1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 76 #define CREATE_TRACE_POINTS 77 #include <trace/events/io_uring.h> 78 79 #include <uapi/linux/io_uring.h> 80 81 #include "io-wq.h" 82 83 #include "io_uring.h" 84 #include "opdef.h" 85 #include "refs.h" 86 #include "tctx.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 95 #include "timeout.h" 96 #include "poll.h" 97 #include "alloc_cache.h" 98 99 #define IORING_MAX_ENTRIES 32768 100 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 101 102 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 103 IORING_REGISTER_LAST + IORING_OP_LAST) 104 105 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 106 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 107 108 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 109 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 110 111 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 112 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 113 REQ_F_ASYNC_DATA) 114 115 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 116 IO_REQ_CLEAN_FLAGS) 117 118 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 119 120 #define IO_COMPL_BATCH 32 121 #define IO_REQ_ALLOC_BATCH 8 122 123 enum { 124 IO_CHECK_CQ_OVERFLOW_BIT, 125 IO_CHECK_CQ_DROPPED_BIT, 126 }; 127 128 enum { 129 IO_EVENTFD_OP_SIGNAL_BIT, 130 IO_EVENTFD_OP_FREE_BIT, 131 }; 132 133 struct io_defer_entry { 134 struct list_head list; 135 struct io_kiocb *req; 136 u32 seq; 137 }; 138 139 /* requests with any of those set should undergo io_disarm_next() */ 140 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 141 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 142 143 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 144 struct task_struct *task, 145 bool cancel_all); 146 147 static void io_dismantle_req(struct io_kiocb *req); 148 static void io_clean_op(struct io_kiocb *req); 149 static void io_queue_sqe(struct io_kiocb *req); 150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx); 151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx); 152 static __cold void io_fallback_tw(struct io_uring_task *tctx); 153 154 static struct kmem_cache *req_cachep; 155 156 struct sock *io_uring_get_socket(struct file *file) 157 { 158 #if defined(CONFIG_UNIX) 159 if (io_is_uring_fops(file)) { 160 struct io_ring_ctx *ctx = file->private_data; 161 162 return ctx->ring_sock->sk; 163 } 164 #endif 165 return NULL; 166 } 167 EXPORT_SYMBOL(io_uring_get_socket); 168 169 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 170 { 171 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 172 ctx->submit_state.cqes_count) 173 __io_submit_flush_completions(ctx); 174 } 175 176 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 177 { 178 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 179 } 180 181 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 182 { 183 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 184 } 185 186 static bool io_match_linked(struct io_kiocb *head) 187 { 188 struct io_kiocb *req; 189 190 io_for_each_link(req, head) { 191 if (req->flags & REQ_F_INFLIGHT) 192 return true; 193 } 194 return false; 195 } 196 197 /* 198 * As io_match_task() but protected against racing with linked timeouts. 199 * User must not hold timeout_lock. 200 */ 201 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 202 bool cancel_all) 203 { 204 bool matched; 205 206 if (task && head->task != task) 207 return false; 208 if (cancel_all) 209 return true; 210 211 if (head->flags & REQ_F_LINK_TIMEOUT) { 212 struct io_ring_ctx *ctx = head->ctx; 213 214 /* protect against races with linked timeouts */ 215 spin_lock_irq(&ctx->timeout_lock); 216 matched = io_match_linked(head); 217 spin_unlock_irq(&ctx->timeout_lock); 218 } else { 219 matched = io_match_linked(head); 220 } 221 return matched; 222 } 223 224 static inline void req_fail_link_node(struct io_kiocb *req, int res) 225 { 226 req_set_fail(req); 227 io_req_set_res(req, res, 0); 228 } 229 230 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 231 { 232 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 233 } 234 235 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 236 { 237 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 238 239 complete(&ctx->ref_comp); 240 } 241 242 static __cold void io_fallback_req_func(struct work_struct *work) 243 { 244 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 245 fallback_work.work); 246 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 247 struct io_kiocb *req, *tmp; 248 bool locked = false; 249 250 percpu_ref_get(&ctx->refs); 251 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 252 req->io_task_work.func(req, &locked); 253 254 if (locked) { 255 io_submit_flush_completions(ctx); 256 mutex_unlock(&ctx->uring_lock); 257 } 258 percpu_ref_put(&ctx->refs); 259 } 260 261 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 262 { 263 unsigned hash_buckets = 1U << bits; 264 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 265 266 table->hbs = kmalloc(hash_size, GFP_KERNEL); 267 if (!table->hbs) 268 return -ENOMEM; 269 270 table->hash_bits = bits; 271 init_hash_table(table, hash_buckets); 272 return 0; 273 } 274 275 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 276 { 277 struct io_ring_ctx *ctx; 278 int hash_bits; 279 280 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 281 if (!ctx) 282 return NULL; 283 284 xa_init(&ctx->io_bl_xa); 285 286 /* 287 * Use 5 bits less than the max cq entries, that should give us around 288 * 32 entries per hash list if totally full and uniformly spread, but 289 * don't keep too many buckets to not overconsume memory. 290 */ 291 hash_bits = ilog2(p->cq_entries) - 5; 292 hash_bits = clamp(hash_bits, 1, 8); 293 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 294 goto err; 295 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 296 goto err; 297 298 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL); 299 if (!ctx->dummy_ubuf) 300 goto err; 301 /* set invalid range, so io_import_fixed() fails meeting it */ 302 ctx->dummy_ubuf->ubuf = -1UL; 303 304 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 305 0, GFP_KERNEL)) 306 goto err; 307 308 ctx->flags = p->flags; 309 init_waitqueue_head(&ctx->sqo_sq_wait); 310 INIT_LIST_HEAD(&ctx->sqd_list); 311 INIT_LIST_HEAD(&ctx->cq_overflow_list); 312 INIT_LIST_HEAD(&ctx->io_buffers_cache); 313 io_alloc_cache_init(&ctx->apoll_cache); 314 io_alloc_cache_init(&ctx->netmsg_cache); 315 init_completion(&ctx->ref_comp); 316 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 317 mutex_init(&ctx->uring_lock); 318 init_waitqueue_head(&ctx->cq_wait); 319 spin_lock_init(&ctx->completion_lock); 320 spin_lock_init(&ctx->timeout_lock); 321 INIT_WQ_LIST(&ctx->iopoll_list); 322 INIT_LIST_HEAD(&ctx->io_buffers_pages); 323 INIT_LIST_HEAD(&ctx->io_buffers_comp); 324 INIT_LIST_HEAD(&ctx->defer_list); 325 INIT_LIST_HEAD(&ctx->timeout_list); 326 INIT_LIST_HEAD(&ctx->ltimeout_list); 327 spin_lock_init(&ctx->rsrc_ref_lock); 328 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 329 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work); 330 init_task_work(&ctx->rsrc_put_tw, io_rsrc_put_tw); 331 init_llist_head(&ctx->rsrc_put_llist); 332 init_llist_head(&ctx->work_llist); 333 INIT_LIST_HEAD(&ctx->tctx_list); 334 ctx->submit_state.free_list.next = NULL; 335 INIT_WQ_LIST(&ctx->locked_free_list); 336 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 337 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 338 return ctx; 339 err: 340 kfree(ctx->dummy_ubuf); 341 kfree(ctx->cancel_table.hbs); 342 kfree(ctx->cancel_table_locked.hbs); 343 kfree(ctx->io_bl); 344 xa_destroy(&ctx->io_bl_xa); 345 kfree(ctx); 346 return NULL; 347 } 348 349 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 350 { 351 struct io_rings *r = ctx->rings; 352 353 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 354 ctx->cq_extra--; 355 } 356 357 static bool req_need_defer(struct io_kiocb *req, u32 seq) 358 { 359 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 360 struct io_ring_ctx *ctx = req->ctx; 361 362 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 363 } 364 365 return false; 366 } 367 368 static inline void io_req_track_inflight(struct io_kiocb *req) 369 { 370 if (!(req->flags & REQ_F_INFLIGHT)) { 371 req->flags |= REQ_F_INFLIGHT; 372 atomic_inc(&req->task->io_uring->inflight_tracked); 373 } 374 } 375 376 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 377 { 378 if (WARN_ON_ONCE(!req->link)) 379 return NULL; 380 381 req->flags &= ~REQ_F_ARM_LTIMEOUT; 382 req->flags |= REQ_F_LINK_TIMEOUT; 383 384 /* linked timeouts should have two refs once prep'ed */ 385 io_req_set_refcount(req); 386 __io_req_set_refcount(req->link, 2); 387 return req->link; 388 } 389 390 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 391 { 392 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 393 return NULL; 394 return __io_prep_linked_timeout(req); 395 } 396 397 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 398 { 399 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 400 } 401 402 static inline void io_arm_ltimeout(struct io_kiocb *req) 403 { 404 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 405 __io_arm_ltimeout(req); 406 } 407 408 static void io_prep_async_work(struct io_kiocb *req) 409 { 410 const struct io_op_def *def = &io_op_defs[req->opcode]; 411 struct io_ring_ctx *ctx = req->ctx; 412 413 if (!(req->flags & REQ_F_CREDS)) { 414 req->flags |= REQ_F_CREDS; 415 req->creds = get_current_cred(); 416 } 417 418 req->work.list.next = NULL; 419 req->work.flags = 0; 420 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 421 if (req->flags & REQ_F_FORCE_ASYNC) 422 req->work.flags |= IO_WQ_WORK_CONCURRENT; 423 424 if (req->file && !io_req_ffs_set(req)) 425 req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT; 426 427 if (req->flags & REQ_F_ISREG) { 428 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL)) 429 io_wq_hash_work(&req->work, file_inode(req->file)); 430 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 431 if (def->unbound_nonreg_file) 432 req->work.flags |= IO_WQ_WORK_UNBOUND; 433 } 434 } 435 436 static void io_prep_async_link(struct io_kiocb *req) 437 { 438 struct io_kiocb *cur; 439 440 if (req->flags & REQ_F_LINK_TIMEOUT) { 441 struct io_ring_ctx *ctx = req->ctx; 442 443 spin_lock_irq(&ctx->timeout_lock); 444 io_for_each_link(cur, req) 445 io_prep_async_work(cur); 446 spin_unlock_irq(&ctx->timeout_lock); 447 } else { 448 io_for_each_link(cur, req) 449 io_prep_async_work(cur); 450 } 451 } 452 453 void io_queue_iowq(struct io_kiocb *req, bool *dont_use) 454 { 455 struct io_kiocb *link = io_prep_linked_timeout(req); 456 struct io_uring_task *tctx = req->task->io_uring; 457 458 BUG_ON(!tctx); 459 BUG_ON(!tctx->io_wq); 460 461 /* init ->work of the whole link before punting */ 462 io_prep_async_link(req); 463 464 /* 465 * Not expected to happen, but if we do have a bug where this _can_ 466 * happen, catch it here and ensure the request is marked as 467 * canceled. That will make io-wq go through the usual work cancel 468 * procedure rather than attempt to run this request (or create a new 469 * worker for it). 470 */ 471 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 472 req->work.flags |= IO_WQ_WORK_CANCEL; 473 474 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 475 io_wq_enqueue(tctx->io_wq, &req->work); 476 if (link) 477 io_queue_linked_timeout(link); 478 } 479 480 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 481 { 482 while (!list_empty(&ctx->defer_list)) { 483 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 484 struct io_defer_entry, list); 485 486 if (req_need_defer(de->req, de->seq)) 487 break; 488 list_del_init(&de->list); 489 io_req_task_queue(de->req); 490 kfree(de); 491 } 492 } 493 494 495 static void io_eventfd_ops(struct rcu_head *rcu) 496 { 497 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 498 int ops = atomic_xchg(&ev_fd->ops, 0); 499 500 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 501 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 502 503 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 504 * ordering in a race but if references are 0 we know we have to free 505 * it regardless. 506 */ 507 if (atomic_dec_and_test(&ev_fd->refs)) { 508 eventfd_ctx_put(ev_fd->cq_ev_fd); 509 kfree(ev_fd); 510 } 511 } 512 513 static void io_eventfd_signal(struct io_ring_ctx *ctx) 514 { 515 struct io_ev_fd *ev_fd = NULL; 516 517 rcu_read_lock(); 518 /* 519 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 520 * and eventfd_signal 521 */ 522 ev_fd = rcu_dereference(ctx->io_ev_fd); 523 524 /* 525 * Check again if ev_fd exists incase an io_eventfd_unregister call 526 * completed between the NULL check of ctx->io_ev_fd at the start of 527 * the function and rcu_read_lock. 528 */ 529 if (unlikely(!ev_fd)) 530 goto out; 531 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 532 goto out; 533 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 534 goto out; 535 536 if (likely(eventfd_signal_allowed())) { 537 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 538 } else { 539 atomic_inc(&ev_fd->refs); 540 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 541 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 542 else 543 atomic_dec(&ev_fd->refs); 544 } 545 546 out: 547 rcu_read_unlock(); 548 } 549 550 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 551 { 552 bool skip; 553 554 spin_lock(&ctx->completion_lock); 555 556 /* 557 * Eventfd should only get triggered when at least one event has been 558 * posted. Some applications rely on the eventfd notification count 559 * only changing IFF a new CQE has been added to the CQ ring. There's 560 * no depedency on 1:1 relationship between how many times this 561 * function is called (and hence the eventfd count) and number of CQEs 562 * posted to the CQ ring. 563 */ 564 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 565 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 566 spin_unlock(&ctx->completion_lock); 567 if (skip) 568 return; 569 570 io_eventfd_signal(ctx); 571 } 572 573 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 574 { 575 if (ctx->off_timeout_used) 576 io_flush_timeouts(ctx); 577 if (ctx->drain_active) { 578 spin_lock(&ctx->completion_lock); 579 io_queue_deferred(ctx); 580 spin_unlock(&ctx->completion_lock); 581 } 582 if (ctx->has_evfd) 583 io_eventfd_flush_signal(ctx); 584 } 585 586 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 587 __acquires(ctx->completion_lock) 588 { 589 if (!ctx->task_complete) 590 spin_lock(&ctx->completion_lock); 591 } 592 593 static inline void __io_cq_unlock(struct io_ring_ctx *ctx) 594 { 595 if (!ctx->task_complete) 596 spin_unlock(&ctx->completion_lock); 597 } 598 599 static inline void io_cq_lock(struct io_ring_ctx *ctx) 600 __acquires(ctx->completion_lock) 601 { 602 spin_lock(&ctx->completion_lock); 603 } 604 605 static inline void io_cq_unlock(struct io_ring_ctx *ctx) 606 __releases(ctx->completion_lock) 607 { 608 spin_unlock(&ctx->completion_lock); 609 } 610 611 /* keep it inlined for io_submit_flush_completions() */ 