xref: /openbmc/linux/io_uring/io_uring.c (revision 1f0d40d8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/io_uring.h>
78 
79 #include <uapi/linux/io_uring.h>
80 
81 #include "io-wq.h"
82 
83 #include "io_uring.h"
84 #include "opdef.h"
85 #include "refs.h"
86 #include "tctx.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 
95 #include "timeout.h"
96 #include "poll.h"
97 #include "alloc_cache.h"
98 
99 #define IORING_MAX_ENTRIES	32768
100 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
101 
102 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
103 				 IORING_REGISTER_LAST + IORING_OP_LAST)
104 
105 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
106 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
107 
108 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
109 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
110 
111 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
112 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
113 				REQ_F_ASYNC_DATA)
114 
115 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
116 				 IO_REQ_CLEAN_FLAGS)
117 
118 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
119 
120 #define IO_COMPL_BATCH			32
121 #define IO_REQ_ALLOC_BATCH		8
122 
123 enum {
124 	IO_CHECK_CQ_OVERFLOW_BIT,
125 	IO_CHECK_CQ_DROPPED_BIT,
126 };
127 
128 enum {
129 	IO_EVENTFD_OP_SIGNAL_BIT,
130 	IO_EVENTFD_OP_FREE_BIT,
131 };
132 
133 struct io_defer_entry {
134 	struct list_head	list;
135 	struct io_kiocb		*req;
136 	u32			seq;
137 };
138 
139 /* requests with any of those set should undergo io_disarm_next() */
140 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
141 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
142 
143 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
144 					 struct task_struct *task,
145 					 bool cancel_all);
146 
147 static void io_dismantle_req(struct io_kiocb *req);
148 static void io_clean_op(struct io_kiocb *req);
149 static void io_queue_sqe(struct io_kiocb *req);
150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx);
151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
152 static __cold void io_fallback_tw(struct io_uring_task *tctx);
153 
154 struct kmem_cache *req_cachep;
155 
156 struct sock *io_uring_get_socket(struct file *file)
157 {
158 #if defined(CONFIG_UNIX)
159 	if (io_is_uring_fops(file)) {
160 		struct io_ring_ctx *ctx = file->private_data;
161 
162 		return ctx->ring_sock->sk;
163 	}
164 #endif
165 	return NULL;
166 }
167 EXPORT_SYMBOL(io_uring_get_socket);
168 
169 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
170 {
171 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
172 	    ctx->submit_state.cqes_count)
173 		__io_submit_flush_completions(ctx);
174 }
175 
176 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
177 {
178 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
179 }
180 
181 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
182 {
183 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
184 }
185 
186 static bool io_match_linked(struct io_kiocb *head)
187 {
188 	struct io_kiocb *req;
189 
190 	io_for_each_link(req, head) {
191 		if (req->flags & REQ_F_INFLIGHT)
192 			return true;
193 	}
194 	return false;
195 }
196 
197 /*
198  * As io_match_task() but protected against racing with linked timeouts.
199  * User must not hold timeout_lock.
200  */
201 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
202 			bool cancel_all)
203 {
204 	bool matched;
205 
206 	if (task && head->task != task)
207 		return false;
208 	if (cancel_all)
209 		return true;
210 
211 	if (head->flags & REQ_F_LINK_TIMEOUT) {
212 		struct io_ring_ctx *ctx = head->ctx;
213 
214 		/* protect against races with linked timeouts */
215 		spin_lock_irq(&ctx->timeout_lock);
216 		matched = io_match_linked(head);
217 		spin_unlock_irq(&ctx->timeout_lock);
218 	} else {
219 		matched = io_match_linked(head);
220 	}
221 	return matched;
222 }
223 
224 static inline void req_fail_link_node(struct io_kiocb *req, int res)
225 {
226 	req_set_fail(req);
227 	io_req_set_res(req, res, 0);
228 }
229 
230 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
231 {
232 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
233 	kasan_poison_object_data(req_cachep, req);
234 }
235 
236 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
237 {
238 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
239 
240 	complete(&ctx->ref_comp);
241 }
242 
243 static __cold void io_fallback_req_func(struct work_struct *work)
244 {
245 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
246 						fallback_work.work);
247 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
248 	struct io_kiocb *req, *tmp;
249 	bool locked = true;
250 
251 	mutex_lock(&ctx->uring_lock);
252 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
253 		req->io_task_work.func(req, &locked);
254 	if (WARN_ON_ONCE(!locked))
255 		return;
256 	io_submit_flush_completions(ctx);
257 	mutex_unlock(&ctx->uring_lock);
258 }
259 
260 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
261 {
262 	unsigned hash_buckets = 1U << bits;
263 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
264 
265 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
266 	if (!table->hbs)
267 		return -ENOMEM;
268 
269 	table->hash_bits = bits;
270 	init_hash_table(table, hash_buckets);
271 	return 0;
272 }
273 
274 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
275 {
276 	struct io_ring_ctx *ctx;
277 	int hash_bits;
278 
279 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
280 	if (!ctx)
281 		return NULL;
282 
283 	xa_init(&ctx->io_bl_xa);
284 
285 	/*
286 	 * Use 5 bits less than the max cq entries, that should give us around
287 	 * 32 entries per hash list if totally full and uniformly spread, but
288 	 * don't keep too many buckets to not overconsume memory.
289 	 */
290 	hash_bits = ilog2(p->cq_entries) - 5;
291 	hash_bits = clamp(hash_bits, 1, 8);
292 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
293 		goto err;
294 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
295 		goto err;
296 
297 	ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
298 	if (!ctx->dummy_ubuf)
299 		goto err;
300 	/* set invalid range, so io_import_fixed() fails meeting it */
301 	ctx->dummy_ubuf->ubuf = -1UL;
302 
303 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
304 			    0, GFP_KERNEL))
305 		goto err;
306 
307 	ctx->flags = p->flags;
308 	init_waitqueue_head(&ctx->sqo_sq_wait);
309 	INIT_LIST_HEAD(&ctx->sqd_list);
310 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
311 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
312 	io_alloc_cache_init(&ctx->apoll_cache);
313 	io_alloc_cache_init(&ctx->netmsg_cache);
314 	init_completion(&ctx->ref_comp);
315 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
316 	mutex_init(&ctx->uring_lock);
317 	init_waitqueue_head(&ctx->cq_wait);
318 	init_waitqueue_head(&ctx->poll_wq);
319 	spin_lock_init(&ctx->completion_lock);
320 	spin_lock_init(&ctx->timeout_lock);
321 	INIT_WQ_LIST(&ctx->iopoll_list);
322 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
323 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
324 	INIT_LIST_HEAD(&ctx->defer_list);
325 	INIT_LIST_HEAD(&ctx->timeout_list);
326 	INIT_LIST_HEAD(&ctx->ltimeout_list);
327 	spin_lock_init(&ctx->rsrc_ref_lock);
328 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
329 	INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
330 	init_task_work(&ctx->rsrc_put_tw, io_rsrc_put_tw);
331 	init_llist_head(&ctx->rsrc_put_llist);
332 	init_llist_head(&ctx->work_llist);
333 	INIT_LIST_HEAD(&ctx->tctx_list);
334 	ctx->submit_state.free_list.next = NULL;
335 	INIT_WQ_LIST(&ctx->locked_free_list);
336 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
337 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
338 	return ctx;
339 err:
340 	kfree(ctx->dummy_ubuf);
341 	kfree(ctx->cancel_table.hbs);
342 	kfree(ctx->cancel_table_locked.hbs);
343 	kfree(ctx->io_bl);
344 	xa_destroy(&ctx->io_bl_xa);
345 	kfree(ctx);
346 	return NULL;
347 }
348 
349 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
350 {
351 	struct io_rings *r = ctx->rings;
352 
353 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
354 	ctx->cq_extra--;
355 }
356 
357 static bool req_need_defer(struct io_kiocb *req, u32 seq)
358 {
359 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
360 		struct io_ring_ctx *ctx = req->ctx;
361 
362 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
363 	}
364 
365 	return false;
366 }
367 
368 static inline void io_req_track_inflight(struct io_kiocb *req)
369 {
370 	if (!(req->flags & REQ_F_INFLIGHT)) {
371 		req->flags |= REQ_F_INFLIGHT;
372 		atomic_inc(&req->task->io_uring->inflight_tracked);
373 	}
374 }
375 
376 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
377 {
378 	if (WARN_ON_ONCE(!req->link))
379 		return NULL;
380 
381 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
382 	req->flags |= REQ_F_LINK_TIMEOUT;
383 
384 	/* linked timeouts should have two refs once prep'ed */
385 	io_req_set_refcount(req);
386 	__io_req_set_refcount(req->link, 2);
387 	return req->link;
388 }
389 
390 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
391 {
392 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
393 		return NULL;
394 	return __io_prep_linked_timeout(req);
395 }
396 
397 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
398 {
399 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
400 }
401 
402 static inline void io_arm_ltimeout(struct io_kiocb *req)
403 {
404 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
405 		__io_arm_ltimeout(req);
406 }
407 
408 static void io_prep_async_work(struct io_kiocb *req)
409 {
410 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
411 	struct io_ring_ctx *ctx = req->ctx;
412 
413 	if (!(req->flags & REQ_F_CREDS)) {
414 		req->flags |= REQ_F_CREDS;
415 		req->creds = get_current_cred();
416 	}
417 
418 	req->work.list.next = NULL;
419 	req->work.flags = 0;
420 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
421 	if (req->flags & REQ_F_FORCE_ASYNC)
422 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
423 
424 	if (req->file && !io_req_ffs_set(req))
425 		req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT;
426 
427 	if (req->flags & REQ_F_ISREG) {
428 		if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
429 			io_wq_hash_work(&req->work, file_inode(req->file));
430 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
431 		if (def->unbound_nonreg_file)
432 			req->work.flags |= IO_WQ_WORK_UNBOUND;
433 	}
434 }
435 
436 static void io_prep_async_link(struct io_kiocb *req)
437 {
438 	struct io_kiocb *cur;
439 
440 	if (req->flags & REQ_F_LINK_TIMEOUT) {
441 		struct io_ring_ctx *ctx = req->ctx;
442 
443 		spin_lock_irq(&ctx->timeout_lock);
444 		io_for_each_link(cur, req)
445 			io_prep_async_work(cur);
446 		spin_unlock_irq(&ctx->timeout_lock);
447 	} else {
448 		io_for_each_link(cur, req)
449 			io_prep_async_work(cur);
450 	}
451 }
452 
453 void io_queue_iowq(struct io_kiocb *req, bool *dont_use)
454 {
455 	struct io_kiocb *link = io_prep_linked_timeout(req);
456 	struct io_uring_task *tctx = req->task->io_uring;
457 
458 	BUG_ON(!tctx);
459 	BUG_ON(!tctx->io_wq);
460 
461 	/* init ->work of the whole link before punting */
462 	io_prep_async_link(req);
463 
464 	/*
465 	 * Not expected to happen, but if we do have a bug where this _can_
466 	 * happen, catch it here and ensure the request is marked as
467 	 * canceled. That will make io-wq go through the usual work cancel
468 	 * procedure rather than attempt to run this request (or create a new
469 	 * worker for it).
470 	 */
471 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
472 		req->work.flags |= IO_WQ_WORK_CANCEL;
473 
474 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
475 	io_wq_enqueue(tctx->io_wq, &req->work);
476 	if (link)
477 		io_queue_linked_timeout(link);
478 }
479 
480 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
481 {
482 	while (!list_empty(&ctx->defer_list)) {
483 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
484 						struct io_defer_entry, list);
485 
486 		if (req_need_defer(de->req, de->seq))
487 			break;
488 		list_del_init(&de->list);
489 		io_req_task_queue(de->req);
490 		kfree(de);
491 	}
492 }
493 
494 
495 static void io_eventfd_ops(struct rcu_head *rcu)
496 {
497 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
498 	int ops = atomic_xchg(&ev_fd->ops, 0);
499 
500 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
501 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
502 
503 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
504 	 * ordering in a race but if references are 0 we know we have to free
505 	 * it regardless.
506 	 */
507 	if (atomic_dec_and_test(&ev_fd->refs)) {
508 		eventfd_ctx_put(ev_fd->cq_ev_fd);
509 		kfree(ev_fd);
510 	}
511 }
512 
513 static void io_eventfd_signal(struct io_ring_ctx *ctx)
514 {
515 	struct io_ev_fd *ev_fd = NULL;
516 
517 	rcu_read_lock();
518 	/*
519 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
520 	 * and eventfd_signal
521 	 */
522 	ev_fd = rcu_dereference(ctx->io_ev_fd);
523 
524 	/*
525 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
526 	 * completed between the NULL check of ctx->io_ev_fd at the start of
527 	 * the function and rcu_read_lock.
528 	 */
529 	if (unlikely(!ev_fd))
530 		goto out;
531 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
532 		goto out;
533 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
534 		goto out;
535 
536 	if (likely(eventfd_signal_allowed())) {
537 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
538 	} else {
539 		atomic_inc(&ev_fd->refs);
540 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
541 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
542 		else
543 			atomic_dec(&ev_fd->refs);
544 	}
545 
546 out:
547 	rcu_read_unlock();
548 }
549 
550 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
551 {
552 	bool skip;
553 
554 	spin_lock(&ctx->completion_lock);
555 
556 	/*
557 	 * Eventfd should only get triggered when at least one event has been
558 	 * posted. Some applications rely on the eventfd notification count
559 	 * only changing IFF a new CQE has been added to the CQ ring. There's
560 	 * no depedency on 1:1 relationship between how many times this
561 	 * function is called (and hence the eventfd count) and number of CQEs
562 	 * posted to the CQ ring.
563 	 */
564 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
565 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
566 	spin_unlock(&ctx->completion_lock);
567 	if (skip)
568 		return;
569 
570 	io_eventfd_signal(ctx);
571 }
572 
573 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
574 {
575 	if (ctx->poll_activated)
576 		io_poll_wq_wake(ctx);
577 	if (ctx->off_timeout_used)
578 		io_flush_timeouts(ctx);
579 	if (ctx->drain_active) {
580 		spin_lock(&ctx->completion_lock);
581 		io_queue_deferred(ctx);
582 		spin_unlock(&ctx->completion_lock);
583 	}
584 	if (ctx->has_evfd)
585 		io_eventfd_flush_signal(ctx);
586 }
587 
588 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
589 	__acquires(ctx->completion_lock)
590 {
591 	if (!ctx->task_complete)
592 		spin_lock(&ctx->completion_lock);
593 }
594 
595 static inline void __io_cq_unlock(struct io_ring_ctx *ctx)
596 {
597 	if (!ctx->task_complete)
598 		spin_unlock(&ctx->completion_lock);
599 }
600 
601 static inline void io_cq_lock(struct io_ring_ctx *ctx)
602 	__acquires(ctx->completion_lock)
603 {
604 	spin_lock(&ctx->completion_lock);
605 }
606 
607 static inline void io_cq_unlock(struct io_ring_ctx *ctx)
608 	__releases(ctx->completion_lock)
609 {
610 	spin_unlock(&ctx->completion_lock);
611 }
612 
613 /* keep it inlined for io_submit_flush_completions() */
614 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
615 	__releases(ctx->completion_lock)
616 {
617 	io_commit_cqring(ctx);
618 	__io_cq_unlock(ctx);
619 	io_commit_cqring_flush(ctx);
620 	io_cqring_wake(ctx);
621 }
622 
623 static inline void __io_cq_unlock_post_flush(struct io_ring_ctx *ctx)
624 	__releases(ctx->completion_lock)
625 {
626 	io_commit_cqring(ctx);
627 	__io_cq_unlock(ctx);
628 	io_commit_cqring_flush(ctx);
629 
630 	/*
631 	 * As ->task_complete implies that the ring is single tasked, cq_wait
632 	 * may only be waited on by the current in io_cqring_wait(), but since
633 	 * it will re-check the wakeup conditions once we return we can safely
634 	 * skip waking it up.
