xref: /openbmc/linux/init/calibrate.c (revision bc33f5e5)
1 // SPDX-License-Identifier: GPL-2.0
2 /* calibrate.c: default delay calibration
3  *
4  * Excised from init/main.c
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/jiffies.h>
9 #include <linux/delay.h>
10 #include <linux/init.h>
11 #include <linux/timex.h>
12 #include <linux/smp.h>
13 #include <linux/percpu.h>
14 
15 unsigned long lpj_fine;
16 unsigned long preset_lpj;
17 static int __init lpj_setup(char *str)
18 {
19 	preset_lpj = simple_strtoul(str,NULL,0);
20 	return 1;
21 }
22 
23 __setup("lpj=", lpj_setup);
24 
25 #ifdef ARCH_HAS_READ_CURRENT_TIMER
26 
27 /* This routine uses the read_current_timer() routine and gets the
28  * loops per jiffy directly, instead of guessing it using delay().
29  * Also, this code tries to handle non-maskable asynchronous events
30  * (like SMIs)
31  */
32 #define DELAY_CALIBRATION_TICKS			((HZ < 100) ? 1 : (HZ/100))
33 #define MAX_DIRECT_CALIBRATION_RETRIES		5
34 
35 static unsigned long calibrate_delay_direct(void)
36 {
37 	unsigned long pre_start, start, post_start;
38 	unsigned long pre_end, end, post_end;
39 	unsigned long start_jiffies;
40 	unsigned long timer_rate_min, timer_rate_max;
41 	unsigned long good_timer_sum = 0;
42 	unsigned long good_timer_count = 0;
43 	unsigned long measured_times[MAX_DIRECT_CALIBRATION_RETRIES];
44 	int max = -1; /* index of measured_times with max/min values or not set */
45 	int min = -1;
46 	int i;
47 
48 	if (read_current_timer(&pre_start) < 0 )
49 		return 0;
50 
51 	/*
52 	 * A simple loop like
53 	 *	while ( jiffies < start_jiffies+1)
54 	 *		start = read_current_timer();
55 	 * will not do. As we don't really know whether jiffy switch
56 	 * happened first or timer_value was read first. And some asynchronous
57 	 * event can happen between these two events introducing errors in lpj.
58 	 *
59 	 * So, we do
60 	 * 1. pre_start <- When we are sure that jiffy switch hasn't happened
61 	 * 2. check jiffy switch
62 	 * 3. start <- timer value before or after jiffy switch
63 	 * 4. post_start <- When we are sure that jiffy switch has happened
64 	 *
65 	 * Note, we don't know anything about order of 2 and 3.
66 	 * Now, by looking at post_start and pre_start difference, we can
67 	 * check whether any asynchronous event happened or not
68 	 */
69 
70 	for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
71 		pre_start = 0;
72 		read_current_timer(&start);
73 		start_jiffies = jiffies;
74 		while (time_before_eq(jiffies, start_jiffies + 1)) {
75 			pre_start = start;
76 			read_current_timer(&start);
77 		}
78 		read_current_timer(&post_start);
79 
80 		pre_end = 0;
81 		end = post_start;
82 		while (time_before_eq(jiffies, start_jiffies + 1 +
83 					       DELAY_CALIBRATION_TICKS)) {
84 			pre_end = end;
85 			read_current_timer(&end);
86 		}
87 		read_current_timer(&post_end);
88 
89 		timer_rate_max = (post_end - pre_start) /
90 					DELAY_CALIBRATION_TICKS;
91 		timer_rate_min = (pre_end - post_start) /
92 					DELAY_CALIBRATION_TICKS;
93 
94 		/*
95 		 * If the upper limit and lower limit of the timer_rate is
96 		 * >= 12.5% apart, redo calibration.
