1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 76 #define CREATE_TRACE_POINTS 77 #include <trace/events/io_uring.h> 78 79 #include <uapi/linux/io_uring.h> 80 81 #include "io-wq.h" 82 83 #include "io_uring.h" 84 #include "opdef.h" 85 #include "refs.h" 86 #include "tctx.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 95 #include "timeout.h" 96 #include "poll.h" 97 #include "alloc_cache.h" 98 99 #define IORING_MAX_ENTRIES 32768 100 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 101 102 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 103 IORING_REGISTER_LAST + IORING_OP_LAST) 104 105 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 106 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 107 108 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 109 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 110 111 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 112 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 113 REQ_F_ASYNC_DATA) 114 115 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 116 IO_REQ_CLEAN_FLAGS) 117 118 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 119 120 #define IO_COMPL_BATCH 32 121 #define IO_REQ_ALLOC_BATCH 8 122 123 enum { 124 IO_CHECK_CQ_OVERFLOW_BIT, 125 IO_CHECK_CQ_DROPPED_BIT, 126 }; 127 128 enum { 129 IO_EVENTFD_OP_SIGNAL_BIT, 130 IO_EVENTFD_OP_FREE_BIT, 131 }; 132 133 struct io_defer_entry { 134 struct list_head list; 135 struct io_kiocb *req; 136 u32 seq; 137 }; 138 139 /* requests with any of those set should undergo io_disarm_next() */ 140 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 141 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 142 143 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 144 struct task_struct *task, 145 bool cancel_all); 146 147 static void io_dismantle_req(struct io_kiocb *req); 148 static void io_clean_op(struct io_kiocb *req); 149 static void io_queue_sqe(struct io_kiocb *req); 150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx); 151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx); 152 static __cold void io_fallback_tw(struct io_uring_task *tctx); 153 154 static struct kmem_cache *req_cachep; 155 156 struct sock *io_uring_get_socket(struct file *file) 157 { 158 #if defined(CONFIG_UNIX) 159 if (io_is_uring_fops(file)) { 160 struct io_ring_ctx *ctx = file->private_data; 161 162 return ctx->ring_sock->sk; 163 } 164 #endif 165 return NULL; 166 } 167 EXPORT_SYMBOL(io_uring_get_socket); 168 169 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 170 { 171 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 172 ctx->submit_state.cqes_count) 173 __io_submit_flush_completions(ctx); 174 } 175 176 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 177 { 178 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 179 } 180 181 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 182 { 183 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 184 } 185 186 static bool io_match_linked(struct io_kiocb *head) 187 { 188 struct io_kiocb *req; 189 190 io_for_each_link(req, head) { 191 if (req->flags & REQ_F_INFLIGHT) 192 return true; 193 } 194 return false; 195 } 196 197 /* 198 * As io_match_task() but protected against racing with linked timeouts. 199 * User must not hold timeout_lock. 200 */ 201 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 202 bool cancel_all) 203 { 204 bool matched; 205 206 if (task && head->task != task) 207 return false; 208 if (cancel_all) 209 return true; 210 211 if (head->flags & REQ_F_LINK_TIMEOUT) { 212 struct io_ring_ctx *ctx = head->ctx; 213 214 /* protect against races with linked timeouts */ 215 spin_lock_irq(&ctx->timeout_lock); 216 matched = io_match_linked(head); 217 spin_unlock_irq(&ctx->timeout_lock); 218 } else { 219 matched = io_match_linked(head); 220 } 221 return matched; 222 } 223 224 static inline void req_fail_link_node(struct io_kiocb *req, int res) 225 { 226 req_set_fail(req); 227 io_req_set_res(req, res, 0); 228 } 229 230 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 231 { 232 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 233 } 234 235 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 236 { 237 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 238 239 complete(&ctx->ref_comp); 240 } 241 242 static __cold void io_fallback_req_func(struct work_struct *work) 243 { 244 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 245 fallback_work.work); 246 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 247 struct io_kiocb *req, *tmp; 248 bool locked = false; 249 250 percpu_ref_get(&ctx->refs); 251 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 252 req->io_task_work.func(req, &locked); 253 254 if (locked) { 255 io_submit_flush_completions(ctx); 256 mutex_unlock(&ctx->uring_lock); 257 } 258 percpu_ref_put(&ctx->refs); 259 } 260 261 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 262 { 263 unsigned hash_buckets = 1U << bits; 264 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 265 266 table->hbs = kmalloc(hash_size, GFP_KERNEL); 267 if (!table->hbs) 268 return -ENOMEM; 269 270 table->hash_bits = bits; 271 init_hash_table(table, hash_buckets); 272 return 0; 273 } 274 275 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 276 { 277 struct io_ring_ctx *ctx; 278 int hash_bits; 279 280 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 281 if (!ctx) 282 return NULL; 283 284 xa_init(&ctx->io_bl_xa); 285 286 /* 287 * Use 5 bits less than the max cq entries, that should give us around 288 * 32 entries per hash list if totally full and uniformly spread, but 289 * don't keep too many buckets to not overconsume memory. 290 */ 291 hash_bits = ilog2(p->cq_entries) - 5; 292 hash_bits = clamp(hash_bits, 1, 8); 293 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 294 goto err; 295 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 296 goto err; 297 298 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL); 299 if (!ctx->dummy_ubuf) 300 goto err; 301 /* set invalid range, so io_import_fixed() fails meeting it */ 302 ctx->dummy_ubuf->ubuf = -1UL; 303 304 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 305 0, GFP_KERNEL)) 306 goto err; 307 308 ctx->flags = p->flags; 309 init_waitqueue_head(&ctx->sqo_sq_wait); 310 INIT_LIST_HEAD(&ctx->sqd_list); 311 INIT_LIST_HEAD(&ctx->cq_overflow_list); 312 INIT_LIST_HEAD(&ctx->io_buffers_cache); 313 io_alloc_cache_init(&ctx->apoll_cache); 314 io_alloc_cache_init(&ctx->netmsg_cache); 315 init_completion(&ctx->ref_comp); 316 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 317 mutex_init(&ctx->uring_lock); 318 init_waitqueue_head(&ctx->cq_wait); 319 spin_lock_init(&ctx->completion_lock); 320 spin_lock_init(&ctx->timeout_lock); 321 INIT_WQ_LIST(&ctx->iopoll_list); 322 INIT_LIST_HEAD(&ctx->io_buffers_pages); 323 INIT_LIST_HEAD(&ctx->io_buffers_comp); 324 INIT_LIST_HEAD(&ctx->defer_list); 325 INIT_LIST_HEAD(&ctx->timeout_list); 326 INIT_LIST_HEAD(&ctx->ltimeout_list); 327 spin_lock_init(&ctx->rsrc_ref_lock); 328 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 329 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work); 330 init_task_work(&ctx->rsrc_put_tw, io_rsrc_put_tw); 331 init_llist_head(&ctx->rsrc_put_llist); 332 init_llist_head(&ctx->work_llist); 333 INIT_LIST_HEAD(&ctx->tctx_list); 334 ctx->submit_state.free_list.next = NULL; 335 INIT_WQ_LIST(&ctx->locked_free_list); 336 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 337 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 338 return ctx; 339 err: 340 kfree(ctx->dummy_ubuf); 341 kfree(ctx->cancel_table.hbs); 342 kfree(ctx->cancel_table_locked.hbs); 343 kfree(ctx->io_bl); 344 xa_destroy(&ctx->io_bl_xa); 345 kfree(ctx); 346 return NULL; 347 } 348 349 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 350 { 351 struct io_rings *r = ctx->rings; 352 353 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 354 ctx->cq_extra--; 355 } 356 357 static bool req_need_defer(struct io_kiocb *req, u32 seq) 358 { 359 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 360 struct io_ring_ctx *ctx = req->ctx; 361 362 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 363 } 364 365 return false; 366 } 367 368 static inline void io_req_track_inflight(struct io_kiocb *req) 369 { 370 if (!(req->flags & REQ_F_INFLIGHT)) { 371 req->flags |= REQ_F_INFLIGHT; 372 atomic_inc(&req->task->io_uring->inflight_tracked); 373 } 374 } 375 376 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 377 { 378 if (WARN_ON_ONCE(!req->link)) 379 return NULL; 380 381 req->flags &= ~REQ_F_ARM_LTIMEOUT; 382 req->flags |= REQ_F_LINK_TIMEOUT; 383 384 /* linked timeouts should have two refs once prep'ed */ 385 io_req_set_refcount(req); 386 __io_req_set_refcount(req->link, 2); 387 return req->link; 388 } 389 390 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 391 { 392 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 393 return NULL; 394 return __io_prep_linked_timeout(req); 395 } 396 397 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 398 { 399 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 400 } 401 402 static inline void io_arm_ltimeout(struct io_kiocb *req) 403 { 404 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 405 __io_arm_ltimeout(req); 406 } 407 408 static void io_prep_async_work(struct io_kiocb *req) 409 { 410 const struct io_op_def *def = &io_op_defs[req->opcode]; 411 struct io_ring_ctx *ctx = req->ctx; 412 413 if (!(req->flags & REQ_F_CREDS)) { 414 req->flags |= REQ_F_CREDS; 415 req->creds = get_current_cred(); 416 } 417 418 req->work.list.next = NULL; 419 req->work.flags = 0; 420 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 421 if (req->flags & REQ_F_FORCE_ASYNC) 422 req->work.flags |= IO_WQ_WORK_CONCURRENT; 423 424 if (req->file && !io_req_ffs_set(req)) 425 req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT; 426 427 if (req->flags & REQ_F_ISREG) { 428 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL)) 429 io_wq_hash_work(&req->work, file_inode(req->file)); 430 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 431 if (def->unbound_nonreg_file) 432 req->work.flags |= IO_WQ_WORK_UNBOUND; 433 } 434 } 435 436 static void io_prep_async_link(struct io_kiocb *req) 437 { 438 struct io_kiocb *cur; 439 440 if (req->flags & REQ_F_LINK_TIMEOUT) { 441 struct io_ring_ctx *ctx = req->ctx; 442 443 spin_lock_irq(&ctx->timeout_lock); 444 io_for_each_link(cur, req) 445 io_prep_async_work(cur); 446 spin_unlock_irq(&ctx->timeout_lock); 447 } else { 448 io_for_each_link(cur, req) 449 io_prep_async_work(cur); 450 } 451 } 452 453 void io_queue_iowq(struct io_kiocb *req, bool *dont_use) 454 { 455 struct io_kiocb *link = io_prep_linked_timeout(req); 456 struct io_uring_task *tctx = req->task->io_uring; 457 458 BUG_ON(!tctx); 459 BUG_ON(!tctx->io_wq); 460 461 /* init ->work of the whole link before punting */ 462 io_prep_async_link(req); 463 464 /* 465 * Not expected to happen, but if we do have a bug where this _can_ 466 * happen, catch it here and ensure the request is marked as 467 * canceled. That will make io-wq go through the usual work cancel 468 * procedure rather than attempt to run this request (or create a new 469 * worker for it). 470 */ 471 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 472 req->work.flags |= IO_WQ_WORK_CANCEL; 473 474 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 475 io_wq_enqueue(tctx->io_wq, &req->work); 476 if (link) 477 io_queue_linked_timeout(link); 478 } 479 480 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 481 { 482 while (!list_empty(&ctx->defer_list)) { 483 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 484 struct io_defer_entry, list); 485 486 if (req_need_defer(de->req, de->seq)) 487 break; 488 list_del_init(&de->list); 489 io_req_task_queue(de->req); 490 kfree(de); 491 } 492 } 493 494 495 static void io_eventfd_ops(struct rcu_head *rcu) 496 { 497 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 498 int ops = atomic_xchg(&ev_fd->ops, 0); 499 500 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 501 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 502 503 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 504 * ordering in a race but if references are 0 we know we have to free 505 * it regardless. 506 */ 507 if (atomic_dec_and_test(&ev_fd->refs)) { 508 eventfd_ctx_put(ev_fd->cq_ev_fd); 509 kfree(ev_fd); 510 } 511 } 512 513 static void io_eventfd_signal(struct io_ring_ctx *ctx) 514 { 515 struct io_ev_fd *ev_fd = NULL; 516 517 rcu_read_lock(); 518 /* 519 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 520 * and eventfd_signal 521 */ 522 ev_fd = rcu_dereference(ctx->io_ev_fd); 523 524 /* 525 * Check again if ev_fd exists incase an io_eventfd_unregister call 526 * completed between the NULL check of ctx->io_ev_fd at the start of 527 * the function and rcu_read_lock. 528 */ 529 if (unlikely(!ev_fd)) 530 goto out; 531 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 532 goto out; 533 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 534 goto out; 535 536 if (likely(eventfd_signal_allowed())) { 537 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 538 } else { 539 atomic_inc(&ev_fd->refs); 540 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 541 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 542 else 543 atomic_dec(&ev_fd->refs); 544 } 545 546 out: 547 rcu_read_unlock(); 548 } 549 550 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 551 { 552 bool skip; 553 554 spin_lock(&ctx->completion_lock); 555 556 /* 557 * Eventfd should only get triggered when at least one event has been 558 * posted. Some applications rely on the eventfd notification count 559 * only changing IFF a new CQE has been added to the CQ ring. There's 560 * no depedency on 1:1 relationship between how many times this 561 * function is called (and hence the eventfd count) and number of CQEs 562 * posted to the CQ ring. 563 */ 564 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 565 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 566 spin_unlock(&ctx->completion_lock); 567 if (skip) 568 return; 569 570 io_eventfd_signal(ctx); 571 } 572 573 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 574 { 575 if (ctx->off_timeout_used) 576 io_flush_timeouts(ctx); 577 if (ctx->drain_active) { 578 spin_lock(&ctx->completion_lock); 579 io_queue_deferred(ctx); 580 spin_unlock(&ctx->completion_lock); 581 } 582 if (ctx->has_evfd) 583 io_eventfd_flush_signal(ctx); 584 } 585 586 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 587 __acquires(ctx->completion_lock) 588 { 589 if (!ctx->task_complete) 590 spin_lock(&ctx->completion_lock); 591 } 592 593 static inline void __io_cq_unlock(struct io_ring_ctx *ctx) 594 { 595 if (!ctx->task_complete) 596 spin_unlock(&ctx->completion_lock); 597 } 598 599 static inline void io_cq_lock(struct io_ring_ctx *ctx) 600 __acquires(ctx->completion_lock) 601 { 602 spin_lock(&ctx->completion_lock); 603 } 604 605 static inline void io_cq_unlock(struct io_ring_ctx *ctx) 606 __releases(ctx->completion_lock) 607 { 608 spin_unlock(&ctx->completion_lock); 609 } 610 611 /* keep it inlined for io_submit_flush_completions() */ 612 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 