1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 #include <asm/shmparam.h> 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/io_uring.h> 79 80 #include <uapi/linux/io_uring.h> 81 82 #include "io-wq.h" 83 84 #include "io_uring.h" 85 #include "opdef.h" 86 #include "refs.h" 87 #include "tctx.h" 88 #include "sqpoll.h" 89 #include "fdinfo.h" 90 #include "kbuf.h" 91 #include "rsrc.h" 92 #include "cancel.h" 93 #include "net.h" 94 #include "notif.h" 95 96 #include "timeout.h" 97 #include "poll.h" 98 #include "rw.h" 99 #include "alloc_cache.h" 100 101 #define IORING_MAX_ENTRIES 32768 102 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 103 104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 105 IORING_REGISTER_LAST + IORING_OP_LAST) 106 107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 108 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 109 110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 112 113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 115 REQ_F_ASYNC_DATA) 116 117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 118 IO_REQ_CLEAN_FLAGS) 119 120 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 121 122 #define IO_COMPL_BATCH 32 123 #define IO_REQ_ALLOC_BATCH 8 124 125 enum { 126 IO_CHECK_CQ_OVERFLOW_BIT, 127 IO_CHECK_CQ_DROPPED_BIT, 128 }; 129 130 enum { 131 IO_EVENTFD_OP_SIGNAL_BIT, 132 IO_EVENTFD_OP_FREE_BIT, 133 }; 134 135 struct io_defer_entry { 136 struct list_head list; 137 struct io_kiocb *req; 138 u32 seq; 139 }; 140 141 /* requests with any of those set should undergo io_disarm_next() */ 142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 144 145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 146 struct task_struct *task, 147 bool cancel_all); 148 149 static void io_queue_sqe(struct io_kiocb *req); 150 151 struct kmem_cache *req_cachep; 152 153 static int __read_mostly sysctl_io_uring_disabled; 154 static int __read_mostly sysctl_io_uring_group = -1; 155 156 #ifdef CONFIG_SYSCTL 157 static struct ctl_table kernel_io_uring_disabled_table[] = { 158 { 159 .procname = "io_uring_disabled", 160 .data = &sysctl_io_uring_disabled, 161 .maxlen = sizeof(sysctl_io_uring_disabled), 162 .mode = 0644, 163 .proc_handler = proc_dointvec_minmax, 164 .extra1 = SYSCTL_ZERO, 165 .extra2 = SYSCTL_TWO, 166 }, 167 { 168 .procname = "io_uring_group", 169 .data = &sysctl_io_uring_group, 170 .maxlen = sizeof(gid_t), 171 .mode = 0644, 172 .proc_handler = proc_dointvec, 173 }, 174 {}, 175 }; 176 #endif 177 178 struct sock *io_uring_get_socket(struct file *file) 179 { 180 #if defined(CONFIG_UNIX) 181 if (io_is_uring_fops(file)) { 182 struct io_ring_ctx *ctx = file->private_data; 183 184 return ctx->ring_sock->sk; 185 } 186 #endif 187 return NULL; 188 } 189 EXPORT_SYMBOL(io_uring_get_socket); 190 191 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 192 { 193 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 194 ctx->submit_state.cqes_count) 195 __io_submit_flush_completions(ctx); 196 } 197 198 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 199 { 200 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 201 } 202 203 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 204 { 205 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 206 } 207 208 static bool io_match_linked(struct io_kiocb *head) 209 { 210 struct io_kiocb *req; 211 212 io_for_each_link(req, head) { 213 if (req->flags & REQ_F_INFLIGHT) 214 return true; 215 } 216 return false; 217 } 218 219 /* 220 * As io_match_task() but protected against racing with linked timeouts. 221 * User must not hold timeout_lock. 222 */ 223 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 224 bool cancel_all) 225 { 226 bool matched; 227 228 if (task && head->task != task) 229 return false; 230 if (cancel_all) 231 return true; 232 233 if (head->flags & REQ_F_LINK_TIMEOUT) { 234 struct io_ring_ctx *ctx = head->ctx; 235 236 /* protect against races with linked timeouts */ 237 spin_lock_irq(&ctx->timeout_lock); 238 matched = io_match_linked(head); 239 spin_unlock_irq(&ctx->timeout_lock); 240 } else { 241 matched = io_match_linked(head); 242 } 243 return matched; 244 } 245 246 static inline void req_fail_link_node(struct io_kiocb *req, int res) 247 { 248 req_set_fail(req); 249 io_req_set_res(req, res, 0); 250 } 251 252 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 253 { 254 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 255 } 256 257 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 258 { 259 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 260 261 complete(&ctx->ref_comp); 262 } 263 264 static __cold void io_fallback_req_func(struct work_struct *work) 265 { 266 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 267 fallback_work.work); 268 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 269 struct io_kiocb *req, *tmp; 270 struct io_tw_state ts = { .locked = true, }; 271 272 percpu_ref_get(&ctx->refs); 273 mutex_lock(&ctx->uring_lock); 274 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 275 req->io_task_work.func(req, &ts); 276 if (WARN_ON_ONCE(!ts.locked)) 277 return; 278 io_submit_flush_completions(ctx); 279 mutex_unlock(&ctx->uring_lock); 280 percpu_ref_put(&ctx->refs); 281 } 282 283 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 284 { 285 unsigned hash_buckets = 1U << bits; 286 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 287 288 table->hbs = kmalloc(hash_size, GFP_KERNEL); 289 if (!table->hbs) 290 return -ENOMEM; 291 292 table->hash_bits = bits; 293 init_hash_table(table, hash_buckets); 294 return 0; 295 } 296 297 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 298 { 299 struct io_ring_ctx *ctx; 300 int hash_bits; 301 302 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 303 if (!ctx) 304 return NULL; 305 306 xa_init(&ctx->io_bl_xa); 307 308 /* 309 * Use 5 bits less than the max cq entries, that should give us around 310 * 32 entries per hash list if totally full and uniformly spread, but 311 * don't keep too many buckets to not overconsume memory. 312 */ 313 hash_bits = ilog2(p->cq_entries) - 5; 314 hash_bits = clamp(hash_bits, 1, 8); 315 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 316 goto err; 317 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 318 goto err; 319 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 320 0, GFP_KERNEL)) 321 goto err; 322 323 ctx->flags = p->flags; 324 init_waitqueue_head(&ctx->sqo_sq_wait); 325 INIT_LIST_HEAD(&ctx->sqd_list); 326 INIT_LIST_HEAD(&ctx->cq_overflow_list); 327 INIT_LIST_HEAD(&ctx->io_buffers_cache); 328 INIT_HLIST_HEAD(&ctx->io_buf_list); 329 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 330 sizeof(struct io_rsrc_node)); 331 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, 332 sizeof(struct async_poll)); 333 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 334 sizeof(struct io_async_msghdr)); 335 init_completion(&ctx->ref_comp); 336 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 337 mutex_init(&ctx->uring_lock); 338 init_waitqueue_head(&ctx->cq_wait); 339 init_waitqueue_head(&ctx->poll_wq); 340 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 341 spin_lock_init(&ctx->completion_lock); 342 spin_lock_init(&ctx->timeout_lock); 343 INIT_WQ_LIST(&ctx->iopoll_list); 344 INIT_LIST_HEAD(&ctx->io_buffers_pages); 345 INIT_LIST_HEAD(&ctx->io_buffers_comp); 346 INIT_LIST_HEAD(&ctx->defer_list); 347 INIT_LIST_HEAD(&ctx->timeout_list); 348 INIT_LIST_HEAD(&ctx->ltimeout_list); 349 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 350 init_llist_head(&ctx->work_llist); 351 INIT_LIST_HEAD(&ctx->tctx_list); 352 ctx->submit_state.free_list.next = NULL; 353 INIT_WQ_LIST(&ctx->locked_free_list); 354 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 355 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 356 return ctx; 357 err: 358 kfree(ctx->cancel_table.hbs); 359 kfree(ctx->cancel_table_locked.hbs); 360 kfree(ctx->io_bl); 361 xa_destroy(&ctx->io_bl_xa); 362 kfree(ctx); 363 return NULL; 364 } 365 366 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 367 { 368 struct io_rings *r = ctx->rings; 369 370 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 371 ctx->cq_extra--; 372 } 373 374 static bool req_need_defer(struct io_kiocb *req, u32 seq) 375 { 376 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 377 struct io_ring_ctx *ctx = req->ctx; 378 379 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 380 } 381 382 return false; 383 } 384 385 static void io_clean_op(struct io_kiocb *req) 386 { 387 if (req->flags & REQ_F_BUFFER_SELECTED) { 388 spin_lock(&req->ctx->completion_lock); 389 io_put_kbuf_comp(req); 390 spin_unlock(&req->ctx->completion_lock); 391 } 392 393 if (req->flags & REQ_F_NEED_CLEANUP) { 394 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 395 396 if (def->cleanup) 397 def->cleanup(req); 398 } 399 if ((req->flags & REQ_F_POLLED) && req->apoll) { 400 kfree(req->apoll->double_poll); 401 kfree(req->apoll); 402 req->apoll = NULL; 403 } 404 if (req->flags & REQ_F_INFLIGHT) { 405 struct io_uring_task *tctx = req->task->io_uring; 406 407 atomic_dec(&tctx->inflight_tracked); 408 } 409 if (req->flags & REQ_F_CREDS) 410 put_cred(req->creds); 411 if (req->flags & REQ_F_ASYNC_DATA) { 412 kfree(req->async_data); 413 req->async_data = NULL; 414 } 415 req->flags &= ~IO_REQ_CLEAN_FLAGS; 416 } 417 418 static inline void io_req_track_inflight(struct io_kiocb *req) 419 { 420 if (!(req->flags & REQ_F_INFLIGHT)) { 421 req->flags |= REQ_F_INFLIGHT; 422 atomic_inc(&req->task->io_uring->inflight_tracked); 423 } 424 } 425 426 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 427 { 428 if (WARN_ON_ONCE(!req->link)) 429 return NULL; 430 431 req->flags &= ~REQ_F_ARM_LTIMEOUT; 432 req->flags |= REQ_F_LINK_TIMEOUT; 433 434 /* linked timeouts should have two refs once prep'ed */ 435 io_req_set_refcount(req); 436 __io_req_set_refcount(req->link, 2); 437 return req->link; 438 } 439 440 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 441 { 442 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 443 return NULL; 444 return __io_prep_linked_timeout(req); 445 } 446 447 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 448 { 449 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 450 } 451 452 static inline void io_arm_ltimeout(struct io_kiocb *req) 453 { 454 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 455 __io_arm_ltimeout(req); 456 } 457 458 static void io_prep_async_work(struct io_kiocb *req) 459 { 460 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 461 struct io_ring_ctx *ctx = req->ctx; 462 463 if (!(req->flags & REQ_F_CREDS)) { 464 req->flags |= REQ_F_CREDS; 465 req->creds = get_current_cred(); 466 } 467 468 req->work.list.next = NULL; 469 req->work.flags = 0; 470 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 471 if (req->flags & REQ_F_FORCE_ASYNC) 472 req->work.flags |= IO_WQ_WORK_CONCURRENT; 473 474 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 475 req->flags |= io_file_get_flags(req->file); 476 477 if (req->file && (req->flags & REQ_F_ISREG)) { 478 bool should_hash = def->hash_reg_file; 479 480 /* don't serialize this request if the fs doesn't need it */ 481 if (should_hash && (req->file->f_flags & O_DIRECT) && 482 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) 483 should_hash = false; 484 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 485 io_wq_hash_work(&req->work, file_inode(req->file)); 486 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 487 if (def->unbound_nonreg_file) 488 req->work.flags |= IO_WQ_WORK_UNBOUND; 489 } 490 } 491 492 static void io_prep_async_link(struct io_kiocb *req) 493 { 494 struct io_kiocb *cur; 495 496 if (req->flags & REQ_F_LINK_TIMEOUT) { 497 struct io_ring_ctx *ctx = req->ctx; 498 499 spin_lock_irq(&ctx->timeout_lock); 500 io_for_each_link(cur, req) 501 io_prep_async_work(cur); 502 spin_unlock_irq(&ctx->timeout_lock); 503 } else { 504 io_for_each_link(cur, req) 505 io_prep_async_work(cur); 506 } 507 } 508 509 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) 510 { 511 struct io_kiocb *link = io_prep_linked_timeout(req); 512 struct io_uring_task *tctx = req->task->io_uring; 513 514 BUG_ON(!tctx); 515 BUG_ON(!tctx->io_wq); 516 517 /* init ->work of the whole link before punting */ 518 io_prep_async_link(req); 519 520 /* 521 * Not expected to happen, but if we do have a bug where this _can_ 522 * happen, catch it here and ensure the request is marked as 523 * canceled. That will make io-wq go through the usual work cancel 524 * procedure rather than attempt to run this request (or create a new 525 * worker for it). 526 */ 527 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 528 req->work.flags |= IO_WQ_WORK_CANCEL; 529 530 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 531 io_wq_enqueue(tctx->io_wq, &req->work); 532 if (link) 533 io_queue_linked_timeout(link); 534 } 535 536 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 537 { 538 while (!list_empty(&ctx->defer_list)) { 539 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 540 struct io_defer_entry, list); 541 542 if (req_need_defer(de->req, de->seq)) 543 break; 544 list_del_init(&de->list); 545 io_req_task_queue(de->req); 546 kfree(de); 547 } 548 } 549 550 551 static void io_eventfd_ops(struct rcu_head *rcu) 552 { 553 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 554 int ops = atomic_xchg(&ev_fd->ops, 0); 555 556 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 557 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 558 559 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 560 * ordering in a race but if references are 0 we know we have to free 561 * it regardless. 562 */ 563 if (atomic_dec_and_test(&ev_fd->refs)) { 564 eventfd_ctx_put(ev_fd->cq_ev_fd); 565 kfree(ev_fd); 566 } 567 } 568 569 static void io_eventfd_signal(struct io_ring_ctx *ctx) 570 { 571 struct io_ev_fd *ev_fd = NULL; 572 573 rcu_read_lock(); 574 /* 575 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 576 * and eventfd_signal 577 */ 578 ev_fd = rcu_dereference(ctx->io_ev_fd); 579 580 /* 581 * Check again if ev_fd exists incase an io_eventfd_unregister call 582 * completed between the NULL check of ctx->io_ev_fd at the start of 583 * the function and rcu_read_lock. 584 */ 585 if (unlikely(!ev_fd)) 586 goto out; 587 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 588 goto out; 589 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 590 goto out; 591 592 if (likely(eventfd_signal_allowed())) { 593 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 594 } else { 595 atomic_inc(&ev_fd->refs); 596 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 597 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 598 else 599 atomic_dec(&ev_fd->refs); 600 } 601 602 out: 603 rcu_read_unlock(); 604 } 605 606 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 607 { 608 bool skip; 609 610 spin_lock(&ctx->completion_lock); 611 612 /* 613 * Eventfd should only get triggered when at least one event has been 614 * posted. Some applications rely on the eventfd notification count 615 * only changing IFF a new CQE has been added to the CQ ring. There's 616 * no depedency on 1:1 relationship between how many times this 617 * function is called (and hence the eventfd count) and number of CQEs 618 * posted to the CQ ring. 619 */ 620 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 621 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 622 spin_unlock(&ctx->completion_lock); 623 if (skip) 624 return; 625 626 io_eventfd_signal(ctx); 627 } 628 629 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 630 { 631 if (ctx->poll_activated) 632 io_poll_wq_wake(ctx); 633 if (ctx->off_timeout_used) 634 io_flush_timeouts(ctx); 635 if (ctx->drain_active) { 636 spin_lock(&ctx->completion_lock); 637 io_queue_deferred(ctx); 638 spin_unlock(&ctx->completion_lock); 639 } 640 if (ctx->has_evfd) 641 io_eventfd_flush_signal(ctx); 642 } 643 644 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 645 { 646 if (!ctx->lockless_cq) 647 spin_lock(&ctx->completion_lock); 648 } 649 650 static inline void io_cq_lock(struct io_ring_ctx *ctx) 651 __acquires(ctx->completion_lock) 652 { 653 spin_lock(&ctx->completion_lock); 654 } 655 656 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 657 { 658 io_commit_cqring(ctx); 659 if (!ctx->task_complete) { 660 if (!ctx->lockless_cq) 661 spin_unlock(&ctx->completion_lock); 662 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 663 if (!ctx->syscall_iopoll) 664 io_cqring_wake(ctx); 665 } 666 io_commit_cqring_flush(ctx); 667 } 668 669 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 670 __releases(ctx->completion_lock) 671 { 672 io_commit_cqring(ctx); 673 spin_unlock(&ctx->completion_lock); 674 io_cqring_wake(ctx); 675 io_commit_cqring_flush(ctx); 676 } 677 678 /* Returns true if there are no backlogged entries after the flush */ 679 