xref: /openbmc/linux/io_uring/io_uring.c (revision 097fc054)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/io_uring.h>
78 
79 #include <uapi/linux/io_uring.h>
80 
81 #include "io-wq.h"
82 
83 #include "io_uring.h"
84 #include "opdef.h"
85 #include "refs.h"
86 #include "tctx.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 
95 #include "timeout.h"
96 #include "poll.h"
97 #include "alloc_cache.h"
98 
99 #define IORING_MAX_ENTRIES	32768
100 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
101 
102 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
103 				 IORING_REGISTER_LAST + IORING_OP_LAST)
104 
105 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
106 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
107 
108 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
109 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
110 
111 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
112 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
113 				REQ_F_ASYNC_DATA)
114 
115 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
116 				 IO_REQ_CLEAN_FLAGS)
117 
118 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
119 
120 #define IO_COMPL_BATCH			32
121 #define IO_REQ_ALLOC_BATCH		8
122 
123 enum {
124 	IO_CHECK_CQ_OVERFLOW_BIT,
125 	IO_CHECK_CQ_DROPPED_BIT,
126 };
127 
128 enum {
129 	IO_EVENTFD_OP_SIGNAL_BIT,
130 	IO_EVENTFD_OP_FREE_BIT,
131 };
132 
133 struct io_defer_entry {
134 	struct list_head	list;
135 	struct io_kiocb		*req;
136 	u32			seq;
137 };
138 
139 /* requests with any of those set should undergo io_disarm_next() */
140 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
141 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
142 
143 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
144 					 struct task_struct *task,
145 					 bool cancel_all);
146 
147 static void io_dismantle_req(struct io_kiocb *req);
148 static void io_clean_op(struct io_kiocb *req);
149 static void io_queue_sqe(struct io_kiocb *req);
150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx);
151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
152 static __cold void io_fallback_tw(struct io_uring_task *tctx);
153 
154 static struct kmem_cache *req_cachep;
155 
156 struct sock *io_uring_get_socket(struct file *file)
157 {
158 #if defined(CONFIG_UNIX)
159 	if (io_is_uring_fops(file)) {
160 		struct io_ring_ctx *ctx = file->private_data;
161 
162 		return ctx->ring_sock->sk;
163 	}
164 #endif
165 	return NULL;
166 }
167 EXPORT_SYMBOL(io_uring_get_socket);
168 
169 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
170 {
171 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
172 	    ctx->submit_state.cqes_count)
173 		__io_submit_flush_completions(ctx);
174 }
175 
176 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
177 {
178 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
179 }
180 
181 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
182 {
183 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
184 }
185 
186 static bool io_match_linked(struct io_kiocb *head)
187 {
188 	struct io_kiocb *req;
189 
190 	io_for_each_link(req, head) {
191 		if (req->flags & REQ_F_INFLIGHT)
192 			return true;
193 	}
194 	return false;
195 }
196 
197 /*
198  * As io_match_task() but protected against racing with linked timeouts.
199  * User must not hold timeout_lock.
200  */
201 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
202 			bool cancel_all)
203 {
204 	bool matched;
205 
206 	if (task && head->task != task)
207 		return false;
208 	if (cancel_all)
209 		return true;
210 
211 	if (head->flags & REQ_F_LINK_TIMEOUT) {
212 		struct io_ring_ctx *ctx = head->ctx;
213 
214 		/* protect against races with linked timeouts */
215 		spin_lock_irq(&ctx->timeout_lock);
216 		matched = io_match_linked(head);
217 		spin_unlock_irq(&ctx->timeout_lock);
218 	} else {
219 		matched = io_match_linked(head);
220 	}
221 	return matched;
222 }
223 
224 static inline void req_fail_link_node(struct io_kiocb *req, int res)
225 {
226 	req_set_fail(req);
227 	io_req_set_res(req, res, 0);
228 }
229 
230 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
231 {
232 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
233 }
234 
235 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
236 {
237 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
238 
239 	complete(&ctx->ref_comp);
240 }
241 
242 static __cold void io_fallback_req_func(struct work_struct *work)
243 {
244 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
245 						fallback_work.work);
246 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
247 	struct io_kiocb *req, *tmp;
248 	bool locked = false;
249 
250 	percpu_ref_get(&ctx->refs);
251 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
252 		req->io_task_work.func(req, &locked);
253 
254 	if (locked) {
255 		io_submit_flush_completions(ctx);
256 		mutex_unlock(&ctx->uring_lock);
257 	}
258 	percpu_ref_put(&ctx->refs);
259 }
260 
261 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
262 {
263 	unsigned hash_buckets = 1U << bits;
264 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
265 
266 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
267 	if (!table->hbs)
268 		return -ENOMEM;
269 
270 	table->hash_bits = bits;
271 	init_hash_table(table, hash_buckets);
272 	return 0;
273 }
274 
275 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
276 {
277 	struct io_ring_ctx *ctx;
278 	int hash_bits;
279 
280 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
281 	if (!ctx)
282 		return NULL;
283 
284 	xa_init(&ctx->io_bl_xa);
285 
286 	/*
287 	 * Use 5 bits less than the max cq entries, that should give us around
288 	 * 32 entries per hash list if totally full and uniformly spread, but
289 	 * don't keep too many buckets to not overconsume memory.
290 	 */
291 	hash_bits = ilog2(p->cq_entries) - 5;
292 	hash_bits = clamp(hash_bits, 1, 8);
293 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
294 		goto err;
295 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
296 		goto err;
297 
298 	ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
299 	if (!ctx->dummy_ubuf)
300 		goto err;
301 	/* set invalid range, so io_import_fixed() fails meeting it */
302 	ctx->dummy_ubuf->ubuf = -1UL;
303 
304 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
305 			    0, GFP_KERNEL))
306 		goto err;
307 
308 	ctx->flags = p->flags;
309 	init_waitqueue_head(&ctx->sqo_sq_wait);
310 	INIT_LIST_HEAD(&ctx->sqd_list);
311 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
312 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
313 	io_alloc_cache_init(&ctx->apoll_cache);
314 	io_alloc_cache_init(&ctx->netmsg_cache);
315 	init_completion(&ctx->ref_comp);
316 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
317 	mutex_init(&ctx->uring_lock);
318 	init_waitqueue_head(&ctx->cq_wait);
319 	spin_lock_init(&ctx->completion_lock);
320 	spin_lock_init(&ctx->timeout_lock);
321 	INIT_WQ_LIST(&ctx->iopoll_list);
322 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
323 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
324 	INIT_LIST_HEAD(&ctx->defer_list);
325 	INIT_LIST_HEAD(&ctx->timeout_list);
326 	INIT_LIST_HEAD(&ctx->ltimeout_list);
327 	spin_lock_init(&ctx->rsrc_ref_lock);
328 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
329 	INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
330 	init_task_work(&ctx->rsrc_put_tw, io_rsrc_put_tw);
331 	init_llist_head(&ctx->rsrc_put_llist);
332 	init_llist_head(&ctx->work_llist);
333 	INIT_LIST_HEAD(&ctx->tctx_list);
334 	ctx->submit_state.free_list.next = NULL;
335 	INIT_WQ_LIST(&ctx->locked_free_list);
336 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
337 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
338 	return ctx;
339 err:
340 	kfree(ctx->dummy_ubuf);
341 	kfree(ctx->cancel_table.hbs);
342 	kfree(ctx->cancel_table_locked.hbs);
343 	kfree(ctx->io_bl);
344 	xa_destroy(&ctx->io_bl_xa);
345 	kfree(ctx);
346 	return NULL;
347 }
348 
349 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
350 {
351 	struct io_rings *r = ctx->rings;
352 
353 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
354 	ctx->cq_extra--;
355 }
356 
357 static bool req_need_defer(struct io_kiocb *req, u32 seq)
358 {
359 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
360 		struct io_ring_ctx *ctx = req->ctx;
361 
362 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
363 	}
364 
365 	return false;
366 }
367 
368 static inline void io_req_track_inflight(struct io_kiocb *req)
369 {
370 	if (!(req->flags & REQ_F_INFLIGHT)) {
371 		req->flags |= REQ_F_INFLIGHT;
372 		atomic_inc(&req->task->io_uring->inflight_tracked);
373 	}
374 }
375 
376 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
377 {
378 	if (WARN_ON_ONCE(!req->link))
379 		return NULL;
380 
381 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
382 	req->flags |= REQ_F_LINK_TIMEOUT;
383 
384 	/* linked timeouts should have two refs once prep'ed */
385 	io_req_set_refcount(req);
386 	__io_req_set_refcount(req->link, 2);
387 	return req->link;
388 }
389 
390 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
391 {
392 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
393 		return NULL;
394 	return __io_prep_linked_timeout(req);
395 }
396 
397 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
398 {
399 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
400 }
401 
402 static inline void io_arm_ltimeout(struct io_kiocb *req)
403 {
404 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
405 		__io_arm_ltimeout(req);
406 }
407 
408 static void io_prep_async_work(struct io_kiocb *req)
409 {
410 	const struct io_op_def *def = &io_op_defs[req->opcode];
411 	struct io_ring_ctx *ctx = req->ctx;
412 
413 	if (!(req->flags & REQ_F_CREDS)) {
414 		req->flags |= REQ_F_CREDS;
415 		req->creds = get_current_cred();
416 	}
417 
418 	req->work.list.next = NULL;
419 	req->work.flags = 0;
420 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
421 	if (req->flags & REQ_F_FORCE_ASYNC)
422 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
423 
424 	if (req->file && !io_req_ffs_set(req))
425 		req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT;
426 
427 	if (req->flags & REQ_F_ISREG) {
428 		if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
429 			io_wq_hash_work(&req->work, file_inode(req->file));
430 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
431 		if (def->unbound_nonreg_file)
432 			req->work.flags |= IO_WQ_WORK_UNBOUND;
433 	}
434 }
435 
436 static void io_prep_async_link(struct io_kiocb *req)
437 {
438 	struct io_kiocb *cur;
439 
440 	if (req->flags & REQ_F_LINK_TIMEOUT) {
441 		struct io_ring_ctx *ctx = req->ctx;
442 
443 		spin_lock_irq(&ctx->timeout_lock);
444 		io_for_each_link(cur, req)
445 			io_prep_async_work(cur);
446 		spin_unlock_irq(&ctx->timeout_lock);
447 	} else {
448 		io_for_each_link(cur, req)
449 			io_prep_async_work(cur);
450 	}
451 }
452 
453 void io_queue_iowq(struct io_kiocb *req, bool *dont_use)
454 {
455 	struct io_kiocb *link = io_prep_linked_timeout(req);
456 	struct io_uring_task *tctx = req->task->io_uring;
457 
458 	BUG_ON(!tctx);
459 	BUG_ON(!tctx->io_wq);
460 
461 	/* init ->work of the whole link before punting */
462 	io_prep_async_link(req);
463 
464 	/*
465 	 * Not expected to happen, but if we do have a bug where this _can_
466 	 * happen, catch it here and ensure the request is marked as
467 	 * canceled. That will make io-wq go through the usual work cancel
468 	 * procedure rather than attempt to run this request (or create a new
469 	 * worker for it).
470 	 */
471 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
472 		req->work.flags |= IO_WQ_WORK_CANCEL;
473 
474 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
475 	io_wq_enqueue(tctx->io_wq, &req->work);
476 	if (link)
477 		io_queue_linked_timeout(link);
478 }
479 
480 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
481 {
482 	while (!list_empty(&ctx->defer_list)) {
483 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
484 						struct io_defer_entry, list);
485 
486 		if (req_need_defer(de->req, de->seq))
487 			break;
488 		list_del_init(&de->list);
489 		io_req_task_queue(de->req);
490 		kfree(de);
491 	}
492 }
493 
494 
495 static void io_eventfd_ops(struct rcu_head *rcu)
496 {
497 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
498 	int ops = atomic_xchg(&ev_fd->ops, 0);
499 
500 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
501 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
502 
503 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
504 	 * ordering in a race but if references are 0 we know we have to free
505 	 * it regardless.
506 	 */
507 	if (atomic_dec_and_test(&ev_fd->refs)) {
508 		eventfd_ctx_put(ev_fd->cq_ev_fd);
509 		kfree(ev_fd);
510 	}
511 }
512 
513 static void io_eventfd_signal(struct io_ring_ctx *ctx)
514 {
515 	struct io_ev_fd *ev_fd = NULL;
516 
517 	rcu_read_lock();
518 	/*
519 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
520 	 * and eventfd_signal
521 	 */
522 	ev_fd = rcu_dereference(ctx->io_ev_fd);
523 
524 	/*
525 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
526 	 * completed between the NULL check of ctx->io_ev_fd at the start of
527 	 * the function and rcu_read_lock.
528 	 */
529 	if (unlikely(!ev_fd))
530 		goto out;
531 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
532 		goto out;
533 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
534 		goto out;
535 
536 	if (likely(eventfd_signal_allowed())) {
537 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
538 	} else {
539 		atomic_inc(&ev_fd->refs);
540 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
541 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
542 		else
543 			atomic_dec(&ev_fd->refs);
544 	}
545 
546 out:
547 	rcu_read_unlock();
548 }
549 
550 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
551 {
552 	bool skip;
553 
554 	spin_lock(&ctx->completion_lock);
555 
556 	/*
557 	 * Eventfd should only get triggered when at least one event has been
558 	 * posted. Some applications rely on the eventfd notification count
559 	 * only changing IFF a new CQE has been added to the CQ ring. There's
560 	 * no depedency on 1:1 relationship between how many times this
561 	 * function is called (and hence the eventfd count) and number of CQEs
562 	 * posted to the CQ ring.