613 __releases(ctx->completion_lock) 614 { 615 io_commit_cqring(ctx); 616 __io_cq_unlock(ctx); 617 io_commit_cqring_flush(ctx); 618 io_cqring_wake(ctx); 619 } 620 621 void io_cq_unlock_post(struct io_ring_ctx *ctx) 622 __releases(ctx->completion_lock) 623 { 624 io_commit_cqring(ctx); 625 spin_unlock(&ctx->completion_lock); 626 io_commit_cqring_flush(ctx); 627 io_cqring_wake(ctx); 628 } 629 630 /* Returns true if there are no backlogged entries after the flush */ 631 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 632 { 633 struct io_overflow_cqe *ocqe; 634 LIST_HEAD(list); 635 636 io_cq_lock(ctx); 637 list_splice_init(&ctx->cq_overflow_list, &list); 638 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 639 io_cq_unlock(ctx); 640 641 while (!list_empty(&list)) { 642 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 643 list_del(&ocqe->list); 644 kfree(ocqe); 645 } 646 } 647 648 /* Returns true if there are no backlogged entries after the flush */ 649 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 650 { 651 size_t cqe_size = sizeof(struct io_uring_cqe); 652 653 if (__io_cqring_events(ctx) == ctx->cq_entries) 654 return; 655 656 if (ctx->flags & IORING_SETUP_CQE32) 657 cqe_size <<= 1; 658 659 io_cq_lock(ctx); 660 while (!list_empty(&ctx->cq_overflow_list)) { 661 struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true); 662 struct io_overflow_cqe *ocqe; 663 664 if (!cqe) 665 break; 666 ocqe = list_first_entry(&ctx->cq_overflow_list, 667 struct io_overflow_cqe, list); 668 memcpy(cqe, &ocqe->cqe, cqe_size); 669 list_del(&ocqe->list); 670 kfree(ocqe); 671 } 672 673 if (list_empty(&ctx->cq_overflow_list)) { 674 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 675 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 676 } 677 io_cq_unlock_post(ctx); 678 } 679 680 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 681 { 682 /* iopoll syncs against uring_lock, not completion_lock */ 683 if (ctx->flags & IORING_SETUP_IOPOLL) 684 mutex_lock(&ctx->uring_lock); 685 __io_cqring_overflow_flush(ctx); 686 if (ctx->flags & IORING_SETUP_IOPOLL) 687 mutex_unlock(&ctx->uring_lock); 688 } 689 690 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 691 { 692 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 693 io_cqring_do_overflow_flush(ctx); 694 } 695 696 void __io_put_task(struct task_struct *task, int nr) 697 { 698 struct io_uring_task *tctx = task->io_uring; 699 700 percpu_counter_sub(&tctx->inflight, nr); 701 if (unlikely(atomic_read(&tctx->in_idle))) 702 wake_up(&tctx->wait); 703 put_task_struct_many(task, nr); 704 } 705 706 void io_task_refs_refill(struct io_uring_task *tctx) 707 { 708 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 709 710 percpu_counter_add(&tctx->inflight, refill); 711 refcount_add(refill, ¤t->usage); 712 tctx->cached_refs += refill; 713 } 714 715 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 716 { 717 struct io_uring_task *tctx = task->io_uring; 718 unsigned int refs = tctx->cached_refs; 719 720 if (refs) { 721 tctx->cached_refs = 0; 722 percpu_counter_sub(&tctx->inflight, refs); 723 put_task_struct_many(task, refs); 724 } 725 } 726 727 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 728 s32 res, u32 cflags, u64 extra1, u64 extra2) 729 { 730 struct io_overflow_cqe *ocqe; 731 size_t ocq_size = sizeof(struct io_overflow_cqe); 732 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 733 734 lockdep_assert_held(&ctx->completion_lock); 735 736 if (is_cqe32) 737 ocq_size += sizeof(struct io_uring_cqe); 738 739 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 740 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 741 if (!ocqe) { 742 /* 743 * If we're in ring overflow flush mode, or in task cancel mode, 744 * or cannot allocate an overflow entry, then we need to drop it 745 * on the floor. 746 */ 747 io_account_cq_overflow(ctx); 748 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 749 return false; 750 } 751 if (list_empty(&ctx->cq_overflow_list)) { 752 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 753 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 754 755 } 756 ocqe->cqe.user_data = user_data; 757 ocqe->cqe.res = res; 758 ocqe->cqe.flags = cflags; 759 if (is_cqe32) { 760 ocqe->cqe.big_cqe[0] = extra1; 761 ocqe->cqe.big_cqe[1] = extra2; 762 } 763 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 764 return true; 765 } 766 767 bool io_req_cqe_overflow(struct io_kiocb *req) 768 { 769 if (!(req->flags & REQ_F_CQE32_INIT)) { 770 req->extra1 = 0; 771 req->extra2 = 0; 772 } 773 return io_cqring_event_overflow(req->ctx, req->cqe.user_data, 774 req->cqe.res, req->cqe.flags, 775 req->extra1, req->extra2); 776 } 777 778 /* 779 * writes to the cq entry need to come after reading head; the 780 * control dependency is enough as we're using WRITE_ONCE to 781 * fill the cq entry 782 */ 783 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow) 784 { 785 struct io_rings *rings = ctx->rings; 786 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 787 unsigned int free, queued, len; 788 789 /* 790 * Posting into the CQ when there are pending overflowed CQEs may break 791 * ordering guarantees, which will affect links, F_MORE users and more. 792 * Force overflow the completion. 793 */ 794 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 795 return NULL; 796 797 /* userspace may cheat modifying the tail, be safe and do min */ 798 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 799 free = ctx->cq_entries - queued; 800 /* we need a contiguous range, limit based on the current array offset */ 801 len = min(free, ctx->cq_entries - off); 802 if (!len) 803 return NULL; 804 805 if (ctx->flags & IORING_SETUP_CQE32) { 806 off <<= 1; 807 len <<= 1; 808 } 809 810 ctx->cqe_cached = &rings->cqes[off]; 811 ctx->cqe_sentinel = ctx->cqe_cached + len; 812 813 ctx->cached_cq_tail++; 814 ctx->cqe_cached++; 815 if (ctx->flags & IORING_SETUP_CQE32) 816 ctx->cqe_cached++; 817 return &rings->cqes[off]; 818 } 819 820 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 821 u32 cflags) 822 { 823 struct io_uring_cqe *cqe; 824 825 ctx->cq_extra++; 826 827 /* 828 * If we can't get a cq entry, userspace overflowed the 829 * submission (by quite a lot). Increment the overflow count in 830 * the ring. 831 */ 832 cqe = io_get_cqe(ctx); 833 if (likely(cqe)) { 834 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 835 836 WRITE_ONCE(cqe->user_data, user_data); 837 WRITE_ONCE(cqe->res, res); 838 WRITE_ONCE(cqe->flags, cflags); 839 840 if (ctx->flags & IORING_SETUP_CQE32) { 841 WRITE_ONCE(cqe->big_cqe[0], 0); 842 WRITE_ONCE(cqe->big_cqe[1], 0); 843 } 844 return true; 845 } 846 return false; 847 } 848 849 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 850 __must_hold(&ctx->uring_lock) 851 { 852 struct io_submit_state *state = &ctx->submit_state; 853 unsigned int i; 854 855 lockdep_assert_held(&ctx->uring_lock); 856 for (i = 0; i < state->cqes_count; i++) { 857 struct io_uring_cqe *cqe = &state->cqes[i]; 858 859 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 860 if (ctx->task_complete) { 861 spin_lock(&ctx->completion_lock); 862 io_cqring_event_overflow(ctx, cqe->user_data, 863 cqe->res, cqe->flags, 0, 0); 864 spin_unlock(&ctx->completion_lock); 865 } else { 866 io_cqring_event_overflow(ctx, cqe->user_data, 867 cqe->res, cqe->flags, 0, 0); 868 } 869 } 870 } 871 state->cqes_count = 0; 872 } 873 874 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 875 bool allow_overflow) 876 { 877 bool filled; 878 879 io_cq_lock(ctx); 880 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 881 if (!filled && allow_overflow) 882 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 883 884 io_cq_unlock_post(ctx); 885 return filled; 886 } 887 888 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 889 { 890 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 891 } 892 893 bool io_aux_cqe(struct io_ring_ctx *ctx, bool defer, u64 user_data, s32 res, u32 cflags, 894 bool allow_overflow) 895 { 896 struct io_uring_cqe *cqe; 897 unsigned int length; 898 899 if (!defer) 900 return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow); 901 902 length = ARRAY_SIZE(ctx->submit_state.cqes); 903 904 lockdep_assert_held(&ctx->uring_lock); 905 906 if (ctx->submit_state.cqes_count == length) { 907 __io_cq_lock(ctx); 908 __io_flush_post_cqes(ctx); 909 /* no need to flush - flush is deferred */ 910 __io_cq_unlock_post(ctx); 911 } 912 913 /* For defered completions this is not as strict as it is otherwise, 914 * however it's main job is to prevent unbounded posted completions, 915 * and in that it works just as well. 916 */ 917 if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 918 return false; 919 920 cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++]; 921 cqe->user_data = user_data; 922 cqe->res = res; 923 cqe->flags = cflags; 924 return true; 925 } 926 927 static void __io_req_complete_post(struct io_kiocb *req) 928 { 929 struct io_ring_ctx *ctx = req->ctx; 930 931 io_cq_lock(ctx); 932 if (!(req->flags & REQ_F_CQE_SKIP)) 933 io_fill_cqe_req(ctx, req); 934 935 /* 936 * If we're the last reference to this request, add to our locked 937 * free_list cache. 938 */ 939 if (req_ref_put_and_test(req)) { 940 if (req->flags & IO_REQ_LINK_FLAGS) { 941 if (req->flags & IO_DISARM_MASK) 942 io_disarm_next(req); 943 if (req->link) { 944 io_req_task_queue(req->link); 945 req->link = NULL; 946 } 947 } 948 io_req_put_rsrc(req); 949 /* 950 * Selected buffer deallocation in io_clean_op() assumes that 951 * we don't hold ->completion_lock. Clean them here to avoid 952 * deadlocks. 953 */ 954 io_put_kbuf_comp(req); 955 io_dismantle_req(req); 956 io_put_task(req->task, 1); 957 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 958 ctx->locked_free_nr++; 959 } 960 io_cq_unlock_post(ctx); 961 } 962 963 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 964 { 965 if (req->ctx->task_complete && (issue_flags & IO_URING_F_IOWQ)) { 966 req->io_task_work.func = io_req_task_complete; 967 io_req_task_work_add(req); 968 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 969 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 970 __io_req_complete_post(req); 971 } else { 972 struct io_ring_ctx *ctx = req->ctx; 973 974 mutex_lock(&ctx->uring_lock); 975 __io_req_complete_post(req); 976 mutex_unlock(&ctx->uring_lock); 977 } 978 } 979 980 void io_req_defer_failed(struct io_kiocb *req, s32 res) 981 __must_hold(&ctx->uring_lock) 982 { 983 const struct io_op_def *def = &io_op_defs[req->opcode]; 984 985 lockdep_assert_held(&req->ctx->uring_lock); 986 987 req_set_fail(req); 988 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 989 if (def->fail) 990 def->fail(req); 991 io_req_complete_defer(req); 992 } 993 994 /* 995 * Don't initialise the fields below on every allocation, but do that in 996 * advance and keep them valid across allocations. 997 */ 998 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 999 { 1000 req->ctx = ctx; 1001 req->link = NULL; 1002 req->async_data = NULL; 1003 /* not necessary, but safer to zero */ 1004 req->cqe.res = 0; 1005 } 1006 1007 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1008 struct io_submit_state *state) 1009 { 1010 spin_lock(&ctx->completion_lock); 1011 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1012 ctx->locked_free_nr = 0; 1013 spin_unlock(&ctx->completion_lock); 1014 } 1015 1016 /* 1017 * A request might get retired back into the request caches even before opcode 1018 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1019 * Because of that, io_alloc_req() should be called only under ->uring_lock 1020 * and with extra caution to not get a request that is still worked on. 1021 */ 1022 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1023 __must_hold(&ctx->uring_lock) 1024 { 1025 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1026 void *reqs[IO_REQ_ALLOC_BATCH]; 1027 int ret, i; 1028 1029 /* 1030 * If we have more than a batch's worth of requests in our IRQ side 1031 * locked cache, grab the lock and move them over to our submission 1032 * side cache. 1033 */ 1034 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1035 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1036 if (!io_req_cache_empty(ctx)) 1037 return true; 1038 } 1039 1040 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1041 1042 /* 1043 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1044 * retry single alloc to be on the safe side. 1045 */ 1046 if (unlikely(ret <= 0)) { 1047 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1048 if (!reqs[0]) 1049 return false; 1050 ret = 1; 1051 } 1052 1053 percpu_ref_get_many(&ctx->refs, ret); 1054 for (i = 0; i < ret; i++) { 1055 struct io_kiocb *req = reqs[i]; 1056 1057 io_preinit_req(req, ctx); 1058 io_req_add_to_cache(req, ctx); 1059 } 1060 return true; 1061 } 1062 1063 static inline void io_dismantle_req(struct io_kiocb *req) 1064 { 1065 unsigned int flags = req->flags; 1066 1067 if (unlikely(flags & IO_REQ_CLEAN_FLAGS)) 1068 io_clean_op(req); 1069 if (!(flags & REQ_F_FIXED_FILE)) 1070 io_put_file(req->file); 1071 } 1072 1073 __cold void io_free_req(struct io_kiocb *req) 1074 { 1075 struct io_ring_ctx *ctx = req->ctx; 1076 1077 io_req_put_rsrc(req); 1078 io_dismantle_req(req); 1079 io_put_task(req->task, 1); 1080 1081 spin_lock(&ctx->completion_lock); 1082 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1083 ctx->locked_free_nr++; 1084 spin_unlock(&ctx->completion_lock); 1085 } 1086 1087 static void __io_req_find_next_prep(struct io_kiocb *req) 1088 { 1089 struct io_ring_ctx *ctx = req->ctx; 1090 1091 spin_lock(&ctx->completion_lock); 1092 io_disarm_next(req); 1093 spin_unlock(&ctx->completion_lock); 1094 } 1095 1096 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1097 { 1098 struct io_kiocb *nxt; 1099 1100 /* 1101 * If LINK is set, we have dependent requests in this chain. If we 1102 * didn't fail this request, queue the first one up, moving any other 1103 * dependencies to the next request. In case of failure, fail the rest 1104 * of the chain. 