xref: /openbmc/linux/io_uring/io_uring.c (revision 07b4cf39)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 #include <asm/shmparam.h>
76 
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/io_uring.h>
79 
80 #include <uapi/linux/io_uring.h>
81 
82 #include "io-wq.h"
83 
84 #include "io_uring.h"
85 #include "opdef.h"
86 #include "refs.h"
87 #include "tctx.h"
88 #include "sqpoll.h"
89 #include "fdinfo.h"
90 #include "kbuf.h"
91 #include "rsrc.h"
92 #include "cancel.h"
93 #include "net.h"
94 #include "notif.h"
95 
96 #include "timeout.h"
97 #include "poll.h"
98 #include "rw.h"
99 #include "alloc_cache.h"
100 
101 #define IORING_MAX_ENTRIES	32768
102 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
103 
104 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
105 				 IORING_REGISTER_LAST + IORING_OP_LAST)
106 
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109 
110 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112 
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 				REQ_F_ASYNC_DATA)
116 
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 				 IO_REQ_CLEAN_FLAGS)
119 
120 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
121 
122 #define IO_COMPL_BATCH			32
123 #define IO_REQ_ALLOC_BATCH		8
124 
125 enum {
126 	IO_CHECK_CQ_OVERFLOW_BIT,
127 	IO_CHECK_CQ_DROPPED_BIT,
128 };
129 
130 enum {
131 	IO_EVENTFD_OP_SIGNAL_BIT,
132 	IO_EVENTFD_OP_FREE_BIT,
133 };
134 
135 struct io_defer_entry {
136 	struct list_head	list;
137 	struct io_kiocb		*req;
138 	u32			seq;
139 };
140 
141 /* requests with any of those set should undergo io_disarm_next() */
142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
144 
145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
146 					 struct task_struct *task,
147 					 bool cancel_all);
148 
149 static void io_queue_sqe(struct io_kiocb *req);
150 
151 struct kmem_cache *req_cachep;
152 
153 static int __read_mostly sysctl_io_uring_disabled;
154 static int __read_mostly sysctl_io_uring_group = -1;
155 
156 #ifdef CONFIG_SYSCTL
157 static struct ctl_table kernel_io_uring_disabled_table[] = {
158 	{
159 		.procname	= "io_uring_disabled",
160 		.data		= &sysctl_io_uring_disabled,
161 		.maxlen		= sizeof(sysctl_io_uring_disabled),
162 		.mode		= 0644,
163 		.proc_handler	= proc_dointvec_minmax,
164 		.extra1		= SYSCTL_ZERO,
165 		.extra2		= SYSCTL_TWO,
166 	},
167 	{
168 		.procname	= "io_uring_group",
169 		.data		= &sysctl_io_uring_group,
170 		.maxlen		= sizeof(gid_t),
171 		.mode		= 0644,
172 		.proc_handler	= proc_dointvec,
173 	},
174 	{},
175 };
176 #endif
177 
178 struct sock *io_uring_get_socket(struct file *file)
179 {
180 #if defined(CONFIG_UNIX)
181 	if (io_is_uring_fops(file)) {
182 		struct io_ring_ctx *ctx = file->private_data;
183 
184 		return ctx->ring_sock->sk;
185 	}
186 #endif
187 	return NULL;
188 }
189 EXPORT_SYMBOL(io_uring_get_socket);
190 
191 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
192 {
193 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
194 	    ctx->submit_state.cqes_count)
195 		__io_submit_flush_completions(ctx);
196 }
197 
198 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
199 {
200 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
201 }
202 
203 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
204 {
205 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
206 }
207 
208 static bool io_match_linked(struct io_kiocb *head)
209 {
210 	struct io_kiocb *req;
211 
212 	io_for_each_link(req, head) {
213 		if (req->flags & REQ_F_INFLIGHT)
214 			return true;
215 	}
216 	return false;
217 }
218 
219 /*
220  * As io_match_task() but protected against racing with linked timeouts.
221  * User must not hold timeout_lock.
222  */
223 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
224 			bool cancel_all)
225 {
226 	bool matched;
227 
228 	if (task && head->task != task)
229 		return false;
230 	if (cancel_all)
231 		return true;
232 
233 	if (head->flags & REQ_F_LINK_TIMEOUT) {
234 		struct io_ring_ctx *ctx = head->ctx;
235 
236 		/* protect against races with linked timeouts */
237 		spin_lock_irq(&ctx->timeout_lock);
238 		matched = io_match_linked(head);
239 		spin_unlock_irq(&ctx->timeout_lock);
240 	} else {
241 		matched = io_match_linked(head);
242 	}
243 	return matched;
244 }
245 
246 static inline void req_fail_link_node(struct io_kiocb *req, int res)
247 {
248 	req_set_fail(req);
249 	io_req_set_res(req, res, 0);
250 }
251 
252 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
253 {
254 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
255 }
256 
257 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
258 {
259 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
260 
261 	complete(&ctx->ref_comp);
262 }
263 
264 static __cold void io_fallback_req_func(struct work_struct *work)
265 {
266 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
267 						fallback_work.work);
268 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
269 	struct io_kiocb *req, *tmp;
270 	struct io_tw_state ts = { .locked = true, };
271 
272 	percpu_ref_get(&ctx->refs);
273 	mutex_lock(&ctx->uring_lock);
274 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
275 		req->io_task_work.func(req, &ts);
276 	if (WARN_ON_ONCE(!ts.locked))
277 		return;
278 	io_submit_flush_completions(ctx);
279 	mutex_unlock(&ctx->uring_lock);
280 	percpu_ref_put(&ctx->refs);
281 }
282 
283 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
284 {
285 	unsigned hash_buckets = 1U << bits;
286 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
287 
288 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
289 	if (!table->hbs)
290 		return -ENOMEM;
291 
292 	table->hash_bits = bits;
293 	init_hash_table(table, hash_buckets);
294 	return 0;
295 }
296 
297 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
298 {
299 	struct io_ring_ctx *ctx;
300 	int hash_bits;
301 
302 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
303 	if (!ctx)
304 		return NULL;
305 
306 	xa_init(&ctx->io_bl_xa);
307 
308 	/*
309 	 * Use 5 bits less than the max cq entries, that should give us around
310 	 * 32 entries per hash list if totally full and uniformly spread, but
311 	 * don't keep too many buckets to not overconsume memory.
312 	 */
313 	hash_bits = ilog2(p->cq_entries) - 5;
314 	hash_bits = clamp(hash_bits, 1, 8);
315 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
316 		goto err;
317 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
318 		goto err;
319 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
320 			    0, GFP_KERNEL))
321 		goto err;
322 
323 	ctx->flags = p->flags;
324 	init_waitqueue_head(&ctx->sqo_sq_wait);
325 	INIT_LIST_HEAD(&ctx->sqd_list);
326 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
327 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
328 	INIT_HLIST_HEAD(&ctx->io_buf_list);
329 	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
330 			    sizeof(struct io_rsrc_node));
331 	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
332 			    sizeof(struct async_poll));
333 	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
334 			    sizeof(struct io_async_msghdr));
335 	init_completion(&ctx->ref_comp);
336 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
337 	mutex_init(&ctx->uring_lock);
338 	init_waitqueue_head(&ctx->cq_wait);
339 	init_waitqueue_head(&ctx->poll_wq);
340 	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
341 	spin_lock_init(&ctx->completion_lock);
342 	spin_lock_init(&ctx->timeout_lock);
343 	INIT_WQ_LIST(&ctx->iopoll_list);
344 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
345 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
346 	INIT_LIST_HEAD(&ctx->defer_list);
347 	INIT_LIST_HEAD(&ctx->timeout_list);
348 	INIT_LIST_HEAD(&ctx->ltimeout_list);
349 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
350 	init_llist_head(&ctx->work_llist);
351 	INIT_LIST_HEAD(&ctx->tctx_list);
352 	ctx->submit_state.free_list.next = NULL;
353 	INIT_WQ_LIST(&ctx->locked_free_list);
354 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
355 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
356 	return ctx;
357 err:
358 	kfree(ctx->cancel_table.hbs);
359 	kfree(ctx->cancel_table_locked.hbs);
360 	kfree(ctx->io_bl);
361 	xa_destroy(&ctx->io_bl_xa);
362 	kfree(ctx);
363 	return NULL;
364 }
365 
366 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
367 {
368 	struct io_rings *r = ctx->rings;
369 
370 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
371 	ctx->cq_extra--;
372 }
373 
374 static bool req_need_defer(struct io_kiocb *req, u32 seq)
375 {
376 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
377 		struct io_ring_ctx *ctx = req->ctx;
378 
379 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
380 	}
381 
382 	return false;
383 }
384 
385 static void io_clean_op(struct io_kiocb *req)
386 {
387 	if (req->flags & REQ_F_BUFFER_SELECTED) {
388 		spin_lock(&req->ctx->completion_lock);
389 		io_put_kbuf_comp(req);
390 		spin_unlock(&req->ctx->completion_lock);
391 	}
392 
393 	if (req->flags & REQ_F_NEED_CLEANUP) {
394 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
395 
396 		if (def->cleanup)
397 			def->cleanup(req);
398 	}
399 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
400 		kfree(req->apoll->double_poll);
401 		kfree(req->apoll);
402 		req->apoll = NULL;
403 	}
404 	if (req->flags & REQ_F_INFLIGHT) {
405 		struct io_uring_task *tctx = req->task->io_uring;
406 
407 		atomic_dec(&tctx->inflight_tracked);
408 	}
409 	if (req->flags & REQ_F_CREDS)
410 		put_cred(req->creds);
411 	if (req->flags & REQ_F_ASYNC_DATA) {
412 		kfree(req->async_data);
413 		req->async_data = NULL;
414 	}
415 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
416 }
417 
418 static inline void io_req_track_inflight(struct io_kiocb *req)
419 {
420 	if (!(req->flags & REQ_F_INFLIGHT)) {
421 		req->flags |= REQ_F_INFLIGHT;
422 		atomic_inc(&req->task->io_uring->inflight_tracked);
423 	}
424 }
425 
426 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
427 {
428 	if (WARN_ON_ONCE(!req->link))
429 		return NULL;
430 
431 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
432 	req->flags |= REQ_F_LINK_TIMEOUT;
433 
434 	/* linked timeouts should have two refs once prep'ed */
435 	io_req_set_refcount(req);
436 	__io_req_set_refcount(req->link, 2);
437 	return req->link;
438 }
439 
440 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
441 {
442 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
443 		return NULL;
444 	return __io_prep_linked_timeout(req);
445 }
446 
447 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
448 {
449 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
450 }
451 
452 static inline void io_arm_ltimeout(struct io_kiocb *req)
453 {
454 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
455 		__io_arm_ltimeout(req);
456 }
457 
458 static void io_prep_async_work(struct io_kiocb *req)
459 {
460 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
461 	struct io_ring_ctx *ctx = req->ctx;
462 
463 	if (!(req->flags & REQ_F_CREDS)) {
464 		req->flags |= REQ_F_CREDS;
465 		req->creds = get_current_cred();
466 	}
467 
468 	req->work.list.next = NULL;
469 	req->work.flags = 0;
470 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
471 	if (req->flags & REQ_F_FORCE_ASYNC)
472 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
473 
474 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
475 		req->flags |= io_file_get_flags(req->file);
476 
477 	if (req->file && (req->flags & REQ_F_ISREG)) {
478 		bool should_hash = def->hash_reg_file;
479 
480 		/* don't serialize this request if the fs doesn't need it */
481 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
482 		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
483 			should_hash = false;
484 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
485 			io_wq_hash_work(&req->work, file_inode(req->file));
486 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
487 		if (def->unbound_nonreg_file)
488 			req->work.flags |= IO_WQ_WORK_UNBOUND;
489 	}
490 }
491 
492 static void io_prep_async_link(struct io_kiocb *req)
493 {
494 	struct io_kiocb *cur;
495 
496 	if (req->flags & REQ_F_LINK_TIMEOUT) {
497 		struct io_ring_ctx *ctx = req->ctx;
498 
499 		spin_lock_irq(&ctx->timeout_lock);
500 		io_for_each_link(cur, req)
501 			io_prep_async_work(cur);
502 		spin_unlock_irq(&ctx->timeout_lock);
503 	} else {
504 		io_for_each_link(cur, req)
505 			io_prep_async_work(cur);
506 	}
507 }
508 
509 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
510 {
511 	struct io_kiocb *link = io_prep_linked_timeout(req);
512 	struct io_uring_task *tctx = req->task->io_uring;
513 
514 	BUG_ON(!tctx);
515 	BUG_ON(!tctx->io_wq);
516 
517 	/* init ->work of the whole link before punting */
518 	io_prep_async_link(req);
519 
520 	/*
521 	 * Not expected to happen, but if we do have a bug where this _can_
522 	 * happen, catch it here and ensure the request is marked as
523 	 * canceled. That will make io-wq go through the usual work cancel
524 	 * procedure rather than attempt to run this request (or create a new
525 	 * worker for it).
526 	 */
527 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
528 		req->work.flags |= IO_WQ_WORK_CANCEL;
529 
530 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
531 	io_wq_enqueue(tctx->io_wq, &req->work);
532 	if (link)
533 		io_queue_linked_timeout(link);
534 }
535 
536 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
537 {
538 	while (!list_empty(&ctx->defer_list)) {
539 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
540 						struct io_defer_entry, list);
541 
542 		if (req_need_defer(de->req, de->seq))
543 			break;
544 		list_del_init(&de->list);
545 		io_req_task_queue(de->req);
546 		kfree(de);
547 	}
548 }
549 
550 
551 static void io_eventfd_ops(struct rcu_head *rcu)
552 {
553 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
554 	int ops = atomic_xchg(&ev_fd->ops, 0);
555 
556 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
557 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
558 
559 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
560 	 * ordering in a race but if references are 0 we know we have to free
561 	 * it regardless.
562 	 */
563 	if (atomic_dec_and_test(&ev_fd->refs)) {
564 		eventfd_ctx_put(ev_fd->cq_ev_fd);
565 		kfree(ev_fd);
566 	}
567 }
568 
569 static void io_eventfd_signal(struct io_ring_ctx *ctx)
570 {
571 	struct io_ev_fd *ev_fd = NULL;
572 
573 	rcu_read_lock();
574 	/*
575 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
576 	 * and eventfd_signal
577 	 */
578 	ev_fd = rcu_dereference(ctx->io_ev_fd);
579 
580 	/*
581 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
582 	 * completed between the NULL check of ctx->io_ev_fd at the start of
583 	 * the function and rcu_read_lock.
584 	 */
585 	if (unlikely(!ev_fd))
586 		goto out;
587 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
588 		goto out;
589 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
590 		goto out;
591 
592 	if (likely(eventfd_signal_allowed())) {
593 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
594 	} else {
595 		atomic_inc(&ev_fd->refs);
596 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
597 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
598 		else
599 			atomic_dec(&ev_fd->refs);
600 	}
601 
602 out:
603 	rcu_read_unlock();
604 }
605 
606 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
607 {
608 	bool skip;
609 
610 	spin_lock(&ctx->completion_lock);
611 
612 	/*
613 	 * Eventfd should only get triggered when at least one event has been
614 	 * posted. Some applications rely on the eventfd notification count
615 	 * only changing IFF a new CQE has been added to the CQ ring. There's
616 	 * no depedency on 1:1 relationship between how many times this
617 	 * function is called (and hence the eventfd count) and number of CQEs
618 	 * posted to the CQ ring.