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 680 { 681 struct io_overflow_cqe *ocqe; 682 LIST_HEAD(list); 683 684 spin_lock(&ctx->completion_lock); 685 list_splice_init(&ctx->cq_overflow_list, &list); 686 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 687 spin_unlock(&ctx->completion_lock); 688 689 while (!list_empty(&list)) { 690 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 691 list_del(&ocqe->list); 692 kfree(ocqe); 693 } 694 } 695 696 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 697 { 698 size_t cqe_size = sizeof(struct io_uring_cqe); 699 700 if (__io_cqring_events(ctx) == ctx->cq_entries) 701 return; 702 703 if (ctx->flags & IORING_SETUP_CQE32) 704 cqe_size <<= 1; 705 706 io_cq_lock(ctx); 707 while (!list_empty(&ctx->cq_overflow_list)) { 708 struct io_uring_cqe *cqe; 709 struct io_overflow_cqe *ocqe; 710 711 if (!io_get_cqe_overflow(ctx, &cqe, true)) 712 break; 713 ocqe = list_first_entry(&ctx->cq_overflow_list, 714 struct io_overflow_cqe, list); 715 memcpy(cqe, &ocqe->cqe, cqe_size); 716 list_del(&ocqe->list); 717 kfree(ocqe); 718 } 719 720 if (list_empty(&ctx->cq_overflow_list)) { 721 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 722 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 723 } 724 io_cq_unlock_post(ctx); 725 } 726 727 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 728 { 729 /* iopoll syncs against uring_lock, not completion_lock */ 730 if (ctx->flags & IORING_SETUP_IOPOLL) 731 mutex_lock(&ctx->uring_lock); 732 __io_cqring_overflow_flush(ctx); 733 if (ctx->flags & IORING_SETUP_IOPOLL) 734 mutex_unlock(&ctx->uring_lock); 735 } 736 737 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 738 { 739 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 740 io_cqring_do_overflow_flush(ctx); 741 } 742 743 /* can be called by any task */ 744 static void io_put_task_remote(struct task_struct *task) 745 { 746 struct io_uring_task *tctx = task->io_uring; 747 748 percpu_counter_sub(&tctx->inflight, 1); 749 if (unlikely(atomic_read(&tctx->in_cancel))) 750 wake_up(&tctx->wait); 751 put_task_struct(task); 752 } 753 754 /* used by a task to put its own references */ 755 static void io_put_task_local(struct task_struct *task) 756 { 757 task->io_uring->cached_refs++; 758 } 759 760 /* must to be called somewhat shortly after putting a request */ 761 static inline void io_put_task(struct task_struct *task) 762 { 763 if (likely(task == current)) 764 io_put_task_local(task); 765 else 766 io_put_task_remote(task); 767 } 768 769 void io_task_refs_refill(struct io_uring_task *tctx) 770 { 771 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 772 773 percpu_counter_add(&tctx->inflight, refill); 774 refcount_add(refill, ¤t->usage); 775 tctx->cached_refs += refill; 776 } 777 778 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 779 { 780 struct io_uring_task *tctx = task->io_uring; 781 unsigned int refs = tctx->cached_refs; 782 783 if (refs) { 784 tctx->cached_refs = 0; 785 percpu_counter_sub(&tctx->inflight, refs); 786 put_task_struct_many(task, refs); 787 } 788 } 789 790 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 791 s32 res, u32 cflags, u64 extra1, u64 extra2) 792 { 793 struct io_overflow_cqe *ocqe; 794 size_t ocq_size = sizeof(struct io_overflow_cqe); 795 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 796 797 lockdep_assert_held(&ctx->completion_lock); 798 799 if (is_cqe32) 800 ocq_size += sizeof(struct io_uring_cqe); 801 802 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 803 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 804 if (!ocqe) { 805 /* 806 * If we're in ring overflow flush mode, or in task cancel mode, 807 * or cannot allocate an overflow entry, then we need to drop it 808 * on the floor. 809 */ 810 io_account_cq_overflow(ctx); 811 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 812 return false; 813 } 814 if (list_empty(&ctx->cq_overflow_list)) { 815 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 816 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 817 818 } 819 ocqe->cqe.user_data = user_data; 820 ocqe->cqe.res = res; 821 ocqe->cqe.flags = cflags; 822 if (is_cqe32) { 823 ocqe->cqe.big_cqe[0] = extra1; 824 ocqe->cqe.big_cqe[1] = extra2; 825 } 826 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 827 return true; 828 } 829 830 void io_req_cqe_overflow(struct io_kiocb *req) 831 { 832 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 833 req->cqe.res, req->cqe.flags, 834 req->big_cqe.extra1, req->big_cqe.extra2); 835 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 836 } 837 838 /* 839 * writes to the cq entry need to come after reading head; the 840 * control dependency is enough as we're using WRITE_ONCE to 841 * fill the cq entry 842 */ 843 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 844 { 845 struct io_rings *rings = ctx->rings; 846 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 847 unsigned int free, queued, len; 848 849 /* 850 * Posting into the CQ when there are pending overflowed CQEs may break 851 * ordering guarantees, which will affect links, F_MORE users and more. 852 * Force overflow the completion. 853 */ 854 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 855 return false; 856 857 /* userspace may cheat modifying the tail, be safe and do min */ 858 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 859 free = ctx->cq_entries - queued; 860 /* we need a contiguous range, limit based on the current array offset */ 861 len = min(free, ctx->cq_entries - off); 862 if (!len) 863 return false; 864 865 if (ctx->flags & IORING_SETUP_CQE32) { 866 off <<= 1; 867 len <<= 1; 868 } 869 870 ctx->cqe_cached = &rings->cqes[off]; 871 ctx->cqe_sentinel = ctx->cqe_cached + len; 872 return true; 873 } 874 875 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 876 u32 cflags) 877 { 878 struct io_uring_cqe *cqe; 879 880 ctx->cq_extra++; 881 882 /* 883 * If we can't get a cq entry, userspace overflowed the 884 * submission (by quite a lot). Increment the overflow count in 885 * the ring. 886 */ 887 if (likely(io_get_cqe(ctx, &cqe))) { 888 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 889 890 WRITE_ONCE(cqe->user_data, user_data); 891 WRITE_ONCE(cqe->res, res); 892 WRITE_ONCE(cqe->flags, cflags); 893 894 if (ctx->flags & IORING_SETUP_CQE32) { 895 WRITE_ONCE(cqe->big_cqe[0], 0); 896 WRITE_ONCE(cqe->big_cqe[1], 0); 897 } 898 return true; 899 } 900 return false; 901 } 902 903 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 904 __must_hold(&ctx->uring_lock) 905 { 906 struct io_submit_state *state = &ctx->submit_state; 907 unsigned int i; 908 909 lockdep_assert_held(&ctx->uring_lock); 910 for (i = 0; i < state->cqes_count; i++) { 911 struct io_uring_cqe *cqe = &ctx->completion_cqes[i]; 912 913 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 914 if (ctx->lockless_cq) { 915 spin_lock(&ctx->completion_lock); 916 io_cqring_event_overflow(ctx, cqe->user_data, 917 cqe->res, cqe->flags, 0, 0); 918 spin_unlock(&ctx->completion_lock); 919 } else { 920 io_cqring_event_overflow(ctx, cqe->user_data, 921 cqe->res, cqe->flags, 0, 0); 922 } 923 } 924 } 925 state->cqes_count = 0; 926 } 927 928 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 929 bool allow_overflow) 930 { 931 bool filled; 932 933 io_cq_lock(ctx); 934 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 935 if (!filled && allow_overflow) 936 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 937 938 io_cq_unlock_post(ctx); 939 return filled; 940 } 941 942 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 943 { 944 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 945 } 946 947 /* 948 * A helper for multishot requests posting additional CQEs. 949 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 950 */ 951 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags) 952 { 953 struct io_ring_ctx *ctx = req->ctx; 954 u64 user_data = req->cqe.user_data; 955 struct io_uring_cqe *cqe; 956 957 if (!defer) 958 return __io_post_aux_cqe(ctx, user_data, res, cflags, false); 959 960 lockdep_assert_held(&ctx->uring_lock); 961 962 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) { 963 __io_cq_lock(ctx); 964 __io_flush_post_cqes(ctx); 965 /* no need to flush - flush is deferred */ 966 __io_cq_unlock_post(ctx); 967 } 968 969 /* For defered completions this is not as strict as it is otherwise, 970 * however it's main job is to prevent unbounded posted completions, 971 * and in that it works just as well. 972 */ 973 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 974 return false; 975 976 cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++]; 977 cqe->user_data = user_data; 978 cqe->res = res; 979 cqe->flags = cflags; 980 return true; 981 } 982 983 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 984 { 985 struct io_ring_ctx *ctx = req->ctx; 986 struct io_rsrc_node *rsrc_node = NULL; 987 988 io_cq_lock(ctx); 989 if (!(req->flags & REQ_F_CQE_SKIP)) { 990 if (!io_fill_cqe_req(ctx, req)) 991 io_req_cqe_overflow(req); 992 } 993 994 /* 995 * If we're the last reference to this request, add to our locked 996 * free_list cache. 997 */ 998 if (req_ref_put_and_test(req)) { 999 if (req->flags & IO_REQ_LINK_FLAGS) { 1000 if (req->flags & IO_DISARM_MASK) 1001 io_disarm_next(req); 1002 if (req->link) { 1003 io_req_task_queue(req->link); 1004 req->link = NULL; 1005 } 1006 } 1007 io_put_kbuf_comp(req); 1008 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1009 io_clean_op(req); 1010 io_put_file(req); 1011 1012 rsrc_node = req->rsrc_node; 1013 /* 1014 * Selected buffer deallocation in io_clean_op() assumes that 1015 * we don't hold ->completion_lock. Clean them here to avoid 1016 * deadlocks. 1017 */ 1018 io_put_task_remote(req->task); 1019 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1020 ctx->locked_free_nr++; 1021 } 1022 io_cq_unlock_post(ctx); 1023 1024 if (rsrc_node) { 1025 io_ring_submit_lock(ctx, issue_flags); 1026 io_put_rsrc_node(ctx, rsrc_node); 1027 io_ring_submit_unlock(ctx, issue_flags); 1028 } 1029 } 1030 1031 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1032 { 1033 if (req->ctx->task_complete && req->ctx->submitter_task != current) { 1034 req->io_task_work.func = io_req_task_complete; 1035 io_req_task_work_add(req); 1036 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1037 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 1038 __io_req_complete_post(req, issue_flags); 1039 } else { 1040 struct io_ring_ctx *ctx = req->ctx; 1041 1042 mutex_lock(&ctx->uring_lock); 1043 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); 1044 mutex_unlock(&ctx->uring_lock); 1045 } 1046 } 1047 1048 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1049 __must_hold(&ctx->uring_lock) 1050 { 1051 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1052 1053 lockdep_assert_held(&req->ctx->uring_lock); 1054 1055 req_set_fail(req); 1056 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1057 if (def->fail) 1058 def->fail(req); 1059 io_req_complete_defer(req); 1060 } 1061 1062 /* 1063 * Don't initialise the fields below on every allocation, but do that in 1064 * advance and keep them valid across allocations. 1065 */ 1066 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1067 { 1068 req->ctx = ctx; 1069 req->link = NULL; 1070 req->async_data = NULL; 1071 /* not necessary, but safer to zero */ 1072 memset(&req->cqe, 0, sizeof(req->cqe)); 1073 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 1074 } 1075 1076 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1077 struct io_submit_state *state) 1078 { 1079 spin_lock(&ctx->completion_lock); 1080 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1081 ctx->locked_free_nr = 0; 1082 spin_unlock(&ctx->completion_lock); 1083 } 1084 1085 /* 1086 * A request might get retired back into the request caches even before opcode 1087 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1088 * Because of that, io_alloc_req() should be called only under ->uring_lock 1089 * and with extra caution to not get a request that is still worked on. 1090 */ 1091 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1092 __must_hold(&ctx->uring_lock) 1093 { 1094 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1095 void *reqs[IO_REQ_ALLOC_BATCH]; 1096 int ret, i; 1097 1098 /* 1099 * If we have more than a batch's worth of requests in our IRQ side 1100 * locked cache, grab the lock and move them over to our submission 1101 * side cache. 1102 */ 1103 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1104 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1105 if (!io_req_cache_empty(ctx)) 1106 return true; 1107 } 1108 1109 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1110 1111 /* 1112 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1113 * retry single alloc to be on the safe side. 1114 */ 1115 if (unlikely(ret <= 0)) { 1116 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1117 if (!reqs[0]) 1118 return false; 1119 ret = 1; 1120 } 1121 1122 percpu_ref_get_many(&ctx->refs, ret); 1123 for (i = 0; i < ret; i++) { 1124 struct io_kiocb *req = reqs[i]; 1125 1126 io_preinit_req(req, ctx); 1127 io_req_add_to_cache(req, ctx); 1128 } 1129 return true; 1130 } 1131 1132 __cold void io_free_req(struct io_kiocb *req) 1133 { 1134 /* refs were already put, restore them for io_req_task_complete() */ 1135 req->flags &= ~REQ_F_REFCOUNT; 1136 /* we only want to free it, don't post CQEs */ 1137 req->flags |= REQ_F_CQE_SKIP; 1138 req->io_task_work.func = io_req_task_complete; 1139 io_req_task_work_add(req); 1140 } 1141 1142 static void __io_req_find_next_prep(struct io_kiocb *req) 1143 { 1144 struct io_ring_ctx *ctx = req->ctx; 1145 1146 spin_lock(&ctx->completion_lock); 1147 io_disarm_next(req); 1148 spin_unlock(&ctx->completion_lock); 1149 } 1150 1151 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1152 { 1153 struct io_kiocb *nxt; 1154 1155 /* 1156 * If LINK is set, we have dependent requests in this chain. If we 1157 * didn't fail this request, queue the first one up, moving any other 1158 * dependencies to the next request. In case of failure, fail the rest 1159 * of the chain. 1160 */ 1161 if (unlikely(req->flags & IO_DISARM_MASK)) 1162 __io_req_find_next_prep(req); 1163 nxt = req->link; 1164 req->link = NULL; 1165 return nxt; 1166 } 1167 1168 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1169 { 1170 if (!ctx) 1171 return; 1172 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1173 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1174 if (ts->locked) { 1175 io_submit_flush_completions(ctx); 1176 mutex_unlock(&ctx->uring_lock); 1177 ts->locked = false; 1178 } 1179 percpu_ref_put(&ctx->refs); 1180 } 1181 1182 static unsigned int handle_tw_list(struct llist_node *node, 1183 struct io_ring_ctx **ctx, 1184 struct io_tw_state *ts, 1185 struct llist_node *last) 1186 { 1187 unsigned int count = 0; 1188 1189 while (node && node != last) { 1190 struct llist_node *next = node->next; 1191 struct io_kiocb *req = container_of(node, struct io_kiocb, 1192 io_task_work.node); 1193 1194 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1195 1196 if (req->ctx != *ctx) { 1197 ctx_flush_and_put(*ctx, ts); 1198 *ctx = req->ctx; 1199 /* if not contended, grab and improve batching */ 1200 ts->locked = mutex_trylock(&(*ctx)->uring_lock); 1201 percpu_ref_get(&(*ctx)->refs); 1202 } 1203 INDIRECT_CALL_2(req->io_task_work.func, 1204 io_poll_task_func, io_req_rw_complete, 1205 req, ts); 1206 node = next; 1207 count++; 1208 if (unlikely(need_resched())) { 1209 ctx_flush_and_put(*ctx, ts); 1210 *ctx = NULL; 1211 cond_resched(); 1212 } 1213 } 1214 1215 return count; 1216 } 1217 1218 /** 1219 * io_llist_xchg - swap all entries in a lock-less list 1220 * @head: the head of lock-less list to delete all entries 1221 * @new: new entry as the head of the list 1222 * 1223 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1224 * The order of entries returned is from the newest to the oldest added one. 1225 */ 1226 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1227 struct llist_node *new) 1228 { 1229 return xchg(&head->first, new); 1230 } 1231 1232 /** 1233 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1234 * @head: the head of lock-less list to delete all entries 1235 * @old: expected old value of the first entry of the list 1236 * @new: new entry as the head of the list 1237 * 1238 * perform a cmpxchg on the first entry of the list. 1239 */ 1240 1241 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1242 struct llist_node *old, 1243 struct llist_node *new) 1244 { 1245 return cmpxchg(&head->first, old, new); 1246 } 1247 1248 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1249 { 1250 struct llist_node *node = llist_del_all(&tctx->task_list); 1251 struct io_ring_ctx *last_ctx = NULL; 1252 struct io_kiocb *req; 1253 1254 while (node) { 1255 req = container_of(node, struct io_kiocb, io_task_work.node); 