1105 */ 1106 if (unlikely(req->flags & IO_DISARM_MASK)) 1107 __io_req_find_next_prep(req); 1108 nxt = req->link; 1109 req->link = NULL; 1110 return nxt; 1111 } 1112 1113 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked) 1114 { 1115 if (!ctx) 1116 return; 1117 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1118 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1119 if (*locked) { 1120 io_submit_flush_completions(ctx); 1121 mutex_unlock(&ctx->uring_lock); 1122 *locked = false; 1123 } 1124 percpu_ref_put(&ctx->refs); 1125 } 1126 1127 static unsigned int handle_tw_list(struct llist_node *node, 1128 struct io_ring_ctx **ctx, bool *locked, 1129 struct llist_node *last) 1130 { 1131 unsigned int count = 0; 1132 1133 while (node != last) { 1134 struct llist_node *next = node->next; 1135 struct io_kiocb *req = container_of(node, struct io_kiocb, 1136 io_task_work.node); 1137 1138 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1139 1140 if (req->ctx != *ctx) { 1141 ctx_flush_and_put(*ctx, locked); 1142 *ctx = req->ctx; 1143 /* if not contended, grab and improve batching */ 1144 *locked = mutex_trylock(&(*ctx)->uring_lock); 1145 percpu_ref_get(&(*ctx)->refs); 1146 } 1147 req->io_task_work.func(req, locked); 1148 node = next; 1149 count++; 1150 } 1151 1152 return count; 1153 } 1154 1155 /** 1156 * io_llist_xchg - swap all entries in a lock-less list 1157 * @head: the head of lock-less list to delete all entries 1158 * @new: new entry as the head of the list 1159 * 1160 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1161 * The order of entries returned is from the newest to the oldest added one. 1162 */ 1163 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1164 struct llist_node *new) 1165 { 1166 return xchg(&head->first, new); 1167 } 1168 1169 /** 1170 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1171 * @head: the head of lock-less list to delete all entries 1172 * @old: expected old value of the first entry of the list 1173 * @new: new entry as the head of the list 1174 * 1175 * perform a cmpxchg on the first entry of the list. 1176 */ 1177 1178 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1179 struct llist_node *old, 1180 struct llist_node *new) 1181 { 1182 return cmpxchg(&head->first, old, new); 1183 } 1184 1185 void tctx_task_work(struct callback_head *cb) 1186 { 1187 bool uring_locked = false; 1188 struct io_ring_ctx *ctx = NULL; 1189 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1190 task_work); 1191 struct llist_node fake = {}; 1192 struct llist_node *node; 1193 unsigned int loops = 1; 1194 unsigned int count; 1195 1196 if (unlikely(current->flags & PF_EXITING)) { 1197 io_fallback_tw(tctx); 1198 return; 1199 } 1200 1201 node = io_llist_xchg(&tctx->task_list, &fake); 1202 count = handle_tw_list(node, &ctx, &uring_locked, NULL); 1203 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1204 while (node != &fake) { 1205 loops++; 1206 node = io_llist_xchg(&tctx->task_list, &fake); 1207 count += handle_tw_list(node, &ctx, &uring_locked, &fake); 1208 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1209 } 1210 1211 ctx_flush_and_put(ctx, &uring_locked); 1212 1213 /* relaxed read is enough as only the task itself sets ->in_idle */ 1214 if (unlikely(atomic_read(&tctx->in_idle))) 1215 io_uring_drop_tctx_refs(current); 1216 1217 trace_io_uring_task_work_run(tctx, count, loops); 1218 } 1219 1220 static __cold void io_fallback_tw(struct io_uring_task *tctx) 1221 { 1222 struct llist_node *node = llist_del_all(&tctx->task_list); 1223 struct io_kiocb *req; 1224 1225 while (node) { 1226 req = container_of(node, struct io_kiocb, io_task_work.node); 1227 node = node->next; 1228 if (llist_add(&req->io_task_work.node, 1229 &req->ctx->fallback_llist)) 1230 schedule_delayed_work(&req->ctx->fallback_work, 1); 1231 } 1232 } 1233 1234 static void io_req_local_work_add(struct io_kiocb *req) 1235 { 1236 struct io_ring_ctx *ctx = req->ctx; 1237 1238 percpu_ref_get(&ctx->refs); 1239 1240 if (!llist_add(&req->io_task_work.node, &ctx->work_llist)) { 1241 percpu_ref_put(&ctx->refs); 1242 return; 1243 } 1244 /* need it for the following io_cqring_wake() */ 1245 smp_mb__after_atomic(); 1246 1247 if (unlikely(atomic_read(&req->task->io_uring->in_idle))) { 1248 io_move_task_work_from_local(ctx); 1249 percpu_ref_put(&ctx->refs); 1250 return; 1251 } 1252 1253 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1254 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1255 1256 if (ctx->has_evfd) 1257 io_eventfd_signal(ctx); 1258 __io_cqring_wake(ctx); 1259 percpu_ref_put(&ctx->refs); 1260 } 1261 1262 void __io_req_task_work_add(struct io_kiocb *req, bool allow_local) 1263 { 1264 struct io_uring_task *tctx = req->task->io_uring; 1265 struct io_ring_ctx *ctx = req->ctx; 1266 1267 if (allow_local && ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1268 io_req_local_work_add(req); 1269 return; 1270 } 1271 1272 /* task_work already pending, we're done */ 1273 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1274 return; 1275 1276 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1277 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1278 1279 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1280 return; 1281 1282 io_fallback_tw(tctx); 1283 } 1284 1285 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1286 { 1287 struct llist_node *node; 1288 1289 node = llist_del_all(&ctx->work_llist); 1290 while (node) { 1291 struct io_kiocb *req = container_of(node, struct io_kiocb, 1292 io_task_work.node); 1293 1294 node = node->next; 1295 __io_req_task_work_add(req, false); 1296 } 1297 } 1298 1299 int __io_run_local_work(struct io_ring_ctx *ctx, bool *locked) 1300 { 1301 struct llist_node *node; 1302 struct llist_node fake; 1303 struct llist_node *current_final = NULL; 1304 int ret; 1305 unsigned int loops = 1; 1306 1307 if (unlikely(ctx->submitter_task != current)) 1308 return -EEXIST; 1309 1310 node = io_llist_xchg(&ctx->work_llist, &fake); 1311 ret = 0; 1312 again: 1313 while (node != current_final) { 1314 struct llist_node *next = node->next; 1315 struct io_kiocb *req = container_of(node, struct io_kiocb, 1316 io_task_work.node); 1317 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1318 req->io_task_work.func(req, locked); 1319 ret++; 1320 node = next; 1321 } 1322 1323 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1324 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1325 1326 node = io_llist_cmpxchg(&ctx->work_llist, &fake, NULL); 1327 if (node != &fake) { 1328 loops++; 1329 current_final = &fake; 1330 node = io_llist_xchg(&ctx->work_llist, &fake); 1331 goto again; 1332 } 1333 1334 if (*locked) 1335 io_submit_flush_completions(ctx); 1336 trace_io_uring_local_work_run(ctx, ret, loops); 1337 return ret; 1338 1339 } 1340 1341 int io_run_local_work(struct io_ring_ctx *ctx) 1342 { 1343 bool locked; 1344 int ret; 1345 1346 if (llist_empty(&ctx->work_llist)) 1347 return 0; 1348 1349 __set_current_state(TASK_RUNNING); 1350 locked = mutex_trylock(&ctx->uring_lock); 1351 ret = __io_run_local_work(ctx, &locked); 1352 if (locked) 1353 mutex_unlock(&ctx->uring_lock); 1354 1355 return ret; 1356 } 1357 1358 static void io_req_task_cancel(struct io_kiocb *req, bool *locked) 1359 { 1360 io_tw_lock(req->ctx, locked); 1361 io_req_defer_failed(req, req->cqe.res); 1362 } 1363 1364 void io_req_task_submit(struct io_kiocb *req, bool *locked) 1365 { 1366 io_tw_lock(req->ctx, locked); 1367 /* req->task == current here, checking PF_EXITING is safe */ 1368 if (likely(!(req->task->flags & PF_EXITING))) 1369 io_queue_sqe(req); 1370 else 1371 io_req_defer_failed(req, -EFAULT); 1372 } 1373 1374 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1375 { 1376 io_req_set_res(req, ret, 0); 1377 req->io_task_work.func = io_req_task_cancel; 1378 io_req_task_work_add(req); 1379 } 1380 1381 void io_req_task_queue(struct io_kiocb *req) 1382 { 1383 req->io_task_work.func = io_req_task_submit; 1384 io_req_task_work_add(req); 1385 } 1386 1387 void io_queue_next(struct io_kiocb *req) 1388 { 1389 struct io_kiocb *nxt = io_req_find_next(req); 1390 1391 if (nxt) 1392 io_req_task_queue(nxt); 1393 } 1394 1395 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node) 1396 __must_hold(&ctx->uring_lock) 1397 { 1398 struct task_struct *task = NULL; 1399 int task_refs = 0; 1400 1401 do { 1402 struct io_kiocb *req = container_of(node, struct io_kiocb, 1403 comp_list); 1404 1405 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1406 if (req->flags & REQ_F_REFCOUNT) { 1407 node = req->comp_list.next; 1408 if (!req_ref_put_and_test(req)) 1409 continue; 1410 } 1411 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1412 struct async_poll *apoll = req->apoll; 1413 1414 if (apoll->double_poll) 1415 kfree(apoll->double_poll); 1416 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1417 kfree(apoll); 1418 req->flags &= ~REQ_F_POLLED; 1419 } 1420 if (req->flags & IO_REQ_LINK_FLAGS) 1421 io_queue_next(req); 1422 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1423 io_clean_op(req); 1424 } 1425 if (!(req->flags & REQ_F_FIXED_FILE)) 1426 io_put_file(req->file); 1427 1428 io_req_put_rsrc_locked(req, ctx); 1429 1430 if (req->task != task) { 1431 if (task) 1432 io_put_task(task, task_refs); 1433 task = req->task; 1434 task_refs = 0; 1435 } 1436 task_refs++; 1437 node = req->comp_list.next; 1438 io_req_add_to_cache(req, ctx); 1439 } while (node); 1440 1441 if (task) 1442 io_put_task(task, task_refs); 1443 } 1444 1445 static void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1446 __must_hold(&ctx->uring_lock) 1447 { 1448 struct io_wq_work_node *node, *prev; 1449 struct io_submit_state *state = &ctx->submit_state; 1450 1451 __io_cq_lock(ctx); 1452 /* must come first to preserve CQE ordering in failure cases */ 1453 if (state->cqes_count) 1454 __io_flush_post_cqes(ctx); 1455 wq_list_for_each(node, prev, &state->compl_reqs) { 1456 struct io_kiocb *req = container_of(node, struct io_kiocb, 1457 comp_list); 1458 1459 if (!(req->flags & REQ_F_CQE_SKIP) && 1460 unlikely(!__io_fill_cqe_req(ctx, req))) { 1461 if (ctx->task_complete) { 1462 spin_lock(&ctx->completion_lock); 1463 io_req_cqe_overflow(req); 1464 spin_unlock(&ctx->completion_lock); 1465 } else { 1466 io_req_cqe_overflow(req); 1467 } 1468 } 1469 } 1470 __io_cq_unlock_post(ctx); 1471 1472 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1473 io_free_batch_list(ctx, state->compl_reqs.first); 1474 INIT_WQ_LIST(&state->compl_reqs); 1475 } 1476 } 1477 1478 /* 1479 * Drop reference to request, return next in chain (if there is one) if this 1480 * was the last reference to this request. 1481 */ 1482 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req) 1483 { 1484 struct io_kiocb *nxt = NULL; 1485 1486 if (req_ref_put_and_test(req)) { 1487 if (unlikely(req->flags & IO_REQ_LINK_FLAGS)) 1488 nxt = io_req_find_next(req); 1489 io_free_req(req); 1490 } 1491 return nxt; 1492 } 1493 1494 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1495 { 1496 /* See comment at the top of this file */ 1497 smp_rmb(); 1498 return __io_cqring_events(ctx); 1499 } 1500 1501 /* 1502 * We can't just wait for polled events to come to us, we have to actively 1503 * find and complete them. 1504 */ 1505 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1506 { 1507 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1508 return; 1509 1510 mutex_lock(&ctx->uring_lock); 1511 while (!wq_list_empty(&ctx->iopoll_list)) { 1512 /* let it sleep and repeat later if can't complete a request */ 1513 if (io_do_iopoll(ctx, true) == 0) 1514 break; 1515 /* 1516 * Ensure we allow local-to-the-cpu processing to take place, 1517 * in this case we need to ensure that we reap all events. 1518 * Also let task_work, etc. to progress by releasing the mutex 1519 */ 1520 if (need_resched()) { 1521 mutex_unlock(&ctx->uring_lock); 1522 cond_resched(); 1523 mutex_lock(&ctx->uring_lock); 1524 } 1525 } 1526 mutex_unlock(&ctx->uring_lock); 1527 } 1528 1529 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1530 { 1531 unsigned int nr_events = 0; 1532 int ret = 0; 1533 unsigned long check_cq; 1534 1535 if (!io_allowed_run_tw(ctx)) 1536 return -EEXIST; 1537 1538 check_cq = READ_ONCE(ctx->check_cq); 1539 if (unlikely(check_cq)) { 1540 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1541 __io_cqring_overflow_flush(ctx); 1542 /* 1543 * Similarly do not spin if we have not informed the user of any 1544 * dropped CQE. 1545 */ 1546 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1547 return -EBADR; 1548 } 1549 /* 1550 * Don't enter poll loop if we already have events pending. 1551 * If we do, we can potentially be spinning for commands that 1552 * already triggered a CQE (eg in error). 1553 */ 1554 if (io_cqring_events(ctx)) 1555 return 0; 1556 1557 do { 1558 /* 1559 * If a submit got punted to a workqueue, we can have the 1560 * application entering polling for a command before it gets 1561 * issued. That app will hold the uring_lock for the duration 1562 * of the poll right here, so we need to take a breather every 1563 * now and then to ensure that the issue has a chance to add 1564 * the poll to the issued list. Otherwise we can spin here 1565 * forever, while the workqueue is stuck trying to acquire the 1566 * very same mutex. 1567 */ 1568 if (wq_list_empty(&ctx->iopoll_list) || 1569 io_task_work_pending(ctx)) { 1570 u32 tail = ctx->cached_cq_tail; 1571 1572 (void) io_run_local_work_locked(ctx); 1573 1574 if (task_work_pending(current) || 1575 wq_list_empty(&ctx->iopoll_list)) { 1576 mutex_unlock(&ctx->uring_lock); 1577 io_run_task_work(); 1578 mutex_lock(&ctx->uring_lock); 1579 } 1580 /* some requests don't go through iopoll_list */ 1581 if (tail != ctx->cached_cq_tail || 1582 wq_list_empty(&ctx->iopoll_list)) 1583 break; 1584 } 1585 ret = io_do_iopoll(ctx, !min); 1586 if (ret < 0) 1587 break; 1588 nr_events += ret; 1589 ret = 0; 1590 } while (nr_events < min && !need_resched()); 1591 1592 return ret; 1593 } 1594 1595 void io_req_task_complete(struct io_kiocb *req, bool *locked) 1596 { 1597 if (*locked) 1598 io_req_complete_defer(req); 1599 else 1600 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1601 } 1602 1603 /* 1604 * After the iocb has been issued, it's safe to be found on the poll list. 1605 * Adding the kiocb to the list AFTER submission ensures that we don't 1606 * find it from a io_do_iopoll() thread before the issuer is done 1607 * accessing the kiocb cookie. 1608 */ 1609 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1610 { 1611 struct io_ring_ctx *ctx = req->ctx; 1612 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1613 1614 /* workqueue context doesn't hold uring_lock, grab it now */ 1615 if (unlikely(needs_lock)) 1616 mutex_lock(&ctx->uring_lock); 1617 1618 /* 1619 * Track whether we have multiple files in our lists. This will impact 1620 * how we do polling eventually, not spinning if we're on potentially 1621 * different devices. 1622 */ 1623 if (wq_list_empty(&ctx->iopoll_list)) { 1624 ctx->poll_multi_queue = false; 1625 } else if (!ctx->poll_multi_queue) { 1626 struct io_kiocb *list_req; 1627 1628 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1629 comp_list); 1630 if (list_req->file != req->file) 1631 ctx->poll_multi_queue = true; 1632 } 1633 1634 /* 1635 * For fast devices, IO may have already completed. If it has, add 1636 * it to the front so we find it first. 1637 */ 1638 if (READ_ONCE(req->iopoll_completed)) 1639 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1640 else 1641 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1642 1643 if (unlikely(needs_lock)) { 1644 /* 1645 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1646 * in sq thread task context or in io worker task context. If 1647 * current task context is sq thread, we don't need to check 1648 * whether should wake up sq thread. 1649 */ 1650 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1651 wq_has_sleeper(&ctx->sq_data->wait)) 1652 wake_up(&ctx->sq_data->wait); 1653 1654 mutex_unlock(&ctx->uring_lock); 1655 } 1656 } 1657 1658 static bool io_bdev_nowait(struct block_device *bdev) 1659 { 1660 return !bdev || bdev_nowait(bdev); 1661 } 1662 1663 /* 1664 * If we tracked the file through the SCM inflight mechanism, we could support 1665 * any file. For now, just ensure that anything potentially problematic is done 1666 * inline. 