619 	 */
620 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
621 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
622 	spin_unlock(&ctx->completion_lock);
623 	if (skip)
624 		return;
625 
626 	io_eventfd_signal(ctx);
627 }
628 
629 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
630 {
631 	if (ctx->poll_activated)
632 		io_poll_wq_wake(ctx);
633 	if (ctx->off_timeout_used)
634 		io_flush_timeouts(ctx);
635 	if (ctx->drain_active) {
636 		spin_lock(&ctx->completion_lock);
637 		io_queue_deferred(ctx);
638 		spin_unlock(&ctx->completion_lock);
639 	}
640 	if (ctx->has_evfd)
641 		io_eventfd_flush_signal(ctx);
642 }
643 
644 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
645 {
646 	if (!ctx->lockless_cq)
647 		spin_lock(&ctx->completion_lock);
648 }
649 
650 static inline void io_cq_lock(struct io_ring_ctx *ctx)
651 	__acquires(ctx->completion_lock)
652 {
653 	spin_lock(&ctx->completion_lock);
654 }
655 
656 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
657 {
658 	io_commit_cqring(ctx);
659 	if (!ctx->task_complete) {
660 		if (!ctx->lockless_cq)
661 			spin_unlock(&ctx->completion_lock);
662 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
663 		if (!ctx->syscall_iopoll)
664 			io_cqring_wake(ctx);
665 	}
666 	io_commit_cqring_flush(ctx);
667 }
668 
669 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
670 	__releases(ctx->completion_lock)
671 {
672 	io_commit_cqring(ctx);
673 	spin_unlock(&ctx->completion_lock);
674 	io_cqring_wake(ctx);
675 	io_commit_cqring_flush(ctx);
676 }
677 
678 /* Returns true if there are no backlogged entries after the flush */
679 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
680 {
681 	struct io_overflow_cqe *ocqe;
682 	LIST_HEAD(list);
683 
684 	spin_lock(&ctx->completion_lock);
685 	list_splice_init(&ctx->cq_overflow_list, &list);
686 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
687 	spin_unlock(&ctx->completion_lock);
688 
689 	while (!list_empty(&list)) {
690 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
691 		list_del(&ocqe->list);
692 		kfree(ocqe);
693 	}
694 }
695 
696 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
697 {
698 	size_t cqe_size = sizeof(struct io_uring_cqe);
699 
700 	if (__io_cqring_events(ctx) == ctx->cq_entries)
701 		return;
702 
703 	if (ctx->flags & IORING_SETUP_CQE32)
704 		cqe_size <<= 1;
705 
706 	io_cq_lock(ctx);
707 	while (!list_empty(&ctx->cq_overflow_list)) {
708 		struct io_uring_cqe *cqe;
709 		struct io_overflow_cqe *ocqe;
710 
711 		if (!io_get_cqe_overflow(ctx, &cqe, true))
712 			break;
713 		ocqe = list_first_entry(&ctx->cq_overflow_list,
714 					struct io_overflow_cqe, list);
715 		memcpy(cqe, &ocqe->cqe, cqe_size);
716 		list_del(&ocqe->list);
717 		kfree(ocqe);
718 	}
719 
720 	if (list_empty(&ctx->cq_overflow_list)) {
721 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
722 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
723 	}
724 	io_cq_unlock_post(ctx);
725 }
726 
727 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
728 {
729 	/* iopoll syncs against uring_lock, not completion_lock */
730 	if (ctx->flags & IORING_SETUP_IOPOLL)
731 		mutex_lock(&ctx->uring_lock);
732 	__io_cqring_overflow_flush(ctx);
733 	if (ctx->flags & IORING_SETUP_IOPOLL)
734 		mutex_unlock(&ctx->uring_lock);
735 }
736 
737 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
738 {
739 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
740 		io_cqring_do_overflow_flush(ctx);
741 }
742 
743 /* can be called by any task */
744 static void io_put_task_remote(struct task_struct *task)
745 {
746 	struct io_uring_task *tctx = task->io_uring;
747 
748 	percpu_counter_sub(&tctx->inflight, 1);
749 	if (unlikely(atomic_read(&tctx->in_cancel)))
750 		wake_up(&tctx->wait);
751 	put_task_struct(task);
752 }
753 
754 /* used by a task to put its own references */
755 static void io_put_task_local(struct task_struct *task)
756 {
757 	task->io_uring->cached_refs++;
758 }
759 
760 /* must to be called somewhat shortly after putting a request */
761 static inline void io_put_task(struct task_struct *task)
762 {
763 	if (likely(task == current))
764 		io_put_task_local(task);
765 	else
766 		io_put_task_remote(task);
767 }
768 
769 void io_task_refs_refill(struct io_uring_task *tctx)
770 {
771 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
772 
773 	percpu_counter_add(&tctx->inflight, refill);
774 	refcount_add(refill, &current->usage);
775 	tctx->cached_refs += refill;
776 }
777 
778 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
779 {
780 	struct io_uring_task *tctx = task->io_uring;
781 	unsigned int refs = tctx->cached_refs;
782 
783 	if (refs) {
784 		tctx->cached_refs = 0;
785 		percpu_counter_sub(&tctx->inflight, refs);
786 		put_task_struct_many(task, refs);
787 	}
788 }
789 
790 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
791 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
792 {
793 	struct io_overflow_cqe *ocqe;
794 	size_t ocq_size = sizeof(struct io_overflow_cqe);
795 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
796 
797 	lockdep_assert_held(&ctx->completion_lock);
798 
799 	if (is_cqe32)
800 		ocq_size += sizeof(struct io_uring_cqe);
801 
802 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
803 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
804 	if (!ocqe) {
805 		/*
806 		 * If we're in ring overflow flush mode, or in task cancel mode,
807 		 * or cannot allocate an overflow entry, then we need to drop it
808 		 * on the floor.
809 		 */
810 		io_account_cq_overflow(ctx);
811 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
812 		return false;
813 	}
814 	if (list_empty(&ctx->cq_overflow_list)) {
815 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
816 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
817 
818 	}
819 	ocqe->cqe.user_data = user_data;
820 	ocqe->cqe.res = res;
821 	ocqe->cqe.flags = cflags;
822 	if (is_cqe32) {
823 		ocqe->cqe.big_cqe[0] = extra1;
824 		ocqe->cqe.big_cqe[1] = extra2;
825 	}
826 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
827 	return true;
828 }
829 
830 void io_req_cqe_overflow(struct io_kiocb *req)
831 {
832 	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
833 				req->cqe.res, req->cqe.flags,
834 				req->big_cqe.extra1, req->big_cqe.extra2);
835 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
836 }
837 
838 /*
839  * writes to the cq entry need to come after reading head; the
840  * control dependency is enough as we're using WRITE_ONCE to
841  * fill the cq entry
842  */
843 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
844 {
845 	struct io_rings *rings = ctx->rings;
846 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
847 	unsigned int free, queued, len;
848 
849 	/*
850 	 * Posting into the CQ when there are pending overflowed CQEs may break
851 	 * ordering guarantees, which will affect links, F_MORE users and more.
852 	 * Force overflow the completion.
853 	 */
854 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
855 		return false;
856 
857 	/* userspace may cheat modifying the tail, be safe and do min */
858 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
859 	free = ctx->cq_entries - queued;
860 	/* we need a contiguous range, limit based on the current array offset */
861 	len = min(free, ctx->cq_entries - off);
862 	if (!len)
863 		return false;
864 
865 	if (ctx->flags & IORING_SETUP_CQE32) {
866 		off <<= 1;
867 		len <<= 1;
868 	}
869 
870 	ctx->cqe_cached = &rings->cqes[off];
871 	ctx->cqe_sentinel = ctx->cqe_cached + len;
872 	return true;
873 }
874 
875 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
876 			      u32 cflags)
877 {
878 	struct io_uring_cqe *cqe;
879 
880 	ctx->cq_extra++;
881 
882 	/*
883 	 * If we can't get a cq entry, userspace overflowed the
884 	 * submission (by quite a lot). Increment the overflow count in
885 	 * the ring.
886 	 */
887 	if (likely(io_get_cqe(ctx, &cqe))) {
888 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
889 
890 		WRITE_ONCE(cqe->user_data, user_data);
891 		WRITE_ONCE(cqe->res, res);
892 		WRITE_ONCE(cqe->flags, cflags);
893 
894 		if (ctx->flags & IORING_SETUP_CQE32) {
895 			WRITE_ONCE(cqe->big_cqe[0], 0);
896 			WRITE_ONCE(cqe->big_cqe[1], 0);
897 		}
898 		return true;
899 	}
900 	return false;
901 }
902 
903 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
904 	__must_hold(&ctx->uring_lock)
905 {
906 	struct io_submit_state *state = &ctx->submit_state;
907 	unsigned int i;
908 
909 	lockdep_assert_held(&ctx->uring_lock);
910 	for (i = 0; i < state->cqes_count; i++) {
911 		struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
912 
913 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
914 			if (ctx->lockless_cq) {
915 				spin_lock(&ctx->completion_lock);
916 				io_cqring_event_overflow(ctx, cqe->user_data,
917 							cqe->res, cqe->flags, 0, 0);
918 				spin_unlock(&ctx->completion_lock);
919 			} else {
920 				io_cqring_event_overflow(ctx, cqe->user_data,
921 							cqe->res, cqe->flags, 0, 0);
922 			}
923 		}
924 	}
925 	state->cqes_count = 0;
926 }
927 
928 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
929 			      bool allow_overflow)
930 {
931 	bool filled;
932 
933 	io_cq_lock(ctx);
934 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
935 	if (!filled && allow_overflow)
936 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
937 
938 	io_cq_unlock_post(ctx);
939 	return filled;
940 }
941 
942 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
943 {
944 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
945 }
946 
947 /*
948  * A helper for multishot requests posting additional CQEs.
949  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
950  */
951 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
952 {
953 	struct io_ring_ctx *ctx = req->ctx;
954 	u64 user_data = req->cqe.user_data;
955 	struct io_uring_cqe *cqe;
956 
957 	if (!defer)
958 		return __io_post_aux_cqe(ctx, user_data, res, cflags, false);
959 
960 	lockdep_assert_held(&ctx->uring_lock);
961 
962 	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
963 		__io_cq_lock(ctx);
964 		__io_flush_post_cqes(ctx);
965 		/* no need to flush - flush is deferred */
966 		__io_cq_unlock_post(ctx);
967 	}
968 
969 	/* For defered completions this is not as strict as it is otherwise,
970 	 * however it's main job is to prevent unbounded posted completions,
971 	 * and in that it works just as well.
972 	 */
973 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
974 		return false;
975 
976 	cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
977 	cqe->user_data = user_data;
978 	cqe->res = res;
979 	cqe->flags = cflags;
980 	return true;
981 }
982 
983 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
984 {
985 	struct io_ring_ctx *ctx = req->ctx;
986 	struct io_rsrc_node *rsrc_node = NULL;
987 
988 	io_cq_lock(ctx);
989 	if (!(req->flags & REQ_F_CQE_SKIP)) {
990 		if (!io_fill_cqe_req(ctx, req))
991 			io_req_cqe_overflow(req);
992 	}
993 
994 	/*
995 	 * If we're the last reference to this request, add to our locked
996 	 * free_list cache.
997 	 */
998 	if (req_ref_put_and_test(req)) {
999 		if (req->flags & IO_REQ_LINK_FLAGS) {
1000 			if (req->flags & IO_DISARM_MASK)
1001 				io_disarm_next(req);
1002 			if (req->link) {
1003 				io_req_task_queue(req->link);
1004 				req->link = NULL;
1005 			}
1006 		}
1007 		io_put_kbuf_comp(req);
1008 		if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1009 			io_clean_op(req);
1010 		io_put_file(req);
1011 
1012 		rsrc_node = req->rsrc_node;
1013 		/*
1014 		 * Selected buffer deallocation in io_clean_op() assumes that
1015 		 * we don't hold ->completion_lock. Clean them here to avoid
1016 		 * deadlocks.
1017 		 */
1018 		io_put_task_remote(req->task);
1019 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1020 		ctx->locked_free_nr++;
1021 	}
1022 	io_cq_unlock_post(ctx);
1023 
1024 	if (rsrc_node) {
1025 		io_ring_submit_lock(ctx, issue_flags);
1026 		io_put_rsrc_node(ctx, rsrc_node);
1027 		io_ring_submit_unlock(ctx, issue_flags);
1028 	}
1029 }
1030 
1031 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1032 {
1033 	if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1034 		req->io_task_work.func = io_req_task_complete;
1035 		io_req_task_work_add(req);
1036 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1037 		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1038 		__io_req_complete_post(req, issue_flags);
1039 	} else {
1040 		struct io_ring_ctx *ctx = req->ctx;
1041 
1042 		mutex_lock(&ctx->uring_lock);
1043 		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1044 		mutex_unlock(&ctx->uring_lock);
1045 	}
1046 }
1047 
1048 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1049 	__must_hold(&ctx->uring_lock)
1050 {
1051 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1052 
1053 	lockdep_assert_held(&req->ctx->uring_lock);
1054 
1055 	req_set_fail(req);
1056 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1057 	if (def->fail)
1058 		def->fail(req);
1059 	io_req_complete_defer(req);
1060 }
1061 
1062 /*
1063  * Don't initialise the fields below on every allocation, but do that in
1064  * advance and keep them valid across allocations.
1065  */
1066 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1067 {
1068 	req->ctx = ctx;
1069 	req->link = NULL;
1070 	req->async_data = NULL;
1071 	/* not necessary, but safer to zero */
1072 	memset(&req->cqe, 0, sizeof(req->cqe));
1073 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1074 }
1075 
1076 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1077 					struct io_submit_state *state)
1078 {
1079 	spin_lock(&ctx->completion_lock);
1080 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1081 	ctx->locked_free_nr = 0;
1082 	spin_unlock(&ctx->completion_lock);
1083 }
1084 
1085 /*
1086  * A request might get retired back into the request caches even before opcode
1087  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1088  * Because of that, io_alloc_req() should be called only under ->uring_lock
1089  * and with extra caution to not get a request that is still worked on.
1090  */
1091 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1092 	__must_hold(&ctx->uring_lock)
1093 {
1094 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1095 	void *reqs[IO_REQ_ALLOC_BATCH];
1096 	int ret, i;
1097 
1098 	/*
1099 	 * If we have more than a batch's worth of requests in our IRQ side
1100 	 * locked cache, grab the lock and move them over to our submission
1101 	 * side cache.
1102 	 */
1103 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1104 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1105 		if (!io_req_cache_empty(ctx))
1106 			return true;
1107 	}
1108 
1109 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1110 
1111 	/*
1112 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1113 	 * retry single alloc to be on the safe side.
1114 	 */
1115 	if (unlikely(ret <= 0)) {
1116 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1117 		if (!reqs[0])
1118 			return false;
1119 		ret = 1;
1120 	}
1121 
1122 	percpu_ref_get_many(&ctx->refs, ret);
1123 	for (i = 0; i < ret; i++) {
1124 		struct io_kiocb *req = reqs[i];
1125 
1126 		io_preinit_req(req, ctx);
1127 		io_req_add_to_cache(req, ctx);
1128 	}
1129 	return true;
1130 }
1131 
1132 __cold void io_free_req(struct io_kiocb *req)
1133 {
1134 	/* refs were already put, restore them for io_req_task_complete() */
1135 	req->flags &= ~REQ_F_REFCOUNT;
1136 	/* we only want to free it, don't post CQEs */
1137 	req->flags |= REQ_F_CQE_SKIP;
1138 	req->io_task_work.func = io_req_task_complete;
1139 	io_req_task_work_add(req);
1140 }
1141 
1142 static void __io_req_find_next_prep(struct io_kiocb *req)
1143 {
1144 	struct io_ring_ctx *ctx = req->ctx;
1145 
1146 	spin_lock(&ctx->completion_lock);
1147 	io_disarm_next(req);
1148 	spin_unlock(&ctx->completion_lock);
1149 }
1150 
1151 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1152 {
1153 	struct io_kiocb *nxt;
1154 
1155 	/*
1156 	 * If LINK is set, we have dependent requests in this chain. If we
1157 	 * didn't fail this request, queue the first one up, moving any other
1158 	 * dependencies to the next request. In case of failure, fail the rest
1159 	 * of the chain.
1160 	 */
1161 	if (unlikely(req->flags & IO_DISARM_MASK))
1162 		__io_req_find_next_prep(req);
1163 	nxt = req->link;
1164 	req->link = NULL;
1165 	return nxt;
1166 }
1167 
1168 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1169 {
1170 	if (!ctx)
1171 		return;
1172 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1173 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1174 	if (ts->locked) {
1175 		io_submit_flush_completions(ctx);
1176 		mutex_unlock(&ctx->uring_lock);
1177 		ts->locked = false;
1178 	}
1179 	percpu_ref_put(&ctx->refs);
1180 }
1181 
1182 static unsigned int handle_tw_list(struct llist_node *node,
1183 				   struct io_ring_ctx **ctx,
1184 				   struct io_tw_state *ts,
1185 				   struct llist_node *last)
1186 {
1187 	unsigned int count = 0;
1188 
1189 	while (node && node != last) {
1190 		struct llist_node *next = node->next;
1191 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1192 						    io_task_work.node);
1193 
1194 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1195 
1196 		if (req->ctx != *ctx) {
1197 			ctx_flush_and_put(*ctx, ts);
1198 			*ctx = req->ctx;
1199 			/* if not contended, grab and improve batching */
1200 			ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1201 			percpu_ref_get(&(*ctx)->refs);
1202 		}
1203 		INDIRECT_CALL_2(req->io_task_work.func,
1204 				io_poll_task_func, io_req_rw_complete,
1205 				req, ts);
1206 		node = next;
1207 		count++;
1208 		if (unlikely(need_resched())) {
1209 			ctx_flush_and_put(*ctx, ts);
1210 			*ctx = NULL;
1211 			cond_resched();
1212 		}
1213 	}
1214 
1215 	return count;
1216 }
1217 
1218 /**
1219  * io_llist_xchg - swap all entries in a lock-less list
1220  * @head:	the head of lock-less list to delete all entries
1221  * @new:	new entry as the head of the list
1222  *
1223  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1224  * The order of entries returned is from the newest to the oldest added one.
1225  */
1226 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1227 					       struct llist_node *new)
1228 {
1229 	return xchg(&head->first, new);
1230 }
1231 
1232 /**
1233  * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1234  * @head:	the head of lock-less list to delete all entries
1235  * @old:	expected old value of the first entry of the list
1236  * @new:	new entry as the head of the list
1237  *
1238  * perform a cmpxchg on the first entry of the list.
