xref: /openbmc/linux/include/xen/interface/io/netif.h (revision c4a11bf4)
1 /* SPDX-License-Identifier: MIT */
2 /******************************************************************************
3  * xen_netif.h
4  *
5  * Unified network-device I/O interface for Xen guest OSes.
6  *
7  * Copyright (c) 2003-2004, Keir Fraser
8  */
9 
10 #ifndef __XEN_PUBLIC_IO_XEN_NETIF_H__
11 #define __XEN_PUBLIC_IO_XEN_NETIF_H__
12 
13 #include "ring.h"
14 #include "../grant_table.h"
15 
16 /*
17  * Older implementation of Xen network frontend / backend has an
18  * implicit dependency on the MAX_SKB_FRAGS as the maximum number of
19  * ring slots a skb can use. Netfront / netback may not work as
20  * expected when frontend and backend have different MAX_SKB_FRAGS.
21  *
22  * A better approach is to add mechanism for netfront / netback to
23  * negotiate this value. However we cannot fix all possible
24  * frontends, so we need to define a value which states the minimum
25  * slots backend must support.
26  *
27  * The minimum value derives from older Linux kernel's MAX_SKB_FRAGS
28  * (18), which is proved to work with most frontends. Any new backend
29  * which doesn't negotiate with frontend should expect frontend to
30  * send a valid packet using slots up to this value.
31  */
32 #define XEN_NETIF_NR_SLOTS_MIN 18
33 
34 /*
35  * Notifications after enqueuing any type of message should be conditional on
36  * the appropriate req_event or rsp_event field in the shared ring.
37  * If the client sends notification for rx requests then it should specify
38  * feature 'feature-rx-notify' via xenbus. Otherwise the backend will assume
39  * that it cannot safely queue packets (as it may not be kicked to send them).
40  */
41 
42 /*
43  * "feature-split-event-channels" is introduced to separate guest TX
44  * and RX notification. Backend either doesn't support this feature or
45  * advertises it via xenstore as 0 (disabled) or 1 (enabled).
46  *
47  * To make use of this feature, frontend should allocate two event
48  * channels for TX and RX, advertise them to backend as
49  * "event-channel-tx" and "event-channel-rx" respectively. If frontend
50  * doesn't want to use this feature, it just writes "event-channel"
51  * node as before.
52  */
53 
54 /*
55  * Multiple transmit and receive queues:
56  * If supported, the backend will write the key "multi-queue-max-queues" to
57  * the directory for that vif, and set its value to the maximum supported
58  * number of queues.
59  * Frontends that are aware of this feature and wish to use it can write the
60  * key "multi-queue-num-queues", set to the number they wish to use, which
61  * must be greater than zero, and no more than the value reported by the backend
62  * in "multi-queue-max-queues".
63  *
64  * Queues replicate the shared rings and event channels.
65  * "feature-split-event-channels" may optionally be used when using
66  * multiple queues, but is not mandatory.
67  *
68  * Each queue consists of one shared ring pair, i.e. there must be the same
69  * number of tx and rx rings.
70  *
71  * For frontends requesting just one queue, the usual event-channel and
72  * ring-ref keys are written as before, simplifying the backend processing
73  * to avoid distinguishing between a frontend that doesn't understand the
74  * multi-queue feature, and one that does, but requested only one queue.
75  *
76  * Frontends requesting two or more queues must not write the toplevel
77  * event-channel (or event-channel-{tx,rx}) and {tx,rx}-ring-ref keys,
78  * instead writing those keys under sub-keys having the name "queue-N" where
79  * N is the integer ID of the queue for which those keys belong. Queues
80  * are indexed from zero. For example, a frontend with two queues and split
81  * event channels must write the following set of queue-related keys:
82  *
83  * /local/domain/1/device/vif/0/multi-queue-num-queues = "2"
84  * /local/domain/1/device/vif/0/queue-0 = ""
85  * /local/domain/1/device/vif/0/queue-0/tx-ring-ref = "<ring-ref-tx0>"
86  * /local/domain/1/device/vif/0/queue-0/rx-ring-ref = "<ring-ref-rx0>"
87  * /local/domain/1/device/vif/0/queue-0/event-channel-tx = "<evtchn-tx0>"
88  * /local/domain/1/device/vif/0/queue-0/event-channel-rx = "<evtchn-rx0>"
89  * /local/domain/1/device/vif/0/queue-1 = ""
90  * /local/domain/1/device/vif/0/queue-1/tx-ring-ref = "<ring-ref-tx1>"
91  * /local/domain/1/device/vif/0/queue-1/rx-ring-ref = "<ring-ref-rx1"
92  * /local/domain/1/device/vif/0/queue-1/event-channel-tx = "<evtchn-tx1>"
93  * /local/domain/1/device/vif/0/queue-1/event-channel-rx = "<evtchn-rx1>"
94  *
95  * If there is any inconsistency in the XenStore data, the backend may
96  * choose not to connect any queues, instead treating the request as an
97  * error. This includes scenarios where more (or fewer) queues were
98  * requested than the frontend provided details for.