1667 */ 1668 static bool __io_file_supports_nowait(struct file *file, umode_t mode) 1669 { 1670 if (S_ISBLK(mode)) { 1671 if (IS_ENABLED(CONFIG_BLOCK) && 1672 io_bdev_nowait(I_BDEV(file->f_mapping->host))) 1673 return true; 1674 return false; 1675 } 1676 if (S_ISSOCK(mode)) 1677 return true; 1678 if (S_ISREG(mode)) { 1679 if (IS_ENABLED(CONFIG_BLOCK) && 1680 io_bdev_nowait(file->f_inode->i_sb->s_bdev) && 1681 !io_is_uring_fops(file)) 1682 return true; 1683 return false; 1684 } 1685 1686 /* any ->read/write should understand O_NONBLOCK */ 1687 if (file->f_flags & O_NONBLOCK) 1688 return true; 1689 return file->f_mode & FMODE_NOWAIT; 1690 } 1691 1692 /* 1693 * If we tracked the file through the SCM inflight mechanism, we could support 1694 * any file. For now, just ensure that anything potentially problematic is done 1695 * inline. 1696 */ 1697 unsigned int io_file_get_flags(struct file *file) 1698 { 1699 umode_t mode = file_inode(file)->i_mode; 1700 unsigned int res = 0; 1701 1702 if (S_ISREG(mode)) 1703 res |= FFS_ISREG; 1704 if (__io_file_supports_nowait(file, mode)) 1705 res |= FFS_NOWAIT; 1706 return res; 1707 } 1708 1709 bool io_alloc_async_data(struct io_kiocb *req) 1710 { 1711 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size); 1712 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL); 1713 if (req->async_data) { 1714 req->flags |= REQ_F_ASYNC_DATA; 1715 return false; 1716 } 1717 return true; 1718 } 1719 1720 int io_req_prep_async(struct io_kiocb *req) 1721 { 1722 const struct io_op_def *def = &io_op_defs[req->opcode]; 1723 1724 /* assign early for deferred execution for non-fixed file */ 1725 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE)) 1726 req->file = io_file_get_normal(req, req->cqe.fd); 1727 if (!def->prep_async) 1728 return 0; 1729 if (WARN_ON_ONCE(req_has_async_data(req))) 1730 return -EFAULT; 1731 if (!io_op_defs[req->opcode].manual_alloc) { 1732 if (io_alloc_async_data(req)) 1733 return -EAGAIN; 1734 } 1735 return def->prep_async(req); 1736 } 1737 1738 static u32 io_get_sequence(struct io_kiocb *req) 1739 { 1740 u32 seq = req->ctx->cached_sq_head; 1741 struct io_kiocb *cur; 1742 1743 /* need original cached_sq_head, but it was increased for each req */ 1744 io_for_each_link(cur, req) 1745 seq--; 1746 return seq; 1747 } 1748 1749 static __cold void io_drain_req(struct io_kiocb *req) 1750 __must_hold(&ctx->uring_lock) 1751 { 1752 struct io_ring_ctx *ctx = req->ctx; 1753 struct io_defer_entry *de; 1754 int ret; 1755 u32 seq = io_get_sequence(req); 1756 1757 /* Still need defer if there is pending req in defer list. */ 1758 spin_lock(&ctx->completion_lock); 1759 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1760 spin_unlock(&ctx->completion_lock); 1761 queue: 1762 ctx->drain_active = false; 1763 io_req_task_queue(req); 1764 return; 1765 } 1766 spin_unlock(&ctx->completion_lock); 1767 1768 ret = io_req_prep_async(req); 1769 if (ret) { 1770 fail: 1771 io_req_defer_failed(req, ret); 1772 return; 1773 } 1774 io_prep_async_link(req); 1775 de = kmalloc(sizeof(*de), GFP_KERNEL); 1776 if (!de) { 1777 ret = -ENOMEM; 1778 goto fail; 1779 } 1780 1781 spin_lock(&ctx->completion_lock); 1782 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1783 spin_unlock(&ctx->completion_lock); 1784 kfree(de); 1785 goto queue; 1786 } 1787 1788 trace_io_uring_defer(req); 1789 de->req = req; 1790 de->seq = seq; 1791 list_add_tail(&de->list, &ctx->defer_list); 1792 spin_unlock(&ctx->completion_lock); 1793 } 1794 1795 static void io_clean_op(struct io_kiocb *req) 1796 { 1797 if (req->flags & REQ_F_BUFFER_SELECTED) { 1798 spin_lock(&req->ctx->completion_lock); 1799 io_put_kbuf_comp(req); 1800 spin_unlock(&req->ctx->completion_lock); 1801 } 1802 1803 if (req->flags & REQ_F_NEED_CLEANUP) { 1804 const struct io_op_def *def = &io_op_defs[req->opcode]; 1805 1806 if (def->cleanup) 1807 def->cleanup(req); 1808 } 1809 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1810 kfree(req->apoll->double_poll); 1811 kfree(req->apoll); 1812 req->apoll = NULL; 1813 } 1814 if (req->flags & REQ_F_INFLIGHT) { 1815 struct io_uring_task *tctx = req->task->io_uring; 1816 1817 atomic_dec(&tctx->inflight_tracked); 1818 } 1819 if (req->flags & REQ_F_CREDS) 1820 put_cred(req->creds); 1821 if (req->flags & REQ_F_ASYNC_DATA) { 1822 kfree(req->async_data); 1823 req->async_data = NULL; 1824 } 1825 req->flags &= ~IO_REQ_CLEAN_FLAGS; 1826 } 1827 1828 static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags) 1829 { 1830 if (req->file || !io_op_defs[req->opcode].needs_file) 1831 return true; 1832 1833 if (req->flags & REQ_F_FIXED_FILE) 1834 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1835 else 1836 req->file = io_file_get_normal(req, req->cqe.fd); 1837 1838 return !!req->file; 1839 } 1840 1841 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1842 { 1843 const struct io_op_def *def = &io_op_defs[req->opcode]; 1844 const struct cred *creds = NULL; 1845 int ret; 1846 1847 if (unlikely(!io_assign_file(req, issue_flags))) 1848 return -EBADF; 1849 1850 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1851 creds = override_creds(req->creds); 1852 1853 if (!def->audit_skip) 1854 audit_uring_entry(req->opcode); 1855 1856 ret = def->issue(req, issue_flags); 1857 1858 if (!def->audit_skip) 1859 audit_uring_exit(!ret, ret); 1860 1861 if (creds) 1862 revert_creds(creds); 1863 1864 if (ret == IOU_OK) { 1865 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1866 io_req_complete_defer(req); 1867 else 1868 io_req_complete_post(req, issue_flags); 1869 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1870 return ret; 1871 1872 /* If the op doesn't have a file, we're not polling for it */ 1873 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1874 io_iopoll_req_issued(req, issue_flags); 1875 1876 return 0; 1877 } 1878 1879 int io_poll_issue(struct io_kiocb *req, bool *locked) 1880 { 1881 io_tw_lock(req->ctx, locked); 1882 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1883 IO_URING_F_COMPLETE_DEFER); 1884 } 1885 1886 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1887 { 1888 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1889 1890 req = io_put_req_find_next(req); 1891 return req ? &req->work : NULL; 1892 } 1893 1894 void io_wq_submit_work(struct io_wq_work *work) 1895 { 1896 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1897 const struct io_op_def *def = &io_op_defs[req->opcode]; 1898 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1899 bool needs_poll = false; 1900 int ret = 0, err = -ECANCELED; 1901 1902 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1903 if (!(req->flags & REQ_F_REFCOUNT)) 1904 __io_req_set_refcount(req, 2); 1905 else 1906 req_ref_get(req); 1907 1908 io_arm_ltimeout(req); 1909 1910 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1911 if (work->flags & IO_WQ_WORK_CANCEL) { 1912 fail: 1913 io_req_task_queue_fail(req, err); 1914 return; 1915 } 1916 if (!io_assign_file(req, issue_flags)) { 1917 err = -EBADF; 1918 work->flags |= IO_WQ_WORK_CANCEL; 1919 goto fail; 1920 } 1921 1922 if (req->flags & REQ_F_FORCE_ASYNC) { 1923 bool opcode_poll = def->pollin || def->pollout; 1924 1925 if (opcode_poll && file_can_poll(req->file)) { 1926 needs_poll = true; 1927 issue_flags |= IO_URING_F_NONBLOCK; 1928 } 1929 } 1930 1931 do { 1932 ret = io_issue_sqe(req, issue_flags); 1933 if (ret != -EAGAIN) 1934 break; 1935 /* 1936 * We can get EAGAIN for iopolled IO even though we're 1937 * forcing a sync submission from here, since we can't 1938 * wait for request slots on the block side. 1939 */ 1940 if (!needs_poll) { 1941 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1942 break; 1943 cond_resched(); 1944 continue; 1945 } 1946 1947 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1948 return; 1949 /* aborted or ready, in either case retry blocking */ 1950 needs_poll = false; 1951 issue_flags &= ~IO_URING_F_NONBLOCK; 1952 } while (1); 1953 1954 /* avoid locking problems by failing it from a clean context */ 1955 if (ret < 0) 1956 io_req_task_queue_fail(req, ret); 1957 } 1958 1959 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1960 unsigned int issue_flags) 1961 { 1962 struct io_ring_ctx *ctx = req->ctx; 1963 struct file *file = NULL; 1964 unsigned long file_ptr; 1965 1966 io_ring_submit_lock(ctx, issue_flags); 1967 1968 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 1969 goto out; 1970 fd = array_index_nospec(fd, ctx->nr_user_files); 1971 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr; 1972 file = (struct file *) (file_ptr & FFS_MASK); 1973 file_ptr &= ~FFS_MASK; 1974 /* mask in overlapping REQ_F and FFS bits */ 1975 req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT); 1976 io_req_set_rsrc_node(req, ctx, 0); 1977 out: 1978 io_ring_submit_unlock(ctx, issue_flags); 1979 return file; 1980 } 1981 1982 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1983 { 1984 struct file *file = fget(fd); 1985 1986 trace_io_uring_file_get(req, fd); 1987 1988 /* we don't allow fixed io_uring files */ 1989 if (file && io_is_uring_fops(file)) 1990 io_req_track_inflight(req); 1991 return file; 1992 } 1993 1994 static void io_queue_async(struct io_kiocb *req, int ret) 1995 __must_hold(&req->ctx->uring_lock) 1996 { 1997 struct io_kiocb *linked_timeout; 1998 1999 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2000 io_req_defer_failed(req, ret); 2001 return; 2002 } 2003 2004 linked_timeout = io_prep_linked_timeout(req); 2005 2006 switch (io_arm_poll_handler(req, 0)) { 2007 case IO_APOLL_READY: 2008 io_kbuf_recycle(req, 0); 2009 io_req_task_queue(req); 2010 break; 2011 case IO_APOLL_ABORTED: 2012 io_kbuf_recycle(req, 0); 2013 io_queue_iowq(req, NULL); 2014 break; 2015 case IO_APOLL_OK: 2016 break; 2017 } 2018 2019 if (linked_timeout) 2020 io_queue_linked_timeout(linked_timeout); 2021 } 2022 2023 static inline void io_queue_sqe(struct io_kiocb *req) 2024 __must_hold(&req->ctx->uring_lock) 2025 { 2026 int ret; 2027 2028 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2029 2030 /* 2031 * We async punt it if the file wasn't marked NOWAIT, or if the file 2032 * doesn't support non-blocking read/write attempts 2033 */ 2034 if (likely(!ret)) 2035 io_arm_ltimeout(req); 2036 else 2037 io_queue_async(req, ret); 2038 } 2039 2040 static void io_queue_sqe_fallback(struct io_kiocb *req) 2041 __must_hold(&req->ctx->uring_lock) 2042 { 2043 if (unlikely(req->flags & REQ_F_FAIL)) { 2044 /* 2045 * We don't submit, fail them all, for that replace hardlinks 2046 * with normal links. Extra REQ_F_LINK is tolerated. 2047 */ 2048 req->flags &= ~REQ_F_HARDLINK; 2049 req->flags |= REQ_F_LINK; 2050 io_req_defer_failed(req, req->cqe.res); 2051 } else if (unlikely(req->ctx->drain_active)) { 2052 io_drain_req(req); 2053 } else { 2054 int ret = io_req_prep_async(req); 2055 2056 if (unlikely(ret)) 2057 io_req_defer_failed(req, ret); 2058 else 2059 io_queue_iowq(req, NULL); 2060 } 2061 } 2062 2063 /* 2064 * Check SQE restrictions (opcode and flags). 2065 * 2066 * Returns 'true' if SQE is allowed, 'false' otherwise. 2067 */ 2068 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2069 struct io_kiocb *req, 2070 unsigned int sqe_flags) 2071 { 2072 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2073 return false; 2074 2075 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2076 ctx->restrictions.sqe_flags_required) 2077 return false; 2078 2079 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2080 ctx->restrictions.sqe_flags_required)) 2081 return false; 2082 2083 return true; 2084 } 2085 2086 static void io_init_req_drain(struct io_kiocb *req) 2087 { 2088 struct io_ring_ctx *ctx = req->ctx; 2089 struct io_kiocb *head = ctx->submit_state.link.head; 2090 2091 ctx->drain_active = true; 2092 if (head) { 2093 /* 2094 * If we need to drain a request in the middle of a link, drain 2095 * the head request and the next request/link after the current 2096 * link. Considering sequential execution of links, 2097 * REQ_F_IO_DRAIN will be maintained for every request of our 2098 * link. 2099 */ 2100 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2101 ctx->drain_next = true; 2102 } 2103 } 2104 2105 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2106 const struct io_uring_sqe *sqe) 2107 __must_hold(&ctx->uring_lock) 2108 { 2109 const struct io_op_def *def; 2110 unsigned int sqe_flags; 2111 int personality; 2112 u8 opcode; 2113 2114 /* req is partially pre-initialised, see io_preinit_req() */ 2115 req->opcode = opcode = READ_ONCE(sqe->opcode); 2116 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2117 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2118 req->cqe.user_data = READ_ONCE(sqe->user_data); 2119 req->file = NULL; 2120 req->rsrc_node = NULL; 2121 req->task = current; 2122 2123 if (unlikely(opcode >= IORING_OP_LAST)) { 2124 req->opcode = 0; 2125 return -EINVAL; 2126 } 2127 def = &io_op_defs[opcode]; 2128 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2129 /* enforce forwards compatibility on users */ 2130 if (sqe_flags & ~SQE_VALID_FLAGS) 2131 return -EINVAL; 2132 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2133 if (!def->buffer_select) 2134 return -EOPNOTSUPP; 2135 req->buf_index = READ_ONCE(sqe->buf_group); 2136 } 2137 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2138 ctx->drain_disabled = true; 2139 if (sqe_flags & IOSQE_IO_DRAIN) { 2140 if (ctx->drain_disabled) 2141 return -EOPNOTSUPP; 2142 io_init_req_drain(req); 2143 } 2144 } 2145 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2146 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2147 return -EACCES; 2148 /* knock it to the slow queue path, will be drained there */ 2149 if (ctx->drain_active) 2150 req->flags |= REQ_F_FORCE_ASYNC; 2151 /* if there is no link, we're at "next" request and need to drain */ 2152 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2153 ctx->drain_next = false; 2154 ctx->drain_active = true; 2155 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2156 } 2157 } 2158 2159 if (!def->ioprio && sqe->ioprio) 2160 return -EINVAL; 2161 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2162 return -EINVAL; 2163 2164 if (def->needs_file) { 2165 struct io_submit_state *state = &ctx->submit_state; 2166 2167 req->cqe.fd = READ_ONCE(sqe->fd); 2168 2169 /* 2170 * Plug now if we have more than 2 IO left after this, and the 2171 * target is potentially a read/write to block based storage. 2172 */ 2173 if (state->need_plug && def->plug) { 2174 state->plug_started = true; 2175 state->need_plug = false; 2176 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2177 } 2178 } 2179 2180 personality = READ_ONCE(sqe->personality); 2181 if (personality) { 2182 int ret; 2183 2184 req->creds = xa_load(&ctx->personalities, personality); 2185 if (!req->creds) 2186 return -EINVAL; 2187 get_cred(req->creds); 2188 ret = security_uring_override_creds(req->creds); 2189 if (ret) { 2190 put_cred(req->creds); 2191 return ret; 2192 } 2193 req->flags |= REQ_F_CREDS; 2194 } 2195 2196 return def->prep(req, sqe); 2197 } 2198 2199 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2200 struct io_kiocb *req, int ret) 2201 { 2202 struct io_ring_ctx *ctx = req->ctx; 2203 struct io_submit_link *link = &ctx->submit_state.link; 2204 struct io_kiocb *head = link->head; 2205 2206 trace_io_uring_req_failed(sqe, req, ret); 2207 2208 /* 2209 * Avoid breaking links in the middle as it renders links with SQPOLL 2210 * unusable. Instead of failing eagerly, continue assembling the link if 2211 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2212 * should find the flag and handle the rest. 2213 */ 2214 req_fail_link_node(req, ret); 2215 if (head && !