1239  */
1240 
1241 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1242 						  struct llist_node *old,
1243 						  struct llist_node *new)
1244 {
1245 	return cmpxchg(&head->first, old, new);
1246 }
1247 
1248 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1249 {
1250 	struct llist_node *node = llist_del_all(&tctx->task_list);
1251 	struct io_ring_ctx *last_ctx = NULL;
1252 	struct io_kiocb *req;
1253 
1254 	while (node) {
1255 		req = container_of(node, struct io_kiocb, io_task_work.node);
1256 		node = node->next;
1257 		if (sync && last_ctx != req->ctx) {
1258 			if (last_ctx) {
1259 				flush_delayed_work(&last_ctx->fallback_work);
1260 				percpu_ref_put(&last_ctx->refs);
1261 			}
1262 			last_ctx = req->ctx;
1263 			percpu_ref_get(&last_ctx->refs);
1264 		}
1265 		if (llist_add(&req->io_task_work.node,
1266 			      &req->ctx->fallback_llist))
1267 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1268 	}
1269 
1270 	if (last_ctx) {
1271 		flush_delayed_work(&last_ctx->fallback_work);
1272 		percpu_ref_put(&last_ctx->refs);
1273 	}
1274 }
1275 
1276 void tctx_task_work(struct callback_head *cb)
1277 {
1278 	struct io_tw_state ts = {};
1279 	struct io_ring_ctx *ctx = NULL;
1280 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1281 						  task_work);
1282 	struct llist_node fake = {};
1283 	struct llist_node *node;
1284 	unsigned int loops = 0;
1285 	unsigned int count = 0;
1286 
1287 	if (unlikely(current->flags & PF_EXITING)) {
1288 		io_fallback_tw(tctx, true);
1289 		return;
1290 	}
1291 
1292 	do {
1293 		loops++;
1294 		node = io_llist_xchg(&tctx->task_list, &fake);
1295 		count += handle_tw_list(node, &ctx, &ts, &fake);
1296 
1297 		/* skip expensive cmpxchg if there are items in the list */
1298 		if (READ_ONCE(tctx->task_list.first) != &fake)
1299 			continue;
1300 		if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1301 			io_submit_flush_completions(ctx);
1302 			if (READ_ONCE(tctx->task_list.first) != &fake)
1303 				continue;
1304 		}
1305 		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1306 	} while (node != &fake);
1307 
1308 	ctx_flush_and_put(ctx, &ts);
1309 
1310 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1311 	if (unlikely(atomic_read(&tctx->in_cancel)))
1312 		io_uring_drop_tctx_refs(current);
1313 
1314 	trace_io_uring_task_work_run(tctx, count, loops);
1315 }
1316 
1317 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1318 {
1319 	struct io_ring_ctx *ctx = req->ctx;
1320 	unsigned nr_wait, nr_tw, nr_tw_prev;
1321 	struct llist_node *first;
1322 
1323 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1324 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1325 
1326 	first = READ_ONCE(ctx->work_llist.first);
1327 	do {
1328 		nr_tw_prev = 0;
1329 		if (first) {
1330 			struct io_kiocb *first_req = container_of(first,
1331 							struct io_kiocb,
1332 							io_task_work.node);
1333 			/*
1334 			 * Might be executed at any moment, rely on
1335 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1336 			 */
1337 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1338 		}
1339 		nr_tw = nr_tw_prev + 1;
1340 		/* Large enough to fail the nr_wait comparison below */
1341 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1342 			nr_tw = -1U;
1343 
1344 		req->nr_tw = nr_tw;
1345 		req->io_task_work.node.next = first;
1346 	} while (!try_cmpxchg(&ctx->work_llist.first, &first,
1347 			      &req->io_task_work.node));
1348 
1349 	if (!first) {
1350 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1351 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1352 		if (ctx->has_evfd)
1353 			io_eventfd_signal(ctx);
1354 	}
1355 
1356 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1357 	/* no one is waiting */
1358 	if (!nr_wait)
1359 		return;
1360 	/* either not enough or the previous add has already woken it up */
1361 	if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1362 		return;
1363 	/* pairs with set_current_state() in io_cqring_wait() */
1364 	smp_mb__after_atomic();
1365 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1366 }
1367 
1368 static void io_req_normal_work_add(struct io_kiocb *req)
1369 {
1370 	struct io_uring_task *tctx = req->task->io_uring;
1371 	struct io_ring_ctx *ctx = req->ctx;
1372 
1373 	/* task_work already pending, we're done */
1374 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1375 		return;
1376 
1377 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1378 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1379 
1380 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1381 		return;
1382 
1383 	io_fallback_tw(tctx, false);
1384 }
1385 
1386 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1387 {
1388 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1389 		rcu_read_lock();
1390 		io_req_local_work_add(req, flags);
1391 		rcu_read_unlock();
1392 	} else {
1393 		io_req_normal_work_add(req);
1394 	}
1395 }
1396 
1397 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1398 {
1399 	struct llist_node *node;
1400 
1401 	node = llist_del_all(&ctx->work_llist);
1402 	while (node) {
1403 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1404 						    io_task_work.node);
1405 
1406 		node = node->next;
1407 		io_req_normal_work_add(req);
1408 	}
1409 }
1410 
1411 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1412 {
1413 	struct llist_node *node;
1414 	unsigned int loops = 0;
1415 	int ret = 0;
1416 
1417 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1418 		return -EEXIST;
1419 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1420 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1421 again:
1422 	/*
1423 	 * llists are in reverse order, flip it back the right way before
1424 	 * running the pending items.
1425 	 */
1426 	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1427 	while (node) {
1428 		struct llist_node *next = node->next;
1429 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1430 						    io_task_work.node);
1431 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1432 		INDIRECT_CALL_2(req->io_task_work.func,
1433 				io_poll_task_func, io_req_rw_complete,
1434 				req, ts);
1435 		ret++;
1436 		node = next;
1437 	}
1438 	loops++;
1439 
1440 	if (!llist_empty(&ctx->work_llist))
1441 		goto again;
1442 	if (ts->locked) {
1443 		io_submit_flush_completions(ctx);
1444 		if (!llist_empty(&ctx->work_llist))
1445 			goto again;
1446 	}
1447 	trace_io_uring_local_work_run(ctx, ret, loops);
1448 	return ret;
1449 }
1450 
1451 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1452 {
1453 	struct io_tw_state ts = { .locked = true, };
1454 	int ret;
1455 
1456 	if (llist_empty(&ctx->work_llist))
1457 		return 0;
1458 
1459 	ret = __io_run_local_work(ctx, &ts);
1460 	/* shouldn't happen! */
1461 	if (WARN_ON_ONCE(!ts.locked))
1462 		mutex_lock(&ctx->uring_lock);
1463 	return ret;
1464 }
1465 
1466 static int io_run_local_work(struct io_ring_ctx *ctx)
1467 {
1468 	struct io_tw_state ts = {};
1469 	int ret;
1470 
1471 	ts.locked = mutex_trylock(&ctx->uring_lock);
1472 	ret = __io_run_local_work(ctx, &ts);
1473 	if (ts.locked)
1474 		mutex_unlock(&ctx->uring_lock);
1475 
1476 	return ret;
1477 }
1478 
1479 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1480 {
1481 	io_tw_lock(req->ctx, ts);
1482 	io_req_defer_failed(req, req->cqe.res);
1483 }
1484 
1485 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1486 {
1487 	io_tw_lock(req->ctx, ts);
1488 	/* req->task == current here, checking PF_EXITING is safe */
1489 	if (unlikely(req->task->flags & PF_EXITING))
1490 		io_req_defer_failed(req, -EFAULT);
1491 	else if (req->flags & REQ_F_FORCE_ASYNC)
1492 		io_queue_iowq(req, ts);
1493 	else
1494 		io_queue_sqe(req);
1495 }
1496 
1497 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1498 {
1499 	io_req_set_res(req, ret, 0);
1500 	req->io_task_work.func = io_req_task_cancel;
1501 	io_req_task_work_add(req);
1502 }
1503 
1504 void io_req_task_queue(struct io_kiocb *req)
1505 {
1506 	req->io_task_work.func = io_req_task_submit;
1507 	io_req_task_work_add(req);
1508 }
1509 
1510 void io_queue_next(struct io_kiocb *req)
1511 {
1512 	struct io_kiocb *nxt = io_req_find_next(req);
1513 
1514 	if (nxt)
1515 		io_req_task_queue(nxt);
1516 }
1517 
1518 static void io_free_batch_list(struct io_ring_ctx *ctx,
1519 			       struct io_wq_work_node *node)
1520 	__must_hold(&ctx->uring_lock)
1521 {
1522 	do {
1523 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1524 						    comp_list);
1525 
1526 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1527 			if (req->flags & REQ_F_REFCOUNT) {
1528 				node = req->comp_list.next;
1529 				if (!req_ref_put_and_test(req))
1530 					continue;
1531 			}
1532 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1533 				struct async_poll *apoll = req->apoll;
1534 
1535 				if (apoll->double_poll)
1536 					kfree(apoll->double_poll);
1537 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1538 					kfree(apoll);
1539 				req->flags &= ~REQ_F_POLLED;
1540 			}
1541 			if (req->flags & IO_REQ_LINK_FLAGS)
1542 				io_queue_next(req);
1543 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1544 				io_clean_op(req);
1545 		}
1546 		io_put_file(req);
1547 
1548 		io_req_put_rsrc_locked(req, ctx);
1549 
1550 		io_put_task(req->task);
1551 		node = req->comp_list.next;
1552 		io_req_add_to_cache(req, ctx);
1553 	} while (node);
1554 }
1555 
1556 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1557 	__must_hold(&ctx->uring_lock)
1558 {
1559 	struct io_submit_state *state = &ctx->submit_state;
1560 	struct io_wq_work_node *node;
1561 
1562 	__io_cq_lock(ctx);
1563 	/* must come first to preserve CQE ordering in failure cases */
1564 	if (state->cqes_count)
1565 		__io_flush_post_cqes(ctx);
1566 	__wq_list_for_each(node, &state->compl_reqs) {
1567 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1568 					    comp_list);
1569 
1570 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1571 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1572 			if (ctx->lockless_cq) {
1573 				spin_lock(&ctx->completion_lock);
1574 				io_req_cqe_overflow(req);
1575 				spin_unlock(&ctx->completion_lock);
1576 			} else {
1577 				io_req_cqe_overflow(req);
1578 			}
1579 		}
1580 	}
1581 	__io_cq_unlock_post(ctx);
1582 
1583 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1584 		io_free_batch_list(ctx, state->compl_reqs.first);
1585 		INIT_WQ_LIST(&state->compl_reqs);
1586 	}
1587 }
1588 
1589 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1590 {
1591 	/* See comment at the top of this file */
1592 	smp_rmb();
1593 	return __io_cqring_events(ctx);
1594 }
1595 
1596 /*
1597  * We can't just wait for polled events to come to us, we have to actively
1598  * find and complete them.
1599  */
1600 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1601 {
1602 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1603 		return;
1604 
1605 	mutex_lock(&ctx->uring_lock);
1606 	while (!wq_list_empty(&ctx->iopoll_list)) {
1607 		/* let it sleep and repeat later if can't complete a request */
1608 		if (io_do_iopoll(ctx, true) == 0)
1609 			break;
1610 		/*
1611 		 * Ensure we allow local-to-the-cpu processing to take place,
1612 		 * in this case we need to ensure that we reap all events.
1613 		 * Also let task_work, etc. to progress by releasing the mutex
1614 		 */
1615 		if (need_resched()) {
1616 			mutex_unlock(&ctx->uring_lock);
1617 			cond_resched();
1618 			mutex_lock(&ctx->uring_lock);
1619 		}
1620 	}
1621 	mutex_unlock(&ctx->uring_lock);
1622 }
1623 
1624 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1625 {
1626 	unsigned int nr_events = 0;
1627 	unsigned long check_cq;
1628 
1629 	if (!io_allowed_run_tw(ctx))
1630 		return -EEXIST;
1631 
1632 	check_cq = READ_ONCE(ctx->check_cq);
1633 	if (unlikely(check_cq)) {
1634 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1635 			__io_cqring_overflow_flush(ctx);
1636 		/*
1637 		 * Similarly do not spin if we have not informed the user of any
1638 		 * dropped CQE.
1639 		 */
1640 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1641 			return -EBADR;
1642 	}
1643 	/*
1644 	 * Don't enter poll loop if we already have events pending.
1645 	 * If we do, we can potentially be spinning for commands that
1646 	 * already triggered a CQE (eg in error).
1647 	 */
1648 	if (io_cqring_events(ctx))
1649 		return 0;
1650 
1651 	do {
1652 		int ret = 0;
1653 
1654 		/*
1655 		 * If a submit got punted to a workqueue, we can have the
1656 		 * application entering polling for a command before it gets
1657 		 * issued. That app will hold the uring_lock for the duration
1658 		 * of the poll right here, so we need to take a breather every
1659 		 * now and then to ensure that the issue has a chance to add
1660 		 * the poll to the issued list. Otherwise we can spin here
1661 		 * forever, while the workqueue is stuck trying to acquire the
1662 		 * very same mutex.
1663 		 */
1664 		if (wq_list_empty(&ctx->iopoll_list) ||
1665 		    io_task_work_pending(ctx)) {
1666 			u32 tail = ctx->cached_cq_tail;
1667 
1668 			(void) io_run_local_work_locked(ctx);
1669 
1670 			if (task_work_pending(current) ||
1671 			    wq_list_empty(&ctx->iopoll_list)) {
1672 				mutex_unlock(&ctx->uring_lock);
1673 				io_run_task_work();
1674 				mutex_lock(&ctx->uring_lock);
1675 			}
1676 			/* some requests don't go through iopoll_list */
1677 			if (tail != ctx->cached_cq_tail ||
1678 			    wq_list_empty(&ctx->iopoll_list))
1679 				break;
1680 		}
1681 		ret = io_do_iopoll(ctx, !min);
1682 		if (unlikely(ret < 0))
1683 			return ret;
1684 
1685 		if (task_sigpending(current))
1686 			return -EINTR;
1687 		if (need_resched())
1688 			break;
1689 
1690 		nr_events += ret;
1691 	} while (nr_events < min);
1692 
1693 	return 0;
1694 }
1695 
1696 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1697 {
1698 	if (ts->locked)
1699 		io_req_complete_defer(req);
1700 	else
1701 		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1702 }
1703 
1704 /*
1705  * After the iocb has been issued, it's safe to be found on the poll list.
1706  * Adding the kiocb to the list AFTER submission ensures that we don't
1707  * find it from a io_do_iopoll() thread before the issuer is done
1708  * accessing the kiocb cookie.
1709  */
1710 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1711 {
1712 	struct io_ring_ctx *ctx = req->ctx;
1713 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1714 
1715 	/* workqueue context doesn't hold uring_lock, grab it now */
1716 	if (unlikely(needs_lock))
1717 		mutex_lock(&ctx->uring_lock);
1718 
1719 	/*
1720 	 * Track whether we have multiple files in our lists. This will impact
1721 	 * how we do polling eventually, not spinning if we're on potentially
1722 	 * different devices.
1723 	 */
1724 	if (wq_list_empty(&ctx->iopoll_list)) {
1725 		ctx->poll_multi_queue = false;
1726 	} else if (!ctx->poll_multi_queue) {
1727 		struct io_kiocb *list_req;
1728 
1729 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1730 					comp_list);
1731 		if (list_req->file != req->file)
1732 			ctx->poll_multi_queue = true;
1733 	}
1734 
1735 	/*
1736 	 * For fast devices, IO may have already completed. If it has, add
1737 	 * it to the front so we find it first.
1738 	 */
1739 	if (READ_ONCE(req->iopoll_completed))
1740 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1741 	else
1742 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1743 
1744 	if (unlikely(needs_lock)) {
1745 		/*
1746 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1747 		 * in sq thread task context or in io worker task context. If
1748 		 * current task context is sq thread, we don't need to check
1749 		 * whether should wake up sq thread.