99  *
100  * Mapping of packets to queues is considered to be a function of the
101  * transmitting system (backend or frontend) and is not negotiated
102  * between the two. Guests are free to transmit packets on any queue
103  * they choose, provided it has been set up correctly. Guests must be
104  * prepared to receive packets on any queue they have requested be set up.
105  */
106 
107 /*
108  * "feature-no-csum-offload" should be used to turn IPv4 TCP/UDP checksum
109  * offload off or on. If it is missing then the feature is assumed to be on.
110  * "feature-ipv6-csum-offload" should be used to turn IPv6 TCP/UDP checksum
111  * offload on or off. If it is missing then the feature is assumed to be off.
112  */
113 
114 /*
115  * "feature-gso-tcpv4" and "feature-gso-tcpv6" advertise the capability to
116  * handle large TCP packets (in IPv4 or IPv6 form respectively). Neither
117  * frontends nor backends are assumed to be capable unless the flags are
118  * present.
119  */
120 
121 /*
122  * "feature-multicast-control" and "feature-dynamic-multicast-control"
123  * advertise the capability to filter ethernet multicast packets in the
124  * backend. If the frontend wishes to take advantage of this feature then
125  * it may set "request-multicast-control". If the backend only advertises
126  * "feature-multicast-control" then "request-multicast-control" must be set
127  * before the frontend moves into the connected state. The backend will
128  * sample the value on this state transition and any subsequent change in
129  * value will have no effect. However, if the backend also advertises
130  * "feature-dynamic-multicast-control" then "request-multicast-control"
131  * may be set by the frontend at any time. In this case, the backend will
132  * watch the value and re-sample on watch events.
133  *
134  * If the sampled value of "request-multicast-control" is set then the
135  * backend transmit side should no longer flood multicast packets to the
136  * frontend, it should instead drop any multicast packet that does not
137  * match in a filter list.
138  * The list is amended by the frontend by sending dummy transmit requests
139  * containing XEN_NETIF_EXTRA_TYPE_MCAST_{ADD,DEL} extra-info fragments as
140  * specified below.
141  * Note that the filter list may be amended even if the sampled value of
142  * "request-multicast-control" is not set, however the filter should only
143  * be applied if it is set.
144  */
145 
146 /*
147  * "xdp-headroom" is used to request that extra space is added
148  * for XDP processing.  The value is measured in bytes and passed by
149  * the frontend to be consistent between both ends.
150  * If the value is greater than zero that means that
151  * an RX response is going to be passed to an XDP program for processing.
152  * XEN_NETIF_MAX_XDP_HEADROOM defines the maximum headroom offset in bytes
153  *
154  * "feature-xdp-headroom" is set to "1" by the netback side like other features
155  * so a guest can check if an XDP program can be processed.
156  */
157 #define XEN_NETIF_MAX_XDP_HEADROOM 0x7FFF
158 
159 /*
160  * Control ring
161  * ============
162  *
163  * Some features, such as hashing (detailed below), require a
164  * significant amount of out-of-band data to be passed from frontend to
165  * backend. Use of xenstore is not suitable for large quantities of data
166  * because of quota limitations and so a dedicated 'control ring' is used.
167  * The ability of the backend to use a control ring is advertised by
168  * setting:
169  *
170  * /local/domain/X/backend/<domid>/<vif>/feature-ctrl-ring = "1"
171  *
172  * The frontend provides a control ring to the backend by setting:
173  *
174  * /local/domain/<domid>/device/vif/<vif>/ctrl-ring-ref = <gref>
175  * /local/domain/<domid>/device/vif/<vif>/event-channel-ctrl = <port>
176  *
177  * where <gref> is the grant reference of the shared page used to
178  * implement the control ring and <port> is an event channel to be used
179  * as a mailbox interrupt. These keys must be set before the frontend
180  * moves into the connected state.
181  *
182  * The control ring uses a fixed request/response message size and is
183  * balanced (i.e. one request to one response), so operationally it is much
184  * the same as a transmit or receive ring.
185  * Note that there is no requirement that responses are issued in the same
186  * order as requests.
187  */
188 
189 /*
190  * Hash types
191  * ==========
192  *
193  * For the purposes of the definitions below, 'Packet[]' is an array of
194  * octets containing an IP packet without options, 'Array[X..Y]' means a
195  * sub-array of 'Array' containing bytes X thru Y inclusive, and '+' is
196  * used to indicate concatenation of arrays.