563 	 */
564 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
565 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
566 	spin_unlock(&ctx->completion_lock);
567 	if (skip)
568 		return;
569 
570 	io_eventfd_signal(ctx);
571 }
572 
573 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
574 {
575 	if (ctx->off_timeout_used)
576 		io_flush_timeouts(ctx);
577 	if (ctx->drain_active) {
578 		spin_lock(&ctx->completion_lock);
579 		io_queue_deferred(ctx);
580 		spin_unlock(&ctx->completion_lock);
581 	}
582 	if (ctx->has_evfd)
583 		io_eventfd_flush_signal(ctx);
584 }
585 
586 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
587 	__acquires(ctx->completion_lock)
588 {
589 	if (!ctx->task_complete)
590 		spin_lock(&ctx->completion_lock);
591 }
592 
593 static inline void __io_cq_unlock(struct io_ring_ctx *ctx)
594 {
595 	if (!ctx->task_complete)
596 		spin_unlock(&ctx->completion_lock);
597 }
598 
599 static inline void io_cq_lock(struct io_ring_ctx *ctx)
600 	__acquires(ctx->completion_lock)
601 {
602 	spin_lock(&ctx->completion_lock);
603 }
604 
605 static inline void io_cq_unlock(struct io_ring_ctx *ctx)
606 	__releases(ctx->completion_lock)
607 {
608 	spin_unlock(&ctx->completion_lock);
609 }
610 
611 /* keep it inlined for io_submit_flush_completions() */
612 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
613 	__releases(ctx->completion_lock)
614 {
615 	io_commit_cqring(ctx);
616 	__io_cq_unlock(ctx);
617 	io_commit_cqring_flush(ctx);
618 	io_cqring_wake(ctx);
619 }
620 
621 void io_cq_unlock_post(struct io_ring_ctx *ctx)
622 	__releases(ctx->completion_lock)
623 {
624 	io_commit_cqring(ctx);
625 	spin_unlock(&ctx->completion_lock);
626 	io_commit_cqring_flush(ctx);
627 	io_cqring_wake(ctx);
628 }
629 
630 /* Returns true if there are no backlogged entries after the flush */
631 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
632 {
633 	struct io_overflow_cqe *ocqe;
634 	LIST_HEAD(list);
635 
636 	io_cq_lock(ctx);
637 	list_splice_init(&ctx->cq_overflow_list, &list);
638 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
639 	io_cq_unlock(ctx);
640 
641 	while (!list_empty(&list)) {
642 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
643 		list_del(&ocqe->list);
644 		kfree(ocqe);
645 	}
646 }
647 
648 /* Returns true if there are no backlogged entries after the flush */
649 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
650 {
651 	size_t cqe_size = sizeof(struct io_uring_cqe);
652 
653 	if (__io_cqring_events(ctx) == ctx->cq_entries)
654 		return;
655 
656 	if (ctx->flags & IORING_SETUP_CQE32)
657 		cqe_size <<= 1;
658 
659 	io_cq_lock(ctx);
660 	while (!list_empty(&ctx->cq_overflow_list)) {
661 		struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true);
662 		struct io_overflow_cqe *ocqe;
663 
664 		if (!cqe)
665 			break;
666 		ocqe = list_first_entry(&ctx->cq_overflow_list,
667 					struct io_overflow_cqe, list);
668 		memcpy(cqe, &ocqe->cqe, cqe_size);
669 		list_del(&ocqe->list);
670 		kfree(ocqe);
671 	}
672 
673 	if (list_empty(&ctx->cq_overflow_list)) {
674 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
675 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
676 	}
677 	io_cq_unlock_post(ctx);
678 }
679 
680 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
681 {
682 	/* iopoll syncs against uring_lock, not completion_lock */
683 	if (ctx->flags & IORING_SETUP_IOPOLL)
684 		mutex_lock(&ctx->uring_lock);
685 	__io_cqring_overflow_flush(ctx);
686 	if (ctx->flags & IORING_SETUP_IOPOLL)
687 		mutex_unlock(&ctx->uring_lock);
688 }
689 
690 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
691 {
692 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
693 		io_cqring_do_overflow_flush(ctx);
694 }
695 
696 void __io_put_task(struct task_struct *task, int nr)
697 {
698 	struct io_uring_task *tctx = task->io_uring;
699 
700 	percpu_counter_sub(&tctx->inflight, nr);
701 	if (unlikely(atomic_read(&tctx->in_idle)))
702 		wake_up(&tctx->wait);
703 	put_task_struct_many(task, nr);
704 }
705 
706 void io_task_refs_refill(struct io_uring_task *tctx)
707 {
708 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
709 
710 	percpu_counter_add(&tctx->inflight, refill);
711 	refcount_add(refill, &current->usage);
712 	tctx->cached_refs += refill;
713 }
714 
715 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
716 {
717 	struct io_uring_task *tctx = task->io_uring;
718 	unsigned int refs = tctx->cached_refs;
719 
720 	if (refs) {
721 		tctx->cached_refs = 0;
722 		percpu_counter_sub(&tctx->inflight, refs);
723 		put_task_struct_many(task, refs);
724 	}
725 }
726 
727 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
728 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
729 {
730 	struct io_overflow_cqe *ocqe;
731 	size_t ocq_size = sizeof(struct io_overflow_cqe);
732 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
733 
734 	if (is_cqe32)
735 		ocq_size += sizeof(struct io_uring_cqe);
736 
737 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
738 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
739 	if (!ocqe) {
740 		/*
741 		 * If we're in ring overflow flush mode, or in task cancel mode,
742 		 * or cannot allocate an overflow entry, then we need to drop it
743 		 * on the floor.
744 		 */
745 		io_account_cq_overflow(ctx);
746 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
747 		return false;
748 	}
749 	if (list_empty(&ctx->cq_overflow_list)) {
750 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
751 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
752 
753 	}
754 	ocqe->cqe.user_data = user_data;
755 	ocqe->cqe.res = res;
756 	ocqe->cqe.flags = cflags;
757 	if (is_cqe32) {
758 		ocqe->cqe.big_cqe[0] = extra1;
759 		ocqe->cqe.big_cqe[1] = extra2;
760 	}
761 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
762 	return true;
763 }
764 
765 bool io_req_cqe_overflow(struct io_kiocb *req)
766 {
767 	if (!(req->flags & REQ_F_CQE32_INIT)) {
768 		req->extra1 = 0;
769 		req->extra2 = 0;
770 	}
771 	return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
772 					req->cqe.res, req->cqe.flags,
773 					req->extra1, req->extra2);
774 }
775 
776 /*
777  * writes to the cq entry need to come after reading head; the
778  * control dependency is enough as we're using WRITE_ONCE to
779  * fill the cq entry
780  */
781 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow)
782 {
783 	struct io_rings *rings = ctx->rings;
784 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
785 	unsigned int free, queued, len;
786 
787 	/*
788 	 * Posting into the CQ when there are pending overflowed CQEs may break
789 	 * ordering guarantees, which will affect links, F_MORE users and more.
790 	 * Force overflow the completion.
791 	 */
792 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
793 		return NULL;
794 
795 	/* userspace may cheat modifying the tail, be safe and do min */
796 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
797 	free = ctx->cq_entries - queued;
798 	/* we need a contiguous range, limit based on the current array offset */
799 	len = min(free, ctx->cq_entries - off);
800 	if (!len)
801 		return NULL;
802 
803 	if (ctx->flags & IORING_SETUP_CQE32) {
804 		off <<= 1;
805 		len <<= 1;
806 	}
807 
808 	ctx->cqe_cached = &rings->cqes[off];
809 	ctx->cqe_sentinel = ctx->cqe_cached + len;
810 
811 	ctx->cached_cq_tail++;
812 	ctx->cqe_cached++;
813 	if (ctx->flags & IORING_SETUP_CQE32)
814 		ctx->cqe_cached++;
815 	return &rings->cqes[off];
816 }
817 
818 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
819 			      u32 cflags)
820 {
821 	struct io_uring_cqe *cqe;
822 
823 	if (!ctx->task_complete)
824 		lockdep_assert_held(&ctx->completion_lock);
825 
826 	ctx->cq_extra++;
827 
828 	/*
829 	 * If we can't get a cq entry, userspace overflowed the
830 	 * submission (by quite a lot). Increment the overflow count in
831 	 * the ring.
832 	 */
833 	cqe = io_get_cqe(ctx);
834 	if (likely(cqe)) {
835 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
836 
837 		WRITE_ONCE(cqe->user_data, user_data);
838 		WRITE_ONCE(cqe->res, res);
839 		WRITE_ONCE(cqe->flags, cflags);
840 
841 		if (ctx->flags & IORING_SETUP_CQE32) {
842 			WRITE_ONCE(cqe->big_cqe[0], 0);
843 			WRITE_ONCE(cqe->big_cqe[1], 0);
844 		}
845 		return true;
846 	}
847 	return false;
848 }
849 
850 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
851 	__must_hold(&ctx->uring_lock)
852 {
853 	struct io_submit_state *state = &ctx->submit_state;
854 	unsigned int i;
855 
856 	lockdep_assert_held(&ctx->uring_lock);
857 	for (i = 0; i < state->cqes_count; i++) {
858 		struct io_uring_cqe *cqe = &state->cqes[i];
859 
860 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
861 			if (ctx->task_complete) {
862 				spin_lock(&ctx->completion_lock);
863 				io_cqring_event_overflow(ctx, cqe->user_data,
864 							cqe->res, cqe->flags, 0, 0);
865 				spin_unlock(&ctx->completion_lock);
866 			} else {
867 				io_cqring_event_overflow(ctx, cqe->user_data,
868 							cqe->res, cqe->flags, 0, 0);
869 			}
870 		}
871 	}
872 	state->cqes_count = 0;
873 }
874 
875 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
876 			      bool allow_overflow)
877 {
878 	bool filled;
879 
880 	io_cq_lock(ctx);
881 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
882 	if (!filled && allow_overflow)
883 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
884 
885 	io_cq_unlock_post(ctx);
886 	return filled;
887 }
888 
889 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
890 {
891 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
892 }
893 
894 bool io_aux_cqe(struct io_ring_ctx *ctx, bool defer, u64 user_data, s32 res, u32 cflags,
895 		bool allow_overflow)
896 {
897 	struct io_uring_cqe *cqe;
898 	unsigned int length;
899 
900 	if (!defer)
901 		return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow);
902 
903 	length = ARRAY_SIZE(ctx->submit_state.cqes);
904 
905 	lockdep_assert_held(&ctx->uring_lock);
906 
907 	if (ctx->submit_state.cqes_count == length) {
908 		__io_cq_lock(ctx);
909 		__io_flush_post_cqes(ctx);
910 		/* no need to flush - flush is deferred */
911 		__io_cq_unlock_post(ctx);
912 	}
913 
914 	/* For defered completions this is not as strict as it is otherwise,
915 	 * however it's main job is to prevent unbounded posted completions,
916 	 * and in that it works just as well.
917 	 */
918 	if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
919 		return false;
920 
921 	cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++];
922 	cqe->user_data = user_data;
923 	cqe->res = res;
924 	cqe->flags = cflags;
925 	return true;
926 }
927 
928 static void __io_req_complete_post(struct io_kiocb *req)
929 {
930 	struct io_ring_ctx *ctx = req->ctx;
931 
932 	io_cq_lock(ctx);
933 	if (!(req->flags & REQ_F_CQE_SKIP))
934 		io_fill_cqe_req(ctx, req);
935 
936 	/*
937 	 * If we're the last reference to this request, add to our locked
938 	 * free_list cache.
939 	 */
940 	if (req_ref_put_and_test(req)) {
941 		if (req->flags & IO_REQ_LINK_FLAGS) {
942 			if (req->flags & IO_DISARM_MASK)
943 				io_disarm_next(req);
944 			if (req->link) {
945 				io_req_task_queue(req->link);
946 				req->link = NULL;
947 			}
948 		}
949 		io_req_put_rsrc(req);
950 		/*
951 		 * Selected buffer deallocation in io_clean_op() assumes that
952 		 * we don't hold ->completion_lock. Clean them here to avoid
953 		 * deadlocks.
954 		 */
955 		io_put_kbuf_comp(req);
956 		io_dismantle_req(req);
957 		io_put_task(req->task, 1);
958 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
959 		ctx->locked_free_nr++;
960 	}
961 	io_cq_unlock_post(ctx);
962 }
963 
964 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
965 {
966 	if (req->ctx->task_complete && (issue_flags & IO_URING_F_IOWQ)) {
967 		req->io_task_work.func = io_req_task_complete;
968 		io_req_task_work_add(req);
969 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
970 		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
971 		__io_req_complete_post(req);
972 	} else {
973 		struct io_ring_ctx *ctx = req->ctx;
974 
975 		mutex_lock(&ctx->uring_lock);
976 		__io_req_complete_post(req);
977 		mutex_unlock(&ctx->uring_lock);
978 	}
979 }
980 
981 void io_req_defer_failed(struct io_kiocb *req, s32 res)
982 	__must_hold(&ctx->uring_lock)
983 {
984 	const struct io_op_def *def = &io_op_defs[req->opcode];
985 
986 	lockdep_assert_held(&req->ctx->uring_lock);
987 
988 	req_set_fail(req);
989 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
990 	if (def->fail)
991 		def->fail(req);
992 	io_req_complete_defer(req);
993 }
994 
995 /*
996  * Don't initialise the fields below on every allocation, but do that in
997  * advance and keep them valid across allocations.
998  */
999 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1000 {
1001 	req->ctx = ctx;
1002 	req->link = NULL;
1003 	req->async_data = NULL;
1004 	/* not necessary, but safer to zero */
1005 	req->cqe.res = 0;
1006 }
1007 
1008 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1009 					struct io_submit_state *state)
1010 {
1011 	spin_lock(&ctx->completion_lock);
1012 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1013 	ctx->locked_free_nr = 0;
1014 	spin_unlock(&ctx->completion_lock);
1015 }
1016 
1017 /*
1018  * A request might get retired back into the request caches even before opcode
1019  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1020  * Because of that, io_alloc_req() should be called only under ->uring_lock
1021  * and with extra caution to not get a request that is still worked on.
1022  */
1023 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1024 	__must_hold(&ctx->uring_lock)
1025 {
1026 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1027 	void *reqs[IO_REQ_ALLOC_BATCH];
1028 	int ret, i;
1029 
1030 	/*
1031 	 * If we have more than a batch's worth of requests in our IRQ side
1032 	 * locked cache, grab the lock and move them over to our submission
1033 	 * side cache.
1034 	 */
1035 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1036 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1037 		if (!io_req_cache_empty(ctx))
1038 			return true;
1039 	}
1040 
1041 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1042 
1043 	/*
1044 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1045 	 * retry single alloc to be on the safe side.
1046 	 */
1047 	if (unlikely(ret <= 0)) {
1048 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1049 		if (!reqs[0])
1050 			return false;
1051 		ret = 1;
1052 	}
1053 
1054 	percpu_ref_get_many(&ctx->refs, ret);
1055 	for (i = 0; i < ret; i++) {
1056 		struct io_kiocb *req = reqs[i];
1057 
1058 		io_preinit_req(req, ctx);
1059 		io_req_add_to_cache(req, ctx);
1060 	}
1061 	return true;
1062 }
1063 
1064 static inline void io_dismantle_req(struct io_kiocb *req)
1065 {
1066 	unsigned int flags = req->flags;
1067 
1068 	if (unlikely(flags & IO_REQ_CLEAN_FLAGS))
1069 		io_clean_op(req);
1070 	if (!(flags & REQ_F_FIXED_FILE))
1071 		io_put_file(req->file);
1072 }
1073 
1074 __cold void io_free_req(struct io_kiocb *req)
1075 {
1076 	struct io_ring_ctx *ctx = req->ctx;
1077 
1078 	io_req_put_rsrc(req);
1079 	io_dismantle_req(req);
1080 	io_put_task(req->task, 1);
1081 
1082 	spin_lock(&ctx->completion_lock);
1083 	wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1084 	ctx->locked_free_nr++;
1085 	spin_unlock(&ctx->completion_lock);
1086 }
1087 
1088 static void __io_req_find_next_prep(struct io_kiocb *req)
1089 {
1090 	struct io_ring_ctx *ctx = req->ctx;
1091 
1092 	spin_lock(&ctx->completion_lock);
1093 	io_disarm_next(req);
1094 	spin_unlock(&ctx->completion_lock);
1095 }
1096 
1097 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1098 {
1099 	struct io_kiocb *nxt;
1100 
1101 	/*
1102 	 * If LINK is set, we have dependent requests in this chain. If we
1103 	 * didn't fail this request, queue the first one up, moving any other
1104 	 * dependencies to the next request. In case of failure, fail the rest
1105 	 * of the chain.
1106 	 */
1107 	if (unlikely(req->flags & IO_DISARM_MASK))
1108 		__io_req_find_next_prep(req);
1109 	nxt = req->link;
1110 	req->link = NULL;
1111 	return nxt;
1112 }
1113 
1114 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
1115 {
1116 	if (!ctx)
1117 		return;
1118 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1119 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1120 	if (*locked) {
1121 		io_submit_flush_completions(ctx);
1122 		mutex_unlock(&ctx->uring_lock);
1123 		*locked = false;
1124 	}
1125 	percpu_ref_put(&ctx->refs);
1126 }
1127 
1128 static unsigned int handle_tw_list(struct llist_node *node,
1129 				   struct io_ring_ctx **ctx, bool *locked,
1130 				   struct llist_node *last)
1131 {
1132 	unsigned int count = 0;
1133 
1134 	while (node != last) {
1135 		struct llist_node *next = node->next;
1136 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1137 						    io_task_work.node);
1138 
1139 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1140 
1141 		if (req->ctx != *ctx) {
1142 			ctx_flush_and_put(*ctx, locked);
1143 			*ctx = req->ctx;
1144 			/* if not contended, grab and improve batching */
1145 			*locked = mutex_trylock(&(*ctx)->uring_lock);
1146 			percpu_ref_get(&(*ctx)->refs);
1147 		}
1148 		req->io_task_work.func(req, locked);
1149 		node = next;
1150 		count++;
1151 	}
1152 
1153 	return count;
1154 }
1155 
1156 /**
1157  * io_llist_xchg - swap all entries in a lock-less list
1158  * @head:	the head of lock-less list to delete all entries
1159  * @new:	new entry as the head of the list
1160  *
1161  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1162  * The order of entries returned is from the newest to the oldest added one.