1750 		 */
1751 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1752 		    wq_has_sleeper(&ctx->sq_data->wait))
1753 			wake_up(&ctx->sq_data->wait);
1754 
1755 		mutex_unlock(&ctx->uring_lock);
1756 	}
1757 }
1758 
1759 unsigned int io_file_get_flags(struct file *file)
1760 {
1761 	unsigned int res = 0;
1762 
1763 	if (S_ISREG(file_inode(file)->i_mode))
1764 		res |= REQ_F_ISREG;
1765 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1766 		res |= REQ_F_SUPPORT_NOWAIT;
1767 	return res;
1768 }
1769 
1770 bool io_alloc_async_data(struct io_kiocb *req)
1771 {
1772 	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1773 	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1774 	if (req->async_data) {
1775 		req->flags |= REQ_F_ASYNC_DATA;
1776 		return false;
1777 	}
1778 	return true;
1779 }
1780 
1781 int io_req_prep_async(struct io_kiocb *req)
1782 {
1783 	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1784 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1785 
1786 	/* assign early for deferred execution for non-fixed file */
1787 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1788 		req->file = io_file_get_normal(req, req->cqe.fd);
1789 	if (!cdef->prep_async)
1790 		return 0;
1791 	if (WARN_ON_ONCE(req_has_async_data(req)))
1792 		return -EFAULT;
1793 	if (!def->manual_alloc) {
1794 		if (io_alloc_async_data(req))
1795 			return -EAGAIN;
1796 	}
1797 	return cdef->prep_async(req);
1798 }
1799 
1800 static u32 io_get_sequence(struct io_kiocb *req)
1801 {
1802 	u32 seq = req->ctx->cached_sq_head;
1803 	struct io_kiocb *cur;
1804 
1805 	/* need original cached_sq_head, but it was increased for each req */
1806 	io_for_each_link(cur, req)
1807 		seq--;
1808 	return seq;
1809 }
1810 
1811 static __cold void io_drain_req(struct io_kiocb *req)
1812 	__must_hold(&ctx->uring_lock)
1813 {
1814 	struct io_ring_ctx *ctx = req->ctx;
1815 	struct io_defer_entry *de;
1816 	int ret;
1817 	u32 seq = io_get_sequence(req);
1818 
1819 	/* Still need defer if there is pending req in defer list. */
1820 	spin_lock(&ctx->completion_lock);
1821 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1822 		spin_unlock(&ctx->completion_lock);
1823 queue:
1824 		ctx->drain_active = false;
1825 		io_req_task_queue(req);
1826 		return;
1827 	}
1828 	spin_unlock(&ctx->completion_lock);
1829 
1830 	io_prep_async_link(req);
1831 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1832 	if (!de) {
1833 		ret = -ENOMEM;
1834 		io_req_defer_failed(req, ret);
1835 		return;
1836 	}
1837 
1838 	spin_lock(&ctx->completion_lock);
1839 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1840 		spin_unlock(&ctx->completion_lock);
1841 		kfree(de);
1842 		goto queue;
1843 	}
1844 
1845 	trace_io_uring_defer(req);
1846 	de->req = req;
1847 	de->seq = seq;
1848 	list_add_tail(&de->list, &ctx->defer_list);
1849 	spin_unlock(&ctx->completion_lock);
1850 }
1851 
1852 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1853 			   unsigned int issue_flags)
1854 {
1855 	if (req->file || !def->needs_file)
1856 		return true;
1857 
1858 	if (req->flags & REQ_F_FIXED_FILE)
1859 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1860 	else
1861 		req->file = io_file_get_normal(req, req->cqe.fd);
1862 
1863 	return !!req->file;
1864 }
1865 
1866 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1867 {
1868 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1869 	const struct cred *creds = NULL;
1870 	int ret;
1871 
1872 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1873 		return -EBADF;
1874 
1875 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1876 		creds = override_creds(req->creds);
1877 
1878 	if (!def->audit_skip)
1879 		audit_uring_entry(req->opcode);
1880 
1881 	ret = def->issue(req, issue_flags);
1882 
1883 	if (!def->audit_skip)
1884 		audit_uring_exit(!ret, ret);
1885 
1886 	if (creds)
1887 		revert_creds(creds);
1888 
1889 	if (ret == IOU_OK) {
1890 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1891 			io_req_complete_defer(req);
1892 		else
1893 			io_req_complete_post(req, issue_flags);
1894 	} else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1895 		return ret;
1896 
1897 	/* If the op doesn't have a file, we're not polling for it */
1898 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1899 		io_iopoll_req_issued(req, issue_flags);
1900 
1901 	return 0;
1902 }
1903 
1904 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1905 {
1906 	io_tw_lock(req->ctx, ts);
1907 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1908 				 IO_URING_F_COMPLETE_DEFER);
1909 }
1910 
1911 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1912 {
1913 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1914 	struct io_kiocb *nxt = NULL;
1915 
1916 	if (req_ref_put_and_test(req)) {
1917 		if (req->flags & IO_REQ_LINK_FLAGS)
1918 			nxt = io_req_find_next(req);
1919 		io_free_req(req);
1920 	}
1921 	return nxt ? &nxt->work : NULL;
1922 }
1923 
1924 void io_wq_submit_work(struct io_wq_work *work)
1925 {
1926 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1927 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1928 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1929 	bool needs_poll = false;
1930 	int ret = 0, err = -ECANCELED;
1931 
1932 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1933 	if (!(req->flags & REQ_F_REFCOUNT))
1934 		__io_req_set_refcount(req, 2);
1935 	else
1936 		req_ref_get(req);
1937 
1938 	io_arm_ltimeout(req);
1939 
1940 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1941 	if (work->flags & IO_WQ_WORK_CANCEL) {
1942 fail:
1943 		io_req_task_queue_fail(req, err);
1944 		return;
1945 	}
1946 	if (!io_assign_file(req, def, issue_flags)) {
1947 		err = -EBADF;
1948 		work->flags |= IO_WQ_WORK_CANCEL;
1949 		goto fail;
1950 	}
1951 
1952 	if (req->flags & REQ_F_FORCE_ASYNC) {
1953 		bool opcode_poll = def->pollin || def->pollout;
1954 
1955 		if (opcode_poll && file_can_poll(req->file)) {
1956 			needs_poll = true;
1957 			issue_flags |= IO_URING_F_NONBLOCK;
1958 		}
1959 	}
1960 
1961 	do {
1962 		ret = io_issue_sqe(req, issue_flags);
1963 		if (ret != -EAGAIN)
1964 			break;
1965 
1966 		/*
1967 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1968 		 * poll. -EAGAIN is final for that case.
1969 		 */
1970 		if (req->flags & REQ_F_NOWAIT)
1971 			break;
1972 
1973 		/*
1974 		 * We can get EAGAIN for iopolled IO even though we're
1975 		 * forcing a sync submission from here, since we can't
1976 		 * wait for request slots on the block side.
1977 		 */
1978 		if (!needs_poll) {
1979 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1980 				break;
1981 			if (io_wq_worker_stopped())
1982 				break;
1983 			cond_resched();
1984 			continue;
1985 		}
1986 
1987 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1988 			return;
1989 		/* aborted or ready, in either case retry blocking */
1990 		needs_poll = false;
1991 		issue_flags &= ~IO_URING_F_NONBLOCK;
1992 	} while (1);
1993 
1994 	/* avoid locking problems by failing it from a clean context */
1995 	if (ret < 0)
1996 		io_req_task_queue_fail(req, ret);
1997 }
1998 
1999 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
2000 				      unsigned int issue_flags)
2001 {
2002 	struct io_ring_ctx *ctx = req->ctx;
2003 	struct io_fixed_file *slot;
2004 	struct file *file = NULL;
2005 
2006 	io_ring_submit_lock(ctx, issue_flags);
2007 
2008 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2009 		goto out;
2010 	fd = array_index_nospec(fd, ctx->nr_user_files);
2011 	slot = io_fixed_file_slot(&ctx->file_table, fd);
2012 	file = io_slot_file(slot);
2013 	req->flags |= io_slot_flags(slot);
2014 	io_req_set_rsrc_node(req, ctx, 0);
2015 out:
2016 	io_ring_submit_unlock(ctx, issue_flags);
2017 	return file;
2018 }
2019 
2020 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2021 {
2022 	struct file *file = fget(fd);
2023 
2024 	trace_io_uring_file_get(req, fd);
2025 
2026 	/* we don't allow fixed io_uring files */
2027 	if (file && io_is_uring_fops(file))
2028 		io_req_track_inflight(req);
2029 	return file;
2030 }
2031 
2032 static void io_queue_async(struct io_kiocb *req, int ret)
2033 	__must_hold(&req->ctx->uring_lock)
2034 {
2035 	struct io_kiocb *linked_timeout;
2036 
2037 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2038 		io_req_defer_failed(req, ret);
2039 		return;
2040 	}
2041 
2042 	linked_timeout = io_prep_linked_timeout(req);
2043 
2044 	switch (io_arm_poll_handler(req, 0)) {
2045 	case IO_APOLL_READY:
2046 		io_kbuf_recycle(req, 0);
2047 		io_req_task_queue(req);
2048 		break;
2049 	case IO_APOLL_ABORTED:
2050 		io_kbuf_recycle(req, 0);
2051 		io_queue_iowq(req, NULL);
2052 		break;
2053 	case IO_APOLL_OK:
2054 		break;
2055 	}
2056 
2057 	if (linked_timeout)
2058 		io_queue_linked_timeout(linked_timeout);
2059 }
2060 
2061 static inline void io_queue_sqe(struct io_kiocb *req)
2062 	__must_hold(&req->ctx->uring_lock)
2063 {
2064 	int ret;
2065 
2066 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2067 
2068 	/*
2069 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2070 	 * doesn't support non-blocking read/write attempts
2071 	 */
2072 	if (likely(!ret))
2073 		io_arm_ltimeout(req);
2074 	else
2075 		io_queue_async(req, ret);
2076 }
2077 
2078 static void io_queue_sqe_fallback(struct io_kiocb *req)
2079 	__must_hold(&req->ctx->uring_lock)
2080 {
2081 	if (unlikely(req->flags & REQ_F_FAIL)) {
2082 		/*
2083 		 * We don't submit, fail them all, for that replace hardlinks
2084 		 * with normal links. Extra REQ_F_LINK is tolerated.
2085 		 */
2086 		req->flags &= ~REQ_F_HARDLINK;
2087 		req->flags |= REQ_F_LINK;
2088 		io_req_defer_failed(req, req->cqe.res);
2089 	} else {
2090 		int ret = io_req_prep_async(req);
2091 
2092 		if (unlikely(ret)) {
2093 			io_req_defer_failed(req, ret);
2094 			return;
2095 		}
2096 
2097 		if (unlikely(req->ctx->drain_active))
2098 			io_drain_req(req);
2099 		else
2100 			io_queue_iowq(req, NULL);
2101 	}
2102 }
2103 
2104 /*
2105  * Check SQE restrictions (opcode and flags).
2106  *
2107  * Returns 'true' if SQE is allowed, 'false' otherwise.
2108  */
2109 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2110 					struct io_kiocb *req,
2111 					unsigned int sqe_flags)
2112 {
2113 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2114 		return false;
2115 
2116 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2117 	    ctx->restrictions.sqe_flags_required)
2118 		return false;
2119 
2120 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2121 			  ctx->restrictions.sqe_flags_required))
2122 		return false;
2123 
2124 	return true;
2125 }
2126 
2127 static void io_init_req_drain(struct io_kiocb *req)
2128 {
2129 	struct io_ring_ctx *ctx = req->ctx;
2130 	struct io_kiocb *head = ctx->submit_state.link.head;
2131 
2132 	ctx->drain_active = true;
2133 	if (head) {
2134 		/*
2135 		 * If we need to drain a request in the middle of a link, drain
2136 		 * the head request and the next request/link after the current
2137 		 * link. Considering sequential execution of links,
2138 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2139 		 * link.
2140 		 */
2141 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2142 		ctx->drain_next = true;
2143 	}
2144 }
2145 
2146 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2147 		       const struct io_uring_sqe *sqe)
2148 	__must_hold(&ctx->uring_lock)
2149 {
2150 	const struct io_issue_def *def;
2151 	unsigned int sqe_flags;
2152 	int personality;
2153 	u8 opcode;
2154 
2155 	/* req is partially pre-initialised, see io_preinit_req() */
2156 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2157 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2158 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2159 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2160 	req->file = NULL;
2161 	req->rsrc_node = NULL;
2162 	req->task = current;
2163 
2164 	if (unlikely(opcode >= IORING_OP_LAST)) {
2165 		req->opcode = 0;
2166 		return -EINVAL;
2167 	}
2168 	def = &io_issue_defs[opcode];
2169 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2170 		/* enforce forwards compatibility on users */
2171 		if (sqe_flags & ~SQE_VALID_FLAGS)
2172 			return -EINVAL;
2173 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2174 			if (!def->buffer_select)
2175 				return -EOPNOTSUPP;
2176 			req->buf_index = READ_ONCE(sqe->buf_group);
2177 		}
2178 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2179 			ctx->drain_disabled = true;
2180 		if (sqe_flags & IOSQE_IO_DRAIN) {
2181 			if (ctx->drain_disabled)
2182 				return -EOPNOTSUPP;
2183 			io_init_req_drain(req);
2184 		}
2185 	}
2186 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2187 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2188 			return -EACCES;
2189 		/* knock it to the slow queue path, will be drained there */
2190 		if (ctx->drain_active)
2191 			req->flags |= REQ_F_FORCE_ASYNC;
2192 		/* if there is no link, we're at "next" request and need to drain */
2193 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2194 			ctx->drain_next = false;
2195 			ctx->drain_active = true;
2196 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2197 		}
2198 	}
2199 
2200 	if (!def->ioprio && sqe->ioprio)
2201 		return -EINVAL;
2202 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2203 		return -EINVAL;
2204 
2205 	if (def->needs_file) {
2206 		struct io_submit_state *state = &ctx->submit_state;
2207 
2208 		req->cqe.fd = READ_ONCE(sqe->fd);
2209 
2210 		/*
2211 		 * Plug now if we have more than 2 IO left after this, and the
2212 		 * target is potentially a read/write to block based storage.
2213 		 */
2214 		if (state->need_plug && def->plug) {
2215 			state->plug_started = true;
2216 			state->need_plug = false;
2217 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2218 		}
2219 	}
2220 
2221 	personality = READ_ONCE(sqe->personality);
2222 	if (personality) {
2223 		int ret;
2224 
2225 		req->creds = xa_load(&ctx->personalities, personality);
2226 		if (!req->creds)
2227 			return -EINVAL;
2228 		get_cred(req->creds);
2229 		ret = security_uring_override_creds(req->creds);
2230 		if (ret) {
2231 			put_cred(req->creds);
2232 			return ret;
2233 		}
2234 		req->flags |= REQ_F_CREDS;
2235 	}
2236 
2237 	return def->prep(req, sqe);
2238 }
2239 
2240 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2241 				      struct io_kiocb *req, int ret)
2242 {
2243 	struct io_ring_ctx *ctx = req->ctx;
2244 	struct io_submit_link *link = &ctx->submit_state.link;
2245 	struct io_kiocb *head = link->head;
2246 
2247 	trace_io_uring_req_failed(sqe, req, ret);
2248 
2249 	/*
2250 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2251 	 * unusable. Instead of failing eagerly, continue assembling the link if
2252 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2253 	 * should find the flag and handle the rest.
2254 	 */
2255 	req_fail_link_node(req, ret);
2256 	if (head && !(head->flags & REQ_F_FAIL))
2257 		req_fail_link_node(head, -ECANCELED);
2258 
2259 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2260 		if (head) {
2261 			link->last->link = req;
2262 			link->head = NULL;
2263 			req = head;
2264 		}
2265 		io_queue_sqe_fallback(req);
2266 		return ret;
2267 	}
2268 
2269 	if (head)
2270 		link->last->link = req;
2271 	else
2272 		link->head = req;
2273 	link->last = req;
2274 	return 0;
2275 }
2276 
2277 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2278 			 const struct io_uring_sqe *sqe)
2279 	__must_hold(&ctx->uring_lock)
2280 {
2281 	struct io_submit_link *link = &ctx->submit_state.link;
2282 	int ret;
2283 
2284 	ret = io_init_req(ctx, req, sqe);
2285 	if (unlikely(ret))
2286 		return io_submit_fail_init(sqe, req, ret);
2287 
2288 	trace_io_uring_submit_req(req);
2289 
2290 	/*
2291 	 * If we already have a head request, queue this one for async
2292 	 * submittal once the head completes. If we don't have a head but
2293 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2294 	 * submitted sync once the chain is complete. If none of those
2295 	 * conditions are true (normal request), then just queue it.
2296 	 */
2297 	if (unlikely(link->head)) {
2298 		ret = io_req_prep_async(req);
2299 		if (unlikely(ret))
2300 			return io_submit_fail_init(sqe, req, ret);
2301 
2302 		trace_io_uring_link(req, link->head);
2303 		link->last->link = req;
2304 		link->last = req;
2305 
2306 		if (req->flags & IO_REQ_LINK_FLAGS)
2307 			return 0;
2308 		/* last request of the link, flush it */
2309 		req = link->head;
2310 		link->head = NULL;
2311 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2312 			goto fallback;
2313 
2314 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2315 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2316 		if (req->flags & IO_REQ_LINK_FLAGS) {
2317 			link->head = req;
2318 			link->last = req;
2319 		} else {
2320 fallback:
2321 			io_queue_sqe_fallback(req);
2322 		}
2323 		return 0;
2324 	}
2325 
2326 	io_queue_sqe(req);
2327 	return 0;
2328 }
2329 
2330 /*
2331  * Batched submission is done, ensure local IO is flushed out.
2332  */
2333 static void io_submit_state_end(struct io_ring_ctx *ctx)
2334 {
2335 	struct io_submit_state *state = &ctx->submit_state;
2336 
2337 	if (unlikely(state->link.head))
2338 		io_queue_sqe_fallback(state->link.head);
2339 	/* flush only after queuing links as they can generate completions */
2340 	io_submit_flush_completions(ctx);
2341 	if (state->plug_started)
2342 		blk_finish_plug(&state->plug);
2343 }
2344 
2345 /*
2346  * Start submission side cache.
2347  */
2348 static void io_submit_state_start(struct io_submit_state *state,
2349 				  unsigned int max_ios)
2350 {
2351 	state->plug_started = false;
2352 	state->need_plug = max_ios > 2;
2353 	state->submit_nr = max_ios;
2354 	/* set only head, no need to init link_last in advance */
2355 	state->link.head = NULL;
2356 }
2357 
2358 static void io_commit_sqring(struct io_ring_ctx *ctx)
2359 {
2360 	struct io_rings *rings = ctx->rings;
2361 
2362 	/*
2363 	 * Ensure any loads from the SQEs are done at this point,
2364 	 * since once we write the new head, the application could
2365 	 * write new data to them.
2366 	 */
2367 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2368 }
2369 
2370 /*
2371  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2372  * that is mapped by userspace. This means that care needs to be taken to
2373  * ensure that reads are stable, as we cannot rely on userspace always
2374  * being a good citizen. If members of the sqe are validated and then later
2375  * used, it's important that those reads are done through READ_ONCE() to
2376  * prevent a re-load down the line.
2377  */
2378 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2379 {
2380 	unsigned mask = ctx->sq_entries - 1;
2381 	unsigned head = ctx->cached_sq_head++ & mask;
2382 
2383 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2384 		head = READ_ONCE(ctx->sq_array[head]);
2385 		if (unlikely(head >= ctx->sq_entries)) {
2386 			/* drop invalid entries */
2387 			spin_lock(&ctx->completion_lock);
2388 			ctx->cq_extra--;
2389 			spin_unlock(&ctx->completion_lock);
2390 			WRITE_ONCE(ctx->rings->sq_dropped,
2391 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2392 			return false;
2393 		}
2394 	}
2395 
2396 	/*
2397 	 * The cached sq head (or cq tail) serves two purposes:
2398 	 *
2399 	 * 1) allows us to batch the cost of updating the user visible
2400 	 *    head updates.
