xref: /openbmc/linux/include/xen/interface/xen.h (revision ce932d0c5589e9766e089c22c66890dfc48fbd94)
1 /******************************************************************************
2  * xen.h
3  *
4  * Guest OS interface to Xen.
5  *
6  * Copyright (c) 2004, K A Fraser
7  */
8 
9 #ifndef __XEN_PUBLIC_XEN_H__
10 #define __XEN_PUBLIC_XEN_H__
11 
12 #include <asm/xen/interface.h>
13 #include <asm/pvclock-abi.h>
14 
15 /*
16  * XEN "SYSTEM CALLS" (a.k.a. HYPERCALLS).
17  */
18 
19 /*
20  * x86_32: EAX = vector; EBX, ECX, EDX, ESI, EDI = args 1, 2, 3, 4, 5.
21  *         EAX = return value
22  *         (argument registers may be clobbered on return)
23  * x86_64: RAX = vector; RDI, RSI, RDX, R10, R8, R9 = args 1, 2, 3, 4, 5, 6.
24  *         RAX = return value
25  *         (argument registers not clobbered on return; RCX, R11 are)
26  */
27 #define __HYPERVISOR_set_trap_table        0
28 #define __HYPERVISOR_mmu_update            1
29 #define __HYPERVISOR_set_gdt               2
30 #define __HYPERVISOR_stack_switch          3
31 #define __HYPERVISOR_set_callbacks         4
32 #define __HYPERVISOR_fpu_taskswitch        5
33 #define __HYPERVISOR_sched_op_compat       6
34 #define __HYPERVISOR_dom0_op               7
35 #define __HYPERVISOR_set_debugreg          8
36 #define __HYPERVISOR_get_debugreg          9
37 #define __HYPERVISOR_update_descriptor    10
38 #define __HYPERVISOR_memory_op            12
39 #define __HYPERVISOR_multicall            13
40 #define __HYPERVISOR_update_va_mapping    14
41 #define __HYPERVISOR_set_timer_op         15
42 #define __HYPERVISOR_event_channel_op_compat 16
43 #define __HYPERVISOR_xen_version          17
44 #define __HYPERVISOR_console_io           18
45 #define __HYPERVISOR_physdev_op_compat    19
46 #define __HYPERVISOR_grant_table_op       20
47 #define __HYPERVISOR_vm_assist            21
48 #define __HYPERVISOR_update_va_mapping_otherdomain 22
49 #define __HYPERVISOR_iret                 23 /* x86 only */
50 #define __HYPERVISOR_vcpu_op              24
51 #define __HYPERVISOR_set_segment_base     25 /* x86/64 only */
52 #define __HYPERVISOR_mmuext_op            26
53 #define __HYPERVISOR_acm_op               27
54 #define __HYPERVISOR_nmi_op               28
55 #define __HYPERVISOR_sched_op             29
56 #define __HYPERVISOR_callback_op          30
57 #define __HYPERVISOR_xenoprof_op          31
58 #define __HYPERVISOR_event_channel_op     32
59 #define __HYPERVISOR_physdev_op           33
60 #define __HYPERVISOR_hvm_op               34
61 #define __HYPERVISOR_tmem_op              38
62 
63 /* Architecture-specific hypercall definitions. */
64 #define __HYPERVISOR_arch_0               48
65 #define __HYPERVISOR_arch_1               49
66 #define __HYPERVISOR_arch_2               50
67 #define __HYPERVISOR_arch_3               51
68 #define __HYPERVISOR_arch_4               52
69 #define __HYPERVISOR_arch_5               53
70 #define __HYPERVISOR_arch_6               54
71 #define __HYPERVISOR_arch_7               55
72 
73 /*
74  * VIRTUAL INTERRUPTS
75  *
76  * Virtual interrupts that a guest OS may receive from Xen.
