xref: /openbmc/linux/include/uapi/linux/hyperv.h (revision 3932b9ca)
1 /*
2  *
3  * Copyright (c) 2011, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <haiyangz@microsoft.com>
20  *   Hank Janssen  <hjanssen@microsoft.com>
21  *   K. Y. Srinivasan <kys@microsoft.com>
22  *
23  */
24 
25 #ifndef _UAPI_HYPERV_H
26 #define _UAPI_HYPERV_H
27 
28 #include <linux/uuid.h>
29 
30 /*
31  * Framework version for util services.
32  */
33 #define UTIL_FW_MINOR  0
34 
35 #define UTIL_WS2K8_FW_MAJOR  1
36 #define UTIL_WS2K8_FW_VERSION     (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR)
37 
38 #define UTIL_FW_MAJOR  3
39 #define UTIL_FW_VERSION     (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
40 
41 
42 /*
43  * Implementation of host controlled snapshot of the guest.
44  */
45 
46 #define VSS_OP_REGISTER 128
47 
48 enum hv_vss_op {
49 	VSS_OP_CREATE = 0,
50 	VSS_OP_DELETE,
51 	VSS_OP_HOT_BACKUP,
52 	VSS_OP_GET_DM_INFO,
53 	VSS_OP_BU_COMPLETE,
54 	/*
55 	 * Following operations are only supported with IC version >= 5.0
56 	 */
57 	VSS_OP_FREEZE, /* Freeze the file systems in the VM */
58 	VSS_OP_THAW, /* Unfreeze the file systems */
59 	VSS_OP_AUTO_RECOVER,
60 	VSS_OP_COUNT /* Number of operations, must be last */
61 };
62 
63 
64 /*
65  * Header for all VSS messages.
66  */
67 struct hv_vss_hdr {
68 	__u8 operation;
69 	__u8 reserved[7];
70 } __attribute__((packed));
71 
72 
73 /*
74  * Flag values for the hv_vss_check_feature. Linux supports only
75  * one value.
76  */
77 #define VSS_HBU_NO_AUTO_RECOVERY	0x00000005
78 
79 struct hv_vss_check_feature {
80 	__u32 flags;
81 } __attribute__((packed));
82 
83 struct hv_vss_check_dm_info {
84 	__u32 flags;
85 } __attribute__((packed));
86 
87 struct hv_vss_msg {
88 	union {
89 		struct hv_vss_hdr vss_hdr;
90 		int error;
91 	};
92 	union {
93 		struct hv_vss_check_feature vss_cf;
94 		struct hv_vss_check_dm_info dm_info;
95 	};
96 } __attribute__((packed));
97 
98 /*
99  * Implementation of a host to guest copy facility.
100  */
101 
102 #define FCOPY_VERSION_0 0
103 #define FCOPY_CURRENT_VERSION FCOPY_VERSION_0
104 #define W_MAX_PATH 260
105 
106 enum hv_fcopy_op {
107 	START_FILE_COPY = 0,
108 	WRITE_TO_FILE,
109 	COMPLETE_FCOPY,
110 	CANCEL_FCOPY,
111 };
112 
113 struct hv_fcopy_hdr {
114 	__u32 operation;
115 	uuid_le service_id0; /* currently unused */
116 	uuid_le service_id1; /* currently unused */
117 } __attribute__((packed));
118 
119 #define OVER_WRITE	0x1
120 #define CREATE_PATH	0x2
121 
122 struct hv_start_fcopy {
123 	struct hv_fcopy_hdr hdr;
124 	__u16 file_name[W_MAX_PATH];
125 	__u16 path_name[W_MAX_PATH];
126 	__u32 copy_flags;
127 	__u64 file_size;
128 } __attribute__((packed));
129 
130 /*
131  * The file is chunked into fragments.
132  */
133 #define DATA_FRAGMENT	(6 * 1024)
134 
135 struct hv_do_fcopy {
136 	struct hv_fcopy_hdr hdr;
137 	__u64	offset;
138 	__u32	size;
139 	__u8	data[DATA_FRAGMENT];
140 };
141 
142 /*
143  * An implementation of HyperV key value pair (KVP) functionality for Linux.
144  *
145  *
146  * Copyright (C) 2010, Novell, Inc.
147  * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
148  *
149  */
150 
151 /*
152  * Maximum value size - used for both key names and value data, and includes
153  * any applicable NULL terminators.