2401 	 * 2) allows the kernel side to track the head on its own, even
2402 	 *    though the application is the one updating it.
2403 	 */
2404 
2405 	/* double index for 128-byte SQEs, twice as long */
2406 	if (ctx->flags & IORING_SETUP_SQE128)
2407 		head <<= 1;
2408 	*sqe = &ctx->sq_sqes[head];
2409 	return true;
2410 }
2411 
2412 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2413 	__must_hold(&ctx->uring_lock)
2414 {
2415 	unsigned int entries = io_sqring_entries(ctx);
2416 	unsigned int left;
2417 	int ret;
2418 
2419 	if (unlikely(!entries))
2420 		return 0;
2421 	/* make sure SQ entry isn't read before tail */
2422 	ret = left = min(nr, entries);
2423 	io_get_task_refs(left);
2424 	io_submit_state_start(&ctx->submit_state, left);
2425 
2426 	do {
2427 		const struct io_uring_sqe *sqe;
2428 		struct io_kiocb *req;
2429 
2430 		if (unlikely(!io_alloc_req(ctx, &req)))
2431 			break;
2432 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2433 			io_req_add_to_cache(req, ctx);
2434 			break;
2435 		}
2436 
2437 		/*
2438 		 * Continue submitting even for sqe failure if the
2439 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2440 		 */
2441 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2442 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2443 			left--;
2444 			break;
2445 		}
2446 	} while (--left);
2447 
2448 	if (unlikely(left)) {
2449 		ret -= left;
2450 		/* try again if it submitted nothing and can't allocate a req */
2451 		if (!ret && io_req_cache_empty(ctx))
2452 			ret = -EAGAIN;
2453 		current->io_uring->cached_refs += left;
2454 	}
2455 
2456 	io_submit_state_end(ctx);
2457 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2458 	io_commit_sqring(ctx);
2459 	return ret;
2460 }
2461 
2462 struct io_wait_queue {
2463 	struct wait_queue_entry wq;
2464 	struct io_ring_ctx *ctx;
2465 	unsigned cq_tail;
2466 	unsigned nr_timeouts;
2467 	ktime_t timeout;
2468 };
2469 
2470 static inline bool io_has_work(struct io_ring_ctx *ctx)
2471 {
2472 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2473 	       !llist_empty(&ctx->work_llist);
2474 }
2475 
2476 static inline bool io_should_wake(struct io_wait_queue *iowq)
2477 {
2478 	struct io_ring_ctx *ctx = iowq->ctx;
2479 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2480 
2481 	/*
2482 	 * Wake up if we have enough events, or if a timeout occurred since we
2483 	 * started waiting. For timeouts, we always want to return to userspace,
2484 	 * regardless of event count.
2485 	 */
2486 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2487 }
2488 
2489 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2490 			    int wake_flags, void *key)
2491 {
2492 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2493 
2494 	/*
2495 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2496 	 * the task, and the next invocation will do it.
2497 	 */
2498 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2499 		return autoremove_wake_function(curr, mode, wake_flags, key);
2500 	return -1;
2501 }
2502 
2503 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2504 {
2505 	if (!llist_empty(&ctx->work_llist)) {
2506 		__set_current_state(TASK_RUNNING);
2507 		if (io_run_local_work(ctx) > 0)
2508 			return 0;
2509 	}
2510 	if (io_run_task_work() > 0)
2511 		return 0;
2512 	if (task_sigpending(current))
2513 		return -EINTR;
2514 	return 0;
2515 }
2516 
2517 static bool current_pending_io(void)
2518 {
2519 	struct io_uring_task *tctx = current->io_uring;
2520 
2521 	if (!tctx)
2522 		return false;
2523 	return percpu_counter_read_positive(&tctx->inflight);
2524 }
2525 
2526 /* when returns >0, the caller should retry */
2527 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2528 					  struct io_wait_queue *iowq)
2529 {
2530 	int io_wait, ret;
2531 
2532 	if (unlikely(READ_ONCE(ctx->check_cq)))
2533 		return 1;
2534 	if (unlikely(!llist_empty(&ctx->work_llist)))
2535 		return 1;
2536 	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2537 		return 1;
2538 	if (unlikely(task_sigpending(current)))
2539 		return -EINTR;
2540 	if (unlikely(io_should_wake(iowq)))
2541 		return 0;
2542 
2543 	/*
2544 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2545 	 * can take into account that the task is waiting for IO - turns out
2546 	 * to be important for low QD IO.
2547 	 */
2548 	io_wait = current->in_iowait;
2549 	if (current_pending_io())
2550 		current->in_iowait = 1;
2551 	ret = 0;
2552 	if (iowq->timeout == KTIME_MAX)
2553 		schedule();
2554 	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2555 		ret = -ETIME;
2556 	current->in_iowait = io_wait;
2557 	return ret;
2558 }
2559 
2560 /*
2561  * Wait until events become available, if we don't already have some. The
2562  * application must reap them itself, as they reside on the shared cq ring.
2563  */
2564 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2565 			  const sigset_t __user *sig, size_t sigsz,
2566 			  struct __kernel_timespec __user *uts)
2567 {
2568 	struct io_wait_queue iowq;
2569 	struct io_rings *rings = ctx->rings;
2570 	int ret;
2571 
2572 	if (!io_allowed_run_tw(ctx))
2573 		return -EEXIST;
2574 	if (!llist_empty(&ctx->work_llist))
2575 		io_run_local_work(ctx);
2576 	io_run_task_work();
2577 	io_cqring_overflow_flush(ctx);
2578 	/* if user messes with these they will just get an early return */
2579 	if (__io_cqring_events_user(ctx) >= min_events)
2580 		return 0;
2581 
2582 	if (sig) {
2583 #ifdef CONFIG_COMPAT
2584 		if (in_compat_syscall())
2585 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2586 						      sigsz);
2587 		else
2588 #endif
2589 			ret = set_user_sigmask(sig, sigsz);
2590 
2591 		if (ret)
2592 			return ret;
2593 	}
2594 
2595 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2596 	iowq.wq.private = current;
2597 	INIT_LIST_HEAD(&iowq.wq.entry);
2598 	iowq.ctx = ctx;
2599 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2600 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2601 	iowq.timeout = KTIME_MAX;
2602 
2603 	if (uts) {
2604 		struct timespec64 ts;
2605 
2606 		if (get_timespec64(&ts, uts))
2607 			return -EFAULT;
2608 		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2609 	}
2610 
2611 	trace_io_uring_cqring_wait(ctx, min_events);
2612 	do {
2613 		unsigned long check_cq;
2614 
2615 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2616 			int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2617 
2618 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2619 			set_current_state(TASK_INTERRUPTIBLE);
2620 		} else {
2621 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2622 							TASK_INTERRUPTIBLE);
2623 		}
2624 
2625 		ret = io_cqring_wait_schedule(ctx, &iowq);
2626 		__set_current_state(TASK_RUNNING);
2627 		atomic_set(&ctx->cq_wait_nr, 0);
2628 
2629 		if (ret < 0)
2630 			break;
2631 		/*
2632 		 * Run task_work after scheduling and before io_should_wake().
2633 		 * If we got woken because of task_work being processed, run it
2634 		 * now rather than let the caller do another wait loop.
2635 		 */
2636 		io_run_task_work();
2637 		if (!llist_empty(&ctx->work_llist))
2638 			io_run_local_work(ctx);
2639 
2640 		check_cq = READ_ONCE(ctx->check_cq);
2641 		if (unlikely(check_cq)) {
2642 			/* let the caller flush overflows, retry */
2643 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2644 				io_cqring_do_overflow_flush(ctx);
2645 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2646 				ret = -EBADR;
2647 				break;
2648 			}
2649 		}
2650 
2651 		if (io_should_wake(&iowq)) {
2652 			ret = 0;
2653 			break;
2654 		}
2655 		cond_resched();
2656 	} while (1);
2657 
2658 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2659 		finish_wait(&ctx->cq_wait, &iowq.wq);
2660 	restore_saved_sigmask_unless(ret == -EINTR);
2661 
2662 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2663 }
2664 
2665 void io_mem_free(void *ptr)
2666 {
2667 	if (!ptr)
2668 		return;
2669 
2670 	folio_put(virt_to_folio(ptr));
2671 }
2672 
2673 static void io_pages_free(struct page ***pages, int npages)
2674 {
2675 	struct page **page_array;
2676 	int i;
2677 
2678 	if (!pages)
2679 		return;
2680 
2681 	page_array = *pages;
2682 	if (!page_array)
2683 		return;
2684 
2685 	for (i = 0; i < npages; i++)
2686 		unpin_user_page(page_array[i]);
2687 	kvfree(page_array);
2688 	*pages = NULL;
2689 }
2690 
2691 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2692 			    unsigned long uaddr, size_t size)
2693 {
2694 	struct page **page_array;
2695 	unsigned int nr_pages;
2696 	void *page_addr;
2697 	int ret, i;
2698 
2699 	*npages = 0;
2700 
2701 	if (uaddr & (PAGE_SIZE - 1) || !size)
2702 		return ERR_PTR(-EINVAL);
2703 
2704 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2705 	if (nr_pages > USHRT_MAX)
2706 		return ERR_PTR(-EINVAL);
2707 	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2708 	if (!page_array)
2709 		return ERR_PTR(-ENOMEM);
2710 
2711 	ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2712 					page_array);
2713 	if (ret != nr_pages) {
2714 err:
2715 		io_pages_free(&page_array, ret > 0 ? ret : 0);
2716 		return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT);
2717 	}
2718 
2719 	page_addr = page_address(page_array[0]);
2720 	for (i = 0; i < nr_pages; i++) {
2721 		ret = -EINVAL;
2722 
2723 		/*
2724 		 * Can't support mapping user allocated ring memory on 32-bit
2725 		 * archs where it could potentially reside in highmem. Just
2726 		 * fail those with -EINVAL, just like we did on kernels that
2727 		 * didn't support this feature.
2728 		 */
2729 		if (PageHighMem(page_array[i]))
2730 			goto err;
2731 
2732 		/*
2733 		 * No support for discontig pages for now, should either be a
2734 		 * single normal page, or a huge page. Later on we can add
2735 		 * support for remapping discontig pages, for now we will
2736 		 * just fail them with EINVAL.
2737 		 */
2738 		if (page_address(page_array[i]) != page_addr)
2739 			goto err;
2740 		page_addr += PAGE_SIZE;
2741 	}
2742 
2743 	*pages = page_array;
2744 	*npages = nr_pages;
2745 	return page_to_virt(page_array[0]);
2746 }
2747 
2748 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2749 			  size_t size)
2750 {
2751 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2752 				size);
2753 }
2754 
2755 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2756 			 size_t size)
2757 {
2758 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2759 				size);
2760 }
2761 
2762 static void io_rings_free(struct io_ring_ctx *ctx)
2763 {
2764 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2765 		io_mem_free(ctx->rings);
2766 		io_mem_free(ctx->sq_sqes);
2767 		ctx->rings = NULL;
2768 		ctx->sq_sqes = NULL;
2769 	} else {
2770 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2771 		ctx->n_ring_pages = 0;
2772 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2773 		ctx->n_sqe_pages = 0;
2774 	}
2775 }
2776 
2777 void *io_mem_alloc(size_t size)
2778 {
2779 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2780 	void *ret;
2781 
2782 	ret = (void *) __get_free_pages(gfp, get_order(size));
2783 	if (ret)
2784 		return ret;
2785 	return ERR_PTR(-ENOMEM);
2786 }
2787 
2788 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2789 				unsigned int cq_entries, size_t *sq_offset)
2790 {
2791 	struct io_rings *rings;
2792 	size_t off, sq_array_size;
2793 
2794 	off = struct_size(rings, cqes, cq_entries);
2795 	if (off == SIZE_MAX)
2796 		return SIZE_MAX;
2797 	if (ctx->flags & IORING_SETUP_CQE32) {
2798 		if (check_shl_overflow(off, 1, &off))
2799 			return SIZE_MAX;
2800 	}
2801 
2802 #ifdef CONFIG_SMP
2803 	off = ALIGN(off, SMP_CACHE_BYTES);
2804 	if (off == 0)
2805 		return SIZE_MAX;
2806 #endif
2807 
2808 	if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2809 		if (sq_offset)
2810 			*sq_offset = SIZE_MAX;
2811 		return off;
2812 	}
2813 
2814 	if (sq_offset)
2815 		*sq_offset = off;
2816 
2817 	sq_array_size = array_size(sizeof(u32), sq_entries);
2818 	if (sq_array_size == SIZE_MAX)
2819 		return SIZE_MAX;
2820 
2821 	if (check_add_overflow(off, sq_array_size, &off))
2822 		return SIZE_MAX;
2823 
2824 	return off;
2825 }
2826 
2827 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2828 			       unsigned int eventfd_async)
2829 {
2830 	struct io_ev_fd *ev_fd;
2831 	__s32 __user *fds = arg;
2832 	int fd;
2833 
2834 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2835 					lockdep_is_held(&ctx->uring_lock));
2836 	if (ev_fd)
2837 		return -EBUSY;
2838 
2839 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2840 		return -EFAULT;
2841 
2842 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2843 	if (!ev_fd)
2844 		return -ENOMEM;
2845 
2846 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2847 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2848 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2849 		kfree(ev_fd);
2850 		return ret;
2851 	}
2852 
2853 	spin_lock(&ctx->completion_lock);
2854 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2855 	spin_unlock(&ctx->completion_lock);
2856 
2857 	ev_fd->eventfd_async = eventfd_async;
2858 	ctx->has_evfd = true;
2859 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2860 	atomic_set(&ev_fd->refs, 1);
2861 	atomic_set(&ev_fd->ops, 0);
2862 	return 0;
2863 }
2864 
2865 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2866 {
2867 	struct io_ev_fd *ev_fd;
2868 
2869 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2870 					lockdep_is_held(&ctx->uring_lock));
2871 	if (ev_fd) {
2872 		ctx->has_evfd = false;
2873 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2874 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2875 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2876 		return 0;
2877 	}
2878 
2879 	return -ENXIO;
2880 }
2881 
2882 static void io_req_caches_free(struct io_ring_ctx *ctx)
2883 {
2884 	struct io_kiocb *req;
2885 	int nr = 0;
2886 
2887 	mutex_lock(&ctx->uring_lock);
2888 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2889 
2890 	while (!io_req_cache_empty(ctx)) {
2891 		req = io_extract_req(ctx);
2892 		kmem_cache_free(req_cachep, req);
2893 		nr++;
2894 	}
2895 	if (nr)
2896 		percpu_ref_put_many(&ctx->refs, nr);
2897 	mutex_unlock(&ctx->uring_lock);
2898 }
2899 
2900 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2901 {
2902 	kfree(container_of(entry, struct io_rsrc_node, cache));
2903 }
2904 
2905 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2906 {
2907 	io_sq_thread_finish(ctx);
2908 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2909 	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2910 		return;
2911 
2912 	mutex_lock(&ctx->uring_lock);
2913 	if (ctx->buf_data)
2914 		__io_sqe_buffers_unregister(ctx);
2915 	if (ctx->file_data)
2916 		__io_sqe_files_unregister(ctx);
2917 	io_cqring_overflow_kill(ctx);
2918 	io_eventfd_unregister(ctx);
2919 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2920 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2921 	io_destroy_buffers(ctx);
2922 	mutex_unlock(&ctx->uring_lock);
2923 	if (ctx->sq_creds)
2924 		put_cred(ctx->sq_creds);
2925 	if (ctx->submitter_task)
2926 		put_task_struct(ctx->submitter_task);
2927 
2928 	/* there are no registered resources left, nobody uses it */
2929 	if (ctx->rsrc_node)
2930 		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2931 
2932 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2933 
2934 #if defined(CONFIG_UNIX)
2935 	if (ctx->ring_sock) {
2936 		ctx->ring_sock->file = NULL; /* so that iput() is called */
2937 		sock_release(ctx->ring_sock);
2938 	}
2939 #endif
2940 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2941 
2942 	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2943 	if (ctx->mm_account) {
2944 		mmdrop(ctx->mm_account);
2945 		ctx->mm_account = NULL;
2946 	}
2947 	io_rings_free(ctx);
2948 	io_kbuf_mmap_list_free(ctx);
2949 
2950 	percpu_ref_exit(&ctx->refs);
2951 	free_uid(ctx->user);
2952 	io_req_caches_free(ctx);
2953 	if (ctx->hash_map)
2954 		io_wq_put_hash(ctx->hash_map);
2955 	kfree(ctx->cancel_table.hbs);
2956 	kfree(ctx->cancel_table_locked.hbs);
2957 	kfree(ctx->io_bl);
2958 	xa_destroy(&ctx->io_bl_xa);
2959 	kfree(ctx);
2960 }
2961 
2962 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2963 {
2964 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2965 					       poll_wq_task_work);
2966 
2967 	mutex_lock(&ctx->uring_lock);
2968 	ctx->poll_activated = true;
2969 	mutex_unlock(&ctx->uring_lock);
2970 
2971 	/*
2972 	 * Wake ups for some events between start of polling and activation
2973 	 * might've been lost due to loose synchronisation.