97 		 */
98 		if (start >= post_end)
99 			printk(KERN_NOTICE "calibrate_delay_direct() ignoring "
100 					"timer_rate as we had a TSC wrap around"
101 					" start=%lu >=post_end=%lu\n",
102 				start, post_end);
103 		if (start < post_end && pre_start != 0 && pre_end != 0 &&
104 		    (timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) {
105 			good_timer_count++;
106 			good_timer_sum += timer_rate_max;
107 			measured_times[i] = timer_rate_max;
108 			if (max < 0 || timer_rate_max > measured_times[max])
109 				max = i;
110 			if (min < 0 || timer_rate_max < measured_times[min])
111 				min = i;
112 		} else
113 			measured_times[i] = 0;
114 
115 	}
116 
117 	/*
118 	 * Find the maximum & minimum - if they differ too much throw out the
119 	 * one with the largest difference from the mean and try again...
120 	 */
121 	while (good_timer_count > 1) {
122 		unsigned long estimate;
123 		unsigned long maxdiff;
124 
125 		/* compute the estimate */
126 		estimate = (good_timer_sum/good_timer_count);
127 		maxdiff = estimate >> 3;
128 
129 		/* if range is within 12% let's take it */
130 		if ((measured_times[max] - measured_times[min]) < maxdiff)
131 			return estimate;
132 
133 		/* ok - drop the worse value and try again... */
134 		good_timer_sum = 0;
135 		good_timer_count = 0;
136 		if ((measured_times[max] - estimate) <
137 				(estimate - measured_times[min])) {
138 			printk(KERN_NOTICE "calibrate_delay_direct() dropping "
139 					"min bogoMips estimate %d = %lu\n",
140 				min, measured_times[min]);
141 			measured_times[min] = 0;
142 			min = max;
143 		} else {
144 			printk(KERN_NOTICE "calibrate_delay_direct() dropping "
145 					"max bogoMips estimate %d = %lu\n",
146 				max, measured_times[max]);
147 			measured_times[max] = 0;
148 			max = min;
149 		}
150 
151 		for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
152 			if (measured_times[i] == 0)
153 				continue;
154 			good_timer_count++;
155 			good_timer_sum += measured_times[i];
156 			if (measured_times[i] < measured_times[min])
157 				min = i;
158 			if (measured_times[i] > measured_times[max])
159 				max = i;
160 		}
161 
162 	}
163 
164 	printk(KERN_NOTICE "calibrate_delay_direct() failed to get a good "
165 	       "estimate for loops_per_jiffy.\nProbably due to long platform "
166 		"interrupts. Consider using \"lpj=\" boot option.\n");
167 	return 0;
168 }
169 #else
170 static unsigned long calibrate_delay_direct(void)
171 {
172 	return 0;
173 }
174 #endif
175 
176 /*
177  * This is the number of bits of precision for the loops_per_jiffy.  Each
178  * time we refine our estimate after the first takes 1.5/HZ seconds, so try
179  * to start with a good estimate.
180  * For the boot cpu we can skip the delay calibration and assign it a value
181  * calculated based on the timer frequency.
182  * For the rest of the CPUs we cannot assume that the timer frequency is same as
183  * the cpu frequency, hence do the calibration for those.
184  */
185 #define LPS_PREC 8
186 
187 static unsigned long calibrate_delay_converge(void)
188 {
189 	/* First stage - slowly accelerate to find initial bounds */
190 	unsigned long lpj, lpj_base, ticks, loopadd, loopadd_base, chop_limit;
191 	int trials = 0, band = 0, trial_in_band = 0;
192 
193 	lpj = (1<<12);
194 
195 	/* wait for "start of" clock tick */
196 	ticks = jiffies;
197 	while (ticks == jiffies)
198 		; /* nothing */
199 	/* Go .. */
200 	ticks = jiffies;
201 	do {
202 		if (++trial_in_band == (1<<band)) {
203 			++band;
204 			trial_in_band = 0;
205 		}
206 		__delay(lpj * band);
207 		trials += band;
208 	} while (ticks == jiffies);
209 	/*
210 	 * We overshot, so retreat to a clear underestimate. Then estimate
211 	 * the largest likely undershoot. This defines our chop bounds.