(head->flags & REQ_F_FAIL)) 2216 req_fail_link_node(head, -ECANCELED); 2217 2218 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2219 if (head) { 2220 link->last->link = req; 2221 link->head = NULL; 2222 req = head; 2223 } 2224 io_queue_sqe_fallback(req); 2225 return ret; 2226 } 2227 2228 if (head) 2229 link->last->link = req; 2230 else 2231 link->head = req; 2232 link->last = req; 2233 return 0; 2234 } 2235 2236 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2237 const struct io_uring_sqe *sqe) 2238 __must_hold(&ctx->uring_lock) 2239 { 2240 struct io_submit_link *link = &ctx->submit_state.link; 2241 int ret; 2242 2243 ret = io_init_req(ctx, req, sqe); 2244 if (unlikely(ret)) 2245 return io_submit_fail_init(sqe, req, ret); 2246 2247 /* don't need @sqe from now on */ 2248 trace_io_uring_submit_sqe(req, true); 2249 2250 /* 2251 * If we already have a head request, queue this one for async 2252 * submittal once the head completes. If we don't have a head but 2253 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2254 * submitted sync once the chain is complete. If none of those 2255 * conditions are true (normal request), then just queue it. 2256 */ 2257 if (unlikely(link->head)) { 2258 ret = io_req_prep_async(req); 2259 if (unlikely(ret)) 2260 return io_submit_fail_init(sqe, req, ret); 2261 2262 trace_io_uring_link(req, link->head); 2263 link->last->link = req; 2264 link->last = req; 2265 2266 if (req->flags & IO_REQ_LINK_FLAGS) 2267 return 0; 2268 /* last request of the link, flush it */ 2269 req = link->head; 2270 link->head = NULL; 2271 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2272 goto fallback; 2273 2274 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2275 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2276 if (req->flags & IO_REQ_LINK_FLAGS) { 2277 link->head = req; 2278 link->last = req; 2279 } else { 2280 fallback: 2281 io_queue_sqe_fallback(req); 2282 } 2283 return 0; 2284 } 2285 2286 io_queue_sqe(req); 2287 return 0; 2288 } 2289 2290 /* 2291 * Batched submission is done, ensure local IO is flushed out. 2292 */ 2293 static void io_submit_state_end(struct io_ring_ctx *ctx) 2294 { 2295 struct io_submit_state *state = &ctx->submit_state; 2296 2297 if (unlikely(state->link.head)) 2298 io_queue_sqe_fallback(state->link.head); 2299 /* flush only after queuing links as they can generate completions */ 2300 io_submit_flush_completions(ctx); 2301 if (state->plug_started) 2302 blk_finish_plug(&state->plug); 2303 } 2304 2305 /* 2306 * Start submission side cache. 2307 */ 2308 static void io_submit_state_start(struct io_submit_state *state, 2309 unsigned int max_ios) 2310 { 2311 state->plug_started = false; 2312 state->need_plug = max_ios > 2; 2313 state->submit_nr = max_ios; 2314 /* set only head, no need to init link_last in advance */ 2315 state->link.head = NULL; 2316 } 2317 2318 static void io_commit_sqring(struct io_ring_ctx *ctx) 2319 { 2320 struct io_rings *rings = ctx->rings; 2321 2322 /* 2323 * Ensure any loads from the SQEs are done at this point, 2324 * since once we write the new head, the application could 2325 * write new data to them. 2326 */ 2327 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2328 } 2329 2330 /* 2331 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2332 * that is mapped by userspace. This means that care needs to be taken to 2333 * ensure that reads are stable, as we cannot rely on userspace always 2334 * being a good citizen. If members of the sqe are validated and then later 2335 * used, it's important that those reads are done through READ_ONCE() to 2336 * prevent a re-load down the line. 2337 */ 2338 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx) 2339 { 2340 unsigned head, mask = ctx->sq_entries - 1; 2341 unsigned sq_idx = ctx->cached_sq_head++ & mask; 2342 2343 /* 2344 * The cached sq head (or cq tail) serves two purposes: 2345 * 2346 * 1) allows us to batch the cost of updating the user visible 2347 * head updates. 2348 * 2) allows the kernel side to track the head on its own, even 2349 * though the application is the one updating it. 2350 */ 2351 head = READ_ONCE(ctx->sq_array[sq_idx]); 2352 if (likely(head < ctx->sq_entries)) { 2353 /* double index for 128-byte SQEs, twice as long */ 2354 if (ctx->flags & IORING_SETUP_SQE128) 2355 head <<= 1; 2356 return &ctx->sq_sqes[head]; 2357 } 2358 2359 /* drop invalid entries */ 2360 ctx->cq_extra--; 2361 WRITE_ONCE(ctx->rings->sq_dropped, 2362 READ_ONCE(ctx->rings->sq_dropped) + 1); 2363 return NULL; 2364 } 2365 2366 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2367 __must_hold(&ctx->uring_lock) 2368 { 2369 unsigned int entries = io_sqring_entries(ctx); 2370 unsigned int left; 2371 int ret; 2372 2373 if (unlikely(!entries)) 2374 return 0; 2375 /* make sure SQ entry isn't read before tail */ 2376 ret = left = min3(nr, ctx->sq_entries, entries); 2377 io_get_task_refs(left); 2378 io_submit_state_start(&ctx->submit_state, left); 2379 2380 do { 2381 const struct io_uring_sqe *sqe; 2382 struct io_kiocb *req; 2383 2384 if (unlikely(!io_alloc_req_refill(ctx))) 2385 break; 2386 req = io_alloc_req(ctx); 2387 sqe = io_get_sqe(ctx); 2388 if (unlikely(!sqe)) { 2389 io_req_add_to_cache(req, ctx); 2390 break; 2391 } 2392 2393 /* 2394 * Continue submitting even for sqe failure if the 2395 * ring was setup with IORING_SETUP_SUBMIT_ALL 2396 */ 2397 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2398 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2399 left--; 2400 break; 2401 } 2402 } while (--left); 2403 2404 if (unlikely(left)) { 2405 ret -= left; 2406 /* try again if it submitted nothing and can't allocate a req */ 2407 if (!ret && io_req_cache_empty(ctx)) 2408 ret = -EAGAIN; 2409 current->io_uring->cached_refs += left; 2410 } 2411 2412 io_submit_state_end(ctx); 2413 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2414 io_commit_sqring(ctx); 2415 return ret; 2416 } 2417 2418 struct io_wait_queue { 2419 struct wait_queue_entry wq; 2420 struct io_ring_ctx *ctx; 2421 unsigned cq_tail; 2422 unsigned nr_timeouts; 2423 }; 2424 2425 static inline bool io_has_work(struct io_ring_ctx *ctx) 2426 { 2427 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2428 ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 2429 !llist_empty(&ctx->work_llist)); 2430 } 2431 2432 static inline bool io_should_wake(struct io_wait_queue *iowq) 2433 { 2434 struct io_ring_ctx *ctx = iowq->ctx; 2435 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2436 2437 /* 2438 * Wake up if we have enough events, or if a timeout occurred since we 2439 * started waiting. For timeouts, we always want to return to userspace, 2440 * regardless of event count. 2441 */ 2442 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2443 } 2444 2445 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2446 int wake_flags, void *key) 2447 { 2448 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, 2449 wq); 2450 struct io_ring_ctx *ctx = iowq->ctx; 2451 2452 /* 2453 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2454 * the task, and the next invocation will do it. 2455 */ 2456 if (io_should_wake(iowq) || io_has_work(ctx)) 2457 return autoremove_wake_function(curr, mode, wake_flags, key); 2458 return -1; 2459 } 2460 2461 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2462 { 2463 if (io_run_task_work_ctx(ctx) > 0) 2464 return 1; 2465 if (task_sigpending(current)) 2466 return -EINTR; 2467 return 0; 2468 } 2469 2470 /* when returns >0, the caller should retry */ 2471 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2472 struct io_wait_queue *iowq, 2473 ktime_t *timeout) 2474 { 2475 int ret; 2476 unsigned long check_cq; 2477 2478 /* make sure we run task_work before checking for signals */ 2479 ret = io_run_task_work_sig(ctx); 2480 if (ret || io_should_wake(iowq)) 2481 return ret; 2482 2483 check_cq = READ_ONCE(ctx->check_cq); 2484 if (unlikely(check_cq)) { 2485 /* let the caller flush overflows, retry */ 2486 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2487 return 1; 2488 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 2489 return -EBADR; 2490 } 2491 if (!schedule_hrtimeout(timeout, HRTIMER_MODE_ABS)) 2492 return -ETIME; 2493 2494 /* 2495 * Run task_work after scheduling. If we got woken because of 2496 * task_work being processed, run it now rather than let the caller 2497 * do another wait loop. 2498 */ 2499 ret = io_run_task_work_sig(ctx); 2500 return ret < 0 ? ret : 1; 2501 } 2502 2503 /* 2504 * Wait until events become available, if we don't already have some. The 2505 * application must reap them itself, as they reside on the shared cq ring. 2506 */ 2507 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2508 const sigset_t __user *sig, size_t sigsz, 2509 struct __kernel_timespec __user *uts) 2510 { 2511 struct io_wait_queue iowq; 2512 struct io_rings *rings = ctx->rings; 2513 ktime_t timeout = KTIME_MAX; 2514 int ret; 2515 2516 if (!io_allowed_run_tw(ctx)) 2517 return -EEXIST; 2518 2519 do { 2520 /* always run at least 1 task work to process local work */ 2521 ret = io_run_task_work_ctx(ctx); 2522 if (ret < 0) 2523 return ret; 2524 io_cqring_overflow_flush(ctx); 2525 2526 /* if user messes with these they will just get an early return */ 2527 if (__io_cqring_events_user(ctx) >= min_events) 2528 return 0; 2529 } while (ret > 0); 2530 2531 if (sig) { 2532 #ifdef CONFIG_COMPAT 2533 if (in_compat_syscall()) 2534 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2535 sigsz); 2536 else 2537 #endif 2538 ret = set_user_sigmask(sig, sigsz); 2539 2540 if (ret) 2541 return ret; 2542 } 2543 2544 if (uts) { 2545 struct timespec64 ts; 2546 2547 if (get_timespec64(&ts, uts)) 2548 return -EFAULT; 2549 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2550 } 2551 2552 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2553 iowq.wq.private = current; 2554 INIT_LIST_HEAD(&iowq.wq.entry); 2555 iowq.ctx = ctx; 2556 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2557 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2558 2559 trace_io_uring_cqring_wait(ctx, min_events); 2560 do { 2561 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2562 finish_wait(&ctx->cq_wait, &iowq.wq); 2563 io_cqring_do_overflow_flush(ctx); 2564 } 2565 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2566 TASK_INTERRUPTIBLE); 2567 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout); 2568 if (__io_cqring_events_user(ctx) >= min_events) 2569 break; 2570 cond_resched(); 2571 } while (ret > 0); 2572 2573 finish_wait(&ctx->cq_wait, &iowq.wq); 2574 restore_saved_sigmask_unless(ret == -EINTR); 2575 2576 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2577 } 2578 2579 static void io_mem_free(void *ptr) 2580 { 2581 struct page *page; 2582 2583 if (!ptr) 2584 return; 2585 2586 page = virt_to_head_page(ptr); 2587 if (put_page_testzero(page)) 2588 free_compound_page(page); 2589 } 2590 2591 static void *io_mem_alloc(size_t size) 2592 { 2593 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2594 2595 return (void *) __get_free_pages(gfp, get_order(size)); 2596 } 2597 2598 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2599 unsigned int cq_entries, size_t *sq_offset) 2600 { 2601 struct io_rings *rings; 2602 size_t off, sq_array_size; 2603 2604 off = struct_size(rings, cqes, cq_entries); 2605 if (off == SIZE_MAX) 2606 return SIZE_MAX; 2607 if (ctx->flags & IORING_SETUP_CQE32) { 2608 if (check_shl_overflow(off, 1, &off)) 2609 return SIZE_MAX; 2610 } 2611 2612 #ifdef CONFIG_SMP 2613 off = ALIGN(off, SMP_CACHE_BYTES); 2614 if (off == 0) 2615 return SIZE_MAX; 2616 #endif 2617 2618 if (sq_offset) 2619 *sq_offset = off; 2620 2621 sq_array_size = array_size(sizeof(u32), sq_entries); 2622 if (sq_array_size == SIZE_MAX) 2623 return SIZE_MAX; 2624 2625 if (check_add_overflow(off, sq_array_size, &off)) 2626 return SIZE_MAX; 2627 2628 return off; 2629 } 2630 2631 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2632 unsigned int eventfd_async) 2633 { 2634 struct io_ev_fd *ev_fd; 2635 __s32 __user *fds = arg; 2636 int fd; 2637 2638 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2639 lockdep_is_held(&ctx->uring_lock)); 2640 if (ev_fd) 2641 return -EBUSY; 2642 2643 if (copy_from_user(&fd, fds, sizeof(*fds))) 2644 return -EFAULT; 2645 2646 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2647 if (!ev_fd) 2648 return -ENOMEM; 2649 2650 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2651 if (IS_ERR(ev_fd->cq_ev_fd)) { 2652 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2653 kfree(ev_fd); 2654 return ret; 2655 } 2656 2657 spin_lock(&ctx->completion_lock); 2658 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2659 spin_unlock(&ctx->completion_lock); 2660 2661 ev_fd->eventfd_async = eventfd_async; 2662 ctx->has_evfd = true; 2663 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2664 atomic_set(&ev_fd->refs, 1); 2665 atomic_set(&ev_fd->ops, 0); 2666 return 0; 2667 } 2668 2669 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2670 { 2671 struct io_ev_fd *ev_fd; 2672 2673 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2674 lockdep_is_held(&ctx->uring_lock)); 2675 if (ev_fd) { 2676 ctx->has_evfd = false; 2677 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2678 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2679 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2680 return 0; 2681 } 2682 2683 return -ENXIO; 2684 } 2685 2686 static void io_req_caches_free(struct io_ring_ctx *ctx) 2687 { 2688 int nr = 0; 2689 2690 mutex_lock(&ctx->uring_lock); 2691 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2692 2693 while (!io_req_cache_empty(ctx)) { 2694 struct io_kiocb *req = io_alloc_req(ctx); 2695 2696 kmem_cache_free(req_cachep, req); 2697 nr++; 2698 } 2699 if (nr) 2700 percpu_ref_put_many(&ctx->refs, nr); 2701 mutex_unlock(&ctx->uring_lock); 2702 } 2703 2704 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2705 { 2706 io_sq_thread_finish(ctx); 2707 io_rsrc_refs_drop(ctx); 2708 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2709 io_wait_rsrc_data(ctx->buf_data); 2710 io_wait_rsrc_data(ctx->file_data); 2711 2712 mutex_lock(&ctx->uring_lock); 2713 if (ctx->buf_data) 2714 __io_sqe_buffers_unregister(ctx); 2715 if (ctx->file_data) 2716 __io_sqe_files_unregister(ctx); 2717 io_cqring_overflow_kill(ctx); 2718 io_eventfd_unregister(ctx); 2719 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2720 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2721 mutex_unlock(&ctx->uring_lock); 2722 io_destroy_buffers(ctx); 2723 if (ctx->sq_creds) 2724 put_cred(ctx->sq_creds); 2725 if (ctx->submitter_task) 2726 put_task_struct(ctx->submitter_task); 2727 2728 /* there are no registered resources left, nobody uses it */ 2729 if (ctx->rsrc_node) 2730 io_rsrc_node_destroy(ctx->rsrc_node); 2731 if (ctx->rsrc_backup_node) 2732 io_rsrc_node_destroy(ctx->rsrc_backup_node); 2733 flush_delayed_work(&ctx->rsrc_put_work); 2734 flush_delayed_work(&ctx->fallback_work); 2735 2736 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2737 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist)); 2738 2739 #if defined(CONFIG_UNIX) 2740 if (ctx->ring_sock) { 2741 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2742 sock_release(ctx->ring_sock); 2743 } 2744 #endif 2745 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2746 2747 if (ctx->mm_account) { 2748 mmdrop(ctx->mm_account); 2749 ctx->mm_account = NULL; 2750 } 2751 io_mem_free(ctx->rings); 2752 io_mem_free(ctx->sq_sqes); 2753 2754 percpu_ref_exit(&ctx->refs); 2755 free_uid(ctx->user); 2756 io_req_caches_free(ctx); 2757 if (ctx->hash_map) 2758 io_wq_put_hash(ctx->hash_map); 2759 kfree(ctx->cancel_table.hbs); 2760 kfree(ctx->cancel_table_locked.hbs); 2761 kfree(ctx->dummy_ubuf); 2762 kfree(ctx->io_bl); 2763 xa_destroy(&ctx->io_bl_xa); 2764 kfree(ctx); 2765 } 2766 2767 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2768 { 2769 struct io_ring_ctx *ctx = file->private_data; 2770 __poll_t mask = 0; 2771 2772 poll_wait(file, &ctx->cq_wait, wait); 2773 /* 2774 * synchronizes with barrier from wq_has_sleeper call in 2775 * io_commit_cqring 2776 */ 2777 smp_rmb(); 2778 if (!io_sqring_full(ctx)) 2779 mask |= EPOLLOUT | EPOLLWRNORM; 2780 2781 /* 2782 * Don't flush cqring overflow list here, just do a simple check. 