77  */
78 #define VIRQ_TIMER      0  /* Timebase update, and/or requested timeout.  */
79 #define VIRQ_DEBUG      1  /* Request guest to dump debug info.           */
80 #define VIRQ_CONSOLE    2  /* (DOM0) Bytes received on emergency console. */
81 #define VIRQ_DOM_EXC    3  /* (DOM0) Exceptional event for some domain.   */
82 #define VIRQ_DEBUGGER   6  /* (DOM0) A domain has paused for debugging.   */
83 
84 /* Architecture-specific VIRQ definitions. */
85 #define VIRQ_ARCH_0    16
86 #define VIRQ_ARCH_1    17
87 #define VIRQ_ARCH_2    18
88 #define VIRQ_ARCH_3    19
89 #define VIRQ_ARCH_4    20
90 #define VIRQ_ARCH_5    21
91 #define VIRQ_ARCH_6    22
92 #define VIRQ_ARCH_7    23
93 
94 #define NR_VIRQS       24
95 /*
96  * MMU-UPDATE REQUESTS
97  *
98  * HYPERVISOR_mmu_update() accepts a list of (ptr, val) pairs.
99  * A foreigndom (FD) can be specified (or DOMID_SELF for none).
100  * Where the FD has some effect, it is described below.
101  * ptr[1:0] specifies the appropriate MMU_* command.
102  *
103  * ptr[1:0] == MMU_NORMAL_PT_UPDATE:
104  * Updates an entry in a page table. If updating an L1 table, and the new
105  * table entry is valid/present, the mapped frame must belong to the FD, if
106  * an FD has been specified. If attempting to map an I/O page then the
107  * caller assumes the privilege of the FD.
108  * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller.
109  * FD == DOMID_XEN: Map restricted areas of Xen's heap space.
110  * ptr[:2]  -- Machine address of the page-table entry to modify.
111  * val      -- Value to write.
112  *
113  * ptr[1:0] == MMU_MACHPHYS_UPDATE:
114  * Updates an entry in the machine->pseudo-physical mapping table.
115  * ptr[:2]  -- Machine address within the frame whose mapping to modify.
116  *             The frame must belong to the FD, if one is specified.
117  * val      -- Value to write into the mapping entry.
118  *
119  * ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD:
120  * As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed
121  * with those in @val.
122  */
123 #define MMU_NORMAL_PT_UPDATE      0 /* checked '*ptr = val'. ptr is MA.       */
124 #define MMU_MACHPHYS_UPDATE       1 /* ptr = MA of frame to modify entry for  */
125 #define MMU_PT_UPDATE_PRESERVE_AD 2 /* atomically: *ptr = val | (*ptr&(A|D)) */
126 
127 /*
128  * MMU EXTENDED OPERATIONS
129  *
130  * HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
131  * A foreigndom (FD) can be specified (or DOMID_SELF for none).
132  * Where the FD has some effect, it is described below.
133  *
134  * cmd: MMUEXT_(UN)PIN_*_TABLE
135  * mfn: Machine frame number to be (un)pinned as a p.t. page.
136  *      The frame must belong to the FD, if one is specified.
137  *
138  * cmd: MMUEXT_NEW_BASEPTR
139  * mfn: Machine frame number of new page-table base to install in MMU.
140  *
141  * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only]
142  * mfn: Machine frame number of new page-table base to install in MMU
143  *      when in user space.
144  *
145  * cmd: MMUEXT_TLB_FLUSH_LOCAL
146  * No additional arguments. Flushes local TLB.
147  *
148  * cmd: MMUEXT_INVLPG_LOCAL
149  * linear_addr: Linear address to be flushed from the local TLB.
150  *
151  * cmd: MMUEXT_TLB_FLUSH_MULTI
152  * vcpumask: Pointer to bitmap of VCPUs to be flushed.
153  *
154  * cmd: MMUEXT_INVLPG_MULTI
155  * linear_addr: Linear address to be flushed.
156  * vcpumask: Pointer to bitmap of VCPUs to be flushed.
157  *
158  * cmd: MMUEXT_TLB_FLUSH_ALL
159  * No additional arguments. Flushes all VCPUs' TLBs.
160  *
161  * cmd: MMUEXT_INVLPG_ALL
162  * linear_addr: Linear address to be flushed from all VCPUs' TLBs.
163  *
164  * cmd: MMUEXT_FLUSH_CACHE
165  * No additional arguments. Writes back and flushes cache contents.
166  *
167  * cmd: MMUEXT_SET_LDT
168  * linear_addr: Linear address of LDT base (NB. must be page-aligned).
169  * nr_ents: Number of entries in LDT.