1163  */
1164 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1165 					       struct llist_node *new)
1166 {
1167 	return xchg(&head->first, new);
1168 }
1169 
1170 /**
1171  * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1172  * @head:	the head of lock-less list to delete all entries
1173  * @old:	expected old value of the first entry of the list
1174  * @new:	new entry as the head of the list
1175  *
1176  * perform a cmpxchg on the first entry of the list.
1177  */
1178 
1179 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1180 						  struct llist_node *old,
1181 						  struct llist_node *new)
1182 {
1183 	return cmpxchg(&head->first, old, new);
1184 }
1185 
1186 void tctx_task_work(struct callback_head *cb)
1187 {
1188 	bool uring_locked = false;
1189 	struct io_ring_ctx *ctx = NULL;
1190 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1191 						  task_work);
1192 	struct llist_node fake = {};
1193 	struct llist_node *node;
1194 	unsigned int loops = 1;
1195 	unsigned int count;
1196 
1197 	if (unlikely(current->flags & PF_EXITING)) {
1198 		io_fallback_tw(tctx);
1199 		return;
1200 	}
1201 
1202 	node = io_llist_xchg(&tctx->task_list, &fake);
1203 	count = handle_tw_list(node, &ctx, &uring_locked, NULL);
1204 	node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1205 	while (node != &fake) {
1206 		loops++;
1207 		node = io_llist_xchg(&tctx->task_list, &fake);
1208 		count += handle_tw_list(node, &ctx, &uring_locked, &fake);
1209 		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1210 	}
1211 
1212 	ctx_flush_and_put(ctx, &uring_locked);
1213 
1214 	/* relaxed read is enough as only the task itself sets ->in_idle */
1215 	if (unlikely(atomic_read(&tctx->in_idle)))
1216 		io_uring_drop_tctx_refs(current);
1217 
1218 	trace_io_uring_task_work_run(tctx, count, loops);
1219 }
1220 
1221 static __cold void io_fallback_tw(struct io_uring_task *tctx)
1222 {
1223 	struct llist_node *node = llist_del_all(&tctx->task_list);
1224 	struct io_kiocb *req;
1225 
1226 	while (node) {
1227 		req = container_of(node, struct io_kiocb, io_task_work.node);
1228 		node = node->next;
1229 		if (llist_add(&req->io_task_work.node,
1230 			      &req->ctx->fallback_llist))
1231 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1232 	}
1233 }
1234 
1235 static void io_req_local_work_add(struct io_kiocb *req)
1236 {
1237 	struct io_ring_ctx *ctx = req->ctx;
1238 
1239 	if (!llist_add(&req->io_task_work.node, &ctx->work_llist))
1240 		return;
1241 	/* need it for the following io_cqring_wake() */
1242 	smp_mb__after_atomic();
1243 
1244 	if (unlikely(atomic_read(&req->task->io_uring->in_idle))) {
1245 		io_move_task_work_from_local(ctx);
1246 		return;
1247 	}
1248 
1249 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1250 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1251 
1252 	if (ctx->has_evfd)
1253 		io_eventfd_signal(ctx);
1254 	__io_cqring_wake(ctx);
1255 }
1256 
1257 void __io_req_task_work_add(struct io_kiocb *req, bool allow_local)
1258 {
1259 	struct io_uring_task *tctx = req->task->io_uring;
1260 	struct io_ring_ctx *ctx = req->ctx;
1261 
1262 	if (allow_local && ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1263 		io_req_local_work_add(req);
1264 		return;
1265 	}
1266 
1267 	/* task_work already pending, we're done */
1268 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1269 		return;
1270 
1271 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1272 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1273 
1274 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1275 		return;
1276 
1277 	io_fallback_tw(tctx);
1278 }
1279 
1280 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1281 {
1282 	struct llist_node *node;
1283 
1284 	node = llist_del_all(&ctx->work_llist);
1285 	while (node) {
1286 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1287 						    io_task_work.node);
1288 
1289 		node = node->next;
1290 		__io_req_task_work_add(req, false);
1291 	}
1292 }
1293 
1294 int __io_run_local_work(struct io_ring_ctx *ctx, bool *locked)
1295 {
1296 	struct llist_node *node;
1297 	struct llist_node fake;
1298 	struct llist_node *current_final = NULL;
1299 	int ret;
1300 	unsigned int loops = 1;
1301 
1302 	if (unlikely(ctx->submitter_task != current))
1303 		return -EEXIST;
1304 
1305 	node = io_llist_xchg(&ctx->work_llist, &fake);
1306 	ret = 0;
1307 again:
1308 	while (node != current_final) {
1309 		struct llist_node *next = node->next;
1310 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1311 						    io_task_work.node);
1312 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1313 		req->io_task_work.func(req, locked);
1314 		ret++;
1315 		node = next;
1316 	}
1317 
1318 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1319 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1320 
1321 	node = io_llist_cmpxchg(&ctx->work_llist, &fake, NULL);
1322 	if (node != &fake) {
1323 		loops++;
1324 		current_final = &fake;
1325 		node = io_llist_xchg(&ctx->work_llist, &fake);
1326 		goto again;
1327 	}
1328 
1329 	if (*locked)
1330 		io_submit_flush_completions(ctx);
1331 	trace_io_uring_local_work_run(ctx, ret, loops);
1332 	return ret;
1333 
1334 }
1335 
1336 int io_run_local_work(struct io_ring_ctx *ctx)
1337 {
1338 	bool locked;
1339 	int ret;
1340 
1341 	if (llist_empty(&ctx->work_llist))
1342 		return 0;
1343 
1344 	__set_current_state(TASK_RUNNING);
1345 	locked = mutex_trylock(&ctx->uring_lock);
1346 	ret = __io_run_local_work(ctx, &locked);
1347 	if (locked)
1348 		mutex_unlock(&ctx->uring_lock);
1349 
1350 	return ret;
1351 }
1352 
1353 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
1354 {
1355 	io_tw_lock(req->ctx, locked);
1356 	io_req_defer_failed(req, req->cqe.res);
1357 }
1358 
1359 void io_req_task_submit(struct io_kiocb *req, bool *locked)
1360 {
1361 	io_tw_lock(req->ctx, locked);
1362 	/* req->task == current here, checking PF_EXITING is safe */
1363 	if (likely(!(req->task->flags & PF_EXITING)))
1364 		io_queue_sqe(req);
1365 	else
1366 		io_req_defer_failed(req, -EFAULT);
1367 }
1368 
1369 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1370 {
1371 	io_req_set_res(req, ret, 0);
1372 	req->io_task_work.func = io_req_task_cancel;
1373 	io_req_task_work_add(req);
1374 }
1375 
1376 void io_req_task_queue(struct io_kiocb *req)
1377 {
1378 	req->io_task_work.func = io_req_task_submit;
1379 	io_req_task_work_add(req);
1380 }
1381 
1382 void io_queue_next(struct io_kiocb *req)
1383 {
1384 	struct io_kiocb *nxt = io_req_find_next(req);
1385 
1386 	if (nxt)
1387 		io_req_task_queue(nxt);
1388 }
1389 
1390 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1391 	__must_hold(&ctx->uring_lock)
1392 {
1393 	struct task_struct *task = NULL;
1394 	int task_refs = 0;
1395 
1396 	do {
1397 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1398 						    comp_list);
1399 
1400 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1401 			if (req->flags & REQ_F_REFCOUNT) {
1402 				node = req->comp_list.next;
1403 				if (!req_ref_put_and_test(req))
1404 					continue;
1405 			}
1406 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1407 				struct async_poll *apoll = req->apoll;
1408 
1409 				if (apoll->double_poll)
1410 					kfree(apoll->double_poll);
1411 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1412 					kfree(apoll);
1413 				req->flags &= ~REQ_F_POLLED;
1414 			}
1415 			if (req->flags & IO_REQ_LINK_FLAGS)
1416 				io_queue_next(req);
1417 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1418 				io_clean_op(req);
1419 		}
1420 		if (!(req->flags & REQ_F_FIXED_FILE))
1421 			io_put_file(req->file);
1422 
1423 		io_req_put_rsrc_locked(req, ctx);
1424 
1425 		if (req->task != task) {
1426 			if (task)
1427 				io_put_task(task, task_refs);
1428 			task = req->task;
1429 			task_refs = 0;
1430 		}
1431 		task_refs++;
1432 		node = req->comp_list.next;
1433 		io_req_add_to_cache(req, ctx);
1434 	} while (node);
1435 
1436 	if (task)
1437 		io_put_task(task, task_refs);
1438 }
1439 
1440 static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1441 	__must_hold(&ctx->uring_lock)
1442 {
1443 	struct io_wq_work_node *node, *prev;
1444 	struct io_submit_state *state = &ctx->submit_state;
1445 
1446 	__io_cq_lock(ctx);
1447 	/* must come first to preserve CQE ordering in failure cases */
1448 	if (state->cqes_count)
1449 		__io_flush_post_cqes(ctx);
1450 	wq_list_for_each(node, prev, &state->compl_reqs) {
1451 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1452 					    comp_list);
1453 
1454 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1455 		    unlikely(!__io_fill_cqe_req(ctx, req))) {
1456 			if (ctx->task_complete) {
1457 				spin_lock(&ctx->completion_lock);
1458 				io_req_cqe_overflow(req);
1459 				spin_unlock(&ctx->completion_lock);
1460 			} else {
1461 				io_req_cqe_overflow(req);
1462 			}
1463 		}
1464 	}
1465 	__io_cq_unlock_post(ctx);
1466 
1467 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1468 		io_free_batch_list(ctx, state->compl_reqs.first);
1469 		INIT_WQ_LIST(&state->compl_reqs);
1470 	}
1471 }
1472 
1473 /*
1474  * Drop reference to request, return next in chain (if there is one) if this
1475  * was the last reference to this request.
1476  */
1477 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
1478 {
1479 	struct io_kiocb *nxt = NULL;
1480 
1481 	if (req_ref_put_and_test(req)) {
1482 		if (unlikely(req->flags & IO_REQ_LINK_FLAGS))
1483 			nxt = io_req_find_next(req);
1484 		io_free_req(req);
1485 	}
1486 	return nxt;
1487 }
1488 
1489 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1490 {
1491 	/* See comment at the top of this file */
1492 	smp_rmb();
1493 	return __io_cqring_events(ctx);
1494 }
1495 
1496 /*
1497  * We can't just wait for polled events to come to us, we have to actively
1498  * find and complete them.
1499  */
1500 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1501 {
1502 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1503 		return;
1504 
1505 	mutex_lock(&ctx->uring_lock);
1506 	while (!wq_list_empty(&ctx->iopoll_list)) {
1507 		/* let it sleep and repeat later if can't complete a request */
1508 		if (io_do_iopoll(ctx, true) == 0)
1509 			break;
1510 		/*
1511 		 * Ensure we allow local-to-the-cpu processing to take place,
1512 		 * in this case we need to ensure that we reap all events.
1513 		 * Also let task_work, etc. to progress by releasing the mutex
1514 		 */
1515 		if (need_resched()) {
1516 			mutex_unlock(&ctx->uring_lock);
1517 			cond_resched();
1518 			mutex_lock(&ctx->uring_lock);
1519 		}
1520 	}
1521 	mutex_unlock(&ctx->uring_lock);
1522 }
1523 
1524 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1525 {
1526 	unsigned int nr_events = 0;
1527 	int ret = 0;
1528 	unsigned long check_cq;
1529 
1530 	if (!io_allowed_run_tw(ctx))
1531 		return -EEXIST;
1532 
1533 	check_cq = READ_ONCE(ctx->check_cq);
1534 	if (unlikely(check_cq)) {
1535 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1536 			__io_cqring_overflow_flush(ctx);
1537 		/*
1538 		 * Similarly do not spin if we have not informed the user of any
1539 		 * dropped CQE.
1540 		 */
1541 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1542 			return -EBADR;
1543 	}
1544 	/*
1545 	 * Don't enter poll loop if we already have events pending.
1546 	 * If we do, we can potentially be spinning for commands that
1547 	 * already triggered a CQE (eg in error).
1548 	 */
1549 	if (io_cqring_events(ctx))
1550 		return 0;
1551 
1552 	do {
1553 		/*
1554 		 * If a submit got punted to a workqueue, we can have the
1555 		 * application entering polling for a command before it gets
1556 		 * issued. That app will hold the uring_lock for the duration
1557 		 * of the poll right here, so we need to take a breather every
1558 		 * now and then to ensure that the issue has a chance to add
1559 		 * the poll to the issued list. Otherwise we can spin here
1560 		 * forever, while the workqueue is stuck trying to acquire the
1561 		 * very same mutex.
1562 		 */
1563 		if (wq_list_empty(&ctx->iopoll_list) ||
1564 		    io_task_work_pending(ctx)) {
1565 			u32 tail = ctx->cached_cq_tail;
1566 
1567 			(void) io_run_local_work_locked(ctx);
1568 
1569 			if (task_work_pending(current) ||
1570 			    wq_list_empty(&ctx->iopoll_list)) {
1571 				mutex_unlock(&ctx->uring_lock);
1572 				io_run_task_work();
1573 				mutex_lock(&ctx->uring_lock);
1574 			}
1575 			/* some requests don't go through iopoll_list */
1576 			if (tail != ctx->cached_cq_tail ||
1577 			    wq_list_empty(&ctx->iopoll_list))
1578 				break;
1579 		}
1580 		ret = io_do_iopoll(ctx, !min);
1581 		if (ret < 0)
1582 			break;
1583 		nr_events += ret;
1584 		ret = 0;
1585 	} while (nr_events < min && !need_resched());
1586 
1587 	return ret;
1588 }
1589 
1590 void io_req_task_complete(struct io_kiocb *req, bool *locked)
1591 {
1592 	if (*locked)
1593 		io_req_complete_defer(req);
1594 	else
1595 		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1596 }
1597 
1598 /*
1599  * After the iocb has been issued, it's safe to be found on the poll list.
1600  * Adding the kiocb to the list AFTER submission ensures that we don't
1601  * find it from a io_do_iopoll() thread before the issuer is done
1602  * accessing the kiocb cookie.
1603  */
1604 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1605 {
1606 	struct io_ring_ctx *ctx = req->ctx;
1607 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1608 
1609 	/* workqueue context doesn't hold uring_lock, grab it now */
1610 	if (unlikely(needs_lock))
1611 		mutex_lock(&ctx->uring_lock);
1612 
1613 	/*
1614 	 * Track whether we have multiple files in our lists. This will impact
1615 	 * how we do polling eventually, not spinning if we're on potentially
1616 	 * different devices.
1617 	 */
1618 	if (wq_list_empty(&ctx->iopoll_list)) {
1619 		ctx->poll_multi_queue = false;
1620 	} else if (!ctx->poll_multi_queue) {
1621 		struct io_kiocb *list_req;
1622 
1623 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1624 					comp_list);
1625 		if (list_req->file != req->file)
1626 			ctx->poll_multi_queue = true;
1627 	}
1628 
1629 	/*
1630 	 * For fast devices, IO may have already completed. If it has, add
1631 	 * it to the front so we find it first.
1632 	 */
1633 	if (READ_ONCE(req->iopoll_completed))
1634 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1635 	else
1636 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1637 
1638 	if (unlikely(needs_lock)) {
1639 		/*
1640 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1641 		 * in sq thread task context or in io worker task context. If
1642 		 * current task context is sq thread, we don't need to check
1643 		 * whether should wake up sq thread.
1644 		 */
1645 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1646 		    wq_has_sleeper(&ctx->sq_data->wait))
1647 			wake_up(&ctx->sq_data->wait);
1648 
1649 		mutex_unlock(&ctx->uring_lock);
1650 	}
1651 }
1652 
1653 static bool io_bdev_nowait(struct block_device *bdev)
1654 {
1655 	return !bdev || bdev_nowait(bdev);
1656 }
1657 
1658 /*
1659  * If we tracked the file through the SCM inflight mechanism, we could support
1660  * any file. For now, just ensure that anything potentially problematic is done
1661  * inline.