2783 * Otherwise there could possible be ABBA deadlock: 2784 * CPU0 CPU1 2785 * ---- ---- 2786 * lock(&ctx->uring_lock); 2787 * lock(&ep->mtx); 2788 * lock(&ctx->uring_lock); 2789 * lock(&ep->mtx); 2790 * 2791 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2792 * pushes them to do the flush. 2793 */ 2794 2795 if (io_cqring_events(ctx) || io_has_work(ctx)) 2796 mask |= EPOLLIN | EPOLLRDNORM; 2797 2798 return mask; 2799 } 2800 2801 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 2802 { 2803 const struct cred *creds; 2804 2805 creds = xa_erase(&ctx->personalities, id); 2806 if (creds) { 2807 put_cred(creds); 2808 return 0; 2809 } 2810 2811 return -EINVAL; 2812 } 2813 2814 struct io_tctx_exit { 2815 struct callback_head task_work; 2816 struct completion completion; 2817 struct io_ring_ctx *ctx; 2818 }; 2819 2820 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2821 { 2822 struct io_uring_task *tctx = current->io_uring; 2823 struct io_tctx_exit *work; 2824 2825 work = container_of(cb, struct io_tctx_exit, task_work); 2826 /* 2827 * When @in_idle, we're in cancellation and it's racy to remove the 2828 * node. It'll be removed by the end of cancellation, just ignore it. 2829 * tctx can be NULL if the queueing of this task_work raced with 2830 * work cancelation off the exec path. 2831 */ 2832 if (tctx && !atomic_read(&tctx->in_idle)) 2833 io_uring_del_tctx_node((unsigned long)work->ctx); 2834 complete(&work->completion); 2835 } 2836 2837 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2838 { 2839 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2840 2841 return req->ctx == data; 2842 } 2843 2844 static __cold void io_ring_exit_work(struct work_struct *work) 2845 { 2846 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2847 unsigned long timeout = jiffies + HZ * 60 * 5; 2848 unsigned long interval = HZ / 20; 2849 struct io_tctx_exit exit; 2850 struct io_tctx_node *node; 2851 int ret; 2852 2853 /* 2854 * If we're doing polled IO and end up having requests being 2855 * submitted async (out-of-line), then completions can come in while 2856 * we're waiting for refs to drop. We need to reap these manually, 2857 * as nobody else will be looking for them. 2858 */ 2859 do { 2860 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2861 mutex_lock(&ctx->uring_lock); 2862 io_cqring_overflow_kill(ctx); 2863 mutex_unlock(&ctx->uring_lock); 2864 } 2865 2866 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2867 io_move_task_work_from_local(ctx); 2868 2869 while (io_uring_try_cancel_requests(ctx, NULL, true)) 2870 cond_resched(); 2871 2872 if (ctx->sq_data) { 2873 struct io_sq_data *sqd = ctx->sq_data; 2874 struct task_struct *tsk; 2875 2876 io_sq_thread_park(sqd); 2877 tsk = sqd->thread; 2878 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2879 io_wq_cancel_cb(tsk->io_uring->io_wq, 2880 io_cancel_ctx_cb, ctx, true); 2881 io_sq_thread_unpark(sqd); 2882 } 2883 2884 io_req_caches_free(ctx); 2885 2886 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2887 /* there is little hope left, don't run it too often */ 2888 interval = HZ * 60; 2889 } 2890 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval)); 2891 2892 init_completion(&exit.completion); 2893 init_task_work(&exit.task_work, io_tctx_exit_cb); 2894 exit.ctx = ctx; 2895 /* 2896 * Some may use context even when all refs and requests have been put, 2897 * and they are free to do so while still holding uring_lock or 2898 * completion_lock, see io_req_task_submit(). Apart from other work, 2899 * this lock/unlock section also waits them to finish. 2900 */ 2901 mutex_lock(&ctx->uring_lock); 2902 while (!list_empty(&ctx->tctx_list)) { 2903 WARN_ON_ONCE(time_after(jiffies, timeout)); 2904 2905 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 2906 ctx_node); 2907 /* don't spin on a single task if cancellation failed */ 2908 list_rotate_left(&ctx->tctx_list); 2909 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 2910 if (WARN_ON_ONCE(ret)) 2911 continue; 2912 2913 mutex_unlock(&ctx->uring_lock); 2914 wait_for_completion(&exit.completion); 2915 mutex_lock(&ctx->uring_lock); 2916 } 2917 mutex_unlock(&ctx->uring_lock); 2918 spin_lock(&ctx->completion_lock); 2919 spin_unlock(&ctx->completion_lock); 2920 2921 io_ring_ctx_free(ctx); 2922 } 2923 2924 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 2925 { 2926 unsigned long index; 2927 struct creds *creds; 2928 2929 mutex_lock(&ctx->uring_lock); 2930 percpu_ref_kill(&ctx->refs); 2931 xa_for_each(&ctx->personalities, index, creds) 2932 io_unregister_personality(ctx, index); 2933 if (ctx->rings) 2934 io_poll_remove_all(ctx, NULL, true); 2935 mutex_unlock(&ctx->uring_lock); 2936 2937 /* 2938 * If we failed setting up the ctx, we might not have any rings 2939 * and therefore did not submit any requests 2940 */ 2941 if (ctx->rings) 2942 io_kill_timeouts(ctx, NULL, true); 2943 2944 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 2945 /* 2946 * Use system_unbound_wq to avoid spawning tons of event kworkers 2947 * if we're exiting a ton of rings at the same time. It just adds 2948 * noise and overhead, there's no discernable change in runtime 2949 * over using system_wq. 2950 */ 2951 queue_work(system_unbound_wq, &ctx->exit_work); 2952 } 2953 2954 static int io_uring_release(struct inode *inode, struct file *file) 2955 { 2956 struct io_ring_ctx *ctx = file->private_data; 2957 2958 file->private_data = NULL; 2959 io_ring_ctx_wait_and_kill(ctx); 2960 return 0; 2961 } 2962 2963 struct io_task_cancel { 2964 struct task_struct *task; 2965 bool all; 2966 }; 2967 2968 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 2969 { 2970 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2971 struct io_task_cancel *cancel = data; 2972 2973 return io_match_task_safe(req, cancel->task, cancel->all); 2974 } 2975 2976 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 2977 struct task_struct *task, 2978 bool cancel_all) 2979 { 2980 struct io_defer_entry *de; 2981 LIST_HEAD(list); 2982 2983 spin_lock(&ctx->completion_lock); 2984 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 2985 if (io_match_task_safe(de->req, task, cancel_all)) { 2986 list_cut_position(&list, &ctx->defer_list, &de->list); 2987 break; 2988 } 2989 } 2990 spin_unlock(&ctx->completion_lock); 2991 if (list_empty(&list)) 2992 return false; 2993 2994 while (!list_empty(&list)) { 2995 de = list_first_entry(&list, struct io_defer_entry, list); 2996 list_del_init(&de->list); 2997 io_req_task_queue_fail(de->req, -ECANCELED); 2998 kfree(de); 2999 } 3000 return true; 3001 } 3002 3003 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3004 { 3005 struct io_tctx_node *node; 3006 enum io_wq_cancel cret; 3007 bool ret = false; 3008 3009 mutex_lock(&ctx->uring_lock); 3010 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3011 struct io_uring_task *tctx = node->task->io_uring; 3012 3013 /* 3014 * io_wq will stay alive while we hold uring_lock, because it's 3015 * killed after ctx nodes, which requires to take the lock. 3016 */ 3017 if (!tctx || !tctx->io_wq) 3018 continue; 3019 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3020 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3021 } 3022 mutex_unlock(&ctx->uring_lock); 3023 3024 return ret; 3025 } 3026 3027 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3028 struct task_struct *task, 3029 bool cancel_all) 3030 { 3031 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3032 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3033 enum io_wq_cancel cret; 3034 bool ret = false; 3035 3036 /* failed during ring init, it couldn't have issued any requests */ 3037 if (!ctx->rings) 3038 return false; 3039 3040 if (!task) { 3041 ret |= io_uring_try_cancel_iowq(ctx); 3042 } else if (tctx && tctx->io_wq) { 3043 /* 3044 * Cancels requests of all rings, not only @ctx, but 3045 * it's fine as the task is in exit/exec. 3046 */ 3047 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3048 &cancel, true); 3049 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3050 } 3051 3052 /* SQPOLL thread does its own polling */ 3053 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3054 (ctx->sq_data && ctx->sq_data->thread == current)) { 3055 while (!wq_list_empty(&ctx->iopoll_list)) { 3056 io_iopoll_try_reap_events(ctx); 3057 ret = true; 3058 } 3059 } 3060 3061 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3062 ret |= io_run_local_work(ctx) > 0; 3063 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3064 mutex_lock(&ctx->uring_lock); 3065 ret |= io_poll_remove_all(ctx, task, cancel_all); 3066 mutex_unlock(&ctx->uring_lock); 3067 ret |= io_kill_timeouts(ctx, task, cancel_all); 3068 if (task) 3069 ret |= io_run_task_work() > 0; 3070 return ret; 3071 } 3072 3073 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3074 { 3075 if (tracked) 3076 return atomic_read(&tctx->inflight_tracked); 3077 return percpu_counter_sum(&tctx->inflight); 3078 } 3079 3080 /* 3081 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3082 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3083 */ 3084 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3085 { 3086 struct io_uring_task *tctx = current->io_uring; 3087 struct io_ring_ctx *ctx; 3088 s64 inflight; 3089 DEFINE_WAIT(wait); 3090 3091 WARN_ON_ONCE(sqd && sqd->thread != current); 3092 3093 if (!current->io_uring) 3094 return; 3095 if (tctx->io_wq) 3096 io_wq_exit_start(tctx->io_wq); 3097 3098 atomic_inc(&tctx->in_idle); 3099 do { 3100 bool loop = false; 3101 3102 io_uring_drop_tctx_refs(current); 3103 /* read completions before cancelations */ 3104 inflight = tctx_inflight(tctx, !cancel_all); 3105 if (!inflight) 3106 break; 3107 3108 if (!sqd) { 3109 struct io_tctx_node *node; 3110 unsigned long index; 3111 3112 xa_for_each(&tctx->xa, index, node) { 3113 /* sqpoll task will cancel all its requests */ 3114 if (node->ctx->sq_data) 3115 continue; 3116 loop |= io_uring_try_cancel_requests(node->ctx, 3117 current, cancel_all); 3118 } 3119 } else { 3120 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3121 loop |= io_uring_try_cancel_requests(ctx, 3122 current, 3123 cancel_all); 3124 } 3125 3126 if (loop) { 3127 cond_resched(); 3128 continue; 3129 } 3130 3131 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3132 io_run_task_work(); 3133 io_uring_drop_tctx_refs(current); 3134 3135 /* 3136 * If we've seen completions, retry without waiting. This 3137 * avoids a race where a completion comes in before we did 3138 * prepare_to_wait(). 3139 */ 3140 if (inflight == tctx_inflight(tctx, !cancel_all)) 3141 schedule(); 3142 finish_wait(&tctx->wait, &wait); 3143 } while (1); 3144 3145 io_uring_clean_tctx(tctx); 3146 if (cancel_all) { 3147 /* 3148 * We shouldn't run task_works after cancel, so just leave 3149 * ->in_idle set for normal exit. 3150 */ 3151 atomic_dec(&tctx->in_idle); 3152 /* for exec all current's requests should be gone, kill tctx */ 3153 __io_uring_free(current); 3154 } 3155 } 3156 3157 void __io_uring_cancel(bool cancel_all) 3158 { 3159 io_uring_cancel_generic(cancel_all, NULL); 3160 } 3161 3162 static void *io_uring_validate_mmap_request(struct file *file, 3163 loff_t pgoff, size_t sz) 3164 { 3165 struct io_ring_ctx *ctx = file->private_data; 3166 loff_t offset = pgoff << PAGE_SHIFT; 3167 struct page *page; 3168 void *ptr; 3169 3170 switch (offset) { 3171 case IORING_OFF_SQ_RING: 3172 case IORING_OFF_CQ_RING: 3173 ptr = ctx->rings; 3174 break; 3175 case IORING_OFF_SQES: 3176 ptr = ctx->sq_sqes; 3177 break; 3178 default: 3179 return ERR_PTR(-EINVAL); 3180 } 3181 3182 page = virt_to_head_page(ptr); 3183 if (sz > page_size(page)) 3184 return ERR_PTR(-EINVAL); 3185 3186 return ptr; 3187 } 3188 3189 #ifdef CONFIG_MMU 3190 3191 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3192 { 3193 size_t sz = vma->vm_end - vma->vm_start; 3194 unsigned long pfn; 3195 void *ptr; 3196 3197 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3198 if (IS_ERR(ptr)) 3199 return PTR_ERR(ptr); 3200 3201 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3202 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3203 } 3204 3205 #else /* !CONFIG_MMU */ 3206 3207 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3208 { 3209 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL; 3210 } 3211 3212 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3213 { 3214 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3215 } 3216 3217 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3218 unsigned long addr, unsigned long len, 3219 unsigned long pgoff, unsigned long flags) 3220 { 3221 void *ptr; 3222 3223 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3224 if (IS_ERR(ptr)) 3225 return PTR_ERR(ptr); 3226 3227 return (unsigned long) ptr; 3228 } 3229 3230 #endif /* !CONFIG_MMU */ 3231 3232 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3233 { 3234 if (flags & IORING_ENTER_EXT_ARG) { 3235 struct io_uring_getevents_arg arg; 3236 3237 if (argsz != sizeof(arg)) 3238 return -EINVAL; 3239 if (copy_from_user(&arg, argp, sizeof(arg))) 3240 return -EFAULT; 3241 } 3242 return 0; 3243 } 3244 3245 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3246 struct __kernel_timespec __user **ts, 3247 const sigset_t __user **sig) 3248 { 3249 struct io_uring_getevents_arg arg; 3250 3251 /* 3252 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3253 * is just a pointer to the sigset_t. 3254 */ 3255 if (!