197  */
198 
199 /*
200  * A hash calculated over an IP version 4 header as follows:
201  *
202  * Buffer[0..8] = Packet[12..15] (source address) +
203  *                Packet[16..19] (destination address)
204  *
205  * Result = Hash(Buffer, 8)
206  */
207 #define _XEN_NETIF_CTRL_HASH_TYPE_IPV4 0
208 #define XEN_NETIF_CTRL_HASH_TYPE_IPV4 \
209 	(1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV4)
210 
211 /*
212  * A hash calculated over an IP version 4 header and TCP header as
213  * follows:
214  *
215  * Buffer[0..12] = Packet[12..15] (source address) +
216  *                 Packet[16..19] (destination address) +
217  *                 Packet[20..21] (source port) +
218  *                 Packet[22..23] (destination port)
219  *
220  * Result = Hash(Buffer, 12)
221  */
222 #define _XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP 1
223 #define XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP \
224 	(1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP)
225 
226 /*
227  * A hash calculated over an IP version 6 header as follows:
228  *
229  * Buffer[0..32] = Packet[8..23]  (source address ) +
230  *                 Packet[24..39] (destination address)
231  *
232  * Result = Hash(Buffer, 32)
233  */
234 #define _XEN_NETIF_CTRL_HASH_TYPE_IPV6 2
235 #define XEN_NETIF_CTRL_HASH_TYPE_IPV6 \
236 	(1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV6)
237 
238 /*
239  * A hash calculated over an IP version 6 header and TCP header as
240  * follows:
241  *
242  * Buffer[0..36] = Packet[8..23]  (source address) +
243  *                 Packet[24..39] (destination address) +
244  *                 Packet[40..41] (source port) +
245  *                 Packet[42..43] (destination port)
246  *
247  * Result = Hash(Buffer, 36)
248  */
249 #define _XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP 3
250 #define XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP \
251 	(1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP)
252 
253 /*
254  * Hash algorithms
255  * ===============
256  */
257 
258 #define XEN_NETIF_CTRL_HASH_ALGORITHM_NONE 0
259 
260 /*
261  * Toeplitz hash:
262  */
263 
264 #define XEN_NETIF_CTRL_HASH_ALGORITHM_TOEPLITZ 1
265 
266 /*
267  * This algorithm uses a 'key' as well as the data buffer itself.
268  * (Buffer[] and Key[] are treated as shift-registers where the MSB of
269  * Buffer/Key[0] is considered 'left-most' and the LSB of Buffer/Key[N-1]
270  * is the 'right-most').
271  *
272  * Value = 0
273  * For number of bits in Buffer[]
274  *    If (left-most bit of Buffer[] is 1)
275  *        Value ^= left-most 32 bits of Key[]
276  *    Key[] << 1
277  *    Buffer[] << 1
278  *
279  * The code below is provided for convenience where an operating system
280  * does not already provide an implementation.
281  */
282 #ifdef XEN_NETIF_DEFINE_TOEPLITZ
283 static uint32_t xen_netif_toeplitz_hash(const uint8_t *key,
284 					unsigned int keylen,
285 					const uint8_t *buf, unsigned int buflen)
286 {
287 	unsigned int keyi, bufi;
288 	uint64_t prefix = 0;
289 	uint64_t hash = 0;
290 
291 	/* Pre-load prefix with the first 8 bytes of the key */
292 	for (keyi = 0; keyi < 8; keyi++) {
293 		prefix <<= 8;
294 		prefix |= (keyi < keylen) ? key[keyi] : 0;
295 	}
296 
297 	for (bufi = 0; bufi < buflen; bufi++) {
298 		uint8_t byte = buf[bufi];
299 		unsigned int bit;
300 
301 		for (bit = 0; bit < 8; bit++) {
302 			if (byte & 0x80)
303 				hash ^= prefix;
304 			prefix <<= 1;
305 			byte <<= 1;
306 		}
307 
308 		/*
309 		 * 'prefix' has now been left-shifted by 8, so
310 		 * OR in the next byte.
311 		 */
312 		prefix |= (keyi < keylen) ? key[keyi] : 0;
313 		keyi++;
314 	}
315 
316 	/* The valid part of the hash is in the upper 32 bits. */
317 	return hash >> 32;
318 }
319 #endif				/* XEN_NETIF_DEFINE_TOEPLITZ */
320 
321 /*
322  * Control requests (struct xen_netif_ctrl_request)
323  * ================================================
324  *
325  * All requests have the following format:
326  *
327  *    0     1     2     3     4     5     6     7  octet
328  * +-----+-----+-----+-----+-----+-----+-----+-----+
329  * |    id     |   type    |         data[0]       |
330  * +-----+-----+-----+-----+-----+-----+-----+-----+
331  * |         data[1]       |         data[2]       |
332  * +-----+-----+-----+-----+-----------------------+
333  *
334  * id: the request identifier, echoed in response.