1256 node = node->next; 1257 if (sync && last_ctx != req->ctx) { 1258 if (last_ctx) { 1259 flush_delayed_work(&last_ctx->fallback_work); 1260 percpu_ref_put(&last_ctx->refs); 1261 } 1262 last_ctx = req->ctx; 1263 percpu_ref_get(&last_ctx->refs); 1264 } 1265 if (llist_add(&req->io_task_work.node, 1266 &req->ctx->fallback_llist)) 1267 schedule_delayed_work(&req->ctx->fallback_work, 1); 1268 } 1269 1270 if (last_ctx) { 1271 flush_delayed_work(&last_ctx->fallback_work); 1272 percpu_ref_put(&last_ctx->refs); 1273 } 1274 } 1275 1276 void tctx_task_work(struct callback_head *cb) 1277 { 1278 struct io_tw_state ts = {}; 1279 struct io_ring_ctx *ctx = NULL; 1280 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1281 task_work); 1282 struct llist_node fake = {}; 1283 struct llist_node *node; 1284 unsigned int loops = 0; 1285 unsigned int count = 0; 1286 1287 if (unlikely(current->flags & PF_EXITING)) { 1288 io_fallback_tw(tctx, true); 1289 return; 1290 } 1291 1292 do { 1293 loops++; 1294 node = io_llist_xchg(&tctx->task_list, &fake); 1295 count += handle_tw_list(node, &ctx, &ts, &fake); 1296 1297 /* skip expensive cmpxchg if there are items in the list */ 1298 if (READ_ONCE(tctx->task_list.first) != &fake) 1299 continue; 1300 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) { 1301 io_submit_flush_completions(ctx); 1302 if (READ_ONCE(tctx->task_list.first) != &fake) 1303 continue; 1304 } 1305 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1306 } while (node != &fake); 1307 1308 ctx_flush_and_put(ctx, &ts); 1309 1310 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1311 if (unlikely(atomic_read(&tctx->in_cancel))) 1312 io_uring_drop_tctx_refs(current); 1313 1314 trace_io_uring_task_work_run(tctx, count, loops); 1315 } 1316 1317 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1318 { 1319 struct io_ring_ctx *ctx = req->ctx; 1320 unsigned nr_wait, nr_tw, nr_tw_prev; 1321 struct llist_node *first; 1322 1323 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1324 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1325 1326 first = READ_ONCE(ctx->work_llist.first); 1327 do { 1328 nr_tw_prev = 0; 1329 if (first) { 1330 struct io_kiocb *first_req = container_of(first, 1331 struct io_kiocb, 1332 io_task_work.node); 1333 /* 1334 * Might be executed at any moment, rely on 1335 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1336 */ 1337 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1338 } 1339 nr_tw = nr_tw_prev + 1; 1340 /* Large enough to fail the nr_wait comparison below */ 1341 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1342 nr_tw = INT_MAX; 1343 1344 req->nr_tw = nr_tw; 1345 req->io_task_work.node.next = first; 1346 } while (!try_cmpxchg(&ctx->work_llist.first, &first, 1347 &req->io_task_work.node)); 1348 1349 if (!first) { 1350 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1351 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1352 if (ctx->has_evfd) 1353 io_eventfd_signal(ctx); 1354 } 1355 1356 nr_wait = atomic_read(&ctx->cq_wait_nr); 1357 /* no one is waiting */ 1358 if (!nr_wait) 1359 return; 1360 /* either not enough or the previous add has already woken it up */ 1361 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait) 1362 return; 1363 /* pairs with set_current_state() in io_cqring_wait() */ 1364 smp_mb__after_atomic(); 1365 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1366 } 1367 1368 static void io_req_normal_work_add(struct io_kiocb *req) 1369 { 1370 struct io_uring_task *tctx = req->task->io_uring; 1371 struct io_ring_ctx *ctx = req->ctx; 1372 1373 /* task_work already pending, we're done */ 1374 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1375 return; 1376 1377 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1378 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1379 1380 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1381 return; 1382 1383 io_fallback_tw(tctx, false); 1384 } 1385 1386 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1387 { 1388 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1389 rcu_read_lock(); 1390 io_req_local_work_add(req, flags); 1391 rcu_read_unlock(); 1392 } else { 1393 io_req_normal_work_add(req); 1394 } 1395 } 1396 1397 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1398 { 1399 struct llist_node *node; 1400 1401 node = llist_del_all(&ctx->work_llist); 1402 while (node) { 1403 struct io_kiocb *req = container_of(node, struct io_kiocb, 1404 io_task_work.node); 1405 1406 node = node->next; 1407 io_req_normal_work_add(req); 1408 } 1409 } 1410 1411 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1412 { 1413 struct llist_node *node; 1414 unsigned int loops = 0; 1415 int ret = 0; 1416 1417 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1418 return -EEXIST; 1419 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1420 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1421 again: 1422 /* 1423 * llists are in reverse order, flip it back the right way before 1424 * running the pending items. 1425 */ 1426 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1427 while (node) { 1428 struct llist_node *next = node->next; 1429 struct io_kiocb *req = container_of(node, struct io_kiocb, 1430 io_task_work.node); 1431 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1432 INDIRECT_CALL_2(req->io_task_work.func, 1433 io_poll_task_func, io_req_rw_complete, 1434 req, ts); 1435 ret++; 1436 node = next; 1437 } 1438 loops++; 1439 1440 if (!llist_empty(&ctx->work_llist)) 1441 goto again; 1442 if (ts->locked) { 1443 io_submit_flush_completions(ctx); 1444 if (!llist_empty(&ctx->work_llist)) 1445 goto again; 1446 } 1447 trace_io_uring_local_work_run(ctx, ret, loops); 1448 return ret; 1449 } 1450 1451 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx) 1452 { 1453 struct io_tw_state ts = { .locked = true, }; 1454 int ret; 1455 1456 if (llist_empty(&ctx->work_llist)) 1457 return 0; 1458 1459 ret = __io_run_local_work(ctx, &ts); 1460 /* shouldn't happen! */ 1461 if (WARN_ON_ONCE(!ts.locked)) 1462 mutex_lock(&ctx->uring_lock); 1463 return ret; 1464 } 1465 1466 static int io_run_local_work(struct io_ring_ctx *ctx) 1467 { 1468 struct io_tw_state ts = {}; 1469 int ret; 1470 1471 ts.locked = mutex_trylock(&ctx->uring_lock); 1472 ret = __io_run_local_work(ctx, &ts); 1473 if (ts.locked) 1474 mutex_unlock(&ctx->uring_lock); 1475 1476 return ret; 1477 } 1478 1479 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1480 { 1481 io_tw_lock(req->ctx, ts); 1482 io_req_defer_failed(req, req->cqe.res); 1483 } 1484 1485 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1486 { 1487 io_tw_lock(req->ctx, ts); 1488 /* req->task == current here, checking PF_EXITING is safe */ 1489 if (unlikely(req->task->flags & PF_EXITING)) 1490 io_req_defer_failed(req, -EFAULT); 1491 else if (req->flags & REQ_F_FORCE_ASYNC) 1492 io_queue_iowq(req, ts); 1493 else 1494 io_queue_sqe(req); 1495 } 1496 1497 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1498 { 1499 io_req_set_res(req, ret, 0); 1500 req->io_task_work.func = io_req_task_cancel; 1501 io_req_task_work_add(req); 1502 } 1503 1504 void io_req_task_queue(struct io_kiocb *req) 1505 { 1506 req->io_task_work.func = io_req_task_submit; 1507 io_req_task_work_add(req); 1508 } 1509 1510 void io_queue_next(struct io_kiocb *req) 1511 { 1512 struct io_kiocb *nxt = io_req_find_next(req); 1513 1514 if (nxt) 1515 io_req_task_queue(nxt); 1516 } 1517 1518 static void io_free_batch_list(struct io_ring_ctx *ctx, 1519 struct io_wq_work_node *node) 1520 __must_hold(&ctx->uring_lock) 1521 { 1522 do { 1523 struct io_kiocb *req = container_of(node, struct io_kiocb, 1524 comp_list); 1525 1526 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1527 if (req->flags & REQ_F_REFCOUNT) { 1528 node = req->comp_list.next; 1529 if (!req_ref_put_and_test(req)) 1530 continue; 1531 } 1532 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1533 struct async_poll *apoll = req->apoll; 1534 1535 if (apoll->double_poll) 1536 kfree(apoll->double_poll); 1537 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1538 kfree(apoll); 1539 req->flags &= ~REQ_F_POLLED; 1540 } 1541 if (req->flags & IO_REQ_LINK_FLAGS) 1542 io_queue_next(req); 1543 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1544 io_clean_op(req); 1545 } 1546 io_put_file(req); 1547 1548 io_req_put_rsrc_locked(req, ctx); 1549 1550 io_put_task(req->task); 1551 node = req->comp_list.next; 1552 io_req_add_to_cache(req, ctx); 1553 } while (node); 1554 } 1555 1556 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1557 __must_hold(&ctx->uring_lock) 1558 { 1559 struct io_submit_state *state = &ctx->submit_state; 1560 struct io_wq_work_node *node; 1561 1562 __io_cq_lock(ctx); 1563 /* must come first to preserve CQE ordering in failure cases */ 1564 if (state->cqes_count) 1565 __io_flush_post_cqes(ctx); 1566 __wq_list_for_each(node, &state->compl_reqs) { 1567 struct io_kiocb *req = container_of(node, struct io_kiocb, 1568 comp_list); 1569 1570 if (!(req->flags & REQ_F_CQE_SKIP) && 1571 unlikely(!io_fill_cqe_req(ctx, req))) { 1572 if (ctx->lockless_cq) { 1573 spin_lock(&ctx->completion_lock); 1574 io_req_cqe_overflow(req); 1575 spin_unlock(&ctx->completion_lock); 1576 } else { 1577 io_req_cqe_overflow(req); 1578 } 1579 } 1580 } 1581 __io_cq_unlock_post(ctx); 1582 1583 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1584 io_free_batch_list(ctx, state->compl_reqs.first); 1585 INIT_WQ_LIST(&state->compl_reqs); 1586 } 1587 } 1588 1589 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1590 { 1591 /* See comment at the top of this file */ 1592 smp_rmb(); 1593 return __io_cqring_events(ctx); 1594 } 1595 1596 /* 1597 * We can't just wait for polled events to come to us, we have to actively 1598 * find and complete them. 1599 */ 1600 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1601 { 1602 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1603 return; 1604 1605 mutex_lock(&ctx->uring_lock); 1606 while (!wq_list_empty(&ctx->iopoll_list)) { 1607 /* let it sleep and repeat later if can't complete a request */ 1608 if (io_do_iopoll(ctx, true) == 0) 1609 break; 1610 /* 1611 * Ensure we allow local-to-the-cpu processing to take place, 1612 * in this case we need to ensure that we reap all events. 1613 * Also let task_work, etc. to progress by releasing the mutex 1614 */ 1615 if (need_resched()) { 1616 mutex_unlock(&ctx->uring_lock); 1617 cond_resched(); 1618 mutex_lock(&ctx->uring_lock); 1619 } 1620 } 1621 mutex_unlock(&ctx->uring_lock); 1622 } 1623 1624 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1625 { 1626 unsigned int nr_events = 0; 1627 unsigned long check_cq; 1628 1629 if (!io_allowed_run_tw(ctx)) 1630 return -EEXIST; 1631 1632 check_cq = READ_ONCE(ctx->check_cq); 1633 if (unlikely(check_cq)) { 1634 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1635 __io_cqring_overflow_flush(ctx); 1636 /* 1637 * Similarly do not spin if we have not informed the user of any 1638 * dropped CQE. 1639 */ 1640 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1641 return -EBADR; 1642 } 1643 /* 1644 * Don't enter poll loop if we already have events pending. 1645 * If we do, we can potentially be spinning for commands that 1646 * already triggered a CQE (eg in error). 1647 */ 1648 if (io_cqring_events(ctx)) 1649 return 0; 1650 1651 do { 1652 int ret = 0; 1653 1654 /* 1655 * If a submit got punted to a workqueue, we can have the 1656 * application entering polling for a command before it gets 1657 * issued. That app will hold the uring_lock for the duration 1658 * of the poll right here, so we need to take a breather every 1659 * now and then to ensure that the issue has a chance to add 1660 * the poll to the issued list. Otherwise we can spin here 1661 * forever, while the workqueue is stuck trying to acquire the 1662 * very same mutex. 1663 */ 1664 if (wq_list_empty(&ctx->iopoll_list) || 1665 io_task_work_pending(ctx)) { 1666 u32 tail = ctx->cached_cq_tail; 1667 1668 (void) io_run_local_work_locked(ctx); 1669 1670 if (task_work_pending(current) || 1671 wq_list_empty(&ctx->iopoll_list)) { 1672 mutex_unlock(&ctx->uring_lock); 1673 io_run_task_work(); 1674 mutex_lock(&ctx->uring_lock); 1675 } 1676 /* some requests don't go through iopoll_list */ 1677 if (tail != ctx->cached_cq_tail || 1678 wq_list_empty(&ctx->iopoll_list)) 1679 break; 1680 } 1681 ret = io_do_iopoll(ctx, !min); 1682 if (unlikely(ret < 0)) 1683 return ret; 1684 1685 if (task_sigpending(current)) 1686 return -EINTR; 1687 if (need_resched()) 1688 break; 1689 1690 nr_events += ret; 1691 } while (nr_events < min); 1692 1693 return 0; 1694 } 1695 1696 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1697 { 1698 if (ts->locked) 1699 io_req_complete_defer(req); 1700 else 1701 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1702 } 1703 1704 /* 1705 * After the iocb has been issued, it's safe to be found on the poll list. 1706 * Adding the kiocb to the list AFTER submission ensures that we don't 1707 * find it from a io_do_iopoll() thread before the issuer is done 1708 * accessing the kiocb cookie. 1709 */ 1710 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1711 { 1712 struct io_ring_ctx *ctx = req->ctx; 1713 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1714 1715 /* workqueue context doesn't hold uring_lock, grab it now */ 1716 if (unlikely(needs_lock)) 1717 mutex_lock(&ctx->uring_lock); 1718 1719 /* 1720 * Track whether we have multiple files in our lists. This will impact 1721 * how we do polling eventually, not spinning if we're on potentially 1722 * different devices. 1723 */ 1724 if (wq_list_empty(&ctx->iopoll_list)) { 1725 ctx->poll_multi_queue = false; 1726 } else if (!ctx->poll_multi_queue) { 1727 struct io_kiocb *list_req; 1728 1729 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1730 comp_list); 1731 if (list_req->file != req->file) 1732 ctx->poll_multi_queue = true; 1733 } 1734 1735 /* 1736 * For fast devices, IO may have already completed. If it has, add 1737 * it to the front so we find it first. 1738 */ 1739 if (READ_ONCE(req->iopoll_completed)) 1740 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1741 else 1742 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1743 1744 if (unlikely(needs_lock)) { 1745 /* 1746 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1747 * in sq thread task context or in io worker task context. If 1748 * current task context is sq thread, we don't need to check 1749 * whether should wake up sq thread. 