612 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 613 __releases(ctx->completion_lock) 614 { 615 io_commit_cqring(ctx); 616 __io_cq_unlock(ctx); 617 io_commit_cqring_flush(ctx); 618 io_cqring_wake(ctx); 619 } 620 621 void io_cq_unlock_post(struct io_ring_ctx *ctx) 622 __releases(ctx->completion_lock) 623 { 624 io_commit_cqring(ctx); 625 spin_unlock(&ctx->completion_lock); 626 io_commit_cqring_flush(ctx); 627 io_cqring_wake(ctx); 628 } 629 630 /* Returns true if there are no backlogged entries after the flush */ 631 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 632 { 633 struct io_overflow_cqe *ocqe; 634 LIST_HEAD(list); 635 636 io_cq_lock(ctx); 637 list_splice_init(&ctx->cq_overflow_list, &list); 638 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 639 io_cq_unlock(ctx); 640 641 while (!list_empty(&list)) { 642 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 643 list_del(&ocqe->list); 644 kfree(ocqe); 645 } 646 } 647 648 /* Returns true if there are no backlogged entries after the flush */ 649 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 650 { 651 size_t cqe_size = sizeof(struct io_uring_cqe); 652 653 if (__io_cqring_events(ctx) == ctx->cq_entries) 654 return; 655 656 if (ctx->flags & IORING_SETUP_CQE32) 657 cqe_size <<= 1; 658 659 io_cq_lock(ctx); 660 while (!list_empty(&ctx->cq_overflow_list)) { 661 struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true); 662 struct io_overflow_cqe *ocqe; 663 664 if (!cqe) 665 break; 666 ocqe = list_first_entry(&ctx->cq_overflow_list, 667 struct io_overflow_cqe, list); 668 memcpy(cqe, &ocqe->cqe, cqe_size); 669 list_del(&ocqe->list); 670 kfree(ocqe); 671 } 672 673 if (list_empty(&ctx->cq_overflow_list)) { 674 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 675 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 676 } 677 io_cq_unlock_post(ctx); 678 } 679 680 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 681 { 682 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 683 /* iopoll syncs against uring_lock, not completion_lock */ 684 if (ctx->flags & IORING_SETUP_IOPOLL) 685 mutex_lock(&ctx->uring_lock); 686 __io_cqring_overflow_flush(ctx); 687 if (ctx->flags & IORING_SETUP_IOPOLL) 688 mutex_unlock(&ctx->uring_lock); 689 } 690 } 691 692 void __io_put_task(struct task_struct *task, int nr) 693 { 694 struct io_uring_task *tctx = task->io_uring; 695 696 percpu_counter_sub(&tctx->inflight, nr); 697 if (unlikely(atomic_read(&tctx->in_idle))) 698 wake_up(&tctx->wait); 699 put_task_struct_many(task, nr); 700 } 701 702 void io_task_refs_refill(struct io_uring_task *tctx) 703 { 704 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 705 706 percpu_counter_add(&tctx->inflight, refill); 707 refcount_add(refill, ¤t->usage); 708 tctx->cached_refs += refill; 709 } 710 711 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 712 { 713 struct io_uring_task *tctx = task->io_uring; 714 unsigned int refs = tctx->cached_refs; 715 716 if (refs) { 717 tctx->cached_refs = 0; 718 percpu_counter_sub(&tctx->inflight, refs); 719 put_task_struct_many(task, refs); 720 } 721 } 722 723 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 724 s32 res, u32 cflags, u64 extra1, u64 extra2) 725 { 726 struct io_overflow_cqe *ocqe; 727 size_t ocq_size = sizeof(struct io_overflow_cqe); 728 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 729 730 if (is_cqe32) 731 ocq_size += sizeof(struct io_uring_cqe); 732 733 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 734 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 735 if (!ocqe) { 736 /* 737 * If we're in ring overflow flush mode, or in task cancel mode, 738 * or cannot allocate an overflow entry, then we need to drop it 739 * on the floor. 740 */ 741 io_account_cq_overflow(ctx); 742 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 743 return false; 744 } 745 if (list_empty(&ctx->cq_overflow_list)) { 746 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 747 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 748 749 } 750 ocqe->cqe.user_data = user_data; 751 ocqe->cqe.res = res; 752 ocqe->cqe.flags = cflags; 753 if (is_cqe32) { 754 ocqe->cqe.big_cqe[0] = extra1; 755 ocqe->cqe.big_cqe[1] = extra2; 756 } 757 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 758 return true; 759 } 760 761 bool io_req_cqe_overflow(struct io_kiocb *req) 762 { 763 if (!(req->flags & REQ_F_CQE32_INIT)) { 764 req->extra1 = 0; 765 req->extra2 = 0; 766 } 767 return io_cqring_event_overflow(req->ctx, req->cqe.user_data, 768 req->cqe.res, req->cqe.flags, 769 req->extra1, req->extra2); 770 } 771 772 /* 773 * writes to the cq entry need to come after reading head; the 774 * control dependency is enough as we're using WRITE_ONCE to 775 * fill the cq entry 776 */ 777 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow) 778 { 779 struct io_rings *rings = ctx->rings; 780 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 781 unsigned int free, queued, len; 782 783 /* 784 * Posting into the CQ when there are pending overflowed CQEs may break 785 * ordering guarantees, which will affect links, F_MORE users and more. 786 * Force overflow the completion. 787 */ 788 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 789 return NULL; 790 791 /* userspace may cheat modifying the tail, be safe and do min */ 792 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 793 free = ctx->cq_entries - queued; 794 /* we need a contiguous range, limit based on the current array offset */ 795 len = min(free, ctx->cq_entries - off); 796 if (!len) 797 return NULL; 798 799 if (ctx->flags & IORING_SETUP_CQE32) { 800 off <<= 1; 801 len <<= 1; 802 } 803 804 ctx->cqe_cached = &rings->cqes[off]; 805 ctx->cqe_sentinel = ctx->cqe_cached + len; 806 807 ctx->cached_cq_tail++; 808 ctx->cqe_cached++; 809 if (ctx->flags & IORING_SETUP_CQE32) 810 ctx->cqe_cached++; 811 return &rings->cqes[off]; 812 } 813 814 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 815 u32 cflags) 816 { 817 struct io_uring_cqe *cqe; 818 819 if (!ctx->task_complete) 820 lockdep_assert_held(&ctx->completion_lock); 821 822 ctx->cq_extra++; 823 824 /* 825 * If we can't get a cq entry, userspace overflowed the 826 * submission (by quite a lot). Increment the overflow count in 827 * the ring. 828 */ 829 cqe = io_get_cqe(ctx); 830 if (likely(cqe)) { 831 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 832 833 WRITE_ONCE(cqe->user_data, user_data); 834 WRITE_ONCE(cqe->res, res); 835 WRITE_ONCE(cqe->flags, cflags); 836 837 if (ctx->flags & IORING_SETUP_CQE32) { 838 WRITE_ONCE(cqe->big_cqe[0], 0); 839 WRITE_ONCE(cqe->big_cqe[1], 0); 840 } 841 return true; 842 } 843 return false; 844 } 845 846 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 847 __must_hold(&ctx->uring_lock) 848 { 849 struct io_submit_state *state = &ctx->submit_state; 850 unsigned int i; 851 852 lockdep_assert_held(&ctx->uring_lock); 853 for (i = 0; i < state->cqes_count; i++) { 854 struct io_uring_cqe *cqe = &state->cqes[i]; 855 856 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 857 if (ctx->task_complete) { 858 spin_lock(&ctx->completion_lock); 859 io_cqring_event_overflow(ctx, cqe->user_data, 860 cqe->res, cqe->flags, 0, 0); 861 spin_unlock(&ctx->completion_lock); 862 } else { 863 io_cqring_event_overflow(ctx, cqe->user_data, 864 cqe->res, cqe->flags, 0, 0); 865 } 866 } 867 } 868 state->cqes_count = 0; 869 } 870 871 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 872 bool allow_overflow) 873 { 874 bool filled; 875 876 io_cq_lock(ctx); 877 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 878 if (!filled && allow_overflow) 879 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 880 881 io_cq_unlock_post(ctx); 882 return filled; 883 } 884 885 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 886 { 887 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 888 } 889 890 bool io_aux_cqe(struct io_ring_ctx *ctx, bool defer, u64 user_data, s32 res, u32 cflags, 891 bool allow_overflow) 892 { 893 struct io_uring_cqe *cqe; 894 unsigned int length; 895 896 if (!defer) 897 return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow); 898 899 length = ARRAY_SIZE(ctx->submit_state.cqes); 900 901 lockdep_assert_held(&ctx->uring_lock); 902 903 if (ctx->submit_state.cqes_count == length) { 904 __io_cq_lock(ctx); 905 __io_flush_post_cqes(ctx); 906 /* no need to flush - flush is deferred */ 907 __io_cq_unlock_post(ctx); 908 } 909 910 /* For defered completions this is not as strict as it is otherwise, 911 * however it's main job is to prevent unbounded posted completions, 912 * and in that it works just as well. 913 */ 914 if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 915 return false; 916 917 cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++]; 918 cqe->user_data = user_data; 919 cqe->res = res; 920 cqe->flags = cflags; 921 return true; 922 } 923 924 static void __io_req_complete_post(struct io_kiocb *req) 925 { 926 struct io_ring_ctx *ctx = req->ctx; 927 928 io_cq_lock(ctx); 929 if (!(req->flags & REQ_F_CQE_SKIP)) 930 io_fill_cqe_req(ctx, req); 931 932 /* 933 * If we're the last reference to this request, add to our locked 934 * free_list cache. 935 */ 936 if (req_ref_put_and_test(req)) { 937 if (req->flags & IO_REQ_LINK_FLAGS) { 938 if (req->flags & IO_DISARM_MASK) 939 io_disarm_next(req); 940 if (req->link) { 941 io_req_task_queue(req->link); 942 req->link = NULL; 943 } 944 } 945 io_req_put_rsrc(req); 946 /* 947 * Selected buffer deallocation in io_clean_op() assumes that 948 * we don't hold ->completion_lock. Clean them here to avoid 949 * deadlocks. 950 */ 951 io_put_kbuf_comp(req); 952 io_dismantle_req(req); 953 io_put_task(req->task, 1); 954 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 955 ctx->locked_free_nr++; 956 } 957 io_cq_unlock_post(ctx); 958 } 959 960 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 961 { 962 if (req->ctx->task_complete && (issue_flags & IO_URING_F_IOWQ)) { 963 req->io_task_work.func = io_req_task_complete; 964 io_req_task_work_add(req); 965 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 966 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 967 __io_req_complete_post(req); 968 } else { 969 struct io_ring_ctx *ctx = req->ctx; 970 971 mutex_lock(&ctx->uring_lock); 972 __io_req_complete_post(req); 973 mutex_unlock(&ctx->uring_lock); 974 } 975 } 976 977 void io_req_defer_failed(struct io_kiocb *req, s32 res) 978 __must_hold(&ctx->uring_lock) 979 { 980 const struct io_op_def *def = &io_op_defs[req->opcode]; 981 982 lockdep_assert_held(&req->ctx->uring_lock); 983 984 req_set_fail(req); 985 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 986 if (def->fail) 987 def->fail(req); 988 io_req_complete_defer(req); 989 } 990 991 /* 992 * Don't initialise the fields below on every allocation, but do that in 993 * advance and keep them valid across allocations. 994 */ 995 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 996 { 997 req->ctx = ctx; 998 req->link = NULL; 999 req->async_data = NULL; 1000 /* not necessary, but safer to zero */ 1001 req->cqe.res = 0; 1002 } 1003 1004 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1005 struct io_submit_state *state) 1006 { 1007 spin_lock(&ctx->completion_lock); 1008 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1009 ctx->locked_free_nr = 0; 1010 spin_unlock(&ctx->completion_lock); 1011 } 1012 1013 /* 1014 * A request might get retired back into the request caches even before opcode 1015 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1016 * Because of that, io_alloc_req() should be called only under ->uring_lock 1017 * and with extra caution to not get a request that is still worked on. 1018 */ 1019 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1020 __must_hold(&ctx->uring_lock) 1021 { 1022 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1023 void *reqs[IO_REQ_ALLOC_BATCH]; 1024 int ret, i; 1025 1026 /* 1027 * If we have more than a batch's worth of requests in our IRQ side 1028 * locked cache, grab the lock and move them over to our submission 1029 * side cache. 1030 */ 1031 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1032 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1033 if (!io_req_cache_empty(ctx)) 1034 return true; 1035 } 1036 1037 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1038 1039 /* 1040 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1041 * retry single alloc to be on the safe side. 1042 */ 1043 if (unlikely(ret <= 0)) { 1044 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1045 if (!reqs[0]) 1046 return false; 1047 ret = 1; 1048 } 1049 1050 percpu_ref_get_many(&ctx->refs, ret); 1051 for (i = 0; i < ret; i++) { 1052 struct io_kiocb *req = reqs[i]; 1053 1054 io_preinit_req(req, ctx); 1055 io_req_add_to_cache(req, ctx); 1056 } 1057 return true; 1058 } 1059 1060 static inline void io_dismantle_req(struct io_kiocb *req) 1061 { 1062 unsigned int flags = req->flags; 1063 1064 if (unlikely(flags & IO_REQ_CLEAN_FLAGS)) 1065 io_clean_op(req); 1066 if (!(flags & REQ_F_FIXED_FILE)) 1067 io_put_file(req->file); 1068 } 1069 1070 __cold void io_free_req(struct io_kiocb *req) 1071 { 1072 struct io_ring_ctx *ctx = req->ctx; 1073 1074 io_req_put_rsrc(req); 1075 io_dismantle_req(req); 1076 io_put_task(req->task, 1); 1077 1078 spin_lock(&ctx->completion_lock); 1079 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1080 ctx->locked_free_nr++; 1081 spin_unlock(&ctx->completion_lock); 1082 } 1083 1084 static void __io_req_find_next_prep(struct io_kiocb *req) 1085 { 1086 struct io_ring_ctx *ctx = req->ctx; 1087 1088 spin_lock(&ctx->completion_lock); 1089 io_disarm_next(req); 1090 spin_unlock(&ctx->completion_lock); 1091 } 1092 1093 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1094 { 1095 struct io_kiocb *nxt; 1096 1097 /* 1098 * If LINK is set, we have dependent requests in this chain. If we 1099 * didn't fail this request, queue the first one up, moving any other 1100 * dependencies to the next request. In case of failure, fail the rest 1101 * of the chain. 