212 	 */
213 	trials -= band;
214 	loopadd_base = lpj * band;
215 	lpj_base = lpj * trials;
216 
217 recalibrate:
218 	lpj = lpj_base;
219 	loopadd = loopadd_base;
220 
221 	/*
222 	 * Do a binary approximation to get lpj set to
223 	 * equal one clock (up to LPS_PREC bits)
224 	 */
225 	chop_limit = lpj >> LPS_PREC;
226 	while (loopadd > chop_limit) {
227 		lpj += loopadd;
228 		ticks = jiffies;
229 		while (ticks == jiffies)
230 			; /* nothing */
231 		ticks = jiffies;
232 		__delay(lpj);
233 		if (jiffies != ticks)	/* longer than 1 tick */
234 			lpj -= loopadd;
235 		loopadd >>= 1;
236 	}
237 	/*
238 	 * If we incremented every single time possible, presume we've
239 	 * massively underestimated initially, and retry with a higher
240 	 * start, and larger range. (Only seen on x86_64, due to SMIs)
241 	 */
242 	if (lpj + loopadd * 2 == lpj_base + loopadd_base * 2) {
243 		lpj_base = lpj;
244 		loopadd_base <<= 2;
245 		goto recalibrate;
246 	}
247 
248 	return lpj;
249 }
250 
251 static DEFINE_PER_CPU(unsigned long, cpu_loops_per_jiffy) = { 0 };
252 
253 /*
254  * Check if cpu calibration delay is already known. For example,
255  * some processors with multi-core sockets may have all cores
256  * with the same calibration delay.
257  *
258  * Architectures should override this function if a faster calibration
259  * method is available.
260  */
261 unsigned long __attribute__((weak)) calibrate_delay_is_known(void)
262 {
263 	return 0;
264 }
265 
266 /*
267  * Indicate the cpu delay calibration is done. This can be used by
268  * architectures to stop accepting delay timer registrations after this point.
269  */
270 
271 void __attribute__((weak)) calibration_delay_done(void)
272 {
273 }
274 
275 void calibrate_delay(void)
276 {
277 	unsigned long lpj;
278 	static bool printed;
279 	int this_cpu = smp_processor_id();
280 
281 	if (per_cpu(cpu_loops_per_jiffy, this_cpu)) {
282 		lpj = per_cpu(cpu_loops_per_jiffy, this_cpu);
283 		if (!printed)
284 			pr_info("Calibrating delay loop (skipped) "
285 				"already calibrated this CPU");
286 	} else if (preset_lpj) {
287 		lpj = preset_lpj;
288 		if (!printed)
289 			pr_info("Calibrating delay loop (skipped) "
290 				"preset value.. ");
291 	} else if ((!printed) && lpj_fine) {
292 		lpj = lpj_fine;
293 		pr_info("Calibrating delay loop (skipped), "
294 			"value calculated using timer frequency.. ");
295 	} else if ((lpj = calibrate_delay_is_known())) {
296 		;
297 	} else if ((lpj = calibrate_delay_direct()) != 0) {
298 		if (!printed)
299 			pr_info("Calibrating delay using timer "
300 				"specific routine.. ");
301 	} else {
302 		if (!printed)
303 			pr_info("Calibrating delay loop... ");
304 		lpj = calibrate_delay_converge();
305 	}
306 	per_cpu(cpu_loops_per_jiffy, this_cpu) = lpj;
307 	if (!printed)
308 		pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
309 			lpj/(500000/HZ),
310 			(lpj/(5000/HZ)) % 100, lpj);
311 
312 	loops_per_jiffy = lpj;
313 	printed = true;
314 
315 	calibration_delay_done();
316 }
317