335  * type: the type of request (see below)
336  * data[]: any data associated with the request (determined by type)
337  */
338 
339 struct xen_netif_ctrl_request {
340 	uint16_t id;
341 	uint16_t type;
342 
343 #define XEN_NETIF_CTRL_TYPE_INVALID               0
344 #define XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS        1
345 #define XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS        2
346 #define XEN_NETIF_CTRL_TYPE_SET_HASH_KEY          3
347 #define XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE 4
348 #define XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE 5
349 #define XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING      6
350 #define XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM    7
351 
352 	uint32_t data[3];
353 };
354 
355 /*
356  * Control responses (struct xen_netif_ctrl_response)
357  * ==================================================
358  *
359  * All responses have the following format:
360  *
361  *    0     1     2     3     4     5     6     7  octet
362  * +-----+-----+-----+-----+-----+-----+-----+-----+
363  * |    id     |   type    |         status        |
364  * +-----+-----+-----+-----+-----+-----+-----+-----+
365  * |         data          |
366  * +-----+-----+-----+-----+
367  *
368  * id: the corresponding request identifier
369  * type: the type of the corresponding request
370  * status: the status of request processing
371  * data: any data associated with the response (determined by type and
372  *       status)
373  */
374 
375 struct xen_netif_ctrl_response {
376 	uint16_t id;
377 	uint16_t type;
378 	uint32_t status;
379 
380 #define XEN_NETIF_CTRL_STATUS_SUCCESS           0
381 #define XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     1
382 #define XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER 2
383 #define XEN_NETIF_CTRL_STATUS_BUFFER_OVERFLOW   3
384 
385 	uint32_t data;
386 };
387 
388 /*
389  * Control messages
390  * ================
391  *
392  * XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM
393  * --------------------------------------
394  *
395  * This is sent by the frontend to set the desired hash algorithm.
396  *
397  * Request:
398  *
399  *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM
400  *  data[0] = a XEN_NETIF_CTRL_HASH_ALGORITHM_* value
401  *  data[1] = 0
402  *  data[2] = 0
403  *
404  * Response:
405  *
406  *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
407  *                                                     supported
408  *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - The algorithm is not
409  *                                                     supported
410  *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
411  *
412  * NOTE: Setting data[0] to XEN_NETIF_CTRL_HASH_ALGORITHM_NONE disables
413  *       hashing and the backend is free to choose how it steers packets
414  *       to queues (which is the default behaviour).
415  *
416  * XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS
417  * ----------------------------------
418  *
419  * This is sent by the frontend to query the types of hash supported by
420  * the backend.
421  *
422  * Request:
423  *
424  *  type    = XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS
425  *  data[0] = 0
426  *  data[1] = 0
427  *  data[2] = 0
428  *
429  * Response:
430  *
431  *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED - Operation not supported
432  *           XEN_NETIF_CTRL_STATUS_SUCCESS       - Operation successful
433  *  data   = supported hash types (if operation was successful)
434  *
435  * NOTE: A valid hash algorithm must be selected before this operation can
436  *       succeed.
437  *
438  * XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS
439  * ----------------------------------
440  *
441  * This is sent by the frontend to set the types of hash that the backend
442  * should calculate. (See above for hash type definitions).
443  * Note that the 'maximal' type of hash should always be chosen. For
444  * example, if the frontend sets both IPV4 and IPV4_TCP hash types then
445  * the latter hash type should be calculated for any TCP packet and the
446  * former only calculated for non-TCP packets.
447  *
448  * Request:
449  *
450  *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS
451  *  data[0] = bitwise OR of XEN_NETIF_CTRL_HASH_TYPE_* values
452  *  data[1] = 0
453  *  data[2] = 0
454  *
455  * Response:
456  *
457  *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
458  *                                                     supported
459  *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - One or more flag
460  *                                                     value is invalid or
461  *                                                     unsupported
462  *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
463  *  data   = 0
464  *
465  * NOTE: A valid hash algorithm must be selected before this operation can
466  *       succeed.
467  *       Also, setting data[0] to zero disables hashing and the backend
468  *       is free to choose how it steers packets to queues.
469  *
470  * XEN_NETIF_CTRL_TYPE_SET_HASH_KEY
471  * --------------------------------
472  *
473  * This is sent by the frontend to set the key of the hash if the algorithm
474  * requires it. (See hash algorithms above).