635 	 */
636 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) {
637 		smp_mb();
638 		__io_cqring_wake(ctx);
639 	}
640 }
641 
642 void io_cq_unlock_post(struct io_ring_ctx *ctx)
643 	__releases(ctx->completion_lock)
644 {
645 	io_commit_cqring(ctx);
646 	spin_unlock(&ctx->completion_lock);
647 	io_commit_cqring_flush(ctx);
648 	io_cqring_wake(ctx);
649 }
650 
651 /* Returns true if there are no backlogged entries after the flush */
652 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
653 {
654 	struct io_overflow_cqe *ocqe;
655 	LIST_HEAD(list);
656 
657 	io_cq_lock(ctx);
658 	list_splice_init(&ctx->cq_overflow_list, &list);
659 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
660 	io_cq_unlock(ctx);
661 
662 	while (!list_empty(&list)) {
663 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
664 		list_del(&ocqe->list);
665 		kfree(ocqe);
666 	}
667 }
668 
669 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
670 {
671 	size_t cqe_size = sizeof(struct io_uring_cqe);
672 
673 	if (__io_cqring_events(ctx) == ctx->cq_entries)
674 		return;
675 
676 	if (ctx->flags & IORING_SETUP_CQE32)
677 		cqe_size <<= 1;
678 
679 	io_cq_lock(ctx);
680 	while (!list_empty(&ctx->cq_overflow_list)) {
681 		struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true);
682 		struct io_overflow_cqe *ocqe;
683 
684 		if (!cqe)
685 			break;
686 		ocqe = list_first_entry(&ctx->cq_overflow_list,
687 					struct io_overflow_cqe, list);
688 		memcpy(cqe, &ocqe->cqe, cqe_size);
689 		list_del(&ocqe->list);
690 		kfree(ocqe);
691 	}
692 
693 	if (list_empty(&ctx->cq_overflow_list)) {
694 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
695 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
696 	}
697 	io_cq_unlock_post(ctx);
698 }
699 
700 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
701 {
702 	/* iopoll syncs against uring_lock, not completion_lock */
703 	if (ctx->flags & IORING_SETUP_IOPOLL)
704 		mutex_lock(&ctx->uring_lock);
705 	__io_cqring_overflow_flush(ctx);
706 	if (ctx->flags & IORING_SETUP_IOPOLL)
707 		mutex_unlock(&ctx->uring_lock);
708 }
709 
710 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
711 {
712 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
713 		io_cqring_do_overflow_flush(ctx);
714 }
715 
716 /* can be called by any task */
717 static void io_put_task_remote(struct task_struct *task, int nr)
718 {
719 	struct io_uring_task *tctx = task->io_uring;
720 
721 	percpu_counter_sub(&tctx->inflight, nr);
722 	if (unlikely(atomic_read(&tctx->in_cancel)))
723 		wake_up(&tctx->wait);
724 	put_task_struct_many(task, nr);
725 }
726 
727 /* used by a task to put its own references */
728 static void io_put_task_local(struct task_struct *task, int nr)
729 {
730 	task->io_uring->cached_refs += nr;
731 }
732 
733 /* must to be called somewhat shortly after putting a request */
734 static inline void io_put_task(struct task_struct *task, int nr)
735 {
736 	if (likely(task == current))
737 		io_put_task_local(task, nr);
738 	else
739 		io_put_task_remote(task, nr);
740 }
741 
742 void io_task_refs_refill(struct io_uring_task *tctx)
743 {
744 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
745 
746 	percpu_counter_add(&tctx->inflight, refill);
747 	refcount_add(refill, &current->usage);
748 	tctx->cached_refs += refill;
749 }
750 
751 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
752 {
753 	struct io_uring_task *tctx = task->io_uring;
754 	unsigned int refs = tctx->cached_refs;
755 
756 	if (refs) {
757 		tctx->cached_refs = 0;
758 		percpu_counter_sub(&tctx->inflight, refs);
759 		put_task_struct_many(task, refs);
760 	}
761 }
762 
763 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
764 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
765 {
766 	struct io_overflow_cqe *ocqe;
767 	size_t ocq_size = sizeof(struct io_overflow_cqe);
768 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
769 
770 	lockdep_assert_held(&ctx->completion_lock);
771 
772 	if (is_cqe32)
773 		ocq_size += sizeof(struct io_uring_cqe);
774 
775 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
776 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
777 	if (!ocqe) {
778 		/*
779 		 * If we're in ring overflow flush mode, or in task cancel mode,
780 		 * or cannot allocate an overflow entry, then we need to drop it
781 		 * on the floor.
782 		 */
783 		io_account_cq_overflow(ctx);
784 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
785 		return false;
786 	}
787 	if (list_empty(&ctx->cq_overflow_list)) {
788 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
789 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
790 
791 	}
792 	ocqe->cqe.user_data = user_data;
793 	ocqe->cqe.res = res;
794 	ocqe->cqe.flags = cflags;
795 	if (is_cqe32) {
796 		ocqe->cqe.big_cqe[0] = extra1;
797 		ocqe->cqe.big_cqe[1] = extra2;
798 	}
799 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
800 	return true;
801 }
802 
803 bool io_req_cqe_overflow(struct io_kiocb *req)
804 {
805 	if (!(req->flags & REQ_F_CQE32_INIT)) {
806 		req->extra1 = 0;
807 		req->extra2 = 0;
808 	}
809 	return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
810 					req->cqe.res, req->cqe.flags,
811 					req->extra1, req->extra2);
812 }
813 
814 /*
815  * writes to the cq entry need to come after reading head; the
816  * control dependency is enough as we're using WRITE_ONCE to
817  * fill the cq entry
818  */
819 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow)
820 {
821 	struct io_rings *rings = ctx->rings;
822 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
823 	unsigned int free, queued, len;
824 
825 	/*
826 	 * Posting into the CQ when there are pending overflowed CQEs may break
827 	 * ordering guarantees, which will affect links, F_MORE users and more.
828 	 * Force overflow the completion.
829 	 */
830 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
831 		return NULL;
832 
833 	/* userspace may cheat modifying the tail, be safe and do min */
834 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
835 	free = ctx->cq_entries - queued;
836 	/* we need a contiguous range, limit based on the current array offset */
837 	len = min(free, ctx->cq_entries - off);
838 	if (!len)
839 		return NULL;
840 
841 	if (ctx->flags & IORING_SETUP_CQE32) {
842 		off <<= 1;
843 		len <<= 1;
844 	}
845 
846 	ctx->cqe_cached = &rings->cqes[off];
847 	ctx->cqe_sentinel = ctx->cqe_cached + len;
848 
849 	ctx->cached_cq_tail++;
850 	ctx->cqe_cached++;
851 	if (ctx->flags & IORING_SETUP_CQE32)
852 		ctx->cqe_cached++;
853 	return &rings->cqes[off];
854 }
855 
856 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
857 			      u32 cflags)
858 {
859 	struct io_uring_cqe *cqe;
860 
861 	ctx->cq_extra++;
862 
863 	/*
864 	 * If we can't get a cq entry, userspace overflowed the
865 	 * submission (by quite a lot). Increment the overflow count in
866 	 * the ring.
867 	 */
868 	cqe = io_get_cqe(ctx);
869 	if (likely(cqe)) {
870 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
871 
872 		WRITE_ONCE(cqe->user_data, user_data);
873 		WRITE_ONCE(cqe->res, res);
874 		WRITE_ONCE(cqe->flags, cflags);
875 
876 		if (ctx->flags & IORING_SETUP_CQE32) {
877 			WRITE_ONCE(cqe->big_cqe[0], 0);
878 			WRITE_ONCE(cqe->big_cqe[1], 0);
879 		}
880 		return true;
881 	}
882 	return false;
883 }
884 
885 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
886 	__must_hold(&ctx->uring_lock)
887 {
888 	struct io_submit_state *state = &ctx->submit_state;
889 	unsigned int i;
890 
891 	lockdep_assert_held(&ctx->uring_lock);
892 	for (i = 0; i < state->cqes_count; i++) {
893 		struct io_uring_cqe *cqe = &state->cqes[i];
894 
895 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
896 			if (ctx->task_complete) {
897 				spin_lock(&ctx->completion_lock);
898 				io_cqring_event_overflow(ctx, cqe->user_data,
899 							cqe->res, cqe->flags, 0, 0);
900 				spin_unlock(&ctx->completion_lock);
901 			} else {
902 				io_cqring_event_overflow(ctx, cqe->user_data,
903 							cqe->res, cqe->flags, 0, 0);
904 			}
905 		}
906 	}
907 	state->cqes_count = 0;
908 }
909 
910 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
911 			      bool allow_overflow)
912 {
913 	bool filled;
914 
915 	io_cq_lock(ctx);
916 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
917 	if (!filled && allow_overflow)
918 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
919 
920 	io_cq_unlock_post(ctx);
921 	return filled;
922 }
923 
924 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
925 {
926 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
927 }
928 
929 bool io_aux_cqe(struct io_ring_ctx *ctx, bool defer, u64 user_data, s32 res, u32 cflags,
930 		bool allow_overflow)
931 {
932 	struct io_uring_cqe *cqe;
933 	unsigned int length;
934 
935 	if (!defer)
936 		return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow);
937 
938 	length = ARRAY_SIZE(ctx->submit_state.cqes);
939 
940 	lockdep_assert_held(&ctx->uring_lock);
941 
942 	if (ctx->submit_state.cqes_count == length) {
943 		__io_cq_lock(ctx);
944 		__io_flush_post_cqes(ctx);
945 		/* no need to flush - flush is deferred */
946 		__io_cq_unlock_post(ctx);
947 	}
948 
949 	/* For defered completions this is not as strict as it is otherwise,
950 	 * however it's main job is to prevent unbounded posted completions,
951 	 * and in that it works just as well.
952 	 */
953 	if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
954 		return false;
955 
956 	cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++];
957 	cqe->user_data = user_data;
958 	cqe->res = res;
959 	cqe->flags = cflags;
960 	return true;
961 }
962 
963 static void __io_req_complete_post(struct io_kiocb *req)
964 {
965 	struct io_ring_ctx *ctx = req->ctx;
966 
967 	io_cq_lock(ctx);
968 	if (!(req->flags & REQ_F_CQE_SKIP))
969 		io_fill_cqe_req(ctx, req);
970 
971 	/*
972 	 * If we're the last reference to this request, add to our locked
973 	 * free_list cache.
974 	 */
975 	if (req_ref_put_and_test(req)) {
976 		if (req->flags & IO_REQ_LINK_FLAGS) {
977 			if (req->flags & IO_DISARM_MASK)
978 				io_disarm_next(req);
979 			if (req->link) {
980 				io_req_task_queue(req->link);
981 				req->link = NULL;
982 			}
983 		}
984 		io_put_kbuf_comp(req);
985 		io_dismantle_req(req);
986 		io_req_put_rsrc(req);
987 		/*
988 		 * Selected buffer deallocation in io_clean_op() assumes that
989 		 * we don't hold ->completion_lock. Clean them here to avoid
990 		 * deadlocks.
991 		 */
992 		io_put_task_remote(req->task, 1);
993 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
994 		ctx->locked_free_nr++;
995 	}
996 	io_cq_unlock_post(ctx);
997 }
998 
999 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1000 {
1001 	if (req->ctx->task_complete && (issue_flags & IO_URING_F_IOWQ)) {
1002 		req->io_task_work.func = io_req_task_complete;
1003 		io_req_task_work_add(req);
1004 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1005 		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1006 		__io_req_complete_post(req);
1007 	} else {
1008 		struct io_ring_ctx *ctx = req->ctx;
1009 
1010 		mutex_lock(&ctx->uring_lock);
1011 		__io_req_complete_post(req);
1012 		mutex_unlock(&ctx->uring_lock);
1013 	}
1014 }
1015 
1016 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1017 	__must_hold(&ctx->uring_lock)
1018 {
1019 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1020 
1021 	lockdep_assert_held(&req->ctx->uring_lock);
1022 
1023 	req_set_fail(req);
1024 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1025 	if (def->fail)
1026 		def->fail(req);
1027 	io_req_complete_defer(req);
1028 }
1029 
1030 /*
1031  * Don't initialise the fields below on every allocation, but do that in
1032  * advance and keep them valid across allocations.
1033  */
1034 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1035 {
1036 	req->ctx = ctx;
1037 	req->link = NULL;
1038 	req->async_data = NULL;
1039 	/* not necessary, but safer to zero */
1040 	req->cqe.res = 0;
1041 }
1042 
1043 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1044 					struct io_submit_state *state)
1045 {
1046 	spin_lock(&ctx->completion_lock);
1047 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1048 	ctx->locked_free_nr = 0;
1049 	spin_unlock(&ctx->completion_lock);
1050 }
1051 
1052 /*
1053  * A request might get retired back into the request caches even before opcode
1054  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1055  * Because of that, io_alloc_req() should be called only under ->uring_lock
1056  * and with extra caution to not get a request that is still worked on.
1057  */
1058 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1059 	__must_hold(&ctx->uring_lock)
1060 {
1061 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1062 	void *reqs[IO_REQ_ALLOC_BATCH];
1063 	int ret, i;
1064 
1065 	/*
1066 	 * If we have more than a batch's worth of requests in our IRQ side
1067 	 * locked cache, grab the lock and move them over to our submission
1068 	 * side cache.
1069 	 */
1070 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1071 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1072 		if (!io_req_cache_empty(ctx))
1073 			return true;
1074 	}
1075 
1076 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1077 
1078 	/*
1079 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1080 	 * retry single alloc to be on the safe side.
1081 	 */
1082 	if (unlikely(ret <= 0)) {
1083 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1084 		if (!reqs[0])
1085 			return false;
1086 		ret = 1;
1087 	}
1088 
1089 	percpu_ref_get_many(&ctx->refs, ret);
1090 	for (i = 0; i < ret; i++) {
1091 		struct io_kiocb *req = reqs[i];
1092 
1093 		io_preinit_req(req, ctx);
1094 		io_req_add_to_cache(req, ctx);
1095 	}
1096 	return true;
1097 }
1098 
1099 static inline void io_dismantle_req(struct io_kiocb *req)
1100 {
1101 	unsigned int flags = req->flags;
1102 
1103 	if (unlikely(flags & IO_REQ_CLEAN_FLAGS))
1104 		io_clean_op(req);
1105 	if (!(flags & REQ_F_FIXED_FILE))
1106 		io_put_file(req->file);
1107 }
1108 
1109 __cold void io_free_req(struct io_kiocb *req)
1110 {
1111 	struct io_ring_ctx *ctx = req->ctx;
1112 
1113 	io_req_put_rsrc(req);
1114 	io_dismantle_req(req);
1115 	io_put_task_remote(req->task, 1);
1116 
1117 	spin_lock(&ctx->completion_lock);
1118 	wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1119 	ctx->locked_free_nr++;
1120 	spin_unlock(&ctx->completion_lock);
1121 }
1122 
1123 static void __io_req_find_next_prep(struct io_kiocb *req)
1124 {
1125 	struct io_ring_ctx *ctx = req->ctx;
1126 
1127 	spin_lock(&ctx->completion_lock);
1128 	io_disarm_next(req);
1129 	spin_unlock(&ctx->completion_lock);
1130 }
1131 
1132 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1133 {
1134 	struct io_kiocb *nxt;
1135 
1136 	/*
1137 	 * If LINK is set, we have dependent requests in this chain. If we
1138 	 * didn't fail this request, queue the first one up, moving any other
1139 	 * dependencies to the next request. In case of failure, fail the rest
1140 	 * of the chain.
1141 	 */
1142 	if (unlikely(req->flags & IO_DISARM_MASK))
1143 		__io_req_find_next_prep(req);
1144 	nxt = req->link;
1145 	req->link = NULL;
1146 	return nxt;
1147 }
1148 
1149 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
1150 {
1151 	if (!ctx)
1152 		return;
1153 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1154 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1155 	if (*locked) {
1156 		io_submit_flush_completions(ctx);
1157 		mutex_unlock(&ctx->uring_lock);
1158 		*locked = false;
1159 	}
1160 	percpu_ref_put(&ctx->refs);
1161 }
1162 
1163 static unsigned int handle_tw_list(struct llist_node *node,
1164 				   struct io_ring_ctx **ctx, bool *locked,
1165 				   struct llist_node *last)
1166 {
1167 	unsigned int count = 0;
1168 
1169 	while (node && node != last) {
1170 		struct llist_node *next = node->next;
1171 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1172 						    io_task_work.node);
1173 
1174 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1175 
1176 		if (req->ctx != *ctx) {
1177 			ctx_flush_and_put(*ctx, locked);
1178 			*ctx = req->ctx;
1179 			/* if not contended, grab and improve batching */
1180 			*locked = mutex_trylock(&(*ctx)->uring_lock);
1181 			percpu_ref_get(&(*ctx)->refs);
1182 		} else if (!*locked)
1183 			*locked = mutex_trylock(&(*ctx)->uring_lock);
1184 		req->io_task_work.func(req, locked);
1185 		node = next;
1186 		count++;
1187 		if (unlikely(need_resched())) {
1188 			ctx_flush_and_put(*ctx, locked);
1189 			*ctx = NULL;
1190 			cond_resched();
1191 		}
1192 	}
1193 
1194 	return count;
1195 }
1196 
1197 /**
1198  * io_llist_xchg - swap all entries in a lock-less list
1199  * @head:	the head of lock-less list to delete all entries
1200  * @new:	new entry as the head of the list
1201  *
1202  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1203  * The order of entries returned is from the newest to the oldest added one.