170  */
171 #define MMUEXT_PIN_L1_TABLE      0
172 #define MMUEXT_PIN_L2_TABLE      1
173 #define MMUEXT_PIN_L3_TABLE      2
174 #define MMUEXT_PIN_L4_TABLE      3
175 #define MMUEXT_UNPIN_TABLE       4
176 #define MMUEXT_NEW_BASEPTR       5
177 #define MMUEXT_TLB_FLUSH_LOCAL   6
178 #define MMUEXT_INVLPG_LOCAL      7
179 #define MMUEXT_TLB_FLUSH_MULTI   8
180 #define MMUEXT_INVLPG_MULTI      9
181 #define MMUEXT_TLB_FLUSH_ALL    10
182 #define MMUEXT_INVLPG_ALL       11
183 #define MMUEXT_FLUSH_CACHE      12
184 #define MMUEXT_SET_LDT          13
185 #define MMUEXT_NEW_USER_BASEPTR 15
186 
187 #ifndef __ASSEMBLY__
188 struct mmuext_op {
189 	unsigned int cmd;
190 	union {
191 		/* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR */
192 		unsigned long mfn;
193 		/* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */
194 		unsigned long linear_addr;
195 	} arg1;
196 	union {
197 		/* SET_LDT */
198 		unsigned int nr_ents;
199 		/* TLB_FLUSH_MULTI, INVLPG_MULTI */
200 		void *vcpumask;
201 	} arg2;
202 };
203 DEFINE_GUEST_HANDLE_STRUCT(mmuext_op);
204 #endif
205 
206 /* These are passed as 'flags' to update_va_mapping. They can be ORed. */
207 /* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap.   */
208 /* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer.         */
209 #define UVMF_NONE               (0UL<<0) /* No flushing at all.   */
210 #define UVMF_TLB_FLUSH          (1UL<<0) /* Flush entire TLB(s).  */
211 #define UVMF_INVLPG             (2UL<<0) /* Flush only one entry. */
212 #define UVMF_FLUSHTYPE_MASK     (3UL<<0)
213 #define UVMF_MULTI              (0UL<<2) /* Flush subset of TLBs. */
214 #define UVMF_LOCAL              (0UL<<2) /* Flush local TLB.      */
215 #define UVMF_ALL                (1UL<<2) /* Flush all TLBs.       */
216 
217 /*
218  * Commands to HYPERVISOR_console_io().
219  */
220 #define CONSOLEIO_write         0
221 #define CONSOLEIO_read          1
222 
223 /*
224  * Commands to HYPERVISOR_vm_assist().
225  */
226 #define VMASST_CMD_enable                0
227 #define VMASST_CMD_disable               1
228 #define VMASST_TYPE_4gb_segments         0
229 #define VMASST_TYPE_4gb_segments_notify  1
230 #define VMASST_TYPE_writable_pagetables  2
231 #define VMASST_TYPE_pae_extended_cr3     3
232 #define MAX_VMASST_TYPE 3
233 
234 #ifndef __ASSEMBLY__
235 
236 typedef uint16_t domid_t;
237 
238 /* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
239 #define DOMID_FIRST_RESERVED (0x7FF0U)
240 
241 /* DOMID_SELF is used in certain contexts to refer to oneself. */
242 #define DOMID_SELF (0x7FF0U)
243 
244 /*
245  * DOMID_IO is used to restrict page-table updates to mapping I/O memory.
246  * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
247  * is useful to ensure that no mappings to the OS's own heap are accidentally
248  * installed. (e.g., in Linux this could cause havoc as reference counts
249  * aren't adjusted on the I/O-mapping code path).
250  * This only makes sense in MMUEXT_SET_FOREIGNDOM, but in that context can
251  * be specified by any calling domain.
252  */
253 #define DOMID_IO   (0x7FF1U)
254 
255 /*
256  * DOMID_XEN is used to allow privileged domains to map restricted parts of
257  * Xen's heap space (e.g., the machine_to_phys table).
258  * This only makes sense in MMUEXT_SET_FOREIGNDOM, and is only permitted if
259  * the caller is privileged.
260  */
261 #define DOMID_XEN  (0x7FF2U)
262 
263 /*
264  * Send an array of these to HYPERVISOR_mmu_update().