1662  */
1663 static bool __io_file_supports_nowait(struct file *file, umode_t mode)
1664 {
1665 	if (S_ISBLK(mode)) {
1666 		if (IS_ENABLED(CONFIG_BLOCK) &&
1667 		    io_bdev_nowait(I_BDEV(file->f_mapping->host)))
1668 			return true;
1669 		return false;
1670 	}
1671 	if (S_ISSOCK(mode))
1672 		return true;
1673 	if (S_ISREG(mode)) {
1674 		if (IS_ENABLED(CONFIG_BLOCK) &&
1675 		    io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
1676 		    !io_is_uring_fops(file))
1677 			return true;
1678 		return false;
1679 	}
1680 
1681 	/* any ->read/write should understand O_NONBLOCK */
1682 	if (file->f_flags & O_NONBLOCK)
1683 		return true;
1684 	return file->f_mode & FMODE_NOWAIT;
1685 }
1686 
1687 /*
1688  * If we tracked the file through the SCM inflight mechanism, we could support
1689  * any file. For now, just ensure that anything potentially problematic is done
1690  * inline.
1691  */
1692 unsigned int io_file_get_flags(struct file *file)
1693 {
1694 	umode_t mode = file_inode(file)->i_mode;
1695 	unsigned int res = 0;
1696 
1697 	if (S_ISREG(mode))
1698 		res |= FFS_ISREG;
1699 	if (__io_file_supports_nowait(file, mode))
1700 		res |= FFS_NOWAIT;
1701 	return res;
1702 }
1703 
1704 bool io_alloc_async_data(struct io_kiocb *req)
1705 {
1706 	WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
1707 	req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
1708 	if (req->async_data) {
1709 		req->flags |= REQ_F_ASYNC_DATA;
1710 		return false;
1711 	}
1712 	return true;
1713 }
1714 
1715 int io_req_prep_async(struct io_kiocb *req)
1716 {
1717 	const struct io_op_def *def = &io_op_defs[req->opcode];
1718 
1719 	/* assign early for deferred execution for non-fixed file */
1720 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE))
1721 		req->file = io_file_get_normal(req, req->cqe.fd);
1722 	if (!def->prep_async)
1723 		return 0;
1724 	if (WARN_ON_ONCE(req_has_async_data(req)))
1725 		return -EFAULT;
1726 	if (!io_op_defs[req->opcode].manual_alloc) {
1727 		if (io_alloc_async_data(req))
1728 			return -EAGAIN;
1729 	}
1730 	return def->prep_async(req);
1731 }
1732 
1733 static u32 io_get_sequence(struct io_kiocb *req)
1734 {
1735 	u32 seq = req->ctx->cached_sq_head;
1736 	struct io_kiocb *cur;
1737 
1738 	/* need original cached_sq_head, but it was increased for each req */
1739 	io_for_each_link(cur, req)
1740 		seq--;
1741 	return seq;
1742 }
1743 
1744 static __cold void io_drain_req(struct io_kiocb *req)
1745 	__must_hold(&ctx->uring_lock)
1746 {
1747 	struct io_ring_ctx *ctx = req->ctx;
1748 	struct io_defer_entry *de;
1749 	int ret;
1750 	u32 seq = io_get_sequence(req);
1751 
1752 	/* Still need defer if there is pending req in defer list. */
1753 	spin_lock(&ctx->completion_lock);
1754 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1755 		spin_unlock(&ctx->completion_lock);
1756 queue:
1757 		ctx->drain_active = false;
1758 		io_req_task_queue(req);
1759 		return;
1760 	}
1761 	spin_unlock(&ctx->completion_lock);
1762 
1763 	ret = io_req_prep_async(req);
1764 	if (ret) {
1765 fail:
1766 		io_req_defer_failed(req, ret);
1767 		return;
1768 	}
1769 	io_prep_async_link(req);
1770 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1771 	if (!de) {
1772 		ret = -ENOMEM;
1773 		goto fail;
1774 	}
1775 
1776 	spin_lock(&ctx->completion_lock);
1777 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1778 		spin_unlock(&ctx->completion_lock);
1779 		kfree(de);
1780 		goto queue;
1781 	}
1782 
1783 	trace_io_uring_defer(req);
1784 	de->req = req;
1785 	de->seq = seq;
1786 	list_add_tail(&de->list, &ctx->defer_list);
1787 	spin_unlock(&ctx->completion_lock);
1788 }
1789 
1790 static void io_clean_op(struct io_kiocb *req)
1791 {
1792 	if (req->flags & REQ_F_BUFFER_SELECTED) {
1793 		spin_lock(&req->ctx->completion_lock);
1794 		io_put_kbuf_comp(req);
1795 		spin_unlock(&req->ctx->completion_lock);
1796 	}
1797 
1798 	if (req->flags & REQ_F_NEED_CLEANUP) {
1799 		const struct io_op_def *def = &io_op_defs[req->opcode];
1800 
1801 		if (def->cleanup)
1802 			def->cleanup(req);
1803 	}
1804 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
1805 		kfree(req->apoll->double_poll);
1806 		kfree(req->apoll);
1807 		req->apoll = NULL;
1808 	}
1809 	if (req->flags & REQ_F_INFLIGHT) {
1810 		struct io_uring_task *tctx = req->task->io_uring;
1811 
1812 		atomic_dec(&tctx->inflight_tracked);
1813 	}
1814 	if (req->flags & REQ_F_CREDS)
1815 		put_cred(req->creds);
1816 	if (req->flags & REQ_F_ASYNC_DATA) {
1817 		kfree(req->async_data);
1818 		req->async_data = NULL;
1819 	}
1820 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
1821 }
1822 
1823 static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags)
1824 {
1825 	if (req->file || !io_op_defs[req->opcode].needs_file)
1826 		return true;
1827 
1828 	if (req->flags & REQ_F_FIXED_FILE)
1829 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1830 	else
1831 		req->file = io_file_get_normal(req, req->cqe.fd);
1832 
1833 	return !!req->file;
1834 }
1835 
1836 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1837 {
1838 	const struct io_op_def *def = &io_op_defs[req->opcode];
1839 	const struct cred *creds = NULL;
1840 	int ret;
1841 
1842 	if (unlikely(!io_assign_file(req, issue_flags)))
1843 		return -EBADF;
1844 
1845 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1846 		creds = override_creds(req->creds);
1847 
1848 	if (!def->audit_skip)
1849 		audit_uring_entry(req->opcode);
1850 
1851 	ret = def->issue(req, issue_flags);
1852 
1853 	if (!def->audit_skip)
1854 		audit_uring_exit(!ret, ret);
1855 
1856 	if (creds)
1857 		revert_creds(creds);
1858 
1859 	if (ret == IOU_OK) {
1860 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1861 			io_req_complete_defer(req);
1862 		else
1863 			io_req_complete_post(req, issue_flags);
1864 	} else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1865 		return ret;
1866 
1867 	/* If the op doesn't have a file, we're not polling for it */
1868 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1869 		io_iopoll_req_issued(req, issue_flags);
1870 
1871 	return 0;
1872 }
1873 
1874 int io_poll_issue(struct io_kiocb *req, bool *locked)
1875 {
1876 	io_tw_lock(req->ctx, locked);
1877 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1878 				 IO_URING_F_COMPLETE_DEFER);
1879 }
1880 
1881 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1882 {
1883 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1884 
1885 	req = io_put_req_find_next(req);
1886 	return req ? &req->work : NULL;
1887 }
1888 
1889 void io_wq_submit_work(struct io_wq_work *work)
1890 {
1891 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1892 	const struct io_op_def *def = &io_op_defs[req->opcode];
1893 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1894 	bool needs_poll = false;
1895 	int ret = 0, err = -ECANCELED;
1896 
1897 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1898 	if (!(req->flags & REQ_F_REFCOUNT))
1899 		__io_req_set_refcount(req, 2);
1900 	else
1901 		req_ref_get(req);
1902 
1903 	io_arm_ltimeout(req);
1904 
1905 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1906 	if (work->flags & IO_WQ_WORK_CANCEL) {
1907 fail:
1908 		io_req_task_queue_fail(req, err);
1909 		return;
1910 	}
1911 	if (!io_assign_file(req, issue_flags)) {
1912 		err = -EBADF;
1913 		work->flags |= IO_WQ_WORK_CANCEL;
1914 		goto fail;
1915 	}
1916 
1917 	if (req->flags & REQ_F_FORCE_ASYNC) {
1918 		bool opcode_poll = def->pollin || def->pollout;
1919 
1920 		if (opcode_poll && file_can_poll(req->file)) {
1921 			needs_poll = true;
1922 			issue_flags |= IO_URING_F_NONBLOCK;
1923 		}
1924 	}
1925 
1926 	do {
1927 		ret = io_issue_sqe(req, issue_flags);
1928 		if (ret != -EAGAIN)
1929 			break;
1930 		/*
1931 		 * We can get EAGAIN for iopolled IO even though we're
1932 		 * forcing a sync submission from here, since we can't
1933 		 * wait for request slots on the block side.
1934 		 */
1935 		if (!needs_poll) {
1936 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1937 				break;
1938 			cond_resched();
1939 			continue;
1940 		}
1941 
1942 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1943 			return;
1944 		/* aborted or ready, in either case retry blocking */
1945 		needs_poll = false;
1946 		issue_flags &= ~IO_URING_F_NONBLOCK;
1947 	} while (1);
1948 
1949 	/* avoid locking problems by failing it from a clean context */
1950 	if (ret < 0)
1951 		io_req_task_queue_fail(req, ret);
1952 }
1953 
1954 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1955 				      unsigned int issue_flags)
1956 {
1957 	struct io_ring_ctx *ctx = req->ctx;
1958 	struct file *file = NULL;
1959 	unsigned long file_ptr;
1960 
1961 	io_ring_submit_lock(ctx, issue_flags);
1962 
1963 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1964 		goto out;
1965 	fd = array_index_nospec(fd, ctx->nr_user_files);
1966 	file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
1967 	file = (struct file *) (file_ptr & FFS_MASK);
1968 	file_ptr &= ~FFS_MASK;
1969 	/* mask in overlapping REQ_F and FFS bits */
1970 	req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT);
1971 	io_req_set_rsrc_node(req, ctx, 0);
1972 out:
1973 	io_ring_submit_unlock(ctx, issue_flags);
1974 	return file;
1975 }
1976 
1977 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1978 {
1979 	struct file *file = fget(fd);
1980 
1981 	trace_io_uring_file_get(req, fd);
1982 
1983 	/* we don't allow fixed io_uring files */
1984 	if (file && io_is_uring_fops(file))
1985 		io_req_track_inflight(req);
1986 	return file;
1987 }
1988 
1989 static void io_queue_async(struct io_kiocb *req, int ret)
1990 	__must_hold(&req->ctx->uring_lock)
1991 {
1992 	struct io_kiocb *linked_timeout;
1993 
1994 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1995 		io_req_defer_failed(req, ret);
1996 		return;
1997 	}
1998 
1999 	linked_timeout = io_prep_linked_timeout(req);
2000 
2001 	switch (io_arm_poll_handler(req, 0)) {
2002 	case IO_APOLL_READY:
2003 		io_kbuf_recycle(req, 0);
2004 		io_req_task_queue(req);
2005 		break;
2006 	case IO_APOLL_ABORTED:
2007 		io_kbuf_recycle(req, 0);
2008 		io_queue_iowq(req, NULL);
2009 		break;
2010 	case IO_APOLL_OK:
2011 		break;
2012 	}
2013 
2014 	if (linked_timeout)
2015 		io_queue_linked_timeout(linked_timeout);
2016 }
2017 
2018 static inline void io_queue_sqe(struct io_kiocb *req)
2019 	__must_hold(&req->ctx->uring_lock)
2020 {
2021 	int ret;
2022 
2023 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2024 
2025 	/*
2026 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2027 	 * doesn't support non-blocking read/write attempts
2028 	 */
2029 	if (likely(!ret))
2030 		io_arm_ltimeout(req);
2031 	else
2032 		io_queue_async(req, ret);
2033 }
2034 
2035 static void io_queue_sqe_fallback(struct io_kiocb *req)
2036 	__must_hold(&req->ctx->uring_lock)
2037 {
2038 	if (unlikely(req->flags & REQ_F_FAIL)) {
2039 		/*
2040 		 * We don't submit, fail them all, for that replace hardlinks
2041 		 * with normal links. Extra REQ_F_LINK is tolerated.
2042 		 */
2043 		req->flags &= ~REQ_F_HARDLINK;
2044 		req->flags |= REQ_F_LINK;
2045 		io_req_defer_failed(req, req->cqe.res);
2046 	} else if (unlikely(req->ctx->drain_active)) {
2047 		io_drain_req(req);
2048 	} else {
2049 		int ret = io_req_prep_async(req);
2050 
2051 		if (unlikely(ret))
2052 			io_req_defer_failed(req, ret);
2053 		else
2054 			io_queue_iowq(req, NULL);
2055 	}
2056 }
2057 
2058 /*
2059  * Check SQE restrictions (opcode and flags).
2060  *
2061  * Returns 'true' if SQE is allowed, 'false' otherwise.
2062  */
2063 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2064 					struct io_kiocb *req,
2065 					unsigned int sqe_flags)
2066 {
2067 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2068 		return false;
2069 
2070 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2071 	    ctx->restrictions.sqe_flags_required)
2072 		return false;
2073 
2074 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2075 			  ctx->restrictions.sqe_flags_required))
2076 		return false;
2077 
2078 	return true;
2079 }
2080 
2081 static void io_init_req_drain(struct io_kiocb *req)
2082 {
2083 	struct io_ring_ctx *ctx = req->ctx;
2084 	struct io_kiocb *head = ctx->submit_state.link.head;
2085 
2086 	ctx->drain_active = true;
2087 	if (head) {
2088 		/*
2089 		 * If we need to drain a request in the middle of a link, drain
2090 		 * the head request and the next request/link after the current
2091 		 * link. Considering sequential execution of links,
2092 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2093 		 * link.
2094 		 */
2095 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2096 		ctx->drain_next = true;
2097 	}
2098 }
2099 
2100 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2101 		       const struct io_uring_sqe *sqe)
2102 	__must_hold(&ctx->uring_lock)
2103 {
2104 	const struct io_op_def *def;
2105 	unsigned int sqe_flags;
2106 	int personality;
2107 	u8 opcode;
2108 
2109 	/* req is partially pre-initialised, see io_preinit_req() */
2110 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2111 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2112 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2113 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2114 	req->file = NULL;
2115 	req->rsrc_node = NULL;
2116 	req->task = current;
2117 
2118 	if (unlikely(opcode >= IORING_OP_LAST)) {
2119 		req->opcode = 0;
2120 		return -EINVAL;
2121 	}
2122 	def = &io_op_defs[opcode];
2123 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2124 		/* enforce forwards compatibility on users */
2125 		if (sqe_flags & ~SQE_VALID_FLAGS)
2126 			return -EINVAL;
2127 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2128 			if (!def->buffer_select)
2129 				return -EOPNOTSUPP;
2130 			req->buf_index = READ_ONCE(sqe->buf_group);
2131 		}
2132 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2133 			ctx->drain_disabled = true;
2134 		if (sqe_flags & IOSQE_IO_DRAIN) {
2135 			if (ctx->drain_disabled)
2136 				return -EOPNOTSUPP;
2137 			io_init_req_drain(req);
2138 		}
2139 	}
2140 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2141 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2142 			return -EACCES;
2143 		/* knock it to the slow queue path, will be drained there */
2144 		if (ctx->drain_active)
2145 			req->flags |= REQ_F_FORCE_ASYNC;
2146 		/* if there is no link, we're at "next" request and need to drain */
2147 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2148 			ctx->drain_next = false;
2149 			ctx->drain_active = true;
2150 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2151 		}
2152 	}
2153 
2154 	if (!def->ioprio && sqe->ioprio)
2155 		return -EINVAL;
2156 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2157 		return -EINVAL;
2158 
2159 	if (def->needs_file) {
2160 		struct io_submit_state *state = &ctx->submit_state;
2161 
2162 		req->cqe.fd = READ_ONCE(sqe->fd);
2163 
2164 		/*
2165 		 * Plug now if we have more than 2 IO left after this, and the
2166 		 * target is potentially a read/write to block based storage.