2974 	 */
2975 	wake_up_all(&ctx->poll_wq);
2976 	percpu_ref_put(&ctx->refs);
2977 }
2978 
2979 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2980 {
2981 	spin_lock(&ctx->completion_lock);
2982 	/* already activated or in progress */
2983 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2984 		goto out;
2985 	if (WARN_ON_ONCE(!ctx->task_complete))
2986 		goto out;
2987 	if (!ctx->submitter_task)
2988 		goto out;
2989 	/*
2990 	 * with ->submitter_task only the submitter task completes requests, we
2991 	 * only need to sync with it, which is done by injecting a tw
2992 	 */
2993 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2994 	percpu_ref_get(&ctx->refs);
2995 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2996 		percpu_ref_put(&ctx->refs);
2997 out:
2998 	spin_unlock(&ctx->completion_lock);
2999 }
3000 
3001 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
3002 {
3003 	struct io_ring_ctx *ctx = file->private_data;
3004 	__poll_t mask = 0;
3005 
3006 	if (unlikely(!ctx->poll_activated))
3007 		io_activate_pollwq(ctx);
3008 
3009 	poll_wait(file, &ctx->poll_wq, wait);
3010 	/*
3011 	 * synchronizes with barrier from wq_has_sleeper call in
3012 	 * io_commit_cqring
3013 	 */
3014 	smp_rmb();
3015 	if (!io_sqring_full(ctx))
3016 		mask |= EPOLLOUT | EPOLLWRNORM;
3017 
3018 	/*
3019 	 * Don't flush cqring overflow list here, just do a simple check.
3020 	 * Otherwise there could possible be ABBA deadlock:
3021 	 *      CPU0                    CPU1
3022 	 *      ----                    ----
3023 	 * lock(&ctx->uring_lock);
3024 	 *                              lock(&ep->mtx);
3025 	 *                              lock(&ctx->uring_lock);
3026 	 * lock(&ep->mtx);
3027 	 *
3028 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
3029 	 * pushes them to do the flush.
3030 	 */
3031 
3032 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
3033 		mask |= EPOLLIN | EPOLLRDNORM;
3034 
3035 	return mask;
3036 }
3037 
3038 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
3039 {
3040 	const struct cred *creds;
3041 
3042 	creds = xa_erase(&ctx->personalities, id);
3043 	if (creds) {
3044 		put_cred(creds);
3045 		return 0;
3046 	}
3047 
3048 	return -EINVAL;
3049 }
3050 
3051 struct io_tctx_exit {
3052 	struct callback_head		task_work;
3053 	struct completion		completion;
3054 	struct io_ring_ctx		*ctx;
3055 };
3056 
3057 static __cold void io_tctx_exit_cb(struct callback_head *cb)
3058 {
3059 	struct io_uring_task *tctx = current->io_uring;
3060 	struct io_tctx_exit *work;
3061 
3062 	work = container_of(cb, struct io_tctx_exit, task_work);
3063 	/*
3064 	 * When @in_cancel, we're in cancellation and it's racy to remove the
3065 	 * node. It'll be removed by the end of cancellation, just ignore it.
3066 	 * tctx can be NULL if the queueing of this task_work raced with
3067 	 * work cancelation off the exec path.
3068 	 */
3069 	if (tctx && !atomic_read(&tctx->in_cancel))
3070 		io_uring_del_tctx_node((unsigned long)work->ctx);
3071 	complete(&work->completion);
3072 }
3073 
3074 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3075 {
3076 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3077 
3078 	return req->ctx == data;
3079 }
3080 
3081 static __cold void io_ring_exit_work(struct work_struct *work)
3082 {
3083 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3084 	unsigned long timeout = jiffies + HZ * 60 * 5;
3085 	unsigned long interval = HZ / 20;
3086 	struct io_tctx_exit exit;
3087 	struct io_tctx_node *node;
3088 	int ret;
3089 
3090 	/*
3091 	 * If we're doing polled IO and end up having requests being
3092 	 * submitted async (out-of-line), then completions can come in while
3093 	 * we're waiting for refs to drop. We need to reap these manually,
3094 	 * as nobody else will be looking for them.
3095 	 */
3096 	do {
3097 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3098 			mutex_lock(&ctx->uring_lock);
3099 			io_cqring_overflow_kill(ctx);
3100 			mutex_unlock(&ctx->uring_lock);
3101 		}
3102 
3103 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3104 			io_move_task_work_from_local(ctx);
3105 
3106 		while (io_uring_try_cancel_requests(ctx, NULL, true))
3107 			cond_resched();
3108 
3109 		if (ctx->sq_data) {
3110 			struct io_sq_data *sqd = ctx->sq_data;
3111 			struct task_struct *tsk;
3112 
3113 			io_sq_thread_park(sqd);
3114 			tsk = sqd->thread;
3115 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3116 				io_wq_cancel_cb(tsk->io_uring->io_wq,
3117 						io_cancel_ctx_cb, ctx, true);
3118 			io_sq_thread_unpark(sqd);
3119 		}
3120 
3121 		io_req_caches_free(ctx);
3122 
3123 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3124 			/* there is little hope left, don't run it too often */
3125 			interval = HZ * 60;
3126 		}
3127 		/*
3128 		 * This is really an uninterruptible wait, as it has to be
3129 		 * complete. But it's also run from a kworker, which doesn't
3130 		 * take signals, so it's fine to make it interruptible. This
3131 		 * avoids scenarios where we knowingly can wait much longer
3132 		 * on completions, for example if someone does a SIGSTOP on
3133 		 * a task that needs to finish task_work to make this loop
3134 		 * complete. That's a synthetic situation that should not
3135 		 * cause a stuck task backtrace, and hence a potential panic
3136 		 * on stuck tasks if that is enabled.
3137 		 */
3138 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3139 
3140 	init_completion(&exit.completion);
3141 	init_task_work(&exit.task_work, io_tctx_exit_cb);
3142 	exit.ctx = ctx;
3143 
3144 	mutex_lock(&ctx->uring_lock);
3145 	while (!list_empty(&ctx->tctx_list)) {
3146 		WARN_ON_ONCE(time_after(jiffies, timeout));
3147 
3148 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3149 					ctx_node);
3150 		/* don't spin on a single task if cancellation failed */
3151 		list_rotate_left(&ctx->tctx_list);
3152 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3153 		if (WARN_ON_ONCE(ret))
3154 			continue;
3155 
3156 		mutex_unlock(&ctx->uring_lock);
3157 		/*
3158 		 * See comment above for
3159 		 * wait_for_completion_interruptible_timeout() on why this
3160 		 * wait is marked as interruptible.
3161 		 */
3162 		wait_for_completion_interruptible(&exit.completion);
3163 		mutex_lock(&ctx->uring_lock);
3164 	}
3165 	mutex_unlock(&ctx->uring_lock);
3166 	spin_lock(&ctx->completion_lock);
3167 	spin_unlock(&ctx->completion_lock);
3168 
3169 	/* pairs with RCU read section in io_req_local_work_add() */
3170 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3171 		synchronize_rcu();
3172 
3173 	io_ring_ctx_free(ctx);
3174 }
3175 
3176 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3177 {
3178 	unsigned long index;
3179 	struct creds *creds;
3180 
3181 	mutex_lock(&ctx->uring_lock);
3182 	percpu_ref_kill(&ctx->refs);
3183 	xa_for_each(&ctx->personalities, index, creds)
3184 		io_unregister_personality(ctx, index);
3185 	if (ctx->rings)
3186 		io_poll_remove_all(ctx, NULL, true);
3187 	mutex_unlock(&ctx->uring_lock);
3188 
3189 	/*
3190 	 * If we failed setting up the ctx, we might not have any rings
3191 	 * and therefore did not submit any requests
3192 	 */
3193 	if (ctx->rings)
3194 		io_kill_timeouts(ctx, NULL, true);
3195 
3196 	flush_delayed_work(&ctx->fallback_work);
3197 
3198 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3199 	/*
3200 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3201 	 * if we're exiting a ton of rings at the same time. It just adds
3202 	 * noise and overhead, there's no discernable change in runtime
3203 	 * over using system_wq.
3204 	 */
3205 	queue_work(system_unbound_wq, &ctx->exit_work);
3206 }
3207 
3208 static int io_uring_release(struct inode *inode, struct file *file)
3209 {
3210 	struct io_ring_ctx *ctx = file->private_data;
3211 
3212 	file->private_data = NULL;
3213 	io_ring_ctx_wait_and_kill(ctx);
3214 	return 0;
3215 }
3216 
3217 struct io_task_cancel {
3218 	struct task_struct *task;
3219 	bool all;
3220 };
3221 
3222 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3223 {
3224 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3225 	struct io_task_cancel *cancel = data;
3226 
3227 	return io_match_task_safe(req, cancel->task, cancel->all);
3228 }
3229 
3230 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3231 					 struct task_struct *task,
3232 					 bool cancel_all)
3233 {
3234 	struct io_defer_entry *de;
3235 	LIST_HEAD(list);
3236 
3237 	spin_lock(&ctx->completion_lock);
3238 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3239 		if (io_match_task_safe(de->req, task, cancel_all)) {
3240 			list_cut_position(&list, &ctx->defer_list, &de->list);
3241 			break;
3242 		}
3243 	}
3244 	spin_unlock(&ctx->completion_lock);
3245 	if (list_empty(&list))
3246 		return false;
3247 
3248 	while (!list_empty(&list)) {
3249 		de = list_first_entry(&list, struct io_defer_entry, list);
3250 		list_del_init(&de->list);
3251 		io_req_task_queue_fail(de->req, -ECANCELED);
3252 		kfree(de);
3253 	}
3254 	return true;
3255 }
3256 
3257 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3258 {
3259 	struct io_tctx_node *node;
3260 	enum io_wq_cancel cret;
3261 	bool ret = false;
3262 
3263 	mutex_lock(&ctx->uring_lock);
3264 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3265 		struct io_uring_task *tctx = node->task->io_uring;
3266 
3267 		/*
3268 		 * io_wq will stay alive while we hold uring_lock, because it's
3269 		 * killed after ctx nodes, which requires to take the lock.
3270 		 */
3271 		if (!tctx || !tctx->io_wq)
3272 			continue;
3273 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3274 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3275 	}
3276 	mutex_unlock(&ctx->uring_lock);
3277 
3278 	return ret;
3279 }
3280 
3281 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3282 						struct task_struct *task,
3283 						bool cancel_all)
3284 {
3285 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3286 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3287 	enum io_wq_cancel cret;
3288 	bool ret = false;
3289 
3290 	/* set it so io_req_local_work_add() would wake us up */
3291 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3292 		atomic_set(&ctx->cq_wait_nr, 1);
3293 		smp_mb();
3294 	}
3295 
3296 	/* failed during ring init, it couldn't have issued any requests */
3297 	if (!ctx->rings)
3298 		return false;
3299 
3300 	if (!task) {
3301 		ret |= io_uring_try_cancel_iowq(ctx);
3302 	} else if (tctx && tctx->io_wq) {
3303 		/*
3304 		 * Cancels requests of all rings, not only @ctx, but
3305 		 * it's fine as the task is in exit/exec.
3306 		 */
3307 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3308 				       &cancel, true);
3309 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3310 	}
3311 
3312 	/* SQPOLL thread does its own polling */
3313 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3314 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3315 		while (!wq_list_empty(&ctx->iopoll_list)) {
3316 			io_iopoll_try_reap_events(ctx);
3317 			ret = true;
3318 			cond_resched();
3319 		}
3320 	}
3321 
3322 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3323 	    io_allowed_defer_tw_run(ctx))
3324 		ret |= io_run_local_work(ctx) > 0;
3325 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3326 	mutex_lock(&ctx->uring_lock);
3327 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3328 	mutex_unlock(&ctx->uring_lock);
3329 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3330 	if (task)
3331 		ret |= io_run_task_work() > 0;
3332 	return ret;
3333 }
3334 
3335 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3336 {
3337 	if (tracked)
3338 		return atomic_read(&tctx->inflight_tracked);
3339 	return percpu_counter_sum(&tctx->inflight);
3340 }
3341 
3342 /*
3343  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3344  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3345  */
3346 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3347 {
3348 	struct io_uring_task *tctx = current->io_uring;
3349 	struct io_ring_ctx *ctx;
3350 	struct io_tctx_node *node;
3351 	unsigned long index;
3352 	s64 inflight;
3353 	DEFINE_WAIT(wait);
3354 
3355 	WARN_ON_ONCE(sqd && sqd->thread != current);
3356 
3357 	if (!current->io_uring)
3358 		return;
3359 	if (tctx->io_wq)
3360 		io_wq_exit_start(tctx->io_wq);
3361 
3362 	atomic_inc(&tctx->in_cancel);
3363 	do {
3364 		bool loop = false;
3365 
3366 		io_uring_drop_tctx_refs(current);
3367 		/* read completions before cancelations */
3368 		inflight = tctx_inflight(tctx, !cancel_all);
3369 		if (!inflight)
3370 			break;
3371 
3372 		if (!sqd) {
3373 			xa_for_each(&tctx->xa, index, node) {
3374 				/* sqpoll task will cancel all its requests */
3375 				if (node->ctx->sq_data)
3376 					continue;
3377 				loop |= io_uring_try_cancel_requests(node->ctx,
3378 							current, cancel_all);
3379 			}
3380 		} else {
3381 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3382 				loop |= io_uring_try_cancel_requests(ctx,
3383 								     current,
3384 								     cancel_all);
3385 		}
3386 
3387 		if (loop) {
3388 			cond_resched();
3389 			continue;
3390 		}
3391 
3392 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3393 		io_run_task_work();
3394 		io_uring_drop_tctx_refs(current);
3395 		xa_for_each(&tctx->xa, index, node) {
3396 			if (!llist_empty(&node->ctx->work_llist)) {
3397 				WARN_ON_ONCE(node->ctx->submitter_task &&
3398 					     node->ctx->submitter_task != current);
3399 				goto end_wait;
3400 			}
3401 		}
3402 		/*
3403 		 * If we've seen completions, retry without waiting. This
3404 		 * avoids a race where a completion comes in before we did
3405 		 * prepare_to_wait().
3406 		 */
3407 		if (inflight == tctx_inflight(tctx, !cancel_all))
3408 			schedule();
3409 end_wait:
3410 		finish_wait(&tctx->wait, &wait);
3411 	} while (1);
3412 
3413 	io_uring_clean_tctx(tctx);
3414 	if (cancel_all) {
3415 		/*
3416 		 * We shouldn't run task_works after cancel, so just leave
3417 		 * ->in_cancel set for normal exit.
3418 		 */
3419 		atomic_dec(&tctx->in_cancel);
3420 		/* for exec all current's requests should be gone, kill tctx */
3421 		__io_uring_free(current);
3422 	}
3423 }
3424 
3425 void __io_uring_cancel(bool cancel_all)
3426 {
3427 	io_uring_cancel_generic(cancel_all, NULL);
3428 }
3429 
3430 static void *io_uring_validate_mmap_request(struct file *file,
3431 					    loff_t pgoff, size_t sz)
3432 {
3433 	struct io_ring_ctx *ctx = file->private_data;
3434 	loff_t offset = pgoff << PAGE_SHIFT;
3435 	struct page *page;
3436 	void *ptr;
3437 
3438 	switch (offset & IORING_OFF_MMAP_MASK) {
3439 	case IORING_OFF_SQ_RING:
3440 	case IORING_OFF_CQ_RING:
3441 		/* Don't allow mmap if the ring was setup without it */
3442 		if (ctx->flags & IORING_SETUP_NO_MMAP)
3443 			return ERR_PTR(-EINVAL);
3444 		ptr = ctx->rings;
3445 		break;
3446 	case IORING_OFF_SQES:
3447 		/* Don't allow mmap if the ring was setup without it */
3448 		if (ctx->flags & IORING_SETUP_NO_MMAP)
3449 			return ERR_PTR(-EINVAL);
3450 		ptr = ctx->sq_sqes;
3451 		break;
3452 	case IORING_OFF_PBUF_RING: {
3453 		unsigned int bgid;
3454 
3455 		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3456 		rcu_read_lock();
3457 		ptr = io_pbuf_get_address(ctx, bgid);
3458 		rcu_read_unlock();
3459 		if (!ptr)
3460 			return ERR_PTR(-EINVAL);
3461 		break;
3462 		}
3463 	default:
3464 		return ERR_PTR(-EINVAL);
3465 	}
3466 
3467 	page = virt_to_head_page(ptr);
3468 	if (sz > page_size(page))
3469 		return ERR_PTR(-EINVAL);
3470 
3471 	return ptr;
3472 }
3473 
3474 #ifdef CONFIG_MMU
3475 
3476 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3477 {
3478 	size_t sz = vma->vm_end - vma->vm_start;
3479 	unsigned long pfn;
3480 	void *ptr;
3481 
3482 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3483 	if (IS_ERR(ptr))
3484 		return PTR_ERR(ptr);
3485 
3486 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3487 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3488 }
3489 
3490 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3491 			unsigned long addr, unsigned long len,
3492 			unsigned long pgoff, unsigned long flags)
3493 {
3494 	void *ptr;
3495 
3496 	/*
3497 	 * Do not allow to map to user-provided address to avoid breaking the
3498 	 * aliasing rules. Userspace is not able to guess the offset address of
3499 	 * kernel kmalloc()ed memory area.
3500 	 */
3501 	if (addr)
3502 		return -EINVAL;
3503 
3504 	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3505 	if (IS_ERR(ptr))
3506 		return -ENOMEM;
3507 
3508 	/*
3509 	 * Some architectures have strong cache aliasing requirements.