1102 */ 1103 if (unlikely(req->flags & IO_DISARM_MASK)) 1104 __io_req_find_next_prep(req); 1105 nxt = req->link; 1106 req->link = NULL; 1107 return nxt; 1108 } 1109 1110 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked) 1111 { 1112 if (!ctx) 1113 return; 1114 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1115 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1116 if (*locked) { 1117 io_submit_flush_completions(ctx); 1118 mutex_unlock(&ctx->uring_lock); 1119 *locked = false; 1120 } 1121 percpu_ref_put(&ctx->refs); 1122 } 1123 1124 static unsigned int handle_tw_list(struct llist_node *node, 1125 struct io_ring_ctx **ctx, bool *locked, 1126 struct llist_node *last) 1127 { 1128 unsigned int count = 0; 1129 1130 while (node != last) { 1131 struct llist_node *next = node->next; 1132 struct io_kiocb *req = container_of(node, struct io_kiocb, 1133 io_task_work.node); 1134 1135 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1136 1137 if (req->ctx != *ctx) { 1138 ctx_flush_and_put(*ctx, locked); 1139 *ctx = req->ctx; 1140 /* if not contended, grab and improve batching */ 1141 *locked = mutex_trylock(&(*ctx)->uring_lock); 1142 percpu_ref_get(&(*ctx)->refs); 1143 } 1144 req->io_task_work.func(req, locked); 1145 node = next; 1146 count++; 1147 } 1148 1149 return count; 1150 } 1151 1152 /** 1153 * io_llist_xchg - swap all entries in a lock-less list 1154 * @head: the head of lock-less list to delete all entries 1155 * @new: new entry as the head of the list 1156 * 1157 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1158 * The order of entries returned is from the newest to the oldest added one. 1159 */ 1160 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1161 struct llist_node *new) 1162 { 1163 return xchg(&head->first, new); 1164 } 1165 1166 /** 1167 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1168 * @head: the head of lock-less list to delete all entries 1169 * @old: expected old value of the first entry of the list 1170 * @new: new entry as the head of the list 1171 * 1172 * perform a cmpxchg on the first entry of the list. 1173 */ 1174 1175 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1176 struct llist_node *old, 1177 struct llist_node *new) 1178 { 1179 return cmpxchg(&head->first, old, new); 1180 } 1181 1182 void tctx_task_work(struct callback_head *cb) 1183 { 1184 bool uring_locked = false; 1185 struct io_ring_ctx *ctx = NULL; 1186 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1187 task_work); 1188 struct llist_node fake = {}; 1189 struct llist_node *node; 1190 unsigned int loops = 1; 1191 unsigned int count; 1192 1193 if (unlikely(current->flags & PF_EXITING)) { 1194 io_fallback_tw(tctx); 1195 return; 1196 } 1197 1198 node = io_llist_xchg(&tctx->task_list, &fake); 1199 count = handle_tw_list(node, &ctx, &uring_locked, NULL); 1200 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1201 while (node != &fake) { 1202 loops++; 1203 node = io_llist_xchg(&tctx->task_list, &fake); 1204 count += handle_tw_list(node, &ctx, &uring_locked, &fake); 1205 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1206 } 1207 1208 ctx_flush_and_put(ctx, &uring_locked); 1209 1210 /* relaxed read is enough as only the task itself sets ->in_idle */ 1211 if (unlikely(atomic_read(&tctx->in_idle))) 1212 io_uring_drop_tctx_refs(current); 1213 1214 trace_io_uring_task_work_run(tctx, count, loops); 1215 } 1216 1217 static __cold void io_fallback_tw(struct io_uring_task *tctx) 1218 { 1219 struct llist_node *node = llist_del_all(&tctx->task_list); 1220 struct io_kiocb *req; 1221 1222 while (node) { 1223 req = container_of(node, struct io_kiocb, io_task_work.node); 1224 node = node->next; 1225 if (llist_add(&req->io_task_work.node, 1226 &req->ctx->fallback_llist)) 1227 schedule_delayed_work(&req->ctx->fallback_work, 1); 1228 } 1229 } 1230 1231 static void io_req_local_work_add(struct io_kiocb *req) 1232 { 1233 struct io_ring_ctx *ctx = req->ctx; 1234 1235 if (!llist_add(&req->io_task_work.node, &ctx->work_llist)) 1236 return; 1237 /* need it for the following io_cqring_wake() */ 1238 smp_mb__after_atomic(); 1239 1240 if (unlikely(atomic_read(&req->task->io_uring->in_idle))) { 1241 io_move_task_work_from_local(ctx); 1242 return; 1243 } 1244 1245 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1246 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1247 1248 if (ctx->has_evfd) 1249 io_eventfd_signal(ctx); 1250 __io_cqring_wake(ctx); 1251 } 1252 1253 void __io_req_task_work_add(struct io_kiocb *req, bool allow_local) 1254 { 1255 struct io_uring_task *tctx = req->task->io_uring; 1256 struct io_ring_ctx *ctx = req->ctx; 1257 1258 if (allow_local && ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1259 io_req_local_work_add(req); 1260 return; 1261 } 1262 1263 /* task_work already pending, we're done */ 1264 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1265 return; 1266 1267 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1268 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1269 1270 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1271 return; 1272 1273 io_fallback_tw(tctx); 1274 } 1275 1276 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1277 { 1278 struct llist_node *node; 1279 1280 node = llist_del_all(&ctx->work_llist); 1281 while (node) { 1282 struct io_kiocb *req = container_of(node, struct io_kiocb, 1283 io_task_work.node); 1284 1285 node = node->next; 1286 __io_req_task_work_add(req, false); 1287 } 1288 } 1289 1290 int __io_run_local_work(struct io_ring_ctx *ctx, bool *locked) 1291 { 1292 struct llist_node *node; 1293 struct llist_node fake; 1294 struct llist_node *current_final = NULL; 1295 int ret; 1296 unsigned int loops = 1; 1297 1298 if (unlikely(ctx->submitter_task != current)) 1299 return -EEXIST; 1300 1301 node = io_llist_xchg(&ctx->work_llist, &fake); 1302 ret = 0; 1303 again: 1304 while (node != current_final) { 1305 struct llist_node *next = node->next; 1306 struct io_kiocb *req = container_of(node, struct io_kiocb, 1307 io_task_work.node); 1308 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1309 req->io_task_work.func(req, locked); 1310 ret++; 1311 node = next; 1312 } 1313 1314 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1315 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1316 1317 node = io_llist_cmpxchg(&ctx->work_llist, &fake, NULL); 1318 if (node != &fake) { 1319 loops++; 1320 current_final = &fake; 1321 node = io_llist_xchg(&ctx->work_llist, &fake); 1322 goto again; 1323 } 1324 1325 if (*locked) 1326 io_submit_flush_completions(ctx); 1327 trace_io_uring_local_work_run(ctx, ret, loops); 1328 return ret; 1329 1330 } 1331 1332 int io_run_local_work(struct io_ring_ctx *ctx) 1333 { 1334 bool locked; 1335 int ret; 1336 1337 if (llist_empty(&ctx->work_llist)) 1338 return 0; 1339 1340 __set_current_state(TASK_RUNNING); 1341 locked = mutex_trylock(&ctx->uring_lock); 1342 ret = __io_run_local_work(ctx, &locked); 1343 if (locked) 1344 mutex_unlock(&ctx->uring_lock); 1345 1346 return ret; 1347 } 1348 1349 static void io_req_task_cancel(struct io_kiocb *req, bool *locked) 1350 { 1351 io_tw_lock(req->ctx, locked); 1352 io_req_defer_failed(req, req->cqe.res); 1353 } 1354 1355 void io_req_task_submit(struct io_kiocb *req, bool *locked) 1356 { 1357 io_tw_lock(req->ctx, locked); 1358 /* req->task == current here, checking PF_EXITING is safe */ 1359 if (likely(!(req->task->flags & PF_EXITING))) 1360 io_queue_sqe(req); 1361 else 1362 io_req_defer_failed(req, -EFAULT); 1363 } 1364 1365 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1366 { 1367 io_req_set_res(req, ret, 0); 1368 req->io_task_work.func = io_req_task_cancel; 1369 io_req_task_work_add(req); 1370 } 1371 1372 void io_req_task_queue(struct io_kiocb *req) 1373 { 1374 req->io_task_work.func = io_req_task_submit; 1375 io_req_task_work_add(req); 1376 } 1377 1378 void io_queue_next(struct io_kiocb *req) 1379 { 1380 struct io_kiocb *nxt = io_req_find_next(req); 1381 1382 if (nxt) 1383 io_req_task_queue(nxt); 1384 } 1385 1386 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node) 1387 __must_hold(&ctx->uring_lock) 1388 { 1389 struct task_struct *task = NULL; 1390 int task_refs = 0; 1391 1392 do { 1393 struct io_kiocb *req = container_of(node, struct io_kiocb, 1394 comp_list); 1395 1396 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1397 if (req->flags & REQ_F_REFCOUNT) { 1398 node = req->comp_list.next; 1399 if (!req_ref_put_and_test(req)) 1400 continue; 1401 } 1402 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1403 struct async_poll *apoll = req->apoll; 1404 1405 if (apoll->double_poll) 1406 kfree(apoll->double_poll); 1407 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1408 kfree(apoll); 1409 req->flags &= ~REQ_F_POLLED; 1410 } 1411 if (req->flags & IO_REQ_LINK_FLAGS) 1412 io_queue_next(req); 1413 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1414 io_clean_op(req); 1415 } 1416 if (!(req->flags & REQ_F_FIXED_FILE)) 1417 io_put_file(req->file); 1418 1419 io_req_put_rsrc_locked(req, ctx); 1420 1421 if (req->task != task) { 1422 if (task) 1423 io_put_task(task, task_refs); 1424 task = req->task; 1425 task_refs = 0; 1426 } 1427 task_refs++; 1428 node = req->comp_list.next; 1429 io_req_add_to_cache(req, ctx); 1430 } while (node); 1431 1432 if (task) 1433 io_put_task(task, task_refs); 1434 } 1435 1436 static void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1437 __must_hold(&ctx->uring_lock) 1438 { 1439 struct io_wq_work_node *node, *prev; 1440 struct io_submit_state *state = &ctx->submit_state; 1441 1442 __io_cq_lock(ctx); 1443 /* must come first to preserve CQE ordering in failure cases */ 1444 if (state->cqes_count) 1445 __io_flush_post_cqes(ctx); 1446 wq_list_for_each(node, prev, &state->compl_reqs) { 1447 struct io_kiocb *req = container_of(node, struct io_kiocb, 1448 comp_list); 1449 1450 if (!(req->flags & REQ_F_CQE_SKIP) && 1451 unlikely(!__io_fill_cqe_req(ctx, req))) { 1452 if (ctx->task_complete) { 1453 spin_lock(&ctx->completion_lock); 1454 io_req_cqe_overflow(req); 1455 spin_unlock(&ctx->completion_lock); 1456 } else { 1457 io_req_cqe_overflow(req); 1458 } 1459 } 1460 } 1461 __io_cq_unlock_post(ctx); 1462 1463 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1464 io_free_batch_list(ctx, state->compl_reqs.first); 1465 INIT_WQ_LIST(&state->compl_reqs); 1466 } 1467 } 1468 1469 /* 1470 * Drop reference to request, return next in chain (if there is one) if this 1471 * was the last reference to this request. 1472 */ 1473 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req) 1474 { 1475 struct io_kiocb *nxt = NULL; 1476 1477 if (req_ref_put_and_test(req)) { 1478 if (unlikely(req->flags & IO_REQ_LINK_FLAGS)) 1479 nxt = io_req_find_next(req); 1480 io_free_req(req); 1481 } 1482 return nxt; 1483 } 1484 1485 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1486 { 1487 /* See comment at the top of this file */ 1488 smp_rmb(); 1489 return __io_cqring_events(ctx); 1490 } 1491 1492 /* 1493 * We can't just wait for polled events to come to us, we have to actively 1494 * find and complete them. 1495 */ 1496 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1497 { 1498 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1499 return; 1500 1501 mutex_lock(&ctx->uring_lock); 1502 while (!wq_list_empty(&ctx->iopoll_list)) { 1503 /* let it sleep and repeat later if can't complete a request */ 1504 if (io_do_iopoll(ctx, true) == 0) 1505 break; 1506 /* 1507 * Ensure we allow local-to-the-cpu processing to take place, 1508 * in this case we need to ensure that we reap all events. 1509 * Also let task_work, etc. to progress by releasing the mutex 1510 */ 1511 if (need_resched()) { 1512 mutex_unlock(&ctx->uring_lock); 1513 cond_resched(); 1514 mutex_lock(&ctx->uring_lock); 1515 } 1516 } 1517 mutex_unlock(&ctx->uring_lock); 1518 } 1519 1520 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1521 { 1522 unsigned int nr_events = 0; 1523 int ret = 0; 1524 unsigned long check_cq; 1525 1526 if (!io_allowed_run_tw(ctx)) 1527 return -EEXIST; 1528 1529 check_cq = READ_ONCE(ctx->check_cq); 1530 if (unlikely(check_cq)) { 1531 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1532 __io_cqring_overflow_flush(ctx); 1533 /* 1534 * Similarly do not spin if we have not informed the user of any 1535 * dropped CQE. 1536 */ 1537 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1538 return -EBADR; 1539 } 1540 /* 1541 * Don't enter poll loop if we already have events pending. 1542 * If we do, we can potentially be spinning for commands that 1543 * already triggered a CQE (eg in error). 1544 */ 1545 if (io_cqring_events(ctx)) 1546 return 0; 1547 1548 do { 1549 /* 1550 * If a submit got punted to a workqueue, we can have the 1551 * application entering polling for a command before it gets 1552 * issued. That app will hold the uring_lock for the duration 1553 * of the poll right here, so we need to take a breather every 1554 * now and then to ensure that the issue has a chance to add 1555 * the poll to the issued list. Otherwise we can spin here 1556 * forever, while the workqueue is stuck trying to acquire the 1557 * very same mutex. 1558 */ 1559 if (wq_list_empty(&ctx->iopoll_list) || 1560 io_task_work_pending(ctx)) { 1561 u32 tail = ctx->cached_cq_tail; 1562 1563 (void) io_run_local_work_locked(ctx); 1564 1565 if (task_work_pending(current) || 1566 wq_list_empty(&ctx->iopoll_list)) { 1567 mutex_unlock(&ctx->uring_lock); 1568 io_run_task_work(); 1569 mutex_lock(&ctx->uring_lock); 1570 } 1571 /* some requests don't go through iopoll_list */ 1572 if (tail != ctx->cached_cq_tail || 1573 wq_list_empty(&ctx->iopoll_list)) 1574 break; 1575 } 1576 ret = io_do_iopoll(ctx, !min); 1577 if (ret < 0) 1578 break; 1579 nr_events += ret; 1580 ret = 0; 1581 } while (nr_events < min && !need_resched()); 1582 1583 return ret; 1584 } 1585 1586 void io_req_task_complete(struct io_kiocb *req, bool *locked) 1587 { 1588 if (*locked) 1589 io_req_complete_defer(req); 1590 else 1591 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1592 } 1593 1594 /* 1595 * After the iocb has been issued, it's safe to be found on the poll list. 1596 * Adding the kiocb to the list AFTER submission ensures that we don't 1597 * find it from a io_do_iopoll() thread before the issuer is done 1598 * accessing the kiocb cookie. 1599 */ 1600 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1601 { 1602 struct io_ring_ctx *ctx = req->ctx; 1603 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1604 1605 /* workqueue context doesn't hold uring_lock, grab it now */ 1606 if (unlikely(needs_lock)) 1607 mutex_lock(&ctx->uring_lock); 1608 1609 /* 1610 * Track whether we have multiple files in our lists. This will impact 1611 * how we do polling eventually, not spinning if we're on potentially 1612 * different devices. 1613 */ 1614 if (wq_list_empty(&ctx->iopoll_list)) { 1615 ctx->poll_multi_queue = false; 1616 } else if (!ctx->poll_multi_queue) { 1617 struct io_kiocb *list_req; 1618 1619 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1620 comp_list); 1621 if (list_req->file != req->file) 1622 ctx->poll_multi_queue = true; 1623 } 1624 1625 /* 1626 * For fast devices, IO may have already completed. If it has, add 1627 * it to the front so we find it first. 1628 */ 1629 if (READ_ONCE(req->iopoll_completed)) 1630 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1631 else 1632 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1633 1634 if (unlikely(needs_lock)) { 1635 /* 1636 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1637 * in sq thread task context or in io worker task context. If 1638 * current task context is sq thread, we don't need to check 1639 * whether should wake up sq thread. 1640 */ 1641 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1642 wq_has_sleeper(&ctx->sq_data->wait)) 1643 wake_up(&ctx->sq_data->wait); 1644 1645 mutex_unlock(&ctx->uring_lock); 1646 } 1647 } 1648 1649 static bool io_bdev_nowait(struct block_device *bdev) 1650 { 1651 return !bdev || bdev_nowait(bdev); 1652 } 1653 1654 /* 1655 * If we tracked the file through the SCM inflight mechanism, we could support 1656 * any file. For now, just ensure that anything potentially problematic is done 1657 * inline. 