2167 		 */
2168 		if (state->need_plug && def->plug) {
2169 			state->plug_started = true;
2170 			state->need_plug = false;
2171 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2172 		}
2173 	}
2174 
2175 	personality = READ_ONCE(sqe->personality);
2176 	if (personality) {
2177 		int ret;
2178 
2179 		req->creds = xa_load(&ctx->personalities, personality);
2180 		if (!req->creds)
2181 			return -EINVAL;
2182 		get_cred(req->creds);
2183 		ret = security_uring_override_creds(req->creds);
2184 		if (ret) {
2185 			put_cred(req->creds);
2186 			return ret;
2187 		}
2188 		req->flags |= REQ_F_CREDS;
2189 	}
2190 
2191 	return def->prep(req, sqe);
2192 }
2193 
2194 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2195 				      struct io_kiocb *req, int ret)
2196 {
2197 	struct io_ring_ctx *ctx = req->ctx;
2198 	struct io_submit_link *link = &ctx->submit_state.link;
2199 	struct io_kiocb *head = link->head;
2200 
2201 	trace_io_uring_req_failed(sqe, req, ret);
2202 
2203 	/*
2204 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2205 	 * unusable. Instead of failing eagerly, continue assembling the link if
2206 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2207 	 * should find the flag and handle the rest.
2208 	 */
2209 	req_fail_link_node(req, ret);
2210 	if (head && !(head->flags & REQ_F_FAIL))
2211 		req_fail_link_node(head, -ECANCELED);
2212 
2213 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2214 		if (head) {
2215 			link->last->link = req;
2216 			link->head = NULL;
2217 			req = head;
2218 		}
2219 		io_queue_sqe_fallback(req);
2220 		return ret;
2221 	}
2222 
2223 	if (head)
2224 		link->last->link = req;
2225 	else
2226 		link->head = req;
2227 	link->last = req;
2228 	return 0;
2229 }
2230 
2231 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2232 			 const struct io_uring_sqe *sqe)
2233 	__must_hold(&ctx->uring_lock)
2234 {
2235 	struct io_submit_link *link = &ctx->submit_state.link;
2236 	int ret;
2237 
2238 	ret = io_init_req(ctx, req, sqe);
2239 	if (unlikely(ret))
2240 		return io_submit_fail_init(sqe, req, ret);
2241 
2242 	/* don't need @sqe from now on */
2243 	trace_io_uring_submit_sqe(req, true);
2244 
2245 	/*
2246 	 * If we already have a head request, queue this one for async
2247 	 * submittal once the head completes. If we don't have a head but
2248 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2249 	 * submitted sync once the chain is complete. If none of those
2250 	 * conditions are true (normal request), then just queue it.
2251 	 */
2252 	if (unlikely(link->head)) {
2253 		ret = io_req_prep_async(req);
2254 		if (unlikely(ret))
2255 			return io_submit_fail_init(sqe, req, ret);
2256 
2257 		trace_io_uring_link(req, link->head);
2258 		link->last->link = req;
2259 		link->last = req;
2260 
2261 		if (req->flags & IO_REQ_LINK_FLAGS)
2262 			return 0;
2263 		/* last request of the link, flush it */
2264 		req = link->head;
2265 		link->head = NULL;
2266 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2267 			goto fallback;
2268 
2269 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2270 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2271 		if (req->flags & IO_REQ_LINK_FLAGS) {
2272 			link->head = req;
2273 			link->last = req;
2274 		} else {
2275 fallback:
2276 			io_queue_sqe_fallback(req);
2277 		}
2278 		return 0;
2279 	}
2280 
2281 	io_queue_sqe(req);
2282 	return 0;
2283 }
2284 
2285 /*
2286  * Batched submission is done, ensure local IO is flushed out.
2287  */
2288 static void io_submit_state_end(struct io_ring_ctx *ctx)
2289 {
2290 	struct io_submit_state *state = &ctx->submit_state;
2291 
2292 	if (unlikely(state->link.head))
2293 		io_queue_sqe_fallback(state->link.head);
2294 	/* flush only after queuing links as they can generate completions */
2295 	io_submit_flush_completions(ctx);
2296 	if (state->plug_started)
2297 		blk_finish_plug(&state->plug);
2298 }
2299 
2300 /*
2301  * Start submission side cache.
2302  */
2303 static void io_submit_state_start(struct io_submit_state *state,
2304 				  unsigned int max_ios)
2305 {
2306 	state->plug_started = false;
2307 	state->need_plug = max_ios > 2;
2308 	state->submit_nr = max_ios;
2309 	/* set only head, no need to init link_last in advance */
2310 	state->link.head = NULL;
2311 }
2312 
2313 static void io_commit_sqring(struct io_ring_ctx *ctx)
2314 {
2315 	struct io_rings *rings = ctx->rings;
2316 
2317 	/*
2318 	 * Ensure any loads from the SQEs are done at this point,
2319 	 * since once we write the new head, the application could
2320 	 * write new data to them.
2321 	 */
2322 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2323 }
2324 
2325 /*
2326  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2327  * that is mapped by userspace. This means that care needs to be taken to
2328  * ensure that reads are stable, as we cannot rely on userspace always
2329  * being a good citizen. If members of the sqe are validated and then later
2330  * used, it's important that those reads are done through READ_ONCE() to
2331  * prevent a re-load down the line.
2332  */
2333 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
2334 {
2335 	unsigned head, mask = ctx->sq_entries - 1;
2336 	unsigned sq_idx = ctx->cached_sq_head++ & mask;
2337 
2338 	/*
2339 	 * The cached sq head (or cq tail) serves two purposes:
2340 	 *
2341 	 * 1) allows us to batch the cost of updating the user visible
2342 	 *    head updates.
2343 	 * 2) allows the kernel side to track the head on its own, even
2344 	 *    though the application is the one updating it.
2345 	 */
2346 	head = READ_ONCE(ctx->sq_array[sq_idx]);
2347 	if (likely(head < ctx->sq_entries)) {
2348 		/* double index for 128-byte SQEs, twice as long */
2349 		if (ctx->flags & IORING_SETUP_SQE128)
2350 			head <<= 1;
2351 		return &ctx->sq_sqes[head];
2352 	}
2353 
2354 	/* drop invalid entries */
2355 	ctx->cq_extra--;
2356 	WRITE_ONCE(ctx->rings->sq_dropped,
2357 		   READ_ONCE(ctx->rings->sq_dropped) + 1);
2358 	return NULL;
2359 }
2360 
2361 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2362 	__must_hold(&ctx->uring_lock)
2363 {
2364 	unsigned int entries = io_sqring_entries(ctx);
2365 	unsigned int left;
2366 	int ret;
2367 
2368 	if (unlikely(!entries))
2369 		return 0;
2370 	/* make sure SQ entry isn't read before tail */
2371 	ret = left = min3(nr, ctx->sq_entries, entries);
2372 	io_get_task_refs(left);
2373 	io_submit_state_start(&ctx->submit_state, left);
2374 
2375 	do {
2376 		const struct io_uring_sqe *sqe;
2377 		struct io_kiocb *req;
2378 
2379 		if (unlikely(!io_alloc_req_refill(ctx)))
2380 			break;
2381 		req = io_alloc_req(ctx);
2382 		sqe = io_get_sqe(ctx);
2383 		if (unlikely(!sqe)) {
2384 			io_req_add_to_cache(req, ctx);
2385 			break;
2386 		}
2387 
2388 		/*
2389 		 * Continue submitting even for sqe failure if the
2390 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2391 		 */
2392 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2393 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2394 			left--;
2395 			break;
2396 		}
2397 	} while (--left);
2398 
2399 	if (unlikely(left)) {
2400 		ret -= left;
2401 		/* try again if it submitted nothing and can't allocate a req */
2402 		if (!ret && io_req_cache_empty(ctx))
2403 			ret = -EAGAIN;
2404 		current->io_uring->cached_refs += left;
2405 	}
2406 
2407 	io_submit_state_end(ctx);
2408 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2409 	io_commit_sqring(ctx);
2410 	return ret;
2411 }
2412 
2413 struct io_wait_queue {
2414 	struct wait_queue_entry wq;
2415 	struct io_ring_ctx *ctx;
2416 	unsigned cq_tail;
2417 	unsigned nr_timeouts;
2418 };
2419 
2420 static inline bool io_has_work(struct io_ring_ctx *ctx)
2421 {
2422 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2423 	       ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
2424 		!llist_empty(&ctx->work_llist));
2425 }
2426 
2427 static inline bool io_should_wake(struct io_wait_queue *iowq)
2428 {
2429 	struct io_ring_ctx *ctx = iowq->ctx;
2430 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2431 
2432 	/*
2433 	 * Wake up if we have enough events, or if a timeout occurred since we
2434 	 * started waiting. For timeouts, we always want to return to userspace,
2435 	 * regardless of event count.
2436 	 */
2437 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2438 }
2439 
2440 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2441 			    int wake_flags, void *key)
2442 {
2443 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
2444 							wq);
2445 	struct io_ring_ctx *ctx = iowq->ctx;
2446 
2447 	/*
2448 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2449 	 * the task, and the next invocation will do it.
2450 	 */
2451 	if (io_should_wake(iowq) || io_has_work(ctx))
2452 		return autoremove_wake_function(curr, mode, wake_flags, key);
2453 	return -1;
2454 }
2455 
2456 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2457 {
2458 	if (io_run_task_work_ctx(ctx) > 0)
2459 		return 1;
2460 	if (task_sigpending(current))
2461 		return -EINTR;
2462 	return 0;
2463 }
2464 
2465 /* when returns >0, the caller should retry */
2466 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2467 					  struct io_wait_queue *iowq,
2468 					  ktime_t timeout)
2469 {
2470 	int ret;
2471 	unsigned long check_cq;
2472 
2473 	/* make sure we run task_work before checking for signals */
2474 	ret = io_run_task_work_sig(ctx);
2475 	if (ret || io_should_wake(iowq))
2476 		return ret;
2477 
2478 	check_cq = READ_ONCE(ctx->check_cq);
2479 	if (unlikely(check_cq)) {
2480 		/* let the caller flush overflows, retry */
2481 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2482 			return 1;
2483 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
2484 			return -EBADR;
2485 	}
2486 	if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS))
2487 		return -ETIME;
2488 
2489 	/*
2490 	 * Run task_work after scheduling. If we got woken because of
2491 	 * task_work being processed, run it now rather than let the caller
2492 	 * do another wait loop.
2493 	 */
2494 	ret = io_run_task_work_sig(ctx);
2495 	return ret < 0 ? ret : 1;
2496 }
2497 
2498 /*
2499  * Wait until events become available, if we don't already have some. The
2500  * application must reap them itself, as they reside on the shared cq ring.
2501  */
2502 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2503 			  const sigset_t __user *sig, size_t sigsz,
2504 			  struct __kernel_timespec __user *uts)
2505 {
2506 	struct io_wait_queue iowq;
2507 	struct io_rings *rings = ctx->rings;
2508 	ktime_t timeout = KTIME_MAX;
2509 	int ret;
2510 
2511 	if (!io_allowed_run_tw(ctx))
2512 		return -EEXIST;
2513 
2514 	do {
2515 		/* always run at least 1 task work to process local work */
2516 		ret = io_run_task_work_ctx(ctx);
2517 		if (ret < 0)
2518 			return ret;
2519 		io_cqring_overflow_flush(ctx);
2520 
2521 		/* if user messes with these they will just get an early return */
2522 		if (__io_cqring_events_user(ctx) >= min_events)
2523 			return 0;
2524 	} while (ret > 0);
2525 
2526 	if (sig) {
2527 #ifdef CONFIG_COMPAT
2528 		if (in_compat_syscall())
2529 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2530 						      sigsz);
2531 		else
2532 #endif
2533 			ret = set_user_sigmask(sig, sigsz);
2534 
2535 		if (ret)
2536 			return ret;
2537 	}
2538 
2539 	if (uts) {
2540 		struct timespec64 ts;
2541 
2542 		if (get_timespec64(&ts, uts))
2543 			return -EFAULT;
2544 		timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2545 	}
2546 
2547 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2548 	iowq.wq.private = current;
2549 	INIT_LIST_HEAD(&iowq.wq.entry);
2550 	iowq.ctx = ctx;
2551 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2552 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2553 
2554 	trace_io_uring_cqring_wait(ctx, min_events);
2555 	do {
2556 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2557 			finish_wait(&ctx->cq_wait, &iowq.wq);
2558 			io_cqring_do_overflow_flush(ctx);
2559 		}
2560 		prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2561 						TASK_INTERRUPTIBLE);
2562 		ret = io_cqring_wait_schedule(ctx, &iowq, timeout);
2563 		if (__io_cqring_events_user(ctx) >= min_events)
2564 			break;
2565 		cond_resched();
2566 	} while (ret > 0);
2567 
2568 	finish_wait(&ctx->cq_wait, &iowq.wq);
2569 	restore_saved_sigmask_unless(ret == -EINTR);
2570 
2571 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2572 }
2573 
2574 static void io_mem_free(void *ptr)
2575 {
2576 	struct page *page;
2577 
2578 	if (!ptr)
2579 		return;
2580 
2581 	page = virt_to_head_page(ptr);
2582 	if (put_page_testzero(page))
2583 		free_compound_page(page);
2584 }
2585 
2586 static void *io_mem_alloc(size_t size)
2587 {
2588 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2589 
2590 	return (void *) __get_free_pages(gfp, get_order(size));
2591 }
2592 
2593 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2594 				unsigned int cq_entries, size_t *sq_offset)
2595 {
2596 	struct io_rings *rings;
2597 	size_t off, sq_array_size;
2598 
2599 	off = struct_size(rings, cqes, cq_entries);
2600 	if (off == SIZE_MAX)
2601 		return SIZE_MAX;
2602 	if (ctx->flags & IORING_SETUP_CQE32) {
2603 		if (check_shl_overflow(off, 1, &off))
2604 			return SIZE_MAX;
2605 	}
2606 
2607 #ifdef CONFIG_SMP
2608 	off = ALIGN(off, SMP_CACHE_BYTES);
2609 	if (off == 0)
2610 		return SIZE_MAX;
2611 #endif
2612 
2613 	if (sq_offset)
2614 		*sq_offset = off;
2615 
2616 	sq_array_size = array_size(sizeof(u32), sq_entries);
2617 	if (sq_array_size == SIZE_MAX)
2618 		return SIZE_MAX;
2619 
2620 	if (check_add_overflow(off, sq_array_size, &off))
2621 		return SIZE_MAX;
2622 
2623 	return off;
2624 }
2625 
2626 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2627 			       unsigned int eventfd_async)
2628 {
2629 	struct io_ev_fd *ev_fd;
2630 	__s32 __user *fds = arg;
2631 	int fd;
2632 
2633 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2634 					lockdep_is_held(&ctx->uring_lock));
2635 	if (ev_fd)
2636 		return -EBUSY;
2637 
2638 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2639 		return -EFAULT;
2640 
2641 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2642 	if (!ev_fd)
2643 		return -ENOMEM;
2644 
2645 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2646 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2647 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2648 		kfree(ev_fd);
2649 		return ret;
2650 	}
2651 
2652 	spin_lock(&ctx->completion_lock);
2653 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2654 	spin_unlock(&ctx->completion_lock);
2655 
2656 	ev_fd->eventfd_async = eventfd_async;
2657 	ctx->has_evfd = true;
2658 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2659 	atomic_set(&ev_fd->refs, 1);
2660 	atomic_set(&ev_fd->ops, 0);
2661 	return 0;
2662 }
2663 
2664 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2665 {
2666 	struct io_ev_fd *ev_fd;
2667 
2668 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2669 					lockdep_is_held(&ctx->uring_lock));
2670 	if (ev_fd) {
2671 		ctx->has_evfd = false;
2672 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2673 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2674 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2675 		return 0;
2676 	}
2677 
2678 	return -ENXIO;
2679 }
2680 
2681 static void io_req_caches_free(struct io_ring_ctx *ctx)
2682 {
2683 	int nr = 0;
2684 
2685 	mutex_lock(&ctx->uring_lock);
2686 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2687 
2688 	while (!io_req_cache_empty(ctx)) {
2689 		struct io_kiocb *req = io_alloc_req(ctx);
2690 
2691 		kmem_cache_free(req_cachep, req);
2692 		nr++;
2693 	}
2694 	if (nr)
2695 		percpu_ref_put_many(&ctx->refs, nr);
2696 	mutex_unlock(&ctx->uring_lock);
2697 }
2698 
2699 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2700 {
2701 	io_sq_thread_finish(ctx);
2702 	io_rsrc_refs_drop(ctx);
2703 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2704 	io_wait_rsrc_data(ctx->buf_data);
2705 	io_wait_rsrc_data(ctx->file_data);
2706 
2707 	mutex_lock(&ctx->uring_lock);
2708 	if (ctx->buf_data)
2709 		__io_sqe_buffers_unregister(ctx);
2710 	if (ctx->file_data)
2711 		__io_sqe_files_unregister(ctx);
2712 	io_cqring_overflow_kill(ctx);
2713 	io_eventfd_unregister(ctx);
2714 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2715 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2716 	mutex_unlock(&ctx->uring_lock);
2717 	io_destroy_buffers(ctx);
2718 	if (ctx->sq_creds)
2719 		put_cred(ctx->sq_creds);
2720 	if (ctx->submitter_task)
2721 		put_task_struct(ctx->submitter_task);
2722 
2723 	/* there are no registered resources left, nobody uses it */
2724 	if (ctx->rsrc_node)
2725 		io_rsrc_node_destroy(ctx->rsrc_node);
2726 	if (ctx->rsrc_backup_node)
2727 		io_rsrc_node_destroy(ctx->rsrc_backup_node);
2728 	flush_delayed_work(&ctx->rsrc_put_work);
2729 	flush_delayed_work(&ctx->fallback_work);
2730 
2731 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2732 	WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
2733 
2734 #if defined(CONFIG_UNIX)
2735 	if (ctx->ring_sock) {
2736 		ctx->ring_sock->file = NULL; /* so that iput() is called */
2737 		sock_release(ctx->ring_sock);
2738 	}
2739 #endif
2740 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2741 
2742 	if (ctx->mm_account) {
2743 		mmdrop(ctx->mm_account);
2744 		ctx->mm_account = NULL;
2745 	}
2746 	io_mem_free(ctx->rings);
2747 	io_mem_free(ctx->sq_sqes);
2748 
2749 	percpu_ref_exit(&ctx->refs);
2750 	free_uid(ctx->user);
2751 	io_req_caches_free(ctx);
2752 	if (ctx->hash_map)
2753 		io_wq_put_hash(ctx->hash_map);
2754 	kfree(ctx->cancel_table.hbs);
2755 	kfree(ctx->cancel_table_locked.hbs);
2756 	kfree(ctx->dummy_ubuf);
2757 	kfree(ctx->io_bl);
2758 	xa_destroy(&ctx->io_bl_xa);
2759 	kfree(ctx);
2760 }
2761 
2762 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2763 {
2764 	struct io_ring_ctx *ctx = file->private_data;
2765 	__poll_t mask = 0;
2766 
2767 	poll_wait(file, &ctx->cq_wait, wait);
2768 	/*
2769 	 * synchronizes with barrier from wq_has_sleeper call in
2770 	 * io_commit_cqring
2771 	 */
2772 	smp_rmb();
2773 	if (!io_sqring_full(ctx))
2774 		mask |= EPOLLOUT | EPOLLWRNORM;
2775 
2776 	/*
2777 	 * Don't flush cqring overflow list here, just do a simple check.