1750 */ 1751 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1752 wq_has_sleeper(&ctx->sq_data->wait)) 1753 wake_up(&ctx->sq_data->wait); 1754 1755 mutex_unlock(&ctx->uring_lock); 1756 } 1757 } 1758 1759 unsigned int io_file_get_flags(struct file *file) 1760 { 1761 unsigned int res = 0; 1762 1763 if (S_ISREG(file_inode(file)->i_mode)) 1764 res |= REQ_F_ISREG; 1765 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1766 res |= REQ_F_SUPPORT_NOWAIT; 1767 return res; 1768 } 1769 1770 bool io_alloc_async_data(struct io_kiocb *req) 1771 { 1772 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1773 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1774 if (req->async_data) { 1775 req->flags |= REQ_F_ASYNC_DATA; 1776 return false; 1777 } 1778 return true; 1779 } 1780 1781 int io_req_prep_async(struct io_kiocb *req) 1782 { 1783 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1784 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1785 1786 /* assign early for deferred execution for non-fixed file */ 1787 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1788 req->file = io_file_get_normal(req, req->cqe.fd); 1789 if (!cdef->prep_async) 1790 return 0; 1791 if (WARN_ON_ONCE(req_has_async_data(req))) 1792 return -EFAULT; 1793 if (!def->manual_alloc) { 1794 if (io_alloc_async_data(req)) 1795 return -EAGAIN; 1796 } 1797 return cdef->prep_async(req); 1798 } 1799 1800 static u32 io_get_sequence(struct io_kiocb *req) 1801 { 1802 u32 seq = req->ctx->cached_sq_head; 1803 struct io_kiocb *cur; 1804 1805 /* need original cached_sq_head, but it was increased for each req */ 1806 io_for_each_link(cur, req) 1807 seq--; 1808 return seq; 1809 } 1810 1811 static __cold void io_drain_req(struct io_kiocb *req) 1812 __must_hold(&ctx->uring_lock) 1813 { 1814 struct io_ring_ctx *ctx = req->ctx; 1815 struct io_defer_entry *de; 1816 int ret; 1817 u32 seq = io_get_sequence(req); 1818 1819 /* Still need defer if there is pending req in defer list. */ 1820 spin_lock(&ctx->completion_lock); 1821 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1822 spin_unlock(&ctx->completion_lock); 1823 queue: 1824 ctx->drain_active = false; 1825 io_req_task_queue(req); 1826 return; 1827 } 1828 spin_unlock(&ctx->completion_lock); 1829 1830 io_prep_async_link(req); 1831 de = kmalloc(sizeof(*de), GFP_KERNEL); 1832 if (!de) { 1833 ret = -ENOMEM; 1834 io_req_defer_failed(req, ret); 1835 return; 1836 } 1837 1838 spin_lock(&ctx->completion_lock); 1839 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1840 spin_unlock(&ctx->completion_lock); 1841 kfree(de); 1842 goto queue; 1843 } 1844 1845 trace_io_uring_defer(req); 1846 de->req = req; 1847 de->seq = seq; 1848 list_add_tail(&de->list, &ctx->defer_list); 1849 spin_unlock(&ctx->completion_lock); 1850 } 1851 1852 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1853 unsigned int issue_flags) 1854 { 1855 if (req->file || !def->needs_file) 1856 return true; 1857 1858 if (req->flags & REQ_F_FIXED_FILE) 1859 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1860 else 1861 req->file = io_file_get_normal(req, req->cqe.fd); 1862 1863 return !!req->file; 1864 } 1865 1866 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1867 { 1868 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1869 const struct cred *creds = NULL; 1870 int ret; 1871 1872 if (unlikely(!io_assign_file(req, def, issue_flags))) 1873 return -EBADF; 1874 1875 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1876 creds = override_creds(req->creds); 1877 1878 if (!def->audit_skip) 1879 audit_uring_entry(req->opcode); 1880 1881 ret = def->issue(req, issue_flags); 1882 1883 if (!def->audit_skip) 1884 audit_uring_exit(!ret, ret); 1885 1886 if (creds) 1887 revert_creds(creds); 1888 1889 if (ret == IOU_OK) { 1890 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1891 io_req_complete_defer(req); 1892 else 1893 io_req_complete_post(req, issue_flags); 1894 1895 return 0; 1896 } 1897 1898 if (ret != IOU_ISSUE_SKIP_COMPLETE) 1899 return ret; 1900 1901 /* If the op doesn't have a file, we're not polling for it */ 1902 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1903 io_iopoll_req_issued(req, issue_flags); 1904 1905 return 0; 1906 } 1907 1908 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1909 { 1910 io_tw_lock(req->ctx, ts); 1911 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1912 IO_URING_F_COMPLETE_DEFER); 1913 } 1914 1915 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1916 { 1917 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1918 struct io_kiocb *nxt = NULL; 1919 1920 if (req_ref_put_and_test(req)) { 1921 if (req->flags & IO_REQ_LINK_FLAGS) 1922 nxt = io_req_find_next(req); 1923 io_free_req(req); 1924 } 1925 return nxt ? &nxt->work : NULL; 1926 } 1927 1928 void io_wq_submit_work(struct io_wq_work *work) 1929 { 1930 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1931 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1932 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1933 bool needs_poll = false; 1934 int ret = 0, err = -ECANCELED; 1935 1936 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1937 if (!(req->flags & REQ_F_REFCOUNT)) 1938 __io_req_set_refcount(req, 2); 1939 else 1940 req_ref_get(req); 1941 1942 io_arm_ltimeout(req); 1943 1944 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1945 if (work->flags & IO_WQ_WORK_CANCEL) { 1946 fail: 1947 io_req_task_queue_fail(req, err); 1948 return; 1949 } 1950 if (!io_assign_file(req, def, issue_flags)) { 1951 err = -EBADF; 1952 work->flags |= IO_WQ_WORK_CANCEL; 1953 goto fail; 1954 } 1955 1956 if (req->flags & REQ_F_FORCE_ASYNC) { 1957 bool opcode_poll = def->pollin || def->pollout; 1958 1959 if (opcode_poll && file_can_poll(req->file)) { 1960 needs_poll = true; 1961 issue_flags |= IO_URING_F_NONBLOCK; 1962 } 1963 } 1964 1965 do { 1966 ret = io_issue_sqe(req, issue_flags); 1967 if (ret != -EAGAIN) 1968 break; 1969 1970 /* 1971 * If REQ_F_NOWAIT is set, then don't wait or retry with 1972 * poll. -EAGAIN is final for that case. 1973 */ 1974 if (req->flags & REQ_F_NOWAIT) 1975 break; 1976 1977 /* 1978 * We can get EAGAIN for iopolled IO even though we're 1979 * forcing a sync submission from here, since we can't 1980 * wait for request slots on the block side. 1981 */ 1982 if (!needs_poll) { 1983 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1984 break; 1985 if (io_wq_worker_stopped()) 1986 break; 1987 cond_resched(); 1988 continue; 1989 } 1990 1991 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1992 return; 1993 /* aborted or ready, in either case retry blocking */ 1994 needs_poll = false; 1995 issue_flags &= ~IO_URING_F_NONBLOCK; 1996 } while (1); 1997 1998 /* avoid locking problems by failing it from a clean context */ 1999 if (ret < 0) 2000 io_req_task_queue_fail(req, ret); 2001 } 2002 2003 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 2004 unsigned int issue_flags) 2005 { 2006 struct io_ring_ctx *ctx = req->ctx; 2007 struct io_fixed_file *slot; 2008 struct file *file = NULL; 2009 2010 io_ring_submit_lock(ctx, issue_flags); 2011 2012 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 2013 goto out; 2014 fd = array_index_nospec(fd, ctx->nr_user_files); 2015 slot = io_fixed_file_slot(&ctx->file_table, fd); 2016 file = io_slot_file(slot); 2017 req->flags |= io_slot_flags(slot); 2018 io_req_set_rsrc_node(req, ctx, 0); 2019 out: 2020 io_ring_submit_unlock(ctx, issue_flags); 2021 return file; 2022 } 2023 2024 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 2025 { 2026 struct file *file = fget(fd); 2027 2028 trace_io_uring_file_get(req, fd); 2029 2030 /* we don't allow fixed io_uring files */ 2031 if (file && io_is_uring_fops(file)) 2032 io_req_track_inflight(req); 2033 return file; 2034 } 2035 2036 static void io_queue_async(struct io_kiocb *req, int ret) 2037 __must_hold(&req->ctx->uring_lock) 2038 { 2039 struct io_kiocb *linked_timeout; 2040 2041 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2042 io_req_defer_failed(req, ret); 2043 return; 2044 } 2045 2046 linked_timeout = io_prep_linked_timeout(req); 2047 2048 switch (io_arm_poll_handler(req, 0)) { 2049 case IO_APOLL_READY: 2050 io_kbuf_recycle(req, 0); 2051 io_req_task_queue(req); 2052 break; 2053 case IO_APOLL_ABORTED: 2054 io_kbuf_recycle(req, 0); 2055 io_queue_iowq(req, NULL); 2056 break; 2057 case IO_APOLL_OK: 2058 break; 2059 } 2060 2061 if (linked_timeout) 2062 io_queue_linked_timeout(linked_timeout); 2063 } 2064 2065 static inline void io_queue_sqe(struct io_kiocb *req) 2066 __must_hold(&req->ctx->uring_lock) 2067 { 2068 int ret; 2069 2070 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2071 2072 /* 2073 * We async punt it if the file wasn't marked NOWAIT, or if the file 2074 * doesn't support non-blocking read/write attempts 2075 */ 2076 if (likely(!ret)) 2077 io_arm_ltimeout(req); 2078 else 2079 io_queue_async(req, ret); 2080 } 2081 2082 static void io_queue_sqe_fallback(struct io_kiocb *req) 2083 __must_hold(&req->ctx->uring_lock) 2084 { 2085 if (unlikely(req->flags & REQ_F_FAIL)) { 2086 /* 2087 * We don't submit, fail them all, for that replace hardlinks 2088 * with normal links. Extra REQ_F_LINK is tolerated. 2089 */ 2090 req->flags &= ~REQ_F_HARDLINK; 2091 req->flags |= REQ_F_LINK; 2092 io_req_defer_failed(req, req->cqe.res); 2093 } else { 2094 int ret = io_req_prep_async(req); 2095 2096 if (unlikely(ret)) { 2097 io_req_defer_failed(req, ret); 2098 return; 2099 } 2100 2101 if (unlikely(req->ctx->drain_active)) 2102 io_drain_req(req); 2103 else 2104 io_queue_iowq(req, NULL); 2105 } 2106 } 2107 2108 /* 2109 * Check SQE restrictions (opcode and flags). 2110 * 2111 * Returns 'true' if SQE is allowed, 'false' otherwise. 2112 */ 2113 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2114 struct io_kiocb *req, 2115 unsigned int sqe_flags) 2116 { 2117 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2118 return false; 2119 2120 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2121 ctx->restrictions.sqe_flags_required) 2122 return false; 2123 2124 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2125 ctx->restrictions.sqe_flags_required)) 2126 return false; 2127 2128 return true; 2129 } 2130 2131 static void io_init_req_drain(struct io_kiocb *req) 2132 { 2133 struct io_ring_ctx *ctx = req->ctx; 2134 struct io_kiocb *head = ctx->submit_state.link.head; 2135 2136 ctx->drain_active = true; 2137 if (head) { 2138 /* 2139 * If we need to drain a request in the middle of a link, drain 2140 * the head request and the next request/link after the current 2141 * link. Considering sequential execution of links, 2142 * REQ_F_IO_DRAIN will be maintained for every request of our 2143 * link. 2144 */ 2145 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2146 ctx->drain_next = true; 2147 } 2148 } 2149 2150 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2151 const struct io_uring_sqe *sqe) 2152 __must_hold(&ctx->uring_lock) 2153 { 2154 const struct io_issue_def *def; 2155 unsigned int sqe_flags; 2156 int personality; 2157 u8 opcode; 2158 2159 /* req is partially pre-initialised, see io_preinit_req() */ 2160 req->opcode = opcode = READ_ONCE(sqe->opcode); 2161 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2162 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2163 req->cqe.user_data = READ_ONCE(sqe->user_data); 2164 req->file = NULL; 2165 req->rsrc_node = NULL; 2166 req->task = current; 2167 2168 if (unlikely(opcode >= IORING_OP_LAST)) { 2169 req->opcode = 0; 2170 return -EINVAL; 2171 } 2172 def = &io_issue_defs[opcode]; 2173 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2174 /* enforce forwards compatibility on users */ 2175 if (sqe_flags & ~SQE_VALID_FLAGS) 2176 return -EINVAL; 2177 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2178 if (!def->buffer_select) 2179 return -EOPNOTSUPP; 2180 req->buf_index = READ_ONCE(sqe->buf_group); 2181 } 2182 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2183 ctx->drain_disabled = true; 2184 if (sqe_flags & IOSQE_IO_DRAIN) { 2185 if (ctx->drain_disabled) 2186 return -EOPNOTSUPP; 2187 io_init_req_drain(req); 2188 } 2189 } 2190 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2191 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2192 return -EACCES; 2193 /* knock it to the slow queue path, will be drained there */ 2194 if (ctx->drain_active) 2195 req->flags |= REQ_F_FORCE_ASYNC; 2196 /* if there is no link, we're at "next" request and need to drain */ 2197 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2198 ctx->drain_next = false; 2199 ctx->drain_active = true; 2200 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2201 } 2202 } 2203 2204 if (!def->ioprio && sqe->ioprio) 2205 return -EINVAL; 2206 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2207 return -EINVAL; 2208 2209 if (def->needs_file) { 2210 struct io_submit_state *state = &ctx->submit_state; 2211 2212 req->cqe.fd = READ_ONCE(sqe->fd); 2213 2214 /* 2215 * Plug now if we have more than 2 IO left after this, and the 2216 * target is potentially a read/write to block based storage. 2217 */ 2218 if (state->need_plug && def->plug) { 2219 state->plug_started = true; 2220 state->need_plug = false; 2221 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2222 } 2223 } 2224 2225 personality = READ_ONCE(sqe->personality); 2226 if (personality) { 2227 int ret; 2228 2229 req->creds = xa_load(&ctx->personalities, personality); 2230 if (!req->creds) 2231 return -EINVAL; 2232 get_cred(req->creds); 2233 ret = security_uring_override_creds(req->creds); 2234 if (ret) { 2235 put_cred(req->creds); 2236 return ret; 2237 } 2238 req->flags |= REQ_F_CREDS; 2239 } 2240 2241 return def->prep(req, sqe); 2242 } 2243 2244 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2245 struct io_kiocb *req, int ret) 2246 { 2247 struct io_ring_ctx *ctx = req->ctx; 2248 struct io_submit_link *link = &ctx->submit_state.link; 2249 struct io_kiocb *head = link->head; 2250 2251 trace_io_uring_req_failed(sqe, req, ret); 2252 2253 /* 2254 * Avoid breaking links in the middle as it renders links with SQPOLL 2255 * unusable. Instead of failing eagerly, continue assembling the link if 2256 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2257 * should find the flag and handle the rest. 2258 */ 2259 req_fail_link_node(req, ret); 2260 if (head && !(head->flags & REQ_F_FAIL)) 2261 req_fail_link_node(head, -ECANCELED); 2262 2263 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2264 if (head) { 2265 link->last->link = req; 2266 link->head = NULL; 2267 req = head; 2268 } 2269 io_queue_sqe_fallback(req); 2270 return ret; 2271 } 2272 2273 if (head) 2274 link->last->link = req; 2275 else 2276 link->head = req; 2277 link->last = req; 2278 return 0; 2279 } 2280 2281 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2282 const struct io_uring_sqe *sqe) 2283 __must_hold(&ctx->uring_lock) 2284 { 2285 struct io_submit_link *link = &ctx->submit_state.link; 2286 int ret; 2287 2288 ret = io_init_req(ctx, req, sqe); 2289 if (unlikely(ret)) 2290 return io_submit_fail_init(sqe, req, ret); 2291 2292 trace_io_uring_submit_req(req); 2293 2294 /* 2295 * If we already have a head request, queue this one for async 2296 * submittal once the head completes. If we don't have a head but 2297 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2298 * submitted sync once the chain is complete. If none of those 2299 * conditions are true (normal request), then just queue it. 2300 */ 2301 if (unlikely(link->head)) { 2302 ret = io_req_prep_async(req); 2303 if (unlikely(ret)) 2304 return io_submit_fail_init(sqe, req, ret); 2305 2306 trace_io_uring_link(req, link->head); 2307 link->last->link = req; 2308 link->last = req; 2309 2310 if (req->flags & IO_REQ_LINK_FLAGS) 2311 return 0; 2312 /* last request of the link, flush it */ 2313 req = link->head; 2314 link->head = NULL; 2315 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2316 goto fallback; 2317 2318 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2319 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2320 if (req->flags & IO_REQ_LINK_FLAGS) { 2321 link->head = req; 2322 link->last = req; 2323 } else { 2324 fallback: 2325 io_queue_sqe_fallback(req); 2326 } 2327 return 0; 2328 } 2329 2330 io_queue_sqe(req); 2331 return 0; 2332 } 2333 2334 /* 2335 * Batched submission is done, ensure local IO is flushed out. 2336 */ 2337 static void io_submit_state_end(struct io_ring_ctx *ctx) 2338 { 2339 struct io_submit_state *state = &ctx->submit_state; 2340 2341 if (unlikely(state->link.head)) 2342 io_queue_sqe_fallback(state->link.head); 2343 /* flush only after queuing links as they can generate completions */ 2344 io_submit_flush_completions(ctx); 2345 if (state->plug_started) 2346 blk_finish_plug(&state->plug); 2347 } 2348 2349 /* 2350 * Start submission side cache. 2351 */ 2352 static void io_submit_state_start(struct io_submit_state *state, 2353 unsigned int max_ios) 2354 { 2355 state->plug_started = false; 2356 state->need_plug = max_ios > 2; 2357 state->submit_nr = max_ios; 2358 /* set only head, no need to init link_last in advance */ 2359 state->link.head = NULL; 2360 } 2361 2362 static void io_commit_sqring(struct io_ring_ctx *ctx) 2363 { 2364 struct io_rings *rings = ctx->rings; 2365 2366 /* 2367 * Ensure any loads from the SQEs are done at this point, 2368 * since once we write the new head, the application could 2369 * write new data to them. 2370 */ 2371 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2372 } 2373 2374 /* 2375 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2376 * that is mapped by userspace. This means that care needs to be taken to 2377 * ensure that reads are stable, as we cannot rely on userspace always 2378 * being a good citizen. If members of the sqe are validated and then later 2379 * used, it's important that those reads are done through READ_ONCE() to 2380 * prevent a re-load down the line. 2381 */ 2382 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2383 { 2384 unsigned mask = ctx->sq_entries - 1; 2385 unsigned head = ctx->cached_sq_head++ & mask; 2386 2387 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) { 2388 head = READ_ONCE(ctx->sq_array[head]); 2389 if (unlikely(head >= ctx->sq_entries)) { 2390 /* drop invalid entries */ 2391 spin_lock(&ctx->completion_lock); 2392 ctx->cq_extra--; 2393 spin_unlock(&ctx->completion_lock); 2394 WRITE_ONCE(ctx->rings->sq_dropped, 2395 READ_ONCE(ctx->rings->sq_dropped) + 1); 2396 return false; 2397 } 2398 } 2399 2400 /* 2401 * The cached sq head (or cq tail) serves two purposes: 2402 * 2403 * 1) allows us to batch the cost of updating the user visible 2404 * head updates. 