475  *
476  * Request:
477  *
478  *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_KEY
479  *  data[0] = grant reference of page containing the key (assumed to
480  *            start at beginning of grant)
481  *  data[1] = size of key in octets
482  *  data[2] = 0
483  *
484  * Response:
485  *
486  *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
487  *                                                     supported
488  *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - Key size is invalid
489  *           XEN_NETIF_CTRL_STATUS_BUFFER_OVERFLOW   - Key size is larger
490  *                                                     than the backend
491  *                                                     supports
492  *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
493  *  data   = 0
494  *
495  * NOTE: Any key octets not specified are assumed to be zero (the key
496  *       is assumed to be empty by default) and specifying a new key
497  *       invalidates any previous key, hence specifying a key size of
498  *       zero will clear the key (which ensures that the calculated hash
499  *       will always be zero).
500  *       The maximum size of key is algorithm and backend specific, but
501  *       is also limited by the single grant reference.
502  *       The grant reference may be read-only and must remain valid until
503  *       the response has been processed.
504  *
505  * XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE
506  * -----------------------------------------
507  *
508  * This is sent by the frontend to query the maximum size of mapping
509  * table supported by the backend. The size is specified in terms of
510  * table entries.
511  *
512  * Request:
513  *
514  *  type    = XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE
515  *  data[0] = 0
516  *  data[1] = 0
517  *  data[2] = 0
518  *
519  * Response:
520  *
521  *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED - Operation not supported
522  *           XEN_NETIF_CTRL_STATUS_SUCCESS       - Operation successful
523  *  data   = maximum number of entries allowed in the mapping table
524  *           (if operation was successful) or zero if a mapping table is
525  *           not supported (i.e. hash mapping is done only by modular
526  *           arithmetic).
527  *
528  * XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE
529  * -------------------------------------
530  *
531  * This is sent by the frontend to set the actual size of the mapping
532  * table to be used by the backend. The size is specified in terms of
533  * table entries.
534  * Any previous table is invalidated by this message and any new table
535  * is assumed to be zero filled.
536  *
537  * Request:
538  *
539  *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE
540  *  data[0] = number of entries in mapping table
541  *  data[1] = 0
542  *  data[2] = 0
543  *
544  * Response:
545  *
546  *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
547  *                                                     supported
548  *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - Table size is invalid
549  *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
550  *  data   = 0
551  *
552  * NOTE: Setting data[0] to 0 means that hash mapping should be done
553  *       using modular arithmetic.
554  *
555  * XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING
556  * ------------------------------------
557  *
558  * This is sent by the frontend to set the content of the table mapping
559  * hash value to queue number. The backend should calculate the hash from
560  * the packet header, use it as an index into the table (modulo the size
561  * of the table) and then steer the packet to the queue number found at
562  * that index.
563  *
564  * Request:
565  *
566  *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING
567  *  data[0] = grant reference of page containing the mapping (sub-)table
568  *            (assumed to start at beginning of grant)
569  *  data[1] = size of (sub-)table in entries
570  *  data[2] = offset, in entries, of sub-table within overall table
571  *
572  * Response:
573  *
574  *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
575  *                                                     supported
576  *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - Table size or content
577  *                                                     is invalid
578  *           XEN_NETIF_CTRL_STATUS_BUFFER_OVERFLOW   - Table size is larger
579  *                                                     than the backend
580  *                                                     supports
581  *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
582  *  data   = 0
583  *
584  * NOTE: The overall table has the following format:
585  *
586  *          0     1     2     3     4     5     6     7  octet
587  *       +-----+-----+-----+-----+-----+-----+-----+-----+
588  *       |       mapping[0]      |       mapping[1]      |
589  *       +-----+-----+-----+-----+-----+-----+-----+-----+
590  *       |                       .                       |
591  *       |                       .                       |
592  *       |                       .                       |
593  *       +-----+-----+-----+-----+-----+-----+-----+-----+
594  *       |      mapping[N-2]     |      mapping[N-1]     |
595  *       +-----+-----+-----+-----+-----+-----+-----+-----+
596  *
597  *       where N is specified by a XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE
598  *       message and each  mapping must specifies a queue between 0 and
599  *       "multi-queue-num-queues" (see above).
600  *       The backend may support a mapping table larger than can be
601  *       mapped by a single grant reference. Thus sub-tables within a
602  *       larger table can be individually set by sending multiple messages
603  *       with differing offset values. Specifying a new sub-table does not
604  *       invalidate any table data outside that range.
605  *       The grant reference may be read-only and must remain valid until
606  *       the response has been processed.
607  */
608 
609 DEFINE_RING_TYPES(xen_netif_ctrl,
610 		  struct xen_netif_ctrl_request,
611 		  struct xen_netif_ctrl_response);
612 
613 /*
614  * Guest transmit
615  * ==============
616  *
617  * This is the 'wire' format for transmit (frontend -> backend) packets:
618  *
619  *  Fragment 1: xen_netif_tx_request_t  - flags = XEN_NETTXF_*
620  *                                    size = total packet size
621  * [Extra 1: xen_netif_extra_info_t]    - (only if fragment 1 flags include
622  *                                     XEN_NETTXF_extra_info)
623  *  ...