3510 	 * For such architectures we need a coherent mapping which aliases
3511 	 * kernel memory *and* userspace memory. To achieve that:
3512 	 * - use a NULL file pointer to reference physical memory, and
3513 	 * - use the kernel virtual address of the shared io_uring context
3514 	 *   (instead of the userspace-provided address, which has to be 0UL
3515 	 *   anyway).
3516 	 * - use the same pgoff which the get_unmapped_area() uses to
3517 	 *   calculate the page colouring.
3518 	 * For architectures without such aliasing requirements, the
3519 	 * architecture will return any suitable mapping because addr is 0.
3520 	 */
3521 	filp = NULL;
3522 	flags |= MAP_SHARED;
3523 	pgoff = 0;	/* has been translated to ptr above */
3524 #ifdef SHM_COLOUR
3525 	addr = (uintptr_t) ptr;
3526 	pgoff = addr >> PAGE_SHIFT;
3527 #else
3528 	addr = 0UL;
3529 #endif
3530 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3531 }
3532 
3533 #else /* !CONFIG_MMU */
3534 
3535 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3536 {
3537 	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3538 }
3539 
3540 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3541 {
3542 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3543 }
3544 
3545 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3546 	unsigned long addr, unsigned long len,
3547 	unsigned long pgoff, unsigned long flags)
3548 {
3549 	void *ptr;
3550 
3551 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3552 	if (IS_ERR(ptr))
3553 		return PTR_ERR(ptr);
3554 
3555 	return (unsigned long) ptr;
3556 }
3557 
3558 #endif /* !CONFIG_MMU */
3559 
3560 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3561 {
3562 	if (flags & IORING_ENTER_EXT_ARG) {
3563 		struct io_uring_getevents_arg arg;
3564 
3565 		if (argsz != sizeof(arg))
3566 			return -EINVAL;
3567 		if (copy_from_user(&arg, argp, sizeof(arg)))
3568 			return -EFAULT;
3569 	}
3570 	return 0;
3571 }
3572 
3573 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3574 			  struct __kernel_timespec __user **ts,
3575 			  const sigset_t __user **sig)
3576 {
3577 	struct io_uring_getevents_arg arg;
3578 
3579 	/*
3580 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3581 	 * is just a pointer to the sigset_t.
3582 	 */
3583 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3584 		*sig = (const sigset_t __user *) argp;
3585 		*ts = NULL;
3586 		return 0;
3587 	}
3588 
3589 	/*
3590 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3591 	 * timespec and sigset_t pointers if good.
3592 	 */
3593 	if (*argsz != sizeof(arg))
3594 		return -EINVAL;
3595 	if (copy_from_user(&arg, argp, sizeof(arg)))
3596 		return -EFAULT;
3597 	if (arg.pad)
3598 		return -EINVAL;
3599 	*sig = u64_to_user_ptr(arg.sigmask);
3600 	*argsz = arg.sigmask_sz;
3601 	*ts = u64_to_user_ptr(arg.ts);
3602 	return 0;
3603 }
3604 
3605 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3606 		u32, min_complete, u32, flags, const void __user *, argp,
3607 		size_t, argsz)
3608 {
3609 	struct io_ring_ctx *ctx;
3610 	struct file *file;
3611 	long ret;
3612 
3613 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3614 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3615 			       IORING_ENTER_REGISTERED_RING)))
3616 		return -EINVAL;
3617 
3618 	/*
3619 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3620 	 * need only dereference our task private array to find it.
3621 	 */
3622 	if (flags & IORING_ENTER_REGISTERED_RING) {
3623 		struct io_uring_task *tctx = current->io_uring;
3624 
3625 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3626 			return -EINVAL;
3627 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3628 		file = tctx->registered_rings[fd];
3629 		if (unlikely(!file))
3630 			return -EBADF;
3631 	} else {
3632 		file = fget(fd);
3633 		if (unlikely(!file))
3634 			return -EBADF;
3635 		ret = -EOPNOTSUPP;
3636 		if (unlikely(!io_is_uring_fops(file)))
3637 			goto out;
3638 	}
3639 
3640 	ctx = file->private_data;
3641 	ret = -EBADFD;
3642 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3643 		goto out;
3644 
3645 	/*
3646 	 * For SQ polling, the thread will do all submissions and completions.
3647 	 * Just return the requested submit count, and wake the thread if
3648 	 * we were asked to.
3649 	 */
3650 	ret = 0;
3651 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3652 		io_cqring_overflow_flush(ctx);
3653 
3654 		if (unlikely(ctx->sq_data->thread == NULL)) {
3655 			ret = -EOWNERDEAD;
3656 			goto out;
3657 		}
3658 		if (flags & IORING_ENTER_SQ_WAKEUP)
3659 			wake_up(&ctx->sq_data->wait);
3660 		if (flags & IORING_ENTER_SQ_WAIT)
3661 			io_sqpoll_wait_sq(ctx);
3662 
3663 		ret = to_submit;
3664 	} else if (to_submit) {
3665 		ret = io_uring_add_tctx_node(ctx);
3666 		if (unlikely(ret))
3667 			goto out;
3668 
3669 		mutex_lock(&ctx->uring_lock);
3670 		ret = io_submit_sqes(ctx, to_submit);
3671 		if (ret != to_submit) {
3672 			mutex_unlock(&ctx->uring_lock);
3673 			goto out;
3674 		}
3675 		if (flags & IORING_ENTER_GETEVENTS) {
3676 			if (ctx->syscall_iopoll)
3677 				goto iopoll_locked;
3678 			/*
3679 			 * Ignore errors, we'll soon call io_cqring_wait() and
3680 			 * it should handle ownership problems if any.
3681 			 */
3682 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3683 				(void)io_run_local_work_locked(ctx);
3684 		}
3685 		mutex_unlock(&ctx->uring_lock);
3686 	}
3687 
3688 	if (flags & IORING_ENTER_GETEVENTS) {
3689 		int ret2;
3690 
3691 		if (ctx->syscall_iopoll) {
3692 			/*
3693 			 * We disallow the app entering submit/complete with
3694 			 * polling, but we still need to lock the ring to
3695 			 * prevent racing with polled issue that got punted to
3696 			 * a workqueue.
3697 			 */
3698 			mutex_lock(&ctx->uring_lock);
3699 iopoll_locked:
3700 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3701 			if (likely(!ret2)) {
3702 				min_complete = min(min_complete,
3703 						   ctx->cq_entries);
3704 				ret2 = io_iopoll_check(ctx, min_complete);
3705 			}
3706 			mutex_unlock(&ctx->uring_lock);
3707 		} else {
3708 			const sigset_t __user *sig;
3709 			struct __kernel_timespec __user *ts;
3710 
3711 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3712 			if (likely(!ret2)) {
3713 				min_complete = min(min_complete,
3714 						   ctx->cq_entries);
3715 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3716 						      argsz, ts);
3717 			}
3718 		}
3719 
3720 		if (!ret) {
3721 			ret = ret2;
3722 
3723 			/*
3724 			 * EBADR indicates that one or more CQE were dropped.
3725 			 * Once the user has been informed we can clear the bit
3726 			 * as they are obviously ok with those drops.
3727 			 */
3728 			if (unlikely(ret2 == -EBADR))
3729 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3730 					  &ctx->check_cq);
3731 		}
3732 	}
3733 out:
3734 	if (!(flags & IORING_ENTER_REGISTERED_RING))
3735 		fput(file);
3736 	return ret;
3737 }
3738 
3739 static const struct file_operations io_uring_fops = {
3740 	.release	= io_uring_release,
3741 	.mmap		= io_uring_mmap,
3742 #ifndef CONFIG_MMU
3743 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3744 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3745 #else
3746 	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3747 #endif
3748 	.poll		= io_uring_poll,
3749 #ifdef CONFIG_PROC_FS
3750 	.show_fdinfo	= io_uring_show_fdinfo,
3751 #endif
3752 };
3753 
3754 bool io_is_uring_fops(struct file *file)
3755 {
3756 	return file->f_op == &io_uring_fops;
3757 }
3758 
3759 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3760 					 struct io_uring_params *p)
3761 {
3762 	struct io_rings *rings;
3763 	size_t size, sq_array_offset;
3764 	void *ptr;
3765 
3766 	/* make sure these are sane, as we already accounted them */
3767 	ctx->sq_entries = p->sq_entries;
3768 	ctx->cq_entries = p->cq_entries;
3769 
3770 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3771 	if (size == SIZE_MAX)
3772 		return -EOVERFLOW;
3773 
3774 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3775 		rings = io_mem_alloc(size);
3776 	else
3777 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3778 
3779 	if (IS_ERR(rings))
3780 		return PTR_ERR(rings);
3781 
3782 	ctx->rings = rings;
3783 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3784 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3785 	rings->sq_ring_mask = p->sq_entries - 1;
3786 	rings->cq_ring_mask = p->cq_entries - 1;
3787 	rings->sq_ring_entries = p->sq_entries;
3788 	rings->cq_ring_entries = p->cq_entries;
3789 
3790 	if (p->flags & IORING_SETUP_SQE128)
3791 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3792 	else
3793 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3794 	if (size == SIZE_MAX) {
3795 		io_rings_free(ctx);
3796 		return -EOVERFLOW;
3797 	}
3798 
3799 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3800 		ptr = io_mem_alloc(size);
3801 	else
3802 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3803 
3804 	if (IS_ERR(ptr)) {
3805 		io_rings_free(ctx);
3806 		return PTR_ERR(ptr);
3807 	}
3808 
3809 	ctx->sq_sqes = ptr;
3810 	return 0;
3811 }
3812 
3813 static int io_uring_install_fd(struct file *file)
3814 {
3815 	int fd;
3816 
3817 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3818 	if (fd < 0)
3819 		return fd;
3820 	fd_install(fd, file);
3821 	return fd;
3822 }
3823 
3824 /*
3825  * Allocate an anonymous fd, this is what constitutes the application
3826  * visible backing of an io_uring instance. The application mmaps this
3827  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3828  * we have to tie this fd to a socket for file garbage collection purposes.
3829  */
3830 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3831 {
3832 	struct file *file;
3833 #if defined(CONFIG_UNIX)
3834 	int ret;
3835 
3836 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3837 				&ctx->ring_sock);
3838 	if (ret)
3839 		return ERR_PTR(ret);
3840 #endif
3841 
3842 	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3843 					 O_RDWR | O_CLOEXEC, NULL);
3844 #if defined(CONFIG_UNIX)
3845 	if (IS_ERR(file)) {
3846 		sock_release(ctx->ring_sock);
3847 		ctx->ring_sock = NULL;
3848 	} else {
3849 		ctx->ring_sock->file = file;
3850 	}
3851 #endif
3852 	return file;
3853 }
3854 
3855 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3856 				  struct io_uring_params __user *params)
3857 {
3858 	struct io_ring_ctx *ctx;
3859 	struct io_uring_task *tctx;
3860 	struct file *file;
3861 	int ret;
3862 
3863 	if (!entries)
3864 		return -EINVAL;
3865 	if (entries > IORING_MAX_ENTRIES) {
3866 		if (!(p->flags & IORING_SETUP_CLAMP))
3867 			return -EINVAL;
3868 		entries = IORING_MAX_ENTRIES;
3869 	}
3870 
3871 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3872 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3873 		return -EINVAL;
3874 
3875 	/*
3876 	 * Use twice as many entries for the CQ ring. It's possible for the
3877 	 * application to drive a higher depth than the size of the SQ ring,
3878 	 * since the sqes are only used at submission time. This allows for
3879 	 * some flexibility in overcommitting a bit. If the application has
3880 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3881 	 * of CQ ring entries manually.
3882 	 */
3883 	p->sq_entries = roundup_pow_of_two(entries);
3884 	if (p->flags & IORING_SETUP_CQSIZE) {
3885 		/*
3886 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3887 		 * to a power-of-two, if it isn't already. We do NOT impose
3888 		 * any cq vs sq ring sizing.
3889 		 */
3890 		if (!p->cq_entries)
3891 			return -EINVAL;
3892 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3893 			if (!(p->flags & IORING_SETUP_CLAMP))
3894 				return -EINVAL;
3895 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3896 		}
3897 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3898 		if (p->cq_entries < p->sq_entries)
3899 			return -EINVAL;
3900 	} else {
3901 		p->cq_entries = 2 * p->sq_entries;
3902 	}
3903 
3904 	ctx = io_ring_ctx_alloc(p);
3905 	if (!ctx)
3906 		return -ENOMEM;
3907 
3908 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3909 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3910 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3911 		ctx->task_complete = true;
3912 
3913 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3914 		ctx->lockless_cq = true;
3915 
3916 	/*
3917 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3918 	 * purposes, see io_activate_pollwq()
3919 	 */
3920 	if (!ctx->task_complete)
3921 		ctx->poll_activated = true;
3922 
3923 	/*
3924 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3925 	 * space applications don't need to do io completion events
3926 	 * polling again, they can rely on io_sq_thread to do polling
3927 	 * work, which can reduce cpu usage and uring_lock contention.
3928 	 */
3929 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3930 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3931 		ctx->syscall_iopoll = 1;
3932 
3933 	ctx->compat = in_compat_syscall();
3934 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3935 		ctx->user = get_uid(current_user());
3936 
3937 	/*
3938 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3939 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3940 	 */
3941 	ret = -EINVAL;
3942 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3943 		/* IPI related flags don't make sense with SQPOLL */
3944 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3945 				  IORING_SETUP_TASKRUN_FLAG |
3946 				  IORING_SETUP_DEFER_TASKRUN))
3947 			goto err;
3948 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3949 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3950 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3951 	} else {
3952 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3953 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3954 			goto err;
3955 		ctx->notify_method = TWA_SIGNAL;
3956 	}
3957 
3958 	/*
3959 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3960 	 * submission task. This implies that there is only one submitter, so enforce
3961 	 * that.
3962 	 */
3963 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3964 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3965 		goto err;
3966 	}
3967 
3968 	/*
3969 	 * This is just grabbed for accounting purposes. When a process exits,
3970 	 * the mm is exited and dropped before the files, hence we need to hang
3971 	 * on to this mm purely for the purposes of being able to unaccount
3972 	 * memory (locked/pinned vm). It's not used for anything else.
3973 	 */
3974 	mmgrab(current->mm);
3975 	ctx->mm_account = current->mm;
3976 
3977 	ret = io_allocate_scq_urings(ctx, p);
3978 	if (ret)
3979 		goto err;
3980 
3981 	ret = io_sq_offload_create(ctx, p);
3982 	if (ret)
3983 		goto err;
3984 
3985 	ret = io_rsrc_init(ctx);
3986 	if (ret)
3987 		goto err;
3988 
3989 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3990 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3991 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3992 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3993 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3994 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3995 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3996 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3997 	p->sq_off.resv1 = 0;
3998 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3999 		p->sq_off.user_addr = 0;
4000 
4001 	p->cq_off.head = offsetof(struct io_rings, cq.head);
4002 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
4003 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
4004 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
4005 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
4006 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
4007 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
4008 	p->cq_off.resv1 = 0;
4009 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4010 		p->cq_off.user_addr = 0;
4011 
4012 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
4013 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
4014 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
4015 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
4016 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
4017 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
4018 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
4019 
4020 	if (copy_to_user(params, p, sizeof(*p))) {
4021 		ret = -EFAULT;
4022 		goto err;
4023 	}
4024 
4025 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
4026 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
4027 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4028 
4029 	file = io_uring_get_file(ctx);
4030 	if (IS_ERR(file)) {
4031 		ret = PTR_ERR(file);
4032 		goto err;
4033 	}
4034 
4035 	ret = __io_uring_add_tctx_node(ctx);
4036 	if (ret)
4037 		goto err_fput;
4038 	tctx = current->io_uring;
4039 
4040 	/*
4041 	 * Install ring fd as the very last thing, so we don't risk someone
4042 	 * having closed it before we finish setup
4043 	 */
4044 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
4045 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
4046 	else
4047 		ret = io_uring_install_fd(file);
4048 	if (ret < 0)
4049 		goto err_fput;
4050 
4051 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4052 	return ret;
4053 err:
4054 	io_ring_ctx_wait_and_kill(ctx);
4055 	return ret;
4056 err_fput:
4057 	fput(file);
4058 	return ret;
4059 }
4060 
4061 /*
4062  * Sets up an aio uring context, and returns the fd. Applications asks for a
4063  * ring size, we return the actual sq/cq ring sizes (among other things) in the
4064  * params structure passed in.