2405 * 2) allows the kernel side to track the head on its own, even 2406 * though the application is the one updating it. 2407 */ 2408 2409 /* double index for 128-byte SQEs, twice as long */ 2410 if (ctx->flags & IORING_SETUP_SQE128) 2411 head <<= 1; 2412 *sqe = &ctx->sq_sqes[head]; 2413 return true; 2414 } 2415 2416 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2417 __must_hold(&ctx->uring_lock) 2418 { 2419 unsigned int entries = io_sqring_entries(ctx); 2420 unsigned int left; 2421 int ret; 2422 2423 if (unlikely(!entries)) 2424 return 0; 2425 /* make sure SQ entry isn't read before tail */ 2426 ret = left = min(nr, entries); 2427 io_get_task_refs(left); 2428 io_submit_state_start(&ctx->submit_state, left); 2429 2430 do { 2431 const struct io_uring_sqe *sqe; 2432 struct io_kiocb *req; 2433 2434 if (unlikely(!io_alloc_req(ctx, &req))) 2435 break; 2436 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2437 io_req_add_to_cache(req, ctx); 2438 break; 2439 } 2440 2441 /* 2442 * Continue submitting even for sqe failure if the 2443 * ring was setup with IORING_SETUP_SUBMIT_ALL 2444 */ 2445 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2446 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2447 left--; 2448 break; 2449 } 2450 } while (--left); 2451 2452 if (unlikely(left)) { 2453 ret -= left; 2454 /* try again if it submitted nothing and can't allocate a req */ 2455 if (!ret && io_req_cache_empty(ctx)) 2456 ret = -EAGAIN; 2457 current->io_uring->cached_refs += left; 2458 } 2459 2460 io_submit_state_end(ctx); 2461 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2462 io_commit_sqring(ctx); 2463 return ret; 2464 } 2465 2466 struct io_wait_queue { 2467 struct wait_queue_entry wq; 2468 struct io_ring_ctx *ctx; 2469 unsigned cq_tail; 2470 unsigned nr_timeouts; 2471 ktime_t timeout; 2472 }; 2473 2474 static inline bool io_has_work(struct io_ring_ctx *ctx) 2475 { 2476 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2477 !llist_empty(&ctx->work_llist); 2478 } 2479 2480 static inline bool io_should_wake(struct io_wait_queue *iowq) 2481 { 2482 struct io_ring_ctx *ctx = iowq->ctx; 2483 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2484 2485 /* 2486 * Wake up if we have enough events, or if a timeout occurred since we 2487 * started waiting. For timeouts, we always want to return to userspace, 2488 * regardless of event count. 2489 */ 2490 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2491 } 2492 2493 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2494 int wake_flags, void *key) 2495 { 2496 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2497 2498 /* 2499 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2500 * the task, and the next invocation will do it. 2501 */ 2502 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2503 return autoremove_wake_function(curr, mode, wake_flags, key); 2504 return -1; 2505 } 2506 2507 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2508 { 2509 if (!llist_empty(&ctx->work_llist)) { 2510 __set_current_state(TASK_RUNNING); 2511 if (io_run_local_work(ctx) > 0) 2512 return 0; 2513 } 2514 if (io_run_task_work() > 0) 2515 return 0; 2516 if (task_sigpending(current)) 2517 return -EINTR; 2518 return 0; 2519 } 2520 2521 static bool current_pending_io(void) 2522 { 2523 struct io_uring_task *tctx = current->io_uring; 2524 2525 if (!tctx) 2526 return false; 2527 return percpu_counter_read_positive(&tctx->inflight); 2528 } 2529 2530 /* when returns >0, the caller should retry */ 2531 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2532 struct io_wait_queue *iowq) 2533 { 2534 int io_wait, ret; 2535 2536 if (unlikely(READ_ONCE(ctx->check_cq))) 2537 return 1; 2538 if (unlikely(!llist_empty(&ctx->work_llist))) 2539 return 1; 2540 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) 2541 return 1; 2542 if (unlikely(task_sigpending(current))) 2543 return -EINTR; 2544 if (unlikely(io_should_wake(iowq))) 2545 return 0; 2546 2547 /* 2548 * Mark us as being in io_wait if we have pending requests, so cpufreq 2549 * can take into account that the task is waiting for IO - turns out 2550 * to be important for low QD IO. 2551 */ 2552 io_wait = current->in_iowait; 2553 if (current_pending_io()) 2554 current->in_iowait = 1; 2555 ret = 0; 2556 if (iowq->timeout == KTIME_MAX) 2557 schedule(); 2558 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2559 ret = -ETIME; 2560 current->in_iowait = io_wait; 2561 return ret; 2562 } 2563 2564 /* 2565 * Wait until events become available, if we don't already have some. The 2566 * application must reap them itself, as they reside on the shared cq ring. 2567 */ 2568 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2569 const sigset_t __user *sig, size_t sigsz, 2570 struct __kernel_timespec __user *uts) 2571 { 2572 struct io_wait_queue iowq; 2573 struct io_rings *rings = ctx->rings; 2574 int ret; 2575 2576 if (!io_allowed_run_tw(ctx)) 2577 return -EEXIST; 2578 if (!llist_empty(&ctx->work_llist)) 2579 io_run_local_work(ctx); 2580 io_run_task_work(); 2581 io_cqring_overflow_flush(ctx); 2582 /* if user messes with these they will just get an early return */ 2583 if (__io_cqring_events_user(ctx) >= min_events) 2584 return 0; 2585 2586 if (sig) { 2587 #ifdef CONFIG_COMPAT 2588 if (in_compat_syscall()) 2589 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2590 sigsz); 2591 else 2592 #endif 2593 ret = set_user_sigmask(sig, sigsz); 2594 2595 if (ret) 2596 return ret; 2597 } 2598 2599 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2600 iowq.wq.private = current; 2601 INIT_LIST_HEAD(&iowq.wq.entry); 2602 iowq.ctx = ctx; 2603 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2604 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2605 iowq.timeout = KTIME_MAX; 2606 2607 if (uts) { 2608 struct timespec64 ts; 2609 2610 if (get_timespec64(&ts, uts)) 2611 return -EFAULT; 2612 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2613 } 2614 2615 trace_io_uring_cqring_wait(ctx, min_events); 2616 do { 2617 unsigned long check_cq; 2618 2619 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2620 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2621 2622 atomic_set(&ctx->cq_wait_nr, nr_wait); 2623 set_current_state(TASK_INTERRUPTIBLE); 2624 } else { 2625 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2626 TASK_INTERRUPTIBLE); 2627 } 2628 2629 ret = io_cqring_wait_schedule(ctx, &iowq); 2630 __set_current_state(TASK_RUNNING); 2631 atomic_set(&ctx->cq_wait_nr, 0); 2632 2633 /* 2634 * Run task_work after scheduling and before io_should_wake(). 2635 * If we got woken because of task_work being processed, run it 2636 * now rather than let the caller do another wait loop. 2637 */ 2638 io_run_task_work(); 2639 if (!llist_empty(&ctx->work_llist)) 2640 io_run_local_work(ctx); 2641 2642 /* 2643 * Non-local task_work will be run on exit to userspace, but 2644 * if we're using DEFER_TASKRUN, then we could have waited 2645 * with a timeout for a number of requests. If the timeout 2646 * hits, we could have some requests ready to process. Ensure 2647 * this break is _after_ we have run task_work, to avoid 2648 * deferring running potentially pending requests until the 2649 * next time we wait for events. 2650 */ 2651 if (ret < 0) 2652 break; 2653 2654 check_cq = READ_ONCE(ctx->check_cq); 2655 if (unlikely(check_cq)) { 2656 /* let the caller flush overflows, retry */ 2657 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2658 io_cqring_do_overflow_flush(ctx); 2659 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2660 ret = -EBADR; 2661 break; 2662 } 2663 } 2664 2665 if (io_should_wake(&iowq)) { 2666 ret = 0; 2667 break; 2668 } 2669 cond_resched(); 2670 } while (1); 2671 2672 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2673 finish_wait(&ctx->cq_wait, &iowq.wq); 2674 restore_saved_sigmask_unless(ret == -EINTR); 2675 2676 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2677 } 2678 2679 void io_mem_free(void *ptr) 2680 { 2681 if (!ptr) 2682 return; 2683 2684 folio_put(virt_to_folio(ptr)); 2685 } 2686 2687 static void io_pages_free(struct page ***pages, int npages) 2688 { 2689 struct page **page_array; 2690 int i; 2691 2692 if (!pages) 2693 return; 2694 2695 page_array = *pages; 2696 if (!page_array) 2697 return; 2698 2699 for (i = 0; i < npages; i++) 2700 unpin_user_page(page_array[i]); 2701 kvfree(page_array); 2702 *pages = NULL; 2703 } 2704 2705 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, 2706 unsigned long uaddr, size_t size) 2707 { 2708 struct page **page_array; 2709 unsigned int nr_pages; 2710 void *page_addr; 2711 int ret, i; 2712 2713 *npages = 0; 2714 2715 if (uaddr & (PAGE_SIZE - 1) || !size) 2716 return ERR_PTR(-EINVAL); 2717 2718 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2719 if (nr_pages > USHRT_MAX) 2720 return ERR_PTR(-EINVAL); 2721 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); 2722 if (!page_array) 2723 return ERR_PTR(-ENOMEM); 2724 2725 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, 2726 page_array); 2727 if (ret != nr_pages) { 2728 err: 2729 io_pages_free(&page_array, ret > 0 ? ret : 0); 2730 return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT); 2731 } 2732 2733 page_addr = page_address(page_array[0]); 2734 for (i = 0; i < nr_pages; i++) { 2735 ret = -EINVAL; 2736 2737 /* 2738 * Can't support mapping user allocated ring memory on 32-bit 2739 * archs where it could potentially reside in highmem. Just 2740 * fail those with -EINVAL, just like we did on kernels that 2741 * didn't support this feature. 2742 */ 2743 if (PageHighMem(page_array[i])) 2744 goto err; 2745 2746 /* 2747 * No support for discontig pages for now, should either be a 2748 * single normal page, or a huge page. Later on we can add 2749 * support for remapping discontig pages, for now we will 2750 * just fail them with EINVAL. 2751 */ 2752 if (page_address(page_array[i]) != page_addr) 2753 goto err; 2754 page_addr += PAGE_SIZE; 2755 } 2756 2757 *pages = page_array; 2758 *npages = nr_pages; 2759 return page_to_virt(page_array[0]); 2760 } 2761 2762 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2763 size_t size) 2764 { 2765 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2766 size); 2767 } 2768 2769 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2770 size_t size) 2771 { 2772 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2773 size); 2774 } 2775 2776 static void io_rings_free(struct io_ring_ctx *ctx) 2777 { 2778 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2779 io_mem_free(ctx->rings); 2780 io_mem_free(ctx->sq_sqes); 2781 ctx->rings = NULL; 2782 ctx->sq_sqes = NULL; 2783 } else { 2784 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2785 ctx->n_ring_pages = 0; 2786 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2787 ctx->n_sqe_pages = 0; 2788 } 2789 } 2790 2791 void *io_mem_alloc(size_t size) 2792 { 2793 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2794 void *ret; 2795 2796 ret = (void *) __get_free_pages(gfp, get_order(size)); 2797 if (ret) 2798 return ret; 2799 return ERR_PTR(-ENOMEM); 2800 } 2801 2802 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2803 unsigned int cq_entries, size_t *sq_offset) 2804 { 2805 struct io_rings *rings; 2806 size_t off, sq_array_size; 2807 2808 off = struct_size(rings, cqes, cq_entries); 2809 if (off == SIZE_MAX) 2810 return SIZE_MAX; 2811 if (ctx->flags & IORING_SETUP_CQE32) { 2812 if (check_shl_overflow(off, 1, &off)) 2813 return SIZE_MAX; 2814 } 2815 2816 #ifdef CONFIG_SMP 2817 off = ALIGN(off, SMP_CACHE_BYTES); 2818 if (off == 0) 2819 return SIZE_MAX; 2820 #endif 2821 2822 if (ctx->flags & IORING_SETUP_NO_SQARRAY) { 2823 if (sq_offset) 2824 *sq_offset = SIZE_MAX; 2825 return off; 2826 } 2827 2828 if (sq_offset) 2829 *sq_offset = off; 2830 2831 sq_array_size = array_size(sizeof(u32), sq_entries); 2832 if (sq_array_size == SIZE_MAX) 2833 return SIZE_MAX; 2834 2835 if (check_add_overflow(off, sq_array_size, &off)) 2836 return SIZE_MAX; 2837 2838 return off; 2839 } 2840 2841 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2842 unsigned int eventfd_async) 2843 { 2844 struct io_ev_fd *ev_fd; 2845 __s32 __user *fds = arg; 2846 int fd; 2847 2848 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2849 lockdep_is_held(&ctx->uring_lock)); 2850 if (ev_fd) 2851 return -EBUSY; 2852 2853 if (copy_from_user(&fd, fds, sizeof(*fds))) 2854 return -EFAULT; 2855 2856 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2857 if (!ev_fd) 2858 return -ENOMEM; 2859 2860 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2861 if (IS_ERR(ev_fd->cq_ev_fd)) { 2862 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2863 kfree(ev_fd); 2864 return ret; 2865 } 2866 2867 spin_lock(&ctx->completion_lock); 2868 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2869 spin_unlock(&ctx->completion_lock); 2870 2871 ev_fd->eventfd_async = eventfd_async; 2872 ctx->has_evfd = true; 2873 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2874 atomic_set(&ev_fd->refs, 1); 2875 atomic_set(&ev_fd->ops, 0); 2876 return 0; 2877 } 2878 2879 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2880 { 2881 struct io_ev_fd *ev_fd; 2882 2883 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2884 lockdep_is_held(&ctx->uring_lock)); 2885 if (ev_fd) { 2886 ctx->has_evfd = false; 2887 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2888 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2889 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2890 return 0; 2891 } 2892 2893 return -ENXIO; 2894 } 2895 2896 static void io_req_caches_free(struct io_ring_ctx *ctx) 2897 { 2898 struct io_kiocb *req; 2899 int nr = 0; 2900 2901 mutex_lock(&ctx->uring_lock); 2902 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2903 2904 while (!io_req_cache_empty(ctx)) { 2905 req = io_extract_req(ctx); 2906 kmem_cache_free(req_cachep, req); 2907 nr++; 2908 } 2909 if (nr) 2910 percpu_ref_put_many(&ctx->refs, nr); 2911 mutex_unlock(&ctx->uring_lock); 2912 } 2913 2914 static void io_rsrc_node_cache_free(struct io_cache_entry *entry) 2915 { 2916 kfree(container_of(entry, struct io_rsrc_node, cache)); 2917 } 2918 2919 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2920 { 2921 io_sq_thread_finish(ctx); 2922 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2923 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2924 return; 2925 2926 mutex_lock(&ctx->uring_lock); 2927 if (ctx->buf_data) 2928 __io_sqe_buffers_unregister(ctx); 2929 if (ctx->file_data) 2930 __io_sqe_files_unregister(ctx); 2931 io_cqring_overflow_kill(ctx); 2932 io_eventfd_unregister(ctx); 2933 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2934 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2935 io_destroy_buffers(ctx); 2936 mutex_unlock(&ctx->uring_lock); 2937 if (ctx->sq_creds) 2938 put_cred(ctx->sq_creds); 2939 if (ctx->submitter_task) 2940 put_task_struct(ctx->submitter_task); 2941 2942 /* there are no registered resources left, nobody uses it */ 2943 if (ctx->rsrc_node) 2944 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2945 2946 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2947 2948 #if defined(CONFIG_UNIX) 2949 if (ctx->ring_sock) { 2950 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2951 sock_release(ctx->ring_sock); 2952 } 2953 #endif 2954 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2955 2956 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); 2957 if (ctx->mm_account) { 2958 mmdrop(ctx->mm_account); 2959 ctx->mm_account = NULL; 2960 } 2961 io_rings_free(ctx); 2962 io_kbuf_mmap_list_free(ctx); 2963 2964 percpu_ref_exit(&ctx->refs); 2965 free_uid(ctx->user); 2966 io_req_caches_free(ctx); 2967 if (ctx->hash_map) 2968 io_wq_put_hash(ctx->hash_map); 2969 kfree(ctx->cancel_table.hbs); 2970 kfree(ctx->cancel_table_locked.hbs); 2971 kfree(ctx->io_bl); 2972 xa_destroy(&ctx->io_bl_xa); 2973 kfree(ctx); 2974 } 2975 2976 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2977 { 2978 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2979 poll_wq_task_work); 2980 2981 mutex_lock(&ctx->uring_lock); 2982 ctx->poll_activated = true; 2983 mutex_unlock(&ctx->uring_lock); 2984 2985 /* 2986 * Wake ups for some events between start of polling and activation 2987 * might've been lost due to loose synchronisation. 2988 */ 2989 wake_up_all(&ctx->poll_wq); 2990 percpu_ref_put(&ctx->refs); 2991 } 2992 2993 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2994 { 2995 spin_lock(&ctx->completion_lock); 2996 /* already activated or in progress */ 2997 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2998 goto out; 2999 if (WARN_ON_ONCE(!ctx->task_complete)) 3000 goto out; 3001 if (!ctx->submitter_task) 3002 goto out; 3003 /* 3004 * with ->submitter_task only the submitter task completes requests, we 3005 * only need to sync with it, which is done by injecting a tw 3006 */ 3007 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 3008 percpu_ref_get(&ctx->refs); 3009 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 3010 percpu_ref_put(&ctx->refs); 3011 out: 3012 spin_unlock(&ctx->completion_lock); 3013 } 3014 3015 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 3016 { 3017 struct io_ring_ctx *ctx = file->private_data; 3018 __poll_t mask = 0; 3019 3020 if (unlikely(!ctx->poll_activated)) 3021 io_activate_pollwq(ctx); 3022 3023 poll_wait(file, &ctx->poll_wq, wait); 3024 /* 3025 * synchronizes with barrier from wq_has_sleeper call in 3026 * io_commit_cqring 3027 */ 3028 smp_rmb(); 3029 if (!io_sqring_full(ctx)) 3030 mask |= EPOLLOUT | EPOLLWRNORM; 3031 3032 /* 3033 * Don't flush cqring overflow list here, just do a simple check. 