1204  */
1205 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1206 					       struct llist_node *new)
1207 {
1208 	return xchg(&head->first, new);
1209 }
1210 
1211 /**
1212  * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1213  * @head:	the head of lock-less list to delete all entries
1214  * @old:	expected old value of the first entry of the list
1215  * @new:	new entry as the head of the list
1216  *
1217  * perform a cmpxchg on the first entry of the list.
1218  */
1219 
1220 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1221 						  struct llist_node *old,
1222 						  struct llist_node *new)
1223 {
1224 	return cmpxchg(&head->first, old, new);
1225 }
1226 
1227 void tctx_task_work(struct callback_head *cb)
1228 {
1229 	bool uring_locked = false;
1230 	struct io_ring_ctx *ctx = NULL;
1231 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1232 						  task_work);
1233 	struct llist_node fake = {};
1234 	struct llist_node *node;
1235 	unsigned int loops = 0;
1236 	unsigned int count = 0;
1237 
1238 	if (unlikely(current->flags & PF_EXITING)) {
1239 		io_fallback_tw(tctx);
1240 		return;
1241 	}
1242 
1243 	do {
1244 		loops++;
1245 		node = io_llist_xchg(&tctx->task_list, &fake);
1246 		count += handle_tw_list(node, &ctx, &uring_locked, &fake);
1247 
1248 		/* skip expensive cmpxchg if there are items in the list */
1249 		if (READ_ONCE(tctx->task_list.first) != &fake)
1250 			continue;
1251 		if (uring_locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1252 			io_submit_flush_completions(ctx);
1253 			if (READ_ONCE(tctx->task_list.first) != &fake)
1254 				continue;
1255 		}
1256 		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1257 	} while (node != &fake);
1258 
1259 	ctx_flush_and_put(ctx, &uring_locked);
1260 
1261 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1262 	if (unlikely(atomic_read(&tctx->in_cancel)))
1263 		io_uring_drop_tctx_refs(current);
1264 
1265 	trace_io_uring_task_work_run(tctx, count, loops);
1266 }
1267 
1268 static __cold void io_fallback_tw(struct io_uring_task *tctx)
1269 {
1270 	struct llist_node *node = llist_del_all(&tctx->task_list);
1271 	struct io_kiocb *req;
1272 
1273 	while (node) {
1274 		req = container_of(node, struct io_kiocb, io_task_work.node);
1275 		node = node->next;
1276 		if (llist_add(&req->io_task_work.node,
1277 			      &req->ctx->fallback_llist))
1278 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1279 	}
1280 }
1281 
1282 static void io_req_local_work_add(struct io_kiocb *req)
1283 {
1284 	struct io_ring_ctx *ctx = req->ctx;
1285 
1286 	percpu_ref_get(&ctx->refs);
1287 
1288 	if (!llist_add(&req->io_task_work.node, &ctx->work_llist))
1289 		goto put_ref;
1290 
1291 	/* needed for the following wake up */
1292 	smp_mb__after_atomic();
1293 
1294 	if (unlikely(atomic_read(&req->task->io_uring->in_cancel))) {
1295 		io_move_task_work_from_local(ctx);
1296 		goto put_ref;
1297 	}
1298 
1299 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1300 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1301 	if (ctx->has_evfd)
1302 		io_eventfd_signal(ctx);
1303 
1304 	if (READ_ONCE(ctx->cq_waiting))
1305 		wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1306 
1307 put_ref:
1308 	percpu_ref_put(&ctx->refs);
1309 }
1310 
1311 void __io_req_task_work_add(struct io_kiocb *req, bool allow_local)
1312 {
1313 	struct io_uring_task *tctx = req->task->io_uring;
1314 	struct io_ring_ctx *ctx = req->ctx;
1315 
1316 	if (allow_local && ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1317 		io_req_local_work_add(req);
1318 		return;
1319 	}
1320 
1321 	/* task_work already pending, we're done */
1322 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1323 		return;
1324 
1325 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1326 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1327 
1328 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1329 		return;
1330 
1331 	io_fallback_tw(tctx);
1332 }
1333 
1334 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1335 {
1336 	struct llist_node *node;
1337 
1338 	node = llist_del_all(&ctx->work_llist);
1339 	while (node) {
1340 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1341 						    io_task_work.node);
1342 
1343 		node = node->next;
1344 		__io_req_task_work_add(req, false);
1345 	}
1346 }
1347 
1348 static int __io_run_local_work(struct io_ring_ctx *ctx, bool *locked)
1349 {
1350 	struct llist_node *node;
1351 	unsigned int loops = 0;
1352 	int ret = 0;
1353 
1354 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1355 		return -EEXIST;
1356 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1357 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1358 again:
1359 	node = io_llist_xchg(&ctx->work_llist, NULL);
1360 	while (node) {
1361 		struct llist_node *next = node->next;
1362 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1363 						    io_task_work.node);
1364 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1365 		req->io_task_work.func(req, locked);
1366 		ret++;
1367 		node = next;
1368 	}
1369 	loops++;
1370 
1371 	if (!llist_empty(&ctx->work_llist))
1372 		goto again;
1373 	if (*locked) {
1374 		io_submit_flush_completions(ctx);
1375 		if (!llist_empty(&ctx->work_llist))
1376 			goto again;
1377 	}
1378 	trace_io_uring_local_work_run(ctx, ret, loops);
1379 	return ret;
1380 }
1381 
1382 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1383 {
1384 	bool locked;
1385 	int ret;
1386 
1387 	if (llist_empty(&ctx->work_llist))
1388 		return 0;
1389 
1390 	locked = true;
1391 	ret = __io_run_local_work(ctx, &locked);
1392 	/* shouldn't happen! */
1393 	if (WARN_ON_ONCE(!locked))
1394 		mutex_lock(&ctx->uring_lock);
1395 	return ret;
1396 }
1397 
1398 static int io_run_local_work(struct io_ring_ctx *ctx)
1399 {
1400 	bool locked = mutex_trylock(&ctx->uring_lock);
1401 	int ret;
1402 
1403 	ret = __io_run_local_work(ctx, &locked);
1404 	if (locked)
1405 		mutex_unlock(&ctx->uring_lock);
1406 
1407 	return ret;
1408 }
1409 
1410 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
1411 {
1412 	io_tw_lock(req->ctx, locked);
1413 	io_req_defer_failed(req, req->cqe.res);
1414 }
1415 
1416 void io_req_task_submit(struct io_kiocb *req, bool *locked)
1417 {
1418 	io_tw_lock(req->ctx, locked);
1419 	/* req->task == current here, checking PF_EXITING is safe */
1420 	if (unlikely(req->task->flags & PF_EXITING))
1421 		io_req_defer_failed(req, -EFAULT);
1422 	else if (req->flags & REQ_F_FORCE_ASYNC)
1423 		io_queue_iowq(req, locked);
1424 	else
1425 		io_queue_sqe(req);
1426 }
1427 
1428 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1429 {
1430 	io_req_set_res(req, ret, 0);
1431 	req->io_task_work.func = io_req_task_cancel;
1432 	io_req_task_work_add(req);
1433 }
1434 
1435 void io_req_task_queue(struct io_kiocb *req)
1436 {
1437 	req->io_task_work.func = io_req_task_submit;
1438 	io_req_task_work_add(req);
1439 }
1440 
1441 void io_queue_next(struct io_kiocb *req)
1442 {
1443 	struct io_kiocb *nxt = io_req_find_next(req);
1444 
1445 	if (nxt)
1446 		io_req_task_queue(nxt);
1447 }
1448 
1449 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1450 	__must_hold(&ctx->uring_lock)
1451 {
1452 	struct task_struct *task = NULL;
1453 	int task_refs = 0;
1454 
1455 	do {
1456 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1457 						    comp_list);
1458 
1459 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1460 			if (req->flags & REQ_F_REFCOUNT) {
1461 				node = req->comp_list.next;
1462 				if (!req_ref_put_and_test(req))
1463 					continue;
1464 			}
1465 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1466 				struct async_poll *apoll = req->apoll;
1467 
1468 				if (apoll->double_poll)
1469 					kfree(apoll->double_poll);
1470 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1471 					kfree(apoll);
1472 				req->flags &= ~REQ_F_POLLED;
1473 			}
1474 			if (req->flags & IO_REQ_LINK_FLAGS)
1475 				io_queue_next(req);
1476 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1477 				io_clean_op(req);
1478 		}
1479 		if (!(req->flags & REQ_F_FIXED_FILE))
1480 			io_put_file(req->file);
1481 
1482 		io_req_put_rsrc_locked(req, ctx);
1483 
1484 		if (req->task != task) {
1485 			if (task)
1486 				io_put_task(task, task_refs);
1487 			task = req->task;
1488 			task_refs = 0;
1489 		}
1490 		task_refs++;
1491 		node = req->comp_list.next;
1492 		io_req_add_to_cache(req, ctx);
1493 	} while (node);
1494 
1495 	if (task)
1496 		io_put_task(task, task_refs);
1497 }
1498 
1499 static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1500 	__must_hold(&ctx->uring_lock)
1501 {
1502 	struct io_submit_state *state = &ctx->submit_state;
1503 	struct io_wq_work_node *node;
1504 
1505 	__io_cq_lock(ctx);
1506 	/* must come first to preserve CQE ordering in failure cases */
1507 	if (state->cqes_count)
1508 		__io_flush_post_cqes(ctx);
1509 	__wq_list_for_each(node, &state->compl_reqs) {
1510 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1511 					    comp_list);
1512 
1513 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1514 		    unlikely(!__io_fill_cqe_req(ctx, req))) {
1515 			if (ctx->task_complete) {
1516 				spin_lock(&ctx->completion_lock);
1517 				io_req_cqe_overflow(req);
1518 				spin_unlock(&ctx->completion_lock);
1519 			} else {
1520 				io_req_cqe_overflow(req);
1521 			}
1522 		}
1523 	}
1524 	__io_cq_unlock_post_flush(ctx);
1525 
1526 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1527 		io_free_batch_list(ctx, state->compl_reqs.first);
1528 		INIT_WQ_LIST(&state->compl_reqs);
1529 	}
1530 }
1531 
1532 /*
1533  * Drop reference to request, return next in chain (if there is one) if this
1534  * was the last reference to this request.
1535  */
1536 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
1537 {
1538 	struct io_kiocb *nxt = NULL;
1539 
1540 	if (req_ref_put_and_test(req)) {
1541 		if (unlikely(req->flags & IO_REQ_LINK_FLAGS))
1542 			nxt = io_req_find_next(req);
1543 		io_free_req(req);
1544 	}
1545 	return nxt;
1546 }
1547 
1548 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1549 {
1550 	/* See comment at the top of this file */
1551 	smp_rmb();
1552 	return __io_cqring_events(ctx);
1553 }
1554 
1555 /*
1556  * We can't just wait for polled events to come to us, we have to actively
1557  * find and complete them.
1558  */
1559 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1560 {
1561 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1562 		return;
1563 
1564 	mutex_lock(&ctx->uring_lock);
1565 	while (!wq_list_empty(&ctx->iopoll_list)) {
1566 		/* let it sleep and repeat later if can't complete a request */
1567 		if (io_do_iopoll(ctx, true) == 0)
1568 			break;
1569 		/*
1570 		 * Ensure we allow local-to-the-cpu processing to take place,
1571 		 * in this case we need to ensure that we reap all events.
1572 		 * Also let task_work, etc. to progress by releasing the mutex
1573 		 */
1574 		if (need_resched()) {
1575 			mutex_unlock(&ctx->uring_lock);
1576 			cond_resched();
1577 			mutex_lock(&ctx->uring_lock);
1578 		}
1579 	}
1580 	mutex_unlock(&ctx->uring_lock);
1581 }
1582 
1583 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1584 {
1585 	unsigned int nr_events = 0;
1586 	int ret = 0;
1587 	unsigned long check_cq;
1588 
1589 	if (!io_allowed_run_tw(ctx))
1590 		return -EEXIST;
1591 
1592 	check_cq = READ_ONCE(ctx->check_cq);
1593 	if (unlikely(check_cq)) {
1594 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1595 			__io_cqring_overflow_flush(ctx);
1596 		/*
1597 		 * Similarly do not spin if we have not informed the user of any
1598 		 * dropped CQE.
1599 		 */
1600 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1601 			return -EBADR;
1602 	}
1603 	/*
1604 	 * Don't enter poll loop if we already have events pending.
1605 	 * If we do, we can potentially be spinning for commands that
1606 	 * already triggered a CQE (eg in error).
1607 	 */
1608 	if (io_cqring_events(ctx))
1609 		return 0;
1610 
1611 	do {
1612 		/*
1613 		 * If a submit got punted to a workqueue, we can have the
1614 		 * application entering polling for a command before it gets
1615 		 * issued. That app will hold the uring_lock for the duration
1616 		 * of the poll right here, so we need to take a breather every
1617 		 * now and then to ensure that the issue has a chance to add
1618 		 * the poll to the issued list. Otherwise we can spin here
1619 		 * forever, while the workqueue is stuck trying to acquire the
1620 		 * very same mutex.
1621 		 */
1622 		if (wq_list_empty(&ctx->iopoll_list) ||
1623 		    io_task_work_pending(ctx)) {
1624 			u32 tail = ctx->cached_cq_tail;
1625 
1626 			(void) io_run_local_work_locked(ctx);
1627 
1628 			if (task_work_pending(current) ||
1629 			    wq_list_empty(&ctx->iopoll_list)) {
1630 				mutex_unlock(&ctx->uring_lock);
1631 				io_run_task_work();
1632 				mutex_lock(&ctx->uring_lock);
1633 			}
1634 			/* some requests don't go through iopoll_list */
1635 			if (tail != ctx->cached_cq_tail ||
1636 			    wq_list_empty(&ctx->iopoll_list))
1637 				break;
1638 		}
1639 		ret = io_do_iopoll(ctx, !min);
1640 		if (ret < 0)
1641 			break;
1642 		nr_events += ret;
1643 		ret = 0;
1644 	} while (nr_events < min && !need_resched());
1645 
1646 	return ret;
1647 }
1648 
1649 void io_req_task_complete(struct io_kiocb *req, bool *locked)
1650 {
1651 	if (*locked)
1652 		io_req_complete_defer(req);
1653 	else
1654 		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1655 }
1656 
1657 /*
1658  * After the iocb has been issued, it's safe to be found on the poll list.
1659  * Adding the kiocb to the list AFTER submission ensures that we don't
1660  * find it from a io_do_iopoll() thread before the issuer is done
1661  * accessing the kiocb cookie.
1662  */
1663 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1664 {
1665 	struct io_ring_ctx *ctx = req->ctx;
1666 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1667 
1668 	/* workqueue context doesn't hold uring_lock, grab it now */
1669 	if (unlikely(needs_lock))
1670 		mutex_lock(&ctx->uring_lock);
1671 
1672 	/*
1673 	 * Track whether we have multiple files in our lists. This will impact
1674 	 * how we do polling eventually, not spinning if we're on potentially
1675 	 * different devices.
1676 	 */
1677 	if (wq_list_empty(&ctx->iopoll_list)) {
1678 		ctx->poll_multi_queue = false;
1679 	} else if (!ctx->poll_multi_queue) {
1680 		struct io_kiocb *list_req;
1681 
1682 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1683 					comp_list);
1684 		if (list_req->file != req->file)
1685 			ctx->poll_multi_queue = true;
1686 	}
1687 
1688 	/*
1689 	 * For fast devices, IO may have already completed. If it has, add
1690 	 * it to the front so we find it first.
1691 	 */
1692 	if (READ_ONCE(req->iopoll_completed))
1693 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1694 	else
1695 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1696 
1697 	if (unlikely(needs_lock)) {
1698 		/*
1699 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1700 		 * in sq thread task context or in io worker task context. If
1701 		 * current task context is sq thread, we don't need to check
1702 		 * whether should wake up sq thread.
1703 		 */
1704 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1705 		    wq_has_sleeper(&ctx->sq_data->wait))
1706 			wake_up(&ctx->sq_data->wait);
1707 
1708 		mutex_unlock(&ctx->uring_lock);
1709 	}
1710 }
1711 
1712 static bool io_bdev_nowait(struct block_device *bdev)
1713 {
1714 	return !bdev || bdev_nowait(bdev);
1715 }
1716 
1717 /*
1718  * If we tracked the file through the SCM inflight mechanism, we could support
1719  * any file. For now, just ensure that anything potentially problematic is done
1720  * inline.