1658 */ 1659 static bool __io_file_supports_nowait(struct file *file, umode_t mode) 1660 { 1661 if (S_ISBLK(mode)) { 1662 if (IS_ENABLED(CONFIG_BLOCK) && 1663 io_bdev_nowait(I_BDEV(file->f_mapping->host))) 1664 return true; 1665 return false; 1666 } 1667 if (S_ISSOCK(mode)) 1668 return true; 1669 if (S_ISREG(mode)) { 1670 if (IS_ENABLED(CONFIG_BLOCK) && 1671 io_bdev_nowait(file->f_inode->i_sb->s_bdev) && 1672 !io_is_uring_fops(file)) 1673 return true; 1674 return false; 1675 } 1676 1677 /* any ->read/write should understand O_NONBLOCK */ 1678 if (file->f_flags & O_NONBLOCK) 1679 return true; 1680 return file->f_mode & FMODE_NOWAIT; 1681 } 1682 1683 /* 1684 * If we tracked the file through the SCM inflight mechanism, we could support 1685 * any file. For now, just ensure that anything potentially problematic is done 1686 * inline. 1687 */ 1688 unsigned int io_file_get_flags(struct file *file) 1689 { 1690 umode_t mode = file_inode(file)->i_mode; 1691 unsigned int res = 0; 1692 1693 if (S_ISREG(mode)) 1694 res |= FFS_ISREG; 1695 if (__io_file_supports_nowait(file, mode)) 1696 res |= FFS_NOWAIT; 1697 return res; 1698 } 1699 1700 bool io_alloc_async_data(struct io_kiocb *req) 1701 { 1702 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size); 1703 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL); 1704 if (req->async_data) { 1705 req->flags |= REQ_F_ASYNC_DATA; 1706 return false; 1707 } 1708 return true; 1709 } 1710 1711 int io_req_prep_async(struct io_kiocb *req) 1712 { 1713 const struct io_op_def *def = &io_op_defs[req->opcode]; 1714 1715 /* assign early for deferred execution for non-fixed file */ 1716 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE)) 1717 req->file = io_file_get_normal(req, req->cqe.fd); 1718 if (!def->prep_async) 1719 return 0; 1720 if (WARN_ON_ONCE(req_has_async_data(req))) 1721 return -EFAULT; 1722 if (!io_op_defs[req->opcode].manual_alloc) { 1723 if (io_alloc_async_data(req)) 1724 return -EAGAIN; 1725 } 1726 return def->prep_async(req); 1727 } 1728 1729 static u32 io_get_sequence(struct io_kiocb *req) 1730 { 1731 u32 seq = req->ctx->cached_sq_head; 1732 struct io_kiocb *cur; 1733 1734 /* need original cached_sq_head, but it was increased for each req */ 1735 io_for_each_link(cur, req) 1736 seq--; 1737 return seq; 1738 } 1739 1740 static __cold void io_drain_req(struct io_kiocb *req) 1741 __must_hold(&ctx->uring_lock) 1742 { 1743 struct io_ring_ctx *ctx = req->ctx; 1744 struct io_defer_entry *de; 1745 int ret; 1746 u32 seq = io_get_sequence(req); 1747 1748 /* Still need defer if there is pending req in defer list. */ 1749 spin_lock(&ctx->completion_lock); 1750 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1751 spin_unlock(&ctx->completion_lock); 1752 queue: 1753 ctx->drain_active = false; 1754 io_req_task_queue(req); 1755 return; 1756 } 1757 spin_unlock(&ctx->completion_lock); 1758 1759 ret = io_req_prep_async(req); 1760 if (ret) { 1761 fail: 1762 io_req_defer_failed(req, ret); 1763 return; 1764 } 1765 io_prep_async_link(req); 1766 de = kmalloc(sizeof(*de), GFP_KERNEL); 1767 if (!de) { 1768 ret = -ENOMEM; 1769 goto fail; 1770 } 1771 1772 spin_lock(&ctx->completion_lock); 1773 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1774 spin_unlock(&ctx->completion_lock); 1775 kfree(de); 1776 goto queue; 1777 } 1778 1779 trace_io_uring_defer(req); 1780 de->req = req; 1781 de->seq = seq; 1782 list_add_tail(&de->list, &ctx->defer_list); 1783 spin_unlock(&ctx->completion_lock); 1784 } 1785 1786 static void io_clean_op(struct io_kiocb *req) 1787 { 1788 if (req->flags & REQ_F_BUFFER_SELECTED) { 1789 spin_lock(&req->ctx->completion_lock); 1790 io_put_kbuf_comp(req); 1791 spin_unlock(&req->ctx->completion_lock); 1792 } 1793 1794 if (req->flags & REQ_F_NEED_CLEANUP) { 1795 const struct io_op_def *def = &io_op_defs[req->opcode]; 1796 1797 if (def->cleanup) 1798 def->cleanup(req); 1799 } 1800 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1801 kfree(req->apoll->double_poll); 1802 kfree(req->apoll); 1803 req->apoll = NULL; 1804 } 1805 if (req->flags & REQ_F_INFLIGHT) { 1806 struct io_uring_task *tctx = req->task->io_uring; 1807 1808 atomic_dec(&tctx->inflight_tracked); 1809 } 1810 if (req->flags & REQ_F_CREDS) 1811 put_cred(req->creds); 1812 if (req->flags & REQ_F_ASYNC_DATA) { 1813 kfree(req->async_data); 1814 req->async_data = NULL; 1815 } 1816 req->flags &= ~IO_REQ_CLEAN_FLAGS; 1817 } 1818 1819 static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags) 1820 { 1821 if (req->file || !io_op_defs[req->opcode].needs_file) 1822 return true; 1823 1824 if (req->flags & REQ_F_FIXED_FILE) 1825 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1826 else 1827 req->file = io_file_get_normal(req, req->cqe.fd); 1828 1829 return !!req->file; 1830 } 1831 1832 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1833 { 1834 const struct io_op_def *def = &io_op_defs[req->opcode]; 1835 const struct cred *creds = NULL; 1836 int ret; 1837 1838 if (unlikely(!io_assign_file(req, issue_flags))) 1839 return -EBADF; 1840 1841 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1842 creds = override_creds(req->creds); 1843 1844 if (!def->audit_skip) 1845 audit_uring_entry(req->opcode); 1846 1847 ret = def->issue(req, issue_flags); 1848 1849 if (!def->audit_skip) 1850 audit_uring_exit(!ret, ret); 1851 1852 if (creds) 1853 revert_creds(creds); 1854 1855 if (ret == IOU_OK) { 1856 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1857 io_req_complete_defer(req); 1858 else 1859 io_req_complete_post(req, issue_flags); 1860 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1861 return ret; 1862 1863 /* If the op doesn't have a file, we're not polling for it */ 1864 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1865 io_iopoll_req_issued(req, issue_flags); 1866 1867 return 0; 1868 } 1869 1870 int io_poll_issue(struct io_kiocb *req, bool *locked) 1871 { 1872 io_tw_lock(req->ctx, locked); 1873 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1874 IO_URING_F_COMPLETE_DEFER); 1875 } 1876 1877 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1878 { 1879 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1880 1881 req = io_put_req_find_next(req); 1882 return req ? &req->work : NULL; 1883 } 1884 1885 void io_wq_submit_work(struct io_wq_work *work) 1886 { 1887 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1888 const struct io_op_def *def = &io_op_defs[req->opcode]; 1889 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1890 bool needs_poll = false; 1891 int ret = 0, err = -ECANCELED; 1892 1893 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1894 if (!(req->flags & REQ_F_REFCOUNT)) 1895 __io_req_set_refcount(req, 2); 1896 else 1897 req_ref_get(req); 1898 1899 io_arm_ltimeout(req); 1900 1901 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1902 if (work->flags & IO_WQ_WORK_CANCEL) { 1903 fail: 1904 io_req_task_queue_fail(req, err); 1905 return; 1906 } 1907 if (!io_assign_file(req, issue_flags)) { 1908 err = -EBADF; 1909 work->flags |= IO_WQ_WORK_CANCEL; 1910 goto fail; 1911 } 1912 1913 if (req->flags & REQ_F_FORCE_ASYNC) { 1914 bool opcode_poll = def->pollin || def->pollout; 1915 1916 if (opcode_poll && file_can_poll(req->file)) { 1917 needs_poll = true; 1918 issue_flags |= IO_URING_F_NONBLOCK; 1919 } 1920 } 1921 1922 do { 1923 ret = io_issue_sqe(req, issue_flags); 1924 if (ret != -EAGAIN) 1925 break; 1926 /* 1927 * We can get EAGAIN for iopolled IO even though we're 1928 * forcing a sync submission from here, since we can't 1929 * wait for request slots on the block side. 1930 */ 1931 if (!needs_poll) { 1932 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1933 break; 1934 cond_resched(); 1935 continue; 1936 } 1937 1938 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1939 return; 1940 /* aborted or ready, in either case retry blocking */ 1941 needs_poll = false; 1942 issue_flags &= ~IO_URING_F_NONBLOCK; 1943 } while (1); 1944 1945 /* avoid locking problems by failing it from a clean context */ 1946 if (ret < 0) 1947 io_req_task_queue_fail(req, ret); 1948 } 1949 1950 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1951 unsigned int issue_flags) 1952 { 1953 struct io_ring_ctx *ctx = req->ctx; 1954 struct file *file = NULL; 1955 unsigned long file_ptr; 1956 1957 io_ring_submit_lock(ctx, issue_flags); 1958 1959 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 1960 goto out; 1961 fd = array_index_nospec(fd, ctx->nr_user_files); 1962 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr; 1963 file = (struct file *) (file_ptr & FFS_MASK); 1964 file_ptr &= ~FFS_MASK; 1965 /* mask in overlapping REQ_F and FFS bits */ 1966 req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT); 1967 io_req_set_rsrc_node(req, ctx, 0); 1968 out: 1969 io_ring_submit_unlock(ctx, issue_flags); 1970 return file; 1971 } 1972 1973 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1974 { 1975 struct file *file = fget(fd); 1976 1977 trace_io_uring_file_get(req, fd); 1978 1979 /* we don't allow fixed io_uring files */ 1980 if (file && io_is_uring_fops(file)) 1981 io_req_track_inflight(req); 1982 return file; 1983 } 1984 1985 static void io_queue_async(struct io_kiocb *req, int ret) 1986 __must_hold(&req->ctx->uring_lock) 1987 { 1988 struct io_kiocb *linked_timeout; 1989 1990 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1991 io_req_defer_failed(req, ret); 1992 return; 1993 } 1994 1995 linked_timeout = io_prep_linked_timeout(req); 1996 1997 switch (io_arm_poll_handler(req, 0)) { 1998 case IO_APOLL_READY: 1999 io_kbuf_recycle(req, 0); 2000 io_req_task_queue(req); 2001 break; 2002 case IO_APOLL_ABORTED: 2003 io_kbuf_recycle(req, 0); 2004 io_queue_iowq(req, NULL); 2005 break; 2006 case IO_APOLL_OK: 2007 break; 2008 } 2009 2010 if (linked_timeout) 2011 io_queue_linked_timeout(linked_timeout); 2012 } 2013 2014 static inline void io_queue_sqe(struct io_kiocb *req) 2015 __must_hold(&req->ctx->uring_lock) 2016 { 2017 int ret; 2018 2019 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2020 2021 /* 2022 * We async punt it if the file wasn't marked NOWAIT, or if the file 2023 * doesn't support non-blocking read/write attempts 2024 */ 2025 if (likely(!ret)) 2026 io_arm_ltimeout(req); 2027 else 2028 io_queue_async(req, ret); 2029 } 2030 2031 static void io_queue_sqe_fallback(struct io_kiocb *req) 2032 __must_hold(&req->ctx->uring_lock) 2033 { 2034 if (unlikely(req->flags & REQ_F_FAIL)) { 2035 /* 2036 * We don't submit, fail them all, for that replace hardlinks 2037 * with normal links. Extra REQ_F_LINK is tolerated. 2038 */ 2039 req->flags &= ~REQ_F_HARDLINK; 2040 req->flags |= REQ_F_LINK; 2041 io_req_defer_failed(req, req->cqe.res); 2042 } else if (unlikely(req->ctx->drain_active)) { 2043 io_drain_req(req); 2044 } else { 2045 int ret = io_req_prep_async(req); 2046 2047 if (unlikely(ret)) 2048 io_req_defer_failed(req, ret); 2049 else 2050 io_queue_iowq(req, NULL); 2051 } 2052 } 2053 2054 /* 2055 * Check SQE restrictions (opcode and flags). 2056 * 2057 * Returns 'true' if SQE is allowed, 'false' otherwise. 2058 */ 2059 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2060 struct io_kiocb *req, 2061 unsigned int sqe_flags) 2062 { 2063 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2064 return false; 2065 2066 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2067 ctx->restrictions.sqe_flags_required) 2068 return false; 2069 2070 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2071 ctx->restrictions.sqe_flags_required)) 2072 return false; 2073 2074 return true; 2075 } 2076 2077 static void io_init_req_drain(struct io_kiocb *req) 2078 { 2079 struct io_ring_ctx *ctx = req->ctx; 2080 struct io_kiocb *head = ctx->submit_state.link.head; 2081 2082 ctx->drain_active = true; 2083 if (head) { 2084 /* 2085 * If we need to drain a request in the middle of a link, drain 2086 * the head request and the next request/link after the current 2087 * link. Considering sequential execution of links, 2088 * REQ_F_IO_DRAIN will be maintained for every request of our 2089 * link. 2090 */ 2091 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2092 ctx->drain_next = true; 2093 } 2094 } 2095 2096 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2097 const struct io_uring_sqe *sqe) 2098 __must_hold(&ctx->uring_lock) 2099 { 2100 const struct io_op_def *def; 2101 unsigned int sqe_flags; 2102 int personality; 2103 u8 opcode; 2104 2105 /* req is partially pre-initialised, see io_preinit_req() */ 2106 req->opcode = opcode = READ_ONCE(sqe->opcode); 2107 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2108 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2109 req->cqe.user_data = READ_ONCE(sqe->user_data); 2110 req->file = NULL; 2111 req->rsrc_node = NULL; 2112 req->task = current; 2113 2114 if (unlikely(opcode >= IORING_OP_LAST)) { 2115 req->opcode = 0; 2116 return -EINVAL; 2117 } 2118 def = &io_op_defs[opcode]; 2119 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2120 /* enforce forwards compatibility on users */ 2121 if (sqe_flags & ~SQE_VALID_FLAGS) 2122 return -EINVAL; 2123 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2124 if (!def->buffer_select) 2125 return -EOPNOTSUPP; 2126 req->buf_index = READ_ONCE(sqe->buf_group); 2127 } 2128 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2129 ctx->drain_disabled = true; 2130 if (sqe_flags & IOSQE_IO_DRAIN) { 2131 if (ctx->drain_disabled) 2132 return -EOPNOTSUPP; 2133 io_init_req_drain(req); 2134 } 2135 } 2136 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2137 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2138 return -EACCES; 2139 /* knock it to the slow queue path, will be drained there */ 2140 if (ctx->drain_active) 2141 req->flags |= REQ_F_FORCE_ASYNC; 2142 /* if there is no link, we're at "next" request and need to drain */ 2143 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2144 ctx->drain_next = false; 2145 ctx->drain_active = true; 2146 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2147 } 2148 } 2149 2150 if (!def->ioprio && sqe->ioprio) 2151 return -EINVAL; 2152 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2153 return -EINVAL; 2154 2155 if (def->needs_file) { 2156 struct io_submit_state *state = &ctx->submit_state; 2157 2158 req->cqe.fd = READ_ONCE(sqe->fd); 2159 2160 /* 2161 * Plug now if we have more than 2 IO left after this, and the 2162 * target is potentially a read/write to block based storage. 2163 */ 2164 if (state->need_plug && def->plug) { 2165 state->plug_started = true; 2166 state->need_plug = false; 2167 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2168 } 2169 } 2170 2171 personality = READ_ONCE(sqe->personality); 2172 if (personality) { 2173 int ret; 2174 2175 req->creds = xa_load(&ctx->personalities, personality); 2176 if (!req->creds) 2177 return -EINVAL; 2178 get_cred(req->creds); 2179 ret = security_uring_override_creds(req->creds); 2180 if (ret) { 2181 put_cred(req->creds); 2182 return ret; 2183 } 2184 req->flags |= REQ_F_CREDS; 2185 } 2186 2187 return def->prep(req, sqe); 2188 } 2189 2190 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2191 struct io_kiocb *req, int ret) 2192 { 2193 struct io_ring_ctx *ctx = req->ctx; 2194 struct io_submit_link *link = &ctx->submit_state.link; 2195 struct io_kiocb *head = link->head; 2196 2197 trace_io_uring_req_failed(sqe, req, ret); 2198 2199 /* 2200 * Avoid breaking links in the middle as it renders links with SQPOLL 2201 * unusable. Instead of failing eagerly, continue assembling the link if 2202 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2203 * should find the flag and handle the rest. 2204 */ 2205 req_fail_link_node(req, ret); 2206 if (head && !