2778 	 * Otherwise there could possible be ABBA deadlock:
2779 	 *      CPU0                    CPU1
2780 	 *      ----                    ----
2781 	 * lock(&ctx->uring_lock);
2782 	 *                              lock(&ep->mtx);
2783 	 *                              lock(&ctx->uring_lock);
2784 	 * lock(&ep->mtx);
2785 	 *
2786 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2787 	 * pushes them to do the flush.
2788 	 */
2789 
2790 	if (io_cqring_events(ctx) || io_has_work(ctx))
2791 		mask |= EPOLLIN | EPOLLRDNORM;
2792 
2793 	return mask;
2794 }
2795 
2796 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2797 {
2798 	const struct cred *creds;
2799 
2800 	creds = xa_erase(&ctx->personalities, id);
2801 	if (creds) {
2802 		put_cred(creds);
2803 		return 0;
2804 	}
2805 
2806 	return -EINVAL;
2807 }
2808 
2809 struct io_tctx_exit {
2810 	struct callback_head		task_work;
2811 	struct completion		completion;
2812 	struct io_ring_ctx		*ctx;
2813 };
2814 
2815 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2816 {
2817 	struct io_uring_task *tctx = current->io_uring;
2818 	struct io_tctx_exit *work;
2819 
2820 	work = container_of(cb, struct io_tctx_exit, task_work);
2821 	/*
2822 	 * When @in_idle, we're in cancellation and it's racy to remove the
2823 	 * node. It'll be removed by the end of cancellation, just ignore it.
2824 	 * tctx can be NULL if the queueing of this task_work raced with
2825 	 * work cancelation off the exec path.
2826 	 */
2827 	if (tctx && !atomic_read(&tctx->in_idle))
2828 		io_uring_del_tctx_node((unsigned long)work->ctx);
2829 	complete(&work->completion);
2830 }
2831 
2832 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2833 {
2834 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2835 
2836 	return req->ctx == data;
2837 }
2838 
2839 static __cold void io_ring_exit_work(struct work_struct *work)
2840 {
2841 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2842 	unsigned long timeout = jiffies + HZ * 60 * 5;
2843 	unsigned long interval = HZ / 20;
2844 	struct io_tctx_exit exit;
2845 	struct io_tctx_node *node;
2846 	int ret;
2847 
2848 	/*
2849 	 * If we're doing polled IO and end up having requests being
2850 	 * submitted async (out-of-line), then completions can come in while
2851 	 * we're waiting for refs to drop. We need to reap these manually,
2852 	 * as nobody else will be looking for them.
2853 	 */
2854 	do {
2855 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2856 			mutex_lock(&ctx->uring_lock);
2857 			io_cqring_overflow_kill(ctx);
2858 			mutex_unlock(&ctx->uring_lock);
2859 		}
2860 
2861 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2862 			io_move_task_work_from_local(ctx);
2863 
2864 		while (io_uring_try_cancel_requests(ctx, NULL, true))
2865 			cond_resched();
2866 
2867 		if (ctx->sq_data) {
2868 			struct io_sq_data *sqd = ctx->sq_data;
2869 			struct task_struct *tsk;
2870 
2871 			io_sq_thread_park(sqd);
2872 			tsk = sqd->thread;
2873 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2874 				io_wq_cancel_cb(tsk->io_uring->io_wq,
2875 						io_cancel_ctx_cb, ctx, true);
2876 			io_sq_thread_unpark(sqd);
2877 		}
2878 
2879 		io_req_caches_free(ctx);
2880 
2881 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2882 			/* there is little hope left, don't run it too often */
2883 			interval = HZ * 60;
2884 		}
2885 	} while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
2886 
2887 	init_completion(&exit.completion);
2888 	init_task_work(&exit.task_work, io_tctx_exit_cb);
2889 	exit.ctx = ctx;
2890 	/*
2891 	 * Some may use context even when all refs and requests have been put,
2892 	 * and they are free to do so while still holding uring_lock or
2893 	 * completion_lock, see io_req_task_submit(). Apart from other work,
2894 	 * this lock/unlock section also waits them to finish.
2895 	 */
2896 	mutex_lock(&ctx->uring_lock);
2897 	while (!list_empty(&ctx->tctx_list)) {
2898 		WARN_ON_ONCE(time_after(jiffies, timeout));
2899 
2900 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2901 					ctx_node);
2902 		/* don't spin on a single task if cancellation failed */
2903 		list_rotate_left(&ctx->tctx_list);
2904 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2905 		if (WARN_ON_ONCE(ret))
2906 			continue;
2907 
2908 		mutex_unlock(&ctx->uring_lock);
2909 		wait_for_completion(&exit.completion);
2910 		mutex_lock(&ctx->uring_lock);
2911 	}
2912 	mutex_unlock(&ctx->uring_lock);
2913 	spin_lock(&ctx->completion_lock);
2914 	spin_unlock(&ctx->completion_lock);
2915 
2916 	io_ring_ctx_free(ctx);
2917 }
2918 
2919 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2920 {
2921 	unsigned long index;
2922 	struct creds *creds;
2923 
2924 	mutex_lock(&ctx->uring_lock);
2925 	percpu_ref_kill(&ctx->refs);
2926 	xa_for_each(&ctx->personalities, index, creds)
2927 		io_unregister_personality(ctx, index);
2928 	if (ctx->rings)
2929 		io_poll_remove_all(ctx, NULL, true);
2930 	mutex_unlock(&ctx->uring_lock);
2931 
2932 	/*
2933 	 * If we failed setting up the ctx, we might not have any rings
2934 	 * and therefore did not submit any requests
2935 	 */
2936 	if (ctx->rings)
2937 		io_kill_timeouts(ctx, NULL, true);
2938 
2939 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2940 	/*
2941 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
2942 	 * if we're exiting a ton of rings at the same time. It just adds
2943 	 * noise and overhead, there's no discernable change in runtime
2944 	 * over using system_wq.
2945 	 */
2946 	queue_work(system_unbound_wq, &ctx->exit_work);
2947 }
2948 
2949 static int io_uring_release(struct inode *inode, struct file *file)
2950 {
2951 	struct io_ring_ctx *ctx = file->private_data;
2952 
2953 	file->private_data = NULL;
2954 	io_ring_ctx_wait_and_kill(ctx);
2955 	return 0;
2956 }
2957 
2958 struct io_task_cancel {
2959 	struct task_struct *task;
2960 	bool all;
2961 };
2962 
2963 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
2964 {
2965 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2966 	struct io_task_cancel *cancel = data;
2967 
2968 	return io_match_task_safe(req, cancel->task, cancel->all);
2969 }
2970 
2971 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
2972 					 struct task_struct *task,
2973 					 bool cancel_all)
2974 {
2975 	struct io_defer_entry *de;
2976 	LIST_HEAD(list);
2977 
2978 	spin_lock(&ctx->completion_lock);
2979 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
2980 		if (io_match_task_safe(de->req, task, cancel_all)) {
2981 			list_cut_position(&list, &ctx->defer_list, &de->list);
2982 			break;
2983 		}
2984 	}
2985 	spin_unlock(&ctx->completion_lock);
2986 	if (list_empty(&list))
2987 		return false;
2988 
2989 	while (!list_empty(&list)) {
2990 		de = list_first_entry(&list, struct io_defer_entry, list);
2991 		list_del_init(&de->list);
2992 		io_req_task_queue_fail(de->req, -ECANCELED);
2993 		kfree(de);
2994 	}
2995 	return true;
2996 }
2997 
2998 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
2999 {
3000 	struct io_tctx_node *node;
3001 	enum io_wq_cancel cret;
3002 	bool ret = false;
3003 
3004 	mutex_lock(&ctx->uring_lock);
3005 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3006 		struct io_uring_task *tctx = node->task->io_uring;
3007 
3008 		/*
3009 		 * io_wq will stay alive while we hold uring_lock, because it's
3010 		 * killed after ctx nodes, which requires to take the lock.
3011 		 */
3012 		if (!tctx || !tctx->io_wq)
3013 			continue;
3014 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3015 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3016 	}
3017 	mutex_unlock(&ctx->uring_lock);
3018 
3019 	return ret;
3020 }
3021 
3022 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3023 						struct task_struct *task,
3024 						bool cancel_all)
3025 {
3026 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3027 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3028 	enum io_wq_cancel cret;
3029 	bool ret = false;
3030 
3031 	/* failed during ring init, it couldn't have issued any requests */
3032 	if (!ctx->rings)
3033 		return false;
3034 
3035 	if (!task) {
3036 		ret |= io_uring_try_cancel_iowq(ctx);
3037 	} else if (tctx && tctx->io_wq) {
3038 		/*
3039 		 * Cancels requests of all rings, not only @ctx, but
3040 		 * it's fine as the task is in exit/exec.
3041 		 */
3042 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3043 				       &cancel, true);
3044 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3045 	}
3046 
3047 	/* SQPOLL thread does its own polling */
3048 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3049 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3050 		while (!wq_list_empty(&ctx->iopoll_list)) {
3051 			io_iopoll_try_reap_events(ctx);
3052 			ret = true;
3053 		}
3054 	}
3055 
3056 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3057 		ret |= io_run_local_work(ctx) > 0;
3058 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3059 	mutex_lock(&ctx->uring_lock);
3060 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3061 	mutex_unlock(&ctx->uring_lock);
3062 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3063 	if (task)
3064 		ret |= io_run_task_work() > 0;
3065 	return ret;
3066 }
3067 
3068 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3069 {
3070 	if (tracked)
3071 		return atomic_read(&tctx->inflight_tracked);
3072 	return percpu_counter_sum(&tctx->inflight);
3073 }
3074 
3075 /*
3076  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3077  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3078  */
3079 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3080 {
3081 	struct io_uring_task *tctx = current->io_uring;
3082 	struct io_ring_ctx *ctx;
3083 	s64 inflight;
3084 	DEFINE_WAIT(wait);
3085 
3086 	WARN_ON_ONCE(sqd && sqd->thread != current);
3087 
3088 	if (!current->io_uring)
3089 		return;
3090 	if (tctx->io_wq)
3091 		io_wq_exit_start(tctx->io_wq);
3092 
3093 	atomic_inc(&tctx->in_idle);
3094 	do {
3095 		bool loop = false;
3096 
3097 		io_uring_drop_tctx_refs(current);
3098 		/* read completions before cancelations */
3099 		inflight = tctx_inflight(tctx, !cancel_all);
3100 		if (!inflight)
3101 			break;
3102 
3103 		if (!sqd) {
3104 			struct io_tctx_node *node;
3105 			unsigned long index;
3106 
3107 			xa_for_each(&tctx->xa, index, node) {
3108 				/* sqpoll task will cancel all its requests */
3109 				if (node->ctx->sq_data)
3110 					continue;
3111 				loop |= io_uring_try_cancel_requests(node->ctx,
3112 							current, cancel_all);
3113 			}
3114 		} else {
3115 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3116 				loop |= io_uring_try_cancel_requests(ctx,
3117 								     current,
3118 								     cancel_all);
3119 		}
3120 
3121 		if (loop) {
3122 			cond_resched();
3123 			continue;
3124 		}
3125 
3126 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3127 		io_run_task_work();
3128 		io_uring_drop_tctx_refs(current);
3129 
3130 		/*
3131 		 * If we've seen completions, retry without waiting. This
3132 		 * avoids a race where a completion comes in before we did
3133 		 * prepare_to_wait().
3134 		 */
3135 		if (inflight == tctx_inflight(tctx, !cancel_all))
3136 			schedule();
3137 		finish_wait(&tctx->wait, &wait);
3138 	} while (1);
3139 
3140 	io_uring_clean_tctx(tctx);
3141 	if (cancel_all) {
3142 		/*
3143 		 * We shouldn't run task_works after cancel, so just leave
3144 		 * ->in_idle set for normal exit.