1721  */
1722 static bool __io_file_supports_nowait(struct file *file, umode_t mode)
1723 {
1724 	if (S_ISBLK(mode)) {
1725 		if (IS_ENABLED(CONFIG_BLOCK) &&
1726 		    io_bdev_nowait(I_BDEV(file->f_mapping->host)))
1727 			return true;
1728 		return false;
1729 	}
1730 	if (S_ISSOCK(mode))
1731 		return true;
1732 	if (S_ISREG(mode)) {
1733 		if (IS_ENABLED(CONFIG_BLOCK) &&
1734 		    io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
1735 		    !io_is_uring_fops(file))
1736 			return true;
1737 		return false;
1738 	}
1739 
1740 	/* any ->read/write should understand O_NONBLOCK */
1741 	if (file->f_flags & O_NONBLOCK)
1742 		return true;
1743 	return file->f_mode & FMODE_NOWAIT;
1744 }
1745 
1746 /*
1747  * If we tracked the file through the SCM inflight mechanism, we could support
1748  * any file. For now, just ensure that anything potentially problematic is done
1749  * inline.
1750  */
1751 unsigned int io_file_get_flags(struct file *file)
1752 {
1753 	umode_t mode = file_inode(file)->i_mode;
1754 	unsigned int res = 0;
1755 
1756 	if (S_ISREG(mode))
1757 		res |= FFS_ISREG;
1758 	if (__io_file_supports_nowait(file, mode))
1759 		res |= FFS_NOWAIT;
1760 	return res;
1761 }
1762 
1763 bool io_alloc_async_data(struct io_kiocb *req)
1764 {
1765 	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1766 	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1767 	if (req->async_data) {
1768 		req->flags |= REQ_F_ASYNC_DATA;
1769 		return false;
1770 	}
1771 	return true;
1772 }
1773 
1774 int io_req_prep_async(struct io_kiocb *req)
1775 {
1776 	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1777 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1778 
1779 	/* assign early for deferred execution for non-fixed file */
1780 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1781 		req->file = io_file_get_normal(req, req->cqe.fd);
1782 	if (!cdef->prep_async)
1783 		return 0;
1784 	if (WARN_ON_ONCE(req_has_async_data(req)))
1785 		return -EFAULT;
1786 	if (!def->manual_alloc) {
1787 		if (io_alloc_async_data(req))
1788 			return -EAGAIN;
1789 	}
1790 	return cdef->prep_async(req);
1791 }
1792 
1793 static u32 io_get_sequence(struct io_kiocb *req)
1794 {
1795 	u32 seq = req->ctx->cached_sq_head;
1796 	struct io_kiocb *cur;
1797 
1798 	/* need original cached_sq_head, but it was increased for each req */
1799 	io_for_each_link(cur, req)
1800 		seq--;
1801 	return seq;
1802 }
1803 
1804 static __cold void io_drain_req(struct io_kiocb *req)
1805 	__must_hold(&ctx->uring_lock)
1806 {
1807 	struct io_ring_ctx *ctx = req->ctx;
1808 	struct io_defer_entry *de;
1809 	int ret;
1810 	u32 seq = io_get_sequence(req);
1811 
1812 	/* Still need defer if there is pending req in defer list. */
1813 	spin_lock(&ctx->completion_lock);
1814 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1815 		spin_unlock(&ctx->completion_lock);
1816 queue:
1817 		ctx->drain_active = false;
1818 		io_req_task_queue(req);
1819 		return;
1820 	}
1821 	spin_unlock(&ctx->completion_lock);
1822 
1823 	io_prep_async_link(req);
1824 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1825 	if (!de) {
1826 		ret = -ENOMEM;
1827 		io_req_defer_failed(req, ret);
1828 		return;
1829 	}
1830 
1831 	spin_lock(&ctx->completion_lock);
1832 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1833 		spin_unlock(&ctx->completion_lock);
1834 		kfree(de);
1835 		goto queue;
1836 	}
1837 
1838 	trace_io_uring_defer(req);
1839 	de->req = req;
1840 	de->seq = seq;
1841 	list_add_tail(&de->list, &ctx->defer_list);
1842 	spin_unlock(&ctx->completion_lock);
1843 }
1844 
1845 static void io_clean_op(struct io_kiocb *req)
1846 {
1847 	if (req->flags & REQ_F_BUFFER_SELECTED) {
1848 		spin_lock(&req->ctx->completion_lock);
1849 		io_put_kbuf_comp(req);
1850 		spin_unlock(&req->ctx->completion_lock);
1851 	}
1852 
1853 	if (req->flags & REQ_F_NEED_CLEANUP) {
1854 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
1855 
1856 		if (def->cleanup)
1857 			def->cleanup(req);
1858 	}
1859 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
1860 		kfree(req->apoll->double_poll);
1861 		kfree(req->apoll);
1862 		req->apoll = NULL;
1863 	}
1864 	if (req->flags & REQ_F_INFLIGHT) {
1865 		struct io_uring_task *tctx = req->task->io_uring;
1866 
1867 		atomic_dec(&tctx->inflight_tracked);
1868 	}
1869 	if (req->flags & REQ_F_CREDS)
1870 		put_cred(req->creds);
1871 	if (req->flags & REQ_F_ASYNC_DATA) {
1872 		kfree(req->async_data);
1873 		req->async_data = NULL;
1874 	}
1875 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
1876 }
1877 
1878 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1879 			   unsigned int issue_flags)
1880 {
1881 	if (req->file || !def->needs_file)
1882 		return true;
1883 
1884 	if (req->flags & REQ_F_FIXED_FILE)
1885 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1886 	else
1887 		req->file = io_file_get_normal(req, req->cqe.fd);
1888 
1889 	return !!req->file;
1890 }
1891 
1892 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1893 {
1894 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1895 	const struct cred *creds = NULL;
1896 	int ret;
1897 
1898 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1899 		return -EBADF;
1900 
1901 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1902 		creds = override_creds(req->creds);
1903 
1904 	if (!def->audit_skip)
1905 		audit_uring_entry(req->opcode);
1906 
1907 	ret = def->issue(req, issue_flags);
1908 
1909 	if (!def->audit_skip)
1910 		audit_uring_exit(!ret, ret);
1911 
1912 	if (creds)
1913 		revert_creds(creds);
1914 
1915 	if (ret == IOU_OK) {
1916 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1917 			io_req_complete_defer(req);
1918 		else
1919 			io_req_complete_post(req, issue_flags);
1920 	} else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1921 		return ret;
1922 
1923 	/* If the op doesn't have a file, we're not polling for it */
1924 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1925 		io_iopoll_req_issued(req, issue_flags);
1926 
1927 	return 0;
1928 }
1929 
1930 int io_poll_issue(struct io_kiocb *req, bool *locked)
1931 {
1932 	io_tw_lock(req->ctx, locked);
1933 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1934 				 IO_URING_F_COMPLETE_DEFER);
1935 }
1936 
1937 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1938 {
1939 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1940 
1941 	req = io_put_req_find_next(req);
1942 	return req ? &req->work : NULL;
1943 }
1944 
1945 void io_wq_submit_work(struct io_wq_work *work)
1946 {
1947 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1948 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1949 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1950 	bool needs_poll = false;
1951 	int ret = 0, err = -ECANCELED;
1952 
1953 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1954 	if (!(req->flags & REQ_F_REFCOUNT))
1955 		__io_req_set_refcount(req, 2);
1956 	else
1957 		req_ref_get(req);
1958 
1959 	io_arm_ltimeout(req);
1960 
1961 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1962 	if (work->flags & IO_WQ_WORK_CANCEL) {
1963 fail:
1964 		io_req_task_queue_fail(req, err);
1965 		return;
1966 	}
1967 	if (!io_assign_file(req, def, issue_flags)) {
1968 		err = -EBADF;
1969 		work->flags |= IO_WQ_WORK_CANCEL;
1970 		goto fail;
1971 	}
1972 
1973 	if (req->flags & REQ_F_FORCE_ASYNC) {
1974 		bool opcode_poll = def->pollin || def->pollout;
1975 
1976 		if (opcode_poll && file_can_poll(req->file)) {
1977 			needs_poll = true;
1978 			issue_flags |= IO_URING_F_NONBLOCK;
1979 		}
1980 	}
1981 
1982 	do {
1983 		ret = io_issue_sqe(req, issue_flags);
1984 		if (ret != -EAGAIN)
1985 			break;
1986 		/*
1987 		 * We can get EAGAIN for iopolled IO even though we're
1988 		 * forcing a sync submission from here, since we can't
1989 		 * wait for request slots on the block side.
1990 		 */
1991 		if (!needs_poll) {
1992 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1993 				break;
1994 			cond_resched();
1995 			continue;
1996 		}
1997 
1998 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1999 			return;
2000 		/* aborted or ready, in either case retry blocking */
2001 		needs_poll = false;
2002 		issue_flags &= ~IO_URING_F_NONBLOCK;
2003 	} while (1);
2004 
2005 	/* avoid locking problems by failing it from a clean context */
2006 	if (ret < 0)
2007 		io_req_task_queue_fail(req, ret);
2008 }
2009 
2010 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
2011 				      unsigned int issue_flags)
2012 {
2013 	struct io_ring_ctx *ctx = req->ctx;
2014 	struct file *file = NULL;
2015 	unsigned long file_ptr;
2016 
2017 	io_ring_submit_lock(ctx, issue_flags);
2018 
2019 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2020 		goto out;
2021 	fd = array_index_nospec(fd, ctx->nr_user_files);
2022 	file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
2023 	file = (struct file *) (file_ptr & FFS_MASK);
2024 	file_ptr &= ~FFS_MASK;
2025 	/* mask in overlapping REQ_F and FFS bits */
2026 	req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT);
2027 	io_req_set_rsrc_node(req, ctx, 0);
2028 out:
2029 	io_ring_submit_unlock(ctx, issue_flags);
2030 	return file;
2031 }
2032 
2033 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2034 {
2035 	struct file *file = fget(fd);
2036 
2037 	trace_io_uring_file_get(req, fd);
2038 
2039 	/* we don't allow fixed io_uring files */
2040 	if (file && io_is_uring_fops(file))
2041 		io_req_track_inflight(req);
2042 	return file;
2043 }
2044 
2045 static void io_queue_async(struct io_kiocb *req, int ret)
2046 	__must_hold(&req->ctx->uring_lock)
2047 {
2048 	struct io_kiocb *linked_timeout;
2049 
2050 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2051 		io_req_defer_failed(req, ret);
2052 		return;
2053 	}
2054 
2055 	linked_timeout = io_prep_linked_timeout(req);
2056 
2057 	switch (io_arm_poll_handler(req, 0)) {
2058 	case IO_APOLL_READY:
2059 		io_kbuf_recycle(req, 0);
2060 		io_req_task_queue(req);
2061 		break;
2062 	case IO_APOLL_ABORTED:
2063 		io_kbuf_recycle(req, 0);
2064 		io_queue_iowq(req, NULL);
2065 		break;
2066 	case IO_APOLL_OK:
2067 		break;
2068 	}
2069 
2070 	if (linked_timeout)
2071 		io_queue_linked_timeout(linked_timeout);
2072 }
2073 
2074 static inline void io_queue_sqe(struct io_kiocb *req)
2075 	__must_hold(&req->ctx->uring_lock)
2076 {
2077 	int ret;
2078 
2079 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2080 
2081 	/*
2082 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2083 	 * doesn't support non-blocking read/write attempts
2084 	 */
2085 	if (likely(!ret))
2086 		io_arm_ltimeout(req);
2087 	else
2088 		io_queue_async(req, ret);
2089 }
2090 
2091 static void io_queue_sqe_fallback(struct io_kiocb *req)
2092 	__must_hold(&req->ctx->uring_lock)
2093 {
2094 	if (unlikely(req->flags & REQ_F_FAIL)) {
2095 		/*
2096 		 * We don't submit, fail them all, for that replace hardlinks
2097 		 * with normal links. Extra REQ_F_LINK is tolerated.
2098 		 */
2099 		req->flags &= ~REQ_F_HARDLINK;
2100 		req->flags |= REQ_F_LINK;
2101 		io_req_defer_failed(req, req->cqe.res);
2102 	} else {
2103 		int ret = io_req_prep_async(req);
2104 
2105 		if (unlikely(ret)) {
2106 			io_req_defer_failed(req, ret);
2107 			return;
2108 		}
2109 
2110 		if (unlikely(req->ctx->drain_active))
2111 			io_drain_req(req);
2112 		else
2113 			io_queue_iowq(req, NULL);
2114 	}
2115 }
2116 
2117 /*
2118  * Check SQE restrictions (opcode and flags).
2119  *
2120  * Returns 'true' if SQE is allowed, 'false' otherwise.
2121  */
2122 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2123 					struct io_kiocb *req,
2124 					unsigned int sqe_flags)
2125 {
2126 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2127 		return false;
2128 
2129 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2130 	    ctx->restrictions.sqe_flags_required)
2131 		return false;
2132 
2133 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2134 			  ctx->restrictions.sqe_flags_required))
2135 		return false;
2136 
2137 	return true;
2138 }
2139 
2140 static void io_init_req_drain(struct io_kiocb *req)
2141 {
2142 	struct io_ring_ctx *ctx = req->ctx;
2143 	struct io_kiocb *head = ctx->submit_state.link.head;
2144 
2145 	ctx->drain_active = true;
2146 	if (head) {
2147 		/*
2148 		 * If we need to drain a request in the middle of a link, drain
2149 		 * the head request and the next request/link after the current
2150 		 * link. Considering sequential execution of links,
2151 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2152 		 * link.
2153 		 */
2154 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2155 		ctx->drain_next = true;
2156 	}
2157 }
2158 
2159 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2160 		       const struct io_uring_sqe *sqe)
2161 	__must_hold(&ctx->uring_lock)
2162 {
2163 	const struct io_issue_def *def;
2164 	unsigned int sqe_flags;
2165 	int personality;
2166 	u8 opcode;
2167 
2168 	/* req is partially pre-initialised, see io_preinit_req() */
2169 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2170 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2171 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2172 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2173 	req->file = NULL;
2174 	req->rsrc_node = NULL;
2175 	req->task = current;
2176 
2177 	if (unlikely(opcode >= IORING_OP_LAST)) {
2178 		req->opcode = 0;
2179 		return -EINVAL;
2180 	}
2181 	def = &io_issue_defs[opcode];
2182 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2183 		/* enforce forwards compatibility on users */
2184 		if (sqe_flags & ~SQE_VALID_FLAGS)
2185 			return -EINVAL;
2186 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2187 			if (!def->buffer_select)
2188 				return -EOPNOTSUPP;
2189 			req->buf_index = READ_ONCE(sqe->buf_group);
2190 		}
2191 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2192 			ctx->drain_disabled = true;
2193 		if (sqe_flags & IOSQE_IO_DRAIN) {
2194 			if (ctx->drain_disabled)
2195 				return -EOPNOTSUPP;
2196 			io_init_req_drain(req);
2197 		}
2198 	}
2199 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2200 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2201 			return -EACCES;
2202 		/* knock it to the slow queue path, will be drained there */
2203 		if (ctx->drain_active)
2204 			req->flags |= REQ_F_FORCE_ASYNC;
2205 		/* if there is no link, we're at "next" request and need to drain */
2206 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2207 			ctx->drain_next = false;
2208 			ctx->drain_active = true;
2209 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2210 		}
2211 	}
2212 
2213 	if (!def->ioprio && sqe->ioprio)
2214 		return -EINVAL;
2215 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2216 		return -EINVAL;
2217 
2218 	if (def->needs_file) {
2219 		struct io_submit_state *state = &ctx->submit_state;
2220 
2221 		req->cqe.fd = READ_ONCE(sqe->fd);
2222 
2223 		/*
2224 		 * Plug now if we have more than 2 IO left after this, and the
2225 		 * target is potentially a read/write to block based storage.
2226 		 */
2227 		if (state->need_plug && def->plug) {
2228 			state->plug_started = true;
2229 			state->need_plug = false;
2230 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2231 		}
2232 	}
2233 
2234 	personality = READ_ONCE(sqe->personality);
2235 	if (personality) {
2236 		int ret;
2237 
2238 		req->creds = xa_load(&ctx->personalities, personality);
2239 		if (!req->creds)
2240 			return -EINVAL;
2241 		get_cred(req->creds);
2242 		ret = security_uring_override_creds(req->creds);
2243 		if (ret) {
2244 			put_cred(req->creds);
2245 			return ret;
2246 		}
2247 		req->flags |= REQ_F_CREDS;
2248 	}
2249 
2250 	return def->prep(req, sqe);
2251 }
2252 
2253 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2254 				      struct io_kiocb *req, int ret)
2255 {
2256 	struct io_ring_ctx *ctx = req->ctx;
2257 	struct io_submit_link *link = &ctx->submit_state.link;
2258 	struct io_kiocb *head = link->head;
2259 
2260 	trace_io_uring_req_failed(sqe, req, ret);
2261 
2262 	/*
2263 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2264 	 * unusable. Instead of failing eagerly, continue assembling the link if
2265 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2266 	 * should find the flag and handle the rest.