624  * [Extra N: xen_netif_extra_info_t]    - (only if extra N-1 flags include
625  *                                     XEN_NETIF_EXTRA_MORE)
626  *  ...
627  *  Fragment N: xen_netif_tx_request_t  - (only if fragment N-1 flags include
628  *                                     XEN_NETTXF_more_data - flags on preceding
629  *                                     extras are not relevant here)
630  *                                    flags = 0
631  *                                    size = fragment size
632  *
633  * NOTE:
634  *
635  * This format slightly is different from that used for receive
636  * (backend -> frontend) packets. Specifically, in a multi-fragment
637  * packet the actual size of fragment 1 can only be determined by
638  * subtracting the sizes of fragments 2..N from the total packet size.
639  *
640  * Ring slot size is 12 octets, however not all request/response
641  * structs use the full size.
642  *
643  * tx request data (xen_netif_tx_request_t)
644  * ------------------------------------
645  *
646  *    0     1     2     3     4     5     6     7  octet
647  * +-----+-----+-----+-----+-----+-----+-----+-----+
648  * | grant ref             | offset    | flags     |
649  * +-----+-----+-----+-----+-----+-----+-----+-----+
650  * | id        | size      |
651  * +-----+-----+-----+-----+
652  *
653  * grant ref: Reference to buffer page.
654  * offset: Offset within buffer page.
655  * flags: XEN_NETTXF_*.
656  * id: request identifier, echoed in response.
657  * size: packet size in bytes.
658  *
659  * tx response (xen_netif_tx_response_t)
660  * ---------------------------------
661  *
662  *    0     1     2     3     4     5     6     7  octet
663  * +-----+-----+-----+-----+-----+-----+-----+-----+
664  * | id        | status    | unused                |
665  * +-----+-----+-----+-----+-----+-----+-----+-----+
666  * | unused                |
667  * +-----+-----+-----+-----+
668  *
669  * id: reflects id in transmit request
670  * status: XEN_NETIF_RSP_*
671  *
672  * Guest receive
673  * =============
674  *
675  * This is the 'wire' format for receive (backend -> frontend) packets:
676  *
677  *  Fragment 1: xen_netif_rx_request_t  - flags = XEN_NETRXF_*
678  *                                    size = fragment size
679  * [Extra 1: xen_netif_extra_info_t]    - (only if fragment 1 flags include
680  *                                     XEN_NETRXF_extra_info)
681  *  ...
682  * [Extra N: xen_netif_extra_info_t]    - (only if extra N-1 flags include
683  *                                     XEN_NETIF_EXTRA_MORE)
684  *  ...
685  *  Fragment N: xen_netif_rx_request_t  - (only if fragment N-1 flags include
686  *                                     XEN_NETRXF_more_data - flags on preceding
687  *                                     extras are not relevant here)
688  *                                    flags = 0
689  *                                    size = fragment size
690  *
691  * NOTE:
692  *
693  * This format slightly is different from that used for transmit
694  * (frontend -> backend) packets. Specifically, in a multi-fragment
695  * packet the size of the packet can only be determined by summing the
696  * sizes of fragments 1..N.
697  *
698  * Ring slot size is 8 octets.
699  *
700  * rx request (xen_netif_rx_request_t)
701  * -------------------------------
702  *
703  *    0     1     2     3     4     5     6     7  octet
704  * +-----+-----+-----+-----+-----+-----+-----+-----+
705  * | id        | pad       | gref                  |
706  * +-----+-----+-----+-----+-----+-----+-----+-----+
707  *
708  * id: request identifier, echoed in response.
709  * gref: reference to incoming granted frame.
710  *
711  * rx response (xen_netif_rx_response_t)
712  * ---------------------------------
713  *
714  *    0     1     2     3     4     5     6     7  octet
715  * +-----+-----+-----+-----+-----+-----+-----+-----+
716  * | id        | offset    | flags     | status    |
717  * +-----+-----+-----+-----+-----+-----+-----+-----+
718  *
719  * id: reflects id in receive request
720  * offset: offset in page of start of received packet
721  * flags: XEN_NETRXF_*
722  * status: -ve: XEN_NETIF_RSP_*; +ve: Rx'ed pkt size.
723  *
724  * NOTE: Historically, to support GSO on the frontend receive side, Linux
725  *       netfront does not make use of the rx response id (because, as
726  *       described below, extra info structures overlay the id field).
727  *       Instead it assumes that responses always appear in the same ring
728  *       slot as their corresponding request. Thus, to maintain
729  *       compatibility, backends must make sure this is the case.
730  *
731  * Extra Info
732  * ==========
733  *
734  * Can be present if initial request or response has NET{T,R}XF_extra_info,
735  * or previous extra request has XEN_NETIF_EXTRA_MORE.