265  * NB. The fields are natural pointer/address size for this architecture.
266  */
267 struct mmu_update {
268     uint64_t ptr;       /* Machine address of PTE. */
269     uint64_t val;       /* New contents of PTE.    */
270 };
271 DEFINE_GUEST_HANDLE_STRUCT(mmu_update);
272 
273 /*
274  * Send an array of these to HYPERVISOR_multicall().
275  * NB. The fields are natural register size for this architecture.
276  */
277 struct multicall_entry {
278     unsigned long op;
279     long result;
280     unsigned long args[6];
281 };
282 DEFINE_GUEST_HANDLE_STRUCT(multicall_entry);
283 
284 /*
285  * Event channel endpoints per domain:
286  *  1024 if a long is 32 bits; 4096 if a long is 64 bits.
287  */
288 #define NR_EVENT_CHANNELS (sizeof(unsigned long) * sizeof(unsigned long) * 64)
289 
290 struct vcpu_time_info {
291 	/*
292 	 * Updates to the following values are preceded and followed
293 	 * by an increment of 'version'. The guest can therefore
294 	 * detect updates by looking for changes to 'version'. If the
295 	 * least-significant bit of the version number is set then an
296 	 * update is in progress and the guest must wait to read a
297 	 * consistent set of values.  The correct way to interact with
298 	 * the version number is similar to Linux's seqlock: see the
299 	 * implementations of read_seqbegin/read_seqretry.
300 	 */
301 	uint32_t version;
302 	uint32_t pad0;
303 	uint64_t tsc_timestamp;   /* TSC at last update of time vals.  */
304 	uint64_t system_time;     /* Time, in nanosecs, since boot.    */
305 	/*
306 	 * Current system time:
307 	 *   system_time + ((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul
308 	 * CPU frequency (Hz):
309 	 *   ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift
310 	 */
311 	uint32_t tsc_to_system_mul;
312 	int8_t   tsc_shift;
313 	int8_t   pad1[3];
314 }; /* 32 bytes */
315 
316 struct vcpu_info {
317 	/*
318 	 * 'evtchn_upcall_pending' is written non-zero by Xen to indicate
319 	 * a pending notification for a particular VCPU. It is then cleared
320 	 * by the guest OS /before/ checking for pending work, thus avoiding
321 	 * a set-and-check race. Note that the mask is only accessed by Xen
322 	 * on the CPU that is currently hosting the VCPU. This means that the
323 	 * pending and mask flags can be updated by the guest without special
324 	 * synchronisation (i.e., no need for the x86 LOCK prefix).
325 	 * This may seem suboptimal because if the pending flag is set by
326 	 * a different CPU then an IPI may be scheduled even when the mask
327 	 * is set. However, note:
328 	 *  1. The task of 'interrupt holdoff' is covered by the per-event-
329 	 *     channel mask bits. A 'noisy' event that is continually being
330 	 *     triggered can be masked at source at this very precise
331 	 *     granularity.
332 	 *  2. The main purpose of the per-VCPU mask is therefore to restrict
333 	 *     reentrant execution: whether for concurrency control, or to
334 	 *     prevent unbounded stack usage. Whatever the purpose, we expect
335 	 *     that the mask will be asserted only for short periods at a time,
336 	 *     and so the likelihood of a 'spurious' IPI is suitably small.
337 	 * The mask is read before making an event upcall to the guest: a
338 	 * non-zero mask therefore guarantees that the VCPU will not receive
339 	 * an upcall activation. The mask is cleared when the VCPU requests
340 	 * to block: this avoids wakeup-waiting races.
341 	 */
342 	uint8_t evtchn_upcall_pending;
343 	uint8_t evtchn_upcall_mask;
344 	unsigned long evtchn_pending_sel;
345 	struct arch_vcpu_info arch;
346 	struct pvclock_vcpu_time_info time;
347 }; /* 64 bytes (x86) */
348 
349 /*
350  * Xen/kernel shared data -- pointer provided in start_info.
351  * NB. We expect that this struct is smaller than a page.