154  *
155  * Note:  This limit is somewhat arbitrary, but falls easily within what is
156  * supported for all native guests (back to Win 2000) and what is reasonable
157  * for the IC KVP exchange functionality.  Note that Windows Me/98/95 are
158  * limited to 255 character key names.
159  *
160  * MSDN recommends not storing data values larger than 2048 bytes in the
161  * registry.
162  *
163  * Note:  This value is used in defining the KVP exchange message - this value
164  * cannot be modified without affecting the message size and compatibility.
165  */
166 
167 /*
168  * bytes, including any null terminators
169  */
170 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE          (2048)
171 
172 
173 /*
174  * Maximum key size - the registry limit for the length of an entry name
175  * is 256 characters, including the null terminator
176  */
177 
178 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE            (512)
179 
180 /*
181  * In Linux, we implement the KVP functionality in two components:
182  * 1) The kernel component which is packaged as part of the hv_utils driver
183  * is responsible for communicating with the host and responsible for
184  * implementing the host/guest protocol. 2) A user level daemon that is
185  * responsible for data gathering.
186  *
187  * Host/Guest Protocol: The host iterates over an index and expects the guest
188  * to assign a key name to the index and also return the value corresponding to
189  * the key. The host will have atmost one KVP transaction outstanding at any
190  * given point in time. The host side iteration stops when the guest returns
191  * an error. Microsoft has specified the following mapping of key names to
192  * host specified index:
193  *
194  *	Index		Key Name
195  *	0		FullyQualifiedDomainName
196  *	1		IntegrationServicesVersion
197  *	2		NetworkAddressIPv4
198  *	3		NetworkAddressIPv6
199  *	4		OSBuildNumber
200  *	5		OSName
201  *	6		OSMajorVersion
202  *	7		OSMinorVersion
203  *	8		OSVersion
204  *	9		ProcessorArchitecture
205  *
206  * The Windows host expects the Key Name and Key Value to be encoded in utf16.
207  *
208  * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
209  * data gathering functionality in a user mode daemon. The user level daemon
210  * is also responsible for binding the key name to the index as well. The
211  * kernel and user-level daemon communicate using a connector channel.
212  *
213  * The user mode component first registers with the
214  * the kernel component. Subsequently, the kernel component requests, data
215  * for the specified keys. In response to this message the user mode component
216  * fills in the value corresponding to the specified key. We overload the
217  * sequence field in the cn_msg header to define our KVP message types.
218  *
219  *
220  * The kernel component simply acts as a conduit for communication between the
221  * Windows host and the user-level daemon. The kernel component passes up the
222  * index received from the Host to the user-level daemon. If the index is
223  * valid (supported), the corresponding key as well as its
224  * value (both are strings) is returned. If the index is invalid
225  * (not supported), a NULL key string is returned.
226  */
227 
228 
229 /*
230  * Registry value types.
231  */
232 
233 #define REG_SZ 1
234 #define REG_U32 4
235 #define REG_U64 8
236 
237 /*
238  * As we look at expanding the KVP functionality to include
239  * IP injection functionality, we need to maintain binary
240  * compatibility with older daemons.
241  *
242  * The KVP opcodes are defined by the host and it was unfortunate
243  * that I chose to treat the registration operation as part of the
244  * KVP operations defined by the host.
245  * Here is the level of compatibility
246  * (between the user level daemon and the kernel KVP driver) that we
247  * will implement:
248  *
249  * An older daemon will always be supported on a newer driver.
250  * A given user level daemon will require a minimal version of the
251  * kernel driver.
252  * If we cannot handle the version differences, we will fail gracefully
253  * (this can happen when we have a user level daemon that is more
254  * advanced than the KVP driver.
255  *
256  * We will use values used in this handshake for determining if we have
257  * workable user level daemon and the kernel driver. We begin by taking the
258  * registration opcode out of the KVP opcode namespace. We will however,
259  * maintain compatibility with the existing user-level daemon code.
260  */
261 
262 /*
263  * Daemon code not supporting IP injection (legacy daemon).
264  */
265 
266 #define KVP_OP_REGISTER	4
267 
268 /*
269  * Daemon code supporting IP injection.
270  * The KVP opcode field is used to communicate the
271  * registration information; so define a namespace that
272  * will be distinct from the host defined KVP opcode.