3034 * Otherwise there could possible be ABBA deadlock: 3035 * CPU0 CPU1 3036 * ---- ---- 3037 * lock(&ctx->uring_lock); 3038 * lock(&ep->mtx); 3039 * lock(&ctx->uring_lock); 3040 * lock(&ep->mtx); 3041 * 3042 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 3043 * pushes them to do the flush. 3044 */ 3045 3046 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 3047 mask |= EPOLLIN | EPOLLRDNORM; 3048 3049 return mask; 3050 } 3051 3052 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 3053 { 3054 const struct cred *creds; 3055 3056 creds = xa_erase(&ctx->personalities, id); 3057 if (creds) { 3058 put_cred(creds); 3059 return 0; 3060 } 3061 3062 return -EINVAL; 3063 } 3064 3065 struct io_tctx_exit { 3066 struct callback_head task_work; 3067 struct completion completion; 3068 struct io_ring_ctx *ctx; 3069 }; 3070 3071 static __cold void io_tctx_exit_cb(struct callback_head *cb) 3072 { 3073 struct io_uring_task *tctx = current->io_uring; 3074 struct io_tctx_exit *work; 3075 3076 work = container_of(cb, struct io_tctx_exit, task_work); 3077 /* 3078 * When @in_cancel, we're in cancellation and it's racy to remove the 3079 * node. It'll be removed by the end of cancellation, just ignore it. 3080 * tctx can be NULL if the queueing of this task_work raced with 3081 * work cancelation off the exec path. 3082 */ 3083 if (tctx && !atomic_read(&tctx->in_cancel)) 3084 io_uring_del_tctx_node((unsigned long)work->ctx); 3085 complete(&work->completion); 3086 } 3087 3088 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 3089 { 3090 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3091 3092 return req->ctx == data; 3093 } 3094 3095 static __cold void io_ring_exit_work(struct work_struct *work) 3096 { 3097 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 3098 unsigned long timeout = jiffies + HZ * 60 * 5; 3099 unsigned long interval = HZ / 20; 3100 struct io_tctx_exit exit; 3101 struct io_tctx_node *node; 3102 int ret; 3103 3104 /* 3105 * If we're doing polled IO and end up having requests being 3106 * submitted async (out-of-line), then completions can come in while 3107 * we're waiting for refs to drop. We need to reap these manually, 3108 * as nobody else will be looking for them. 3109 */ 3110 do { 3111 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 3112 mutex_lock(&ctx->uring_lock); 3113 io_cqring_overflow_kill(ctx); 3114 mutex_unlock(&ctx->uring_lock); 3115 } 3116 3117 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3118 io_move_task_work_from_local(ctx); 3119 3120 while (io_uring_try_cancel_requests(ctx, NULL, true)) 3121 cond_resched(); 3122 3123 if (ctx->sq_data) { 3124 struct io_sq_data *sqd = ctx->sq_data; 3125 struct task_struct *tsk; 3126 3127 io_sq_thread_park(sqd); 3128 tsk = sqd->thread; 3129 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 3130 io_wq_cancel_cb(tsk->io_uring->io_wq, 3131 io_cancel_ctx_cb, ctx, true); 3132 io_sq_thread_unpark(sqd); 3133 } 3134 3135 io_req_caches_free(ctx); 3136 3137 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3138 /* there is little hope left, don't run it too often */ 3139 interval = HZ * 60; 3140 } 3141 /* 3142 * This is really an uninterruptible wait, as it has to be 3143 * complete. But it's also run from a kworker, which doesn't 3144 * take signals, so it's fine to make it interruptible. This 3145 * avoids scenarios where we knowingly can wait much longer 3146 * on completions, for example if someone does a SIGSTOP on 3147 * a task that needs to finish task_work to make this loop 3148 * complete. That's a synthetic situation that should not 3149 * cause a stuck task backtrace, and hence a potential panic 3150 * on stuck tasks if that is enabled. 3151 */ 3152 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 3153 3154 init_completion(&exit.completion); 3155 init_task_work(&exit.task_work, io_tctx_exit_cb); 3156 exit.ctx = ctx; 3157 3158 mutex_lock(&ctx->uring_lock); 3159 while (!list_empty(&ctx->tctx_list)) { 3160 WARN_ON_ONCE(time_after(jiffies, timeout)); 3161 3162 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3163 ctx_node); 3164 /* don't spin on a single task if cancellation failed */ 3165 list_rotate_left(&ctx->tctx_list); 3166 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3167 if (WARN_ON_ONCE(ret)) 3168 continue; 3169 3170 mutex_unlock(&ctx->uring_lock); 3171 /* 3172 * See comment above for 3173 * wait_for_completion_interruptible_timeout() on why this 3174 * wait is marked as interruptible. 3175 */ 3176 wait_for_completion_interruptible(&exit.completion); 3177 mutex_lock(&ctx->uring_lock); 3178 } 3179 mutex_unlock(&ctx->uring_lock); 3180 spin_lock(&ctx->completion_lock); 3181 spin_unlock(&ctx->completion_lock); 3182 3183 /* pairs with RCU read section in io_req_local_work_add() */ 3184 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3185 synchronize_rcu(); 3186 3187 io_ring_ctx_free(ctx); 3188 } 3189 3190 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3191 { 3192 unsigned long index; 3193 struct creds *creds; 3194 3195 mutex_lock(&ctx->uring_lock); 3196 percpu_ref_kill(&ctx->refs); 3197 xa_for_each(&ctx->personalities, index, creds) 3198 io_unregister_personality(ctx, index); 3199 if (ctx->rings) 3200 io_poll_remove_all(ctx, NULL, true); 3201 mutex_unlock(&ctx->uring_lock); 3202 3203 /* 3204 * If we failed setting up the ctx, we might not have any rings 3205 * and therefore did not submit any requests 3206 */ 3207 if (ctx->rings) 3208 io_kill_timeouts(ctx, NULL, true); 3209 3210 flush_delayed_work(&ctx->fallback_work); 3211 3212 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3213 /* 3214 * Use system_unbound_wq to avoid spawning tons of event kworkers 3215 * if we're exiting a ton of rings at the same time. It just adds 3216 * noise and overhead, there's no discernable change in runtime 3217 * over using system_wq. 3218 */ 3219 queue_work(system_unbound_wq, &ctx->exit_work); 3220 } 3221 3222 static int io_uring_release(struct inode *inode, struct file *file) 3223 { 3224 struct io_ring_ctx *ctx = file->private_data; 3225 3226 file->private_data = NULL; 3227 io_ring_ctx_wait_and_kill(ctx); 3228 return 0; 3229 } 3230 3231 struct io_task_cancel { 3232 struct task_struct *task; 3233 bool all; 3234 }; 3235 3236 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3237 { 3238 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3239 struct io_task_cancel *cancel = data; 3240 3241 return io_match_task_safe(req, cancel->task, cancel->all); 3242 } 3243 3244 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3245 struct task_struct *task, 3246 bool cancel_all) 3247 { 3248 struct io_defer_entry *de; 3249 LIST_HEAD(list); 3250 3251 spin_lock(&ctx->completion_lock); 3252 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3253 if (io_match_task_safe(de->req, task, cancel_all)) { 3254 list_cut_position(&list, &ctx->defer_list, &de->list); 3255 break; 3256 } 3257 } 3258 spin_unlock(&ctx->completion_lock); 3259 if (list_empty(&list)) 3260 return false; 3261 3262 while (!list_empty(&list)) { 3263 de = list_first_entry(&list, struct io_defer_entry, list); 3264 list_del_init(&de->list); 3265 io_req_task_queue_fail(de->req, -ECANCELED); 3266 kfree(de); 3267 } 3268 return true; 3269 } 3270 3271 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3272 { 3273 struct io_tctx_node *node; 3274 enum io_wq_cancel cret; 3275 bool ret = false; 3276 3277 mutex_lock(&ctx->uring_lock); 3278 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3279 struct io_uring_task *tctx = node->task->io_uring; 3280 3281 /* 3282 * io_wq will stay alive while we hold uring_lock, because it's 3283 * killed after ctx nodes, which requires to take the lock. 3284 */ 3285 if (!tctx || !tctx->io_wq) 3286 continue; 3287 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3288 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3289 } 3290 mutex_unlock(&ctx->uring_lock); 3291 3292 return ret; 3293 } 3294 3295 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3296 struct task_struct *task, 3297 bool cancel_all) 3298 { 3299 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3300 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3301 enum io_wq_cancel cret; 3302 bool ret = false; 3303 3304 /* set it so io_req_local_work_add() would wake us up */ 3305 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3306 atomic_set(&ctx->cq_wait_nr, 1); 3307 smp_mb(); 3308 } 3309 3310 /* failed during ring init, it couldn't have issued any requests */ 3311 if (!ctx->rings) 3312 return false; 3313 3314 if (!task) { 3315 ret |= io_uring_try_cancel_iowq(ctx); 3316 } else if (tctx && tctx->io_wq) { 3317 /* 3318 * Cancels requests of all rings, not only @ctx, but 3319 * it's fine as the task is in exit/exec. 3320 */ 3321 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3322 &cancel, true); 3323 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3324 } 3325 3326 /* SQPOLL thread does its own polling */ 3327 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3328 (ctx->sq_data && ctx->sq_data->thread == current)) { 3329 while (!wq_list_empty(&ctx->iopoll_list)) { 3330 io_iopoll_try_reap_events(ctx); 3331 ret = true; 3332 cond_resched(); 3333 } 3334 } 3335 3336 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3337 io_allowed_defer_tw_run(ctx)) 3338 ret |= io_run_local_work(ctx) > 0; 3339 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3340 mutex_lock(&ctx->uring_lock); 3341 ret |= io_poll_remove_all(ctx, task, cancel_all); 3342 mutex_unlock(&ctx->uring_lock); 3343 ret |= io_kill_timeouts(ctx, task, cancel_all); 3344 if (task) 3345 ret |= io_run_task_work() > 0; 3346 return ret; 3347 } 3348 3349 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3350 { 3351 if (tracked) 3352 return atomic_read(&tctx->inflight_tracked); 3353 return percpu_counter_sum(&tctx->inflight); 3354 } 3355 3356 /* 3357 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3358 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3359 */ 3360 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3361 { 3362 struct io_uring_task *tctx = current->io_uring; 3363 struct io_ring_ctx *ctx; 3364 struct io_tctx_node *node; 3365 unsigned long index; 3366 s64 inflight; 3367 DEFINE_WAIT(wait); 3368 3369 WARN_ON_ONCE(sqd && sqd->thread != current); 3370 3371 if (!current->io_uring) 3372 return; 3373 if (tctx->io_wq) 3374 io_wq_exit_start(tctx->io_wq); 3375 3376 atomic_inc(&tctx->in_cancel); 3377 do { 3378 bool loop = false; 3379 3380 io_uring_drop_tctx_refs(current); 3381 /* read completions before cancelations */ 3382 inflight = tctx_inflight(tctx, !cancel_all); 3383 if (!inflight) 3384 break; 3385 3386 if (!sqd) { 3387 xa_for_each(&tctx->xa, index, node) { 3388 /* sqpoll task will cancel all its requests */ 3389 if (node->ctx->sq_data) 3390 continue; 3391 loop |= io_uring_try_cancel_requests(node->ctx, 3392 current, cancel_all); 3393 } 3394 } else { 3395 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3396 loop |= io_uring_try_cancel_requests(ctx, 3397 current, 3398 cancel_all); 3399 } 3400 3401 if (loop) { 3402 cond_resched(); 3403 continue; 3404 } 3405 3406 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3407 io_run_task_work(); 3408 io_uring_drop_tctx_refs(current); 3409 xa_for_each(&tctx->xa, index, node) { 3410 if (!llist_empty(&node->ctx->work_llist)) { 3411 WARN_ON_ONCE(node->ctx->submitter_task && 3412 node->ctx->submitter_task != current); 3413 goto end_wait; 3414 } 3415 } 3416 /* 3417 * If we've seen completions, retry without waiting. This 3418 * avoids a race where a completion comes in before we did 3419 * prepare_to_wait(). 3420 */ 3421 if (inflight == tctx_inflight(tctx, !cancel_all)) 3422 schedule(); 3423 end_wait: 3424 finish_wait(&tctx->wait, &wait); 3425 } while (1); 3426 3427 io_uring_clean_tctx(tctx); 3428 if (cancel_all) { 3429 /* 3430 * We shouldn't run task_works after cancel, so just leave 3431 * ->in_cancel set for normal exit. 3432 */ 3433 atomic_dec(&tctx->in_cancel); 3434 /* for exec all current's requests should be gone, kill tctx */ 3435 __io_uring_free(current); 3436 } 3437 } 3438 3439 void __io_uring_cancel(bool cancel_all) 3440 { 3441 io_uring_cancel_generic(cancel_all, NULL); 3442 } 3443 3444 static void *io_uring_validate_mmap_request(struct file *file, 3445 loff_t pgoff, size_t sz) 3446 { 3447 struct io_ring_ctx *ctx = file->private_data; 3448 loff_t offset = pgoff << PAGE_SHIFT; 3449 struct page *page; 3450 void *ptr; 3451 3452 switch (offset & IORING_OFF_MMAP_MASK) { 3453 case IORING_OFF_SQ_RING: 3454 case IORING_OFF_CQ_RING: 3455 /* Don't allow mmap if the ring was setup without it */ 3456 if (ctx->flags & IORING_SETUP_NO_MMAP) 3457 return ERR_PTR(-EINVAL); 3458 ptr = ctx->rings; 3459 break; 3460 case IORING_OFF_SQES: 3461 /* Don't allow mmap if the ring was setup without it */ 3462 if (ctx->flags & IORING_SETUP_NO_MMAP) 3463 return ERR_PTR(-EINVAL); 3464 ptr = ctx->sq_sqes; 3465 break; 3466 case IORING_OFF_PBUF_RING: { 3467 unsigned int bgid; 3468 3469 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; 3470 rcu_read_lock(); 3471 ptr = io_pbuf_get_address(ctx, bgid); 3472 rcu_read_unlock(); 3473 if (!ptr) 3474 return ERR_PTR(-EINVAL); 3475 break; 3476 } 3477 default: 3478 return ERR_PTR(-EINVAL); 3479 } 3480 3481 page = virt_to_head_page(ptr); 3482 if (sz > page_size(page)) 3483 return ERR_PTR(-EINVAL); 3484 3485 return ptr; 3486 } 3487 3488 #ifdef CONFIG_MMU 3489 3490 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3491 { 3492 size_t sz = vma->vm_end - vma->vm_start; 3493 unsigned long pfn; 3494 void *ptr; 3495 3496 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3497 if (IS_ERR(ptr)) 3498 return PTR_ERR(ptr); 3499 3500 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3501 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3502 } 3503 3504 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, 3505 unsigned long addr, unsigned long len, 3506 unsigned long pgoff, unsigned long flags) 3507 { 3508 void *ptr; 3509 3510 /* 3511 * Do not allow to map to user-provided address to avoid breaking the 3512 * aliasing rules. Userspace is not able to guess the offset address of 3513 * kernel kmalloc()ed memory area. 3514 */ 3515 if (addr) 3516 return -EINVAL; 3517 3518 ptr = io_uring_validate_mmap_request(filp, pgoff, len); 3519 if (IS_ERR(ptr)) 3520 return -ENOMEM; 3521 3522 /* 3523 * Some architectures have strong cache aliasing requirements. 3524 * For such architectures we need a coherent mapping which aliases 3525 * kernel memory *and* userspace memory. To achieve that: 3526 * - use a NULL file pointer to reference physical memory, and 3527 * - use the kernel virtual address of the shared io_uring context 3528 * (instead of the userspace-provided address, which has to be 0UL 3529 * anyway). 3530 * - use the same pgoff which the get_unmapped_area() uses to 3531 * calculate the page colouring. 3532 * For architectures without such aliasing requirements, the 3533 * architecture will return any suitable mapping because addr is 0. 3534 */ 3535 filp = NULL; 3536 flags |= MAP_SHARED; 3537 pgoff = 0; /* has been translated to ptr above */ 3538 #ifdef SHM_COLOUR 3539 addr = (uintptr_t) ptr; 3540 pgoff = addr >> PAGE_SHIFT; 3541 #else 3542 addr = 0UL; 3543 #endif 3544 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 3545 } 3546 3547 #else /* !CONFIG_MMU */ 3548 3549 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3550 { 3551 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3552 } 3553 3554 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3555 { 3556 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3557 } 3558 3559 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3560 unsigned long addr, unsigned long len, 3561 unsigned long pgoff, unsigned long flags) 3562 { 3563 void *ptr; 3564 3565 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3566 if (IS_ERR(ptr)) 3567 return PTR_ERR(ptr); 3568 3569 return (unsigned long) ptr; 3570 } 3571 3572 #endif /* !CONFIG_MMU */ 3573 3574 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3575 { 3576 if (flags & IORING_ENTER_EXT_ARG) { 3577 struct io_uring_getevents_arg arg; 3578 3579 if (argsz != sizeof(arg)) 3580 return -EINVAL; 3581 if (copy_from_user(&arg, argp, sizeof(arg))) 3582 return -EFAULT; 3583 } 3584 return 0; 3585 } 3586 3587 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3588 struct __kernel_timespec __user **ts, 3589 const sigset_t __user **sig) 3590 { 3591 struct io_uring_getevents_arg arg; 3592 3593 /* 3594 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3595 * is just a pointer to the sigset_t. 3596 */ 3597 if (!