(head->flags & REQ_F_FAIL)) 2207 req_fail_link_node(head, -ECANCELED); 2208 2209 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2210 if (head) { 2211 link->last->link = req; 2212 link->head = NULL; 2213 req = head; 2214 } 2215 io_queue_sqe_fallback(req); 2216 return ret; 2217 } 2218 2219 if (head) 2220 link->last->link = req; 2221 else 2222 link->head = req; 2223 link->last = req; 2224 return 0; 2225 } 2226 2227 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2228 const struct io_uring_sqe *sqe) 2229 __must_hold(&ctx->uring_lock) 2230 { 2231 struct io_submit_link *link = &ctx->submit_state.link; 2232 int ret; 2233 2234 ret = io_init_req(ctx, req, sqe); 2235 if (unlikely(ret)) 2236 return io_submit_fail_init(sqe, req, ret); 2237 2238 /* don't need @sqe from now on */ 2239 trace_io_uring_submit_sqe(req, true); 2240 2241 /* 2242 * If we already have a head request, queue this one for async 2243 * submittal once the head completes. If we don't have a head but 2244 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2245 * submitted sync once the chain is complete. If none of those 2246 * conditions are true (normal request), then just queue it. 2247 */ 2248 if (unlikely(link->head)) { 2249 ret = io_req_prep_async(req); 2250 if (unlikely(ret)) 2251 return io_submit_fail_init(sqe, req, ret); 2252 2253 trace_io_uring_link(req, link->head); 2254 link->last->link = req; 2255 link->last = req; 2256 2257 if (req->flags & IO_REQ_LINK_FLAGS) 2258 return 0; 2259 /* last request of the link, flush it */ 2260 req = link->head; 2261 link->head = NULL; 2262 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2263 goto fallback; 2264 2265 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2266 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2267 if (req->flags & IO_REQ_LINK_FLAGS) { 2268 link->head = req; 2269 link->last = req; 2270 } else { 2271 fallback: 2272 io_queue_sqe_fallback(req); 2273 } 2274 return 0; 2275 } 2276 2277 io_queue_sqe(req); 2278 return 0; 2279 } 2280 2281 /* 2282 * Batched submission is done, ensure local IO is flushed out. 2283 */ 2284 static void io_submit_state_end(struct io_ring_ctx *ctx) 2285 { 2286 struct io_submit_state *state = &ctx->submit_state; 2287 2288 if (unlikely(state->link.head)) 2289 io_queue_sqe_fallback(state->link.head); 2290 /* flush only after queuing links as they can generate completions */ 2291 io_submit_flush_completions(ctx); 2292 if (state->plug_started) 2293 blk_finish_plug(&state->plug); 2294 } 2295 2296 /* 2297 * Start submission side cache. 2298 */ 2299 static void io_submit_state_start(struct io_submit_state *state, 2300 unsigned int max_ios) 2301 { 2302 state->plug_started = false; 2303 state->need_plug = max_ios > 2; 2304 state->submit_nr = max_ios; 2305 /* set only head, no need to init link_last in advance */ 2306 state->link.head = NULL; 2307 } 2308 2309 static void io_commit_sqring(struct io_ring_ctx *ctx) 2310 { 2311 struct io_rings *rings = ctx->rings; 2312 2313 /* 2314 * Ensure any loads from the SQEs are done at this point, 2315 * since once we write the new head, the application could 2316 * write new data to them. 2317 */ 2318 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2319 } 2320 2321 /* 2322 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2323 * that is mapped by userspace. This means that care needs to be taken to 2324 * ensure that reads are stable, as we cannot rely on userspace always 2325 * being a good citizen. If members of the sqe are validated and then later 2326 * used, it's important that those reads are done through READ_ONCE() to 2327 * prevent a re-load down the line. 2328 */ 2329 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx) 2330 { 2331 unsigned head, mask = ctx->sq_entries - 1; 2332 unsigned sq_idx = ctx->cached_sq_head++ & mask; 2333 2334 /* 2335 * The cached sq head (or cq tail) serves two purposes: 2336 * 2337 * 1) allows us to batch the cost of updating the user visible 2338 * head updates. 2339 * 2) allows the kernel side to track the head on its own, even 2340 * though the application is the one updating it. 2341 */ 2342 head = READ_ONCE(ctx->sq_array[sq_idx]); 2343 if (likely(head < ctx->sq_entries)) { 2344 /* double index for 128-byte SQEs, twice as long */ 2345 if (ctx->flags & IORING_SETUP_SQE128) 2346 head <<= 1; 2347 return &ctx->sq_sqes[head]; 2348 } 2349 2350 /* drop invalid entries */ 2351 ctx->cq_extra--; 2352 WRITE_ONCE(ctx->rings->sq_dropped, 2353 READ_ONCE(ctx->rings->sq_dropped) + 1); 2354 return NULL; 2355 } 2356 2357 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2358 __must_hold(&ctx->uring_lock) 2359 { 2360 unsigned int entries = io_sqring_entries(ctx); 2361 unsigned int left; 2362 int ret; 2363 2364 if (unlikely(!entries)) 2365 return 0; 2366 /* make sure SQ entry isn't read before tail */ 2367 ret = left = min3(nr, ctx->sq_entries, entries); 2368 io_get_task_refs(left); 2369 io_submit_state_start(&ctx->submit_state, left); 2370 2371 do { 2372 const struct io_uring_sqe *sqe; 2373 struct io_kiocb *req; 2374 2375 if (unlikely(!io_alloc_req_refill(ctx))) 2376 break; 2377 req = io_alloc_req(ctx); 2378 sqe = io_get_sqe(ctx); 2379 if (unlikely(!sqe)) { 2380 io_req_add_to_cache(req, ctx); 2381 break; 2382 } 2383 2384 /* 2385 * Continue submitting even for sqe failure if the 2386 * ring was setup with IORING_SETUP_SUBMIT_ALL 2387 */ 2388 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2389 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2390 left--; 2391 break; 2392 } 2393 } while (--left); 2394 2395 if (unlikely(left)) { 2396 ret -= left; 2397 /* try again if it submitted nothing and can't allocate a req */ 2398 if (!ret && io_req_cache_empty(ctx)) 2399 ret = -EAGAIN; 2400 current->io_uring->cached_refs += left; 2401 } 2402 2403 io_submit_state_end(ctx); 2404 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2405 io_commit_sqring(ctx); 2406 return ret; 2407 } 2408 2409 struct io_wait_queue { 2410 struct wait_queue_entry wq; 2411 struct io_ring_ctx *ctx; 2412 unsigned cq_tail; 2413 unsigned nr_timeouts; 2414 }; 2415 2416 static inline bool io_has_work(struct io_ring_ctx *ctx) 2417 { 2418 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2419 ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 2420 !llist_empty(&ctx->work_llist)); 2421 } 2422 2423 static inline bool io_should_wake(struct io_wait_queue *iowq) 2424 { 2425 struct io_ring_ctx *ctx = iowq->ctx; 2426 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2427 2428 /* 2429 * Wake up if we have enough events, or if a timeout occurred since we 2430 * started waiting. For timeouts, we always want to return to userspace, 2431 * regardless of event count. 2432 */ 2433 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2434 } 2435 2436 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2437 int wake_flags, void *key) 2438 { 2439 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, 2440 wq); 2441 struct io_ring_ctx *ctx = iowq->ctx; 2442 2443 /* 2444 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2445 * the task, and the next invocation will do it. 2446 */ 2447 if (io_should_wake(iowq) || io_has_work(ctx)) 2448 return autoremove_wake_function(curr, mode, wake_flags, key); 2449 return -1; 2450 } 2451 2452 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2453 { 2454 if (io_run_task_work_ctx(ctx) > 0) 2455 return 1; 2456 if (task_sigpending(current)) 2457 return -EINTR; 2458 return 0; 2459 } 2460 2461 /* when returns >0, the caller should retry */ 2462 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2463 struct io_wait_queue *iowq, 2464 ktime_t timeout) 2465 { 2466 int ret; 2467 unsigned long check_cq; 2468 2469 /* make sure we run task_work before checking for signals */ 2470 ret = io_run_task_work_sig(ctx); 2471 if (ret || io_should_wake(iowq)) 2472 return ret; 2473 2474 check_cq = READ_ONCE(ctx->check_cq); 2475 if (unlikely(check_cq)) { 2476 /* let the caller flush overflows, retry */ 2477 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2478 return 1; 2479 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 2480 return -EBADR; 2481 } 2482 if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS)) 2483 return -ETIME; 2484 2485 /* 2486 * Run task_work after scheduling. If we got woken because of 2487 * task_work being processed, run it now rather than let the caller 2488 * do another wait loop. 2489 */ 2490 ret = io_run_task_work_sig(ctx); 2491 return ret < 0 ? ret : 1; 2492 } 2493 2494 /* 2495 * Wait until events become available, if we don't already have some. The 2496 * application must reap them itself, as they reside on the shared cq ring. 2497 */ 2498 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2499 const sigset_t __user *sig, size_t sigsz, 2500 struct __kernel_timespec __user *uts) 2501 { 2502 struct io_wait_queue iowq; 2503 struct io_rings *rings = ctx->rings; 2504 ktime_t timeout = KTIME_MAX; 2505 int ret; 2506 2507 if (!io_allowed_run_tw(ctx)) 2508 return -EEXIST; 2509 2510 do { 2511 /* always run at least 1 task work to process local work */ 2512 ret = io_run_task_work_ctx(ctx); 2513 if (ret < 0) 2514 return ret; 2515 io_cqring_overflow_flush(ctx); 2516 2517 /* if user messes with these they will just get an early return */ 2518 if (__io_cqring_events_user(ctx) >= min_events) 2519 return 0; 2520 } while (ret > 0); 2521 2522 if (sig) { 2523 #ifdef CONFIG_COMPAT 2524 if (in_compat_syscall()) 2525 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2526 sigsz); 2527 else 2528 #endif 2529 ret = set_user_sigmask(sig, sigsz); 2530 2531 if (ret) 2532 return ret; 2533 } 2534 2535 if (uts) { 2536 struct timespec64 ts; 2537 2538 if (get_timespec64(&ts, uts)) 2539 return -EFAULT; 2540 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2541 } 2542 2543 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2544 iowq.wq.private = current; 2545 INIT_LIST_HEAD(&iowq.wq.entry); 2546 iowq.ctx = ctx; 2547 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2548 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2549 2550 trace_io_uring_cqring_wait(ctx, min_events); 2551 do { 2552 io_cqring_overflow_flush(ctx); 2553 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2554 TASK_INTERRUPTIBLE); 2555 ret = io_cqring_wait_schedule(ctx, &iowq, timeout); 2556 if (__io_cqring_events_user(ctx) >= min_events) 2557 break; 2558 cond_resched(); 2559 } while (ret > 0); 2560 2561 finish_wait(&ctx->cq_wait, &iowq.wq); 2562 restore_saved_sigmask_unless(ret == -EINTR); 2563 2564 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2565 } 2566 2567 static void io_mem_free(void *ptr) 2568 { 2569 struct page *page; 2570 2571 if (!ptr) 2572 return; 2573 2574 page = virt_to_head_page(ptr); 2575 if (put_page_testzero(page)) 2576 free_compound_page(page); 2577 } 2578 2579 static void *io_mem_alloc(size_t size) 2580 { 2581 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2582 2583 return (void *) __get_free_pages(gfp, get_order(size)); 2584 } 2585 2586 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2587 unsigned int cq_entries, size_t *sq_offset) 2588 { 2589 struct io_rings *rings; 2590 size_t off, sq_array_size; 2591 2592 off = struct_size(rings, cqes, cq_entries); 2593 if (off == SIZE_MAX) 2594 return SIZE_MAX; 2595 if (ctx->flags & IORING_SETUP_CQE32) { 2596 if (check_shl_overflow(off, 1, &off)) 2597 return SIZE_MAX; 2598 } 2599 2600 #ifdef CONFIG_SMP 2601 off = ALIGN(off, SMP_CACHE_BYTES); 2602 if (off == 0) 2603 return SIZE_MAX; 2604 #endif 2605 2606 if (sq_offset) 2607 *sq_offset = off; 2608 2609 sq_array_size = array_size(sizeof(u32), sq_entries); 2610 if (sq_array_size == SIZE_MAX) 2611 return SIZE_MAX; 2612 2613 if (check_add_overflow(off, sq_array_size, &off)) 2614 return SIZE_MAX; 2615 2616 return off; 2617 } 2618 2619 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2620 unsigned int eventfd_async) 2621 { 2622 struct io_ev_fd *ev_fd; 2623 __s32 __user *fds = arg; 2624 int fd; 2625 2626 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2627 lockdep_is_held(&ctx->uring_lock)); 2628 if (ev_fd) 2629 return -EBUSY; 2630 2631 if (copy_from_user(&fd, fds, sizeof(*fds))) 2632 return -EFAULT; 2633 2634 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2635 if (!ev_fd) 2636 return -ENOMEM; 2637 2638 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2639 if (IS_ERR(ev_fd->cq_ev_fd)) { 2640 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2641 kfree(ev_fd); 2642 return ret; 2643 } 2644 2645 spin_lock(&ctx->completion_lock); 2646 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2647 spin_unlock(&ctx->completion_lock); 2648 2649 ev_fd->eventfd_async = eventfd_async; 2650 ctx->has_evfd = true; 2651 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2652 atomic_set(&ev_fd->refs, 1); 2653 atomic_set(&ev_fd->ops, 0); 2654 return 0; 2655 } 2656 2657 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2658 { 2659 struct io_ev_fd *ev_fd; 2660 2661 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2662 lockdep_is_held(&ctx->uring_lock)); 2663 if (ev_fd) { 2664 ctx->has_evfd = false; 2665 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2666 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2667 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2668 return 0; 2669 } 2670 2671 return -ENXIO; 2672 } 2673 2674 static void io_req_caches_free(struct io_ring_ctx *ctx) 2675 { 2676 int nr = 0; 2677 2678 mutex_lock(&ctx->uring_lock); 2679 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2680 2681 while (!io_req_cache_empty(ctx)) { 2682 struct io_kiocb *req = io_alloc_req(ctx); 2683 2684 kmem_cache_free(req_cachep, req); 2685 nr++; 2686 } 2687 if (nr) 2688 percpu_ref_put_many(&ctx->refs, nr); 2689 mutex_unlock(&ctx->uring_lock); 2690 } 2691 2692 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2693 { 2694 io_sq_thread_finish(ctx); 2695 io_rsrc_refs_drop(ctx); 2696 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2697 io_wait_rsrc_data(ctx->buf_data); 2698 io_wait_rsrc_data(ctx->file_data); 2699 2700 mutex_lock(&ctx->uring_lock); 2701 if (ctx->buf_data) 2702 __io_sqe_buffers_unregister(ctx); 2703 if (ctx->file_data) 2704 __io_sqe_files_unregister(ctx); 2705 io_cqring_overflow_kill(ctx); 2706 io_eventfd_unregister(ctx); 2707 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2708 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2709 mutex_unlock(&ctx->uring_lock); 2710 io_destroy_buffers(ctx); 2711 if (ctx->sq_creds) 2712 put_cred(ctx->sq_creds); 2713 if (ctx->submitter_task) 2714 put_task_struct(ctx->submitter_task); 2715 2716 /* there are no registered resources left, nobody uses it */ 2717 if (ctx->rsrc_node) 2718 io_rsrc_node_destroy(ctx->rsrc_node); 2719 if (ctx->rsrc_backup_node) 2720 io_rsrc_node_destroy(ctx->rsrc_backup_node); 2721 flush_delayed_work(&ctx->rsrc_put_work); 2722 flush_delayed_work(&ctx->fallback_work); 2723 2724 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2725 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist)); 2726 2727 #if defined(CONFIG_UNIX) 2728 if (ctx->ring_sock) { 2729 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2730 sock_release(ctx->ring_sock); 2731 } 2732 #endif 2733 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2734 2735 if (ctx->mm_account) { 2736 mmdrop(ctx->mm_account); 2737 ctx->mm_account = NULL; 2738 } 2739 io_mem_free(ctx->rings); 2740 io_mem_free(ctx->sq_sqes); 2741 2742 percpu_ref_exit(&ctx->refs); 2743 free_uid(ctx->user); 2744 io_req_caches_free(ctx); 2745 if (ctx->hash_map) 2746 io_wq_put_hash(ctx->hash_map); 2747 kfree(ctx->cancel_table.hbs); 2748 kfree(ctx->cancel_table_locked.hbs); 2749 kfree(ctx->dummy_ubuf); 2750 kfree(ctx->io_bl); 2751 xa_destroy(&ctx->io_bl_xa); 2752 kfree(ctx); 2753 } 2754 2755 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2756 { 2757 struct io_ring_ctx *ctx = file->private_data; 2758 __poll_t mask = 0; 2759 2760 poll_wait(file, &ctx->cq_wait, wait); 2761 /* 2762 * synchronizes with barrier from wq_has_sleeper call in 2763 * io_commit_cqring 2764 */ 2765 smp_rmb(); 2766 if (!io_sqring_full(ctx)) 2767 mask |= EPOLLOUT | EPOLLWRNORM; 2768 2769 /* 2770 * Don't flush cqring overflow list here, just do a simple check. 