2267 	 */
2268 	req_fail_link_node(req, ret);
2269 	if (head && !(head->flags & REQ_F_FAIL))
2270 		req_fail_link_node(head, -ECANCELED);
2271 
2272 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2273 		if (head) {
2274 			link->last->link = req;
2275 			link->head = NULL;
2276 			req = head;
2277 		}
2278 		io_queue_sqe_fallback(req);
2279 		return ret;
2280 	}
2281 
2282 	if (head)
2283 		link->last->link = req;
2284 	else
2285 		link->head = req;
2286 	link->last = req;
2287 	return 0;
2288 }
2289 
2290 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2291 			 const struct io_uring_sqe *sqe)
2292 	__must_hold(&ctx->uring_lock)
2293 {
2294 	struct io_submit_link *link = &ctx->submit_state.link;
2295 	int ret;
2296 
2297 	ret = io_init_req(ctx, req, sqe);
2298 	if (unlikely(ret))
2299 		return io_submit_fail_init(sqe, req, ret);
2300 
2301 	/* don't need @sqe from now on */
2302 	trace_io_uring_submit_sqe(req, true);
2303 
2304 	/*
2305 	 * If we already have a head request, queue this one for async
2306 	 * submittal once the head completes. If we don't have a head but
2307 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2308 	 * submitted sync once the chain is complete. If none of those
2309 	 * conditions are true (normal request), then just queue it.
2310 	 */
2311 	if (unlikely(link->head)) {
2312 		ret = io_req_prep_async(req);
2313 		if (unlikely(ret))
2314 			return io_submit_fail_init(sqe, req, ret);
2315 
2316 		trace_io_uring_link(req, link->head);
2317 		link->last->link = req;
2318 		link->last = req;
2319 
2320 		if (req->flags & IO_REQ_LINK_FLAGS)
2321 			return 0;
2322 		/* last request of the link, flush it */
2323 		req = link->head;
2324 		link->head = NULL;
2325 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2326 			goto fallback;
2327 
2328 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2329 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2330 		if (req->flags & IO_REQ_LINK_FLAGS) {
2331 			link->head = req;
2332 			link->last = req;
2333 		} else {
2334 fallback:
2335 			io_queue_sqe_fallback(req);
2336 		}
2337 		return 0;
2338 	}
2339 
2340 	io_queue_sqe(req);
2341 	return 0;
2342 }
2343 
2344 /*
2345  * Batched submission is done, ensure local IO is flushed out.
2346  */
2347 static void io_submit_state_end(struct io_ring_ctx *ctx)
2348 {
2349 	struct io_submit_state *state = &ctx->submit_state;
2350 
2351 	if (unlikely(state->link.head))
2352 		io_queue_sqe_fallback(state->link.head);
2353 	/* flush only after queuing links as they can generate completions */
2354 	io_submit_flush_completions(ctx);
2355 	if (state->plug_started)
2356 		blk_finish_plug(&state->plug);
2357 }
2358 
2359 /*
2360  * Start submission side cache.
2361  */
2362 static void io_submit_state_start(struct io_submit_state *state,
2363 				  unsigned int max_ios)
2364 {
2365 	state->plug_started = false;
2366 	state->need_plug = max_ios > 2;
2367 	state->submit_nr = max_ios;
2368 	/* set only head, no need to init link_last in advance */
2369 	state->link.head = NULL;
2370 }
2371 
2372 static void io_commit_sqring(struct io_ring_ctx *ctx)
2373 {
2374 	struct io_rings *rings = ctx->rings;
2375 
2376 	/*
2377 	 * Ensure any loads from the SQEs are done at this point,
2378 	 * since once we write the new head, the application could
2379 	 * write new data to them.
2380 	 */
2381 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2382 }
2383 
2384 /*
2385  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2386  * that is mapped by userspace. This means that care needs to be taken to
2387  * ensure that reads are stable, as we cannot rely on userspace always
2388  * being a good citizen. If members of the sqe are validated and then later
2389  * used, it's important that those reads are done through READ_ONCE() to
2390  * prevent a re-load down the line.
2391  */
2392 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2393 {
2394 	unsigned head, mask = ctx->sq_entries - 1;
2395 	unsigned sq_idx = ctx->cached_sq_head++ & mask;
2396 
2397 	/*
2398 	 * The cached sq head (or cq tail) serves two purposes:
2399 	 *
2400 	 * 1) allows us to batch the cost of updating the user visible
2401 	 *    head updates.
2402 	 * 2) allows the kernel side to track the head on its own, even
2403 	 *    though the application is the one updating it.
2404 	 */
2405 	head = READ_ONCE(ctx->sq_array[sq_idx]);
2406 	if (likely(head < ctx->sq_entries)) {
2407 		/* double index for 128-byte SQEs, twice as long */
2408 		if (ctx->flags & IORING_SETUP_SQE128)
2409 			head <<= 1;
2410 		*sqe = &ctx->sq_sqes[head];
2411 		return true;
2412 	}
2413 
2414 	/* drop invalid entries */
2415 	ctx->cq_extra--;
2416 	WRITE_ONCE(ctx->rings->sq_dropped,
2417 		   READ_ONCE(ctx->rings->sq_dropped) + 1);
2418 	return false;
2419 }
2420 
2421 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2422 	__must_hold(&ctx->uring_lock)
2423 {
2424 	unsigned int entries = io_sqring_entries(ctx);
2425 	unsigned int left;
2426 	int ret;
2427 
2428 	if (unlikely(!entries))
2429 		return 0;
2430 	/* make sure SQ entry isn't read before tail */
2431 	ret = left = min3(nr, ctx->sq_entries, entries);
2432 	io_get_task_refs(left);
2433 	io_submit_state_start(&ctx->submit_state, left);
2434 
2435 	do {
2436 		const struct io_uring_sqe *sqe;
2437 		struct io_kiocb *req;
2438 
2439 		if (unlikely(!io_alloc_req(ctx, &req)))
2440 			break;
2441 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2442 			io_req_add_to_cache(req, ctx);
2443 			break;
2444 		}
2445 
2446 		/*
2447 		 * Continue submitting even for sqe failure if the
2448 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2449 		 */
2450 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2451 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2452 			left--;
2453 			break;
2454 		}
2455 	} while (--left);
2456 
2457 	if (unlikely(left)) {
2458 		ret -= left;
2459 		/* try again if it submitted nothing and can't allocate a req */
2460 		if (!ret && io_req_cache_empty(ctx))
2461 			ret = -EAGAIN;
2462 		current->io_uring->cached_refs += left;
2463 	}
2464 
2465 	io_submit_state_end(ctx);
2466 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2467 	io_commit_sqring(ctx);
2468 	return ret;
2469 }
2470 
2471 struct io_wait_queue {
2472 	struct wait_queue_entry wq;
2473 	struct io_ring_ctx *ctx;
2474 	unsigned cq_tail;
2475 	unsigned nr_timeouts;
2476 	ktime_t timeout;
2477 };
2478 
2479 static inline bool io_has_work(struct io_ring_ctx *ctx)
2480 {
2481 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2482 	       !llist_empty(&ctx->work_llist);
2483 }
2484 
2485 static inline bool io_should_wake(struct io_wait_queue *iowq)
2486 {
2487 	struct io_ring_ctx *ctx = iowq->ctx;
2488 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2489 
2490 	/*
2491 	 * Wake up if we have enough events, or if a timeout occurred since we
2492 	 * started waiting. For timeouts, we always want to return to userspace,
2493 	 * regardless of event count.
2494 	 */
2495 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2496 }
2497 
2498 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2499 			    int wake_flags, void *key)
2500 {
2501 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2502 
2503 	/*
2504 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2505 	 * the task, and the next invocation will do it.
2506 	 */
2507 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2508 		return autoremove_wake_function(curr, mode, wake_flags, key);
2509 	return -1;
2510 }
2511 
2512 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2513 {
2514 	if (!llist_empty(&ctx->work_llist)) {
2515 		__set_current_state(TASK_RUNNING);
2516 		if (io_run_local_work(ctx) > 0)
2517 			return 1;
2518 	}
2519 	if (io_run_task_work() > 0)
2520 		return 1;
2521 	if (task_sigpending(current))
2522 		return -EINTR;
2523 	return 0;
2524 }
2525 
2526 /* when returns >0, the caller should retry */
2527 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2528 					  struct io_wait_queue *iowq)
2529 {
2530 	if (unlikely(READ_ONCE(ctx->check_cq)))
2531 		return 1;
2532 	if (unlikely(!llist_empty(&ctx->work_llist)))
2533 		return 1;
2534 	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2535 		return 1;
2536 	if (unlikely(task_sigpending(current)))
2537 		return -EINTR;
2538 	if (unlikely(io_should_wake(iowq)))
2539 		return 0;
2540 	if (iowq->timeout == KTIME_MAX)
2541 		schedule();
2542 	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2543 		return -ETIME;
2544 	return 0;
2545 }
2546 
2547 /*
2548  * Wait until events become available, if we don't already have some. The
2549  * application must reap them itself, as they reside on the shared cq ring.
2550  */
2551 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2552 			  const sigset_t __user *sig, size_t sigsz,
2553 			  struct __kernel_timespec __user *uts)
2554 {
2555 	struct io_wait_queue iowq;
2556 	struct io_rings *rings = ctx->rings;
2557 	int ret;
2558 
2559 	if (!io_allowed_run_tw(ctx))
2560 		return -EEXIST;
2561 	if (!llist_empty(&ctx->work_llist))
2562 		io_run_local_work(ctx);
2563 	io_run_task_work();
2564 	io_cqring_overflow_flush(ctx);
2565 	/* if user messes with these they will just get an early return */
2566 	if (__io_cqring_events_user(ctx) >= min_events)
2567 		return 0;
2568 
2569 	if (sig) {
2570 #ifdef CONFIG_COMPAT
2571 		if (in_compat_syscall())
2572 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2573 						      sigsz);
2574 		else
2575 #endif
2576 			ret = set_user_sigmask(sig, sigsz);
2577 
2578 		if (ret)
2579 			return ret;
2580 	}
2581 
2582 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2583 	iowq.wq.private = current;
2584 	INIT_LIST_HEAD(&iowq.wq.entry);
2585 	iowq.ctx = ctx;
2586 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2587 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2588 	iowq.timeout = KTIME_MAX;
2589 
2590 	if (uts) {
2591 		struct timespec64 ts;
2592 
2593 		if (get_timespec64(&ts, uts))
2594 			return -EFAULT;
2595 		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2596 	}
2597 
2598 	trace_io_uring_cqring_wait(ctx, min_events);
2599 	do {
2600 		unsigned long check_cq;
2601 
2602 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2603 			WRITE_ONCE(ctx->cq_waiting, 1);
2604 			set_current_state(TASK_INTERRUPTIBLE);
2605 		} else {
2606 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2607 							TASK_INTERRUPTIBLE);
2608 		}
2609 
2610 		ret = io_cqring_wait_schedule(ctx, &iowq);
2611 		__set_current_state(TASK_RUNNING);
2612 		WRITE_ONCE(ctx->cq_waiting, 0);
2613 
2614 		if (ret < 0)
2615 			break;
2616 		/*
2617 		 * Run task_work after scheduling and before io_should_wake().
2618 		 * If we got woken because of task_work being processed, run it
2619 		 * now rather than let the caller do another wait loop.
2620 		 */
2621 		io_run_task_work();
2622 		if (!llist_empty(&ctx->work_llist))
2623 			io_run_local_work(ctx);
2624 
2625 		check_cq = READ_ONCE(ctx->check_cq);
2626 		if (unlikely(check_cq)) {
2627 			/* let the caller flush overflows, retry */
2628 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2629 				io_cqring_do_overflow_flush(ctx);
2630 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2631 				ret = -EBADR;
2632 				break;
2633 			}
2634 		}
2635 
2636 		if (io_should_wake(&iowq)) {
2637 			ret = 0;
2638 			break;
2639 		}
2640 		cond_resched();
2641 	} while (1);
2642 
2643 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2644 		finish_wait(&ctx->cq_wait, &iowq.wq);
2645 	restore_saved_sigmask_unless(ret == -EINTR);
2646 
2647 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2648 }
2649 
2650 static void io_mem_free(void *ptr)
2651 {
2652 	struct page *page;
2653 
2654 	if (!ptr)
2655 		return;
2656 
2657 	page = virt_to_head_page(ptr);
2658 	if (put_page_testzero(page))
2659 		free_compound_page(page);
2660 }
2661 
2662 static void *io_mem_alloc(size_t size)
2663 {
2664 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2665 
2666 	return (void *) __get_free_pages(gfp, get_order(size));
2667 }
2668 
2669 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2670 				unsigned int cq_entries, size_t *sq_offset)
2671 {
2672 	struct io_rings *rings;
2673 	size_t off, sq_array_size;
2674 
2675 	off = struct_size(rings, cqes, cq_entries);
2676 	if (off == SIZE_MAX)
2677 		return SIZE_MAX;
2678 	if (ctx->flags & IORING_SETUP_CQE32) {
2679 		if (check_shl_overflow(off, 1, &off))
2680 			return SIZE_MAX;
2681 	}
2682 
2683 #ifdef CONFIG_SMP
2684 	off = ALIGN(off, SMP_CACHE_BYTES);
2685 	if (off == 0)
2686 		return SIZE_MAX;
2687 #endif
2688 
2689 	if (sq_offset)
2690 		*sq_offset = off;
2691 
2692 	sq_array_size = array_size(sizeof(u32), sq_entries);
2693 	if (sq_array_size == SIZE_MAX)
2694 		return SIZE_MAX;
2695 
2696 	if (check_add_overflow(off, sq_array_size, &off))
2697 		return SIZE_MAX;
2698 
2699 	return off;
2700 }
2701 
2702 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2703 			       unsigned int eventfd_async)
2704 {
2705 	struct io_ev_fd *ev_fd;
2706 	__s32 __user *fds = arg;
2707 	int fd;
2708 
2709 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2710 					lockdep_is_held(&ctx->uring_lock));
2711 	if (ev_fd)
2712 		return -EBUSY;
2713 
2714 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2715 		return -EFAULT;
2716 
2717 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2718 	if (!ev_fd)
2719 		return -ENOMEM;
2720 
2721 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2722 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2723 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2724 		kfree(ev_fd);
2725 		return ret;
2726 	}
2727 
2728 	spin_lock(&ctx->completion_lock);
2729 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2730 	spin_unlock(&ctx->completion_lock);
2731 
2732 	ev_fd->eventfd_async = eventfd_async;
2733 	ctx->has_evfd = true;
2734 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2735 	atomic_set(&ev_fd->refs, 1);
2736 	atomic_set(&ev_fd->ops, 0);
2737 	return 0;
2738 }
2739 
2740 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2741 {
2742 	struct io_ev_fd *ev_fd;
2743 
2744 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2745 					lockdep_is_held(&ctx->uring_lock));
2746 	if (ev_fd) {
2747 		ctx->has_evfd = false;
2748 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2749 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2750 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2751 		return 0;
2752 	}
2753 
2754 	return -ENXIO;
2755 }
2756 
2757 static void io_req_caches_free(struct io_ring_ctx *ctx)
2758 {
2759 	struct io_kiocb *req;
2760 	int nr = 0;
2761 
2762 	mutex_lock(&ctx->uring_lock);
2763 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2764 
2765 	while (!io_req_cache_empty(ctx)) {
2766 		req = io_extract_req(ctx);
2767 		kmem_cache_free(req_cachep, req);
2768 		nr++;
2769 	}
2770 	if (nr)
2771 		percpu_ref_put_many(&ctx->refs, nr);
2772 	mutex_unlock(&ctx->uring_lock);
2773 }
2774 
2775 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2776 {
2777 	io_sq_thread_finish(ctx);
2778 	io_rsrc_refs_drop(ctx);
2779 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2780 	io_wait_rsrc_data(ctx->buf_data);
2781 	io_wait_rsrc_data(ctx->file_data);
2782 
2783 	mutex_lock(&ctx->uring_lock);
2784 	if (ctx->buf_data)
2785 		__io_sqe_buffers_unregister(ctx);
2786 	if (ctx->file_data)
2787 		__io_sqe_files_unregister(ctx);
2788 	io_cqring_overflow_kill(ctx);
2789 	io_eventfd_unregister(ctx);
2790 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2791 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2792 	mutex_unlock(&ctx->uring_lock);
2793 	io_destroy_buffers(ctx);
2794 	if (ctx->sq_creds)
2795 		put_cred(ctx->sq_creds);
2796 	if (ctx->submitter_task)
2797 		put_task_struct(ctx->submitter_task);
2798 
2799 	/* there are no registered resources left, nobody uses it */
2800 	if (ctx->rsrc_node)
2801 		io_rsrc_node_destroy(ctx->rsrc_node);
2802 	if (ctx->rsrc_backup_node)
2803 		io_rsrc_node_destroy(ctx->rsrc_backup_node);
2804 	flush_delayed_work(&ctx->rsrc_put_work);
2805 	flush_delayed_work(&ctx->fallback_work);
2806 
2807 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2808 	WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
2809 
2810 #if defined(CONFIG_UNIX)
2811 	if (ctx->ring_sock) {
2812 		ctx->ring_sock->file = NULL; /* so that iput() is called */
2813 		sock_release(ctx->ring_sock);
2814 	}
2815 #endif
2816 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2817 
2818 	if (ctx->mm_account) {
2819 		mmdrop(ctx->mm_account);
2820 		ctx->mm_account = NULL;
2821 	}
2822 	io_mem_free(ctx->rings);
2823 	io_mem_free(ctx->sq_sqes);
2824 
2825 	percpu_ref_exit(&ctx->refs);
2826 	free_uid(ctx->user);
2827 	io_req_caches_free(ctx);
2828 	if (ctx->hash_map)
2829 		io_wq_put_hash(ctx->hash_map);
2830 	kfree(ctx->cancel_table.hbs);
2831 	kfree(ctx->cancel_table_locked.hbs);
2832 	kfree(ctx->dummy_ubuf);
2833 	kfree(ctx->io_bl);
2834 	xa_destroy(&ctx->io_bl_xa);
2835 	kfree(ctx);
2836 }
2837 
2838 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2839 {
2840 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2841 					       poll_wq_task_work);
2842 
2843 	mutex_lock(&ctx->uring_lock);
2844 	ctx->poll_activated = true;
2845 	mutex_unlock(&ctx->uring_lock);
2846 
2847 	/*
2848 	 * Wake ups for some events between start of polling and activation
2849 	 * might've been lost due to loose synchronisation.