3145 		 */
3146 		atomic_dec(&tctx->in_idle);
3147 		/* for exec all current's requests should be gone, kill tctx */
3148 		__io_uring_free(current);
3149 	}
3150 }
3151 
3152 void __io_uring_cancel(bool cancel_all)
3153 {
3154 	io_uring_cancel_generic(cancel_all, NULL);
3155 }
3156 
3157 static void *io_uring_validate_mmap_request(struct file *file,
3158 					    loff_t pgoff, size_t sz)
3159 {
3160 	struct io_ring_ctx *ctx = file->private_data;
3161 	loff_t offset = pgoff << PAGE_SHIFT;
3162 	struct page *page;
3163 	void *ptr;
3164 
3165 	switch (offset) {
3166 	case IORING_OFF_SQ_RING:
3167 	case IORING_OFF_CQ_RING:
3168 		ptr = ctx->rings;
3169 		break;
3170 	case IORING_OFF_SQES:
3171 		ptr = ctx->sq_sqes;
3172 		break;
3173 	default:
3174 		return ERR_PTR(-EINVAL);
3175 	}
3176 
3177 	page = virt_to_head_page(ptr);
3178 	if (sz > page_size(page))
3179 		return ERR_PTR(-EINVAL);
3180 
3181 	return ptr;
3182 }
3183 
3184 #ifdef CONFIG_MMU
3185 
3186 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3187 {
3188 	size_t sz = vma->vm_end - vma->vm_start;
3189 	unsigned long pfn;
3190 	void *ptr;
3191 
3192 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3193 	if (IS_ERR(ptr))
3194 		return PTR_ERR(ptr);
3195 
3196 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3197 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3198 }
3199 
3200 #else /* !CONFIG_MMU */
3201 
3202 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3203 {
3204 	return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
3205 }
3206 
3207 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3208 {
3209 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3210 }
3211 
3212 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3213 	unsigned long addr, unsigned long len,
3214 	unsigned long pgoff, unsigned long flags)
3215 {
3216 	void *ptr;
3217 
3218 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3219 	if (IS_ERR(ptr))
3220 		return PTR_ERR(ptr);
3221 
3222 	return (unsigned long) ptr;
3223 }
3224 
3225 #endif /* !CONFIG_MMU */
3226 
3227 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3228 {
3229 	if (flags & IORING_ENTER_EXT_ARG) {
3230 		struct io_uring_getevents_arg arg;
3231 
3232 		if (argsz != sizeof(arg))
3233 			return -EINVAL;
3234 		if (copy_from_user(&arg, argp, sizeof(arg)))
3235 			return -EFAULT;
3236 	}
3237 	return 0;
3238 }
3239 
3240 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3241 			  struct __kernel_timespec __user **ts,
3242 			  const sigset_t __user **sig)
3243 {
3244 	struct io_uring_getevents_arg arg;
3245 
3246 	/*
3247 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3248 	 * is just a pointer to the sigset_t.
3249 	 */
3250 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3251 		*sig = (const sigset_t __user *) argp;
3252 		*ts = NULL;
3253 		return 0;
3254 	}
3255 
3256 	/*
3257 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3258 	 * timespec and sigset_t pointers if good.
3259 	 */
3260 	if (*argsz != sizeof(arg))
3261 		return -EINVAL;
3262 	if (copy_from_user(&arg, argp, sizeof(arg)))
3263 		return -EFAULT;
3264 	if (arg.pad)
3265 		return -EINVAL;
3266 	*sig = u64_to_user_ptr(arg.sigmask);
3267 	*argsz = arg.sigmask_sz;
3268 	*ts = u64_to_user_ptr(arg.ts);
3269 	return 0;
3270 }
3271 
3272 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3273 		u32, min_complete, u32, flags, const void __user *, argp,
3274 		size_t, argsz)
3275 {
3276 	struct io_ring_ctx *ctx;
3277 	struct fd f;
3278 	long ret;
3279 
3280 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3281 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3282 			       IORING_ENTER_REGISTERED_RING)))
3283 		return -EINVAL;
3284 
3285 	/*
3286 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3287 	 * need only dereference our task private array to find it.
3288 	 */
3289 	if (flags & IORING_ENTER_REGISTERED_RING) {
3290 		struct io_uring_task *tctx = current->io_uring;
3291 
3292 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3293 			return -EINVAL;
3294 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3295 		f.file = tctx->registered_rings[fd];
3296 		f.flags = 0;
3297 		if (unlikely(!f.file))
3298 			return -EBADF;
3299 	} else {
3300 		f = fdget(fd);
3301 		if (unlikely(!f.file))
3302 			return -EBADF;
3303 		ret = -EOPNOTSUPP;
3304 		if (unlikely(!io_is_uring_fops(f.file)))
3305 			goto out;
3306 	}
3307 
3308 	ctx = f.file->private_data;
3309 	ret = -EBADFD;
3310 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3311 		goto out;
3312 
3313 	/*
3314 	 * For SQ polling, the thread will do all submissions and completions.
3315 	 * Just return the requested submit count, and wake the thread if
3316 	 * we were asked to.
3317 	 */
3318 	ret = 0;
3319 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3320 		io_cqring_overflow_flush(ctx);
3321 
3322 		if (unlikely(ctx->sq_data->thread == NULL)) {
3323 			ret = -EOWNERDEAD;
3324 			goto out;
3325 		}
3326 		if (flags & IORING_ENTER_SQ_WAKEUP)
3327 			wake_up(&ctx->sq_data->wait);
3328 		if (flags & IORING_ENTER_SQ_WAIT) {
3329 			ret = io_sqpoll_wait_sq(ctx);
3330 			if (ret)
3331 				goto out;
3332 		}
3333 		ret = to_submit;
3334 	} else if (to_submit) {
3335 		ret = io_uring_add_tctx_node(ctx);
3336 		if (unlikely(ret))
3337 			goto out;
3338 
3339 		mutex_lock(&ctx->uring_lock);
3340 		ret = io_submit_sqes(ctx, to_submit);
3341 		if (ret != to_submit) {
3342 			mutex_unlock(&ctx->uring_lock);
3343 			goto out;
3344 		}
3345 		if (flags & IORING_ENTER_GETEVENTS) {
3346 			if (ctx->syscall_iopoll)
3347 				goto iopoll_locked;
3348 			/*
3349 			 * Ignore errors, we'll soon call io_cqring_wait() and
3350 			 * it should handle ownership problems if any.
3351 			 */
3352 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3353 				(void)io_run_local_work_locked(ctx);
3354 		}
3355 		mutex_unlock(&ctx->uring_lock);
3356 	}
3357 
3358 	if (flags & IORING_ENTER_GETEVENTS) {
3359 		int ret2;
3360 
3361 		if (ctx->syscall_iopoll) {
3362 			/*
3363 			 * We disallow the app entering submit/complete with
3364 			 * polling, but we still need to lock the ring to
3365 			 * prevent racing with polled issue that got punted to
3366 			 * a workqueue.
3367 			 */
3368 			mutex_lock(&ctx->uring_lock);
3369 iopoll_locked:
3370 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3371 			if (likely(!ret2)) {
3372 				min_complete = min(min_complete,
3373 						   ctx->cq_entries);
3374 				ret2 = io_iopoll_check(ctx, min_complete);
3375 			}
3376 			mutex_unlock(&ctx->uring_lock);
3377 		} else {
3378 			const sigset_t __user *sig;
3379 			struct __kernel_timespec __user *ts;
3380 
3381 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3382 			if (likely(!ret2)) {
3383 				min_complete = min(min_complete,
3384 						   ctx->cq_entries);
3385 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3386 						      argsz, ts);
3387 			}
3388 		}
3389 
3390 		if (!ret) {
3391 			ret = ret2;
3392 
3393 			/*
3394 			 * EBADR indicates that one or more CQE were dropped.
3395 			 * Once the user has been informed we can clear the bit
3396 			 * as they are obviously ok with those drops.
3397 			 */
3398 			if (unlikely(ret2 == -EBADR))
3399 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3400 					  &ctx->check_cq);
3401 		}
3402 	}
3403 out:
3404 	fdput(f);
3405 	return ret;
3406 }
3407 
3408 static const struct file_operations io_uring_fops = {
3409 	.release	= io_uring_release,
3410 	.mmap		= io_uring_mmap,
3411 #ifndef CONFIG_MMU
3412 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3413 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3414 #endif
3415 	.poll		= io_uring_poll,
3416 #ifdef CONFIG_PROC_FS
3417 	.show_fdinfo	= io_uring_show_fdinfo,
3418 #endif
3419 };
3420 
3421 bool io_is_uring_fops(struct file *file)
3422 {
3423 	return file->f_op == &io_uring_fops;
3424 }
3425 
3426 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3427 					 struct io_uring_params *p)
3428 {
3429 	struct io_rings *rings;
3430 	size_t size, sq_array_offset;
3431 
3432 	/* make sure these are sane, as we already accounted them */
3433 	ctx->sq_entries = p->sq_entries;
3434 	ctx->cq_entries = p->cq_entries;
3435 
3436 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3437 	if (size == SIZE_MAX)
3438 		return -EOVERFLOW;
3439 
3440 	rings = io_mem_alloc(size);
3441 	if (!rings)
3442 		return -ENOMEM;
3443 
3444 	ctx->rings = rings;
3445 	ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3446 	rings->sq_ring_mask = p->sq_entries - 1;
3447 	rings->cq_ring_mask = p->cq_entries - 1;
3448 	rings->sq_ring_entries = p->sq_entries;
3449 	rings->cq_ring_entries = p->cq_entries;
3450 
3451 	if (p->flags & IORING_SETUP_SQE128)
3452 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3453 	else
3454 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3455 	if (size == SIZE_MAX) {
3456 		io_mem_free(ctx->rings);
3457 		ctx->rings = NULL;
3458 		return -EOVERFLOW;
3459 	}
3460 
3461 	ctx->sq_sqes = io_mem_alloc(size);
3462 	if (!ctx->sq_sqes) {
3463 		io_mem_free(ctx->rings);
3464 		ctx->rings = NULL;
3465 		return -ENOMEM;
3466 	}
3467 
3468 	return 0;
3469 }
3470 
3471 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
3472 {
3473 	int ret, fd;
3474 
3475 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3476 	if (fd < 0)
3477 		return fd;
3478 
3479 	ret = __io_uring_add_tctx_node(ctx);
3480 	if (ret) {
3481 		put_unused_fd(fd);
3482 		return ret;
3483 	}
3484 	fd_install(fd, file);
3485 	return fd;
3486 }
3487 
3488 /*
3489  * Allocate an anonymous fd, this is what constitutes the application
3490  * visible backing of an io_uring instance. The application mmaps this
3491  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3492  * we have to tie this fd to a socket for file garbage collection purposes.
3493  */
3494 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3495 {
3496 	struct file *file;
3497 #if defined(CONFIG_UNIX)
3498 	int ret;
3499 
3500 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3501 				&ctx->ring_sock);
3502 	if (ret)
3503 		return ERR_PTR(ret);
3504 #endif
3505 
3506 	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3507 					 O_RDWR | O_CLOEXEC, NULL);
3508 #if defined(CONFIG_UNIX)
3509 	if (IS_ERR(file)) {
3510 		sock_release(ctx->ring_sock);
3511 		ctx->ring_sock = NULL;
3512 	} else {
3513 		ctx->ring_sock->file = file;
3514 	}
3515 #endif
3516 	return file;
3517 }
3518 
3519 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3520 				  struct io_uring_params __user *params)
3521 {
3522 	struct io_ring_ctx *ctx;
3523 	struct file *file;
3524 	int ret;
3525 
3526 	if (!entries)
3527 		return -EINVAL;
3528 	if (entries > IORING_MAX_ENTRIES) {
3529 		if (!(p->flags & IORING_SETUP_CLAMP))
3530 			return -EINVAL;
3531 		entries = IORING_MAX_ENTRIES;
3532 	}
3533 
3534 	/*
3535 	 * Use twice as many entries for the CQ ring. It's possible for the
3536 	 * application to drive a higher depth than the size of the SQ ring,
3537 	 * since the sqes are only used at submission time. This allows for
3538 	 * some flexibility in overcommitting a bit. If the application has
3539 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3540 	 * of CQ ring entries manually.
3541 	 */
3542 	p->sq_entries = roundup_pow_of_two(entries);
3543 	if (p->flags & IORING_SETUP_CQSIZE) {
3544 		/*
3545 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3546 		 * to a power-of-two, if it isn't already. We do NOT impose
3547 		 * any cq vs sq ring sizing.
3548 		 */
3549 		if (!p->cq_entries)
3550 			return -EINVAL;
3551 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3552 			if (!(p->flags & IORING_SETUP_CLAMP))
3553 				return -EINVAL;
3554 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3555 		}
3556 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3557 		if (p->cq_entries < p->sq_entries)
3558 			return -EINVAL;
3559 	} else {
3560 		p->cq_entries = 2 * p->sq_entries;
3561 	}
3562 
3563 	ctx = io_ring_ctx_alloc(p);
3564 	if (!ctx)
3565 		return -ENOMEM;
3566 
3567 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3568 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3569 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3570 		ctx->task_complete = true;
3571 
3572 	/*
3573 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3574 	 * space applications don't need to do io completion events
3575 	 * polling again, they can rely on io_sq_thread to do polling
3576 	 * work, which can reduce cpu usage and uring_lock contention.
3577 	 */
3578 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3579 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3580 		ctx->syscall_iopoll = 1;
3581 
3582 	ctx->compat = in_compat_syscall();
3583 	if (!capable(CAP_IPC_LOCK))
3584 		ctx->user = get_uid(current_user());
3585 
3586 	/*
3587 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3588 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3589 	 */
3590 	ret = -EINVAL;
3591 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3592 		/* IPI related flags don't make sense with SQPOLL */
3593 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3594 				  IORING_SETUP_TASKRUN_FLAG |
3595 				  IORING_SETUP_DEFER_TASKRUN))
3596 			goto err;
3597 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3598 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3599 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3600 	} else {
3601 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3602 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3603 			goto err;
3604 		ctx->notify_method = TWA_SIGNAL;
3605 	}
3606 
3607 	/*
3608 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3609 	 * submission task. This implies that there is only one submitter, so enforce
3610 	 * that.
3611 	 */
3612 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3613 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3614 		goto err;
3615 	}
3616 
3617 	/*
3618 	 * This is just grabbed for accounting purposes. When a process exits,
3619 	 * the mm is exited and dropped before the files, hence we need to hang
3620 	 * on to this mm purely for the purposes of being able to unaccount
3621 	 * memory (locked/pinned vm). It's not used for anything else.
3622 	 */
3623 	mmgrab(current->mm);
3624 	ctx->mm_account = current->mm;
3625 
3626 	ret = io_allocate_scq_urings(ctx, p);
3627 	if (ret)
3628 		goto err;
3629 
3630 	ret = io_sq_offload_create(ctx, p);
3631 	if (ret)
3632 		goto err;
3633 	/* always set a rsrc node */
3634 	ret = io_rsrc_node_switch_start(ctx);
3635 	if (ret)
3636 		goto err;
3637 	io_rsrc_node_switch(ctx, NULL);
3638 
3639 	memset(&p->sq_off, 0, sizeof(p->sq_off));
3640 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3641 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3642 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3643 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3644 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3645 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3646 	p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3647 
3648 	memset(&p->cq_off, 0, sizeof(p->cq_off));
3649 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3650 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3651 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3652 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3653 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3654 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3655 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3656 
3657 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3658 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3659 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3660 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3661 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3662 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3663 			IORING_FEAT_LINKED_FILE;
3664 
3665 	if (copy_to_user(params, p, sizeof(*p))) {
3666 		ret = -EFAULT;
3667 		goto err;
3668 	}
3669 
3670 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3671 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3672 		ctx->submitter_task = get_task_struct(current);
3673 
3674 	file = io_uring_get_file(ctx);
3675 	if (IS_ERR(file)) {
3676 		ret = PTR_ERR(file);
3677 		goto err;
3678 	}
3679 
3680 	/*
3681 	 * Install ring fd as the very last thing, so we don't risk someone
3682 	 * having closed it before we finish setup
3683 	 */
3684 	ret = io_uring_install_fd(ctx, file);
3685 	if (ret < 0) {
3686 		/* fput will clean it up */
3687 		fput(file);
3688 		return ret;
3689 	}
3690 
3691 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3692 	return ret;
3693 err:
3694 	io_ring_ctx_wait_and_kill(ctx);
3695 	return ret;
3696 }
3697 
3698 /*
3699  * Sets up an aio uring context, and returns the fd. Applications asks for a
3700  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3701  * params structure passed in.