2771 * Otherwise there could possible be ABBA deadlock: 2772 * CPU0 CPU1 2773 * ---- ---- 2774 * lock(&ctx->uring_lock); 2775 * lock(&ep->mtx); 2776 * lock(&ctx->uring_lock); 2777 * lock(&ep->mtx); 2778 * 2779 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2780 * pushes them to do the flush. 2781 */ 2782 2783 if (io_cqring_events(ctx) || io_has_work(ctx)) 2784 mask |= EPOLLIN | EPOLLRDNORM; 2785 2786 return mask; 2787 } 2788 2789 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 2790 { 2791 const struct cred *creds; 2792 2793 creds = xa_erase(&ctx->personalities, id); 2794 if (creds) { 2795 put_cred(creds); 2796 return 0; 2797 } 2798 2799 return -EINVAL; 2800 } 2801 2802 struct io_tctx_exit { 2803 struct callback_head task_work; 2804 struct completion completion; 2805 struct io_ring_ctx *ctx; 2806 }; 2807 2808 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2809 { 2810 struct io_uring_task *tctx = current->io_uring; 2811 struct io_tctx_exit *work; 2812 2813 work = container_of(cb, struct io_tctx_exit, task_work); 2814 /* 2815 * When @in_idle, we're in cancellation and it's racy to remove the 2816 * node. It'll be removed by the end of cancellation, just ignore it. 2817 * tctx can be NULL if the queueing of this task_work raced with 2818 * work cancelation off the exec path. 2819 */ 2820 if (tctx && !atomic_read(&tctx->in_idle)) 2821 io_uring_del_tctx_node((unsigned long)work->ctx); 2822 complete(&work->completion); 2823 } 2824 2825 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2826 { 2827 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2828 2829 return req->ctx == data; 2830 } 2831 2832 static __cold void io_ring_exit_work(struct work_struct *work) 2833 { 2834 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2835 unsigned long timeout = jiffies + HZ * 60 * 5; 2836 unsigned long interval = HZ / 20; 2837 struct io_tctx_exit exit; 2838 struct io_tctx_node *node; 2839 int ret; 2840 2841 /* 2842 * If we're doing polled IO and end up having requests being 2843 * submitted async (out-of-line), then completions can come in while 2844 * we're waiting for refs to drop. We need to reap these manually, 2845 * as nobody else will be looking for them. 2846 */ 2847 do { 2848 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2849 mutex_lock(&ctx->uring_lock); 2850 io_cqring_overflow_kill(ctx); 2851 mutex_unlock(&ctx->uring_lock); 2852 } 2853 2854 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2855 io_move_task_work_from_local(ctx); 2856 2857 while (io_uring_try_cancel_requests(ctx, NULL, true)) 2858 cond_resched(); 2859 2860 if (ctx->sq_data) { 2861 struct io_sq_data *sqd = ctx->sq_data; 2862 struct task_struct *tsk; 2863 2864 io_sq_thread_park(sqd); 2865 tsk = sqd->thread; 2866 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2867 io_wq_cancel_cb(tsk->io_uring->io_wq, 2868 io_cancel_ctx_cb, ctx, true); 2869 io_sq_thread_unpark(sqd); 2870 } 2871 2872 io_req_caches_free(ctx); 2873 2874 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2875 /* there is little hope left, don't run it too often */ 2876 interval = HZ * 60; 2877 } 2878 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval)); 2879 2880 init_completion(&exit.completion); 2881 init_task_work(&exit.task_work, io_tctx_exit_cb); 2882 exit.ctx = ctx; 2883 /* 2884 * Some may use context even when all refs and requests have been put, 2885 * and they are free to do so while still holding uring_lock or 2886 * completion_lock, see io_req_task_submit(). Apart from other work, 2887 * this lock/unlock section also waits them to finish. 2888 */ 2889 mutex_lock(&ctx->uring_lock); 2890 while (!list_empty(&ctx->tctx_list)) { 2891 WARN_ON_ONCE(time_after(jiffies, timeout)); 2892 2893 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 2894 ctx_node); 2895 /* don't spin on a single task if cancellation failed */ 2896 list_rotate_left(&ctx->tctx_list); 2897 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 2898 if (WARN_ON_ONCE(ret)) 2899 continue; 2900 2901 mutex_unlock(&ctx->uring_lock); 2902 wait_for_completion(&exit.completion); 2903 mutex_lock(&ctx->uring_lock); 2904 } 2905 mutex_unlock(&ctx->uring_lock); 2906 spin_lock(&ctx->completion_lock); 2907 spin_unlock(&ctx->completion_lock); 2908 2909 io_ring_ctx_free(ctx); 2910 } 2911 2912 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 2913 { 2914 unsigned long index; 2915 struct creds *creds; 2916 2917 mutex_lock(&ctx->uring_lock); 2918 percpu_ref_kill(&ctx->refs); 2919 xa_for_each(&ctx->personalities, index, creds) 2920 io_unregister_personality(ctx, index); 2921 if (ctx->rings) 2922 io_poll_remove_all(ctx, NULL, true); 2923 mutex_unlock(&ctx->uring_lock); 2924 2925 /* 2926 * If we failed setting up the ctx, we might not have any rings 2927 * and therefore did not submit any requests 2928 */ 2929 if (ctx->rings) 2930 io_kill_timeouts(ctx, NULL, true); 2931 2932 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 2933 /* 2934 * Use system_unbound_wq to avoid spawning tons of event kworkers 2935 * if we're exiting a ton of rings at the same time. It just adds 2936 * noise and overhead, there's no discernable change in runtime 2937 * over using system_wq. 2938 */ 2939 queue_work(system_unbound_wq, &ctx->exit_work); 2940 } 2941 2942 static int io_uring_release(struct inode *inode, struct file *file) 2943 { 2944 struct io_ring_ctx *ctx = file->private_data; 2945 2946 file->private_data = NULL; 2947 io_ring_ctx_wait_and_kill(ctx); 2948 return 0; 2949 } 2950 2951 struct io_task_cancel { 2952 struct task_struct *task; 2953 bool all; 2954 }; 2955 2956 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 2957 { 2958 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2959 struct io_task_cancel *cancel = data; 2960 2961 return io_match_task_safe(req, cancel->task, cancel->all); 2962 } 2963 2964 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 2965 struct task_struct *task, 2966 bool cancel_all) 2967 { 2968 struct io_defer_entry *de; 2969 LIST_HEAD(list); 2970 2971 spin_lock(&ctx->completion_lock); 2972 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 2973 if (io_match_task_safe(de->req, task, cancel_all)) { 2974 list_cut_position(&list, &ctx->defer_list, &de->list); 2975 break; 2976 } 2977 } 2978 spin_unlock(&ctx->completion_lock); 2979 if (list_empty(&list)) 2980 return false; 2981 2982 while (!list_empty(&list)) { 2983 de = list_first_entry(&list, struct io_defer_entry, list); 2984 list_del_init(&de->list); 2985 io_req_task_queue_fail(de->req, -ECANCELED); 2986 kfree(de); 2987 } 2988 return true; 2989 } 2990 2991 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 2992 { 2993 struct io_tctx_node *node; 2994 enum io_wq_cancel cret; 2995 bool ret = false; 2996 2997 mutex_lock(&ctx->uring_lock); 2998 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 2999 struct io_uring_task *tctx = node->task->io_uring; 3000 3001 /* 3002 * io_wq will stay alive while we hold uring_lock, because it's 3003 * killed after ctx nodes, which requires to take the lock. 3004 */ 3005 if (!tctx || !tctx->io_wq) 3006 continue; 3007 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3008 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3009 } 3010 mutex_unlock(&ctx->uring_lock); 3011 3012 return ret; 3013 } 3014 3015 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3016 struct task_struct *task, 3017 bool cancel_all) 3018 { 3019 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3020 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3021 enum io_wq_cancel cret; 3022 bool ret = false; 3023 3024 /* failed during ring init, it couldn't have issued any requests */ 3025 if (!ctx->rings) 3026 return false; 3027 3028 if (!task) { 3029 ret |= io_uring_try_cancel_iowq(ctx); 3030 } else if (tctx && tctx->io_wq) { 3031 /* 3032 * Cancels requests of all rings, not only @ctx, but 3033 * it's fine as the task is in exit/exec. 3034 */ 3035 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3036 &cancel, true); 3037 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3038 } 3039 3040 /* SQPOLL thread does its own polling */ 3041 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3042 (ctx->sq_data && ctx->sq_data->thread == current)) { 3043 while (!wq_list_empty(&ctx->iopoll_list)) { 3044 io_iopoll_try_reap_events(ctx); 3045 ret = true; 3046 } 3047 } 3048 3049 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3050 ret |= io_run_local_work(ctx) > 0; 3051 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3052 mutex_lock(&ctx->uring_lock); 3053 ret |= io_poll_remove_all(ctx, task, cancel_all); 3054 mutex_unlock(&ctx->uring_lock); 3055 ret |= io_kill_timeouts(ctx, task, cancel_all); 3056 if (task) 3057 ret |= io_run_task_work() > 0; 3058 return ret; 3059 } 3060 3061 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3062 { 3063 if (tracked) 3064 return atomic_read(&tctx->inflight_tracked); 3065 return percpu_counter_sum(&tctx->inflight); 3066 } 3067 3068 /* 3069 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3070 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3071 */ 3072 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3073 { 3074 struct io_uring_task *tctx = current->io_uring; 3075 struct io_ring_ctx *ctx; 3076 s64 inflight; 3077 DEFINE_WAIT(wait); 3078 3079 WARN_ON_ONCE(sqd && sqd->thread != current); 3080 3081 if (!current->io_uring) 3082 return; 3083 if (tctx->io_wq) 3084 io_wq_exit_start(tctx->io_wq); 3085 3086 atomic_inc(&tctx->in_idle); 3087 do { 3088 bool loop = false; 3089 3090 io_uring_drop_tctx_refs(current); 3091 /* read completions before cancelations */ 3092 inflight = tctx_inflight(tctx, !cancel_all); 3093 if (!inflight) 3094 break; 3095 3096 if (!sqd) { 3097 struct io_tctx_node *node; 3098 unsigned long index; 3099 3100 xa_for_each(&tctx->xa, index, node) { 3101 /* sqpoll task will cancel all its requests */ 3102 if (node->ctx->sq_data) 3103 continue; 3104 loop |= io_uring_try_cancel_requests(node->ctx, 3105 current, cancel_all); 3106 } 3107 } else { 3108 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3109 loop |= io_uring_try_cancel_requests(ctx, 3110 current, 3111 cancel_all); 3112 } 3113 3114 if (loop) { 3115 cond_resched(); 3116 continue; 3117 } 3118 3119 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3120 io_run_task_work(); 3121 io_uring_drop_tctx_refs(current); 3122 3123 /* 3124 * If we've seen completions, retry without waiting. This 3125 * avoids a race where a completion comes in before we did 3126 * prepare_to_wait(). 3127 */ 3128 if (inflight == tctx_inflight(tctx, !cancel_all)) 3129 schedule(); 3130 finish_wait(&tctx->wait, &wait); 3131 } while (1); 3132 3133 io_uring_clean_tctx(tctx); 3134 if (cancel_all) { 3135 /* 3136 * We shouldn't run task_works after cancel, so just leave 3137 * ->in_idle set for normal exit. 3138 */ 3139 atomic_dec(&tctx->in_idle); 3140 /* for exec all current's requests should be gone, kill tctx */ 3141 __io_uring_free(current); 3142 } 3143 } 3144 3145 void __io_uring_cancel(bool cancel_all) 3146 { 3147 io_uring_cancel_generic(cancel_all, NULL); 3148 } 3149 3150 static void *io_uring_validate_mmap_request(struct file *file, 3151 loff_t pgoff, size_t sz) 3152 { 3153 struct io_ring_ctx *ctx = file->private_data; 3154 loff_t offset = pgoff << PAGE_SHIFT; 3155 struct page *page; 3156 void *ptr; 3157 3158 switch (offset) { 3159 case IORING_OFF_SQ_RING: 3160 case IORING_OFF_CQ_RING: 3161 ptr = ctx->rings; 3162 break; 3163 case IORING_OFF_SQES: 3164 ptr = ctx->sq_sqes; 3165 break; 3166 default: 3167 return ERR_PTR(-EINVAL); 3168 } 3169 3170 page = virt_to_head_page(ptr); 3171 if (sz > page_size(page)) 3172 return ERR_PTR(-EINVAL); 3173 3174 return ptr; 3175 } 3176 3177 #ifdef CONFIG_MMU 3178 3179 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3180 { 3181 size_t sz = vma->vm_end - vma->vm_start; 3182 unsigned long pfn; 3183 void *ptr; 3184 3185 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3186 if (IS_ERR(ptr)) 3187 return PTR_ERR(ptr); 3188 3189 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3190 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3191 } 3192 3193 #else /* !CONFIG_MMU */ 3194 3195 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3196 { 3197 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL; 3198 } 3199 3200 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3201 { 3202 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3203 } 3204 3205 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3206 unsigned long addr, unsigned long len, 3207 unsigned long pgoff, unsigned long flags) 3208 { 3209 void *ptr; 3210 3211 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3212 if (IS_ERR(ptr)) 3213 return PTR_ERR(ptr); 3214 3215 return (unsigned long) ptr; 3216 } 3217 3218 #endif /* !CONFIG_MMU */ 3219 3220 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3221 { 3222 if (flags & IORING_ENTER_EXT_ARG) { 3223 struct io_uring_getevents_arg arg; 3224 3225 if (argsz != sizeof(arg)) 3226 return -EINVAL; 3227 if (copy_from_user(&arg, argp, sizeof(arg))) 3228 return -EFAULT; 3229 } 3230 return 0; 3231 } 3232 3233 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3234 struct __kernel_timespec __user **ts, 3235 const sigset_t __user **sig) 3236 { 3237 struct io_uring_getevents_arg arg; 3238 3239 /* 3240 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3241 * is just a pointer to the sigset_t. 3242 */ 3243 if (!