);
3891 	} else {
3892 		ret = copy_from_user(new_mask, arg, len);
3893 	}
3894 
3895 	if (ret) {
3896 		free_cpumask_var(new_mask);
3897 		return -EFAULT;
3898 	}
3899 
3900 	ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
3901 	free_cpumask_var(new_mask);
3902 	return ret;
3903 }
3904 
3905 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
3906 {
3907 	struct io_uring_task *tctx = current->io_uring;
3908 
3909 	if (!tctx || !tctx->io_wq)
3910 		return -EINVAL;
3911 
3912 	return io_wq_cpu_affinity(tctx->io_wq, NULL);
3913 }
3914 
3915 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
3916 					       void __user *arg)
3917 	__must_hold(&ctx->uring_lock)
3918 {
3919 	struct io_tctx_node *node;
3920 	struct io_uring_task *tctx = NULL;
3921 	struct io_sq_data *sqd = NULL;
3922 	__u32 new_count[2];
3923 	int i, ret;
3924 
3925 	if (copy_from_user(new_count, arg, sizeof(new_count)))
3926 		return -EFAULT;
3927 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
3928 		if (new_count[i] > INT_MAX)
3929 			return -EINVAL;
3930 
3931 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3932 		sqd = ctx->sq_data;
3933 		if (sqd) {
3934 			/*
3935 			 * Observe the correct sqd->lock -> ctx->uring_lock
3936 			 * ordering. Fine to drop uring_lock here, we hold
3937 			 * a ref to the ctx.
3938 			 */
3939 			refcount_inc(&sqd->refs);
3940 			mutex_unlock(&ctx->uring_lock);
3941 			mutex_lock(&sqd->lock);
3942 			mutex_lock(&ctx->uring_lock);
3943 			if (sqd->thread)
3944 				tctx = sqd->thread->io_uring;
3945 		}
3946 	} else {
3947 		tctx = current->io_uring;
3948 	}
3949 
3950 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
3951 
3952 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
3953 		if (new_count[i])
3954 			ctx->iowq_limits[i] = new_count[i];
3955 	ctx->iowq_limits_set = true;
3956 
3957 	if (tctx && tctx->io_wq) {
3958 		ret = io_wq_max_workers(tctx->io_wq, new_count);
3959 		if (ret)
3960 			goto err;
3961 	} else {
3962 		memset(new_count, 0, sizeof(new_count));
3963 	}
3964 
3965 	if (sqd) {
3966 		mutex_unlock(&sqd->lock);
3967 		io_put_sq_data(sqd);
3968 	}
3969 
3970 	if (copy_to_user(arg, new_count, sizeof(new_count)))
3971 		return -EFAULT;
3972 
3973 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
3974 	if (sqd)
3975 		return 0;
3976 
3977 	/* now propagate the restriction to all registered users */
3978 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3979 		struct io_uring_task *tctx = node->task->io_uring;
3980 
3981 		if (WARN_ON_ONCE(!tctx->io_wq))
3982 			continue;
3983 
3984 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
3985 			new_count[i] = ctx->iowq_limits[i];
3986 		/* ignore errors, it always returns zero anyway */
3987 		(void)io_wq_max_workers(tctx->io_wq, new_count);
3988 	}
3989 	return 0;
3990 err:
3991 	if (sqd) {
3992 		mutex_unlock(&sqd->lock);
3993 		io_put_sq_data(sqd);
3994 	}
3995 	return ret;
3996 }
3997 
3998 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
3999 			       void __user *arg, unsigned nr_args)
4000 	__releases(ctx->uring_lock)
4001 	__acquires(ctx->uring_lock)
4002 {
4003 	int ret;
4004 
4005 	/*
4006 	 * We don't quiesce the refs for register anymore and so it can't be
4007 	 * dying as we're holding a file ref here.
4008 	 */
4009 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4010 		return -ENXIO;
4011 
4012 	if (ctx->submitter_task && ctx->submitter_task != current)
4013 		return -EEXIST;
4014 
4015 	if (ctx->restricted) {
4016 		if (opcode >= IORING_REGISTER_LAST)
4017 			return -EINVAL;
4018 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4019 		if (!test_bit(opcode, ctx->restrictions.register_op))
4020 			return -EACCES;
4021 	}
4022 
4023 	switch (opcode) {
4024 	case IORING_REGISTER_BUFFERS:
4025 		ret = -EFAULT;
4026 		if (!arg)
4027 			break;
4028 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4029 		break;
4030 	case IORING_UNREGISTER_BUFFERS:
4031 		ret = -EINVAL;
4032 		if (arg || nr_args)
4033 			break;
4034 		ret = io_sqe_buffers_unregister(ctx);
4035 		break;
4036 	case IORING_REGISTER_FILES:
4037 		ret = -EFAULT;
4038 		if (!arg)
4039 			break;
4040 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4041 		break;
4042 	case IORING_UNREGISTER_FILES:
4043 		ret = -EINVAL;
4044 		if (arg || nr_args)
4045 			break;
4046 		ret = io_sqe_files_unregister(ctx);
4047 		break;
4048 	case IORING_REGISTER_FILES_UPDATE:
4049 		ret = io_register_files_update(ctx, arg, nr_args);
4050 		break;
4051 	case IORING_REGISTER_EVENTFD:
4052 		ret = -EINVAL;
4053 		if (nr_args != 1)
4054 			break;
4055 		ret = io_eventfd_register(ctx, arg, 0);
4056 		break;
4057 	case IORING_REGISTER_EVENTFD_ASYNC:
4058 		ret = -EINVAL;
4059 		if (nr_args != 1)
4060 			break;
4061 		ret = io_eventfd_register(ctx, arg, 1);
4062 		break;
4063 	case IORING_UNREGISTER_EVENTFD:
4064 		ret = -EINVAL;
4065 		if (arg || nr_args)
4066 			break;
4067 		ret = io_eventfd_unregister(ctx);
4068 		break;
4069 	case IORING_REGISTER_PROBE:
4070 		ret = -EINVAL;
4071 		if (!arg || nr_args > 256)
4072 			break;
4073 		ret = io_probe(ctx, arg, nr_args);
4074 		break;
4075 	case IORING_REGISTER_PERSONALITY:
4076 		ret = -EINVAL;
4077 		if (arg || nr_args)
4078 			break;
4079 		ret = io_register_personality(ctx);
4080 		break;
4081 	case IORING_UNREGISTER_PERSONALITY:
4082 		ret = -EINVAL;
4083 		if (arg)
4084 			break;
4085 		ret = io_unregister_personality(ctx, nr_args);
4086 		break;
4087 	case IORING_REGISTER_ENABLE_RINGS:
4088 		ret = -EINVAL;
4089 		if (arg || nr_args)
4090 			break;
4091 		ret = io_register_enable_rings(ctx);
4092 		break;
4093 	case IORING_REGISTER_RESTRICTIONS:
4094 		ret = io_register_restrictions(ctx, arg, nr_args);
4095 		break;
4096 	case IORING_REGISTER_FILES2:
4097 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4098 		break;
4099 	case IORING_REGISTER_FILES_UPDATE2:
4100 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4101 					      IORING_RSRC_FILE);
4102 		break;
4103 	case IORING_REGISTER_BUFFERS2:
4104 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4105 		break;
4106 	case IORING_REGISTER_BUFFERS_UPDATE:
4107 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4108 					      IORING_RSRC_BUFFER);
4109 		break;
4110 	case IORING_REGISTER_IOWQ_AFF:
4111 		ret = -EINVAL;
4112 		if (!arg || !nr_args)
4113 			break;
4114 		ret = io_register_iowq_aff(ctx, arg, nr_args);
4115 		break;
4116 	case IORING_UNREGISTER_IOWQ_AFF:
4117 		ret = -EINVAL;
4118 		if (arg || nr_args)
4119 			break;
4120 		ret = io_unregister_iowq_aff(ctx);
4121 		break;
4122 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4123 		ret = -EINVAL;
4124 		if (!arg || nr_args != 2)
4125 			break;
4126 		ret = io_register_iowq_max_workers(ctx, arg);
4127 		break;
4128 	case IORING_REGISTER_RING_FDS:
4129 		ret = io_ringfd_register(ctx, arg, nr_args);
4130 		break;
4131 	case IORING_UNREGISTER_RING_FDS:
4132 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4133 		break;
4134 	case IORING_REGISTER_PBUF_RING:
4135 		ret = -EINVAL;
4136 		if (!arg || nr_args != 1)
4137 			break;
4138 		ret = io_register_pbuf_ring(ctx, arg);
4139 		break;
4140 	case IORING_UNREGISTER_PBUF_RING:
4141 		ret = -EINVAL;
4142 		if (!arg || nr_args != 1)
4143 			break;
4144 		ret = io_unregister_pbuf_ring(ctx, arg);
4145 		break;
4146 	case IORING_REGISTER_SYNC_CANCEL:
4147 		ret = -EINVAL;
4148 		if (!arg || nr_args != 1)
4149 			break;
4150 		ret = io_sync_cancel(ctx, arg);
4151 		break;
4152 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4153 		ret = -EINVAL;
4154 		if (!arg || nr_args)
4155 			break;
4156 		ret = io_register_file_alloc_range(ctx, arg);
4157 		break;
4158 	default:
4159 		ret = -EINVAL;
4160 		break;
4161 	}
4162 
4163 	return ret;
4164 }
4165 
4166 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4167 		void __user *, arg, unsigned int, nr_args)
4168 {
4169 	struct io_ring_ctx *ctx;
4170 	long ret = -EBADF;
4171 	struct fd f;
4172 
4173 	f = fdget(fd);
4174 	if (!f.file)
4175 		return -EBADF;
4176 
4177 	ret = -EOPNOTSUPP;
4178 	if (!io_is_uring_fops(f.file))
4179 		goto out_fput;
4180 
4181 	ctx = f.file->private_data;
4182 
4183 	mutex_lock(&ctx->uring_lock);
4184 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4185 	mutex_unlock(&ctx->uring_lock);
4186 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4187 out_fput:
4188 	fdput(f);
4189 	return ret;
4190 }
4191 
4192 static int __init io_uring_init(void)
4193 {
4194 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4195 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4196 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4197 } while (0)
4198 
4199 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4200 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4201 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4202 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4203 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4204 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4205 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4206 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4207 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4208 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4209 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4210 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4211 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4212 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4213 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4214 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4215 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4216 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4217 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4218 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4219 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4220 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4221 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4222 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4223 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4224 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4225 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4226 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4227 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4228 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4229 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4230 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4231 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4232 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4233 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4234 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4235 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4236 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4237 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4238 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4239 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4240 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4241 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4242 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4243 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4244 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4245 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4246 
4247 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4248 		     sizeof(struct io_uring_rsrc_update));
4249 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4250 		     sizeof(struct io_uring_rsrc_update2));
4251 
4252 	/* ->buf_index is u16 */
4253 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4254 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4255 		     offsetof(struct io_uring_buf_ring, tail));
4256 
4257 	/* should fit into one byte */
4258 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4259 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4260 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4261 
4262 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4263 
4264 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4265 
4266 	io_uring_optable_init();
4267 
4268 	req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4269 				SLAB_ACCOUNT);
4270 	return 0;
4271 };
4272 __initcall(io_uring_init);
4273