4065  */
4066 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4067 {
4068 	struct io_uring_params p;
4069 	int i;
4070 
4071 	if (copy_from_user(&p, params, sizeof(p)))
4072 		return -EFAULT;
4073 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4074 		if (p.resv[i])
4075 			return -EINVAL;
4076 	}
4077 
4078 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4079 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4080 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4081 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4082 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4083 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4084 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4085 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4086 			IORING_SETUP_NO_SQARRAY))
4087 		return -EINVAL;
4088 
4089 	return io_uring_create(entries, &p, params);
4090 }
4091 
4092 static inline bool io_uring_allowed(void)
4093 {
4094 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
4095 	kgid_t io_uring_group;
4096 
4097 	if (disabled == 2)
4098 		return false;
4099 
4100 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
4101 		return true;
4102 
4103 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
4104 	if (!gid_valid(io_uring_group))
4105 		return false;
4106 
4107 	return in_group_p(io_uring_group);
4108 }
4109 
4110 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4111 		struct io_uring_params __user *, params)
4112 {
4113 	if (!io_uring_allowed())
4114 		return -EPERM;
4115 
4116 	return io_uring_setup(entries, params);
4117 }
4118 
4119 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4120 			   unsigned nr_args)
4121 {
4122 	struct io_uring_probe *p;
4123 	size_t size;
4124 	int i, ret;
4125 
4126 	size = struct_size(p, ops, nr_args);
4127 	if (size == SIZE_MAX)
4128 		return -EOVERFLOW;
4129 	p = kzalloc(size, GFP_KERNEL);
4130 	if (!p)
4131 		return -ENOMEM;
4132 
4133 	ret = -EFAULT;
4134 	if (copy_from_user(p, arg, size))
4135 		goto out;
4136 	ret = -EINVAL;
4137 	if (memchr_inv(p, 0, size))
4138 		goto out;
4139 
4140 	p->last_op = IORING_OP_LAST - 1;
4141 	if (nr_args > IORING_OP_LAST)
4142 		nr_args = IORING_OP_LAST;
4143 
4144 	for (i = 0; i < nr_args; i++) {
4145 		p->ops[i].op = i;
4146 		if (!io_issue_defs[i].not_supported)
4147 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
4148 	}
4149 	p->ops_len = i;
4150 
4151 	ret = 0;
4152 	if (copy_to_user(arg, p, size))
4153 		ret = -EFAULT;
4154 out:
4155 	kfree(p);
4156 	return ret;
4157 }
4158 
4159 static int io_register_personality(struct io_ring_ctx *ctx)
4160 {
4161 	const struct cred *creds;
4162 	u32 id;
4163 	int ret;
4164 
4165 	creds = get_current_cred();
4166 
4167 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4168 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4169 	if (ret < 0) {
4170 		put_cred(creds);
4171 		return ret;
4172 	}
4173 	return id;
4174 }
4175 
4176 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4177 					   void __user *arg, unsigned int nr_args)
4178 {
4179 	struct io_uring_restriction *res;
4180 	size_t size;
4181 	int i, ret;
4182 
4183 	/* Restrictions allowed only if rings started disabled */
4184 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4185 		return -EBADFD;
4186 
4187 	/* We allow only a single restrictions registration */
4188 	if (ctx->restrictions.registered)
4189 		return -EBUSY;
4190 
4191 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4192 		return -EINVAL;
4193 
4194 	size = array_size(nr_args, sizeof(*res));
4195 	if (size == SIZE_MAX)
4196 		return -EOVERFLOW;
4197 
4198 	res = memdup_user(arg, size);
4199 	if (IS_ERR(res))
4200 		return PTR_ERR(res);
4201 
4202 	ret = 0;
4203 
4204 	for (i = 0; i < nr_args; i++) {
4205 		switch (res[i].opcode) {
4206 		case IORING_RESTRICTION_REGISTER_OP:
4207 			if (res[i].register_op >= IORING_REGISTER_LAST) {
4208 				ret = -EINVAL;
4209 				goto out;
4210 			}
4211 
4212 			__set_bit(res[i].register_op,
4213 				  ctx->restrictions.register_op);
4214 			break;
4215 		case IORING_RESTRICTION_SQE_OP:
4216 			if (res[i].sqe_op >= IORING_OP_LAST) {
4217 				ret = -EINVAL;
4218 				goto out;
4219 			}
4220 
4221 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4222 			break;
4223 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4224 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4225 			break;
4226 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4227 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4228 			break;
4229 		default:
4230 			ret = -EINVAL;
4231 			goto out;
4232 		}
4233 	}
4234 
4235 out:
4236 	/* Reset all restrictions if an error happened */
4237 	if (ret != 0)
4238 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4239 	else
4240 		ctx->restrictions.registered = true;
4241 
4242 	kfree(res);
4243 	return ret;
4244 }
4245 
4246 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4247 {
4248 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4249 		return -EBADFD;
4250 
4251 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4252 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4253 		/*
4254 		 * Lazy activation attempts would fail if it was polled before
4255 		 * submitter_task is set.
4256 		 */
4257 		if (wq_has_sleeper(&ctx->poll_wq))
4258 			io_activate_pollwq(ctx);
4259 	}
4260 
4261 	if (ctx->restrictions.registered)
4262 		ctx->restricted = 1;
4263 
4264 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
4265 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4266 		wake_up(&ctx->sq_data->wait);
4267 	return 0;
4268 }
4269 
4270 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx,
4271 					 cpumask_var_t new_mask)
4272 {
4273 	int ret;
4274 
4275 	if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
4276 		ret = io_wq_cpu_affinity(current->io_uring, new_mask);
4277 	} else {
4278 		mutex_unlock(&ctx->uring_lock);
4279 		ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask);
4280 		mutex_lock(&ctx->uring_lock);
4281 	}
4282 
4283 	return ret;
4284 }
4285 
4286 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4287 				       void __user *arg, unsigned len)
4288 {
4289 	cpumask_var_t new_mask;
4290 	int ret;
4291 
4292 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4293 		return -ENOMEM;
4294 
4295 	cpumask_clear(new_mask);
4296 	if (len > cpumask_size())
4297 		len = cpumask_size();
4298 
4299 	if (in_compat_syscall()) {
4300 		ret = compat_get_bitmap(cpumask_bits(new_mask),
4301 					(const compat_ulong_t __user *)arg,
4302 					len * 8 /* CHAR_BIT */);
4303 	} else {
4304 		ret = copy_from_user(new_mask, arg, len);
4305 	}
4306 
4307 	if (ret) {
4308 		free_cpumask_var(new_mask);
4309 		return -EFAULT;
4310 	}
4311 
4312 	ret = __io_register_iowq_aff(ctx, new_mask);
4313 	free_cpumask_var(new_mask);
4314 	return ret;
4315 }
4316 
4317 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4318 {
4319 	return __io_register_iowq_aff(ctx, NULL);
4320 }
4321 
4322 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4323 					       void __user *arg)
4324 	__must_hold(&ctx->uring_lock)
4325 {
4326 	struct io_tctx_node *node;
4327 	struct io_uring_task *tctx = NULL;
4328 	struct io_sq_data *sqd = NULL;
4329 	__u32 new_count[2];
4330 	int i, ret;
4331 
4332 	if (copy_from_user(new_count, arg, sizeof(new_count)))
4333 		return -EFAULT;
4334 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4335 		if (new_count[i] > INT_MAX)
4336 			return -EINVAL;
4337 
4338 	if (ctx->flags & IORING_SETUP_SQPOLL) {
4339 		sqd = ctx->sq_data;
4340 		if (sqd) {
4341 			/*
4342 			 * Observe the correct sqd->lock -> ctx->uring_lock
4343 			 * ordering. Fine to drop uring_lock here, we hold
4344 			 * a ref to the ctx.
4345 			 */
4346 			refcount_inc(&sqd->refs);
4347 			mutex_unlock(&ctx->uring_lock);
4348 			mutex_lock(&sqd->lock);
4349 			mutex_lock(&ctx->uring_lock);
4350 			if (sqd->thread)
4351 				tctx = sqd->thread->io_uring;
4352 		}
4353 	} else {
4354 		tctx = current->io_uring;
4355 	}
4356 
4357 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4358 
4359 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4360 		if (new_count[i])
4361 			ctx->iowq_limits[i] = new_count[i];
4362 	ctx->iowq_limits_set = true;
4363 
4364 	if (tctx && tctx->io_wq) {
4365 		ret = io_wq_max_workers(tctx->io_wq, new_count);
4366 		if (ret)
4367 			goto err;
4368 	} else {
4369 		memset(new_count, 0, sizeof(new_count));
4370 	}
4371 
4372 	if (sqd) {
4373 		mutex_unlock(&sqd->lock);
4374 		io_put_sq_data(sqd);
4375 	}
4376 
4377 	if (copy_to_user(arg, new_count, sizeof(new_count)))
4378 		return -EFAULT;
4379 
4380 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
4381 	if (sqd)
4382 		return 0;
4383 
4384 	/* now propagate the restriction to all registered users */
4385 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4386 		struct io_uring_task *tctx = node->task->io_uring;
4387 
4388 		if (WARN_ON_ONCE(!tctx->io_wq))
4389 			continue;
4390 
4391 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
4392 			new_count[i] = ctx->iowq_limits[i];
4393 		/* ignore errors, it always returns zero anyway */
4394 		(void)io_wq_max_workers(tctx->io_wq, new_count);
4395 	}
4396 	return 0;
4397 err:
4398 	if (sqd) {
4399 		mutex_unlock(&sqd->lock);
4400 		io_put_sq_data(sqd);
4401 	}
4402 	return ret;
4403 }
4404 
4405 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4406 			       void __user *arg, unsigned nr_args)
4407 	__releases(ctx->uring_lock)
4408 	__acquires(ctx->uring_lock)
4409 {
4410 	int ret;
4411 
4412 	/*
4413 	 * We don't quiesce the refs for register anymore and so it can't be
4414 	 * dying as we're holding a file ref here.
4415 	 */
4416 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4417 		return -ENXIO;
4418 
4419 	if (ctx->submitter_task && ctx->submitter_task != current)
4420 		return -EEXIST;
4421 
4422 	if (ctx->restricted) {
4423 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4424 		if (!test_bit(opcode, ctx->restrictions.register_op))
4425 			return -EACCES;
4426 	}
4427 
4428 	switch (opcode) {
4429 	case IORING_REGISTER_BUFFERS:
4430 		ret = -EFAULT;
4431 		if (!arg)
4432 			break;
4433 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4434 		break;
4435 	case IORING_UNREGISTER_BUFFERS:
4436 		ret = -EINVAL;
4437 		if (arg || nr_args)
4438 			break;
4439 		ret = io_sqe_buffers_unregister(ctx);
4440 		break;
4441 	case IORING_REGISTER_FILES:
4442 		ret = -EFAULT;
4443 		if (!arg)
4444 			break;
4445 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4446 		break;
4447 	case IORING_UNREGISTER_FILES:
4448 		ret = -EINVAL;
4449 		if (arg || nr_args)
4450 			break;
4451 		ret = io_sqe_files_unregister(ctx);
4452 		break;
4453 	case IORING_REGISTER_FILES_UPDATE:
4454 		ret = io_register_files_update(ctx, arg, nr_args);
4455 		break;
4456 	case IORING_REGISTER_EVENTFD:
4457 		ret = -EINVAL;
4458 		if (nr_args != 1)
4459 			break;
4460 		ret = io_eventfd_register(ctx, arg, 0);
4461 		break;
4462 	case IORING_REGISTER_EVENTFD_ASYNC:
4463 		ret = -EINVAL;
4464 		if (nr_args != 1)
4465 			break;
4466 		ret = io_eventfd_register(ctx, arg, 1);
4467 		break;
4468 	case IORING_UNREGISTER_EVENTFD:
4469 		ret = -EINVAL;
4470 		if (arg || nr_args)
4471 			break;
4472 		ret = io_eventfd_unregister(ctx);
4473 		break;
4474 	case IORING_REGISTER_PROBE:
4475 		ret = -EINVAL;
4476 		if (!arg || nr_args > 256)
4477 			break;
4478 		ret = io_probe(ctx, arg, nr_args);
4479 		break;
4480 	case IORING_REGISTER_PERSONALITY:
4481 		ret = -EINVAL;
4482 		if (arg || nr_args)
4483 			break;
4484 		ret = io_register_personality(ctx);
4485 		break;
4486 	case IORING_UNREGISTER_PERSONALITY:
4487 		ret = -EINVAL;
4488 		if (arg)
4489 			break;
4490 		ret = io_unregister_personality(ctx, nr_args);
4491 		break;
4492 	case IORING_REGISTER_ENABLE_RINGS:
4493 		ret = -EINVAL;
4494 		if (arg || nr_args)
4495 			break;
4496 		ret = io_register_enable_rings(ctx);
4497 		break;
4498 	case IORING_REGISTER_RESTRICTIONS:
4499 		ret = io_register_restrictions(ctx, arg, nr_args);
4500 		break;
4501 	case IORING_REGISTER_FILES2:
4502 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4503 		break;
4504 	case IORING_REGISTER_FILES_UPDATE2:
4505 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4506 					      IORING_RSRC_FILE);
4507 		break;
4508 	case IORING_REGISTER_BUFFERS2:
4509 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4510 		break;
4511 	case IORING_REGISTER_BUFFERS_UPDATE:
4512 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4513 					      IORING_RSRC_BUFFER);
4514 		break;
4515 	case IORING_REGISTER_IOWQ_AFF:
4516 		ret = -EINVAL;
4517 		if (!arg || !nr_args)
4518 			break;
4519 		ret = io_register_iowq_aff(ctx, arg, nr_args);
4520 		break;
4521 	case IORING_UNREGISTER_IOWQ_AFF:
4522 		ret = -EINVAL;
4523 		if (arg || nr_args)
4524 			break;
4525 		ret = io_unregister_iowq_aff(ctx);
4526 		break;
4527 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4528 		ret = -EINVAL;
4529 		if (!arg || nr_args != 2)
4530 			break;
4531 		ret = io_register_iowq_max_workers(ctx, arg);
4532 		break;
4533 	case IORING_REGISTER_RING_FDS:
4534 		ret = io_ringfd_register(ctx, arg, nr_args);
4535 		break;
4536 	case IORING_UNREGISTER_RING_FDS:
4537 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4538 		break;
4539 	case IORING_REGISTER_PBUF_RING:
4540 		ret = -EINVAL;
4541 		if (!arg || nr_args != 1)
4542 			break;
4543 		ret = io_register_pbuf_ring(ctx, arg);
4544 		break;
4545 	case IORING_UNREGISTER_PBUF_RING:
4546 		ret = -EINVAL;
4547 		if (!arg || nr_args != 1)
4548 			break;
4549 		ret = io_unregister_pbuf_ring(ctx, arg);
4550 		break;
4551 	case IORING_REGISTER_SYNC_CANCEL:
4552 		ret = -EINVAL;
4553 		if (!arg || nr_args != 1)
4554 			break;
4555 		ret = io_sync_cancel(ctx, arg);
4556 		break;
4557 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4558 		ret = -EINVAL;
4559 		if (!arg || nr_args)
4560 			break;
4561 		ret = io_register_file_alloc_range(ctx, arg);
4562 		break;
4563 	default:
4564 		ret = -EINVAL;
4565 		break;
4566 	}
4567 
4568 	return ret;
4569 }
4570 
4571 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4572 		void __user *, arg, unsigned int, nr_args)
4573 {
4574 	struct io_ring_ctx *ctx;
4575 	long ret = -EBADF;
4576 	struct file *file;
4577 	bool use_registered_ring;
4578 
4579 	use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4580 	opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4581 
4582 	if (opcode >= IORING_REGISTER_LAST)
4583 		return -EINVAL;
4584 
4585 	if (use_registered_ring) {
4586 		/*
4587 		 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4588 		 * need only dereference our task private array to find it.
4589 		 */
4590 		struct io_uring_task *tctx = current->io_uring;
4591 
4592 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4593 			return -EINVAL;
4594 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4595 		file = tctx->registered_rings[fd];
4596 		if (unlikely(!file))
4597 			return -EBADF;
4598 	} else {
4599 		file = fget(fd);
4600 		if (unlikely(!file))
4601 			return -EBADF;
4602 		ret = -EOPNOTSUPP;
4603 		if (!io_is_uring_fops(file))
4604 			goto out_fput;
4605 	}
4606 
4607 	ctx = file->private_data;
4608 
4609 	mutex_lock(&ctx->uring_lock);
4610 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4611 	mutex_unlock(&ctx->uring_lock);
4612 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4613 out_fput:
4614 	if (!use_registered_ring)
4615 		fput(file);
4616 	return ret;
4617 }
4618 
4619 static int __init io_uring_init(void)
4620 {
4621 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4622 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4623 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4624 } while (0)
4625 
4626 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4627 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4628 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4629 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4630 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4631 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4632 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4633 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4634 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4635 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4636 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4637 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4638 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4639 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4640 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4641 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4642 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4643 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4644 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4645 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4646 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4647 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4648 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4649 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4650 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4651 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4652 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4653 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4654 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4655 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4656 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4657 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4658 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4659 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4660 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4661 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4662 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4663 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4664 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4665 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4666 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4667 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4668 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4669 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4670 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4671 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4672 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4673 
4674 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4675 		     sizeof(struct io_uring_rsrc_update));
4676 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4677 		     sizeof(struct io_uring_rsrc_update2));
4678 
4679 	/* ->buf_index is u16 */
4680 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4681 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4682 		     offsetof(struct io_uring_buf_ring, tail));
4683 
4684 	/* should fit into one byte */
4685 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4686 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4687 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4688 
4689 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4690 
4691 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4692 
4693 	io_uring_optable_init();
4694 
4695 	/*
4696 	 * Allow user copy in the per-command field, which starts after the
4697 	 * file in io_kiocb and until the opcode field. The openat2 handling
4698 	 * requires copying in user memory into the io_kiocb object in that
4699 	 * range, and HARDENED_USERCOPY will complain if we haven't
4700 	 * correctly annotated this range.
4701 	 */
4702 	req_cachep = kmem_cache_create_usercopy("io_kiocb",
4703 				sizeof(struct io_kiocb), 0,
4704 				SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4705 				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4706 				offsetof(struct io_kiocb, cmd.data),
4707 				sizeof_field(struct io_kiocb, cmd.data), NULL);
4708 
4709 #ifdef CONFIG_SYSCTL
4710 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4711 #endif
4712 
4713 	return 0;
4714 };
4715 __initcall(io_uring_init);
4716