(flags & IORING_ENTER_EXT_ARG)) { 3244 *sig = (const sigset_t __user *) argp; 3245 *ts = NULL; 3246 return 0; 3247 } 3248 3249 /* 3250 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3251 * timespec and sigset_t pointers if good. 3252 */ 3253 if (*argsz != sizeof(arg)) 3254 return -EINVAL; 3255 if (copy_from_user(&arg, argp, sizeof(arg))) 3256 return -EFAULT; 3257 if (arg.pad) 3258 return -EINVAL; 3259 *sig = u64_to_user_ptr(arg.sigmask); 3260 *argsz = arg.sigmask_sz; 3261 *ts = u64_to_user_ptr(arg.ts); 3262 return 0; 3263 } 3264 3265 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3266 u32, min_complete, u32, flags, const void __user *, argp, 3267 size_t, argsz) 3268 { 3269 struct io_ring_ctx *ctx; 3270 struct fd f; 3271 long ret; 3272 3273 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3274 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3275 IORING_ENTER_REGISTERED_RING))) 3276 return -EINVAL; 3277 3278 /* 3279 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3280 * need only dereference our task private array to find it. 3281 */ 3282 if (flags & IORING_ENTER_REGISTERED_RING) { 3283 struct io_uring_task *tctx = current->io_uring; 3284 3285 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3286 return -EINVAL; 3287 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3288 f.file = tctx->registered_rings[fd]; 3289 f.flags = 0; 3290 if (unlikely(!f.file)) 3291 return -EBADF; 3292 } else { 3293 f = fdget(fd); 3294 if (unlikely(!f.file)) 3295 return -EBADF; 3296 ret = -EOPNOTSUPP; 3297 if (unlikely(!io_is_uring_fops(f.file))) 3298 goto out; 3299 } 3300 3301 ctx = f.file->private_data; 3302 ret = -EBADFD; 3303 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3304 goto out; 3305 3306 /* 3307 * For SQ polling, the thread will do all submissions and completions. 3308 * Just return the requested submit count, and wake the thread if 3309 * we were asked to. 3310 */ 3311 ret = 0; 3312 if (ctx->flags & IORING_SETUP_SQPOLL) { 3313 io_cqring_overflow_flush(ctx); 3314 3315 if (unlikely(ctx->sq_data->thread == NULL)) { 3316 ret = -EOWNERDEAD; 3317 goto out; 3318 } 3319 if (flags & IORING_ENTER_SQ_WAKEUP) 3320 wake_up(&ctx->sq_data->wait); 3321 if (flags & IORING_ENTER_SQ_WAIT) { 3322 ret = io_sqpoll_wait_sq(ctx); 3323 if (ret) 3324 goto out; 3325 } 3326 ret = to_submit; 3327 } else if (to_submit) { 3328 ret = io_uring_add_tctx_node(ctx); 3329 if (unlikely(ret)) 3330 goto out; 3331 3332 mutex_lock(&ctx->uring_lock); 3333 ret = io_submit_sqes(ctx, to_submit); 3334 if (ret != to_submit) { 3335 mutex_unlock(&ctx->uring_lock); 3336 goto out; 3337 } 3338 if (flags & IORING_ENTER_GETEVENTS) { 3339 if (ctx->syscall_iopoll) 3340 goto iopoll_locked; 3341 /* 3342 * Ignore errors, we'll soon call io_cqring_wait() and 3343 * it should handle ownership problems if any. 3344 */ 3345 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3346 (void)io_run_local_work_locked(ctx); 3347 } 3348 mutex_unlock(&ctx->uring_lock); 3349 } 3350 3351 if (flags & IORING_ENTER_GETEVENTS) { 3352 int ret2; 3353 3354 if (ctx->syscall_iopoll) { 3355 /* 3356 * We disallow the app entering submit/complete with 3357 * polling, but we still need to lock the ring to 3358 * prevent racing with polled issue that got punted to 3359 * a workqueue. 3360 */ 3361 mutex_lock(&ctx->uring_lock); 3362 iopoll_locked: 3363 ret2 = io_validate_ext_arg(flags, argp, argsz); 3364 if (likely(!ret2)) { 3365 min_complete = min(min_complete, 3366 ctx->cq_entries); 3367 ret2 = io_iopoll_check(ctx, min_complete); 3368 } 3369 mutex_unlock(&ctx->uring_lock); 3370 } else { 3371 const sigset_t __user *sig; 3372 struct __kernel_timespec __user *ts; 3373 3374 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3375 if (likely(!ret2)) { 3376 min_complete = min(min_complete, 3377 ctx->cq_entries); 3378 ret2 = io_cqring_wait(ctx, min_complete, sig, 3379 argsz, ts); 3380 } 3381 } 3382 3383 if (!ret) { 3384 ret = ret2; 3385 3386 /* 3387 * EBADR indicates that one or more CQE were dropped. 3388 * Once the user has been informed we can clear the bit 3389 * as they are obviously ok with those drops. 3390 */ 3391 if (unlikely(ret2 == -EBADR)) 3392 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3393 &ctx->check_cq); 3394 } 3395 } 3396 out: 3397 fdput(f); 3398 return ret; 3399 } 3400 3401 static const struct file_operations io_uring_fops = { 3402 .release = io_uring_release, 3403 .mmap = io_uring_mmap, 3404 #ifndef CONFIG_MMU 3405 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3406 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3407 #endif 3408 .poll = io_uring_poll, 3409 #ifdef CONFIG_PROC_FS 3410 .show_fdinfo = io_uring_show_fdinfo, 3411 #endif 3412 }; 3413 3414 bool io_is_uring_fops(struct file *file) 3415 { 3416 return file->f_op == &io_uring_fops; 3417 } 3418 3419 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3420 struct io_uring_params *p) 3421 { 3422 struct io_rings *rings; 3423 size_t size, sq_array_offset; 3424 3425 /* make sure these are sane, as we already accounted them */ 3426 ctx->sq_entries = p->sq_entries; 3427 ctx->cq_entries = p->cq_entries; 3428 3429 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3430 if (size == SIZE_MAX) 3431 return -EOVERFLOW; 3432 3433 rings = io_mem_alloc(size); 3434 if (!rings) 3435 return -ENOMEM; 3436 3437 ctx->rings = rings; 3438 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3439 rings->sq_ring_mask = p->sq_entries - 1; 3440 rings->cq_ring_mask = p->cq_entries - 1; 3441 rings->sq_ring_entries = p->sq_entries; 3442 rings->cq_ring_entries = p->cq_entries; 3443 3444 if (p->flags & IORING_SETUP_SQE128) 3445 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3446 else 3447 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3448 if (size == SIZE_MAX) { 3449 io_mem_free(ctx->rings); 3450 ctx->rings = NULL; 3451 return -EOVERFLOW; 3452 } 3453 3454 ctx->sq_sqes = io_mem_alloc(size); 3455 if (!ctx->sq_sqes) { 3456 io_mem_free(ctx->rings); 3457 ctx->rings = NULL; 3458 return -ENOMEM; 3459 } 3460 3461 return 0; 3462 } 3463 3464 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file) 3465 { 3466 int ret, fd; 3467 3468 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3469 if (fd < 0) 3470 return fd; 3471 3472 ret = __io_uring_add_tctx_node(ctx); 3473 if (ret) { 3474 put_unused_fd(fd); 3475 return ret; 3476 } 3477 fd_install(fd, file); 3478 return fd; 3479 } 3480 3481 /* 3482 * Allocate an anonymous fd, this is what constitutes the application 3483 * visible backing of an io_uring instance. The application mmaps this 3484 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3485 * we have to tie this fd to a socket for file garbage collection purposes. 3486 */ 3487 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3488 { 3489 struct file *file; 3490 #if defined(CONFIG_UNIX) 3491 int ret; 3492 3493 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3494 &ctx->ring_sock); 3495 if (ret) 3496 return ERR_PTR(ret); 3497 #endif 3498 3499 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3500 O_RDWR | O_CLOEXEC, NULL); 3501 #if defined(CONFIG_UNIX) 3502 if (IS_ERR(file)) { 3503 sock_release(ctx->ring_sock); 3504 ctx->ring_sock = NULL; 3505 } else { 3506 ctx->ring_sock->file = file; 3507 } 3508 #endif 3509 return file; 3510 } 3511 3512 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3513 struct io_uring_params __user *params) 3514 { 3515 struct io_ring_ctx *ctx; 3516 struct file *file; 3517 int ret; 3518 3519 if (!entries) 3520 return -EINVAL; 3521 if (entries > IORING_MAX_ENTRIES) { 3522 if (!(p->flags & IORING_SETUP_CLAMP)) 3523 return -EINVAL; 3524 entries = IORING_MAX_ENTRIES; 3525 } 3526 3527 /* 3528 * Use twice as many entries for the CQ ring. It's possible for the 3529 * application to drive a higher depth than the size of the SQ ring, 3530 * since the sqes are only used at submission time. This allows for 3531 * some flexibility in overcommitting a bit. If the application has 3532 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3533 * of CQ ring entries manually. 3534 */ 3535 p->sq_entries = roundup_pow_of_two(entries); 3536 if (p->flags & IORING_SETUP_CQSIZE) { 3537 /* 3538 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3539 * to a power-of-two, if it isn't already. We do NOT impose 3540 * any cq vs sq ring sizing. 3541 */ 3542 if (!p->cq_entries) 3543 return -EINVAL; 3544 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3545 if (!(p->flags & IORING_SETUP_CLAMP)) 3546 return -EINVAL; 3547 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3548 } 3549 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3550 if (p->cq_entries < p->sq_entries) 3551 return -EINVAL; 3552 } else { 3553 p->cq_entries = 2 * p->sq_entries; 3554 } 3555 3556 ctx = io_ring_ctx_alloc(p); 3557 if (!ctx) 3558 return -ENOMEM; 3559 3560 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3561 !(ctx->flags & IORING_SETUP_IOPOLL) && 3562 !(ctx->flags & IORING_SETUP_SQPOLL)) 3563 ctx->task_complete = true; 3564 3565 /* 3566 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3567 * space applications don't need to do io completion events 3568 * polling again, they can rely on io_sq_thread to do polling 3569 * work, which can reduce cpu usage and uring_lock contention. 3570 */ 3571 if (ctx->flags & IORING_SETUP_IOPOLL && 3572 !(ctx->flags & IORING_SETUP_SQPOLL)) 3573 ctx->syscall_iopoll = 1; 3574 3575 ctx->compat = in_compat_syscall(); 3576 if (!capable(CAP_IPC_LOCK)) 3577 ctx->user = get_uid(current_user()); 3578 3579 /* 3580 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3581 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3582 */ 3583 ret = -EINVAL; 3584 if (ctx->flags & IORING_SETUP_SQPOLL) { 3585 /* IPI related flags don't make sense with SQPOLL */ 3586 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3587 IORING_SETUP_TASKRUN_FLAG | 3588 IORING_SETUP_DEFER_TASKRUN)) 3589 goto err; 3590 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3591 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3592 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3593 } else { 3594 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3595 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3596 goto err; 3597 ctx->notify_method = TWA_SIGNAL; 3598 } 3599 3600 /* 3601 * For DEFER_TASKRUN we require the completion task to be the same as the 3602 * submission task. This implies that there is only one submitter, so enforce 3603 * that. 3604 */ 3605 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3606 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3607 goto err; 3608 } 3609 3610 /* 3611 * This is just grabbed for accounting purposes. When a process exits, 3612 * the mm is exited and dropped before the files, hence we need to hang 3613 * on to this mm purely for the purposes of being able to unaccount 3614 * memory (locked/pinned vm). It's not used for anything else. 3615 */ 3616 mmgrab(current->mm); 3617 ctx->mm_account = current->mm; 3618 3619 ret = io_allocate_scq_urings(ctx, p); 3620 if (ret) 3621 goto err; 3622 3623 ret = io_sq_offload_create(ctx, p); 3624 if (ret) 3625 goto err; 3626 /* always set a rsrc node */ 3627 ret = io_rsrc_node_switch_start(ctx); 3628 if (ret) 3629 goto err; 3630 io_rsrc_node_switch(ctx, NULL); 3631 3632 memset(&p->sq_off, 0, sizeof(p->sq_off)); 3633 p->sq_off.head = offsetof(struct io_rings, sq.head); 3634 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3635 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3636 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3637 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3638 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3639 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3640 3641 memset(&p->cq_off, 0, sizeof(p->cq_off)); 3642 p->cq_off.head = offsetof(struct io_rings, cq.head); 3643 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3644 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3645 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3646 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3647 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3648 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3649 3650 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3651 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3652 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3653 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3654 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3655 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3656 IORING_FEAT_LINKED_FILE; 3657 3658 if (copy_to_user(params, p, sizeof(*p))) { 3659 ret = -EFAULT; 3660 goto err; 3661 } 3662 3663 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3664 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3665 ctx->submitter_task = get_task_struct(current); 3666 3667 file = io_uring_get_file(ctx); 3668 if (IS_ERR(file)) { 3669 ret = PTR_ERR(file); 3670 goto err; 3671 } 3672 3673 /* 3674 * Install ring fd as the very last thing, so we don't risk someone 3675 * having closed it before we finish setup 3676 */ 3677 ret = io_uring_install_fd(ctx, file); 3678 if (ret < 0) { 3679 /* fput will clean it up */ 3680 fput(file); 3681 return ret; 3682 } 3683 3684 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3685 return ret; 3686 err: 3687 io_ring_ctx_wait_and_kill(ctx); 3688 return ret; 3689 } 3690 3691 /* 3692 * Sets up an aio uring context, and returns the fd. Applications asks for a 3693 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3694 * params structure passed in. 3695 */ 3696 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3697 { 3698 struct io_uring_params p; 3699 int i; 3700 3701 if (copy_from_user(&p, params, sizeof(p))) 3702 return -EFAULT; 3703 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3704 if (p.resv[i]) 3705 return -EINVAL; 3706 } 3707 3708 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3709 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3710 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3711 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3712 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3713 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3714 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN)) 3715 return -EINVAL; 3716 3717 return io_uring_create(entries, &p, params); 3718 } 3719 3720 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3721 struct io_uring_params __user *, params) 3722 { 3723 return io_uring_setup(entries, params); 3724 } 3725 3726 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 3727 unsigned nr_args) 3728 { 3729 struct io_uring_probe *p; 3730 size_t size; 3731 int i, ret; 3732 3733 size = struct_size(p, ops, nr_args); 3734 if (size == SIZE_MAX) 3735 return -EOVERFLOW; 3736 p = kzalloc(size, GFP_KERNEL); 3737 if (!p) 3738 return -ENOMEM; 3739 3740 ret = -EFAULT; 3741 if (copy_from_user(p, arg, size)) 3742 goto out; 3743 ret = -EINVAL; 3744 if (memchr_inv(p, 0, size)) 3745 goto out; 3746 3747 p->last_op = IORING_OP_LAST - 1; 3748 if (nr_args > IORING_OP_LAST) 3749 nr_args = IORING_OP_LAST; 3750 3751 for (i = 0; i < nr_args; i++) { 3752 p->ops[i].op = i; 3753 if (!io_op_defs[i].not_supported) 3754 p->ops[i].flags = IO_URING_OP_SUPPORTED; 3755 } 3756 p->ops_len = i; 3757 3758 ret = 0; 3759 if (copy_to_user(arg, p, size)) 