273  */
274 
275 #define KVP_OP_REGISTER1 100
276 
277 enum hv_kvp_exchg_op {
278 	KVP_OP_GET = 0,
279 	KVP_OP_SET,
280 	KVP_OP_DELETE,
281 	KVP_OP_ENUMERATE,
282 	KVP_OP_GET_IP_INFO,
283 	KVP_OP_SET_IP_INFO,
284 	KVP_OP_COUNT /* Number of operations, must be last. */
285 };
286 
287 enum hv_kvp_exchg_pool {
288 	KVP_POOL_EXTERNAL = 0,
289 	KVP_POOL_GUEST,
290 	KVP_POOL_AUTO,
291 	KVP_POOL_AUTO_EXTERNAL,
292 	KVP_POOL_AUTO_INTERNAL,
293 	KVP_POOL_COUNT /* Number of pools, must be last. */
294 };
295 
296 /*
297  * Some Hyper-V status codes.
298  */
299 
300 #define HV_S_OK				0x00000000
301 #define HV_E_FAIL			0x80004005
302 #define HV_S_CONT			0x80070103
303 #define HV_ERROR_NOT_SUPPORTED		0x80070032
304 #define HV_ERROR_MACHINE_LOCKED		0x800704F7
305 #define HV_ERROR_DEVICE_NOT_CONNECTED	0x8007048F
306 #define HV_INVALIDARG			0x80070057
307 #define HV_GUID_NOTFOUND		0x80041002
308 #define HV_ERROR_ALREADY_EXISTS		0x80070050
309 
310 #define ADDR_FAMILY_NONE	0x00
311 #define ADDR_FAMILY_IPV4	0x01
312 #define ADDR_FAMILY_IPV6	0x02
313 
314 #define MAX_ADAPTER_ID_SIZE	128
315 #define MAX_IP_ADDR_SIZE	1024
316 #define MAX_GATEWAY_SIZE	512
317 
318 
319 struct hv_kvp_ipaddr_value {
320 	__u16	adapter_id[MAX_ADAPTER_ID_SIZE];
321 	__u8	addr_family;
322 	__u8	dhcp_enabled;
323 	__u16	ip_addr[MAX_IP_ADDR_SIZE];
324 	__u16	sub_net[MAX_IP_ADDR_SIZE];
325 	__u16	gate_way[MAX_GATEWAY_SIZE];
326 	__u16	dns_addr[MAX_IP_ADDR_SIZE];
327 } __attribute__((packed));
328 
329 
330 struct hv_kvp_hdr {
331 	__u8 operation;
332 	__u8 pool;
333 	__u16 pad;
334 } __attribute__((packed));
335 
336 struct hv_kvp_exchg_msg_value {
337 	__u32 value_type;
338 	__u32 key_size;
339 	__u32 value_size;
340 	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
341 	union {
342 		__u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
343 		__u32 value_u32;
344 		__u64 value_u64;
345 	};
346 } __attribute__((packed));
347 
348 struct hv_kvp_msg_enumerate {
349 	__u32 index;
350 	struct hv_kvp_exchg_msg_value data;
351 } __attribute__((packed));
352 
353 struct hv_kvp_msg_get {
354 	struct hv_kvp_exchg_msg_value data;
355 };
356 
357 struct hv_kvp_msg_set {
358 	struct hv_kvp_exchg_msg_value data;
359 };
360 
361 struct hv_kvp_msg_delete {
362 	__u32 key_size;
363 	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
364 };
365 
366 struct hv_kvp_register {
367 	__u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
368 };
369 
370 struct hv_kvp_msg {
371 	union {
372 		struct hv_kvp_hdr	kvp_hdr;
373 		int error;
374 	};
375 	union {
376 		struct hv_kvp_msg_get		kvp_get;
377 		struct hv_kvp_msg_set		kvp_set;
378 		struct hv_kvp_msg_delete	kvp_delete;
379 		struct hv_kvp_msg_enumerate	kvp_enum_data;
380 		struct hv_kvp_ipaddr_value      kvp_ip_val;
381 		struct hv_kvp_register		kvp_register;
382 	} body;
383 } __attribute__((packed));
384 
385 struct hv_kvp_ip_msg {
386 	__u8 operation;
387 	__u8 pool;
388 	struct hv_kvp_ipaddr_value      kvp_ip_val;
389 } __attribute__((packed));
390 
391 #endif /* _UAPI_HYPERV_H */
392