(flags & IORING_ENTER_EXT_ARG)) { 3256 *sig = (const sigset_t __user *) argp; 3257 *ts = NULL; 3258 return 0; 3259 } 3260 3261 /* 3262 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3263 * timespec and sigset_t pointers if good. 3264 */ 3265 if (*argsz != sizeof(arg)) 3266 return -EINVAL; 3267 if (copy_from_user(&arg, argp, sizeof(arg))) 3268 return -EFAULT; 3269 if (arg.pad) 3270 return -EINVAL; 3271 *sig = u64_to_user_ptr(arg.sigmask); 3272 *argsz = arg.sigmask_sz; 3273 *ts = u64_to_user_ptr(arg.ts); 3274 return 0; 3275 } 3276 3277 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3278 u32, min_complete, u32, flags, const void __user *, argp, 3279 size_t, argsz) 3280 { 3281 struct io_ring_ctx *ctx; 3282 struct fd f; 3283 long ret; 3284 3285 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3286 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3287 IORING_ENTER_REGISTERED_RING))) 3288 return -EINVAL; 3289 3290 /* 3291 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3292 * need only dereference our task private array to find it. 3293 */ 3294 if (flags & IORING_ENTER_REGISTERED_RING) { 3295 struct io_uring_task *tctx = current->io_uring; 3296 3297 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3298 return -EINVAL; 3299 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3300 f.file = tctx->registered_rings[fd]; 3301 f.flags = 0; 3302 if (unlikely(!f.file)) 3303 return -EBADF; 3304 } else { 3305 f = fdget(fd); 3306 if (unlikely(!f.file)) 3307 return -EBADF; 3308 ret = -EOPNOTSUPP; 3309 if (unlikely(!io_is_uring_fops(f.file))) 3310 goto out; 3311 } 3312 3313 ctx = f.file->private_data; 3314 ret = -EBADFD; 3315 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3316 goto out; 3317 3318 /* 3319 * For SQ polling, the thread will do all submissions and completions. 3320 * Just return the requested submit count, and wake the thread if 3321 * we were asked to. 3322 */ 3323 ret = 0; 3324 if (ctx->flags & IORING_SETUP_SQPOLL) { 3325 io_cqring_overflow_flush(ctx); 3326 3327 if (unlikely(ctx->sq_data->thread == NULL)) { 3328 ret = -EOWNERDEAD; 3329 goto out; 3330 } 3331 if (flags & IORING_ENTER_SQ_WAKEUP) 3332 wake_up(&ctx->sq_data->wait); 3333 if (flags & IORING_ENTER_SQ_WAIT) { 3334 ret = io_sqpoll_wait_sq(ctx); 3335 if (ret) 3336 goto out; 3337 } 3338 ret = to_submit; 3339 } else if (to_submit) { 3340 ret = io_uring_add_tctx_node(ctx); 3341 if (unlikely(ret)) 3342 goto out; 3343 3344 mutex_lock(&ctx->uring_lock); 3345 ret = io_submit_sqes(ctx, to_submit); 3346 if (ret != to_submit) { 3347 mutex_unlock(&ctx->uring_lock); 3348 goto out; 3349 } 3350 if (flags & IORING_ENTER_GETEVENTS) { 3351 if (ctx->syscall_iopoll) 3352 goto iopoll_locked; 3353 /* 3354 * Ignore errors, we'll soon call io_cqring_wait() and 3355 * it should handle ownership problems if any. 3356 */ 3357 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3358 (void)io_run_local_work_locked(ctx); 3359 } 3360 mutex_unlock(&ctx->uring_lock); 3361 } 3362 3363 if (flags & IORING_ENTER_GETEVENTS) { 3364 int ret2; 3365 3366 if (ctx->syscall_iopoll) { 3367 /* 3368 * We disallow the app entering submit/complete with 3369 * polling, but we still need to lock the ring to 3370 * prevent racing with polled issue that got punted to 3371 * a workqueue. 3372 */ 3373 mutex_lock(&ctx->uring_lock); 3374 iopoll_locked: 3375 ret2 = io_validate_ext_arg(flags, argp, argsz); 3376 if (likely(!ret2)) { 3377 min_complete = min(min_complete, 3378 ctx->cq_entries); 3379 ret2 = io_iopoll_check(ctx, min_complete); 3380 } 3381 mutex_unlock(&ctx->uring_lock); 3382 } else { 3383 const sigset_t __user *sig; 3384 struct __kernel_timespec __user *ts; 3385 3386 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3387 if (likely(!ret2)) { 3388 min_complete = min(min_complete, 3389 ctx->cq_entries); 3390 ret2 = io_cqring_wait(ctx, min_complete, sig, 3391 argsz, ts); 3392 } 3393 } 3394 3395 if (!ret) { 3396 ret = ret2; 3397 3398 /* 3399 * EBADR indicates that one or more CQE were dropped. 3400 * Once the user has been informed we can clear the bit 3401 * as they are obviously ok with those drops. 3402 */ 3403 if (unlikely(ret2 == -EBADR)) 3404 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3405 &ctx->check_cq); 3406 } 3407 } 3408 out: 3409 fdput(f); 3410 return ret; 3411 } 3412 3413 static const struct file_operations io_uring_fops = { 3414 .release = io_uring_release, 3415 .mmap = io_uring_mmap, 3416 #ifndef CONFIG_MMU 3417 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3418 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3419 #endif 3420 .poll = io_uring_poll, 3421 #ifdef CONFIG_PROC_FS 3422 .show_fdinfo = io_uring_show_fdinfo, 3423 #endif 3424 }; 3425 3426 bool io_is_uring_fops(struct file *file) 3427 { 3428 return file->f_op == &io_uring_fops; 3429 } 3430 3431 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3432 struct io_uring_params *p) 3433 { 3434 struct io_rings *rings; 3435 size_t size, sq_array_offset; 3436 3437 /* make sure these are sane, as we already accounted them */ 3438 ctx->sq_entries = p->sq_entries; 3439 ctx->cq_entries = p->cq_entries; 3440 3441 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3442 if (size == SIZE_MAX) 3443 return -EOVERFLOW; 3444 3445 rings = io_mem_alloc(size); 3446 if (!rings) 3447 return -ENOMEM; 3448 3449 ctx->rings = rings; 3450 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3451 rings->sq_ring_mask = p->sq_entries - 1; 3452 rings->cq_ring_mask = p->cq_entries - 1; 3453 rings->sq_ring_entries = p->sq_entries; 3454 rings->cq_ring_entries = p->cq_entries; 3455 3456 if (p->flags & IORING_SETUP_SQE128) 3457 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3458 else 3459 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3460 if (size == SIZE_MAX) { 3461 io_mem_free(ctx->rings); 3462 ctx->rings = NULL; 3463 return -EOVERFLOW; 3464 } 3465 3466 ctx->sq_sqes = io_mem_alloc(size); 3467 if (!ctx->sq_sqes) { 3468 io_mem_free(ctx->rings); 3469 ctx->rings = NULL; 3470 return -ENOMEM; 3471 } 3472 3473 return 0; 3474 } 3475 3476 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file) 3477 { 3478 int ret, fd; 3479 3480 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3481 if (fd < 0) 3482 return fd; 3483 3484 ret = __io_uring_add_tctx_node(ctx); 3485 if (ret) { 3486 put_unused_fd(fd); 3487 return ret; 3488 } 3489 fd_install(fd, file); 3490 return fd; 3491 } 3492 3493 /* 3494 * Allocate an anonymous fd, this is what constitutes the application 3495 * visible backing of an io_uring instance. The application mmaps this 3496 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3497 * we have to tie this fd to a socket for file garbage collection purposes. 3498 */ 3499 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3500 { 3501 struct file *file; 3502 #if defined(CONFIG_UNIX) 3503 int ret; 3504 3505 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3506 &ctx->ring_sock); 3507 if (ret) 3508 return ERR_PTR(ret); 3509 #endif 3510 3511 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3512 O_RDWR | O_CLOEXEC, NULL); 3513 #if defined(CONFIG_UNIX) 3514 if (IS_ERR(file)) { 3515 sock_release(ctx->ring_sock); 3516 ctx->ring_sock = NULL; 3517 } else { 3518 ctx->ring_sock->file = file; 3519 } 3520 #endif 3521 return file; 3522 } 3523 3524 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3525 struct io_uring_params __user *params) 3526 { 3527 struct io_ring_ctx *ctx; 3528 struct file *file; 3529 int ret; 3530 3531 if (!entries) 3532 return -EINVAL; 3533 if (entries > IORING_MAX_ENTRIES) { 3534 if (!(p->flags & IORING_SETUP_CLAMP)) 3535 return -EINVAL; 3536 entries = IORING_MAX_ENTRIES; 3537 } 3538 3539 /* 3540 * Use twice as many entries for the CQ ring. It's possible for the 3541 * application to drive a higher depth than the size of the SQ ring, 3542 * since the sqes are only used at submission time. This allows for 3543 * some flexibility in overcommitting a bit. If the application has 3544 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3545 * of CQ ring entries manually. 3546 */ 3547 p->sq_entries = roundup_pow_of_two(entries); 3548 if (p->flags & IORING_SETUP_CQSIZE) { 3549 /* 3550 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3551 * to a power-of-two, if it isn't already. We do NOT impose 3552 * any cq vs sq ring sizing. 3553 */ 3554 if (!p->cq_entries) 3555 return -EINVAL; 3556 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3557 if (!(p->flags & IORING_SETUP_CLAMP)) 3558 return -EINVAL; 3559 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3560 } 3561 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3562 if (p->cq_entries < p->sq_entries) 3563 return -EINVAL; 3564 } else { 3565 p->cq_entries = 2 * p->sq_entries; 3566 } 3567 3568 ctx = io_ring_ctx_alloc(p); 3569 if (!ctx) 3570 return -ENOMEM; 3571 3572 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3573 !(ctx->flags & IORING_SETUP_IOPOLL) && 3574 !(ctx->flags & IORING_SETUP_SQPOLL)) 3575 ctx->task_complete = true; 3576 3577 /* 3578 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3579 * space applications don't need to do io completion events 3580 * polling again, they can rely on io_sq_thread to do polling 3581 * work, which can reduce cpu usage and uring_lock contention. 3582 */ 3583 if (ctx->flags & IORING_SETUP_IOPOLL && 3584 !(ctx->flags & IORING_SETUP_SQPOLL)) 3585 ctx->syscall_iopoll = 1; 3586 3587 ctx->compat = in_compat_syscall(); 3588 if (!capable(CAP_IPC_LOCK)) 3589 ctx->user = get_uid(current_user()); 3590 3591 /* 3592 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3593 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3594 */ 3595 ret = -EINVAL; 3596 if (ctx->flags & IORING_SETUP_SQPOLL) { 3597 /* IPI related flags don't make sense with SQPOLL */ 3598 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3599 IORING_SETUP_TASKRUN_FLAG | 3600 IORING_SETUP_DEFER_TASKRUN)) 3601 goto err; 3602 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3603 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3604 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3605 } else { 3606 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3607 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3608 goto err; 3609 ctx->notify_method = TWA_SIGNAL; 3610 } 3611 3612 /* 3613 * For DEFER_TASKRUN we require the completion task to be the same as the 3614 * submission task. This implies that there is only one submitter, so enforce 3615 * that. 3616 */ 3617 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3618 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3619 goto err; 3620 } 3621 3622 /* 3623 * This is just grabbed for accounting purposes. When a process exits, 3624 * the mm is exited and dropped before the files, hence we need to hang 3625 * on to this mm purely for the purposes of being able to unaccount 3626 * memory (locked/pinned vm). It's not used for anything else. 3627 */ 3628 mmgrab(current->mm); 3629 ctx->mm_account = current->mm; 3630 3631 ret = io_allocate_scq_urings(ctx, p); 3632 if (ret) 3633 goto err; 3634 3635 ret = io_sq_offload_create(ctx, p); 3636 if (ret) 3637 goto err; 3638 /* always set a rsrc node */ 3639 ret = io_rsrc_node_switch_start(ctx); 3640 if (ret) 3641 goto err; 3642 io_rsrc_node_switch(ctx, NULL); 3643 3644 memset(&p->sq_off, 0, sizeof(p->sq_off)); 3645 p->sq_off.head = offsetof(struct io_rings, sq.head); 3646 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3647 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3648 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3649 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3650 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3651 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3652 3653 memset(&p->cq_off, 0, sizeof(p->cq_off)); 3654 p->cq_off.head = offsetof(struct io_rings, cq.head); 3655 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3656 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3657 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3658 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3659 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3660 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3661 3662 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3663 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3664 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3665 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3666 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3667 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3668 IORING_FEAT_LINKED_FILE; 3669 3670 if (copy_to_user(params, p, sizeof(*p))) { 3671 ret = -EFAULT; 3672 goto err; 3673 } 3674 3675 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3676 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3677 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3678 3679 file = io_uring_get_file(ctx); 3680 if (IS_ERR(file)) { 3681 ret = PTR_ERR(file); 3682 goto err; 3683 } 3684 3685 /* 3686 * Install ring fd as the very last thing, so we don't risk someone 3687 * having closed it before we finish setup 3688 */ 3689 ret = io_uring_install_fd(ctx, file); 3690 if (ret < 0) { 3691 /* fput will clean it up */ 3692 fput(file); 3693 return ret; 3694 } 3695 3696 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3697 return ret; 3698 err: 3699 io_ring_ctx_wait_and_kill(ctx); 3700 return ret; 3701 } 3702 3703 /* 3704 * Sets up an aio uring context, and returns the fd. Applications asks for a 3705 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3706 * params structure passed in. 3707 */ 3708 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3709 { 3710 struct io_uring_params p; 3711 int i; 3712 3713 if (copy_from_user(&p, params, sizeof(p))) 3714 return -EFAULT; 3715 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3716 if (p.resv[i]) 3717 return -EINVAL; 3718 } 3719 3720 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3721 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3722 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3723 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3724 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3725 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3726 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN)) 3727 return -EINVAL; 3728 3729 return io_uring_create(entries, &p, params); 3730 } 3731 3732 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3733 struct io_uring_params __user *, params) 3734 { 3735 return io_uring_setup(entries, params); 3736 } 3737 3738 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 3739 unsigned nr_args) 3740 { 3741 struct io_uring_probe *p; 3742 size_t size; 3743 int i, ret; 3744 3745 size = struct_size(p, ops, nr_args); 3746 if (size == SIZE_MAX) 3747 return -EOVERFLOW; 3748 p = kzalloc(size, GFP_KERNEL); 3749 if (!p) 3750 return -ENOMEM; 3751 3752 ret = -EFAULT; 3753 if (copy_from_user(p, arg, size)) 3754 goto out; 3755 ret = -EINVAL; 3756 if (memchr_inv(p, 0, size)) 3757 goto out; 3758 3759 p->last_op = IORING_OP_LAST - 1; 3760 if (nr_args > IORING_OP_LAST) 3761 nr_args = IORING_OP_LAST; 3762 3763 for (i = 0; i < nr_args; i++) { 3764 p->ops[i].op = i; 3765 if (!io_op_defs[i].not_supported) 3766 p->ops[i].flags = IO_URING_OP_SUPPORTED; 3767 } 3768 p->ops_len = i; 3769 3770 ret = 0; 