3760 ret = -EFAULT; 3761 out: 3762 kfree(p); 3763 return ret; 3764 } 3765 3766 static int io_register_personality(struct io_ring_ctx *ctx) 3767 { 3768 const struct cred *creds; 3769 u32 id; 3770 int ret; 3771 3772 creds = get_current_cred(); 3773 3774 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 3775 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 3776 if (ret < 0) { 3777 put_cred(creds); 3778 return ret; 3779 } 3780 return id; 3781 } 3782 3783 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 3784 void __user *arg, unsigned int nr_args) 3785 { 3786 struct io_uring_restriction *res; 3787 size_t size; 3788 int i, ret; 3789 3790 /* Restrictions allowed only if rings started disabled */ 3791 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 3792 return -EBADFD; 3793 3794 /* We allow only a single restrictions registration */ 3795 if (ctx->restrictions.registered) 3796 return -EBUSY; 3797 3798 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 3799 return -EINVAL; 3800 3801 size = array_size(nr_args, sizeof(*res)); 3802 if (size == SIZE_MAX) 3803 return -EOVERFLOW; 3804 3805 res = memdup_user(arg, size); 3806 if (IS_ERR(res)) 3807 return PTR_ERR(res); 3808 3809 ret = 0; 3810 3811 for (i = 0; i < nr_args; i++) { 3812 switch (res[i].opcode) { 3813 case IORING_RESTRICTION_REGISTER_OP: 3814 if (res[i].register_op >= IORING_REGISTER_LAST) { 3815 ret = -EINVAL; 3816 goto out; 3817 } 3818 3819 __set_bit(res[i].register_op, 3820 ctx->restrictions.register_op); 3821 break; 3822 case IORING_RESTRICTION_SQE_OP: 3823 if (res[i].sqe_op >= IORING_OP_LAST) { 3824 ret = -EINVAL; 3825 goto out; 3826 } 3827 3828 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 3829 break; 3830 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 3831 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 3832 break; 3833 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 3834 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 3835 break; 3836 default: 3837 ret = -EINVAL; 3838 goto out; 3839 } 3840 } 3841 3842 out: 3843 /* Reset all restrictions if an error happened */ 3844 if (ret != 0) 3845 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 3846 else 3847 ctx->restrictions.registered = true; 3848 3849 kfree(res); 3850 return ret; 3851 } 3852 3853 static int io_register_enable_rings(struct io_ring_ctx *ctx) 3854 { 3855 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 3856 return -EBADFD; 3857 3858 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) 3859 ctx->submitter_task = get_task_struct(current); 3860 3861 if (ctx->restrictions.registered) 3862 ctx->restricted = 1; 3863 3864 ctx->flags &= ~IORING_SETUP_R_DISABLED; 3865 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 3866 wake_up(&ctx->sq_data->wait); 3867 return 0; 3868 } 3869 3870 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 3871 void __user *arg, unsigned len) 3872 { 3873 struct io_uring_task *tctx = current->io_uring; 3874 cpumask_var_t new_mask; 3875 int ret; 3876 3877 if (!tctx || !tctx->io_wq) 3878 return -EINVAL; 3879 3880 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 3881 return -ENOMEM; 3882 3883 cpumask_clear(new_mask); 3884 if (len > cpumask_size()) 3885 len = cpumask_size(); 3886 3887 if (in_compat_syscall()) { 3888 ret = compat_get_bitmap(cpumask_bits(new_mask), 3889 (const compat_ulong_t __user *)arg, 3890 len * 8 /* CHAR_BIT */); 3891 } else { 3892 ret = copy_from_user(new_mask, arg, len); 3893 } 3894 3895 if (ret) { 3896 free_cpumask_var(new_mask); 3897 return -EFAULT; 3898 } 3899 3900 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask); 3901 free_cpumask_var(new_mask); 3902 return ret; 3903 } 3904 3905 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 3906 { 3907 struct io_uring_task *tctx = current->io_uring; 3908 3909 if (!tctx || !tctx->io_wq) 3910 return -EINVAL; 3911 3912 return io_wq_cpu_affinity(tctx->io_wq, NULL); 3913 } 3914 3915 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 3916 void __user *arg) 3917 __must_hold(&ctx->uring_lock) 3918 { 3919 struct io_tctx_node *node; 3920 struct io_uring_task *tctx = NULL; 3921 struct io_sq_data *sqd = NULL; 3922 __u32 new_count[2]; 3923 int i, ret; 3924 3925 if (copy_from_user(new_count, arg, sizeof(new_count))) 3926 return -EFAULT; 3927 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3928 if (new_count[i] > INT_MAX) 3929 return -EINVAL; 3930 3931 if (ctx->flags & IORING_SETUP_SQPOLL) { 3932 sqd = ctx->sq_data; 3933 if (sqd) { 3934 /* 3935 * Observe the correct sqd->lock -> ctx->uring_lock 3936 * ordering. Fine to drop uring_lock here, we hold 3937 * a ref to the ctx. 3938 */ 3939 refcount_inc(&sqd->refs); 3940 mutex_unlock(&ctx->uring_lock); 3941 mutex_lock(&sqd->lock); 3942 mutex_lock(&ctx->uring_lock); 3943 if (sqd->thread) 3944 tctx = sqd->thread->io_uring; 3945 } 3946 } else { 3947 tctx = current->io_uring; 3948 } 3949 3950 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 3951 3952 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3953 if (new_count[i]) 3954 ctx->iowq_limits[i] = new_count[i]; 3955 ctx->iowq_limits_set = true; 3956 3957 if (tctx && tctx->io_wq) { 3958 ret = io_wq_max_workers(tctx->io_wq, new_count); 3959 if (ret) 3960 goto err; 3961 } else { 3962 memset(new_count, 0, sizeof(new_count)); 3963 } 3964 3965 if (sqd) { 3966 mutex_unlock(&sqd->lock); 3967 io_put_sq_data(sqd); 3968 } 3969 3970 if (copy_to_user(arg, new_count, sizeof(new_count))) 3971 return -EFAULT; 3972 3973 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 3974 if (sqd) 3975 return 0; 3976 3977 /* now propagate the restriction to all registered users */ 3978 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3979 struct io_uring_task *tctx = node->task->io_uring; 3980 3981 if (WARN_ON_ONCE(!tctx->io_wq)) 3982 continue; 3983 3984 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3985 new_count[i] = ctx->iowq_limits[i]; 3986 /* ignore errors, it always returns zero anyway */ 3987 (void)io_wq_max_workers(tctx->io_wq, new_count); 3988 } 3989 return 0; 3990 err: 3991 if (sqd) { 3992 mutex_unlock(&sqd->lock); 3993 io_put_sq_data(sqd); 3994 } 3995 return ret; 3996 } 3997 3998 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 3999 void __user *arg, unsigned nr_args) 4000 __releases(ctx->uring_lock) 4001 __acquires(ctx->uring_lock) 4002 { 4003 int ret; 4004 4005 /* 4006 * We don't quiesce the refs for register anymore and so it can't be 4007 * dying as we're holding a file ref here. 4008 */ 4009 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4010 return -ENXIO; 4011 4012 if (ctx->submitter_task && ctx->submitter_task != current) 4013 return -EEXIST; 4014 4015 if (ctx->restricted) { 4016 if (opcode >= IORING_REGISTER_LAST) 4017 return -EINVAL; 4018 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4019 if (!test_bit(opcode, ctx->restrictions.register_op)) 4020 return -EACCES; 4021 } 4022 4023 switch (opcode) { 4024 case IORING_REGISTER_BUFFERS: 4025 ret = -EFAULT; 4026 if (!arg) 4027 break; 4028 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4029 break; 4030 case IORING_UNREGISTER_BUFFERS: 4031 ret = -EINVAL; 4032 if (arg || nr_args) 4033 break; 4034 ret = io_sqe_buffers_unregister(ctx); 4035 break; 4036 case IORING_REGISTER_FILES: 4037 ret = -EFAULT; 4038 if (!arg) 4039 break; 4040 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4041 break; 4042 case IORING_UNREGISTER_FILES: 4043 ret = -EINVAL; 4044 if (arg || nr_args) 4045 break; 4046 ret = io_sqe_files_unregister(ctx); 4047 break; 4048 case IORING_REGISTER_FILES_UPDATE: 4049 ret = io_register_files_update(ctx, arg, nr_args); 4050 break; 4051 case IORING_REGISTER_EVENTFD: 4052 ret = -EINVAL; 4053 if (nr_args != 1) 4054 break; 4055 ret = io_eventfd_register(ctx, arg, 0); 4056 break; 4057 case IORING_REGISTER_EVENTFD_ASYNC: 4058 ret = -EINVAL; 4059 if (nr_args != 1) 4060 break; 4061 ret = io_eventfd_register(ctx, arg, 1); 4062 break; 4063 case IORING_UNREGISTER_EVENTFD: 4064 ret = -EINVAL; 4065 if (arg || nr_args) 4066 break; 4067 ret = io_eventfd_unregister(ctx); 4068 break; 4069 case IORING_REGISTER_PROBE: 4070 ret = -EINVAL; 4071 if (!arg || nr_args > 256) 4072 break; 4073 ret = io_probe(ctx, arg, nr_args); 4074 break; 4075 case IORING_REGISTER_PERSONALITY: 4076 ret = -EINVAL; 4077 if (arg || nr_args) 4078 break; 4079 ret = io_register_personality(ctx); 4080 break; 4081 case IORING_UNREGISTER_PERSONALITY: 4082 ret = -EINVAL; 4083 if (arg) 4084 break; 4085 ret = io_unregister_personality(ctx, nr_args); 4086 break; 4087 case IORING_REGISTER_ENABLE_RINGS: 4088 ret = -EINVAL; 4089 if (arg || nr_args) 4090 break; 4091 ret = io_register_enable_rings(ctx); 4092 break; 4093 case IORING_REGISTER_RESTRICTIONS: 4094 ret = io_register_restrictions(ctx, arg, nr_args); 4095 break; 4096 case IORING_REGISTER_FILES2: 4097 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4098 break; 4099 case IORING_REGISTER_FILES_UPDATE2: 4100 ret = io_register_rsrc_update(ctx, arg, nr_args, 4101 IORING_RSRC_FILE); 4102 break; 4103 case IORING_REGISTER_BUFFERS2: 4104 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4105 break; 4106 case IORING_REGISTER_BUFFERS_UPDATE: 4107 ret = io_register_rsrc_update(ctx, arg, nr_args, 4108 IORING_RSRC_BUFFER); 4109 break; 4110 case IORING_REGISTER_IOWQ_AFF: 4111 ret = -EINVAL; 4112 if (!arg || !nr_args) 4113 break; 4114 ret = io_register_iowq_aff(ctx, arg, nr_args); 4115 break; 4116 case IORING_UNREGISTER_IOWQ_AFF: 4117 ret = -EINVAL; 4118 if (arg || nr_args) 4119 break; 4120 ret = io_unregister_iowq_aff(ctx); 4121 break; 4122 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4123 ret = -EINVAL; 4124 if (!arg || nr_args != 2) 4125 break; 4126 ret = io_register_iowq_max_workers(ctx, arg); 4127 break; 4128 case IORING_REGISTER_RING_FDS: 4129 ret = io_ringfd_register(ctx, arg, nr_args); 4130 break; 4131 case IORING_UNREGISTER_RING_FDS: 4132 ret = io_ringfd_unregister(ctx, arg, nr_args); 4133 break; 4134 case IORING_REGISTER_PBUF_RING: 4135 ret = -EINVAL; 4136 if (!arg || nr_args != 1) 4137 break; 4138 ret = io_register_pbuf_ring(ctx, arg); 4139 break; 4140 case IORING_UNREGISTER_PBUF_RING: 4141 ret = -EINVAL; 4142 if (!arg || nr_args != 1) 4143 break; 4144 ret = io_unregister_pbuf_ring(ctx, arg); 4145 break; 4146 case IORING_REGISTER_SYNC_CANCEL: 4147 ret = -EINVAL; 4148 if (!arg || nr_args != 1) 4149 break; 4150 ret = io_sync_cancel(ctx, arg); 4151 break; 4152 case IORING_REGISTER_FILE_ALLOC_RANGE: 4153 ret = -EINVAL; 4154 if (!arg || nr_args) 4155 break; 4156 ret = io_register_file_alloc_range(ctx, arg); 4157 break; 4158 default: 4159 ret = -EINVAL; 4160 break; 4161 } 4162 4163 return ret; 4164 } 4165 4166 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4167 void __user *, arg, unsigned int, nr_args) 4168 { 4169 struct io_ring_ctx *ctx; 4170 long ret = -EBADF; 4171 struct fd f; 4172 4173 f = fdget(fd); 4174 if (!f.file) 4175 return -EBADF; 4176 4177 ret = -EOPNOTSUPP; 4178 if (!io_is_uring_fops(f.file)) 4179 goto out_fput; 4180 4181 ctx = f.file->private_data; 4182 4183 mutex_lock(&ctx->uring_lock); 4184 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4185 mutex_unlock(&ctx->uring_lock); 4186 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4187 out_fput: 4188 fdput(f); 4189 return ret; 4190 } 4191 4192 static int __init io_uring_init(void) 4193 { 4194 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4195 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4196 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4197 } while (0) 4198 4199 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4200 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4201 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4202 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4203 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4204 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4205 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4206 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4207 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4208 BUILD_BUG_SQE_ELEM(8, __u64, off); 4209 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4210 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4211 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4212 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4213 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4214 BUILD_BUG_SQE_ELEM(24, __u32, len); 4215 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4216 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4217 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4218 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4219 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4220 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4221 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4222 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4223 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4224 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4225 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4226 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4227 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4228 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4229 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4230 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4231 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4232 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4233 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4234 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4235 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4236 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4237 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4238 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4239 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4240 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4241 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4242 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4243 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4244 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4245 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4246 4247 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4248 sizeof(struct io_uring_rsrc_update)); 4249 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4250 sizeof(struct io_uring_rsrc_update2)); 4251 4252 /* ->buf_index is u16 */ 4253 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4254 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4255 offsetof(struct io_uring_buf_ring, tail)); 4256 4257 /* should fit into one byte */ 4258 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4259 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4260 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4261 4262 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4263 4264 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4265 4266 io_uring_optable_init(); 4267 4268 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4269 SLAB_ACCOUNT); 4270 return 0; 4271 }; 4272 __initcall(io_uring_init); 4273