3702  */
3703 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3704 {
3705 	struct io_uring_params p;
3706 	int i;
3707 
3708 	if (copy_from_user(&p, params, sizeof(p)))
3709 		return -EFAULT;
3710 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3711 		if (p.resv[i])
3712 			return -EINVAL;
3713 	}
3714 
3715 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3716 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3717 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3718 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3719 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3720 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3721 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN))
3722 		return -EINVAL;
3723 
3724 	return io_uring_create(entries, &p, params);
3725 }
3726 
3727 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3728 		struct io_uring_params __user *, params)
3729 {
3730 	return io_uring_setup(entries, params);
3731 }
3732 
3733 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
3734 			   unsigned nr_args)
3735 {
3736 	struct io_uring_probe *p;
3737 	size_t size;
3738 	int i, ret;
3739 
3740 	size = struct_size(p, ops, nr_args);
3741 	if (size == SIZE_MAX)
3742 		return -EOVERFLOW;
3743 	p = kzalloc(size, GFP_KERNEL);
3744 	if (!p)
3745 		return -ENOMEM;
3746 
3747 	ret = -EFAULT;
3748 	if (copy_from_user(p, arg, size))
3749 		goto out;
3750 	ret = -EINVAL;
3751 	if (memchr_inv(p, 0, size))
3752 		goto out;
3753 
3754 	p->last_op = IORING_OP_LAST - 1;
3755 	if (nr_args > IORING_OP_LAST)
3756 		nr_args = IORING_OP_LAST;
3757 
3758 	for (i = 0; i < nr_args; i++) {
3759 		p->ops[i].op = i;
3760 		if (!io_op_defs[i].not_supported)
3761 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
3762 	}
3763 	p->ops_len = i;
3764 
3765 	ret = 0;
3766 	if (copy_to_user(arg, p, size))
3767 		ret = -EFAULT;
3768 out:
3769 	kfree(p);
3770 	return ret;
3771 }
3772 
3773 static int io_register_personality(struct io_ring_ctx *ctx)
3774 {
3775 	const struct cred *creds;
3776 	u32 id;
3777 	int ret;
3778 
3779 	creds = get_current_cred();
3780 
3781 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
3782 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
3783 	if (ret < 0) {
3784 		put_cred(creds);
3785 		return ret;
3786 	}
3787 	return id;
3788 }
3789 
3790 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
3791 					   void __user *arg, unsigned int nr_args)
3792 {
3793 	struct io_uring_restriction *res;
3794 	size_t size;
3795 	int i, ret;
3796 
3797 	/* Restrictions allowed only if rings started disabled */
3798 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3799 		return -EBADFD;
3800 
3801 	/* We allow only a single restrictions registration */
3802 	if (ctx->restrictions.registered)
3803 		return -EBUSY;
3804 
3805 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
3806 		return -EINVAL;
3807 
3808 	size = array_size(nr_args, sizeof(*res));
3809 	if (size == SIZE_MAX)
3810 		return -EOVERFLOW;
3811 
3812 	res = memdup_user(arg, size);
3813 	if (IS_ERR(res))
3814 		return PTR_ERR(res);
3815 
3816 	ret = 0;
3817 
3818 	for (i = 0; i < nr_args; i++) {
3819 		switch (res[i].opcode) {
3820 		case IORING_RESTRICTION_REGISTER_OP:
3821 			if (res[i].register_op >= IORING_REGISTER_LAST) {
3822 				ret = -EINVAL;
3823 				goto out;
3824 			}
3825 
3826 			__set_bit(res[i].register_op,
3827 				  ctx->restrictions.register_op);
3828 			break;
3829 		case IORING_RESTRICTION_SQE_OP:
3830 			if (res[i].sqe_op >= IORING_OP_LAST) {
3831 				ret = -EINVAL;
3832 				goto out;
3833 			}
3834 
3835 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
3836 			break;
3837 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
3838 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
3839 			break;
3840 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
3841 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
3842 			break;
3843 		default:
3844 			ret = -EINVAL;
3845 			goto out;
3846 		}
3847 	}
3848 
3849 out:
3850 	/* Reset all restrictions if an error happened */
3851 	if (ret != 0)
3852 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
3853 	else
3854 		ctx->restrictions.registered = true;
3855 
3856 	kfree(res);
3857 	return ret;
3858 }
3859 
3860 static int io_register_enable_rings(struct io_ring_ctx *ctx)
3861 {
3862 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3863 		return -EBADFD;
3864 
3865 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task)
3866 		ctx->submitter_task = get_task_struct(current);
3867 
3868 	if (ctx->restrictions.registered)
3869 		ctx->restricted = 1;
3870 
3871 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
3872 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
3873 		wake_up(&ctx->sq_data->wait);
3874 	return 0;
3875 }
3876 
3877 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
3878 				       void __user *arg, unsigned len)
3879 {
3880 	struct io_uring_task *tctx = current->io_uring;
3881 	cpumask_var_t new_mask;
3882 	int ret;
3883 
3884 	if (!tctx || !tctx->io_wq)
3885 		return -EINVAL;
3886 
3887 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3888 		return -ENOMEM;
3889 
3890 	cpumask_clear(new_mask);
3891 	if (len > cpumask_size())
3892 		len = cpumask_size();
3893 
3894 	if (in_compat_syscall()) {
3895 		ret = compat_get_bitmap(cpumask_bits(new_mask),
3896 					(const compat_ulong_t __user *)arg,
3897 					len * 8 /* CHAR_BIT */);
3898 	} else {
3899 		ret = copy_from_user(new_mask, arg, len);
3900 	}
3901 
3902 	if (ret) {
3903 		free_cpumask_var(new_mask);
3904 		return -EFAULT;
3905 	}
3906 
3907 	ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
3908 	free_cpumask_var(new_mask);
3909 	return ret;
3910 }
3911 
3912 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
3913 {
3914 	struct io_uring_task *tctx = current->io_uring;
3915 
3916 	if (!tctx || !tctx->io_wq)
3917 		return -EINVAL;
3918 
3919 	return io_wq_cpu_affinity(tctx->io_wq, NULL);
3920 }
3921 
3922 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
3923 					       void __user *arg)
3924 	__must_hold(&ctx->uring_lock)
3925 {
3926 	struct io_tctx_node *node;
3927 	struct io_uring_task *tctx = NULL;
3928 	struct io_sq_data *sqd = NULL;
3929 	__u32 new_count[2];
3930 	int i, ret;
3931 
3932 	if (copy_from_user(new_count, arg, sizeof(new_count)))
3933 		return -EFAULT;
3934 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
3935 		if (new_count[i] > INT_MAX)
3936 			return -EINVAL;
3937 
3938 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3939 		sqd = ctx->sq_data;
3940 		if (sqd) {
3941 			/*
3942 			 * Observe the correct sqd->lock -> ctx->uring_lock
3943 			 * ordering. Fine to drop uring_lock here, we hold
3944 			 * a ref to the ctx.
3945 			 */
3946 			refcount_inc(&sqd->refs);
3947 			mutex_unlock(&ctx->uring_lock);
3948 			mutex_lock(&sqd->lock);
3949 			mutex_lock(&ctx->uring_lock);
3950 			if (sqd->thread)
3951 				tctx = sqd->thread->io_uring;
3952 		}
3953 	} else {
3954 		tctx = current->io_uring;
3955 	}
3956 
3957 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
3958 
3959 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
3960 		if (new_count[i])
3961 			ctx->iowq_limits[i] = new_count[i];
3962 	ctx->iowq_limits_set = true;
3963 
3964 	if (tctx && tctx->io_wq) {
3965 		ret = io_wq_max_workers(tctx->io_wq, new_count);
3966 		if (ret)
3967 			goto err;
3968 	} else {
3969 		memset(new_count, 0, sizeof(new_count));
3970 	}
3971 
3972 	if (sqd) {
3973 		mutex_unlock(&sqd->lock);
3974 		io_put_sq_data(sqd);
3975 	}
3976 
3977 	if (copy_to_user(arg, new_count, sizeof(new_count)))
3978 		return -EFAULT;
3979 
3980 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
3981 	if (sqd)
3982 		return 0;
3983 
3984 	/* now propagate the restriction to all registered users */
3985 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3986 		struct io_uring_task *tctx = node->task->io_uring;
3987 
3988 		if (WARN_ON_ONCE(!tctx->io_wq))
3989 			continue;
3990 
3991 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
3992 			new_count[i] = ctx->iowq_limits[i];
3993 		/* ignore errors, it always returns zero anyway */
3994 		(void)io_wq_max_workers(tctx->io_wq, new_count);
3995 	}
3996 	return 0;
3997 err:
3998 	if (sqd) {
3999 		mutex_unlock(&sqd->lock);
4000 		io_put_sq_data(sqd);
4001 	}
4002 	return ret;
4003 }
4004 
4005 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4006 			       void __user *arg, unsigned nr_args)
4007 	__releases(ctx->uring_lock)
4008 	__acquires(ctx->uring_lock)
4009 {
4010 	int ret;
4011 
4012 	/*
4013 	 * We don't quiesce the refs for register anymore and so it can't be
4014 	 * dying as we're holding a file ref here.
4015 	 */
4016 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4017 		return -ENXIO;
4018 
4019 	if (ctx->submitter_task && ctx->submitter_task != current)
4020 		return -EEXIST;
4021 
4022 	if (ctx->restricted) {
4023 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4024 		if (!test_bit(opcode, ctx->restrictions.register_op))
4025 			return -EACCES;
4026 	}
4027 
4028 	switch (opcode) {
4029 	case IORING_REGISTER_BUFFERS:
4030 		ret = -EFAULT;
4031 		if (!arg)
4032 			break;
4033 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4034 		break;
4035 	case IORING_UNREGISTER_BUFFERS:
4036 		ret = -EINVAL;
4037 		if (arg || nr_args)
4038 			break;
4039 		ret = io_sqe_buffers_unregister(ctx);
4040 		break;
4041 	case IORING_REGISTER_FILES:
4042 		ret = -EFAULT;
4043 		if (!arg)
4044 			break;
4045 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4046 		break;
4047 	case IORING_UNREGISTER_FILES:
4048 		ret = -EINVAL;
4049 		if (arg || nr_args)
4050 			break;
4051 		ret = io_sqe_files_unregister(ctx);
4052 		break;
4053 	case IORING_REGISTER_FILES_UPDATE:
4054 		ret = io_register_files_update(ctx, arg, nr_args);
4055 		break;
4056 	case IORING_REGISTER_EVENTFD:
4057 		ret = -EINVAL;
4058 		if (nr_args != 1)
4059 			break;
4060 		ret = io_eventfd_register(ctx, arg, 0);
4061 		break;
4062 	case IORING_REGISTER_EVENTFD_ASYNC:
4063 		ret = -EINVAL;
4064 		if (nr_args != 1)
4065 			break;
4066 		ret = io_eventfd_register(ctx, arg, 1);
4067 		break;
4068 	case IORING_UNREGISTER_EVENTFD:
4069 		ret = -EINVAL;
4070 		if (arg || nr_args)
4071 			break;
4072 		ret = io_eventfd_unregister(ctx);
4073 		break;
4074 	case IORING_REGISTER_PROBE:
4075 		ret = -EINVAL;
4076 		if (!arg || nr_args > 256)
4077 			break;
4078 		ret = io_probe(ctx, arg, nr_args);
4079 		break;
4080 	case IORING_REGISTER_PERSONALITY:
4081 		ret = -EINVAL;
4082 		if (arg || nr_args)
4083 			break;
4084 		ret = io_register_personality(ctx);
4085 		break;
4086 	case IORING_UNREGISTER_PERSONALITY:
4087 		ret = -EINVAL;
4088 		if (arg)
4089 			break;
4090 		ret = io_unregister_personality(ctx, nr_args);
4091 		break;
4092 	case IORING_REGISTER_ENABLE_RINGS:
4093 		ret = -EINVAL;
4094 		if (arg || nr_args)
4095 			break;
4096 		ret = io_register_enable_rings(ctx);
4097 		break;
4098 	case IORING_REGISTER_RESTRICTIONS:
4099 		ret = io_register_restrictions(ctx, arg, nr_args);
4100 		break;
4101 	case IORING_REGISTER_FILES2:
4102 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4103 		break;
4104 	case IORING_REGISTER_FILES_UPDATE2:
4105 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4106 					      IORING_RSRC_FILE);
4107 		break;
4108 	case IORING_REGISTER_BUFFERS2:
4109 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4110 		break;
4111 	case IORING_REGISTER_BUFFERS_UPDATE:
4112 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4113 					      IORING_RSRC_BUFFER);
4114 		break;
4115 	case IORING_REGISTER_IOWQ_AFF:
4116 		ret = -EINVAL;
4117 		if (!arg || !nr_args)
4118 			break;
4119 		ret = io_register_iowq_aff(ctx, arg, nr_args);
4120 		break;
4121 	case IORING_UNREGISTER_IOWQ_AFF:
4122 		ret = -EINVAL;
4123 		if (arg || nr_args)
4124 			break;
4125 		ret = io_unregister_iowq_aff(ctx);
4126 		break;
4127 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4128 		ret = -EINVAL;
4129 		if (!arg || nr_args != 2)
4130 			break;
4131 		ret = io_register_iowq_max_workers(ctx, arg);
4132 		break;
4133 	case IORING_REGISTER_RING_FDS:
4134 		ret = io_ringfd_register(ctx, arg, nr_args);
4135 		break;
4136 	case IORING_UNREGISTER_RING_FDS:
4137 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4138 		break;
4139 	case IORING_REGISTER_PBUF_RING:
4140 		ret = -EINVAL;
4141 		if (!arg || nr_args != 1)
4142 			break;
4143 		ret = io_register_pbuf_ring(ctx, arg);
4144 		break;
4145 	case IORING_UNREGISTER_PBUF_RING:
4146 		ret = -EINVAL;
4147 		if (!arg || nr_args != 1)
4148 			break;
4149 		ret = io_unregister_pbuf_ring(ctx, arg);
4150 		break;
4151 	case IORING_REGISTER_SYNC_CANCEL:
4152 		ret = -EINVAL;
4153 		if (!arg || nr_args != 1)
4154 			break;
4155 		ret = io_sync_cancel(ctx, arg);
4156 		break;
4157 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4158 		ret = -EINVAL;
4159 		if (!arg || nr_args)
4160 			break;
4161 		ret = io_register_file_alloc_range(ctx, arg);
4162 		break;
4163 	default:
4164 		ret = -EINVAL;
4165 		break;
4166 	}
4167 
4168 	return ret;
4169 }
4170 
4171 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4172 		void __user *, arg, unsigned int, nr_args)
4173 {
4174 	struct io_ring_ctx *ctx;
4175 	long ret = -EBADF;
4176 	struct fd f;
4177 
4178 	if (opcode >= IORING_REGISTER_LAST)
4179 		return -EINVAL;
4180 
4181 	f = fdget(fd);
4182 	if (!f.file)
4183 		return -EBADF;
4184 
4185 	ret = -EOPNOTSUPP;
4186 	if (!io_is_uring_fops(f.file))
4187 		goto out_fput;
4188 
4189 	ctx = f.file->private_data;
4190 
4191 	mutex_lock(&ctx->uring_lock);
4192 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4193 	mutex_unlock(&ctx->uring_lock);
4194 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4195 out_fput:
4196 	fdput(f);
4197 	return ret;
4198 }
4199 
4200 static int __init io_uring_init(void)
4201 {
4202 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4203 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4204 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4205 } while (0)
4206 
4207 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4208 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4209 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4210 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4211 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4212 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4213 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4214 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4215 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4216 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4217 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4218 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4219 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4220 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4221 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4222 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4223 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4224 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4225 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4226 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4227 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4228 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4229 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4230 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4231 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4232 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4233 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4234 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4235 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4236 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4237 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4238 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4239 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4240 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4241 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4242 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4243 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4244 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4245 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4246 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4247 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4248 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4249 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4250 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4251 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4252 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4253 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4254 
4255 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4256 		     sizeof(struct io_uring_rsrc_update));
4257 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4258 		     sizeof(struct io_uring_rsrc_update2));
4259 
4260 	/* ->buf_index is u16 */
4261 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4262 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4263 		     offsetof(struct io_uring_buf_ring, tail));
4264 
4265 	/* should fit into one byte */
4266 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4267 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4268 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4269 
4270 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4271 
4272 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4273 
4274 	io_uring_optable_init();
4275 
4276 	req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4277 				SLAB_ACCOUNT);
4278 	return 0;
4279 };
4280 __initcall(io_uring_init);
4281