352  */
353 struct shared_info {
354 	struct vcpu_info vcpu_info[MAX_VIRT_CPUS];
355 
356 	/*
357 	 * A domain can create "event channels" on which it can send and receive
358 	 * asynchronous event notifications. There are three classes of event that
359 	 * are delivered by this mechanism:
360 	 *  1. Bi-directional inter- and intra-domain connections. Domains must
361 	 *     arrange out-of-band to set up a connection (usually by allocating
362 	 *     an unbound 'listener' port and avertising that via a storage service
363 	 *     such as xenstore).
364 	 *  2. Physical interrupts. A domain with suitable hardware-access
365 	 *     privileges can bind an event-channel port to a physical interrupt
366 	 *     source.
367 	 *  3. Virtual interrupts ('events'). A domain can bind an event-channel
368 	 *     port to a virtual interrupt source, such as the virtual-timer
369 	 *     device or the emergency console.
370 	 *
371 	 * Event channels are addressed by a "port index". Each channel is
372 	 * associated with two bits of information:
373 	 *  1. PENDING -- notifies the domain that there is a pending notification
374 	 *     to be processed. This bit is cleared by the guest.
375 	 *  2. MASK -- if this bit is clear then a 0->1 transition of PENDING
376 	 *     will cause an asynchronous upcall to be scheduled. This bit is only
377 	 *     updated by the guest. It is read-only within Xen. If a channel
378 	 *     becomes pending while the channel is masked then the 'edge' is lost
379 	 *     (i.e., when the channel is unmasked, the guest must manually handle
380 	 *     pending notifications as no upcall will be scheduled by Xen).
381 	 *
382 	 * To expedite scanning of pending notifications, any 0->1 pending
383 	 * transition on an unmasked channel causes a corresponding bit in a
384 	 * per-vcpu selector word to be set. Each bit in the selector covers a
385 	 * 'C long' in the PENDING bitfield array.
386 	 */
387 	unsigned long evtchn_pending[sizeof(unsigned long) * 8];
388 	unsigned long evtchn_mask[sizeof(unsigned long) * 8];
389 
390 	/*
391 	 * Wallclock time: updated only by control software. Guests should base
392 	 * their gettimeofday() syscall on this wallclock-base value.
393 	 */
394 	struct pvclock_wall_clock wc;
395 
396 	struct arch_shared_info arch;
397 
398 };
399 
400 /*
401  * Start-of-day memory layout for the initial domain (DOM0):
402  *  1. The domain is started within contiguous virtual-memory region.
403  *  2. The contiguous region begins and ends on an aligned 4MB boundary.
404  *  3. The region start corresponds to the load address of the OS image.
405  *     If the load address is not 4MB aligned then the address is rounded down.
406  *  4. This the order of bootstrap elements in the initial virtual region:
407  *      a. relocated kernel image
408  *      b. initial ram disk              [mod_start, mod_len]
409  *      c. list of allocated page frames [mfn_list, nr_pages]
410  *      d. start_info_t structure        [register ESI (x86)]
411  *      e. bootstrap page tables         [pt_base, CR3 (x86)]
412  *      f. bootstrap stack               [register ESP (x86)]
413  *  5. Bootstrap elements are packed together, but each is 4kB-aligned.
414  *  6. The initial ram disk may be omitted.
415  *  7. The list of page frames forms a contiguous 'pseudo-physical' memory
416  *     layout for the domain. In particular, the bootstrap virtual-memory
417  *     region is a 1:1 mapping to the first section of the pseudo-physical map.
418  *  8. All bootstrap elements are mapped read-writable for the guest OS. The
419  *     only exception is the bootstrap page table, which is mapped read-only.
420  *  9. There is guaranteed to be at least 512kB padding after the final
421  *     bootstrap element. If necessary, the bootstrap virtual region is
422  *     extended by an extra 4MB to ensure this.