736  *
737  * The struct therefore needs to fit into either a tx or rx slot and
738  * is therefore limited to 8 octets.
739  *
740  * NOTE: Because extra info data overlays the usual request/response
741  *       structures, there is no id information in the opposite direction.
742  *       So, if an extra info overlays an rx response the frontend can
743  *       assume that it is in the same ring slot as the request that was
744  *       consumed to make the slot available, and the backend must ensure
745  *       this assumption is true.
746  *
747  * extra info (xen_netif_extra_info_t)
748  * -------------------------------
749  *
750  * General format:
751  *
752  *    0     1     2     3     4     5     6     7  octet
753  * +-----+-----+-----+-----+-----+-----+-----+-----+
754  * |type |flags| type specific data                |
755  * +-----+-----+-----+-----+-----+-----+-----+-----+
756  * | padding for tx        |
757  * +-----+-----+-----+-----+
758  *
759  * type: XEN_NETIF_EXTRA_TYPE_*
760  * flags: XEN_NETIF_EXTRA_FLAG_*
761  * padding for tx: present only in the tx case due to 8 octet limit
762  *                 from rx case. Not shown in type specific entries
763  *                 below.
764  *
765  * XEN_NETIF_EXTRA_TYPE_GSO:
766  *
767  *    0     1     2     3     4     5     6     7  octet
768  * +-----+-----+-----+-----+-----+-----+-----+-----+
769  * |type |flags| size      |type | pad | features  |
770  * +-----+-----+-----+-----+-----+-----+-----+-----+
771  *
772  * type: Must be XEN_NETIF_EXTRA_TYPE_GSO
773  * flags: XEN_NETIF_EXTRA_FLAG_*
774  * size: Maximum payload size of each segment. For example,
775  *       for TCP this is just the path MSS.
776  * type: XEN_NETIF_GSO_TYPE_*: This determines the protocol of
777  *       the packet and any extra features required to segment the
778  *       packet properly.
779  * features: EN_XEN_NETIF_GSO_FEAT_*: This specifies any extra GSO
780  *           features required to process this packet, such as ECN
781  *           support for TCPv4.
782  *
783  * XEN_NETIF_EXTRA_TYPE_MCAST_{ADD,DEL}:
784  *
785  *    0     1     2     3     4     5     6     7  octet
786  * +-----+-----+-----+-----+-----+-----+-----+-----+
787  * |type |flags| addr                              |
788  * +-----+-----+-----+-----+-----+-----+-----+-----+
789  *
790  * type: Must be XEN_NETIF_EXTRA_TYPE_MCAST_{ADD,DEL}
791  * flags: XEN_NETIF_EXTRA_FLAG_*
792  * addr: address to add/remove
793  *
794  * XEN_NETIF_EXTRA_TYPE_HASH:
795  *
796  * A backend that supports teoplitz hashing is assumed to accept
797  * this type of extra info in transmit packets.
798  * A frontend that enables hashing is assumed to accept
799  * this type of extra info in receive packets.
800  *
801  *    0     1     2     3     4     5     6     7  octet
802  * +-----+-----+-----+-----+-----+-----+-----+-----+
803  * |type |flags|htype| alg |LSB ---- value ---- MSB|
804  * +-----+-----+-----+-----+-----+-----+-----+-----+
805  *
806  * type: Must be XEN_NETIF_EXTRA_TYPE_HASH
807  * flags: XEN_NETIF_EXTRA_FLAG_*
808  * htype: Hash type (one of _XEN_NETIF_CTRL_HASH_TYPE_* - see above)
809  * alg: The algorithm used to calculate the hash (one of
810  *      XEN_NETIF_CTRL_HASH_TYPE_ALGORITHM_* - see above)
811  * value: Hash value
812  */
813 
814 /* Protocol checksum field is blank in the packet (hardware offload)? */
815 #define _XEN_NETTXF_csum_blank     (0)
816 #define  XEN_NETTXF_csum_blank     (1U<<_XEN_NETTXF_csum_blank)
817 
818 /* Packet data has been validated against protocol checksum. */
819 #define _XEN_NETTXF_data_validated (1)
820 #define  XEN_NETTXF_data_validated (1U<<_XEN_NETTXF_data_validated)
821 
822 /* Packet continues in the next request descriptor. */