(flags & IORING_ENTER_EXT_ARG)) { 3598 *sig = (const sigset_t __user *) argp; 3599 *ts = NULL; 3600 return 0; 3601 } 3602 3603 /* 3604 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3605 * timespec and sigset_t pointers if good. 3606 */ 3607 if (*argsz != sizeof(arg)) 3608 return -EINVAL; 3609 if (copy_from_user(&arg, argp, sizeof(arg))) 3610 return -EFAULT; 3611 if (arg.pad) 3612 return -EINVAL; 3613 *sig = u64_to_user_ptr(arg.sigmask); 3614 *argsz = arg.sigmask_sz; 3615 *ts = u64_to_user_ptr(arg.ts); 3616 return 0; 3617 } 3618 3619 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3620 u32, min_complete, u32, flags, const void __user *, argp, 3621 size_t, argsz) 3622 { 3623 struct io_ring_ctx *ctx; 3624 struct file *file; 3625 long ret; 3626 3627 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3628 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3629 IORING_ENTER_REGISTERED_RING))) 3630 return -EINVAL; 3631 3632 /* 3633 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3634 * need only dereference our task private array to find it. 3635 */ 3636 if (flags & IORING_ENTER_REGISTERED_RING) { 3637 struct io_uring_task *tctx = current->io_uring; 3638 3639 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3640 return -EINVAL; 3641 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3642 file = tctx->registered_rings[fd]; 3643 if (unlikely(!file)) 3644 return -EBADF; 3645 } else { 3646 file = fget(fd); 3647 if (unlikely(!file)) 3648 return -EBADF; 3649 ret = -EOPNOTSUPP; 3650 if (unlikely(!io_is_uring_fops(file))) 3651 goto out; 3652 } 3653 3654 ctx = file->private_data; 3655 ret = -EBADFD; 3656 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3657 goto out; 3658 3659 /* 3660 * For SQ polling, the thread will do all submissions and completions. 3661 * Just return the requested submit count, and wake the thread if 3662 * we were asked to. 3663 */ 3664 ret = 0; 3665 if (ctx->flags & IORING_SETUP_SQPOLL) { 3666 io_cqring_overflow_flush(ctx); 3667 3668 if (unlikely(ctx->sq_data->thread == NULL)) { 3669 ret = -EOWNERDEAD; 3670 goto out; 3671 } 3672 if (flags & IORING_ENTER_SQ_WAKEUP) 3673 wake_up(&ctx->sq_data->wait); 3674 if (flags & IORING_ENTER_SQ_WAIT) 3675 io_sqpoll_wait_sq(ctx); 3676 3677 ret = to_submit; 3678 } else if (to_submit) { 3679 ret = io_uring_add_tctx_node(ctx); 3680 if (unlikely(ret)) 3681 goto out; 3682 3683 mutex_lock(&ctx->uring_lock); 3684 ret = io_submit_sqes(ctx, to_submit); 3685 if (ret != to_submit) { 3686 mutex_unlock(&ctx->uring_lock); 3687 goto out; 3688 } 3689 if (flags & IORING_ENTER_GETEVENTS) { 3690 if (ctx->syscall_iopoll) 3691 goto iopoll_locked; 3692 /* 3693 * Ignore errors, we'll soon call io_cqring_wait() and 3694 * it should handle ownership problems if any. 3695 */ 3696 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3697 (void)io_run_local_work_locked(ctx); 3698 } 3699 mutex_unlock(&ctx->uring_lock); 3700 } 3701 3702 if (flags & IORING_ENTER_GETEVENTS) { 3703 int ret2; 3704 3705 if (ctx->syscall_iopoll) { 3706 /* 3707 * We disallow the app entering submit/complete with 3708 * polling, but we still need to lock the ring to 3709 * prevent racing with polled issue that got punted to 3710 * a workqueue. 3711 */ 3712 mutex_lock(&ctx->uring_lock); 3713 iopoll_locked: 3714 ret2 = io_validate_ext_arg(flags, argp, argsz); 3715 if (likely(!ret2)) { 3716 min_complete = min(min_complete, 3717 ctx->cq_entries); 3718 ret2 = io_iopoll_check(ctx, min_complete); 3719 } 3720 mutex_unlock(&ctx->uring_lock); 3721 } else { 3722 const sigset_t __user *sig; 3723 struct __kernel_timespec __user *ts; 3724 3725 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3726 if (likely(!ret2)) { 3727 min_complete = min(min_complete, 3728 ctx->cq_entries); 3729 ret2 = io_cqring_wait(ctx, min_complete, sig, 3730 argsz, ts); 3731 } 3732 } 3733 3734 if (!ret) { 3735 ret = ret2; 3736 3737 /* 3738 * EBADR indicates that one or more CQE were dropped. 3739 * Once the user has been informed we can clear the bit 3740 * as they are obviously ok with those drops. 3741 */ 3742 if (unlikely(ret2 == -EBADR)) 3743 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3744 &ctx->check_cq); 3745 } 3746 } 3747 out: 3748 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3749 fput(file); 3750 return ret; 3751 } 3752 3753 static const struct file_operations io_uring_fops = { 3754 .release = io_uring_release, 3755 .mmap = io_uring_mmap, 3756 #ifndef CONFIG_MMU 3757 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3758 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3759 #else 3760 .get_unmapped_area = io_uring_mmu_get_unmapped_area, 3761 #endif 3762 .poll = io_uring_poll, 3763 #ifdef CONFIG_PROC_FS 3764 .show_fdinfo = io_uring_show_fdinfo, 3765 #endif 3766 }; 3767 3768 bool io_is_uring_fops(struct file *file) 3769 { 3770 return file->f_op == &io_uring_fops; 3771 } 3772 3773 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3774 struct io_uring_params *p) 3775 { 3776 struct io_rings *rings; 3777 size_t size, sq_array_offset; 3778 void *ptr; 3779 3780 /* make sure these are sane, as we already accounted them */ 3781 ctx->sq_entries = p->sq_entries; 3782 ctx->cq_entries = p->cq_entries; 3783 3784 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3785 if (size == SIZE_MAX) 3786 return -EOVERFLOW; 3787 3788 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3789 rings = io_mem_alloc(size); 3790 else 3791 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3792 3793 if (IS_ERR(rings)) 3794 return PTR_ERR(rings); 3795 3796 ctx->rings = rings; 3797 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3798 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3799 rings->sq_ring_mask = p->sq_entries - 1; 3800 rings->cq_ring_mask = p->cq_entries - 1; 3801 rings->sq_ring_entries = p->sq_entries; 3802 rings->cq_ring_entries = p->cq_entries; 3803 3804 if (p->flags & IORING_SETUP_SQE128) 3805 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3806 else 3807 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3808 if (size == SIZE_MAX) { 3809 io_rings_free(ctx); 3810 return -EOVERFLOW; 3811 } 3812 3813 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3814 ptr = io_mem_alloc(size); 3815 else 3816 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3817 3818 if (IS_ERR(ptr)) { 3819 io_rings_free(ctx); 3820 return PTR_ERR(ptr); 3821 } 3822 3823 ctx->sq_sqes = ptr; 3824 return 0; 3825 } 3826 3827 static int io_uring_install_fd(struct file *file) 3828 { 3829 int fd; 3830 3831 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3832 if (fd < 0) 3833 return fd; 3834 fd_install(fd, file); 3835 return fd; 3836 } 3837 3838 /* 3839 * Allocate an anonymous fd, this is what constitutes the application 3840 * visible backing of an io_uring instance. The application mmaps this 3841 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3842 * we have to tie this fd to a socket for file garbage collection purposes. 3843 */ 3844 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3845 { 3846 struct file *file; 3847 #if defined(CONFIG_UNIX) 3848 int ret; 3849 3850 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3851 &ctx->ring_sock); 3852 if (ret) 3853 return ERR_PTR(ret); 3854 #endif 3855 3856 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3857 O_RDWR | O_CLOEXEC, NULL); 3858 #if defined(CONFIG_UNIX) 3859 if (IS_ERR(file)) { 3860 sock_release(ctx->ring_sock); 3861 ctx->ring_sock = NULL; 3862 } else { 3863 ctx->ring_sock->file = file; 3864 } 3865 #endif 3866 return file; 3867 } 3868 3869 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3870 struct io_uring_params __user *params) 3871 { 3872 struct io_ring_ctx *ctx; 3873 struct io_uring_task *tctx; 3874 struct file *file; 3875 int ret; 3876 3877 if (!entries) 3878 return -EINVAL; 3879 if (entries > IORING_MAX_ENTRIES) { 3880 if (!(p->flags & IORING_SETUP_CLAMP)) 3881 return -EINVAL; 3882 entries = IORING_MAX_ENTRIES; 3883 } 3884 3885 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3886 && !(p->flags & IORING_SETUP_NO_MMAP)) 3887 return -EINVAL; 3888 3889 /* 3890 * Use twice as many entries for the CQ ring. It's possible for the 3891 * application to drive a higher depth than the size of the SQ ring, 3892 * since the sqes are only used at submission time. This allows for 3893 * some flexibility in overcommitting a bit. If the application has 3894 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3895 * of CQ ring entries manually. 3896 */ 3897 p->sq_entries = roundup_pow_of_two(entries); 3898 if (p->flags & IORING_SETUP_CQSIZE) { 3899 /* 3900 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3901 * to a power-of-two, if it isn't already. We do NOT impose 3902 * any cq vs sq ring sizing. 3903 */ 3904 if (!p->cq_entries) 3905 return -EINVAL; 3906 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3907 if (!(p->flags & IORING_SETUP_CLAMP)) 3908 return -EINVAL; 3909 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3910 } 3911 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3912 if (p->cq_entries < p->sq_entries) 3913 return -EINVAL; 3914 } else { 3915 p->cq_entries = 2 * p->sq_entries; 3916 } 3917 3918 ctx = io_ring_ctx_alloc(p); 3919 if (!ctx) 3920 return -ENOMEM; 3921 3922 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3923 !(ctx->flags & IORING_SETUP_IOPOLL) && 3924 !(ctx->flags & IORING_SETUP_SQPOLL)) 3925 ctx->task_complete = true; 3926 3927 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3928 ctx->lockless_cq = true; 3929 3930 /* 3931 * lazy poll_wq activation relies on ->task_complete for synchronisation 3932 * purposes, see io_activate_pollwq() 3933 */ 3934 if (!ctx->task_complete) 3935 ctx->poll_activated = true; 3936 3937 /* 3938 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3939 * space applications don't need to do io completion events 3940 * polling again, they can rely on io_sq_thread to do polling 3941 * work, which can reduce cpu usage and uring_lock contention. 3942 */ 3943 if (ctx->flags & IORING_SETUP_IOPOLL && 3944 !(ctx->flags & IORING_SETUP_SQPOLL)) 3945 ctx->syscall_iopoll = 1; 3946 3947 ctx->compat = in_compat_syscall(); 3948 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3949 ctx->user = get_uid(current_user()); 3950 3951 /* 3952 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3953 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3954 */ 3955 ret = -EINVAL; 3956 if (ctx->flags & IORING_SETUP_SQPOLL) { 3957 /* IPI related flags don't make sense with SQPOLL */ 3958 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3959 IORING_SETUP_TASKRUN_FLAG | 3960 IORING_SETUP_DEFER_TASKRUN)) 3961 goto err; 3962 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3963 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3964 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3965 } else { 3966 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3967 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3968 goto err; 3969 ctx->notify_method = TWA_SIGNAL; 3970 } 3971 3972 /* 3973 * For DEFER_TASKRUN we require the completion task to be the same as the 3974 * submission task. This implies that there is only one submitter, so enforce 3975 * that. 3976 */ 3977 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3978 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3979 goto err; 3980 } 3981 3982 /* 3983 * This is just grabbed for accounting purposes. When a process exits, 3984 * the mm is exited and dropped before the files, hence we need to hang 3985 * on to this mm purely for the purposes of being able to unaccount 3986 * memory (locked/pinned vm). It's not used for anything else. 3987 */ 3988 mmgrab(current->mm); 3989 ctx->mm_account = current->mm; 3990 3991 ret = io_allocate_scq_urings(ctx, p); 3992 if (ret) 3993 goto err; 3994 3995 ret = io_sq_offload_create(ctx, p); 3996 if (ret) 3997 goto err; 3998 3999 ret = io_rsrc_init(ctx); 4000 if (ret) 4001 goto err; 4002 4003 p->sq_off.head = offsetof(struct io_rings, sq.head); 4004 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 4005 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 4006 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 4007 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 4008 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 4009 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 4010 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 4011 p->sq_off.resv1 = 0; 4012 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 4013 p->sq_off.user_addr = 0; 4014 4015 p->cq_off.head = offsetof(struct io_rings, cq.head); 4016 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 4017 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 4018 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 4019 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 4020 p->cq_off.cqes = offsetof(struct io_rings, cqes); 4021 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 4022 p->cq_off.resv1 = 0; 4023 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 4024 p->cq_off.user_addr = 0; 4025 4026 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 4027 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 4028 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 4029 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 4030 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 4031 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 4032 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 4033 4034 if (copy_to_user(params, p, sizeof(*p))) { 4035 ret = -EFAULT; 4036 goto err; 4037 } 4038 4039 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 4040 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 4041 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4042 4043 file = io_uring_get_file(ctx); 4044 if (IS_ERR(file)) { 4045 ret = PTR_ERR(file); 4046 goto err; 4047 } 4048 4049 ret = __io_uring_add_tctx_node(ctx); 4050 if (ret) 4051 goto err_fput; 4052 tctx = current->io_uring; 4053 4054 /* 4055 * Install ring fd as the very last thing, so we don't risk someone 4056 * having closed it before we finish setup 4057 */ 4058 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 4059 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 4060 else 4061 ret = io_uring_install_fd(file); 4062 if (ret < 0) 4063 goto err_fput; 4064 4065 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 4066 return ret; 4067 err: 4068 io_ring_ctx_wait_and_kill(ctx); 4069 return ret; 4070 err_fput: 4071 fput(file); 4072 return ret; 4073 } 4074 4075 /* 4076 * Sets up an aio uring context, and returns the fd. Applications asks for a 4077 * ring size, we return the actual sq/cq ring sizes (among other things) in the 4078 * params structure passed in. 4079 */ 4080 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 4081 { 4082 struct io_uring_params p; 4083 int i; 4084 4085 if (copy_from_user(&p, params, sizeof(p))) 4086 return -EFAULT; 4087 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 4088 if (p.resv[i]) 4089 return -EINVAL; 4090 } 4091 4092 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 4093 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 4094 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 4095 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 4096 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 4097 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 4098 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 4099 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 4100 IORING_SETUP_NO_SQARRAY)) 4101 return -EINVAL; 4102 4103 return io_uring_create(entries, &p, params); 4104 } 4105 4106 static inline bool io_uring_allowed(void) 4107 { 4108 int disabled = READ_ONCE(sysctl_io_uring_disabled); 4109 kgid_t io_uring_group; 4110 4111 if (disabled == 2) 4112 return false; 4113 4114 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 4115 return true; 4116 4117 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 4118 if (!gid_valid(io_uring_group)) 4119 return false; 4120 4121 return in_group_p(io_uring_group); 4122 } 4123 4124 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 4125 struct io_uring_params __user *, params) 4126 { 4127 if (!io_uring_allowed()) 4128 return -EPERM; 4129 4130 return io_uring_setup(entries, params); 4131 } 4132 4133 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 4134 unsigned nr_args) 4135 { 4136 struct io_uring_probe *p; 4137 size_t size; 4138 int i, ret; 4139 4140 size = struct_size(p, ops, nr_args); 4141 if (size == SIZE_MAX) 4142 return -EOVERFLOW; 4143 p = kzalloc(size, GFP_KERNEL); 4144 if (!p) 4145 return -ENOMEM; 4146 4147 ret = -EFAULT; 4148 if (copy_from_user(p, arg, size)) 4149 goto out; 4150 ret = -EINVAL; 4151 if (memchr_inv(p, 0, size)) 4152 goto out; 4153 4154 p->last_op = IORING_OP_LAST - 1; 4155 if (nr_args > IORING_OP_LAST) 4156 nr_args = IORING_OP_LAST; 4157 4158 for (i = 0; i < nr_args; i++) { 4159 p->ops[i].op = i; 4160 if (!io_issue_defs[i].not_supported) 4161 p->ops[i].flags = IO_URING_OP_SUPPORTED; 4162 } 4163 p->ops_len = i; 4164 4165 ret = 0; 