2850 	 */
2851 	wake_up_all(&ctx->poll_wq);
2852 	percpu_ref_put(&ctx->refs);
2853 }
2854 
2855 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2856 {
2857 	spin_lock(&ctx->completion_lock);
2858 	/* already activated or in progress */
2859 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2860 		goto out;
2861 	if (WARN_ON_ONCE(!ctx->task_complete))
2862 		goto out;
2863 	if (!ctx->submitter_task)
2864 		goto out;
2865 	/*
2866 	 * with ->submitter_task only the submitter task completes requests, we
2867 	 * only need to sync with it, which is done by injecting a tw
2868 	 */
2869 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2870 	percpu_ref_get(&ctx->refs);
2871 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2872 		percpu_ref_put(&ctx->refs);
2873 out:
2874 	spin_unlock(&ctx->completion_lock);
2875 }
2876 
2877 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2878 {
2879 	struct io_ring_ctx *ctx = file->private_data;
2880 	__poll_t mask = 0;
2881 
2882 	if (unlikely(!ctx->poll_activated))
2883 		io_activate_pollwq(ctx);
2884 
2885 	poll_wait(file, &ctx->poll_wq, wait);
2886 	/*
2887 	 * synchronizes with barrier from wq_has_sleeper call in
2888 	 * io_commit_cqring
2889 	 */
2890 	smp_rmb();
2891 	if (!io_sqring_full(ctx))
2892 		mask |= EPOLLOUT | EPOLLWRNORM;
2893 
2894 	/*
2895 	 * Don't flush cqring overflow list here, just do a simple check.
2896 	 * Otherwise there could possible be ABBA deadlock:
2897 	 *      CPU0                    CPU1
2898 	 *      ----                    ----
2899 	 * lock(&ctx->uring_lock);
2900 	 *                              lock(&ep->mtx);
2901 	 *                              lock(&ctx->uring_lock);
2902 	 * lock(&ep->mtx);
2903 	 *
2904 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2905 	 * pushes them to do the flush.
2906 	 */
2907 
2908 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2909 		mask |= EPOLLIN | EPOLLRDNORM;
2910 
2911 	return mask;
2912 }
2913 
2914 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2915 {
2916 	const struct cred *creds;
2917 
2918 	creds = xa_erase(&ctx->personalities, id);
2919 	if (creds) {
2920 		put_cred(creds);
2921 		return 0;
2922 	}
2923 
2924 	return -EINVAL;
2925 }
2926 
2927 struct io_tctx_exit {
2928 	struct callback_head		task_work;
2929 	struct completion		completion;
2930 	struct io_ring_ctx		*ctx;
2931 };
2932 
2933 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2934 {
2935 	struct io_uring_task *tctx = current->io_uring;
2936 	struct io_tctx_exit *work;
2937 
2938 	work = container_of(cb, struct io_tctx_exit, task_work);
2939 	/*
2940 	 * When @in_cancel, we're in cancellation and it's racy to remove the
2941 	 * node. It'll be removed by the end of cancellation, just ignore it.
2942 	 * tctx can be NULL if the queueing of this task_work raced with
2943 	 * work cancelation off the exec path.
2944 	 */
2945 	if (tctx && !atomic_read(&tctx->in_cancel))
2946 		io_uring_del_tctx_node((unsigned long)work->ctx);
2947 	complete(&work->completion);
2948 }
2949 
2950 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2951 {
2952 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2953 
2954 	return req->ctx == data;
2955 }
2956 
2957 static __cold void io_ring_exit_work(struct work_struct *work)
2958 {
2959 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2960 	unsigned long timeout = jiffies + HZ * 60 * 5;
2961 	unsigned long interval = HZ / 20;
2962 	struct io_tctx_exit exit;
2963 	struct io_tctx_node *node;
2964 	int ret;
2965 
2966 	/*
2967 	 * If we're doing polled IO and end up having requests being
2968 	 * submitted async (out-of-line), then completions can come in while
2969 	 * we're waiting for refs to drop. We need to reap these manually,
2970 	 * as nobody else will be looking for them.
2971 	 */
2972 	do {
2973 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2974 			mutex_lock(&ctx->uring_lock);
2975 			io_cqring_overflow_kill(ctx);
2976 			mutex_unlock(&ctx->uring_lock);
2977 		}
2978 
2979 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2980 			io_move_task_work_from_local(ctx);
2981 
2982 		while (io_uring_try_cancel_requests(ctx, NULL, true))
2983 			cond_resched();
2984 
2985 		if (ctx->sq_data) {
2986 			struct io_sq_data *sqd = ctx->sq_data;
2987 			struct task_struct *tsk;
2988 
2989 			io_sq_thread_park(sqd);
2990 			tsk = sqd->thread;
2991 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2992 				io_wq_cancel_cb(tsk->io_uring->io_wq,
2993 						io_cancel_ctx_cb, ctx, true);
2994 			io_sq_thread_unpark(sqd);
2995 		}
2996 
2997 		io_req_caches_free(ctx);
2998 
2999 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3000 			/* there is little hope left, don't run it too often */
3001 			interval = HZ * 60;
3002 		}
3003 	} while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
3004 
3005 	init_completion(&exit.completion);
3006 	init_task_work(&exit.task_work, io_tctx_exit_cb);
3007 	exit.ctx = ctx;
3008 	/*
3009 	 * Some may use context even when all refs and requests have been put,
3010 	 * and they are free to do so while still holding uring_lock or
3011 	 * completion_lock, see io_req_task_submit(). Apart from other work,
3012 	 * this lock/unlock section also waits them to finish.
3013 	 */
3014 	mutex_lock(&ctx->uring_lock);
3015 	while (!list_empty(&ctx->tctx_list)) {
3016 		WARN_ON_ONCE(time_after(jiffies, timeout));
3017 
3018 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3019 					ctx_node);
3020 		/* don't spin on a single task if cancellation failed */
3021 		list_rotate_left(&ctx->tctx_list);
3022 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3023 		if (WARN_ON_ONCE(ret))
3024 			continue;
3025 
3026 		mutex_unlock(&ctx->uring_lock);
3027 		wait_for_completion(&exit.completion);
3028 		mutex_lock(&ctx->uring_lock);
3029 	}
3030 	mutex_unlock(&ctx->uring_lock);
3031 	spin_lock(&ctx->completion_lock);
3032 	spin_unlock(&ctx->completion_lock);
3033 
3034 	io_ring_ctx_free(ctx);
3035 }
3036 
3037 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3038 {
3039 	unsigned long index;
3040 	struct creds *creds;
3041 
3042 	mutex_lock(&ctx->uring_lock);
3043 	percpu_ref_kill(&ctx->refs);
3044 	xa_for_each(&ctx->personalities, index, creds)
3045 		io_unregister_personality(ctx, index);
3046 	if (ctx->rings)
3047 		io_poll_remove_all(ctx, NULL, true);
3048 	mutex_unlock(&ctx->uring_lock);
3049 
3050 	/*
3051 	 * If we failed setting up the ctx, we might not have any rings
3052 	 * and therefore did not submit any requests
3053 	 */
3054 	if (ctx->rings)
3055 		io_kill_timeouts(ctx, NULL, true);
3056 
3057 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3058 	/*
3059 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3060 	 * if we're exiting a ton of rings at the same time. It just adds
3061 	 * noise and overhead, there's no discernable change in runtime
3062 	 * over using system_wq.
3063 	 */
3064 	queue_work(system_unbound_wq, &ctx->exit_work);
3065 }
3066 
3067 static int io_uring_release(struct inode *inode, struct file *file)
3068 {
3069 	struct io_ring_ctx *ctx = file->private_data;
3070 
3071 	file->private_data = NULL;
3072 	io_ring_ctx_wait_and_kill(ctx);
3073 	return 0;
3074 }
3075 
3076 struct io_task_cancel {
3077 	struct task_struct *task;
3078 	bool all;
3079 };
3080 
3081 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3082 {
3083 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3084 	struct io_task_cancel *cancel = data;
3085 
3086 	return io_match_task_safe(req, cancel->task, cancel->all);
3087 }
3088 
3089 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3090 					 struct task_struct *task,
3091 					 bool cancel_all)
3092 {
3093 	struct io_defer_entry *de;
3094 	LIST_HEAD(list);
3095 
3096 	spin_lock(&ctx->completion_lock);
3097 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3098 		if (io_match_task_safe(de->req, task, cancel_all)) {
3099 			list_cut_position(&list, &ctx->defer_list, &de->list);
3100 			break;
3101 		}
3102 	}
3103 	spin_unlock(&ctx->completion_lock);
3104 	if (list_empty(&list))
3105 		return false;
3106 
3107 	while (!list_empty(&list)) {
3108 		de = list_first_entry(&list, struct io_defer_entry, list);
3109 		list_del_init(&de->list);
3110 		io_req_task_queue_fail(de->req, -ECANCELED);
3111 		kfree(de);
3112 	}
3113 	return true;
3114 }
3115 
3116 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3117 {
3118 	struct io_tctx_node *node;
3119 	enum io_wq_cancel cret;
3120 	bool ret = false;
3121 
3122 	mutex_lock(&ctx->uring_lock);
3123 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3124 		struct io_uring_task *tctx = node->task->io_uring;
3125 
3126 		/*
3127 		 * io_wq will stay alive while we hold uring_lock, because it's
3128 		 * killed after ctx nodes, which requires to take the lock.
3129 		 */
3130 		if (!tctx || !tctx->io_wq)
3131 			continue;
3132 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3133 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3134 	}
3135 	mutex_unlock(&ctx->uring_lock);
3136 
3137 	return ret;
3138 }
3139 
3140 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3141 						struct task_struct *task,
3142 						bool cancel_all)
3143 {
3144 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3145 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3146 	enum io_wq_cancel cret;
3147 	bool ret = false;
3148 
3149 	/* failed during ring init, it couldn't have issued any requests */
3150 	if (!ctx->rings)
3151 		return false;
3152 
3153 	if (!task) {
3154 		ret |= io_uring_try_cancel_iowq(ctx);
3155 	} else if (tctx && tctx->io_wq) {
3156 		/*
3157 		 * Cancels requests of all rings, not only @ctx, but
3158 		 * it's fine as the task is in exit/exec.
3159 		 */
3160 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3161 				       &cancel, true);
3162 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3163 	}
3164 
3165 	/* SQPOLL thread does its own polling */
3166 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3167 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3168 		while (!wq_list_empty(&ctx->iopoll_list)) {
3169 			io_iopoll_try_reap_events(ctx);
3170 			ret = true;
3171 			cond_resched();
3172 		}
3173 	}
3174 
3175 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3176 	    io_allowed_defer_tw_run(ctx))
3177 		ret |= io_run_local_work(ctx) > 0;
3178 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3179 	mutex_lock(&ctx->uring_lock);
3180 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3181 	mutex_unlock(&ctx->uring_lock);
3182 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3183 	if (task)
3184 		ret |= io_run_task_work() > 0;
3185 	return ret;
3186 }
3187 
3188 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3189 {
3190 	if (tracked)
3191 		return atomic_read(&tctx->inflight_tracked);
3192 	return percpu_counter_sum(&tctx->inflight);
3193 }
3194 
3195 /*
3196  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3197  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3198  */
3199 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3200 {
3201 	struct io_uring_task *tctx = current->io_uring;
3202 	struct io_ring_ctx *ctx;
3203 	s64 inflight;
3204 	DEFINE_WAIT(wait);
3205 
3206 	WARN_ON_ONCE(sqd && sqd->thread != current);
3207 
3208 	if (!current->io_uring)
3209 		return;
3210 	if (tctx->io_wq)
3211 		io_wq_exit_start(tctx->io_wq);
3212 
3213 	atomic_inc(&tctx->in_cancel);
3214 	do {
3215 		bool loop = false;
3216 
3217 		io_uring_drop_tctx_refs(current);
3218 		/* read completions before cancelations */
3219 		inflight = tctx_inflight(tctx, !cancel_all);
3220 		if (!inflight)
3221 			break;
3222 
3223 		if (!sqd) {
3224 			struct io_tctx_node *node;
3225 			unsigned long index;
3226 
3227 			xa_for_each(&tctx->xa, index, node) {
3228 				/* sqpoll task will cancel all its requests */
3229 				if (node->ctx->sq_data)
3230 					continue;
3231 				loop |= io_uring_try_cancel_requests(node->ctx,
3232 							current, cancel_all);
3233 			}
3234 		} else {
3235 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3236 				loop |= io_uring_try_cancel_requests(ctx,
3237 								     current,
3238 								     cancel_all);
3239 		}
3240 
3241 		if (loop) {
3242 			cond_resched();
3243 			continue;
3244 		}
3245 
3246 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3247 		io_run_task_work();
3248 		io_uring_drop_tctx_refs(current);
3249 
3250 		/*
3251 		 * If we've seen completions, retry without waiting. This
3252 		 * avoids a race where a completion comes in before we did
3253 		 * prepare_to_wait().
3254 		 */
3255 		if (inflight == tctx_inflight(tctx, !cancel_all))
3256 			schedule();
3257 		finish_wait(&tctx->wait, &wait);
3258 	} while (1);
3259 
3260 	io_uring_clean_tctx(tctx);
3261 	if (cancel_all) {
3262 		/*
3263 		 * We shouldn't run task_works after cancel, so just leave
3264 		 * ->in_cancel set for normal exit.
