xref: /openbmc/linux/init/calibrate.c (revision 64c70b1c)
1 /* calibrate.c: default delay calibration
2  *
3  * Excised from init/main.c
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/jiffies.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 
11 #include <asm/timex.h>
12 
13 static unsigned long preset_lpj;
14 static int __init lpj_setup(char *str)
15 {
16 	preset_lpj = simple_strtoul(str,NULL,0);
17 	return 1;
18 }
19 
20 __setup("lpj=", lpj_setup);
21 
22 #ifdef ARCH_HAS_READ_CURRENT_TIMER
23 
24 /* This routine uses the read_current_timer() routine and gets the
25  * loops per jiffy directly, instead of guessing it using delay().
26  * Also, this code tries to handle non-maskable asynchronous events
27  * (like SMIs)
28  */
29 #define DELAY_CALIBRATION_TICKS			((HZ < 100) ? 1 : (HZ/100))
30 #define MAX_DIRECT_CALIBRATION_RETRIES		5
31 
32 static unsigned long __devinit calibrate_delay_direct(void)
33 {
34 	unsigned long pre_start, start, post_start;
35 	unsigned long pre_end, end, post_end;
36 	unsigned long start_jiffies;
37 	unsigned long tsc_rate_min, tsc_rate_max;
38 	unsigned long good_tsc_sum = 0;
39 	unsigned long good_tsc_count = 0;
40 	int i;
41 
42 	if (read_current_timer(&pre_start) < 0 )
43 		return 0;
44 
45 	/*
46 	 * A simple loop like
47 	 *	while ( jiffies < start_jiffies+1)
48 	 *		start = read_current_timer();
49 	 * will not do. As we don't really know whether jiffy switch
50 	 * happened first or timer_value was read first. And some asynchronous
51 	 * event can happen between these two events introducing errors in lpj.
52 	 *
53 	 * So, we do
54 	 * 1. pre_start <- When we are sure that jiffy switch hasn't happened
55 	 * 2. check jiffy switch
56 	 * 3. start <- timer value before or after jiffy switch
57 	 * 4. post_start <- When we are sure that jiffy switch has happened
58 	 *
59 	 * Note, we don't know anything about order of 2 and 3.
60 	 * Now, by looking at post_start and pre_start difference, we can
61 	 * check whether any asynchronous event happened or not
62 	 */
63 
64 	for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
65 		pre_start = 0;
66 		read_current_timer(&start);
67 		start_jiffies = jiffies;
68 		while (jiffies <= (start_jiffies + 1)) {
69 			pre_start = start;
70 			read_current_timer(&start);
71 		}
72 		read_current_timer(&post_start);
73 
74 		pre_end = 0;
75 		end = post_start;
76 		while (jiffies <=
77 		       (start_jiffies + 1 + DELAY_CALIBRATION_TICKS)) {
78 			pre_end = end;
79 			read_current_timer(&end);
80 		}
81 		read_current_timer(&post_end);
82 
83 		tsc_rate_max = (post_end - pre_start) / DELAY_CALIBRATION_TICKS;
84 		tsc_rate_min = (pre_end - post_start) / DELAY_CALIBRATION_TICKS;
85 
86 		/*
87 	 	 * If the upper limit and lower limit of the tsc_rate is
88 		 * >= 12.5% apart, redo calibration.
89 		 */
90 		if (pre_start != 0 && pre_end != 0 &&
91 		    (tsc_rate_max - tsc_rate_min) < (tsc_rate_max >> 3)) {
92 			good_tsc_count++;
93 			good_tsc_sum += tsc_rate_max;
94 		}
95 	}
96 
97 	if (good_tsc_count)
98 		return (good_tsc_sum/good_tsc_count);
99 
100 	printk(KERN_WARNING "calibrate_delay_direct() failed to get a good "
101 	       "estimate for loops_per_jiffy.\nProbably due to long platform interrupts. Consider using \"lpj=\" boot option.\n");
102 	return 0;
103 }
104 #else
105 static unsigned long __devinit calibrate_delay_direct(void) {return 0;}
106 #endif
107 
108 /*
109  * This is the number of bits of precision for the loops_per_jiffy.  Each
110  * bit takes on average 1.5/HZ seconds.  This (like the original) is a little
111  * better than 1%
112  */
113 #define LPS_PREC 8
114 
115 void __devinit calibrate_delay(void)
116 {
117 	unsigned long ticks, loopbit;
118 	int lps_precision = LPS_PREC;
119 
120 	if (preset_lpj) {
121 		loops_per_jiffy = preset_lpj;
122 		printk("Calibrating delay loop (skipped)... "
123 			"%lu.%02lu BogoMIPS preset\n",
124 			loops_per_jiffy/(500000/HZ),
125 			(loops_per_jiffy/(5000/HZ)) % 100);
126 	} else if ((loops_per_jiffy = calibrate_delay_direct()) != 0) {
127 		printk("Calibrating delay using timer specific routine.. ");
128 		printk("%lu.%02lu BogoMIPS (lpj=%lu)\n",
129 			loops_per_jiffy/(500000/HZ),
130 			(loops_per_jiffy/(5000/HZ)) % 100,
131 			loops_per_jiffy);
132 	} else {
133 		loops_per_jiffy = (1<<12);
134 
135 		printk(KERN_DEBUG "Calibrating delay loop... ");
136 		while ((loops_per_jiffy <<= 1) != 0) {
137 			/* wait for "start of" clock tick */
138 			ticks = jiffies;
139 			while (ticks == jiffies)
140 				/* nothing */;
141 			/* Go .. */
142 			ticks = jiffies;
143 			__delay(loops_per_jiffy);
144 			ticks = jiffies - ticks;
145 			if (ticks)
146 				break;
147 		}
148 
149 		/*
150 		 * Do a binary approximation to get loops_per_jiffy set to
151 		 * equal one clock (up to lps_precision bits)
152 		 */
153 		loops_per_jiffy >>= 1;
154 		loopbit = loops_per_jiffy;
155 		while (lps_precision-- && (loopbit >>= 1)) {
156 			loops_per_jiffy |= loopbit;
157 			ticks = jiffies;
158 			while (ticks == jiffies)
159 				/* nothing */;
160 			ticks = jiffies;
161 			__delay(loops_per_jiffy);
162 			if (jiffies != ticks)	/* longer than 1 tick */
163 				loops_per_jiffy &= ~loopbit;
164 		}
165 
166 		/* Round the value and print it */
167 		printk("%lu.%02lu BogoMIPS (lpj=%lu)\n",
168 			loops_per_jiffy/(500000/HZ),
169 			(loops_per_jiffy/(5000/HZ)) % 100,
170 			loops_per_jiffy);
171 	}
172 
173 }
174