823 #define _XEN_NETTXF_more_data      (2)
824 #define  XEN_NETTXF_more_data      (1U<<_XEN_NETTXF_more_data)
825 
826 /* Packet to be followed by extra descriptor(s). */
827 #define _XEN_NETTXF_extra_info     (3)
828 #define  XEN_NETTXF_extra_info     (1U<<_XEN_NETTXF_extra_info)
829 
830 #define XEN_NETIF_MAX_TX_SIZE 0xFFFF
831 struct xen_netif_tx_request {
832 	grant_ref_t gref;
833 	uint16_t offset;
834 	uint16_t flags;
835 	uint16_t id;
836 	uint16_t size;
837 };
838 
839 /* Types of xen_netif_extra_info descriptors. */
840 #define XEN_NETIF_EXTRA_TYPE_NONE      (0)	/* Never used - invalid */
841 #define XEN_NETIF_EXTRA_TYPE_GSO       (1)	/* u.gso */
842 #define XEN_NETIF_EXTRA_TYPE_MCAST_ADD (2)	/* u.mcast */
843 #define XEN_NETIF_EXTRA_TYPE_MCAST_DEL (3)	/* u.mcast */
844 #define XEN_NETIF_EXTRA_TYPE_HASH      (4)	/* u.hash */
845 #define XEN_NETIF_EXTRA_TYPE_XDP       (5)	/* u.xdp */
846 #define XEN_NETIF_EXTRA_TYPE_MAX       (6)
847 
848 /* xen_netif_extra_info_t flags. */
849 #define _XEN_NETIF_EXTRA_FLAG_MORE (0)
850 #define XEN_NETIF_EXTRA_FLAG_MORE  (1U<<_XEN_NETIF_EXTRA_FLAG_MORE)
851 
852 /* GSO types */
853 #define XEN_NETIF_GSO_TYPE_NONE         (0)
854 #define XEN_NETIF_GSO_TYPE_TCPV4        (1)
855 #define XEN_NETIF_GSO_TYPE_TCPV6        (2)
856 
857 /*
858  * This structure needs to fit within both xen_netif_tx_request_t and
859  * xen_netif_rx_response_t for compatibility.
860  */
861 struct xen_netif_extra_info {
862 	uint8_t type;
863 	uint8_t flags;
864 	union {
865 		struct {
866 			uint16_t size;
867 			uint8_t type;
868 			uint8_t pad;
869 			uint16_t features;
870 		} gso;
871 		struct {
872 			uint8_t addr[6];
873 		} mcast;
874 		struct {
875 			uint8_t type;
876 			uint8_t algorithm;
877 			uint8_t value[4];
878 		} hash;
879 		struct {
880 			uint16_t headroom;
881 			uint16_t pad[2];
882 		} xdp;
883 		uint16_t pad[3];
884 	} u;
885 };
886 
887 struct xen_netif_tx_response {
888 	uint16_t id;
889 	int16_t status;
890 };
891 
892 struct xen_netif_rx_request {
893 	uint16_t id;		/* Echoed in response message.        */
894 	uint16_t pad;
895 	grant_ref_t gref;
896 };
897 
898 /* Packet data has been validated against protocol checksum. */
899 #define _XEN_NETRXF_data_validated (0)
900 #define  XEN_NETRXF_data_validated (1U<<_XEN_NETRXF_data_validated)
901 
902 /* Protocol checksum field is blank in the packet (hardware offload)? */
903 #define _XEN_NETRXF_csum_blank     (1)
904 #define  XEN_NETRXF_csum_blank     (1U<<_XEN_NETRXF_csum_blank)
905 
906 /* Packet continues in the next request descriptor. */
907 #define _XEN_NETRXF_more_data      (2)
908 #define  XEN_NETRXF_more_data      (1U<<_XEN_NETRXF_more_data)
909 
910 /* Packet to be followed by extra descriptor(s). */
911 #define _XEN_NETRXF_extra_info     (3)
912 #define  XEN_NETRXF_extra_info     (1U<<_XEN_NETRXF_extra_info)
913 
914 /* Packet has GSO prefix. Deprecated but included for compatibility */
915 #define _XEN_NETRXF_gso_prefix     (4)
916 #define  XEN_NETRXF_gso_prefix     (1U<<_XEN_NETRXF_gso_prefix)
917 
918 struct xen_netif_rx_response {
919 	uint16_t id;
920 	uint16_t offset;
921 	uint16_t flags;
922 	int16_t status;
923 };
924 
925 /*
926  * Generate xen_netif ring structures and types.
927  */
928 
929 DEFINE_RING_TYPES(xen_netif_tx, struct xen_netif_tx_request,
930 		  struct xen_netif_tx_response);
931 DEFINE_RING_TYPES(xen_netif_rx, struct xen_netif_rx_request,
932 		  struct xen_netif_rx_response);
933 
934 #define XEN_NETIF_RSP_DROPPED         -2
935 #define XEN_NETIF_RSP_ERROR           -1
936 #define XEN_NETIF_RSP_OKAY             0
937 /* No response: used for auxiliary requests (e.g., xen_netif_extra_info_t). */
938 #define XEN_NETIF_RSP_NULL             1
939 
940 #endif
941