4166 if (copy_to_user(arg, p, size)) 4167 ret = -EFAULT; 4168 out: 4169 kfree(p); 4170 return ret; 4171 } 4172 4173 static int io_register_personality(struct io_ring_ctx *ctx) 4174 { 4175 const struct cred *creds; 4176 u32 id; 4177 int ret; 4178 4179 creds = get_current_cred(); 4180 4181 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 4182 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 4183 if (ret < 0) { 4184 put_cred(creds); 4185 return ret; 4186 } 4187 return id; 4188 } 4189 4190 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 4191 void __user *arg, unsigned int nr_args) 4192 { 4193 struct io_uring_restriction *res; 4194 size_t size; 4195 int i, ret; 4196 4197 /* Restrictions allowed only if rings started disabled */ 4198 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4199 return -EBADFD; 4200 4201 /* We allow only a single restrictions registration */ 4202 if (ctx->restrictions.registered) 4203 return -EBUSY; 4204 4205 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 4206 return -EINVAL; 4207 4208 size = array_size(nr_args, sizeof(*res)); 4209 if (size == SIZE_MAX) 4210 return -EOVERFLOW; 4211 4212 res = memdup_user(arg, size); 4213 if (IS_ERR(res)) 4214 return PTR_ERR(res); 4215 4216 ret = 0; 4217 4218 for (i = 0; i < nr_args; i++) { 4219 switch (res[i].opcode) { 4220 case IORING_RESTRICTION_REGISTER_OP: 4221 if (res[i].register_op >= IORING_REGISTER_LAST) { 4222 ret = -EINVAL; 4223 goto out; 4224 } 4225 4226 __set_bit(res[i].register_op, 4227 ctx->restrictions.register_op); 4228 break; 4229 case IORING_RESTRICTION_SQE_OP: 4230 if (res[i].sqe_op >= IORING_OP_LAST) { 4231 ret = -EINVAL; 4232 goto out; 4233 } 4234 4235 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 4236 break; 4237 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 4238 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 4239 break; 4240 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 4241 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 4242 break; 4243 default: 4244 ret = -EINVAL; 4245 goto out; 4246 } 4247 } 4248 4249 out: 4250 /* Reset all restrictions if an error happened */ 4251 if (ret != 0) 4252 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 4253 else 4254 ctx->restrictions.registered = true; 4255 4256 kfree(res); 4257 return ret; 4258 } 4259 4260 static int io_register_enable_rings(struct io_ring_ctx *ctx) 4261 { 4262 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4263 return -EBADFD; 4264 4265 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) { 4266 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4267 /* 4268 * Lazy activation attempts would fail if it was polled before 4269 * submitter_task is set. 4270 */ 4271 if (wq_has_sleeper(&ctx->poll_wq)) 4272 io_activate_pollwq(ctx); 4273 } 4274 4275 if (ctx->restrictions.registered) 4276 ctx->restricted = 1; 4277 4278 ctx->flags &= ~IORING_SETUP_R_DISABLED; 4279 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 4280 wake_up(&ctx->sq_data->wait); 4281 return 0; 4282 } 4283 4284 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx, 4285 cpumask_var_t new_mask) 4286 { 4287 int ret; 4288 4289 if (!(ctx->flags & IORING_SETUP_SQPOLL)) { 4290 ret = io_wq_cpu_affinity(current->io_uring, new_mask); 4291 } else { 4292 mutex_unlock(&ctx->uring_lock); 4293 ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask); 4294 mutex_lock(&ctx->uring_lock); 4295 } 4296 4297 return ret; 4298 } 4299 4300 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 4301 void __user *arg, unsigned len) 4302 { 4303 cpumask_var_t new_mask; 4304 int ret; 4305 4306 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4307 return -ENOMEM; 4308 4309 cpumask_clear(new_mask); 4310 if (len > cpumask_size()) 4311 len = cpumask_size(); 4312 4313 if (in_compat_syscall()) { 4314 ret = compat_get_bitmap(cpumask_bits(new_mask), 4315 (const compat_ulong_t __user *)arg, 4316 len * 8 /* CHAR_BIT */); 4317 } else { 4318 ret = copy_from_user(new_mask, arg, len); 4319 } 4320 4321 if (ret) { 4322 free_cpumask_var(new_mask); 4323 return -EFAULT; 4324 } 4325 4326 ret = __io_register_iowq_aff(ctx, new_mask); 4327 free_cpumask_var(new_mask); 4328 return ret; 4329 } 4330 4331 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 4332 { 4333 return __io_register_iowq_aff(ctx, NULL); 4334 } 4335 4336 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 4337 void __user *arg) 4338 __must_hold(&ctx->uring_lock) 4339 { 4340 struct io_tctx_node *node; 4341 struct io_uring_task *tctx = NULL; 4342 struct io_sq_data *sqd = NULL; 4343 __u32 new_count[2]; 4344 int i, ret; 4345 4346 if (copy_from_user(new_count, arg, sizeof(new_count))) 4347 return -EFAULT; 4348 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4349 if (new_count[i] > INT_MAX) 4350 return -EINVAL; 4351 4352 if (ctx->flags & IORING_SETUP_SQPOLL) { 4353 sqd = ctx->sq_data; 4354 if (sqd) { 4355 /* 4356 * Observe the correct sqd->lock -> ctx->uring_lock 4357 * ordering. Fine to drop uring_lock here, we hold 4358 * a ref to the ctx. 4359 */ 4360 refcount_inc(&sqd->refs); 4361 mutex_unlock(&ctx->uring_lock); 4362 mutex_lock(&sqd->lock); 4363 mutex_lock(&ctx->uring_lock); 4364 if (sqd->thread) 4365 tctx = sqd->thread->io_uring; 4366 } 4367 } else { 4368 tctx = current->io_uring; 4369 } 4370 4371 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 4372 4373 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4374 if (new_count[i]) 4375 ctx->iowq_limits[i] = new_count[i]; 4376 ctx->iowq_limits_set = true; 4377 4378 if (tctx && tctx->io_wq) { 4379 ret = io_wq_max_workers(tctx->io_wq, new_count); 4380 if (ret) 4381 goto err; 4382 } else { 4383 memset(new_count, 0, sizeof(new_count)); 4384 } 4385 4386 if (sqd) { 4387 mutex_unlock(&sqd->lock); 4388 io_put_sq_data(sqd); 4389 } 4390 4391 if (copy_to_user(arg, new_count, sizeof(new_count))) 4392 return -EFAULT; 4393 4394 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 4395 if (sqd) 4396 return 0; 4397 4398 /* now propagate the restriction to all registered users */ 4399 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 4400 struct io_uring_task *tctx = node->task->io_uring; 4401 4402 if (WARN_ON_ONCE(!tctx->io_wq)) 4403 continue; 4404 4405 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4406 new_count[i] = ctx->iowq_limits[i]; 4407 /* ignore errors, it always returns zero anyway */ 4408 (void)io_wq_max_workers(tctx->io_wq, new_count); 4409 } 4410 return 0; 4411 err: 4412 if (sqd) { 4413 mutex_unlock(&sqd->lock); 4414 io_put_sq_data(sqd); 4415 } 4416 return ret; 4417 } 4418 4419 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4420 void __user *arg, unsigned nr_args) 4421 __releases(ctx->uring_lock) 4422 __acquires(ctx->uring_lock) 4423 { 4424 int ret; 4425 4426 /* 4427 * We don't quiesce the refs for register anymore and so it can't be 4428 * dying as we're holding a file ref here. 4429 */ 4430 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4431 return -ENXIO; 4432 4433 if (ctx->submitter_task && ctx->submitter_task != current) 4434 return -EEXIST; 4435 4436 if (ctx->restricted) { 4437 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4438 if (!test_bit(opcode, ctx->restrictions.register_op)) 4439 return -EACCES; 4440 } 4441 4442 switch (opcode) { 4443 case IORING_REGISTER_BUFFERS: 4444 ret = -EFAULT; 4445 if (!arg) 4446 break; 4447 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4448 break; 4449 case IORING_UNREGISTER_BUFFERS: 4450 ret = -EINVAL; 4451 if (arg || nr_args) 4452 break; 4453 ret = io_sqe_buffers_unregister(ctx); 4454 break; 4455 case IORING_REGISTER_FILES: 4456 ret = -EFAULT; 4457 if (!arg) 4458 break; 4459 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4460 break; 4461 case IORING_UNREGISTER_FILES: 4462 ret = -EINVAL; 4463 if (arg || nr_args) 4464 break; 4465 ret = io_sqe_files_unregister(ctx); 4466 break; 4467 case IORING_REGISTER_FILES_UPDATE: 4468 ret = io_register_files_update(ctx, arg, nr_args); 4469 break; 4470 case IORING_REGISTER_EVENTFD: 4471 ret = -EINVAL; 4472 if (nr_args != 1) 4473 break; 4474 ret = io_eventfd_register(ctx, arg, 0); 4475 break; 4476 case IORING_REGISTER_EVENTFD_ASYNC: 4477 ret = -EINVAL; 4478 if (nr_args != 1) 4479 break; 4480 ret = io_eventfd_register(ctx, arg, 1); 4481 break; 4482 case IORING_UNREGISTER_EVENTFD: 4483 ret = -EINVAL; 4484 if (arg || nr_args) 4485 break; 4486 ret = io_eventfd_unregister(ctx); 4487 break; 4488 case IORING_REGISTER_PROBE: 4489 ret = -EINVAL; 4490 if (!arg || nr_args > 256) 4491 break; 4492 ret = io_probe(ctx, arg, nr_args); 4493 break; 4494 case IORING_REGISTER_PERSONALITY: 4495 ret = -EINVAL; 4496 if (arg || nr_args) 4497 break; 4498 ret = io_register_personality(ctx); 4499 break; 4500 case IORING_UNREGISTER_PERSONALITY: 4501 ret = -EINVAL; 4502 if (arg) 4503 break; 4504 ret = io_unregister_personality(ctx, nr_args); 4505 break; 4506 case IORING_REGISTER_ENABLE_RINGS: 4507 ret = -EINVAL; 4508 if (arg || nr_args) 4509 break; 4510 ret = io_register_enable_rings(ctx); 4511 break; 4512 case IORING_REGISTER_RESTRICTIONS: 4513 ret = io_register_restrictions(ctx, arg, nr_args); 4514 break; 4515 case IORING_REGISTER_FILES2: 4516 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4517 break; 4518 case IORING_REGISTER_FILES_UPDATE2: 4519 ret = io_register_rsrc_update(ctx, arg, nr_args, 4520 IORING_RSRC_FILE); 4521 break; 4522 case IORING_REGISTER_BUFFERS2: 4523 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4524 break; 4525 case IORING_REGISTER_BUFFERS_UPDATE: 4526 ret = io_register_rsrc_update(ctx, arg, nr_args, 4527 IORING_RSRC_BUFFER); 4528 break; 4529 case IORING_REGISTER_IOWQ_AFF: 4530 ret = -EINVAL; 4531 if (!arg || !nr_args) 4532 break; 4533 ret = io_register_iowq_aff(ctx, arg, nr_args); 4534 break; 4535 case IORING_UNREGISTER_IOWQ_AFF: 4536 ret = -EINVAL; 4537 if (arg || nr_args) 4538 break; 4539 ret = io_unregister_iowq_aff(ctx); 4540 break; 4541 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4542 ret = -EINVAL; 4543 if (!arg || nr_args != 2) 4544 break; 4545 ret = io_register_iowq_max_workers(ctx, arg); 4546 break; 4547 case IORING_REGISTER_RING_FDS: 4548 ret = io_ringfd_register(ctx, arg, nr_args); 4549 break; 4550 case IORING_UNREGISTER_RING_FDS: 4551 ret = io_ringfd_unregister(ctx, arg, nr_args); 4552 break; 4553 case IORING_REGISTER_PBUF_RING: 4554 ret = -EINVAL; 4555 if (!arg || nr_args != 1) 4556 break; 4557 ret = io_register_pbuf_ring(ctx, arg); 4558 break; 4559 case IORING_UNREGISTER_PBUF_RING: 4560 ret = -EINVAL; 4561 if (!arg || nr_args != 1) 4562 break; 4563 ret = io_unregister_pbuf_ring(ctx, arg); 4564 break; 4565 case IORING_REGISTER_SYNC_CANCEL: 4566 ret = -EINVAL; 4567 if (!arg || nr_args != 1) 4568 break; 4569 ret = io_sync_cancel(ctx, arg); 4570 break; 4571 case IORING_REGISTER_FILE_ALLOC_RANGE: 4572 ret = -EINVAL; 4573 if (!arg || nr_args) 4574 break; 4575 ret = io_register_file_alloc_range(ctx, arg); 4576 break; 4577 default: 4578 ret = -EINVAL; 4579 break; 4580 } 4581 4582 return ret; 4583 } 4584 4585 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4586 void __user *, arg, unsigned int, nr_args) 4587 { 4588 struct io_ring_ctx *ctx; 4589 long ret = -EBADF; 4590 struct file *file; 4591 bool use_registered_ring; 4592 4593 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING); 4594 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING; 4595 4596 if (opcode >= IORING_REGISTER_LAST) 4597 return -EINVAL; 4598 4599 if (use_registered_ring) { 4600 /* 4601 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 4602 * need only dereference our task private array to find it. 4603 */ 4604 struct io_uring_task *tctx = current->io_uring; 4605 4606 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 4607 return -EINVAL; 4608 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 4609 file = tctx->registered_rings[fd]; 4610 if (unlikely(!file)) 4611 return -EBADF; 4612 } else { 4613 file = fget(fd); 4614 if (unlikely(!file)) 4615 return -EBADF; 4616 ret = -EOPNOTSUPP; 4617 if (!io_is_uring_fops(file)) 4618 goto out_fput; 4619 } 4620 4621 ctx = file->private_data; 4622 4623 mutex_lock(&ctx->uring_lock); 4624 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4625 mutex_unlock(&ctx->uring_lock); 4626 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4627 out_fput: 4628 if (!use_registered_ring) 4629 fput(file); 4630 return ret; 4631 } 4632 4633 static int __init io_uring_init(void) 4634 { 4635 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4636 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4637 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4638 } while (0) 4639 4640 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4641 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4642 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4643 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4644 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4645 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4646 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4647 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4648 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4649 BUILD_BUG_SQE_ELEM(8, __u64, off); 4650 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4651 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4652 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4653 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4654 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4655 BUILD_BUG_SQE_ELEM(24, __u32, len); 4656 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4657 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4658 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4659 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4660 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4661 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4662 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4663 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4664 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4665 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4666 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4667 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4668 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4669 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4670 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4671 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4672 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4673 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4674 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4675 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4676 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4677 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4678 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4679 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4680 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4681 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4682 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4683 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4684 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4685 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4686 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4687 4688 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4689 sizeof(struct io_uring_rsrc_update)); 4690 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4691 sizeof(struct io_uring_rsrc_update2)); 4692 4693 /* ->buf_index is u16 */ 4694 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4695 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4696 offsetof(struct io_uring_buf_ring, tail)); 4697 4698 /* should fit into one byte */ 4699 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4700 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4701 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4702 4703 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4704 4705 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4706 4707 io_uring_optable_init(); 4708 4709 /* 4710 * Allow user copy in the per-command field, which starts after the 4711 * file in io_kiocb and until the opcode field. The openat2 handling 4712 * requires copying in user memory into the io_kiocb object in that 4713 * range, and HARDENED_USERCOPY will complain if we haven't 4714 * correctly annotated this range. 4715 */ 4716 req_cachep = kmem_cache_create_usercopy("io_kiocb", 4717 sizeof(struct io_kiocb), 0, 4718 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4719 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU, 4720 offsetof(struct io_kiocb, cmd.data), 4721 sizeof_field(struct io_kiocb, cmd.data), NULL); 4722 4723 #ifdef CONFIG_SYSCTL 4724 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 4725 #endif 4726 4727 return 0; 4728 }; 4729 __initcall(io_uring_init); 4730