3265 		 */
3266 		atomic_dec(&tctx->in_cancel);
3267 		/* for exec all current's requests should be gone, kill tctx */
3268 		__io_uring_free(current);
3269 	}
3270 }
3271 
3272 void __io_uring_cancel(bool cancel_all)
3273 {
3274 	io_uring_cancel_generic(cancel_all, NULL);
3275 }
3276 
3277 static void *io_uring_validate_mmap_request(struct file *file,
3278 					    loff_t pgoff, size_t sz)
3279 {
3280 	struct io_ring_ctx *ctx = file->private_data;
3281 	loff_t offset = pgoff << PAGE_SHIFT;
3282 	struct page *page;
3283 	void *ptr;
3284 
3285 	switch (offset) {
3286 	case IORING_OFF_SQ_RING:
3287 	case IORING_OFF_CQ_RING:
3288 		ptr = ctx->rings;
3289 		break;
3290 	case IORING_OFF_SQES:
3291 		ptr = ctx->sq_sqes;
3292 		break;
3293 	default:
3294 		return ERR_PTR(-EINVAL);
3295 	}
3296 
3297 	page = virt_to_head_page(ptr);
3298 	if (sz > page_size(page))
3299 		return ERR_PTR(-EINVAL);
3300 
3301 	return ptr;
3302 }
3303 
3304 #ifdef CONFIG_MMU
3305 
3306 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3307 {
3308 	size_t sz = vma->vm_end - vma->vm_start;
3309 	unsigned long pfn;
3310 	void *ptr;
3311 
3312 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3313 	if (IS_ERR(ptr))
3314 		return PTR_ERR(ptr);
3315 
3316 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3317 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3318 }
3319 
3320 #else /* !CONFIG_MMU */
3321 
3322 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3323 {
3324 	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3325 }
3326 
3327 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3328 {
3329 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3330 }
3331 
3332 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3333 	unsigned long addr, unsigned long len,
3334 	unsigned long pgoff, unsigned long flags)
3335 {
3336 	void *ptr;
3337 
3338 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3339 	if (IS_ERR(ptr))
3340 		return PTR_ERR(ptr);
3341 
3342 	return (unsigned long) ptr;
3343 }
3344 
3345 #endif /* !CONFIG_MMU */
3346 
3347 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3348 {
3349 	if (flags & IORING_ENTER_EXT_ARG) {
3350 		struct io_uring_getevents_arg arg;
3351 
3352 		if (argsz != sizeof(arg))
3353 			return -EINVAL;
3354 		if (copy_from_user(&arg, argp, sizeof(arg)))
3355 			return -EFAULT;
3356 	}
3357 	return 0;
3358 }
3359 
3360 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3361 			  struct __kernel_timespec __user **ts,
3362 			  const sigset_t __user **sig)
3363 {
3364 	struct io_uring_getevents_arg arg;
3365 
3366 	/*
3367 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3368 	 * is just a pointer to the sigset_t.
3369 	 */
3370 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3371 		*sig = (const sigset_t __user *) argp;
3372 		*ts = NULL;
3373 		return 0;
3374 	}
3375 
3376 	/*
3377 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3378 	 * timespec and sigset_t pointers if good.
3379 	 */
3380 	if (*argsz != sizeof(arg))
3381 		return -EINVAL;
3382 	if (copy_from_user(&arg, argp, sizeof(arg)))
3383 		return -EFAULT;
3384 	if (arg.pad)
3385 		return -EINVAL;
3386 	*sig = u64_to_user_ptr(arg.sigmask);
3387 	*argsz = arg.sigmask_sz;
3388 	*ts = u64_to_user_ptr(arg.ts);
3389 	return 0;
3390 }
3391 
3392 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3393 		u32, min_complete, u32, flags, const void __user *, argp,
3394 		size_t, argsz)
3395 {
3396 	struct io_ring_ctx *ctx;
3397 	struct fd f;
3398 	long ret;
3399 
3400 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3401 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3402 			       IORING_ENTER_REGISTERED_RING)))
3403 		return -EINVAL;
3404 
3405 	/*
3406 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3407 	 * need only dereference our task private array to find it.
3408 	 */
3409 	if (flags & IORING_ENTER_REGISTERED_RING) {
3410 		struct io_uring_task *tctx = current->io_uring;
3411 
3412 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3413 			return -EINVAL;
3414 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3415 		f.file = tctx->registered_rings[fd];
3416 		f.flags = 0;
3417 		if (unlikely(!f.file))
3418 			return -EBADF;
3419 	} else {
3420 		f = fdget(fd);
3421 		if (unlikely(!f.file))
3422 			return -EBADF;
3423 		ret = -EOPNOTSUPP;
3424 		if (unlikely(!io_is_uring_fops(f.file)))
3425 			goto out;
3426 	}
3427 
3428 	ctx = f.file->private_data;
3429 	ret = -EBADFD;
3430 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3431 		goto out;
3432 
3433 	/*
3434 	 * For SQ polling, the thread will do all submissions and completions.
3435 	 * Just return the requested submit count, and wake the thread if
3436 	 * we were asked to.
3437 	 */
3438 	ret = 0;
3439 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3440 		io_cqring_overflow_flush(ctx);
3441 
3442 		if (unlikely(ctx->sq_data->thread == NULL)) {
3443 			ret = -EOWNERDEAD;
3444 			goto out;
3445 		}
3446 		if (flags & IORING_ENTER_SQ_WAKEUP)
3447 			wake_up(&ctx->sq_data->wait);
3448 		if (flags & IORING_ENTER_SQ_WAIT)
3449 			io_sqpoll_wait_sq(ctx);
3450 
3451 		ret = to_submit;
3452 	} else if (to_submit) {
3453 		ret = io_uring_add_tctx_node(ctx);
3454 		if (unlikely(ret))
3455 			goto out;
3456 
3457 		mutex_lock(&ctx->uring_lock);
3458 		ret = io_submit_sqes(ctx, to_submit);
3459 		if (ret != to_submit) {
3460 			mutex_unlock(&ctx->uring_lock);
3461 			goto out;
3462 		}
3463 		if (flags & IORING_ENTER_GETEVENTS) {
3464 			if (ctx->syscall_iopoll)
3465 				goto iopoll_locked;
3466 			/*
3467 			 * Ignore errors, we'll soon call io_cqring_wait() and
3468 			 * it should handle ownership problems if any.
3469 			 */
3470 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3471 				(void)io_run_local_work_locked(ctx);
3472 		}
3473 		mutex_unlock(&ctx->uring_lock);
3474 	}
3475 
3476 	if (flags & IORING_ENTER_GETEVENTS) {
3477 		int ret2;
3478 
3479 		if (ctx->syscall_iopoll) {
3480 			/*
3481 			 * We disallow the app entering submit/complete with
3482 			 * polling, but we still need to lock the ring to
3483 			 * prevent racing with polled issue that got punted to
3484 			 * a workqueue.
3485 			 */
3486 			mutex_lock(&ctx->uring_lock);
3487 iopoll_locked:
3488 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3489 			if (likely(!ret2)) {
3490 				min_complete = min(min_complete,
3491 						   ctx->cq_entries);
3492 				ret2 = io_iopoll_check(ctx, min_complete);
3493 			}
3494 			mutex_unlock(&ctx->uring_lock);
3495 		} else {
3496 			const sigset_t __user *sig;
3497 			struct __kernel_timespec __user *ts;
3498 
3499 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3500 			if (likely(!ret2)) {
3501 				min_complete = min(min_complete,
3502 						   ctx->cq_entries);
3503 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3504 						      argsz, ts);
3505 			}
3506 		}
3507 
3508 		if (!ret) {
3509 			ret = ret2;
3510 
3511 			/*
3512 			 * EBADR indicates that one or more CQE were dropped.
3513 			 * Once the user has been informed we can clear the bit
3514 			 * as they are obviously ok with those drops.
3515 			 */
3516 			if (unlikely(ret2 == -EBADR))
3517 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3518 					  &ctx->check_cq);
3519 		}
3520 	}
3521 out:
3522 	fdput(f);
3523 	return ret;
3524 }
3525 
3526 static const struct file_operations io_uring_fops = {
3527 	.release	= io_uring_release,
3528 	.mmap		= io_uring_mmap,
3529 #ifndef CONFIG_MMU
3530 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3531 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3532 #endif
3533 	.poll		= io_uring_poll,
3534 #ifdef CONFIG_PROC_FS
3535 	.show_fdinfo	= io_uring_show_fdinfo,
3536 #endif
3537 };
3538 
3539 bool io_is_uring_fops(struct file *file)
3540 {
3541 	return file->f_op == &io_uring_fops;
3542 }
3543 
3544 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3545 					 struct io_uring_params *p)
3546 {
3547 	struct io_rings *rings;
3548 	size_t size, sq_array_offset;
3549 
3550 	/* make sure these are sane, as we already accounted them */
3551 	ctx->sq_entries = p->sq_entries;
3552 	ctx->cq_entries = p->cq_entries;
3553 
3554 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3555 	if (size == SIZE_MAX)
3556 		return -EOVERFLOW;
3557 
3558 	rings = io_mem_alloc(size);
3559 	if (!rings)
3560 		return -ENOMEM;
3561 
3562 	ctx->rings = rings;
3563 	ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3564 	rings->sq_ring_mask = p->sq_entries - 1;
3565 	rings->cq_ring_mask = p->cq_entries - 1;
3566 	rings->sq_ring_entries = p->sq_entries;
3567 	rings->cq_ring_entries = p->cq_entries;
3568 
3569 	if (p->flags & IORING_SETUP_SQE128)
3570 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3571 	else
3572 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3573 	if (size == SIZE_MAX) {
3574 		io_mem_free(ctx->rings);
3575 		ctx->rings = NULL;
3576 		return -EOVERFLOW;
3577 	}
3578 
3579 	ctx->sq_sqes = io_mem_alloc(size);
3580 	if (!ctx->sq_sqes) {
3581 		io_mem_free(ctx->rings);
3582 		ctx->rings = NULL;
3583 		return -ENOMEM;
3584 	}
3585 
3586 	return 0;
3587 }
3588 
3589 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
3590 {
3591 	int ret, fd;
3592 
3593 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3594 	if (fd < 0)
3595 		return fd;
3596 
3597 	ret = __io_uring_add_tctx_node(ctx);
3598 	if (ret) {
3599 		put_unused_fd(fd);
3600 		return ret;
3601 	}
3602 	fd_install(fd, file);
3603 	return fd;
3604 }
3605 
3606 /*
3607  * Allocate an anonymous fd, this is what constitutes the application
3608  * visible backing of an io_uring instance. The application mmaps this
3609  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3610  * we have to tie this fd to a socket for file garbage collection purposes.
3611  */
3612 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3613 {
3614 	struct file *file;
3615 #if defined(CONFIG_UNIX)
3616 	int ret;
3617 
3618 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3619 				&ctx->ring_sock);
3620 	if (ret)
3621 		return ERR_PTR(ret);
3622 #endif
3623 
3624 	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3625 					 O_RDWR | O_CLOEXEC, NULL);
3626 #if defined(CONFIG_UNIX)
3627 	if (IS_ERR(file)) {
3628 		sock_release(ctx->ring_sock);
3629 		ctx->ring_sock = NULL;
3630 	} else {
3631 		ctx->ring_sock->file = file;
3632 	}
3633 #endif
3634 	return file;
3635 }
3636 
3637 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3638 				  struct io_uring_params __user *params)
3639 {
3640 	struct io_ring_ctx *ctx;
3641 	struct file *file;
3642 	int ret;
3643 
3644 	if (!entries)
3645 		return -EINVAL;
3646 	if (entries > IORING_MAX_ENTRIES) {
3647 		if (!(p->flags & IORING_SETUP_CLAMP))
3648 			return -EINVAL;
3649 		entries = IORING_MAX_ENTRIES;
3650 	}
3651 
3652 	/*
3653 	 * Use twice as many entries for the CQ ring. It's possible for the
3654 	 * application to drive a higher depth than the size of the SQ ring,
3655 	 * since the sqes are only used at submission time. This allows for
3656 	 * some flexibility in overcommitting a bit. If the application has
3657 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3658 	 * of CQ ring entries manually.
3659 	 */
3660 	p->sq_entries = roundup_pow_of_two(entries);
3661 	if (p->flags & IORING_SETUP_CQSIZE) {
3662 		/*
3663 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3664 		 * to a power-of-two, if it isn't already. We do NOT impose
3665 		 * any cq vs sq ring sizing.
3666 		 */
3667 		if (!p->cq_entries)
3668 			return -EINVAL;
3669 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3670 			if (!(p->flags & IORING_SETUP_CLAMP))
3671 				return -EINVAL;
3672 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3673 		}
3674 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3675 		if (p->cq_entries < p->sq_entries)
3676 			return -EINVAL;
3677 	} else {
3678 		p->cq_entries = 2 * p->sq_entries;
3679 	}
3680 
3681 	ctx = io_ring_ctx_alloc(p);
3682 	if (!ctx)
3683 		return -ENOMEM;
3684 
3685 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3686 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3687 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3688 		ctx->task_complete = true;
3689 
3690 	/*
3691 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3692 	 * purposes, see io_activate_pollwq()
3693 	 */
3694 	if (!ctx->task_complete)
3695 		ctx->poll_activated = true;
3696 
3697 	/*
3698 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3699 	 * space applications don't need to do io completion events
3700 	 * polling again, they can rely on io_sq_thread to do polling
3701 	 * work, which can reduce cpu usage and uring_lock contention.
3702 	 */
3703 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3704 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3705 		ctx->syscall_iopoll = 1;
3706 
3707 	ctx->compat = in_compat_syscall();
3708 	if (!capable(CAP_IPC_LOCK))
3709 		ctx->user = get_uid(current_user());
3710 
3711 	/*
3712 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3713 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3714 	 */
3715 	ret = -EINVAL;
3716 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3717 		/* IPI related flags don't make sense with SQPOLL */
3718 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3719 				  IORING_SETUP_TASKRUN_FLAG |
3720 				  IORING_SETUP_DEFER_TASKRUN))
3721 			goto err;
3722 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3723 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3724 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3725 	} else {
3726 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3727 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3728 			goto err;
3729 		ctx->notify_method = TWA_SIGNAL;
3730 	}
3731 
3732 	/*
3733 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3734 	 * submission task. This implies that there is only one submitter, so enforce
3735 	 * that.
3736 	 */
3737 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3738 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3739 		goto err;
3740 	}
3741 
3742 	/*
3743 	 * This is just grabbed for accounting purposes. When a process exits,
3744 	 * the mm is exited and dropped before the files, hence we need to hang
3745 	 * on to this mm purely for the purposes of being able to unaccount
3746 	 * memory (locked/pinned vm). It's not used for anything else.
3747 	 */
3748 	mmgrab(current->mm);
3749 	ctx->mm_account = current->mm;
3750 
3751 	ret = io_allocate_scq_urings(ctx, p);
3752 	if (ret)
3753 		goto err;
3754 
3755 	ret = io_sq_offload_create(ctx, p);
3756 	if (ret)
3757 		goto err;
3758 	/* always set a rsrc node */
3759 	ret = io_rsrc_node_switch_start(ctx);
3760 	if (ret)
3761 		goto err;
3762 	io_rsrc_node_switch(ctx, NULL);
3763 
3764 	memset(&p->sq_off, 0, sizeof(p->sq_off));
3765 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3766 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3767 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3768 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3769 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3770 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3771 	p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3772 
3773 	memset(&p->cq_off, 0, sizeof(p->cq_off));
3774 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3775 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3776 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3777 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3778 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3779 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3780 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3781 
3782 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3783 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3784 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3785 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3786 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3787 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3788 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
3789 
3790 	if (copy_to_user(params, p, sizeof(*p))) {
3791 		ret = -EFAULT;
3792 		goto err;
3793 	}
3794 
3795 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3796 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3797 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3798 
3799 	file = io_uring_get_file(ctx);
3800 	if (IS_ERR(file)) {
3801 		ret = PTR_ERR(file);
3802 		goto err;
3803 	}
3804 
3805 	/*
3806 	 * Install ring fd as the very last thing, so we don't risk someone
3807 	 * having closed it before we finish setup
3808 	 */
3809 	ret = io_uring_install_fd(ctx, file);
3810 	if (ret < 0) {
3811 		/* fput will clean it up */
3812 		fput(file);
3813 		return ret;
3814 	}
3815 
3816 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3817 	return ret;
3818 err:
3819 	io_ring_ctx_wait_and_kill(ctx);
3820 	return ret;
3821 }
3822 
3823 /*
3824  * Sets up an aio uring context, and returns the fd. Applications asks for a
3825  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3826  * params structure passed in.