423  */
424 
425 #define MAX_GUEST_CMDLINE 1024
426 struct start_info {
427 	/* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME.    */
428 	char magic[32];             /* "xen-<version>-<platform>".            */
429 	unsigned long nr_pages;     /* Total pages allocated to this domain.  */
430 	unsigned long shared_info;  /* MACHINE address of shared info struct. */
431 	uint32_t flags;             /* SIF_xxx flags.                         */
432 	unsigned long store_mfn;    /* MACHINE page number of shared page.    */
433 	uint32_t store_evtchn;      /* Event channel for store communication. */
434 	union {
435 		struct {
436 			unsigned long mfn;  /* MACHINE page number of console page.   */
437 			uint32_t  evtchn;   /* Event channel for console page.        */
438 		} domU;
439 		struct {
440 			uint32_t info_off;  /* Offset of console_info struct.         */
441 			uint32_t info_size; /* Size of console_info struct from start.*/
442 		} dom0;
443 	} console;
444 	/* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME).     */
445 	unsigned long pt_base;      /* VIRTUAL address of page directory.     */
446 	unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames.       */
447 	unsigned long mfn_list;     /* VIRTUAL address of page-frame list.    */
448 	unsigned long mod_start;    /* VIRTUAL address of pre-loaded module.  */
449 	unsigned long mod_len;      /* Size (bytes) of pre-loaded module.     */
450 	int8_t cmd_line[MAX_GUEST_CMDLINE];
451 };
452 
453 struct dom0_vga_console_info {
454 	uint8_t video_type;
455 #define XEN_VGATYPE_TEXT_MODE_3 0x03
456 #define XEN_VGATYPE_VESA_LFB    0x23
457 
458 	union {
459 		struct {
460 			/* Font height, in pixels. */
461 			uint16_t font_height;
462 			/* Cursor location (column, row). */
463 			uint16_t cursor_x, cursor_y;
464 			/* Number of rows and columns (dimensions in characters). */
465 			uint16_t rows, columns;
466 		} text_mode_3;
467 
468 		struct {
469 			/* Width and height, in pixels. */
470 			uint16_t width, height;
471 			/* Bytes per scan line. */
472 			uint16_t bytes_per_line;
473 			/* Bits per pixel. */
474 			uint16_t bits_per_pixel;
475 			/* LFB physical address, and size (in units of 64kB). */
476 			uint32_t lfb_base;
477 			uint32_t lfb_size;
478 			/* RGB mask offsets and sizes, as defined by VBE 1.2+ */
479 			uint8_t  red_pos, red_size;
480 			uint8_t  green_pos, green_size;
481 			uint8_t  blue_pos, blue_size;
482 			uint8_t  rsvd_pos, rsvd_size;
483 
484 			/* VESA capabilities (offset 0xa, VESA command 0x4f00). */
485 			uint32_t gbl_caps;
486 			/* Mode attributes (offset 0x0, VESA command 0x4f01). */
487 			uint16_t mode_attrs;
488 		} vesa_lfb;
489 	} u;
490 };
491 
492 /* These flags are passed in the 'flags' field of start_info_t. */
493 #define SIF_PRIVILEGED    (1<<0)  /* Is the domain privileged? */
494 #define SIF_INITDOMAIN    (1<<1)  /* Is this the initial control domain? */
495 #define SIF_PM_MASK       (0xFF<<8) /* reserve 1 byte for xen-pm options */
496 
497 typedef uint64_t cpumap_t;
498 
499 typedef uint8_t xen_domain_handle_t[16];
500 
501 /* Turn a plain number into a C unsigned long constant. */
502 #define __mk_unsigned_long(x) x ## UL
503 #define mk_unsigned_long(x) __mk_unsigned_long(x)
504 
505 #define TMEM_SPEC_VERSION 1
506 
507 struct tmem_op {
508 	uint32_t cmd;
509 	int32_t pool_id;
510 	union {
511 		struct {  /* for cmd == TMEM_NEW_POOL */
512 			uint64_t uuid[2];
513 			uint32_t flags;
514 		} new;
515 		struct {
516 			uint64_t oid[3];
517 			uint32_t index;
518 			uint32_t tmem_offset;
519 			uint32_t pfn_offset;
520 			uint32_t len;
521 			GUEST_HANDLE(void) gmfn; /* guest machine page frame */
522 		} gen;
523 	} u;
524 };
525 
526 DEFINE_GUEST_HANDLE(u64);
527 
528 #else /* __ASSEMBLY__ */
529 
530 /* In assembly code we cannot use C numeric constant suffixes. */
531 #define mk_unsigned_long(x) x
532 
533 #endif /* !__ASSEMBLY__ */
534 
535 #endif /* __XEN_PUBLIC_XEN_H__ */
536