3771 if (copy_to_user(arg, p, size)) 3772 ret = -EFAULT; 3773 out: 3774 kfree(p); 3775 return ret; 3776 } 3777 3778 static int io_register_personality(struct io_ring_ctx *ctx) 3779 { 3780 const struct cred *creds; 3781 u32 id; 3782 int ret; 3783 3784 creds = get_current_cred(); 3785 3786 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 3787 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 3788 if (ret < 0) { 3789 put_cred(creds); 3790 return ret; 3791 } 3792 return id; 3793 } 3794 3795 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 3796 void __user *arg, unsigned int nr_args) 3797 { 3798 struct io_uring_restriction *res; 3799 size_t size; 3800 int i, ret; 3801 3802 /* Restrictions allowed only if rings started disabled */ 3803 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 3804 return -EBADFD; 3805 3806 /* We allow only a single restrictions registration */ 3807 if (ctx->restrictions.registered) 3808 return -EBUSY; 3809 3810 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 3811 return -EINVAL; 3812 3813 size = array_size(nr_args, sizeof(*res)); 3814 if (size == SIZE_MAX) 3815 return -EOVERFLOW; 3816 3817 res = memdup_user(arg, size); 3818 if (IS_ERR(res)) 3819 return PTR_ERR(res); 3820 3821 ret = 0; 3822 3823 for (i = 0; i < nr_args; i++) { 3824 switch (res[i].opcode) { 3825 case IORING_RESTRICTION_REGISTER_OP: 3826 if (res[i].register_op >= IORING_REGISTER_LAST) { 3827 ret = -EINVAL; 3828 goto out; 3829 } 3830 3831 __set_bit(res[i].register_op, 3832 ctx->restrictions.register_op); 3833 break; 3834 case IORING_RESTRICTION_SQE_OP: 3835 if (res[i].sqe_op >= IORING_OP_LAST) { 3836 ret = -EINVAL; 3837 goto out; 3838 } 3839 3840 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 3841 break; 3842 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 3843 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 3844 break; 3845 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 3846 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 3847 break; 3848 default: 3849 ret = -EINVAL; 3850 goto out; 3851 } 3852 } 3853 3854 out: 3855 /* Reset all restrictions if an error happened */ 3856 if (ret != 0) 3857 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 3858 else 3859 ctx->restrictions.registered = true; 3860 3861 kfree(res); 3862 return ret; 3863 } 3864 3865 static int io_register_enable_rings(struct io_ring_ctx *ctx) 3866 { 3867 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 3868 return -EBADFD; 3869 3870 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) 3871 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3872 3873 if (ctx->restrictions.registered) 3874 ctx->restricted = 1; 3875 3876 ctx->flags &= ~IORING_SETUP_R_DISABLED; 3877 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 3878 wake_up(&ctx->sq_data->wait); 3879 return 0; 3880 } 3881 3882 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 3883 void __user *arg, unsigned len) 3884 { 3885 struct io_uring_task *tctx = current->io_uring; 3886 cpumask_var_t new_mask; 3887 int ret; 3888 3889 if (!tctx || !tctx->io_wq) 3890 return -EINVAL; 3891 3892 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 3893 return -ENOMEM; 3894 3895 cpumask_clear(new_mask); 3896 if (len > cpumask_size()) 3897 len = cpumask_size(); 3898 3899 if (in_compat_syscall()) { 3900 ret = compat_get_bitmap(cpumask_bits(new_mask), 3901 (const compat_ulong_t __user *)arg, 3902 len * 8 /* CHAR_BIT */); 3903 } else { 3904 ret = copy_from_user(new_mask, arg, len); 3905 } 3906 3907 if (ret) { 3908 free_cpumask_var(new_mask); 3909 return -EFAULT; 3910 } 3911 3912 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask); 3913 free_cpumask_var(new_mask); 3914 return ret; 3915 } 3916 3917 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 3918 { 3919 struct io_uring_task *tctx = current->io_uring; 3920 3921 if (!tctx || !tctx->io_wq) 3922 return -EINVAL; 3923 3924 return io_wq_cpu_affinity(tctx->io_wq, NULL); 3925 } 3926 3927 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 3928 void __user *arg) 3929 __must_hold(&ctx->uring_lock) 3930 { 3931 struct io_tctx_node *node; 3932 struct io_uring_task *tctx = NULL; 3933 struct io_sq_data *sqd = NULL; 3934 __u32 new_count[2]; 3935 int i, ret; 3936 3937 if (copy_from_user(new_count, arg, sizeof(new_count))) 3938 return -EFAULT; 3939 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3940 if (new_count[i] > INT_MAX) 3941 return -EINVAL; 3942 3943 if (ctx->flags & IORING_SETUP_SQPOLL) { 3944 sqd = ctx->sq_data; 3945 if (sqd) { 3946 /* 3947 * Observe the correct sqd->lock -> ctx->uring_lock 3948 * ordering. Fine to drop uring_lock here, we hold 3949 * a ref to the ctx. 3950 */ 3951 refcount_inc(&sqd->refs); 3952 mutex_unlock(&ctx->uring_lock); 3953 mutex_lock(&sqd->lock); 3954 mutex_lock(&ctx->uring_lock); 3955 if (sqd->thread) 3956 tctx = sqd->thread->io_uring; 3957 } 3958 } else { 3959 tctx = current->io_uring; 3960 } 3961 3962 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 3963 3964 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3965 if (new_count[i]) 3966 ctx->iowq_limits[i] = new_count[i]; 3967 ctx->iowq_limits_set = true; 3968 3969 if (tctx && tctx->io_wq) { 3970 ret = io_wq_max_workers(tctx->io_wq, new_count); 3971 if (ret) 3972 goto err; 3973 } else { 3974 memset(new_count, 0, sizeof(new_count)); 3975 } 3976 3977 if (sqd) { 3978 mutex_unlock(&sqd->lock); 3979 io_put_sq_data(sqd); 3980 } 3981 3982 if (copy_to_user(arg, new_count, sizeof(new_count))) 3983 return -EFAULT; 3984 3985 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 3986 if (sqd) 3987 return 0; 3988 3989 /* now propagate the restriction to all registered users */ 3990 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3991 struct io_uring_task *tctx = node->task->io_uring; 3992 3993 if (WARN_ON_ONCE(!tctx->io_wq)) 3994 continue; 3995 3996 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3997 new_count[i] = ctx->iowq_limits[i]; 3998 /* ignore errors, it always returns zero anyway */ 3999 (void)io_wq_max_workers(tctx->io_wq, new_count); 4000 } 4001 return 0; 4002 err: 4003 if (sqd) { 4004 mutex_unlock(&sqd->lock); 4005 io_put_sq_data(sqd); 4006 } 4007 return ret; 4008 } 4009 4010 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4011 void __user *arg, unsigned nr_args) 4012 __releases(ctx->uring_lock) 4013 __acquires(ctx->uring_lock) 4014 { 4015 int ret; 4016 4017 /* 4018 * We don't quiesce the refs for register anymore and so it can't be 4019 * dying as we're holding a file ref here. 4020 */ 4021 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4022 return -ENXIO; 4023 4024 if (ctx->submitter_task && ctx->submitter_task != current) 4025 return -EEXIST; 4026 4027 if (ctx->restricted) { 4028 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4029 if (!test_bit(opcode, ctx->restrictions.register_op)) 4030 return -EACCES; 4031 } 4032 4033 switch (opcode) { 4034 case IORING_REGISTER_BUFFERS: 4035 ret = -EFAULT; 4036 if (!arg) 4037 break; 4038 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4039 break; 4040 case IORING_UNREGISTER_BUFFERS: 4041 ret = -EINVAL; 4042 if (arg || nr_args) 4043 break; 4044 ret = io_sqe_buffers_unregister(ctx); 4045 break; 4046 case IORING_REGISTER_FILES: 4047 ret = -EFAULT; 4048 if (!arg) 4049 break; 4050 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4051 break; 4052 case IORING_UNREGISTER_FILES: 4053 ret = -EINVAL; 4054 if (arg || nr_args) 4055 break; 4056 ret = io_sqe_files_unregister(ctx); 4057 break; 4058 case IORING_REGISTER_FILES_UPDATE: 4059 ret = io_register_files_update(ctx, arg, nr_args); 4060 break; 4061 case IORING_REGISTER_EVENTFD: 4062 ret = -EINVAL; 4063 if (nr_args != 1) 4064 break; 4065 ret = io_eventfd_register(ctx, arg, 0); 4066 break; 4067 case IORING_REGISTER_EVENTFD_ASYNC: 4068 ret = -EINVAL; 4069 if (nr_args != 1) 4070 break; 4071 ret = io_eventfd_register(ctx, arg, 1); 4072 break; 4073 case IORING_UNREGISTER_EVENTFD: 4074 ret = -EINVAL; 4075 if (arg || nr_args) 4076 break; 4077 ret = io_eventfd_unregister(ctx); 4078 break; 4079 case IORING_REGISTER_PROBE: 4080 ret = -EINVAL; 4081 if (!arg || nr_args > 256) 4082 break; 4083 ret = io_probe(ctx, arg, nr_args); 4084 break; 4085 case IORING_REGISTER_PERSONALITY: 4086 ret = -EINVAL; 4087 if (arg || nr_args) 4088 break; 4089 ret = io_register_personality(ctx); 4090 break; 4091 case IORING_UNREGISTER_PERSONALITY: 4092 ret = -EINVAL; 4093 if (arg) 4094 break; 4095 ret = io_unregister_personality(ctx, nr_args); 4096 break; 4097 case IORING_REGISTER_ENABLE_RINGS: 4098 ret = -EINVAL; 4099 if (arg || nr_args) 4100 break; 4101 ret = io_register_enable_rings(ctx); 4102 break; 4103 case IORING_REGISTER_RESTRICTIONS: 4104 ret = io_register_restrictions(ctx, arg, nr_args); 4105 break; 4106 case IORING_REGISTER_FILES2: 4107 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4108 break; 4109 case IORING_REGISTER_FILES_UPDATE2: 4110 ret = io_register_rsrc_update(ctx, arg, nr_args, 4111 IORING_RSRC_FILE); 4112 break; 4113 case IORING_REGISTER_BUFFERS2: 4114 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4115 break; 4116 case IORING_REGISTER_BUFFERS_UPDATE: 4117 ret = io_register_rsrc_update(ctx, arg, nr_args, 4118 IORING_RSRC_BUFFER); 4119 break; 4120 case IORING_REGISTER_IOWQ_AFF: 4121 ret = -EINVAL; 4122 if (!arg || !nr_args) 4123 break; 4124 ret = io_register_iowq_aff(ctx, arg, nr_args); 4125 break; 4126 case IORING_UNREGISTER_IOWQ_AFF: 4127 ret = -EINVAL; 4128 if (arg || nr_args) 4129 break; 4130 ret = io_unregister_iowq_aff(ctx); 4131 break; 4132 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4133 ret = -EINVAL; 4134 if (!arg || nr_args != 2) 4135 break; 4136 ret = io_register_iowq_max_workers(ctx, arg); 4137 break; 4138 case IORING_REGISTER_RING_FDS: 4139 ret = io_ringfd_register(ctx, arg, nr_args); 4140 break; 4141 case IORING_UNREGISTER_RING_FDS: 4142 ret = io_ringfd_unregister(ctx, arg, nr_args); 4143 break; 4144 case IORING_REGISTER_PBUF_RING: 4145 ret = -EINVAL; 4146 if (!arg || nr_args != 1) 4147 break; 4148 ret = io_register_pbuf_ring(ctx, arg); 4149 break; 4150 case IORING_UNREGISTER_PBUF_RING: 4151 ret = -EINVAL; 4152 if (!arg || nr_args != 1) 4153 break; 4154 ret = io_unregister_pbuf_ring(ctx, arg); 4155 break; 4156 case IORING_REGISTER_SYNC_CANCEL: 4157 ret = -EINVAL; 4158 if (!arg || nr_args != 1) 4159 break; 4160 ret = io_sync_cancel(ctx, arg); 4161 break; 4162 case IORING_REGISTER_FILE_ALLOC_RANGE: 4163 ret = -EINVAL; 4164 if (!arg || nr_args) 4165 break; 4166 ret = io_register_file_alloc_range(ctx, arg); 4167 break; 4168 default: 4169 ret = -EINVAL; 4170 break; 4171 } 4172 4173 return ret; 4174 } 4175 4176 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4177 void __user *, arg, unsigned int, nr_args) 4178 { 4179 struct io_ring_ctx *ctx; 4180 long ret = -EBADF; 4181 struct fd f; 4182 4183 if (opcode >= IORING_REGISTER_LAST) 4184 return -EINVAL; 4185 4186 f = fdget(fd); 4187 if (!f.file) 4188 return -EBADF; 4189 4190 ret = -EOPNOTSUPP; 4191 if (!io_is_uring_fops(f.file)) 4192 goto out_fput; 4193 4194 ctx = f.file->private_data; 4195 4196 mutex_lock(&ctx->uring_lock); 4197 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4198 mutex_unlock(&ctx->uring_lock); 4199 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4200 out_fput: 4201 fdput(f); 4202 return ret; 4203 } 4204 4205 static int __init io_uring_init(void) 4206 { 4207 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4208 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4209 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4210 } while (0) 4211 4212 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4213 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4214 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4215 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4216 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4217 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4218 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4219 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4220 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4221 BUILD_BUG_SQE_ELEM(8, __u64, off); 4222 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4223 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4224 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4225 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4226 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4227 BUILD_BUG_SQE_ELEM(24, __u32, len); 4228 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4229 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4230 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4231 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4232 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4233 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4234 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4235 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4236 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4237 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4238 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4239 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4240 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4241 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4242 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4243 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4244 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4245 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4246 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4247 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4248 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4249 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4250 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4251 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4252 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4253 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4254 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4255 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4256 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4257 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4258 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4259 4260 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4261 sizeof(struct io_uring_rsrc_update)); 4262 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4263 sizeof(struct io_uring_rsrc_update2)); 4264 4265 /* ->buf_index is u16 */ 4266 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4267 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4268 offsetof(struct io_uring_buf_ring, tail)); 4269 4270 /* should fit into one byte */ 4271 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4272 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4273 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4274 4275 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4276 4277 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4278 4279 io_uring_optable_init(); 4280 4281 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4282 SLAB_ACCOUNT); 4283 return 0; 4284 }; 4285 __initcall(io_uring_init); 4286