3827  */
3828 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3829 {
3830 	struct io_uring_params p;
3831 	int i;
3832 
3833 	if (copy_from_user(&p, params, sizeof(p)))
3834 		return -EFAULT;
3835 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3836 		if (p.resv[i])
3837 			return -EINVAL;
3838 	}
3839 
3840 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3841 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3842 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3843 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3844 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3845 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3846 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN))
3847 		return -EINVAL;
3848 
3849 	return io_uring_create(entries, &p, params);
3850 }
3851 
3852 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3853 		struct io_uring_params __user *, params)
3854 {
3855 	return io_uring_setup(entries, params);
3856 }
3857 
3858 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
3859 			   unsigned nr_args)
3860 {
3861 	struct io_uring_probe *p;
3862 	size_t size;
3863 	int i, ret;
3864 
3865 	size = struct_size(p, ops, nr_args);
3866 	if (size == SIZE_MAX)
3867 		return -EOVERFLOW;
3868 	p = kzalloc(size, GFP_KERNEL);
3869 	if (!p)
3870 		return -ENOMEM;
3871 
3872 	ret = -EFAULT;
3873 	if (copy_from_user(p, arg, size))
3874 		goto out;
3875 	ret = -EINVAL;
3876 	if (memchr_inv(p, 0, size))
3877 		goto out;
3878 
3879 	p->last_op = IORING_OP_LAST - 1;
3880 	if (nr_args > IORING_OP_LAST)
3881 		nr_args = IORING_OP_LAST;
3882 
3883 	for (i = 0; i < nr_args; i++) {
3884 		p->ops[i].op = i;
3885 		if (!io_issue_defs[i].not_supported)
3886 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
3887 	}
3888 	p->ops_len = i;
3889 
3890 	ret = 0;
3891 	if (copy_to_user(arg, p, size))
3892 		ret = -EFAULT;
3893 out:
3894 	kfree(p);
3895 	return ret;
3896 }
3897 
3898 static int io_register_personality(struct io_ring_ctx *ctx)
3899 {
3900 	const struct cred *creds;
3901 	u32 id;
3902 	int ret;
3903 
3904 	creds = get_current_cred();
3905 
3906 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
3907 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
3908 	if (ret < 0) {
3909 		put_cred(creds);
3910 		return ret;
3911 	}
3912 	return id;
3913 }
3914 
3915 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
3916 					   void __user *arg, unsigned int nr_args)
3917 {
3918 	struct io_uring_restriction *res;
3919 	size_t size;
3920 	int i, ret;
3921 
3922 	/* Restrictions allowed only if rings started disabled */
3923 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3924 		return -EBADFD;
3925 
3926 	/* We allow only a single restrictions registration */
3927 	if (ctx->restrictions.registered)
3928 		return -EBUSY;
3929 
3930 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
3931 		return -EINVAL;
3932 
3933 	size = array_size(nr_args, sizeof(*res));
3934 	if (size == SIZE_MAX)
3935 		return -EOVERFLOW;
3936 
3937 	res = memdup_user(arg, size);
3938 	if (IS_ERR(res))
3939 		return PTR_ERR(res);
3940 
3941 	ret = 0;
3942 
3943 	for (i = 0; i < nr_args; i++) {
3944 		switch (res[i].opcode) {
3945 		case IORING_RESTRICTION_REGISTER_OP:
3946 			if (res[i].register_op >= IORING_REGISTER_LAST) {
3947 				ret = -EINVAL;
3948 				goto out;
3949 			}
3950 
3951 			__set_bit(res[i].register_op,
3952 				  ctx->restrictions.register_op);
3953 			break;
3954 		case IORING_RESTRICTION_SQE_OP:
3955 			if (res[i].sqe_op >= IORING_OP_LAST) {
3956 				ret = -EINVAL;
3957 				goto out;
3958 			}
3959 
3960 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
3961 			break;
3962 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
3963 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
3964 			break;
3965 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
3966 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
3967 			break;
3968 		default:
3969 			ret = -EINVAL;
3970 			goto out;
3971 		}
3972 	}
3973 
3974 out:
3975 	/* Reset all restrictions if an error happened */
3976 	if (ret != 0)
3977 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
3978 	else
3979 		ctx->restrictions.registered = true;
3980 
3981 	kfree(res);
3982 	return ret;
3983 }
3984 
3985 static int io_register_enable_rings(struct io_ring_ctx *ctx)
3986 {
3987 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3988 		return -EBADFD;
3989 
3990 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
3991 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3992 		/*
3993 		 * Lazy activation attempts would fail if it was polled before
3994 		 * submitter_task is set.
3995 		 */
3996 		if (wq_has_sleeper(&ctx->poll_wq))
3997 			io_activate_pollwq(ctx);
3998 	}
3999 
4000 	if (ctx->restrictions.registered)
4001 		ctx->restricted = 1;
4002 
4003 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
4004 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4005 		wake_up(&ctx->sq_data->wait);
4006 	return 0;
4007 }
4008 
4009 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4010 				       void __user *arg, unsigned len)
4011 {
4012 	struct io_uring_task *tctx = current->io_uring;
4013 	cpumask_var_t new_mask;
4014 	int ret;
4015 
4016 	if (!tctx || !tctx->io_wq)
4017 		return -EINVAL;
4018 
4019 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4020 		return -ENOMEM;
4021 
4022 	cpumask_clear(new_mask);
4023 	if (len > cpumask_size())
4024 		len = cpumask_size();
4025 
4026 	if (in_compat_syscall()) {
4027 		ret = compat_get_bitmap(cpumask_bits(new_mask),
4028 					(const compat_ulong_t __user *)arg,
4029 					len * 8 /* CHAR_BIT */);
4030 	} else {
4031 		ret = copy_from_user(new_mask, arg, len);
4032 	}
4033 
4034 	if (ret) {
4035 		free_cpumask_var(new_mask);
4036 		return -EFAULT;
4037 	}
4038 
4039 	ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
4040 	free_cpumask_var(new_mask);
4041 	return ret;
4042 }
4043 
4044 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4045 {
4046 	struct io_uring_task *tctx = current->io_uring;
4047 
4048 	if (!tctx || !tctx->io_wq)
4049 		return -EINVAL;
4050 
4051 	return io_wq_cpu_affinity(tctx->io_wq, NULL);
4052 }
4053 
4054 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4055 					       void __user *arg)
4056 	__must_hold(&ctx->uring_lock)
4057 {
4058 	struct io_tctx_node *node;
4059 	struct io_uring_task *tctx = NULL;
4060 	struct io_sq_data *sqd = NULL;
4061 	__u32 new_count[2];
4062 	int i, ret;
4063 
4064 	if (copy_from_user(new_count, arg, sizeof(new_count)))
4065 		return -EFAULT;
4066 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4067 		if (new_count[i] > INT_MAX)
4068 			return -EINVAL;
4069 
4070 	if (ctx->flags & IORING_SETUP_SQPOLL) {
4071 		sqd = ctx->sq_data;
4072 		if (sqd) {
4073 			/*
4074 			 * Observe the correct sqd->lock -> ctx->uring_lock
4075 			 * ordering. Fine to drop uring_lock here, we hold
4076 			 * a ref to the ctx.
4077 			 */
4078 			refcount_inc(&sqd->refs);
4079 			mutex_unlock(&ctx->uring_lock);
4080 			mutex_lock(&sqd->lock);
4081 			mutex_lock(&ctx->uring_lock);
4082 			if (sqd->thread)
4083 				tctx = sqd->thread->io_uring;
4084 		}
4085 	} else {
4086 		tctx = current->io_uring;
4087 	}
4088 
4089 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4090 
4091 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4092 		if (new_count[i])
4093 			ctx->iowq_limits[i] = new_count[i];
4094 	ctx->iowq_limits_set = true;
4095 
4096 	if (tctx && tctx->io_wq) {
4097 		ret = io_wq_max_workers(tctx->io_wq, new_count);
4098 		if (ret)
4099 			goto err;
4100 	} else {
4101 		memset(new_count, 0, sizeof(new_count));
4102 	}
4103 
4104 	if (sqd) {
4105 		mutex_unlock(&sqd->lock);
4106 		io_put_sq_data(sqd);
4107 	}
4108 
4109 	if (copy_to_user(arg, new_count, sizeof(new_count)))
4110 		return -EFAULT;
4111 
4112 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
4113 	if (sqd)
4114 		return 0;
4115 
4116 	/* now propagate the restriction to all registered users */
4117 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4118 		struct io_uring_task *tctx = node->task->io_uring;
4119 
4120 		if (WARN_ON_ONCE(!tctx->io_wq))
4121 			continue;
4122 
4123 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
4124 			new_count[i] = ctx->iowq_limits[i];
4125 		/* ignore errors, it always returns zero anyway */
4126 		(void)io_wq_max_workers(tctx->io_wq, new_count);
4127 	}
4128 	return 0;
4129 err:
4130 	if (sqd) {
4131 		mutex_unlock(&sqd->lock);
4132 		io_put_sq_data(sqd);
4133 	}
4134 	return ret;
4135 }
4136 
4137 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4138 			       void __user *arg, unsigned nr_args)
4139 	__releases(ctx->uring_lock)
4140 	__acquires(ctx->uring_lock)
4141 {
4142 	int ret;
4143 
4144 	/*
4145 	 * We don't quiesce the refs for register anymore and so it can't be
4146 	 * dying as we're holding a file ref here.
4147 	 */
4148 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4149 		return -ENXIO;
4150 
4151 	if (ctx->submitter_task && ctx->submitter_task != current)
4152 		return -EEXIST;
4153 
4154 	if (ctx->restricted) {
4155 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4156 		if (!test_bit(opcode, ctx->restrictions.register_op))
4157 			return -EACCES;
4158 	}
4159 
4160 	switch (opcode) {
4161 	case IORING_REGISTER_BUFFERS:
4162 		ret = -EFAULT;
4163 		if (!arg)
4164 			break;
4165 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4166 		break;
4167 	case IORING_UNREGISTER_BUFFERS:
4168 		ret = -EINVAL;
4169 		if (arg || nr_args)
4170 			break;
4171 		ret = io_sqe_buffers_unregister(ctx);
4172 		break;
4173 	case IORING_REGISTER_FILES:
4174 		ret = -EFAULT;
4175 		if (!arg)
4176 			break;
4177 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4178 		break;
4179 	case IORING_UNREGISTER_FILES:
4180 		ret = -EINVAL;
4181 		if (arg || nr_args)
4182 			break;
4183 		ret = io_sqe_files_unregister(ctx);
4184 		break;
4185 	case IORING_REGISTER_FILES_UPDATE:
4186 		ret = io_register_files_update(ctx, arg, nr_args);
4187 		break;
4188 	case IORING_REGISTER_EVENTFD:
4189 		ret = -EINVAL;
4190 		if (nr_args != 1)
4191 			break;
4192 		ret = io_eventfd_register(ctx, arg, 0);
4193 		break;
4194 	case IORING_REGISTER_EVENTFD_ASYNC:
4195 		ret = -EINVAL;
4196 		if (nr_args != 1)
4197 			break;
4198 		ret = io_eventfd_register(ctx, arg, 1);
4199 		break;
4200 	case IORING_UNREGISTER_EVENTFD:
4201 		ret = -EINVAL;
4202 		if (arg || nr_args)
4203 			break;
4204 		ret = io_eventfd_unregister(ctx);
4205 		break;
4206 	case IORING_REGISTER_PROBE:
4207 		ret = -EINVAL;
4208 		if (!arg || nr_args > 256)
4209 			break;
4210 		ret = io_probe(ctx, arg, nr_args);
4211 		break;
4212 	case IORING_REGISTER_PERSONALITY:
4213 		ret = -EINVAL;
4214 		if (arg || nr_args)
4215 			break;
4216 		ret = io_register_personality(ctx);
4217 		break;
4218 	case IORING_UNREGISTER_PERSONALITY:
4219 		ret = -EINVAL;
4220 		if (arg)
4221 			break;
4222 		ret = io_unregister_personality(ctx, nr_args);
4223 		break;
4224 	case IORING_REGISTER_ENABLE_RINGS:
4225 		ret = -EINVAL;
4226 		if (arg || nr_args)
4227 			break;
4228 		ret = io_register_enable_rings(ctx);
4229 		break;
4230 	case IORING_REGISTER_RESTRICTIONS:
4231 		ret = io_register_restrictions(ctx, arg, nr_args);
4232 		break;
4233 	case IORING_REGISTER_FILES2:
4234 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4235 		break;
4236 	case IORING_REGISTER_FILES_UPDATE2:
4237 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4238 					      IORING_RSRC_FILE);
4239 		break;
4240 	case IORING_REGISTER_BUFFERS2:
4241 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4242 		break;
4243 	case IORING_REGISTER_BUFFERS_UPDATE:
4244 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4245 					      IORING_RSRC_BUFFER);
4246 		break;
4247 	case IORING_REGISTER_IOWQ_AFF:
4248 		ret = -EINVAL;
4249 		if (!arg || !nr_args)
4250 			break;
4251 		ret = io_register_iowq_aff(ctx, arg, nr_args);
4252 		break;
4253 	case IORING_UNREGISTER_IOWQ_AFF:
4254 		ret = -EINVAL;
4255 		if (arg || nr_args)
4256 			break;
4257 		ret = io_unregister_iowq_aff(ctx);
4258 		break;
4259 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4260 		ret = -EINVAL;
4261 		if (!arg || nr_args != 2)
4262 			break;
4263 		ret = io_register_iowq_max_workers(ctx, arg);
4264 		break;
4265 	case IORING_REGISTER_RING_FDS:
4266 		ret = io_ringfd_register(ctx, arg, nr_args);
4267 		break;
4268 	case IORING_UNREGISTER_RING_FDS:
4269 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4270 		break;
4271 	case IORING_REGISTER_PBUF_RING:
4272 		ret = -EINVAL;
4273 		if (!arg || nr_args != 1)
4274 			break;
4275 		ret = io_register_pbuf_ring(ctx, arg);
4276 		break;
4277 	case IORING_UNREGISTER_PBUF_RING:
4278 		ret = -EINVAL;
4279 		if (!arg || nr_args != 1)
4280 			break;
4281 		ret = io_unregister_pbuf_ring(ctx, arg);
4282 		break;
4283 	case IORING_REGISTER_SYNC_CANCEL:
4284 		ret = -EINVAL;
4285 		if (!arg || nr_args != 1)
4286 			break;
4287 		ret = io_sync_cancel(ctx, arg);
4288 		break;
4289 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4290 		ret = -EINVAL;
4291 		if (!arg || nr_args)
4292 			break;
4293 		ret = io_register_file_alloc_range(ctx, arg);
4294 		break;
4295 	default:
4296 		ret = -EINVAL;
4297 		break;
4298 	}
4299 
4300 	return ret;
4301 }
4302 
4303 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4304 		void __user *, arg, unsigned int, nr_args)
4305 {
4306 	struct io_ring_ctx *ctx;
4307 	long ret = -EBADF;
4308 	struct fd f;
4309 	bool use_registered_ring;
4310 
4311 	use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4312 	opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4313 
4314 	if (opcode >= IORING_REGISTER_LAST)
4315 		return -EINVAL;
4316 
4317 	if (use_registered_ring) {
4318 		/*
4319 		 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4320 		 * need only dereference our task private array to find it.
4321 		 */
4322 		struct io_uring_task *tctx = current->io_uring;
4323 
4324 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4325 			return -EINVAL;
4326 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4327 		f.file = tctx->registered_rings[fd];
4328 		f.flags = 0;
4329 		if (unlikely(!f.file))
4330 			return -EBADF;
4331 	} else {
4332 		f = fdget(fd);
4333 		if (unlikely(!f.file))
4334 			return -EBADF;
4335 		ret = -EOPNOTSUPP;
4336 		if (!io_is_uring_fops(f.file))
4337 			goto out_fput;
4338 	}
4339 
4340 	ctx = f.file->private_data;
4341 
4342 	mutex_lock(&ctx->uring_lock);
4343 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4344 	mutex_unlock(&ctx->uring_lock);
4345 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4346 out_fput:
4347 	fdput(f);
4348 	return ret;
4349 }
4350 
4351 static int __init io_uring_init(void)
4352 {
4353 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4354 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4355 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4356 } while (0)
4357 
4358 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4359 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4360 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4361 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4362 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4363 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4364 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4365 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4366 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4367 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4368 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4369 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4370 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4371 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4372 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4373 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4374 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4375 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4376 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4377 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4378 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4379 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4380 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4381 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4382 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4383 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4384 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4385 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4386 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4387 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4388 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4389 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4390 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4391 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4392 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4393 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4394 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4395 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4396 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4397 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4398 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4399 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4400 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4401 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4402 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4403 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4404 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4405 
4406 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4407 		     sizeof(struct io_uring_rsrc_update));
4408 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4409 		     sizeof(struct io_uring_rsrc_update2));
4410 
4411 	/* ->buf_index is u16 */
4412 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4413 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4414 		     offsetof(struct io_uring_buf_ring, tail));
4415 
4416 	/* should fit into one byte */
4417 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4418 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4419 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4420 
4421 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4422 
4423 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4424 
4425 	io_uring_optable_init();
4426 
4427 	req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4428 				SLAB_ACCOUNT);
4429 	return 0;
4430 };
4431 __initcall(io_uring_init);
4432